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ABSTRACT 

N independent and identically distributed random variables are sampled sequentially 

from a known distribution. When trying to locate the maximum of the sequence, there 

seems to be a very simple relation between the probability of finding the maximum and 

the number of variables sampled. It will be shown how this relation holds true under 

different information sources when optimal policy is used. 
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CHAPTER I 

INTRODUCTION 

1.1 Definitions 

Let us define a standard " secretary problem" as follows: 

1.1.1 n independent and identically distributed random variables are 

sampled sequentially from a known continuous distribution (the 

continuity guarantees that there are no "ties") and all n 

permutations are equally likely. 

1.1.2 n, the total number of random variables available, is known. 

1.1.3 After each random variable is drawn, the player must either 

choose it, thereby ending the game, or reject it permanently. 

1.1.4 The player is satisfied with nothing but the very best (a payoff 

of 1 if the largest random variable is selected, a payoff of 0 

otherwise). 

1.1.5 The decision at every stage is based only on the information 

provided from some source to the player regarding the random 

variable drawn. 

1.1.6 If the first n—i random variables are rejected, the last one is 

automatically chosen. 

The obvious application to choosing the best applicant for a job gives 

the problem its name, although in the literature the problem is referred to by 

other names such as dowry, marriage, and beauty contest. 



2 

1.2 Terminology and notations 

1.2.1 The distribution of sampled variables 

The distribution of the random variables sampled as 

specified by the general secretary problem is arbitrary. 

However, for simplicity we will assume throughout that the 

distribution is the uniform distribution on [0, 1]. We may make 

this assumption since the distribution is known (by 1.1.1). This 

implies that the cumulative probability function, 

F(y)=P(Y≤y) 

is known as well. Therefore there exists an obvious order 

preserving transformation that assigns to each sampled random 

variable Y, its cumulative probability, 

X1=F(iç) 

Under this transformation the probability of selecting the 

maximum of the }'s is identical to selecting the maximum of the 

corresponding X 's. 

1.2.2 Optimal strategies 

This paper discusses optimal strategies for different 

types of secretary problems. Since the objectives may vary 

depending upon the type of problem at hand, an optimal 

strategy, S, is one that maximizes the probability of reaching 

the given objective. In general, the only criterion of S used to 
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decide whether to choose the ith observation, once it is drawn, 

is the condition: 

P(choosing X, and winning)> 

P(not choosingX, playing optimally thereafter and winning) 

If that condition is met, X should be chosen. 

For the standard secretary problem described in 1. 1, the 

objective (as outlined in 1.1.4) is to find the maximum of the 

sampled values. S will therefore be a strategy that locates 

max{. . .. k} with the highest probability. 

Given any information source, r and the number of 

observations available, n, then clearly there exists an optimal 

strategy, S, that maximizes the probability of correctly 

selecting the largest observation. In the case that S is not 

unique, the following tie-breaker criterion will be used. 

1.2.3 Tie-breaker criterion for choosing among optional strategies 

Suppose S1, s. • are all optimal strategies. The 

preferred optimal strategy then is the one that minimizes 

E(K). Here K is the location of the stopping variable when 

the sample is of size n. 

The process of sequential sampling usually involves 

costs that are directly related to the number of times we have 

sampled. In light of this, the above criterion is readily 

understood. 
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1.2.4 Information sources 

Four types of information source will be discussed: 

2.4.1 Extreme no-information source (YE) - The source 

gives no information at all regarding the observation 

sampled. 

2.4.2 No information source (YR) - The source reveals the 

rank of each observation only as it is being drawn (rank 

among the ones observed so far). 

2.4.3 Full information source (Ye) - The source reveals the 

actual value of A as it is being sampled. 

2.4.4 Partial information source (ye) - All other sources fall 

into this category. 

The following notations will be used throughout the 

paper: 

Xi - the ith observation. 

X. - the largest observation. 

M - the event that the maximum of a sample of size n 

is chosen. 

K - the number of random variables sampled 

(including the one selected) in a sample of size n. 

- the event that the ith observation is chosen. 

M - the event that the ith observation is the 

maximum. 
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y - the information source available to the decision 

maker. A source may give no information whatsoever, partial 

information of some sort or fiji! information. 

In order to avoid cumbersome notations, the 

information source and the strategy will always be clearly 

specified. This will alleviate the need to include them as part of 

the notation. Additional notations will be defined later as they 

are needed. 

1.3 Variations on the standard secretary problem 

The standard secretary problem, as described in 1. 1, is concise and is 

amenable to precise theoretical analysis. However, most real life applications 

do not conform to the restrictions of the standard secretary problem. 

Variations on the problem can be obtained by relaxing or altering one or more 

of the restrictions 1.1.1 through 1.1.6. Let us now review the list of restrictions 

once more and mention the common variations of each. 

1.3.1 The distribution of the X's may be: 

- continuous or discrete. In the case of discrete 

distributions ties may occur. When ties occur, the nl 

permutations are not all equally likely. 

- fully specified, partially specified or not specified at 

all. Partial specification may arise for instance in a case where 

X, is exponentially distributed with some unknown parameter 

It. 
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1.3.2 The total number of observations may be known (as in the 

standard case). Alternatively, the total number of observations 

may follow some distribution, pi = P(n = i), i = 1... k . If N 

does follow a certain distribution, this distribution may be 

specified in full, partially, or not at all. 

1.3.3 In the standard case, no back solicitation is allowed. A whole 

class of problems arises if the player is allowed to backtrack and 

choose an observation that had previously been rejected. Back 

solicitation usually has an associated cost which may take the 

form of a fixed amount. Alternatively, the cost may take the 

form of restrictions on the random variables that may be back 

sampled. 

1.3.4 The objective of the game, to pick "nothing but the best", may 

not be appropriate in many practical scenarios. Trying to 

minimize the expected value (or some utility functions that 

depend on the rank or the value of the observations chosen) can 

prove much more suitable. Frequently the objective of picking 

"nothing but the best" is replaced by the objective of picking 

"one of the best k observations". For instance, if k = 2, the 

object now becomes that of picking "nothing but the best or the 

second best." 

1.3.5 Different information sources were already discussed in ( 1.2.4). 

The most commonly used sources are the no-information and 

full-information sources. 
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1.3.6 If back solicitation is permitted, reaching the last sample does 

not imply it must be selected. 

By altering requirements 1.1.1-1.1.6 we can construct numerous 

variations on the standard secretary problem. A typical one may read as 

follows: 

A decision maker gets N offers sequentially, where 

N Poisson(3) and the offers are Normal (12000,2000). As 

every offer comes along the decision maker decides whether to 

accept or not. He can stop the process at any stage. Back 

solicitation is allowed but costs 3000 for every backtracking 

step. The objective of the game is to maximize the expected 

payoff. 

1.4 Applications 

A large variety of real life problems can be regarded as instances of the 

secretary problem. We shall consider two examples. 

1.4.1 The house seller's problem 

A person is offered a job in another city and he wishes 

to sell his house. Time is of the essence since he has only two 

months to relocate. If the person does not meet the selling 

deadline, he loses $ 1,140 per month in property maintenance 

costs and potential rent income. A short study of house sales in 

the same neighbourhood reveals that: 
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4.1.1 The number of offers that sellers get during the first 

month of listing is Poisson distributed with a mean of 

3.6. 

