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ABSTRACT 

A complete classification of Kantowski—Sachs space—times with the 

standard metric ds2 = dt2 —A2(t)dr2 —B2(t)dI2 and of Robertson—Walker 

space—times with the standard metric ds2 = H(t)[ dt2 - dr2 - g1(r)d2 ] is given. 

The classifications are applied to the transparent Kantowski—Sachs space—times 

and to a subclass of transparet Robertson—Walker space—times to give a complete 

classification of them. Also closed forms are given for all of transparent 

space—times on which the Einstein tensor has two double eigenvalues. 
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CHAPTER ONE 

INTRODUCTION 

§ 1.1 The Equivalence Problem in General Relativity 

The entire content of general relativity may be summarized as follows. 

Space—time is a four dimensional manifold on which there is defined a Lorentz 

metric gab. This metric tensor describes the gravitational field in general 

relativity and it is found by solving the Einstein equations 

Gab := Rab - Rg, = 8r Tab 

which relate the curvature of gab to the matter distribution in space—time. In 

(1.1) Rab is the Ricci tensor, R is the Ricci scalar, and Tab is the stress—energy 

tensor. Since both sides of (1.1) are symmetric these form a set of ten coupled 

nonlinear partial differential equations in 'the metric and its first and second 

derivatives. The explicit form of gab does of course depend on the choice of 

coordinate system. So two metrics are equivalent, i.e., they describe the same 

gravitational field if and only if there is coordinate transformation 

such that the equation 

xa = xa( ja') 

- Oxa Oxb 
g , , = g ,, 

a  ab0a0b 

(1.2) 

(1.3) 

holds [1]. We are using the summation convention on repeated indices. We write 

the metrics as 

ds2 = gabdxadxb 

and 
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62 = 

and as an abbreviation for (1.3) we write 

ds2=d 2 

under the coordinate transformation (1.2) 

(1.4) 

The so—called equivalence problem [1] consists of deciding whether or not 

two given metrics are equivalent. It is very hard to deal with this problem by 

solving the set (1.3) of nonlinear first order partial differential equations even if 

the metrics have very simple forms. This has motivated many mathematicians 

and relativists to try to find some practical procedures to deal with the equivalence 

problem. One of these is Karlhede's procedure [2] which claims that the 

equivalence problem can be reduced to finding out whether the finite set of 

equations 

Rafipo. = kappa 7 

Rafip;7i = 

(1.5) 

is consistent or not, with in ≤ n (n+1), and n is the dimension of the manifold. 

For the best estimate of in see [12]. The scalar quantities in (1.5) are the 

curvature tensor and its covariant derivatives projected onto a canonically chosen 

frame. In this work we will not use Karihede's procedure, but instead our method 

will based on an analysis of a judiciously chosen set of scalar invariants. This 

method turns out to successfully classify the large sets of space—times considered 
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here, but our initial attempts to use Karihede's method indicate that its 

application to sets of metrics would be very difficult. 

The motivation for the work presented in this thesis is the desire to have 

as detailed a classification as is possible of the set of so—called nonscattering or 

transparent space—times. The term transparent space—time means that it is 

possible for radiation to propagate on the space—time without scattering off the 

curvature. It is a quite special property, but it is not as restrictive as Huyguen's 

principle. Ideally the classification would be so detailed that given any two 

nonscattering metrics their equivalence or inequivalence would be easily decided, 

but this degree of precision may be obtainable only within certain subclasses. The 

set of nonscattering metrics has a large intersection with the set of 

Kantowski—Sachs (K—S) space—times and also with the set of Robertson—Walker 

(R—W) space—times, hence a start on the classification of nonscattering 

space—times would be the classification of these two special subclasses. We have 

accomplished this by finding a classification of the whole set of K—S space-times 

and also the whole set of R—W space-times which does provide a solution to the 

equivalence problem and is easily applicable to K—S and R—W nonscattering 

space—times. The application to nonscattering space—times is given in Chapter 

four. 

We have established some results on the equivalence problem for 

nonscattering space—times which are not K—S or R—W. These are presented in 

Chapter four. 

§ 1.2 The Scalar Invariants 

The scalar invariants which we are going to use will be denoted by R, 5, 
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T, D, and w2 where the first four are the coefficients of the characteristic 

polynomial of the Ricci tensor Rab , i.e., 

p(): = det[M—(R' a)] = A4—RA3+ S 2—TA + D (1.6) 

and w2 is defined by 

W - WCjWabcd (1.7) 

where Wabcd is the Weyl tensor. It is easy to see that R is the scalar curvature. 

Later one can see that there is a class of K—S space—times on which there 

are no nonconstant scalar invariants depending on time alone just as is true for 

Minkowski and de Sitter space—times. 

CHAPTER TWO 

KANTOWSKI—SACIIS SPACE—TIMES 

§ 2.1 General Information on K—S Space—Times 

It has been shown [3,4,5] that the standard K—S space-times are precisely 

those whose metrics can be expressed in the form 

ds2 = dt2 - A2(t)dr2 - B2(t)d122 (2.1) 

for some functions A and B and d 2 = dO2 + sin20dq52. 

is: 

For this class of space—times with the standard form (2.1) the Ricci tensor 

R11= BAtt+2BttA 

AB 
(2.2) 
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R22= BAt+ 2BtAt 
AB 

BB  + A(BB + B + 1) 
a33=   

AB  

(2.3) 

(2.4) 

R 3 3 = R 4 4 (2.5) 

Rba 0 ifa# b (2.6) 

where t subscripts denote differentiation. Since ( Rba) is diagonal R'a are 

necessarily the eigenvalues of ( Rba) and 

R=a+b+2c (2.7) 

S=ab+2(a+b)c+c2 (2.8) 

T=2abc+(a+b)c2 (2.9) 

D = abc2 (2.10) 

where 

a = R'1, b = p,2 c = R33 (2.11) 

Now R, S, T, and D, are all constants if and only if a, b, and c are constants 

since a, b, and c are the roots of (1.6) and R, 5, T, and D are expressed in 

terms of a, b, and c. 

For the sake of conveniece of discussion we set 

d 2 = d 2 - A2()d 2 - 

where d 2 = 0 + sin 2 d 2. 

(2.12) 

It is easy to see that the two metrics (2.1) and (2.12) are equivalent if 



A2(t) = p2A2(), B2(t) = 2() with the coordinate transformation 

= t + ci 

r = pr +c2 

0= 0 + nir 

= 0 + c 
where c1, c2 , c3 , p are constants, p # 0, n is an integer. 

