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Abstract: We present the application of a vision
algorithm based on Harr-like features in Bubble-
grams - a new mixed reality-based human-robot in-
teraction (HRI) technique. Bubblegrams allows hu-
mans and robots working on collocated synchronous
tasks to interact directly by visually augmenting
their shared physical environment. Bubblegrams
uses comics-like interactive graphic balloons or bub-
bles that appear above the robot’s body and allow
intuitive interaction with the robot. Users wear
light-weight mixed reality goggles that integrate dis-
plays and a camera, allowing the user to view and
interact with the physical environment as well as
with the virtual Bubblegrams interface linked to the
robot’s body. In order to efficiently link Bubble-
grams in real-time to the physical robot we imple-
mented a vision algorithm based on Harr-like fea-
tures which is the main topic of this paper. This
paper briefly details the design of the Bubblegrams
interface, the hardware and software we use for the
current prototype, and the full details of the vision
algorithm.
Keywords: Computer Vision, Mixed Reality,
Human-Robot Interaction, Harr-like features

1 Introduction

With the latest rapid advancement of robotic tech-
nology, the need for effective human-robot interfaces
is becoming clear and pressing [18]. As robots be-
come increasingly capable and intelligent, we can
expect to find users sharing their everyday en-
vironments with robots in various ways [13, 14].
Human-robot interaction (HRI), a new sub-domain
of human-computer interaction (HCI), is an at-
tempt to understand the various issues and prob-
lems surrounding interaction with robots and to de-
velop effective interfaces between them and humans
[10].

Robots can be viewed as a class of computers

which are distinguished by their dynamic presence
in the physical world. A robot, unlike the conven-
tional computer which is primarily a digital entity,
is both a physical and a digital entity. A robot is
simultaneously perceiving, functioning and interact-
ing in both the digital and physical realms. Current
human-robot interfaces often fail to integrate this
duality and offer interaction which is restricted to
either the physical or the virtual domain; for exam-
ple, interaction can be based on physical modalities
such as speech-based interaction or digital modal-
ities such as remote control software tools. This
separation of interaction spaces can reduce the level
of the HRI awareness [2] and ultimately hinder the
quality of the resulting interaction between humans
and robots [4].

One solution to this problem is the use of mixed
reality (MR) as an interaction paradigm between
humans and robots. MR is a technique which tracks
components of the physical world and augments
them with virtual digital entities. Visual augmenta-
tion of the physical world is commonly accomplished
by projecting images onto the user’s environment
or by using a head-mounted display (HMD) to syn-
thetically augment the vision of the wearer [1]. We
believe that MR can solve many of the interaction
problems mentioned above by allowing the robot to
dissolve the borderline separating the physical and
virtual modalities it uses when interacting with hu-
mans. Using MR techniques, robots can superim-
pose digital information directly onto users’ physical
environment. At the same time, humans can inter-
act with digital information intuitively, as if this
information is an integral part of their physical in-
teraction space.

2 Bubblegrams

In this paper we present Bubblegrams - an MR-
based interaction technique that combines physical



and virtual interaction spaces and allows users to
interact with robots simultaneously in the digital
and physical realms. Bubblegrams appears as visual
cartoon-like balloons or bubbles above the robot’s
head or body. In order to view and interact with
Bubblegrams the user wears mixed reality goggles
which combine miniature displays and a web camera
(see Figure 1). Bubblegrams can be used by the hu-
man for direct access to the robot’s status and func-
tions. For example, in a home-environment appli-
cation a robot that just completed a cleaning chore
can present a smiley bubble above its head, show-
ing its satisfaction of fulfilling the task as well as al-
lowing the user to choose the robot’s future course
of action (for example, “keep cleaning”, “come and
play with me” etc.). In a search and rescue op-
eration a fire-fighter can send a robot ahead into
the next room keeping line-of-sight connection with
the robot’s Bubblegrams which display a video feed
from the robot thermal imager as well as an inter-
face that enables the fire-fighter to send the robot
further into the room or to call it back.

Our current implementation of the MR goggles
integrates an Icuiti HMD[6] and webcam (as shown
in Figure 1) as the mixed reality visual interface.
This interface is powered by a tablet PC (Toshiba
Portege, Pentium Centrino 1.7GHz) which offers
both portability and wireless internet connectivity
to the system. In addition, the tablet PC can be
used as one of many possible methods to interact
with Bubblegrams, for example by using the stylus.
For the robotic element, we are using a Sony AIBO
robot dog (Black, model ERS-7). The AIBO, which

Figure 1: A user and robot team interacting with a
Bubblegram.

utilises the wireless network, generates Bubblegrams
and conveys them to the user system through the
network connection. This network connection is
then also used as the communication medium for
the various interaction techniques.