4.1.2 The number of offers that sellers get during the second 

month of listing is Poisson distributed with a mean of 

1.6. 

4.1.3 The size of the offers in the first month of listing follows 

the normal distribution Normal(.95A,.012A). In this 

case A is the appraised value of the house as provided 

by an independent appraiser. In our example 

A = $154,900. 

4.1.4 The size of the offers in the second month of listing 

follows the normal distribution Normal(. 93 5,4, .012A). 

What should be the selling strategy if the seller wishes to 

maximize the expected payoff? 

(Remark: Note that this instance of the house seller's 

problem is based on real data provided by Royal LePage for 

house sales in West Thornclffe and Upper Northaven in the 

summer of 1992. This data only encompasses sales by realtors, 

and does not include private sales by owners.) 

This is clearly a secretary type problem. However, it 

deviates from the restrictions imposed by the standard secretary 

problem as follows: 

- The offers are not independent, since every buyer can 

obtain information about previous offers. Such information is 

most likely to affect the buyer's offer. 
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- The number of offers is not fixed, but follows a 

certain given distribution. 

- The assumption of "no back sampling" still holds. 

Since in this example the term "offer" refers to the final offer of 

a prospective buyer, once an offer is rejected, the buyer departs 

for good. 

- The objective of the game changes from "nothing but 

the best" to maximizing expected value. 

- Full information is given regarding the distribution of 

the offers and the exact value of each offer. 

- There is a fixed cost ($ 1,140 per month) that should 

be taken into consideration when deriving the optimal strategy. 

This example demonstrates how a fairly simple real life 

application, once analyzed, becomes a complicated secretary 

type problem. 

1.4.2 Kepler's wife selection 

The entertaining method employed by Johannes Kepler 

in choosing his second wife provides us with the next example. 

This story is discussed at length in [9] and summarized in [4]. 

After Johannes Kepler's first wife died of cholera, the great 

German astronomer resolutely ventured to find an appropriate 

substitute. In two years he interviewed no fewer than 11 

women. After careful consideration he decided to marry the 

fifth prospect. His friends objected strongly to his choice (the 

prospect was an orphan of a lower social rank) and convinced 

him to marry the fourth candidate. Kepler indeed proposed to 
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candidate #4 only to find out that he had waited too long. At 

that time candidate #4 was no longer interested in his advances. 

Kepler went on to propose marriage to his initial choice, 

candidate #5. She gladly accepted the offer, bore him seven 

children, and ran a neat and efficient household. Subsequent 

letters, written by Kepler to his friends in which the new wife 

was portrayed very favourably, suggest that the choice was 

indeed successful. 

Kepler's process of finding a spouse is clearly one of 

sequential sampling. Again we' shall examine how a practical 

application conforms to the conditions of the theoretical 

secretary problem. 

- The marriage candidates are not independent of one 

another. Failure with one candidate probably lead Kepler to 

avoid others who were of the same "type". 

- The total number of candidates is very difficult to 

determine. This number is influenced by factors that are too 

numerous to specify. 

- The information available is partial because no one 

may know everything there is to know about the virtues of the 

opposite sex. Nevertheless, male arrogance is such that every 

man thinks he knows quite a lot. 

- The importance of the decision leads one to believe 

that the goal of the game is "nothing but the best." 

- The last candidate is not necessarily chosen 

automatically if the first n-i candidates are rejected. In some 

cases, staying single may be the preferred approach. 
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In the next chapter some of the better known extensions 

will be discussed, along with their solutions. 

1.5 Historical review 

The earliest known variation of the secretary problem appeared in the 

British Educational Times in 1875. It was submitted by none other than the 

distinguished English mathematician Arthur Cayley. The problem deals with a 

lottery of n tickets representing 1... n pounds. A person draws a ticket, looks 

at it, and decides whether he wishes to keep it or draw again (out of the 

remaining n —1 tickets), drawing in all not more than k times. His payoff is the 

value of the last ticket drawn and he wishes to maximize his expected payoff. 

Note that although Cayley's problem and the standard secretary problem are 

highly similar there is one important difference: Cayley's payoff is some 

numerical value depending on the ticket selected, which clearly violates 

condition 1.1.4. 

Ever since then, different variations of the secretary problem have 

appeared frequently in the literature. The origins of the standard secretary 

problem itself are somewhat obscure. Gleason posed the problem in 1955, 

mentioning he heard it from someone else. Gardener (1960) was most likely 

the first to publish a statement of the no-information case, attributing it to 

Mamie and Fox (1958). A solution to the problem was given in the March 

1960 issue of Scientific American by Moser and Pounder. 

Although statisticians started to show interest in the problem in the 

early to mid-1950s, it was only later, in 1960-1961, that it made its way to 

scientific journals. In his 1961 paper, Lindley not only solves the no-

information case but also considers minimizing the expected rank of the 

applicant chosen. Bissinger and Siegel (1963) posed the no-information case 
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once more, this time considering the n = 1000 case. A year later a solution was 

proposed by Bosch and 12 others. 

A real breakthrough occurred in 1966 due to the outstanding basic 

paper by Gilbert and Mosteller. In "Recognizing the maximum of a sequence", 

the two start by giving a comprehensive summary of the problem and then 

derive elegant solutions for the no-information case as well as the full-

information case. They also: extend and solve the no-information case where r 

choices are allowed; consider the problem where the goal is to obtain the best 

or second best; solve the "full information case" under the minimum rank 

criterion; and also discuss asymptotic theories (n approaches infinity) for all the 

above cases. This paper, more than any other, is the foundation of what grew 

into a wide field of study within probability optimization. Ever since then, 

numerous extensions of the problem have been discussed. Although the 

literature now contains hundreds of papers, it seems that the field continues to 

grow rapidly. 
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CHAPTER II 

ENNS'S CONJECTURE IN THE SIMPLE CASES  

2.1 The extreme no-information case 

Recall that y. is the source that gives the player no information 

whatsoever about X as it is being drawn. This is a trivial case, in which for all 

strategies S, the probability of correctly locating Xm is: 

P(M)=P(M ncr) 

I: P(C, M(M 

=!p(c)=! 

Each strategy is as "optimal" as any other and yields P*(M) =!. 

Using the tie-breaking criterion discussed in ( 1.2) we select the strategy that 

chooses X1 with probability 1. Under this selection of S, we have: 

and E*(K)=1 

Before we go on to the next case note that: 

(2.1) 
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2.2 The classical secretary problem 

This case is by far the most discussed. Here the player is under 

the YR source which provides him with the rank of the observation 

drawn (among the observations drawn so far) as he proceeds. 

2.2.1 Deriving the Optimal Strategy 

Let us think of ourselves as the player and find the form 

of the optimal strategy. Based on ( 1.3), once we are given the rank of 

the ith observation, it should only be chosen if: 

P(choosing X, and winning)> 

not choosingX, playing optimally thereafter and winning) (2.2) 

Define a "candidate" to be an observation, the value of 

which exceeds the values of all earlier draws. Clearly, the ith draw 

should be considered only if it is a candidate, or otherwise the game 

would be lost. 