2.2 K—S Space—Times with a Nonconstant Scalar Invariant 

Depending on Time Alone 

(2.13) 

In this section we are going to investigate the K—S space—times on which 

at least one of the five scalar invariants that we have defined in section 2.1 is not a 

constant. For such K—S space—times we have the following 

Theorem 2.1. Assuming that some M e { R, S, T, D, w2 } is not constant on an 

interval oft and the two metrics (2.1), (2.12) are equivalent to each other, then 

A2(t) = p2A2() 

B2(t) = 2() 

and 

0 = 

(2.14) 

(2.15) 

(2.16) 

where p, c1 are constants, p # 0, 8 = ± 1. 

NOTE. If (2.14) and (2.15) hold for t = S + c1 then it is easy to see that the two 

metrics (2.1) and (2.12) are equivalent. 
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Proof of theorem 2.1. First we define another scalar invariant by 

N =gabM,aM,b. (2.17) 

Since M = M(t) and g11 = 1 (2.17) becomes 

N = (Mt)2. (2.18) 

So if the two metrics are equivalent to each other one has 

M(t) = I() (2.19) 

= I # 0; M = I\I' # 0 (2.20) 

N(t) = &(i) (2.21) 

Equations (2.19) and (2.20) imply 

t = f() . (2.22) 

By (2.18), (2.21), (2.22) one has 

(M)2 = (j)2 = (It)2Edt  ] 2 

and this implies 

dt] 2 

Hence we conclude 

= 1 t + C1 

and 

(2.23) 

(2.24) 

(2.25) 

dt2 = d 2 (2.26) 

where c1 is a constant. If we put (t, r, 0, q ) = (x1, x2, x3, x4) by the equivalence 

condition (1.3) and (2.24) one finds 

0 = A2 [] 2 + B2 [p4] 2 + B 25in2 0 [1] 2 

Ti oi at 

(2.27) 

Combined with (2.25), (2.27) means that the possible coordinate transformation is 

of the form 
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t= st +C1 

(2.28) 

0= 0(,) 

= 

where S = ± 1. That the two metrics are equivalent means 

ds2 = d 2 (2.29) 

under the coordinate transformation (2.28). With (2.26), (2.28), (2.29) we get 

ds(t) = A2(t)dr2 + B2(t)dl2 (2.30) 

is equal to 

d() = A2()d 2 + f32( 152 (2.31) 

under (2.28), which means that the metrics (2.30) and (2.31) are equivalent on 

the three space under (2.28). Since the scalar curvatures for ds(t) and d() are 

2 and 2 respctively we have 
B2(t) 

under (2.25). This implies 

i.e., 

hence 

and 

B2(t) = 2() (2.32) 

BBt = (2.33) 

dt 
BBt = ttj u = (2.34) 

(2.35) 

(2.36) 
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Also (B 2) tt =  (2) implies 

B + BB= E + BB11 (2.37) 

Using (2.32) and (2.36) one has 

B 

Since 

A AB 2BB+ B+1 
--R= tt +2 +  
2 A AB B2 

with (2.32), (2.36), (2.38) and (2.39) we have 

Att AB A-
-+2 =+2 AZBZ  . 
A AB A AB 

(2.38) 

(2.39) 

(2.40) 

On the other hand since R'1 is an eigenvalue of ( Rab) we must have R11 = Al 1 

under the special transformation (2.28), so 

All Bii 
+2 

A B A B 

Combining (2.38),(2.40) and (2.41) one has 

AB 

ABA 

So here are two cases: B # constant and B = constant. 

CASE 1. B 0 constant. 

In this case (2.42) implies 

(2.41) 

(2.42) 
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At Ai A 
-= 

A A A 

because of (2.35). Eq. (2.43) implies 

A2(t) = p2A2() 

where p 0 0 is a constant. The theorem is thus established for this case. 

CASE 2. B = constant. 

In this case we are going to use the relation 

w / 
ab cd 

Oxa Oxb Oxc Ox 
Wabcd///1 

Oxa Ox" c 0a 

For K—S space—time with B = constant in (2.1) we have 

A2 
WI212 = 

B2 
W1313 = - 

B2 
WMA = - sin20 o 

W1bO ifa#b 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

A 1 
where a= -- + - 10 otherwise the five scalars must be constants by (2.2) - 

A B2 

(2.6). So for this case one has 

= w lala[•_xa] 2 2 

02J 
(2.47) 
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A2 =A2[!] 2a. -4-wa. 

where w = [.4] 2 + sin20 121 2 By (2.32) and (2.40) we have = a. # 0, hence 
Or 

A2 2 AOr B2 
- cop] - - 

On the other hand by the equivalence condition (1.3) we have 

(2.48) 

A2 = A2Il 2 B2w (2.49) 
L0J 

and comparing this with (2.48) one can see that w = 0 and that (2.49) is reduced 

to 

A2_A2[Or ]2 (2.50) 

This and (2.28) imply that Lr is a constant, so we have A2(t) = p2 A2() under 
Or 

(2.25). We have completed the proof. 

It will be very easy to use this theorem to test whether two metrics (2.1) 

and (2.12) are equivalent or not when at least one of the five scalar invariants is 

not constant. The analysis will be complete if we can find all functions of A(t) and 

B(t) such that the five scalar invariants are all constants. We are going to do this 

in the next section. 
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§ 2.3 K—S Space—Times with the Five Scalar Invariants Being Constants 

In this section we assume that the five scalar invariants are all constants. 

As we mentioned before in section 2.1 in this case we have that a, b, and c are 

constants. For the metric (2.1) the conformal invariant is 

where 

w =   2 1 

' A 2 B 4 

7= B2A — BBA + A(—BB + B+1). 

(2.51) 

(2.52) 

The metric (2.1) is conformally flat if and only if o = 0 , i.e., w2 = 0 , because the 

Weyl tensor vanishes if and only if w2 vanishes. Without losing generality we 

0 

suppose that A, o- ≥ 0 so that p = f 3w 2 - is also a scalar invariant. By 
AB2 

(2.2), (2.3), (2.4), and (2.11) we have 

1 
—(2BB tt +B+ 1)=k 
B2 

where k=.(b—a-2c)isaconstant, hence 2BBtt +B+1—kB2=0. 

(2.53) 

Multiplying on both sides by Bt we have 2BBB + B + B —kB2B = 0 and 

(BB) + Bt - (B3) = 0 it follows that BB + B - B3 = d = constant or 

B+1 k d 
 =—. 
B2 ° + B3 

Combining this with (2.53) we have 

B t t k d 

B 2133 

(2.54) 

(2.55) 
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Also since p - k = (B2A - BBA - 3ABB) = constant by (2.3) we have 
AB  

AB 
 +—)=p—k 
AB B 

hence 

AB 
+ - = constant 

AB B 

and 

AB a—b 
= = constant. 