For Bubblegrams to be effective we need to physi-
cally associate the interactive balloon with the phys-
ical robot, in the visual field of the user. For this
we need to efficiently track the robot in real-time
through the user’s MR goggles vision channel. In
this paper we focus on the use of a particular object
detection technique for solving the problem of real-
time detection and tracking of a Sony AIBO robot
dog in a video sequence. The technique, based on
the Viola and Jones “Rapid Object Detection Using
a Boosted Cascade of Simple Features” [19] paper,
uses machine learning to develop robust and flexi-
ble classifiers for detecting objects in still images.
The technique uses novel image representations to
obtain very fast detection speeds; our reported al-
gorithm based on the implementation of a single
classifier obtained a rate of more than 40 frames
per second using an Intel Pentium 4 3.4GHz PC,
analysing a 320 pixels by 200 pixels video, with very
high detection success. In the coming sections we
briefly present an overview of research related to
our efforts, we then describe our approach to the
problem of locating an AIBO in streaming video,
and detail our algorithm implementation and pre-
liminary results. Other aspects of the Bubblegrams
system are not presented in this paper.

3 Related Work

Mixed reality (MR) has been introduced recently as
a means of combining digital information with the
physical world for various applications such as inter-
active media (for example, the MagicBook project
[1] and the ARTag system[3]), modelling volumetric
data [8, 17], assisting with medical surgery [5] and
as a computer supported cooperative work (CSCW)
interaction theme and environment [16].

We can crudely classify MR techniques as either
based on head-mounted-display (HMD) visualisa-
tion or projective visualisation. Projective visual-
isation can be integrated seamlessly into a users’
entire field of view allowing them to use their full
natural vision capabilities. The downside, however,
is that projectors are still less portable and flex-
ible than HMDs, being often heavy and difficult
to move, and require a projection surface and ap-
propriate lighting. One can envision an MR envi-



ronment based on projection techniques in a dedi-
cated space that is designed and crafted especially
for the task, but it is still difficult to implement a
projection-based MR in an environment which the
robot and the user enter for the first time (for exam-
ple, in a search and rescue operation). HMD visuali-
sation offers portability and flexibility since modern
HMDs are lightweight and can be connected to a
wearable computer. However, HMDs can constrict
the user’s vision due to a relatively low field-of-view,
low resolution and possibly latency problems, all po-
tentially resulting in hand-eye coordination issues
and possibly motion sickness.

While mixed reality has been used for various
interaction applications, there has been a limited
amount of work using mixed reality for human-
robot interaction (HRI). Mixed Reality was sug-
gested for tasks of controlling robots, both remotely
and directly [12, 15]. This work uses mixed real-
ity to increase the human controller’s awareness of
the robots’ environment and actions. For example,
Milgram et. al.’s work in [12] uses mixed reality
with a stereographic display to provide a level of
tele-presence to a human user controlling a remote
robot. The mixed reality elements here are used
to augment the user’s vision with various computer
calculations and information.

Bubblegrams’ uniqueness lies in it using MR not
necessarily for controlling the robot but also as a
collaborative shared medium that is used by both
humans and robots to simultaneously interact in
the digital and physical domains. We see Bubble-
grams as a dynamic interface that is linked to the
users and the robots rather than to the environ-
ment they share at a certain time. Following, we
designed Bubblegrams with portability and flexibil-
ity in mind and decided to implement our prototype
using HMD MR visualisation.

We based Bubblegrams’ real-time object detec-
tion technique on a previous algorithm published in
2001 by Viola and Jones [19] and later expanded
by Lienhart [11]. The technique uses identification
and classification of template style features as its
method of detection. A machine learning approach
is employed to select optimal template features, re-
sulting in an overall effective and efficient object
detection algorithm.

4 Vision Algorithm

Bubblegrams uses a feature-based approach to real-
time object detection[19]. Using a data set of sam-

ple images, the technique uses machine learning and
a divide-and-conquer algorithm for effective and ef-
ficient object classification. The features used are
called Harr-like features, based on Harr basis func-
tions, which are spatial rectangular features of vary-
ing size, subdivided into white and black regions
(see Figure 2).

