
THE UNIVERSITY OF CALGARY

A FAST SEARCHING ALGORITHM FOR EXPERT SYSTEMS IN THE

POWER AREA

by

Tung Pui Hui

A THESIS

SUBMIIThD TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

CALGARY, ALBERTA

MAY 1990

Tung Pui Hui 1990

National Library
of Canada

8ibliothèque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
KIA 0N4

Service des theses canadiennes

The author has granted an irrevocable non-
exclusive licence allowing the National Ubrary
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

C macta

L'auteur a accordé une licence irrevocable et
non exclusive permettant a la Bibliothèque
nationale du Canada de reproduire, prèter,
distribuer cu vendre des copies de sa these
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
auto risation.

ISBN 0-315-61964-3

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommended to the Fac-

ulty of Graduate Studies for acceptance, a thesis entitled, "A Fast Searching Algo-

rithm for Expert Systems in the Power Area", submitted by Tung Pui Hui in partial

fulfillment of the requirements for the degree of Master of Science.

Superv6r - Dr. G. S. Hope
Depaifment of Electrical Engineering

Dr. 0. P. Malik
Department of Electrical Engineering

/—

Prof. A. Torvi
Department of Mechanical Engineering

Date: May 14, 1990.

11

ABSTRACT

Energy Management System (EMS) is a computerized supervision and

control center. It aids operating personnel in controlling and coordinating the oper-

ations of different parts of the power system. Expert Systems (ESs) have gradu-

ally become a part of EMSs. An important part of an ES is the inference engine,

which has a searching algorithm. The searching algorithms currently used in ESs

in the power area are slow.

This thesis analyzes the algorithms and outlines criteria for a fast search-

ing algorithm. A fast algorithm is proposed and implemented. A windowing inter-

face is also implemented tci test the proposed algorithm.

The algorithm has three processes:

(1) The dissociation and substitution process breaks down all production rules

into simple ones.

(2) The transformation process transforms the simple rules into a search tree.

(3) The search process conducts search using facts.

The algorithm can readily be used in power system applications. This is

shown by the illustrations involving the alarm-handler/fault-diagnostician ES.

Search speed comparisons show that the proposed searching algorithm is much

faster than Prolog/V's searching algorithm, which is the most widely used search-

ing algorithm in the power area.

lu

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to Dr. G. S. Hope for

his guidance throughtout the course of the project and for his advice and correc-

tions in preparing the manuscript.

Special appreciation goes to Dr. 0. P. Malik and other members in the

Power Research Group for their constructive criticisms and valuable discussions.

Special thanks to Dr. S. Minasiewicz (deceased) who provided assistance and

suggestions in developing the algorithm.

Finally, the financial support given by the Department of Electrical Engi-

neering is thankfully acknowledged.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF NOMENCLATURE xi