AB B 2 

Therefore 

- = constant. 
B 

By (2.55) we have 

Bj - 3dB 
- =0. 
t 2B 4 

So there are two cases: d = 0 , and B = constant. 

CASE 1. d= 0. 

(2.56) 

We will show that in this case the metric is conformally flat and is given 

by A = constant or A = sinh( qt--c2), B = 1 cosh( qt+c1) where q, c1 and c2 are 

constants, q # 0. 

From (2.54) and (2.55) we have 

B+1 k 
-= ==q2>0. 
B B2 

The unique solution of (2.57) is 

B =coshx 

(2.57) 

(2.58) 
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where x = qt + c1, and q, and c are constants, q # 0. Since - 

1 AB ( a - b ) + q'-  

AB 

we have 

where 

At B 
- = a - = - cothx 
A Bt 

q 
(2.59) 

a=q2+.(a_b). (2.60) 

From (2.2) and (2.57) we have = - a - 2q2, hence 

which implies 

A [At 2 Er] t = —a -2q    2 - 
A] 

a sech2x = a + 2q2 + coth2x 
q2 

by (2.59). Therefore we have 

a(1_ PL ) sech2x=+a+2q2 (2.61) 
q 2 q 

which implies either (i) a = 0, or (ii) a = q2. 

(1) a= 0 implies A = constant by (2.59) and a + 2q2 = 0 by (2.61), this 
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combined with (2.60) and q2 =  b - a - 2c) yields 

a=c=-2q2, b=0, 

hence R = - 6q2, D = O.  Using (2.57) and A = constant in (2.52) gives o = 0 

which means that this class of space—times is conformally flat. 

(ii) a= q2 implies a = b by (2.60) , hence c = - k = - 3q2. From (2.61) we 

have a=-3q2so 

a=b=c=-3q2, R=-12q2, D=(3q2)4 (2.62) 

and from (2.59) we have A = sinh( qt + c2), B = cosh( qt + c1). This implies 

0 and from (2.62) we have that Rab = R gab therefore this class of 

space—times is de Sitter [6], while (i) is not since a f b = 0. We see that both can 

be labeled by q since the scalar curvatures are - 6q2 and —12q2 respectively. 

CASE 2. B = constant 

In this case we have 

Att 1 
a = b = -- and c = --

A B2 
(2.63) 

by (2.2), (2.3) and (2.4). We distinguish several subcases. 

(i) a = 0 implies that Att = 0 hence A = c1 + c2t. Using the coordinate 

transformatiom 

= t coshr 

= t sinhr 

we have 
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d 2—d 2—B2d 2= dt2—t dr2—B2d1 2 

and 

T=D=O, o-=A=c1+c2t. 
B2 

So this class of space—times can be labeled by the nonzero constant B , and is not 

conformally flat. 

A tt 

a=--=—q2 O 
A 

Then Att - q2A = O hence A = c1 qt + c2 e1t 

In this case we have the three following classes of space—times which are 

equivalent. 

1) c1 = 0, c2 0 or c2 = 0, c1 # 0 

It is clear by the discussion in section 2.1 and the coordinate 

transformation t = - that the K—S space—times with A = c1 eqt ; A = c2 e1t 

A = e qt and B = constant represent the same metric in different coordinates. We 

denote this metric by 

ds.= 

2) c1c2> 0. 

In this case we have 

A = 2c1cosh( qt + a) N A = coshqt 

(2.64) 

(2.65) 

where a = ()1, c= and "" means that two A's with the same constant B 

represent the same metric. We denote this metric by 

ds9 = dt2 - cosh2qtdr2 - B2dl2. (2.66) 

3) c1c2<0 

In this case we have 
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A = 2c1 sinh( qt + a) N A = sinhqt (2.67) 

C2 
where ea = (/1 ,c = - -. We denote this metric by 

C  

ds = dt2 - sinh2qtdr2 - B2d1 2. (2.68) 

Next we will show that these three metrics in 1) 2) 3) are equivalent to 

each other. By Putting T = 10 ,the metric (2.64) becomes 

d S2 a = 
1 
 (dr2— dr2) - B2df 2 
q2r2 

and then by using null coordinates 

(2.70) becomes 

T=u+v 

r = u—v 

ds.=  4dudv  B2d. 
q2(u + v)2 

If we put dr = dt  co  qt we have qt = ta$, then 

coshqt = . ( tan-2— + ctif) = 

Hence (2.66) becomes 

1 
dsg = (d,0— dr2) - B2d1l2. 

sin 2qt 

Using the coordinate transformation 

we have 

= qt 

r' = qr 

1 

ds= q2sln2i-  (dr2—dr2)--B2dfl2 

(2.69) 

(2.70) 

(2.71) 

(2.72) 
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(after dropping primes on the coordinates). Hence we have 

4dudv 
ds -  B2d12 

q2sin2 (u+v) 
(2.73) 

by using null coordinates (2.70). 

For the metric (2.68) if we use the transformation dr =  dt siqt we have that r 

In ( tanh qt), hence e qT = tanh and then 

siqr 1 qt qt =( tanh —ctnh) 1  
= - sinhqr 

Hence (2.68) becomes 

1 
ds = (dr2— dr2) —B2 d 2. 

sinh2qt 

Using (2.72) and then (2.70) we have 

4dudv 
ds -  B2dV. 

q2s i nh2(u+v) 
(2.74) 

It is easy to confirm that the transformations 

11 = tanu', v = tanv' 

ii = tanhu', v = tanhv' 

carry the metric ds with form (2.71) to the metrics ds and ds with the forms 

(2.73) and (2.74). respectively. Therefore we have that ds , ds , ds , are the 

same metric in different coordinates. The five scalar invariants of this class are as 

follows: 
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1 
R=-2(q2+—) 

i2 

S=q+—+---- 
B2 B4 

q2 1 
T = —2— ( q2 + -) 

B2 B2 

q4 

B4 
1 

21 
w = ( q2 + -). 

B2 

(2.75) 

We see that all these five scalar invariants are symmetric with respect to 

1 
q2 and - but we have the following 

B2 

Theorem 2.2. The K—S space—times with A = e q t N A = et N A = sinhqt N 

A = coshqt , B = constant can be labeled by the ordered pair ( q2, 132). 

We only need to prove the following 

Lemma 2 1 The two metrics 

ds2 = dt2 - sinh2qt dr2 - B2d 2 (2.76) 

d 2 = d 2 - sinh2p d 2 - G2dO2 (2.77) 

are equivalent if and only if q2 = p2 and B2 = G2 where q, p, B, and G are 

constants, and B, and G are not zero. 