Using the Haar feature detection technique re-
sults in more features per image region than pixels.
For example, a 24x24 window has 576 pixels but
45,396 features[19]; this is because the features en-
capsulate intensity-distribution domain data about
a region. The value of a feature is calculated by sub-
tracting the sum of the pixel intensities in the white
regions from the sum of the pixel intensities in the
black regions. The feature value, in combination
with the feature type, is used as the basis for the
feature matching. Figure 3 shows possible features
and positions on an AIBO; these features identify
the AIBO’s darker body above the lighter back-
ground and legs, and the darker legs with lighter
background in between.

The Haar-like feature detection system uses a
cascade, or series, of classifiers for object detection
(see Figure 4) where each classifier within the cas-
cade is composed of one or more features. Sim-
ple classifiers which allow many false positives are
placed at the beginning of the cascade, with the
following classifiers being increasingly complex and
strict. This results in most image regions being dis-

Figure 2: Example rectangle features shown rela-
tive to the enclosing window. The sum of pixels
which lie within the white rectangles are subtracted
from the sum of pixels in the grey rectangles. Two-
rectangle features are shown in (A) and (B). (C)
shows a three-rectangle feature and (D) a four rect-
angle feature[19].



Figure 3: Possible Harr-like features on the AIBO.
Notice how the first feature finds a dark body over
less dark legs and background, and the second fea-
ture finds dark legs with less-dark background in
the middle.

carded early in the detection process, while only
promising regions are tested against the entire clas-
sifier cascade. The speed advantages of this cascade,
in combination with a novel image representation
technique called the integral image, are what enable
the detection technique to work in real-time[19].

To build each classifier in the cascade, computer
training is used to test the entire feature set against
the set of sample images. The result is an opti-
mum (as explained in [19]) configuration of features
for each classifier, a configuration which best meets
the pre-decided parameters of the classifier. The
premise behind the training algorithm is that the
resulting detection rate of the classifier cascade is
approximately equal to the product of the detec-
tion rates of the individual classifiers. The same is
true for the false positive rate. For example, if a
cascade had six classifiers, and each classifier has a
50% false positive rate, then the false positive rate
of the entire cascade is roughly 0.56 or 1.6%.

When training the algorithm, the user decides
on the target detection and false positive rates for
each classifier, and the number of classifiers in the
cascade; the resulting overall approximate rates are
easily calculated. This training method has been
shown to be extremely successful in doing real-time
face detection with a high accuracy rate[19].

5 Problem and Approach

The problem of detecting a particular robot is fur-
ther complicated by the fact that robots are often
both mobile and autonomous. This means that
we can make very few assumptions about their ori-

Figure 4: A Haar-like classifier cascade.

entation, location, physical shape, or environment.
Robots often have dynamic and colourful displays
which can change their appearance, and may be
made out of a shiny material which may result in
random specular lighting effects on their surface.

The approach that we use to simplify detection
is to break the problem into cases and to add con-
straints to the robot and situation. By dividing the
problem into cases we create specific detection prob-
lems which target particular circumstances or poses
and are much less complex than the general prob-
lem. However, given the versatility of robots, there
are many different possible cases. By constraining
the robot to certain task-related poses and environ-
ments, the number of realistic cases to be consid-
ered can be drastically reduced, resulting in a lower
number of specific problems which we can practi-
cally approach.

6 AIBO Specifics

Detection of the AIBO robot dog is sensitive to the
same complications detailed in Section 5.

Detecting the Sony AIBO robot dog is no excep-
tion to the complications mentioned in the previ-
ous section. For example, the AIBO can be sitting,
standing on all fours or laying down, and can be
facing the user, facing away from the user, or facing
sideways. It can also have its head rotated or posi-
tioned up or down, can open its mouth and wag its
tail, can display an assortment of lights, and can be
situated on many kinds of surface.

When breaking the AIBO detection problem into
multiple cases and adding constraints, we consid-
ered the strengths and weaknesses of the detector
used. As such, we generally limited shape-change
and rotation within a particular case, but ignored
reasonable changes in scale and lighting conditions.
In addition to this, the parameters used in the train-
ing process were selected to try and achieve a bal-



ance between cascade depth and classifier complex-
ity, fine tuning the balance between efficiency and
effectiveness.

In our current prototype the main constraint
placed on the AIBO is that it will always use the
same walking pose, whether it is walking or simply
standing. While there is movement in the legs while
the robot is walking, this eliminates major changes
in shape associated with lying down, sitting, etc.
The AIBO is also currently restricted from using
its LED outputs in order to reduce the amount of
change in appearance. Similarly, only a black model
ERS-7 AIBO is being used, so there is no need to
consider other models or colours. Lastly, the AIBO
is always on the same flooring (in-lab grey carpets),
so that changes in contrast between the AIBO and
its environment can be minimised.