1. INTRODUCTION 1

1.1 ES Applications 3

1.2 Object-Oriented Programming And Possible Applications 4

1.3 Thesis Objectives 5

1.4 Thesis Organization 6

2. EMS AND OOP 9

2.1 An Introduction To EMS 9

2.2 A Proposed EMS 10

2.2.1 Features 11

2.2.2 Structure 12

2.2.3 Tasks 14

2.3 Problems Related To Prototyping 19

2.4 OOP As A Solution 20

2.5 Drawbacks Of OOP 22

3. EXPERT SYSTEM SEARCH TECHNIQUES 23

3.1 Search Techniques 23

3.1.1 Search strategies 24

V

3.1.2 Search methods 25

3.1.3 The "best" method or strategy 28

3.2 Search Techniques In Power Systems 28

3.2.1 Pure forward-chaining 29

3.2.2 Backward-chaining depth-first 29

3.2.3 Indexed forward-chaining 30

3.3 An Ideal Search Technique 32

3.3.l Pros and cons 32

3.3.2 Criteria for a suitable technique 34

3,4 A Proposed Fast Algorithm 36

3.4.1 An important concept: key condition 36

3.4.2 The proposed algorithm 37

3.5 Merits Of The Proposed Search Algorithm 42

3.5.1 Fast search 42

3.5.2 Efficiency 43

3.5.3 Versatile d.. 43

3.6 Disadvantages Of The Proposed Algorithm 44

3.6.1 Extra memory space 44

3.6.2 Extra time for constructing tree 44

4. SMALLTALK AND IMPLEMENTATION OF THE ALGORITHM 46

4.1 Smailtalk 46

4.1.1 Theoretical foundation 46

4.1.2 Features and properties 48

4.2 Algorithm Implementation 49

vi

4.2.1 Classes created 49

4.2.2 Implementation 53

4.2.3 Interface 56

5. ALGORITHM ILLUSTRATIONS 68

5.1 Background 68

5.1.1 Single fault examples 71

5.1.2 Multiple fault examples 79

5.2 Comparison 87

5.2.1 illustration 91

6. CONCLUSIONS 94

6.1 General Conclusions 94

6.2 Future Work 96

REFERENCES 98

APPENDIX A: The new classes and their implementations 103

APPENDIX B: Listing of class protocol 118

APPENDIX C: Listing of the rules used in the 5-substation illustrations 166

APPENDIX D: Listing of the rules used in speed comparison 183

vii

LIST OF TABLES

Table 5.1 Search times using the proposed algorithm and Prolog!V 93

viii

LIST OF FIGURES

Fig. 3.1 A simple rule and its corresponding discrimination network 31

Fig. 4.1 The Model System and the Referent System 47

Fig. 4.2 The System window 57

Fig. 4.3 The System window with the 3 choices in the top right subpane 58

Fig. 4.4 The Edit window with menus 59

Fig. 4.5 An instance of RuleBases is selected in the Edit window 61

Fig. 4.6 An instance of SetOfFact is selected in the Edit window 62

Fig. 4.7 An instance of StringRules is selected in the Edit window 63

Fig. 4.8 An instance of Table is selected in the Edit window 64

Fig. 4.9 The Search window with menus 65

Fig. 4.10 The Transform window with menus 67

Fig. 5.1 The substation schematic 69

Fig. 5.2 The substation schematic for the first example 72

Fig. 5.3 Example 1 containing alarms for the first example 73

Fig. 5.4 Solution paths and explanation for the first example 75

Fig. 5.5 The substation schematic for the second example 76

Fig. 5.6 Example 2 containing alarms for the second example 77

Fig. 5.7 Solution paths and explanation for the second example 78

Fig. 5.8 The reprint of the full explanation for the second example 80

Fig. 5.9 The substation schematic for the third example 81

Fig. 5.10 Example 3 containing alarms for the third example 82

ix

Fig. 5.11 Solution paths and explanation for the third example 83

Fig. 5.12 The reprint of the full explanation for the third example 84

Fig. 5.13 The substation schematic for the fourth example 85

Fig. 5.14 Example 4 containing alarms for the fourth example 86

Fig. 5.15 Solution paths and explanation for the fourth example 88

Fig. 5.16 The reprint of the full result for the fourth example 89

Fig. 5.17 The reprint of the full explanation for the fourth example 90

x

LIST OF NOMENCLATURE

abstraction a representation of ideas or concepts in the real world.

Al Artificial Intelligence. An area of research and applica-

tion aims at teaching computers and machines to imitate

human activities.

application domain the area where the computer program applies.

A* a search method which visits only the node with the best

values which are assigned by two functions.

"B" a prefix denoting bus-bar. Used only in chapter 5.

backtrack

backward-chaining

best-first

bi-directional

breadth-first

goes back to the previous node on the search path.

a search strategy which starts from the goal side.

a search method which always visits the node with the

best value.

a search strategy which starts from both the condition

and the goal side.

a search method which always visits the next leftmost

sibling node.

xi

a prefix denoting circuit breaker. Used in chapter 3 and 5.

child node a node is a child node of another node if the latter pre-

cedes the former in a tree.

class

class hierarchy

comparison path

condition

a collection of objects which all share some commonali-

ties.

a structure which arranges the classes in the order of

generality.

the sequence of nodes which have been compared with

the facts, and are found true.

a requirement. Conditions constitute the LHS of a rule.

depth-first a search method which always visits the leftmost child

node.

Dictionary a Smalitalk class. Instances of this class store data as

key/value pairs.

dissociation a process which breaks down a rule into several rules in

their simplest form.

EMS Energy Management System. A computerized power

system control centre.

xl'

encapsulation the realization of concepts or ideas in an OOP language.