Proof. By R = A and S = in (2.75) we have 

q2+ip 2+L 

B2 G2 

and 
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B2 G2 

Solving these equations we have either q2 = p2, hence B2 = G2, or q2 = .1-., 

hence p2=  . We will prove that in the latter case we must have 
B2 

q2=p2=L.L 

B2 G2 

In this case we have 

and 

ds2 = dt2—sinh2qt dr2—B2d)2 

d2 = dfj  

B q2 

(2.78) 

(2.79) 

are equivalent under a transformation. Since the Ricci tensors of (2.78) and 

(2.79) are 

and by assumption we have 

1 

1 1 

P (Rba) Pi = (kb) 

(2.80) 

(2.81) 

where P is the Jacobi matrix of the transformation, if q2 # L then (2.81) would 
B2 

force the transformation to have the form 
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This implies that the metric dt2 - sinh2qt dr2 is equivalent to the metric 

— - dO2. But this is impossible because they have different signatures. Therefore 
q2 

we must have q2 = 
B2 

Att  
(iii) - — = q2 0 0, B = constant. 

A 

In this case we have A = c1cosqt + c2sinqt. 

1) c1 = 0, C2 # 0 or c2 0, C1 # 0. 

By the transformation qt = qt' + A = c2sinqt N A = sinqt N A = cosqt 

cl 
2) c1c2# 0. We have A ,, sin ( qt a) N  sinqt where tana = c, c =FI. The 

Ricci tensor is ( Rba) = diag ( q, q, — — --_). The five scalar invariants are: 
132 B2 

R=2(q—i-) 
B2 

S=(q2_L) 2 _2-

B2 132 

T= 2  q2(  
B2 B2 

B4 
w 2 =.( q2 _.L) 2 . 

B2 

So we can labeled this class of space—times by the ordered pair ( q2, --). The 
B2 

case (iii) cannot be equivalent to case (ii) since the Ricci tensors have different 

eigenvalues, unless q = 0 which results in case (i). 

NOTE. For case (iii) if q2 - 1 = 0 then w2 = 0, R = 0, but the metrics are not 
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de Sitter ones since Rab Rg ab = 0 and R3434 = - 1. s1n20 # 0. 
B2 

§ 2.4 A Complete Classification of K—S Space—Times 

Based on the discussion in section 2.2 and 2.3 for the K—S space—times 

(2.1) we have the following classification: 

(1) The five scalar invariants are all constants: 

I. A' = p2, B2= 1 cosh2at, where p can be any nonzero constant. 

(rtab) = diag ( —2a 0, —2a-2a2) 

R=-6a2 

S = ].2a4 

T =-8a6 

D=0 

w2 = 0. 

The space-times are conformally flat and are labelled by the constant a. 

II. A2 = p2sinh2at, B2 = cosh 2at, where p can be any nonzero constant. 

(}V a) = diag ( - 3a 2 - 3a 2 - 3a 2 
- 3a2) 

R = - 12a2 

S = 54a4 
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T = —108a6 

D = 81a8 

w2 = 0 

Rab Rgab  

The space—times are conformally flat and are labelled by the constant a, 

they are de Sitter space—times. 

Ill. A2= 

B = U = constant, 

p2e 2at N A 2  = p2e2at 

where p2, p2, p2, and 

N A 2  = p2 cosh 2at N A 2  = p2sinh2at 

p are any nonzero constants. 

(Rba) = diag (- a2, -a 2, - b2, - b2) 
R = -2 (a 2  +b 2) 

S = (a2 + b2)2 + 2a2b2 

T = - 2a2b2( a2 + b2) 

D = a4b4 

w2 = ( a2 +b 2)2. 

The space—times are labelled by the ordered pair (a2, b 2 ) and are not 

conformally flat. 

IV. A2 = p2 Cos 2at N  A2 = p2 sin 2at 

any nonzero constants. 

(Rba) = diag ( a2, a2, - b 2, b2, - b 2) 

R= 2(a2—b2) 

S = ( a 2 - b 2)2 b2)2 - 4a2b2 

B = = constant, where p and p are 
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T = - 2a 2 bl(  a2 - b2) 

D = a 4 b 4 

2 1 w =.-(a2—b2)2 

a2 = b2 if and only if w2 = R = 0. 

The space—times are different from I and II because of different scalar 

cuvatures and different eigenvalues of the Ricci tensors. They are labelled by the 

ordered pair ( a2, b2) 

V. = IIIflIV (a = 0) A = pt N A = p, B = . = constant , p and are 

any nonzero constants. 

(Rb) = diag ( 0, 0, - b2, - b2) 

R= —2b2 

S = 

T=D=0 

b4 
3 

The space-times are labelled by the constant b. 

(2) At least one of the five scalar invariants is not a constant. 

If B2(t) # 2() under t = S + c1, where S = ± 1 and c1 = constant, or 

if there is no constant p such that A2(t) = p2A2() then the two metrics (2.1) and 

(2.12) are inequivalent. 
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NOTE. From (2) we can see, as we mentioned in the section 1.2 , that there are 

no nonconstant scalar invariants depending on time t alone in class III since 

cosh2at f csinh2a(St + c) for any constants c and c1. 

CHAPTER THREE 

ROBERTSON—WALKER SPACE—TIMES 

§ 3.1 General Jiformation on R—W Space—Times 

It has been shown that the R—W space—times are precisely those whose 

metrics can be expressed in the form 

ds2 = 11(t) [ dt2 - dr2 - g1(r) d1 2] (3.1) 

for the functions 11(t) > 0 and 

k=O 

g1(r) = sin2r k = 1 

sinh2r k=-1 

df 2= d 0 + sin20 dço2. Each g in (3.2) satisfies 

ggrr —g-2g3 = 0 

and 

4g3 -g 

g2 

(3.2) 

(3.3) 

= 4k. (3.4) 

The scalar curvature and Ricci tensor are as follows: 
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2H 

1111 —11 ) 
211 

Htt  ( 2ggrr —3g) 
R22  = 

2g211 2 

g211 + II ( gg r r - 2g + 2g3) 
R33 = R44 = 

2g 2fl2 

Rb = 0 , if a b. 

Using (3.3), (3.4), and (3.5) we have 

R2 2 = R33 = R44 = —Hk 

where 

Htt + 4kH 

112 

We see that the four scalar invariants are all functions of t alone. 

(3.5) 

R—W space—times are conformally flat, hence w2 = 0, in addition 

(Rb)ag(a,b,b,b,) where a=R11, b=R22=R33 =R44,hence a 

and b must be the eigenvalues of the Ricci tensor. If R, S, T, and D are 

constants then a and b must be constants and hence 11k is also a constant. 