In an attempt to isolate the different major views
of the AIBO, the detection problem is broken into
four cases: top, side, front, and back. While the
AIBO is still free to move its head for practicality
reasons, the overall change in appearance caused by
moving the head is much smaller than the change
caused by moving or rotating the entire body.

7 Implementation

To realise the detection system, we used an imple-
mentation of the Haar-like feature detection tech-
nique included in the freely available Intel Open
Computer Vision library (Intel OpenCV)[7]. The
main steps required when implementing this detec-
tor are: creating a database of training images,
training and creating classifier cascades from the
training images, applying the cascades to images of
AIBOs, and extending the system to work on video
streams.

7.1 Image Library

The training of the detection classifiers requires a
complete image database consisting of both positive
(images with an AIBO) and negative (images with-
out an AIBO) samples. To collect these samples we
used a video camera to capture sequences of both
the AIBO and the base environment; from these
videos, we extracted more than 1300 positive and
negative images. The strategy for negative samples
used in this project was to use pictures of the envi-
ronment where the AIBO will be working. These
images were finally sorted into the four different
classifier cases discussed in Section 6.

7.2 Training

The selection of the target false positive rate and
the target detection rate, as well as the number of
classifiers in the cascade, are crucial training param-
eters.

While it may seem reasonable to chose a very
low target false positive rate, lowering this rate in-
creases the strictness of the classifier, forcing it to
reject many likely matches. Therefore, a balance
must be found which has few false positives while
reliably detecting the AIBO. Increasing the target
detection rate will increase the false negative rate,
while decreasing the target detection rate will in-
crease false positive rate. The difference between
changing these values is that increasing the false
positive rates adds emphasis to the positive image
samples, while lowering the target detection rate
adds emphasis to the negative image samples.

In order to put emphases on the correctness of
the negative image samples, we selected a reason-
ably high target positive detection rate of 95% for
the entire cascade, and an overall cascade target
false positive rate of approximately 0.001%.

While the target rates discussed above focus on
the correctness and reliability of the classifier cas-
cade, altering the depth of the cascade affects the
speed of the classifier. Changing the number of clas-
sifiers in the cascade changes the distribution of the
cascade. For example, assuming that target rates
do not change, a shorter cascade will generally be
slower than a longer cascade. To meet the same
overall detection rates, each classifier in the shorter
cascade will have to meet stricter requirements than
the classifiers in the longer cascade. Also, the com-
plex and slow classifiers in the shorter cascades must
be tested against many image regions.

However, a cascade which is too long will force
promising or positive image regions through a large
number of classifiers, decreasing the overall speed of
the cascade. Ideally, the cascade length should be
selected somewhere between these two extremes in
order to optimise speed. For our training, and in
combination with other parameters specified here,
we received best results with cascades consisting of
ten classifiers.

7.3 Detection of AIBO in a Single
Frame

Our implementation of the AIBO detector utilises
Intel’s OpenCV library[7] for basic object detection.
The library provides a nearly automatic implemen-



Figure 5: Example of voting scheme. The image on the left represents the results from the various classifiers:
red=Top, green=Back, right/left=Yellow, front=Blue. The image on the right shows the resulting match
after voting.

tation given a particular classifier cascade, with only
two parameters which need to be set: window in-
crease rate, and minimum number of hits per win-
dow. Note that the detection algorithm searches the
image space at varying scales; the window increase
rate parameter determines the change in scale be-
tween searches. The minimum number of hits per
window parameter is related to the detection pro-
cess; while searching the image, the detector marks
positive hits. Next, closely overlapping regions are
combined to form a positive hit. The minimum
number of hits per window parameter determines
the number of overlapping hits required to form a
positive hit.

Altering the window increase rate parameter
changes the balance between effectiveness and ef-
ficiency; increasing this rate increases speed while
finding fewer hits, and decreasing this rate does the
opposite. For our implementation, we keep this pa-
rameter as low as possible while maintaining our
speed requirements.