ES Expert System. A computer software which imitates hu-

man experts' decision making process.

fact a piece of information describes part of the actual situa-

tion.

fault an apparatus or a section of the power system that mal-

functions.

false a condition is said to be "false" when it does not match a

fact.

fire a rule is said to "fire" when its LHS is true, causing the

RHS to become true.

forward-chaining a search strategy which starts from the condition side.

goal a conclusion. It constitutes the RHS of a rule.

hashing uses a function to calculate a value for part or all of a

character string, and puts the character string into a ta-

ble according to the value.

heuristics a function that chooses one of the several available

choices based on some given criteria.

xl"

hill-climbing a search method which always visits the child node with

the best value.

indexing indicates which conditions are related to which rules.

inference engine

inheritance

instance

KB

key condition

leaf node

a mechanism using knowledge in the KB to infer conclu-

sions regarding actual situations.

an object property allowing a class to inherit data and

methods from its superclass.

a specific object of a class.

Knowledge Base. A collection of knowledge in a specific

area.

a condition which has the largest sum value and be-

comes a node in a tree.

a prefix denoting transmission line. Used only in chapter

5.

it has a parent node but no children nodes. A leaf node

denotes a goal.

LHS Left Hand Side. The LHS of a rule is the portion of the

rule between the words "if" and "then".

xiv

match a condition is said to "match" a fact when both describe

the same thing.

message an instruction. When passed to an object, a message

manipulates the object's data content.

message passing sending an instruction to an object.

model system the program execution which imitates the referent sys-

method

tern.

the definition of a message in a class.

MMI Man Machine Interface. A program allowing communica-

tion between the computer and the user.

MVA Mega Volt Ampere. A unit used in the measuring of

electrical equipment capacity.

node a tree node. It denotes a key condition.

object an encapsulation of abstractions.

occurrence number the number of appearances of a condition among the

rules.

OOP Object Oriented Programming. A new way of computer

programming using objects and message passing.

xv

OrderedCollection

parent node

phenomena

a Smalitalk class. Instances of this class store data in

an ordered fashion.

a node is a parent node of another node if the former pre-

cedes the latter in a tree.

the things that happen in the referent system.

polymorphism an object property allowing messages to be redefined in

different classes.

procedural programming the traditional way of computer programming using pro-

cedural function calls to manipulate data and variables.

protocol the codes which define the format of a class.

referent system the part of the real world that is to be imitated.

represent a condition is said to "represent" several rules if they all

residue rulebase

RHS

root

contain the condition in their LHSs.

the remaining of a rulebase which has been partially ex-

tracted during the transformation process.

Right Hand Side. The RHS of a rule is the portion of the

rule following the word "then".

a root has children nodes but no parent node. Each tree

xvi

has only one root.

RTU Remote Terminal Unit. A device which collects data in-

formation about local power system apparatus, and

sends the information to a SCADA system.

rule a production rule. It stores knowledge in the "if condi-

tions then goal" format.

rulebase a collection of rules.

RuleBases a created Smailtalk class. Instances of this class store

each rule in two different sets.

a prefix denoting substation. Used only in chapter 5.

SCADA Supervisory Control And Data Acquisition. It collects

and processes all data information from RTtTs and sen-

sors.

search algorithm the main component of the inference engine. It is respon-

sible for searching the KB for the piece of knowledge ap-

plicable to the situation in concern.

search path the same as comparison path.

Set a Smailtalk class. Instances of this class store data ran-

domly, and do not allow duplicates.

xvii

SetOfFact a created Smalitalk class. Instances of this class store

facts.

sibling nodes

source

Stack

nodes of a tree having the same parent node.

the source of a disturbance is the cause of it.

a created Smalitalk class. Instances of this class store

data in the last-in-first-out fashion.

• StringRules a created Smailtaik class. Instances of this class store

rules in the character string format.

subclass a class is a subclass of another class if the former con-

tains only part of the objects of the latter and the objects

share commonalities.

subgoal a condition in a rule and the goal of another.

substitution a process which substitutes a subgoal in the LHS of a

rule with the LHS of another rule whose RHS is the sub-

goal.

subtree a tree which is a part of a bigger tree.

sum value the sum of the occurrence number and the weight. The

condition having the largest sum value becomes a key

condition.

xviii

superclass a class is a superclass of another class if the latter is a

subclass of the former.

symbolic data data which represents a symbol.

1171 a prefix denoting transformer. Used only in chapter 5.

Table a created Smalitalk class. Instances of this class store

data as a name/value pair.

transformation a process which transforms a rulebase into a tree.

tree a form of knowledge representation facilitating search-

ing. A tree contains a root and at least one leaf node.

Tree a created Smalitalk class. Instances of this class store

trees.

true a condition is said to be "true" when it matches a fact.

weight a value to show the relative importance of a condition.

xix

1-

CHAPTER 1'

INTRODUCTION

Larger and more complex power stations have been built to meet man's

endless demand for electrical power. Existing power system facilities have been

modified and upgraded in order to be compatible with the newly built facilities.