3.2 A Complete Classification of R—W Space—Times 
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For the convenience of discussion we set 

d 2 = fl(j) [di2 - d2— 1() d 2] (3.9) 

where dfj  = 0 + sin 22d 2. 

For the metric (3.1) one would like to ask whether we can specify the 

space—times by the ordered pair ( 11(t), k) or not . The answer is no since the de 

Sitter and Minkowski space—times are the counterexamples [7]. The question then 

becomes whether we can specify the non—de Sitter R—W space—times with 

standard form (3.1) by the ordered pair (11(t) , k). The answer is almost yes 

based on the following 

Theorem 3.1 Assume that two metrics (3.1) and (3.9) which are not de Sitter 

space—times are equivalent. Then k = k , p211(t) = ft(i) , and t = p + c 

where p and c are constants, and p # 0 . Moreover if  # 0 then p = 1 

The theorem is based on the following lemmas 

Lemma 3 1 If two metrics (3.1) and (3.9) are equivalent and some 

M E { R, S, T, D } is not a constant then 

(3.10) 

(3.11) 

Ifinaddition k=0,then =p2= constant and t=p+c. 
H 

Since k and i can only be 0 or ± 1 and H and El are positive, (3.11) 

implies k=f. Then ifk#Owe must have H=fi and t= S+c, where cis 

a constant and 6 = ± 1. 
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To make the classification complete one would like to find all R—W 

space—times for which all four scalar invariants are constants. To answer this 

question we have the following 

Lemma 3 2 If the four scalar invariants of the metric are all constants then either 

H = constant or (3.1) are de Sitter space—times. 

NOTE. In the case of H = constant we know that R = - from (3.5) hence if 
H 

k # 0 we have H = fi by R = A and if k = 0 the metric is just Minkowski 

space—time for any constant H so theorem 3.1 is still valid for this case. 

Proof of Lemma 3 1  

Eq.(3.1O) is established by an argument similar to that which proved 

(2.24). By the equivalence condition (1.3) we conclude the coordinate 

transformation has the form 

Under this transformation we have 

ds2 = d 2 

and combining this with (3.10) we have 

ds=d 

under (3.12) , where 

ds = H(t) [dr2 + g1(r) d 2] 

(3.12) 
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ds = fl(i) [d 2 + j'() d 2] . (3.16) 

Eq.(3.14) means that the two metrics (3.15) and (3.16) are equivalent on the three 

space. Since the scalar curvatures of (3.15) and (3.16) are 

and 

1  (4gg - 7g 2 + 4g3) = 
2g2H 

1 -- ...2 6k 
- - (4gg;;— 7g + 4g ) = 

2g211 II 

(3.17) 

(3.18) 

respectively and they must equal to each other at corresponding points we have 

obtained (3.11) . If  = 0, in cartesian coordinates (3-13) becomes 

11(t) [dt2 - dx2 - dy2 - dz2] = A(i) [d 2 - d 2 - dj 2 - d 2] 

under the coordinate transformation 

y = y(i,;) 

z = z(i,). 

With this form and the equivalence condition (1.3) we have 

] 2 f9] 

I j [ 
2 

11(t) = fl(i) 10j12 () + + ] 



30 

which implies = constant. We have completed the proof of Lemma 3.1. 
H 

Proof of Lemma 3 2 Assuming that the four scalar invariants are all constants 

we know that 11k is also a constant as mentioned before in section 3.1. From (3.5) 

and (3.8) we have 

61111 - 3H + 12k112 + 2R113 = 0 (3.19) 

and 

lltt+4k11-11211k=0 

i.e., 

6HH + 24kH2 - 6H3JIk =0. 

Combining (3.19) and (3.21) one has 

3H + 12kH2-2H3(R+ 3Hk)= 0. 

On the other hand multiplying the both sides of (3.20) by Ht we have 

HttHt + 4kHH - k2t = 0 

(H + 2k (fl 2) - 11 3)k ( = 0 

hence we have 

3H 2 + 12kH2 - 2HkH3 = constant. 

Combining (3.22) and (3.23) We have 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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3 ( R + 211k) = constant (3.24) 

which means that either II = constant or R + 211k = 0. In the case of 

R + 211k = 0 we have that R11 = R22 = R33 =R44 = R by (3.6) and (3.7) and 

hence we have 

Rab = R gab• (3.25) 

Combined with wabcd = 0 (3.25) means that the metric is de Sitter [6]. We have 

completed the proof of Lemma 3.2. 

NOTE. From the proof we have seen that R = —211 = constant is equivalent to 

the condition that all four invarinats are constants. 

Next we will find all functions 11(t) for each k in the metric (3.1) such 

that the four scalar invariants are all constants. So we have to solve 

R = 211k = constant. (3.26) 

Once we have done this it will be very easy to tell whether two metrics (3.1) and 

(3.9) are equivalent or not just by checking whether we have 

(p211(t) , k) = ( ft(i) iii) under the coordinate transformation t = pt + c 

except for functions which satisfy (3.26). It is also very easy to apply the results 

to the transparent space—times in the next section. 

Using the expressions (3.5) and (3.8) for R and 11k respectively, 

R + 211k = 0 becomes 21111 - 3H —4k112 = 0 or equivalently 

2   1 1 4k=0. 
L11J 

We can rewrite this as 
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r11 11t r11t 2 
2 '--I t I t.-I +4k. (3.27) 

J 

Combining this with R = -211k = constant we have the following results: 

1) 

(i) k=O 11(t)=  C  

( t+c1)2 t2 

(ii) k = 1 11(t) =  c  - 11(t) = c 
sin2( t+c1) sin2t 

(iii) k = —1 11(t) =  C  - 11(t) = c 
sinh2( t+c) sinh2t 

It has been shown that the metrics (3.1) with (i) (ii) (iii) respectively 

represent the same space—times, namely the de Sitter ones [7]. For this kind of 

space—times the scalar curvature R - 

12 

2) 

(i) k = 0 11(t) = constant - 11(t) = 1 

(ii) k = 1 11(t) =  C  - 11(1) = c 
Cos 2( t+c1) sin 2t 

(iii) k = —1 11(t) = 4ce2t - 11(t) = 4ce 2t - 11(t) = 4e2t. 

The metrics (i) or (iii) are equivalent to Minkowski space—time [7] while (ii) are de 

Sitter ones again. 

NOTE. 11(t) =  c  is another solution of (3.27) with k = —1 but it is not 
cosh 2( t+c1) 
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a solution of 11k = constant. 