Observe that: 

F(Cx nMx)P(Xmax Xi IX.i  max {Xi ... J}) 

which is a strictly increasing function of i 
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The right hand side of inequality (2.2) is a decreasing function 

of i , since we can always get to a later point in the sequence and then 

use whatever strategy is available. In other words, being "young" in 

the game does not rule out any strategies that can be employed later 

on. Consequently, the optimal strategy takes the form of passing the 

first r - 1 draws, for some r, and choosing the first candidate 

thereafter. Such a strategy will be referred to as an s(r) rule. 

2.2.2 Deriving P(M) 

S in this case is an s(r) rule. Under such a scheme, the 

probability of winning is given by: 

P(M)=(c, 
i=r 

= i(c, M, )F(M,) 
i=r 

(2.3) 

The last step of the derivation is true since P(M ,) -_, Vi, 

and given that X is the maximum of the whole sequence, it will be 

selected only if max{X1 i-I} falls within the first r —1 observations 

(or else we will never get to sample X). The probability of the above 

—1 
occurring is r  and (2.3) follows. 

i—i 
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For any given n, we can calculate r*, the value that maximizes 

P(M) = Optimal values of r*, together with their 
i=r 1 

corresponding .P*(M) are presented in Table 2.1 for various values of 

n. It is interesting to note that r* = 5 when n = 11. Recall that in 

Kepler's case (1.4.2) 11 candidates were interviewed and the fifth one 

was chosen. If the great astronomer were to use the above model, he 

would have ended up with the same wife without having to interview 

the last six candidates at all. 
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n p*(M) n r* P4(M) 

1 1 1.00000 15 6 0.38940 

2 1,2 0.50000 20 8 0.38420 

3 2 0.50000 30 12 0.37865 

4 2 0.45833 40 16 0.37574 

5 3 0.45833 50 19 0.37427 

6 3 0.42777 60 23 0.37320 

7 3 0.41428 70 27 0.37239 

8 4 0.40982 80 30 0.37185 

9 4 0.40595 90 34 0.37142 

10 4 0.39869 100 38 0.37104 

11 5 0.39841 1000 369 0.36819 

12 5 0.39551 Co 
e Ye 

13 6 0.39226 

14 6 0.39171 

Table 2.1 

Optimal r* values together with optimal probabilities 

of winning for the classical secretary problem. 
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2.2.3 Deriving E*(K). 

Let us derive the expected location of the stopping variable. 

Since an s(r) rule is used, we get: 

E(K) = (i)P(C1) 

= [n-I (i)F(C11) I +np(c1) 

= (i)P(no choice was made among {x1... x 1} and X is a candidate) 
I=1 

+(n)P(no choice was made among {x1 x_1 }) 

[nI 1r-1" 1 (r-1\ 
= (i)I--I- )] + il l I 

[i=r z_ 1)(i n-1) 

(2.4) 

To calculate the value of E*(K), all one must do is determine 

the value of rS and substitute it into (2.4). 

Combining (2.3) and (2.4), it follows immediately that: 

nP(M) = E(K)—(r-1) (2.5) 

Recall that in the extreme no-information case, the two 

quantities P(M) and E(K) were also very closely related (see 2.1). 
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2.3 Enns's Conjecture and Its Immediate Extensions 

E.G. Enns was the first to note that in secretary-type problems there 

seems to be a close relation between P(M) and E(K). In his unpublished 

paper "The Role of Information in a Sequential Decision Problem" (1974), he 

derives P(M) and E(K) for various information sources under optimal 

strategies, points out the simple relationship between the two quantities, and 

poses the following conjecture: 

Enns's Conjecture (EC): 

When trying to locate the maximum of a sequence of length 

n under any given information source, the following holds 

true when playing optimally: 

E*(Kn)_(r* —i) = P(M) 

Here, r* is the smallest integer satisfying P(C. ) 0 when 

playing optimally. 

As will be seen in later chapters, most information sources 

provide us with enough information regarding X1 so that # 0 

when playing correctly. In such cases, 1 and the conjecture reduces 

to the simple relation E* (K) = nPt(Mj. 

2.3.1 EC in the extreme no-information case 

In the extreme no-information case, discussed in (2. 1), EC 

holds for the optimal strategy with r = 1. However, EC also holds for 
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other strategies that are not optimal. In particular, every strategy that 

chooses X with probability 1 , yields: 

and E(K)=i 

regardless of the value of i chosen. EC follows, since here r* = 1. 

It is important to note here that EC may also be satisfied in 

cases where a non-optimal strategy is being used. It follows that 

optimality is clearly not a necessary condition for EC to hold. 

2.3.2 EC in the classical secretary problem. 

The following theorem is a direct consequence of (2.5): 

Theorem 1 

Whenever an s(r) rule is used for finding the maximum of a sequence 

of length n, the following holds: 

E(K)—(r-1)=nP(M) 

where r is the smallest integer satisfying :# o. 

Looking at the derivation of (2.5) we can see that the above 

theorem is true regardless of the value of r chosen. In particular, given 

a classical secretary problem with n observations, we can calculate r* 

(the r that maximizes (2.3)), and P (M a), the probability of winning 
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under Sd'. The expected location of the stopping variable can then be 

calculated by using: 

E*(Kn)= np(Mn)+(r*_1) (2.6) 

An intuitive argument can explain why (2.5) holds for any 

choice of r in the classical case. Consider, a new "game" defined as 

follows: an s(r) strategy is used for finding X. a,, as before), but if 

the strategy ever leads us to choose X, this event will be considered as 

an instant win, regardless of whether X is the largest of the whole 

sequence or not. We will be using the superscript 0 for the "old" s(r) 

procedure, and N for the modified one. 

Clearly, E° (K) = E'' (Ku), since the choice of the stopping 

variable is based on the same s(r) rule in both cases. However, 

PO (Mn) <pw(M) because the effect of the new game is to take the 

losing event of(C i) and to redefine it as a win. 

Therefore, 

pN(M) = po(M)+p(C  

and since 

(c n A)= (c, I  

(r -1(n_1 

n 
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r-1 

we get: 

and so, 

or, 

P0(M)=PN(M) (  r_1) 
t\fl) 

Now note that in the new game: 

(2.7) 

PN (M "Ic") Vi≥r (2.8) 

Multiplying both sides of (2.8) and summing, we get: 

± P" (M .,C,)P(C, ) 

= i=r (nl i=r 

EPW(M r CI) =(flE'(K) 
i=r fl) 

EN(K) E°(K) 
p N (M)... = 

n n 

Combining (2.9) and (2.7), the desired result follows. 

(2.9) 
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2.3.2.1 The Limiting Case. 