A unique point of our implementation is that we
have four classifiers, AIBO top, front, side and back,
attempting to detect a single AIBO. Ideally, these
classifiers would be mutually exclusive and only one
classifier would detect at a time. However, realis-
tically there are many times when multiple classi-
fiers simultaneously detect the AIBO, either due to
similarities between the cases or when a particular
AIBO pose falls in between our defined cases. To
handle this, and assuming there is only one AIBO
in the scene, we have implemented a voting scheme

where the positive hits from the various classifiers
vote on the most likely positive hit. The image re-
gion with the most number of votes wins, and is
selected as the most likely positive hit (see Figure
5). In fact, this technique was so successful that we
increased the false positive rate of our classifiers to
provide more hits to be used in the voting.

7.4 AIBO in Streaming Video

Extending the AIBO detection system to a video
sequence was largely similar to finding an AIBO in
an image. However, a video stream offers temporal
history as an extra dimension of information which
can be used to improve detection performance and
reliability.

We have implemented a simple tracking algo-
rithm which makes the following assumptions based
on the dynamics of the task and the MR system:
there is a maximum speed at which the AIBO can
move between frames, and there is a maximum rate
at which the AIBO can change in scale. These as-
sumptions test the location and size of a matching
region against the last known AIBO match. We
also integrate a simple memory mechanism which
keeps the last detected match in case no AIBO was
found. This technique utilises a timeout so that if
no AIBO is found for a period of time (currently
0.5 seconds) then the detector resorts to the single-
frame algorithm presented in Section 7.3, until an
AIBO is found.

Processing speed is crucial for detection in a
video. Using the Section 7.3 algorithm, an Intel



Pentium Centrino 1.7GHz could only detect at a
frame per second on a 640 by 480 image. Profil-
ing the program revealed that 92% of the runtime
was being spent in the Harr-like feature detection,
and our solution was to lower the detector quality
to increase the detector speed.

Following, two changes were made: the input
images are scaled to half resolution (320,240) be-
fore running the detector, and the window increase
rate (discussed in Section 7.3) was increased to 20%.
With these two changes, speed was increased to
seven frames per second with no quality loss ob-
served.

8 Preliminary Evaluation

Overall our system proved to be successful in its
task of finding an AIBO in a video sequence. For
our preliminary evaluation, we placed the AIBO in
our lab environment and ran a random-walk pro-
gram. A video stream of the AIBO was recorded
in various lab settings and from multiple angles.
The setting, camera angles and field of view, all
matched the way the AIBO will be seen during a
Bubblegrams interaction session. Based on these se-
quences, we evaluated the system over a two minute
video portion which consisted of both viewer and
AIBO movement, varying distances, and busy back-
drops. We were pleased to find that during the mock
interaction sessions in the video, where movement
was minimal, the detection rate was nearly 100%.
Overall in the video sequence, our system correctly
detected the AIBO 79% of the time, with false pos-
itives 14% of the time, and no detection 7% of the
time. Much of the false positive and no detection
time was during motion where the AIBO was not
entirely in view, and the images were blurred.

The overall behaviour of the algorithm consists
of temporarily losing the AIBO when dramatic
movements or changes occur, and then consistently
locking-in on the AIBO when the interaction scene
stabilises.

In addition to this, we found that this implemen-
tation is fairly resilient to occlusions and difficult
situations, as shown in Figure 6.

9 Future Work

The core future work for this project is to continue
implementation of the various components of the
Bubblegrams interface. This includes completion of
a networking framework, a Bubblegrams graphics
engine, and the integration of various interaction

Figure 6: Screenshots of successful detections in dif-
ficult scenes.

techniques. Currently we are working on the visual
and flow design of several Bubblegrams interfaces
for various tasks including household robots, search
and rescue tasks and hospital robotic aids.

In terms of the vision algorithm presented in
this paper, there are several improvements which
we plan to pursue. The current image training set
contains just over five hundred images and would
be expanded to provide a more complete set. In
addition, we plan to implement a more advanced
tracking algorithm based on the Kalman filter [9].

10 Conclusions

In this paper we presented Bubblegrams - a mixed
reality-based human-robot interaction technique
which allows users and robots to intuitively share
physical and virtual information and functions in a
collocated synchronous task domain. Bubblegrams
uses a mixed reality interface to link an interac-
tive cartoon-like balloon with the robot, allowing
the user direct access to the robot’s condition, pa-
rameters and functions as long as the robot is in the
user’s field of view.



The paper details our current Bubblegrams hard-
ware setup based on an HMD mixed reality interface
and the implementation of a tracking algorithm for
dynamically locating the robot, linking it with Bub-
blegrams whenever the robot is in the user’s field of
view. The tracking algorithm and the results of a
preliminary study of its effectiveness are detailed.
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