Based on the above discussion we have the following complete 

classification of R—W space—times: 

(1) R, 11k are constants. 

I. ll(t)=p2= constant , k=1. 

R 6k 

p2 
(Rba) = diag ( o 2k 2k 2k 

The space—times are labelled by the pair ( p2 , k). 

II. Minkowski space—time 

(11(t), k) can be any one of ( p2, 0), (4ce2t, —1), (4ce2t, —1 ) 

where p j 0, c are constants. 

III. de Sitter (and anti—de Sitter) space—times. 

(H(t),k) can be any one of(-,O), c 1), c  
sin2t ' sinh2t 

B. 12 

c#0isa constant , 

The space—times are labelled by the constant c. 

) 
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(2) At least one of R and ilk is not a constant. 

The space—times are labelled by the ordered pair (p211(t) , k) under the 

coordinate transformation t = p + c , where c is a constant and if k f 0 p2= 1, 

and if k = 0 p can be any nonzero constant. 

NOTE. From (2) we can see, as we mentioned in section 1.2 that there are no 

nonconstant scalar invariants depending on time t alone in the de Sitter 

space—times (Minkowski space—time is the special case R = 0) because these 

space—times have two or three expressions, i.e., different pairs (11(t), k) which 

do not satisfy the conditions in (2). 

CHAPTER FOUR 

APPLICATION TO TRANSPARENT SPACE—TIMES 

§ 4.1 Discussion of Classification of the Transparent Space—Times 

In 1986 and 1988 Dr. W.E. Couch and Dr. R.J. Torrence [8,9,10] 

presented a large class of spherically symmetric space-times which are transparent 

to scalar multipole waves in the same sense that flat space—time is. In this section 

we prove some results on the classification of transparent space—times. These 

results will show that the set of inequivalent transparent space—times is very large. 

Similarly the complete classifications of transparent K—S and R—W metrics given 

in sections 4.2 and 4.3 show that those classes of inequivalent transparent 

space—times are also large. 
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In general, transparent space—times have metrics with the form 

ds2 = ll(t,r) [ dt2 - dr2 - g1(t,r) d112] (4.1) 

where d112 = d02+ sin 20dço2. A scalar field IF obeys the covariant wave equation 

gab = 0 on the background (4.1). Upon separation of variables by 

= XS(r,t) Y m (O,go) the equation governing S is 

Srr Stt V S —( + 1) g S = 0 (4.2) 

where 

XrrXttVX0 (4.3) 

and 

x2 = H/g. (4.4) 

The space—times are transparent for special choices of the functions H(t,r) and 

g(t,r) which make (4.2) solvable in the sense defined in [8] and [9]. The class is 

large, being labelled by several functions of one variable and several real valued 

parameters. 

The metric (4.1) is necessarily spherically symmetric and is conformally 

flat if and only if 

C = + g = 0 (4.5) 

where t and r subscripts denote partial differentiation. The scalar curvature of 

(4.1) is given by 

R "= —'— (Xrr — Xtt+ CX )= 6V + C 

gx3 6g g3 X2 

If we use null coordinates u = 1 (t+r) and v = (t—r) then (4.3) becomes 

(4.6) 

x+Vx=0. 
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If V and g are given such that (4.2) is a nonscattering equation and x is 

determined by the requirement that it be a solution of (4.3) then from (4.4) we 

obtain an H, therefore we have a transparent space—time with the form (4.1). For 

the choices of g(t,r) and V(t,r) we refer reader to [8], [9], and [10]. 

To start the discussion we set 

I = { N, M, D, ... } (4.7) 

where the elements in the set I are scalar invariants which are functions of t and r. 

In this case all of the five scalar invariants defined in section 1.2 are functions of t 

and r. Let the matrix A be defined by 

and let 

Nt Mt D... 
A= 

Nr Mr Dr ... 
(4.8) 

d 2 = ft() [dP - d2 1(u) dO2] . (4.9) 

Then we have the following 

Theorem 4.1 If the two metrics (4.1) and (4.9) are equivalent and the 

rank (A) = 2 then the coordinate transformation has the form 

(4.10) 

Consequently we have 
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x2= 2 (4.11) 

under the coordinate transformation (4.10), and if we use null coordinates we have 

and 

under (4.12). 

(4.12) 

du dv (H,V,g)=( ft, ',) (4.13) 

Proof. Assuming that rank (A) = 2 then there are at least two scalar invariants, 

say N and M, inlsuch that 

Differentiate 

det 
NM 
I N Mr) # 0. 

N(t,r) = 

on both sides with respect to , we have 

Nr at  0 
00 00 

Mr 0. 
00 00 

By (4.14), Eq.(4.16) imply 

(4.14) 

(4.15) 

(4.16) 
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at Or 0 
00 o 

Similarly we can show 

o, 9' 

By the equivalence condition (1.3) we obtain 

Eqs.(4.17), (4.18) and (4.19) imply (4.10). By (4.10) we have 

and 

ll(dt2—dr2) = fi(d 2—d 2) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

X2d 2 = 2d 2 (4.21) 

under (4.10). The scalar curvatures for the metrics X2dp2 and 2dO2 are 
x 

and - respectively, hence we have obtained (4.11). If we use null coordinates 
x2 

(4.20) becomes 

Hdudv = fidiid. (4.22) 

Using the equivalence condition (1.3) on (4.22) we have either 

or 

(4.23) 

(4.24) 
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v = v(ii). 

Without loosing generality we suppose that (4.23) holds. Then from (4.22) we 

have 

By (4.11) we have 

fl du dv 
H—U TV 

g - du dv 
uu— UV--g. 

Using (4.11) and (4.23) j + Vj = 0 is equivalent to 
UV 

du dv 
Xuv+V au— TV- X 

Comparing this with (4.3') we have 

dudv 
- aiav 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

We have now proved (4.13) and theorem 4.1. 

We now apply this result to transparent space—times. By (4.13) we have 

Combining this with R = + C  we have 
H g 3 x 2 

(4.29) 

(4.30) 
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Multiplying (4.29) on both sides of (4.20) we have 

V(dt2_dr2)='cr(dt2—d 2). (4.31) 

The scalar curvature of (4.31) is very important, e.g., if we choose one of the 

functions in (4.45) as h in V then the scalar curvature of (4.31) is £(e+1) . This 

means that different £ with the same g and h will generate different 

space—times. For any choice of V # 0 in [8] and [9] the scalar curvature of (4.31) 

is a constant in terms of 1, £' etc., so this gives a restriction to the equivalent 

transparent space—times. 