No discussion of the classical problem can 

be complete without mentioning the limiting case (as 

n —> co) and its extraordinary solution. For our 

purpose, the following derivation suffices, as it yields 

the correct answer. A more thorough derivation of 

this result can be found in Gilbert and Mosteller 

(1966). First, we want to find the optimal r that 

maximizes P(M) = as n -> co. Then we 
i=r - 1 

shall calculate the probability of winning under this r* 

value. The argument is as follows: 

F(M) = 
n =,. i- 1 

(r —i+( n )(1) 

n ) i=r11Aui 

Now, we let n tend to infinity and use: 

x=lim r—, 
n-co fl 

and dt= -  -. 
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Under these substitutions, the above summation becomes a 

Reimann approximation for the integral: 

xJ!dt = —xlnx 
x t 

(2.10) 

The x value that maximizes (2.10) is obtained by using basic 

calculus: 

1 r 1 
Xoptjn,al = -, urn - = - and lim p*(M. ) =!. 

e n-* n e e 

And so, for large n, the optimal strategy will pass 

approximately 37% of the observations without making a decision, and 

then select the ' first candidate thereafter. 

Taking limits on both sides of (2.6) we get: 

lim = lirn + (r* - 1)] 
n—*o fl fl—). co fl 

112 
=—+—=— 
e e e 

Therefore, E(K) 0.73575n for large n. 

This result seems strikingly high and it may be impractical to 

use a strategy that samples about 74% of the observations before 

making a decision. 
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This is particularly true, considering that n is large 

and that usually there is a cost involved in sampling. 

2.4 Extending Theorem 1 

2.4.1 A word on s(r) rules 

We have by now established that EC holds whenever an s(r) 

strategy is being used. It therefore seems natural to try to find the 

conditions under which an s(r) rule is optimal (and therefore 

applicable). In searching for these conditions, one first has to realize 

that a rule that automatically rejects the first r - 1 observations can 

never be optimal if we are given information about the actual 

magnitude of the Xs. For example, consider the following simple case, 

where the player is given the exact values of the X's (the full 

information case). Let 1? = 10, and suppose that the first observation 

drawn is relatively large, say X1 = 0.95. The probability of winning if 

we choose X1 is (o. 95)9 0.63. The probability of winning if we 

continue has to be less than 0.37. This is true, since once we pass X1, 

the only way we can win is if the following two events occur 

simultaneously: 

(a) at least one of X1 ... X9 is greater than 0.95. 

(b) we manage to identify max { X1... x9 } correctly. 

Since the probability of the first event is 0.37, the probability of 

both occurring can not exceed 0.37. Therefore, X1 should be picked in 

this case if we play optimally. Moreover, regardless of how large n is, 

we can always find a value, d1, close enough to 1 , such that: 
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P(win Ix1 > d and we choose X1) 
> P(win JX1 > d, we do not chooseX1 and play optimally thereafter) 

Based on the above example, we can easily construct a 

threshold for X1 and say that whenever X1 >(o.5)(i), it should be 

chosen. Thus a strategy that has (c1) = 0 as one of its properties is 

clearly not optimal here. This argument can be extended to include any 

mixture of known distributions. By this we mean the following: let 

X U[O,a1] with probability p (1≤j≤k), where I p1 = 1. The 

X's in this case are not identically distributed as in the full information 

case. Although the player is given the exact values of the X11s, he does 

not have nearly as much information as in the previous case. 

Nevertheless, here again we can note that the probability of choosing 

X1 when playing optimally should not be zero, for if 

x l > it should be  chosen,j I 
2max{a1} 

2.4.2 An extension of Theorem 1 

In 2.4.1 we saw that a process for which an s(r) rule is optimal 

must involve a source that provides minimal information. Let us, 

therefore, restrict our attention to the ranking source YR' Variations of 

the model will be obtained by altering requirement 1.1.2. Instead of 
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assuming that IV, the total number of observations, is known, we let N 

be a discrete random variable with density: 

P(N=k)=pk k=1 ... n 

The optimal case where P(N = n) = = 1 is nothing but the 

classical secretary problem for which an s(r) rule is optimal (as we have 

already seen) with: 

r*= min l≥l : 
f m=i 117 

The above is an alternative way of describing the r value that 

maximizes: 

P(M) 

Rasmussen and Robbins (1975) consider the problem when N is 

a bounded random variable. They concluded that an s(r) rule is optimal 

regardless of the distribution of N. Petrucelli (1983) has proved the last 

statement to be wrong by finding an error in lemma 3.2 of Rasmussen 

and Robbins. Irle (1980) shows by a counter-example that whether an 

optimal rule is an s(r) rule does depend on the distribution of N. He 

generalizes the formulation of the problem and derives several sufficient 
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conditions on the distribution of N for the optimal rule to be an s(r) 

rule. One of these conditions is: 

Pk> 
m=k+I m 

-3 p 1> whenever 1> k 
m=J+I in 

The above is also a special case of Presman and Sonin (1972). 

The sufficient condition is weakened somewhat in Theorem 2.2 of 

Petrucelli (1983). 

Theorem 2.2 (Petrucelli, 1983): 

Let r = min 11 ≥ 1: ≤ ii. Then a sufficient 
3 

condition for an optimal rule to be an s(r) rule is: 

-+ P,/ n P- > 1 

m=k+I m ,n=1+I m 

The highlight of this last paper is Theorem 2.3 in which 

the necessary and sufficient condition is given for an s(r) rule to be 

optimal: 

Theorem 2.3 (Petrucelli, 1983): 

Let c(ml)=[]/rn 
1=1+1] - 
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and 

r= max {l≥1 : m=l m m=l+I 

Then the optimal rule is an s(r) rule if and only if: 

1 -- <rc(m,r)pm 1≤l≤r 
,, m m--r+1 

Furthermore, if the last condition holds, the optimal rule passes 

over observations 1.. .r —1 and chooses the first candidate thereafter. 

Using this last result we can extend theorem 1 to obtain the 

following: 

Theorem 1 (extended) 

Suppose the maximum of a sequence of length N is to be found 

under the ranking source YR• Let N be a discrete random variable with: 

P(N=k)=pk k=l ... n 

Define: 

•1  )/M 
j=l+1J - 



30 

and 

r = max{l ≥ 1: < c(m,l)pj 
M m=l+I J 

Then, if the condition 

< r E c(m,r)pm 
,,z=l m m--r+1 

holds, then under optimal strategy 

E* (K) = nP*(M) +(r_1) 

also holds. 

1≤l≤r 



31 

CHAPTER III  

THE FULL-INFORMATION CASE 

3.1 Deriving the optimal strategy 

As was previously mentioned, y, is the source that provides the player 

with the exact values of the 's as they are being drawn. The assumption that 

the x' s are uniformly distributed on [0,1] is still valid. For convenience, in this 

chapter we will use lower case x1 's to denote the /th observation and reserve 

the X notation for a different purpose. 

The optimal strategy in this case belongs to a family of strategies which 

are indexed by a sequence of n monotonically decreasing "decision numbers". 

For example, consider the situation where n = 5 and x1 =. 9. The stopping 

criterion of S * is given by ( 1.3) and so in this case x1 is selected, because the 

probability that the other four observations are smaller than the first is 

(0. 9)4 0.656. Thus in the full-information case (as opposed to the classical 

secretary problem) no "buildup of experience" is needed and a choice can be 

made starting at x1. 

Furthermore, the decision whether or not x, should be chosen is solely 

based on the magnitude of x. In fact, x should be selected only if it is a 

candidate and is greater than some "decision number" d,. Here d1 satisfies the 

following: 

pr(winiCx and x,  = 

Pr(win C, Xi = di and we play optimally from x.1 on) 

In general the stopping rule is: choose the first candidate that is greater 

than its decision number. The d 's obviously form a decreasing sequence 
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because with fewer draws to go, the less chance there is of winning. 

Since one of the ' s must be chosen, let d 0. 

3.1.1. Deriving the decision numbers 

For a fixed n, let be the decision number for the (n — i)th 

observation (after which there are i draws left). This number satisfies 

Pr(winlC and n-i=d 1) = 

Pr(win , x,,_1 = d_, and we play optimally from x,_, +1 on) 

The left hand side is the probability that all the remaining draws 

will be less than d,, which is clearly (d_,)'. The right hand side is 

obtained by conditioning on the number of draws among the last i that 

are greater than d_,. If there is only one such draw, it is the maximum 

of the whole sequence as well as the only candidate left, and the game 

will be won. The probability of this occurring is (i)(d,,-j-'(1 - d,,-i). In 

general, if there are i draws left, and j of them are greater than d_1 

we will win only if the first candidate sampled is the maximum of the 

whole sequence. The probability of this event is 

(i)(dn-i) and so the (, —i)th decision number 
j) i 

satisfies: 

(d1Y = j=1 j) i 

i(I (i)(d,, i-i (3.1) 
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The result of simplifying the above is: 

( where'II Zi I 
J=I J}' J1 

So, for instance for the case mentioned before where 

n = 5 the last condition generates the levels: 

d1=0.8246 

d2= 0.7758 

d3=0.6898 

d4=0.5000 

d5=O.0000 

Note that condition (3.2) can also take the form: 

 =1 i=1 ... n-1, d0 
I 

3.2 The probability of winning the full-information game. 

Claim: The probability of winning a full-information game when using 

a strategy indexed by n decreasing "decision numbers" is given by: 

(3.2) 

(3.2a) 

(1- dl)  + nI r r ( (a)T (4 )fl •' (dr+i)l 

In r=1 [=i (r)(n — r) (n)(n_r)) n j (3.3) 

Proof: Let us assume that xmax is in the (r + 1)st position. To win the 

game we must reject x1...  Xr and also have Xr+I > dr+i (we already know that 
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Xr+i is a candidate). Suppose that Xi = max{xl ... xr} and note that all of x1. •Xr 

will be rejected if x < d. This is true because none of the earlier draws x1. . 

can exceed its own decision number and therefore can not be chosen. On the 

other hand, x.. . are not candidates and hence are not chosen either. It is 

also clear that if x, > d, then it is selected (and so Xi•••Xr are not all rejected). 

The following are therefore equivalent: 

P(x1 = max{xi ... xr} and no selection is made amongX1...X) 

P(Xj=max{xi...xr}andXj d) r) 

Also, P(x, = max {x1 . . . x, = )(di)n , and so the difference, 

(j)(di) - ;)(d) (3.4) 

gives the probability of rejecting the first r observations and knowing that Xm 

had not been sampled yet. Since Xm G{Xr+1 .. x}, the probability it is in the 

(r +l)st position is ( 1). And so the probability of no draws among the 

first r, and x.a, is in the (r + l)st position, is given by: 

_—r i=1 n )(OY'41 - (_I)(di).) (3.5) 

The summation is taken since any of the first r can be max{x1.. . Xr}. 
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The probability that we will not select Xr+l upon sampling when it is 

indeed the maximum of the whole sequence is: 

is: 

P(Xr.i <dr+i ) = 
n 

(3.6) 

Combining (3.5) and (3.6), the probability of choosing the winning x 4.1 

[ (n - r )(() d, )r - (1)(d )n)] - 

For x1 we have a special case: P(M1) =! 
n 

and 

1≤r≤n-1 (3.7) 

iiw,) (d1)  
n 

(j \n 

The difference - is therefore the probability of choosing x and winning. 
n 

The validity of (3.3) follows. 

For obtaining P*(MJ, the probability of winning under S*, all one has 

to do is substitute the optimal decision numbers given by (3.2a) into (3.3). 

3.3 The expected location of the stopping variable E(K). 

Claim: When using a strategy of decreasing decision numbers the 

expected location of the stopping variable is given by: 

i_1r (r-I 
E(K) =(i-)+I (r)I (d)r 1 r(d)r1l +( n (3.8) 

1r=2 L i=I r-1 j=1 r 
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r-1 

Proof: As has already been mentioned, ' ''  and 
r-1 1=1 

are the probabilities 

of rejecting the first r and the first r +1 observations respectively. The 

r-I r 

difference ' " Z --- is therefore the probability of Xr being chosen 
r-1 i=I r 

for 1 ≤ r ≤ n - 2. The first and the last draws are treated separately as special 

cases. The probability that x1 is chosen is clearly 1— d. The probability of x 

'' 

being chosen is Z ' " because choosing x is equivalent to rejecting 
n—i 

x,,_1. The distribution of the stopping variable K is: 

Pr(K=r)=1—d1 r=1 

(d) 1 (a 

r-1 r 

n-I 

, n—i 

and equation (3.5) follows. 

2≤r≤n-1 (3.9) 

r=n 

A simpler expression for E(K) when 2 ≤ r ≤ n —1 can be derived as follows: 
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n- I (r)(,-, (dy-' n (di )rJ = 

r=2 i=1 r-1 i=I r 

2 (d)2 2 (d) 2 3 

k 2  )3  — 
1=1 2 i=1 2 1=1 3 i=1 3 

n-2 (a' )n -2 n-I ( )fl-1 
+... +(n — i)   (n - i) 

2  

n-I 1d '' n-I I \n-I 
= a; + ' '.' '  

i=I j=1 I i=1 n—i 

The result of substituting (3.10) into (3.8) is: 

n-I n-I 

E(K) = 
1=1 j=I I 

(3.10) 

(3.11) 

3.4 The validity of the conjecture in the full-information case 

Next we want to prove that EC holds in this case as well. One 

approach is to take the optimal decision numbers given by (3.2a), substitute 

them into (3.3) and (3.11) to obtain P* (Mn) and E* (K), and then show that 

nP(M) = E*(Kn). However, I would like to use an alternative and 

algebraically much simpler approach. 

Let Xk = (x,. .. xk) be the k-tuple of observed values and ' k be the 

information from Xk available to the player (in the full-information case 'k is 

Xk itself). 

Dk(Ik)=Pr(CXkIn ... n,Ik) k=1 ... n 
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Under this formulation D = {D1(I1) ,D(ij} is the strategy to be 

followed and: 

P*(M) = max P(M) 

where the subscript D indicates that strategy D is followed. One can write: 

PD () = p( c,x1) D1(I1)d + 5(1-D1(I1))d jP(M!C4,X2)D2(I2)dx2+... 
0 0 0 

...+J(i-D1(I1)), ,...,XjDn(IjdXn (3.12) 

Since exactly one variable must be selected, define D(I) a 1. In the 

full information case we have: 

P(MflIcXk,ckl ••• l ,Xk) = o if Xk < maxx...xk_I} 

n-k 
— Xk xk> max {xl ... xk_l} (3.13) 

Substituting (3.13) into (3.12) yields: 

'1 

ñ11-DI11i xDk (Ik)dxk 

JI 0 ) max{x1 ... xkI} 

where by convention [. 1, and max {x1,x0} 0. 