We have seen that the general situation is complicated. So far we have 

not classified the class of space—times of (4.1) completely. We have not found the 

closed form of space—times with the condition of rank (A) < 2, and secondly we 

have not proved that (4.12) and (4.13) are linear. But we still can use this method 

to test whether the two given concrete transparent space—times are equivalent or 

not by checking the consistency of (4.11), (4.13) and (4.30) for all solutions of 

(4.12) satisfying (4.26) or (4.28). 

§ 4.2 Application to Transparent K—S Space—times 

In this section we apply the results from section 2.4 to obtain a complete 

classification of transparent K—S space—times. 

Using the coordinate transformation 

dr 
dt = A(r) (4.32) 

the K—S metric 
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where 

Hence 
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ds2 = dr2 - A 2( r)  dr2 - B2(i-) d112 (4.33) 

ds2 = 11(t) [dt2 - dr2 —g 1(t) d112] (4.34) 

11(t) = A2(r) (4.35) 

A2(r) 
g(t) =   . (4.36) 

B2(r) 

X(t) = B(T) (4.37) 

under (4.32). 

If the metric (4.34) is transparent then [10] 

Since g(t) in (4.38) satisfies 

1  

cosh 2t 

V(t) = - £(t+1)  
sinh 2t 

(4.38) 

(4.39) 

C = g2— 99  —2g3 = 0. (4.40) 

the transparent K—S psace—times are conformally flat. By (4.37), (4.5) becomes 

Btt  (4.41) 

In this case the scalar curvature of (4.34) is 

6V 6V 

11 A2 

(1) The five scalar invariants are constants. 

(4.42) 
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From section 2.4 for the conformally flat space—times we have 

(i) A2 = p2= constant, B2 = 1 cosh2ar. 

By (4.32) we have r = pt + c. But B does not satisfy (4.41), so this is not 

a transparent space—time. 

(ii) A' = p2sinh2ar, B2 = cosh 2ai-. 

By (4.38), (4.39) and (4.41) we have a = 1 and £ = 1 and 

B(r) = cosht This is a transparent space—time. sin t 

(iii) A' = p2c082ar B = 1 = constant. These are transparent 

space—times. 

By (4.38), (4.39) and (4.41) we have ap = 1, £ = 0. 

(2) At least one of the five scalar invariants is not a constant. 

By (4.42) and Theorem 2.1 we have 

V(t) = p2 '() (4.43) 

under = St + c which comes from (4.32). From (4.43) we have p2 = 1 and c = 0, 

hence we have £ = 2 ≥ 2. 

Let BI(t) and B2(t) denote two linearly independent solutions of (4.41) for 

an integer £ ≥ 2 then B2(t) = [ciBi(t) + c2B2(t) ]2. By the theorem 2.1 it is easy 

to see that we can specify this subclass of space—times by £ x ( c1 , c2) with the 

redundancies €x( CI, c2)=tx(—c1,—c2) fort? 2. 

The results presented above provide the following scheme which decides 

the equivalence or otherwise of any two nonflat transparent K—S metrics defined 
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by (4.38) , (4.39) and (4.41). The space—times are inequivalent if and only if one 

of the following holds: 

(a) £# 

(b) £ = 2 , (ci, c2) # ( i, Z2 ) except for the redundancies specified 
in (2). 

§ 4.3 Application to Transparent R—W Space times 

A subclass of the transparent space—times which is within the class of 

R—W space—times is defined by the condition that 11(t) in the metric (3.1) satisfies 

(%fff ) + [k + V(a,t) ]/ff = 0 (4.44) 

where V(a,t) = £(t+1)h(a,t), £ is a nonegative integer and h(a,t) is one of the four 

functions 

1L  1 1  1  

1 t' a2s1n 2(t/a)' a25inh2(t/a)' a2cosh2(t/a) 
(4.45) 

where a is a nonzero constant. For the k = 0 case a may be set equal to one by a 

scale transformation on t in (4.44) hence for that case (4.44) becomes 

(/fi + V(1,t)i/11 =0 

so we can rewrite (4.44) as 

(./H ) + [k + V(1+ak,t)]'11 = 0. (4.46) 
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The scalar curvature of this subclass is 

6V (4.47) 

We now give the solution to equivalence problem for these transparent 

R—W space—times in terms of the quantities k, 1, h(a,t), and 11(t) which generate 

them. All these space—times are contained in the following three cases. 

(1) t=O(==V=R=o). 

(Rba) = diag(.11 11k ' 11k ' 11k) 

(i) k=O. 

From (4.46) we have 

11(t) = (c1t + c2)2 - 11(t) = Ct2 if c1# 0 

2c 1 
11k =  #0=—R,ifc1#0. 

(c1t+c2)2 

If c1= 0 the metric (3.1.) becomes Minkowski. 

(ii) k=1. 

Eq.(4.46) becomes (/fi ) + fEt = 0, hence 

11(t) = (c1cost + c2sint)2 - 11(t) c 5iu2(t+a) - 11(t) = c sin 2t 

11k =  2  constant. 
csin4t 

(iii) k=-1. 

Eq.(4.46) becomes (ffi ) - (11 = 0 and we have three cases: 

a) 11(t) = ce2t - 11(t) = ce 2t 

Hk = 0, this is Minkowski space—time. 

(4.48) 
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b) 11(t) = c siñh2(t-i-a) - 11(t) = c sinh2t 

11k =  2  constant. 
c sinh4t 

c) 11(t) = c cosh2(t-i-a) - 11(t) = c cosh2t 

=  2  constant. 
c cosh4t 

Apart from the Minkowski metric here we have just shown that all the 

space—times above have a nonconstant 11k and the transformation t = p + c 

cannot carry one to another. So they are all different space—times. 

(2) R=-2 11k= constant, and l# 0. 

Since for the Minkowski metric we must have £ = 0 by the discussion in 

section 3.2 we know that in this case we only have de Sitter space—times. 

(i) (H(t),k)=(-,o). 
t2 

Substituting this in (4.46) we have £ = 1 and h = - 

(ii) (11(t),k)=( c 
sin2t 

Substituting this in (4.46) we have £ = 1 and h = 1 

sin2t 

(iii) (H(t),k)=(  C  1). 
sinh2t 

Substituting this in (4.46) we have 

c  

sinh2t 

In this case £ can only be 1, and besides de Sitter ones we also have other 



46 

transparent space—times, e.g., /fl (J = t2 for V = - and k = 0 [8]. 

(3) 10 0 and at least one of R and 11k is not a constant. 