(3.14) 

The optimal strategy here, as discussed before, takes the form: 
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Dk(Ik)= 1 ifxk>max{maxfxl...xk_I},dk} 

0 otherwise 

(3.15) 

The kth decision number, dk, was previously shown in (3.2a) 

to be the unique root in [0,1] of: 

d n-k ( 
'. k) =1 

1=l I 

Substitution of (3.15) into (3.14) gives P*(M), and after 

simplifying we get: 

ni n—I (d,) 
p*(M) =)(I+ 

i=1 1=1 1 J (3.16) 

Comparing this result to (3.11) results in nP*(Mn) E*(Kn). 

Therefore, Enns's Conjecture also holds in the fill-information case. 

Below is a table of optimal decision numbers for the full-information 

case, together with the probability of winning for various n values: 
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n P*(M) 

1 •0.0000 1.0000 

2 0.5000 0.7500 

3 0.6899 0.6843 

4 0.7758 0.6554 

5 0.8246 0.6392 

6 0.8560 0.6288 

7 0.8778 0.6215 

8 0.8939 0.6161 

9 0.9062 0.6120 

10 0.9160 0.6087 

15 0.9448 0.5990 

20 0.9589 0.5942 

30 0.9728 0.5895 

40 0.9797 0.5871 

50 0.9838 0.5857 

cc 1.0000 0.5802 

Table 3.1 

Optimal decision numbers for the full-information case, 

together with the probability of winning for various n values 
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CHAPTER IV 

PARTIAL-INFORMATION CASES  

4.1 Introduction 

Various types of partial-information models have been analyzed by 

Enns (1974), Stewart (1978), Samuels (1981), Campbell (1981), and others. In 

such a model the player is not given the exact value of the observation drawn. 

Instead he receives partial information regarding the magnitude of the draws. 

Consider the problem introduced by Enns (1974). Here a decision maker 

determines a specific "level" before each draw to which the observed draw will 

be compared. As the random variable is sampled, information is supplied as to 

whether the value observed is greater or less than the predetermined level. 

Two situations where this might occur are: 1) where measuring the exact 

values of the sampled variables is very expensive or time consuming, or 2) 

where destructive sampling is used. In the first case, classifying values into one 

of two categories, greater or less than the specified level, is much simpler than 

finding exact values. In the case of destructive sampling, suppose that the 

strongest bolt in a sample of n must be chosen. An application of the partial-

information case arises if each bolt is subjected to a predetermined level of 

stress, and the first to survive is accepted as the strongest in the sample. 

4.2 The optimal strategy 

The logic that was used for deriving S1, the optimal strategy for the 

full-information case, can be employed here as well. Therefore S is a strategy 

indexed by n "levels" l ≥ 12 ... ≥ l. The first observation, x1, is measured at 

level l and is accepted if x1 > l. Note that, unlike before, the only criterion for 

choosing x1 is if x1 > l regardless of whether it is a candidate or not 
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(information which is unavailable). There is a possibility of having 

A > x1 > x2 > l where x1 is rejected and x2 accepted, although x2 < x1. Since 
one random variable must be accepted, the task must be to define l = 0. 

The optimal strategy is the n-tuple i > i...> l, that maximizes the 

probability of winning given by: 

P(M)=P(c nm) (4.1) 
i=1 

Now, 

min(x,, i,_) min(x,, l,_2)  

p(c nm)=fx'cix, x x fdx,_2...x 5cfr1 (4.2) 

The first integral gives the probability of winning, given that x, is 

chosen. The product of all the others is the probability of x, being chosen (or 

equivalently {x1 . .x,_1 } being rejected). Conditioning on the exact value of x, 

one can reduce (4.2) to: 

, r -r \ 

P(c n m ) = ln+1i_r - ln+i_r+l1-r 1111: 1i-k+1  J] 
x, xj 

r=I L'.. + 1— r A k=1 Ii 

Substituting (4.3) into (4.1) yields 

f [(Jn+'-r - l"+rl+-Ir)( '  n+1—r  

(4.3) 

1  'n-2 1 n-i+r-1 

 ' 7i+1 11  1 (n>3) (4.4) [(I)(n-i 11— )± 11 

— (1)(1+1). 
j= iAr=o r)j n—I Lj1r 

r=1 
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Obviously p( M1) = 1, and we can easily find that p( M2) = 1 +11  - 112. 

Therefore when n=2, l = -- maximizes the probability of winning (in fact, 

p*(M) = 0.75). This is also intuitively clear. Unlike the situation in the previous 

chapter, where the n-game is a mere extension of the n-i game (all that is necessary is 

to add a new decision number to existing numbers), here we are not as fortunate. The 

strategy for n-levels employs n levels which can not be determined by knowing any of 

the optimal policies with less than n draws. No recursive relation exists between the 

optimal levels for n-i draws and the levels for n draws. 

However, Enns (1974) manages to obtain the optimal strategies for n ≤ 25. 

The technique used is an n-dimensional Newton's method. The table below lists 

optimal policies up to n12. The probabilities of winning for all these strategies, as 

well as for some larger n-values, were found to be: 

n=2 n=3 n=4 n=5 

1 0.500 0.673 0.757 0.808 

2 0.546 0.692 0.768 

3 0.587 0.712 

4 0.622 

Table 4.1 

Optimal decision levels for n=i.. 12 

(continued next page) 
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n=6 n=7 n=8 n=9 

1 0.8406 0.8603 0.8814 0.8949 

2 0.8138 0.8447 0.8669 0.8836 

3 0.7791 0.8209 0.8495 0.8703 

4 0.7309 0.7901 0.8280 0.8544 

5 0.6524 0.7473 0.8004 0.8349 

6 0.6773 0.7618 0.8097 

7 0.6985 0.7746 

8 0.7169 

n=10 n=11 n=12 

1 0.9056 0.9144 0.9216 

2 0.8965 0.9069 0.9154 

3 0.8861 0.8985 0.9084 

4 0.8739 0.8888 0.9006 

5 0.8593 0.8775 0.8915 

6 0.8414 0.8640 0.8810 

7 0.81825 0.8474 0.8684 

8 0.78602 0.8260 0.8523 

9 0.7329 0.7962 0.8331 

10 0.7470 0.8054 

11 0.7595 

12 

Table 4.1 

Optimal decision levels for n1..12 
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The probabilities of winning for all these strategies, as well as for some larger 

n-values are presented in the following table (Table 4.2). 

n n 

1 1 15 0.5829 

2 0.7500 20 0.5775 

3 0.6798 25 0.5744 

4 0.6474 30 0.5723 

5 0.6289 50 0.5681 

6 0.6169 75 0.5661 

7 0.6085 100 0.5651 

8 0.6024 200 0.5635 

9 0.5976 500 0.5626 

10 0.5939 00 0.5620 

Table 4.2 

Probabilities of winning for various n values. 

It can also be shown that for large n the approximation: 

P* (M = 0. 56203 + 0.3012/ + 0.1774Yn 
2 

is accurate to four decimal places as long as n ≥ 10. Note also how close these values 

are for the probabilities of winning the full information game. This suggest that by 

classifying each of the observation into one of the two classes (instead of measuring its 

exact value) we don't really sacrifice much. The gain, however, is considerable because 

as mentioned before measuring exact values is often costly and time consuming. 
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4.3 The location of the stopping variable 

Let K be the location of the stopping variable just as before. Trivially, 

P(Kfl =k)_-(1-lk)fll, k=1 ... n (4.5) 
i=I 

The expected value of K is therefore: 

E(K) = lc[(l_lk)jjli] = fli1 (4.6) 
k=l 1=1 k=l i=1 

4.4 The relationship between E*(K) and P*(M) in the partial-information case 

By differentiating (4.4) with respect to the different levels l * . .l, we can 

obtain the partial derivatives  9P(M) i= 1 . .n. These derivatives satisfy the 
a Ii 

relation: 

n (1,)rgp(M1)  n)1 91, 
=F(M2) E(K ) 

n 

When S is employed the levels are adjusted such that 

e i(t) =0 V/. And so under S equation (4.7) reduces to 
eli 

E(K) = nP(M) and the validity of the conjecture is established for this 

model. 

4.5 A variation on the model - reducing the number of decision levels 

Let us assume that the decision maker wants to reduce the complexity 

involved when working with n different levels. One way to do it is by selecting 

only t levels (t <n) and using some or all of them more than once. To 

(4.7) 
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illustrate this, let n6 and t =3 and denote the three reduced levels by 

L3. The decision maker may then decide to have 

11 = 11-12 

L2 = 13 = 14 = 15 

L3 = 16 =0 

or alternatively, 

L l = 11 = 12 = 13 

= 14 - 15 

L3 _ 16 = 0 

or any other reasonable scheme. 

If one is restricted to t levels L1,L2 ... L, then the probability of 

obtaining the maximal random variable is just (4.4) with the l,ts replaced by 

the appropriate L, ,L2. . .L,. Note also that once the levels A, L2. . .L, are set, it 

is still up to the decision maker to decide how many i-levels correspond to 

each L-level. Since P(M) is a polynomial in 1, (i = 1.. .n), then for any 

arbitrary L(= l = 1,,  .. .= 4k) we obtain: 

a 

+t9 (M) 8P(M)  

8!, - 84, 

This enables us to rewrite (4.7) as: 

0 P(M,,) = F(M) E(K)  
I1n 04, n 

When using optimal strategy the levels L1 , 4,.. .4 5 P(M satisfy ) = 0 
54 

Vu = 1... t. It follows that the conjecture is valid in this case, when the number 

of levels is restricted. 

(4.8) 
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4.6 Inductive Games 

When trying to prove EC in general when the information source is not. 

specified, an inductive approach may be taken. Let us assume for a moment 

that the player tries to locate the maximum of a sequence of length n+1. He 

tests x1 at level l, and if x1 > l, it is selected and the game is over. Otherwise,, 

the player concentrates on finding maxx2. . .x,1 }, completely ignoring the fact 

that x1 had ever been sampled. Now make the inductive assumption that EC is 

true whenever we try to find the maximum of a sequence of length n. We will 

show that it also holds true for the n+1 case. Under the above scheme, 

extending from the n-game to the n+1 game is done via the addition of a new 

level l at which x1 is tested where: 

Clearly, 

1 

0 

E(K 1) = (1— )(i) + (i, )(E(K) + i) 

=1+l1E(K) 

(4.9) 

because if x1 <li, the game reduces to an n-game and we still have to sample 

E(K) more observations on the average (in addition to x1 that had already 

been sampled). On the other hand we have: 
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P(ivifl+! ) = p(c mMj+P(çrM 1) 

n+1 

= P(M 1).P(c 1JM 1) + ( n+I '1P(M) 

,n•I 

n + 1) n+1) 

Li  
=  (\  

(4.10) 

Note that when calculating the probability of not choosing x1 and 

,n+I 

winning, " is subtracted from IP(M). This is so since there exists a 
n+1 

possibility that x1 will not be selected, max{x2 ... x 1} will be correctly 

identified, but we will still lose. It occurs when x1 is the largest random 

variable and all of x1. . .x, +1 are less than 11. The probability of this event is 

1n+i 

n+1 

Differentiating (4.10) with respect to l and equating to zero yields: 

—2l + P(M) = 0 

And so, the optimal value for l is: 

C 11p*(M) 

Substituting this last result into (4.9) and (4.10), we obtain: 

(4.11) 

(4.12) 
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(K 1) = l+[nJ(E(K)) 

and 

= H-)I' - 2fp*() j + (P*())J1*(I) 
n+lL 2 

respectively. 

Using the inductive assumption E*(K) = np*(M) together 

with (4.13) we get: 

I 

On the other hand: 

(p* (M7)) 

  n+1 
p*(M ) 

(n+1)P*(+i)=1_2[  2 J 2 

+ 11 (4.16) _1  2 

I 

(4.13) 

(4.14) 

(4..15) 

I 

And so we have inductively established that: 

E(K +1 ) = (n+i)P(M 1) 

Note that equations (4.11) and (4.15) together with the initial 

conditions P(M) = 1 generate the following results: 
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1* E*(K) 

1 1.0000 0.0000 1.00 

2 0.7500 0.5000 1.50 

3 0.6395 0.6124 1.92 

4 0.5780 0.6838 2.31 

5 0.5390 0.7332 2.70 

6 0.5122 0.7693 3.07 

7 0.4928 0.7969 3.45 

8 0.4780 0.8186 3.82 

9 0.4664 0.8362 4.20 

10 0.4570 0.8506 4.57 

11 0.4494 0.8628 4.94 

12 0.4430 0.8731 5.31 

13 0.4376 0.8820 5.68 

14 0.4329 0.8897 6.06 

15 0.4289 0.8964 6.43 

20 0.4148 0.9208 8.29 

30 0.4007 0.9462 12.02 

40 0.3937 0.9592 15.74 

50 0.3896 0.9672 19.48 

100 0.3814 0.9834 38.14 

500 0.3749 0.9967 187.46 

1000 0.3741 0.9983 374.14 

Table 4.3 

Probabilities of winning and optimal levels for various n values 

in an inductive process 
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4.6.1 When should inductive procedure be used? 

Let us refer back to the problem discussed in 4.1 and assume that the strongest 

bolt of a sample of size nine has to be identified. As mentioned before, the bolts are 

tested sequentially, each under a certain amount of stress. Suppose that the process 

controller starts receiving samples of size ten, and would like to locate the strongest 

bolt in each of the new samples. An optimal solution would be to readjust the set of 

old levels and use the optimal numbers for the n = 10 case as given in Table 4.1. 

Recall, however that one of our initial assumptions in chapter 4 is that readjusting the 

levels is costly and hence another solution is required. 