In this case by application of theorem 3.1 we have that if the two metrics 

(3.1) and (3.9) are equivalent then 

p211(t) = fi(), k = (4.49) 

and 

t=p1+c. (4.50) 

By R=ft and (3.31) we have 

p2V(1+ak,t) = V(1+k,) (4.51) 

under (4.50). Since (4.50) cannot carry one function to another in (4.45), (4.51) 

implies that V and ' must be the same function in (4.45) and £ = ; furthermore 

p2 1ifh#_L, and cn(1+ak) for h.....  -1  while c=O 
(1-f-ak)2sin2[t/(1-i-ak)] 

for the others, where n is an integer. Hence (4.50) becomes t = t + c. Let 111(t) 

and 112(t) denote two linearly independent solutions of (4.46) for a fixed triple 

(e,h,k), then 11(t) (c1H1 + c2112)2. It is easy to see that we can identify this 

subclass of space—times by ( £, h , k )x( c1, c2 ) with the redundancies 

(t,h,k)x(cj,c2)=(t,h,k)x(—ci,--c2) for h# -i-- . In the case of 
t2 

h = - , (4.44) gives 111(t) t' and 112(t) = tm where 

n = (1 + V1+4t(t+1) ); m = (1 - /1+4t(t+1) ), hence in this case the 

redundancies are (t, 0) x (cj, c2) = (t,_i, 0) x (pfl+1c1, pm+1c2 ). 

The results presented above provide the following scheme which decides 

the equivalence or otherwise of any two nonflat transparent R—W metrics defined 

by (4.44) and (4.45). The space-times are inequivalent if and only if one of the 
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following holds: 

(a) 

(b) £ = = 0 or 1, the distinctions listed in (1) or (2) are satisfied. 

(c) £=≥ 2,k#i. 

(d) £ = £ ≥ 2, k = k, h and R are different ones of the four functions in 

(4.45). 

(e) £ = 2 ≥ 2, k = i, h and ii are the same, (c1,c2) # (1'2) except for 

the redundancies specified in (3). 

A similar analysis will apply to a more general class of nonscattering V's 

based on the results in [10]. 

§ 4.4 The Conforinally.Flat Transparent Space—Times 

with the Einstein Tensor Having Two Double Eigenvalues 

In this section we give closed forms for all of the conformally fiat 

transparent space—times with two double eigenvalues and h being any one of the 

functions in (4.45). 

The Einstein tensor of the metric (4.1) has the form 

a — k 0 0 
(Gba)= k bOO 

0 OcO 
0 0 0 c 

(4.52) 

This shows that the Einstein tensor of the metric always has one double eigenvalue 

which we denote by c in (4.52). In fact the spherically symmetric Einstein tensor 
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always has one double eigenvalue [11]. 

If the metric (4.1) is conformally flat we can always write it as 

ll(t,r)[dt2— dr2— r2dfll 

or 

ll(u,v) [4 du dv - (u—V)2d11. (4.53) 

In this case we have 

4ar 
(4.54) 

4a 
b= ( 4 a + —3 a) - (4.55) 

k=(2 r tar) (4.56) 

where 

H =ea. (457) 

The condition for the metric (4.1) having two double eigenvalues is 

(a - b )2 = 4 k2 which is equivalent to 

(a—b-2k)H=O (4.58) 

or 

(a—b+2k)fl=O. (4.59) 

Substituting (4.54), (4.55) and (4.56) into (4.58) and (4.59) respectively we have 

1 
(at+ar)t+(at+ar)r=.(at+ar)2 

1 

Setting 

; + ar = Se° 

where 6 = 1. Then (4.60) becomes 

(4.60) 

(4.61) 
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( °•t + a,)=  - e. 

Using null coordinates (4.63) becomes 

Solving (4.64) we have 

S = e° . 

Se—at+ar—au_  2  
U + 4(v) 

JJ 2(v) 
Solving this we have a = in , hence 

(u + 4(v)) 2 

H = ea =  2(v) 

(u+ (v))2 

where (v) and 4(v) are functions of v. Similarly from (4.61) we have 

H = ea - ly   2(u) 

(v + 4(u)) 2 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

(4.67) 

In fact (4.66) and (4.67) will generate the same metric (4.53) by renaming u and 

v. Note that if a + ar = 0 in (4.60) or at —ar = 0 in (4.61) we have 

H = 2(v) (4.68) 

and 

For H in (4.67) we have 

H = 1p 2(u) . (4.69) 

IF (u) (u—v) 
x=  

V + 4(u) 
(4.70) 

Next we will find that for which functions i(u) and 4(u) (4.53) are transparent 

space—times, that is, x satisfies (4.6). It is easy to calculate 
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where 

By (4.6) we have 

XUV k(u) (4) + v) + f(u) 
X (U-V) (4) )2 

k(u) = (4)(u) + u) + (4)'(u) + 1) 

f(u) =-2 4)'(u) (4)(u) + u). 

k(u) (4)(u) + v) + 1(u) 

(4.71) 

(4.72) 

(4.73) 

= (u — v) (4)(u) + v)2. (4.74) 
V 

Now we look at some examples of V = £(t+1)h where h is one of the functions 

in (4.45). Inserting h = - L. into (4.74) reorganizing the both sides of (4.74) to 

be polynomials in v with the coefficients being functions of u, then comparing the 

the coefficients on the both sides of (4.74) we obtain that 4)(u) = u and 

(u) = c a where c and a are constants and a - £(-i-1) —2 , hence we have 

2 2a 2a 
11=  cii U  

(u+v) 2 (u+v) 
(4.75) 

under the transformation c u' = iia, c = a Note that £ = 1 if and only if 

2 a = 0 and H = C  , these are just de Sitter space—times and in this case 
(u + v)2 

the above transformation is not valid. 

Inserting the h - will give us £ = 0, hence f(u) = k(u) = 0 by 

f(u) = 0 we have two cases: 4)(u) = c = constant and 4)(u) = - u 

(i) 4)(u) = C. 

By k(u) = 0 we have (u) =   where a is a constant, hence 
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2 a 

JM - (u + c) 2(v + c)2 112v2 
(4.76) 

by the transformation u = a ii, v = a v. It is easy to see that this is Minkowski 

space-time since using the transformation i = , = carries H = 1 in (4.53) 

with H in (4.76). 

(ii) 4(u) = - U. 

By k(u) = 0 we have that (u) can be any function of u, hence 

2(u) 

H  -
(u _v)2 

The Einstein tensor of this space-time has the form 

(5.77) 

= G22 = - G 33  = - G 4 4  = 

G 1 2 = -L (v - u) (v 'I" W -2 1p 2 V uu U + 2 U -2 W Gba 0, if 

a # b. 

For H = p2(U), x = c'(u) (u - v). Then 

--  =v. 
X (u) (u - v) 

This forces £ = 0 and (u) = constant, this is Minkowski space-time again. 

(5.78) 
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