The best one can do in such a case is to attach one new level to the set of old 

levels. The first bolt out of the ten is stressed at that new level, and if it fails the 

problem reduces to the n = 9 case. 

Deriving the new level is done by using the following results: 

1) P*(M9)=.5976 

2) 
11.2 

(Table 4.2) 

(4.12) 

Combining the above two, we get i = .8744. The probability of correctly 

identifying the bolt with the maximal strength for the new extended sample can easily 

be obtained by using (4.10), and we get F(M10) = .57028. 

Note how close the last result is to 0.5939 (Table 4.2) which is the probability 

of winning the n = 10 case if we were to readjust all ten levels. So as it turns out in 

this case we do not lose much efficiency by not playing optimally. 



53 

CHAPTER V 

TOWARD A NEW CONJECTURE 

5.1 Introduction 

In the winter of 1991, I was enrolled in a senior level statistics course as 

part of my undergraduate program. In one of the lectures the instructor, E. 

Enns, presented the class with a conjecture posed by him years earlier. This 

conjecture stated the strikingly simple relationship between the probability of 

winning a sequential game and the expected number of steps the game lasts. A 

year later I had to select a topic for my master's thesis. My decision was to try 

to prove the validity of the conjecture. It seemed to me at the time that proving 

a relation as simple as: 

= E*(K) 

is true in general, should not be tremendously complicated. A year of intensive 

research has convinced me that the general proof (if it exists) may not be as 

simple as I had hoped. Nevertheless, as I progressed, I discovered a whole 

range of new problems related to topics previously discussed, most of which 

are well worth investigating. This paper started with the introduction of a 

rather interesting relationship, and as a proper conclusion I would like to 

introduce another curious relationship that seems to hold. This relationship will 

be posed as a conjecture. 
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• 5.2 The classical secretary problem with two choices 

Let us consider a sequential sampling process where the source of information 

is YR (a player is given the rank of observations as he proceeds). The objective of the 

game is still to find the maximal observation, but in this case the player is given two 

choices. Note that the decision maker is not forced to exercise his second selection if 

he wishes to retain the first selection until the game terminates. This is nothing but a 

classical secretary problem with two choices, a model that was partially discussed by 

Gilbert and Mosteller ( 1966). 

5.2.1 Deriving the optimal strategy 

S here is derived in a manner similar to the one used previously for ranking 

observations in the game with one choice. The /th observation should be chosen if and 

only if it satisfies the criterion for optimality given in 1.2.1. This criterion will serve us 

in making both decisions. Since the right hand side and the left hand side of (1.1) are 

increasing and decreasing ftinctions of i respectively, the argument that was used for 

the one choice game still holds. It follows that S will reject the first r -1 observations 

(for some r) and then exercise the first choice once it finds an observation of rank 1. 

Once the first choice is made, the game reduces to a one choice secretary problem. 

This is so because the objective is still finding Xm and we have one selection left. 

Therefore, the second selection will not be made before the sth observation, where s 

is the parameter associated with the classical secretary problem for this particular n. 

And so we get that S is a two parameter strategy. It rejects the first r -1 in any case 

and chooses the first candidate thereafter. The second choice is exercised only if 

another candidate is located among the {x. . .x,, 
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Graphically S is of the form: 

range on which the 
second choice can be 

exercised 

I I I I 
1 n 

range on which the first choice can be exercised 

5.2.2 The probability of winning 

Under the scheme discussed in the previous section, the probability of winning 

the two choice game is: 

P(M) =(n r—l)i=r ( i=S i-1 n =,+ J=s j 1 
(5.1) 

The first term is the probability of winning with the first selection when the 

second is never used. The second term is the probability of winning with second choice 

and first choice was made among {Xr ... Xs_i }. The last term is the probability of 

winning when both choices are in . .x 

A simple computer simulation generates the following optimal values of r and 

s together with probabilities of winning for a selection of n-values. 
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* * 

n r s 

1 

2 

3 

4 

5 

10 

15 

20 

30 

50 

100 

1 

1 

1 

1 

2 

3 

4 

5 

7 

12 

13 

1 1 

2 1 

2 .833 

2 .708 

3 .708 

4 .646 

6 .627 

8 .618 

12 .608 

19 .601 

38 .596 

Table 5.1 

The two choice game—optimal thresholds and probabilities of winning. 

(Remark: in the special case r*=i, the first summation of (5. 1) should be replaced by 1.) 
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5.2.3 Asymptotic theories 

Consider the limiting case as n —+ co and let us define: 

x = lim r 
- 

n—,co 

n 

y Jim S — 
n-5c0 fl 

dt= 1 

dp= 1 — 
n 

The terms of (5. 1) in the limiting case become: 

n r —1n( \( \ j\ 
-''-= I—lI—IxI — 1t=—x1nx 

11 n n,Ji-1) Jxj1 

and finally: 

(5.2) 

s_rn)(1) (y X)5(1)dt (yx)iny (5.3) 

—n);g(; = = YZ 
(jEi (inl)( 1 )C) 

xf f - II - 1pdt 
Y Yp)t) 

= ()(x)(1n )2 (5.4) 
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The asymptotic probability of winning is therefore: 

P(M) xlnx _(y _x )lny+ ()(x)(lny)2 

From the single choice game we know that: 

* n 
S 

e 
i.e. 

* 1 

e 

Substituting this result into (5,5) gives the result: 

(5.5) 

(5.6) 

(e i \ x P(M)=xlnx+'--xI) +— 2 (5.7) 
L  

Differentiating (5.7) and equating to zero yields: 

t:9 

19 x 

* _I 
-3 x=e 2 

and we can easily obtain r* = _1 2. 

The optimal probability of winning in the limiting case is therefore: 

= e1 + e =.5910. 

Note that in the limiting cases we obtain the following: 
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For the single choice game: 

(1\ * 

P(M)l - 

For the double choice game: 

( I ) 2 =s*+r* 

Analysis of the three-choice game is performed in the 

same way, but is quite a bit more complicated. The results of 

the three-choice game in the limiting case are: 

* -1 
= ne 

* 

S2 = ne 2 

* -2 
S3 = ne 

where the optimal strategy takes the form: 
range on which 
the third choice 
can be exorcised 

I I I I I I I  
1 53-1 .S3 321 .rz si-i Si fl 

range on which the second 
choice can be exercised 

range on which the first choice can be exercised 
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The probability of winning the three-choice game in the limiting 

case is found to be: 

P(M) = e-'+ eT + e2 

= .7263 

Computer simulations for cases greater than n=3 support the following 

claim which is posed as a conjecture: 

New Conjecture 

In trying to locate the maximum of a sequence of length 

n under a ranking source with k selections, the following holds 

true: 

k 

P* (Mn) (i)Es* 

where the s1's are the optimal threshold number when playing 

optimally. The optimal strategy takes the form: 
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I I I II H..I H  
Sk - 1 Sk - I Sk_I Sk_2—1 S2 s1-1 S1 

range on which the first choice can be exercised 

range on which the second choice can be exercised 

n 

range on which the kth 
choice can be exercised 
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