Needless to say, large and complex systems are vulnerable to breakdowns and

malfunctions. Power systems are no exception: transformers can overheat for var-

ious reasons; transmission lines and their supporting structures can be damaged

by storms and other natural disasters; circuit breakers sometimes fail to operate

properly; even the protecting circuitry can sometimes malfunction, giving incorrect

signals. Any of these problems, if not corrected in time, may propagate through

the whole power system, causing systemwide collapse. Although rare, equipment

failure induced systemwide collapse does occur. The Hydro-Quebec incident in

March of 1989 is such an incident[1].

On March 13, a magnetic storm caused the tripping and shutdown of all

Static Var Compensators (SVCs) on the La Grande Network. Without the

SVCs, the network became unstable, and all of its 735kV transmission lines

tripped subsequently. The tripping of the transmission lines deprived the Hydro-

Quebec system of 44% of its total electrical power supply, which led to a system-

wide collapse[1].

In addition, intense calculations are necessary to optimize power system

2

operations and maintain proper power flow. The results of the calculations are

often realized through a series of switching.

Resolving the malfunction problems, and performing and realizing the calcu-

lations can be effectively carried out via a computerized control centre. An Energy

Management System (EMS) is such a computerized control centre. It coordi-

nates and controls the functioning of the different parts of the power system.

EMS is an application, in the power area, which utilizes recent computer hardware

and software developments.

Ever since its invention, the computer has offered mankind assistance in

computational problems and database management. Traditionally, computers

have been mainly responsible for processing large quantities of numbers which are

difficult and tedious for man to handle. During the 1960's, computers were given

another line of duty[2]: Artificial Intelligence (Al). Al is composed of several sub-

fields, one of which is Expert System (ES). A lot of research have been conduct-

ed regarding both the theorectical and applicational aspects of ES[3].

Along with the birth of computer came the invention of computer lan-

guages. They are sets of instructions through which humans tell the computers

what to do, when and how to do it. Traditioza1ly, humans create a mathematical

model for the application domain regardless of its nature. Then, variables are cre-

ated to hold data which are passed to subroutines to be processed procedurally.

This is known as procedural programming. In 1967, a different kind of program-

ming technique was introduced. SIMULA marked the beginning of Object-Orient-

ed Programming (OOP)[4]. Although first introduced in the mid 60's, OOP did

not receive much public attention until the early 80's, when Smalltaik-80 was

3

made available to the public. The 60's also saw the introduction of the first Al

language -- Lisp. It was later joined by Prolog and other Al languages. These

computer languages saw little use in non-Al-related areas.

1.1 ES Applications

ESs are realized as computer software that assist mankind by processing

symbolic knowledge, which usually should not be expressed as numbers. ESs are

extremely useful in areas where large quantities of knowledge are involved. A

classical example is MYCIN.

MYCIN is an ES capable of diagnosing the type of bacterial infection

according to the symptoms, and suggesting therapy[5]. It consists of over 500

rules in its knowledge base. Well-known ESs include the following[5].

PROSPECTOR is an ES used to find ore deposits based on geological informa-

tion. DENDRAL is capable of determinating a chemical compound's molecular

structure. DART performs fault diagnosis in computer systems.

ESs are also used in a wide range of areas, such as[5]: agriculture, law,

manufacturing, mathematics, meteorology, and military. This shows the extensive

use of ES. Needless to say, a power system is also an area where ES can be

useful. In fact, ES first appeared in the power area in early 80's[3]. Since then,

more and more ESs have been incorporated into power systems.

In general, an ES has a knowledge base, an inference engine, a database,

and an interface. The interface allows communications between the user and the

ES. The database stores data information which describes the situation of the

application domain. The knowledge base contains knowledge which can be used

4

to solve problems in the application domain. The inference engine is an important

component of ES. It contains a search algorithm which is responsible for locating

the piece of knowledge applicable to the situation of the application domain. Vari-

ous search algorithms have been used in ESs for power systems[6-8]. Improve-

ment can be made on these algorithms so that a faster search algorithm can be

possible. With a faster search algorithm, an ES can provide results in a shorter

period of time, leaving power system operating personnel with more time to react.

1.2 Object-Oriented Programming And Possible Applications

It is not surprising that procedural programming languages were developed

first because early applications for computers were mainly number crunching.

Number crunching is basically a procedural process. For example, in order to find

the inverse of a nonsingular matrix, A, the determinant of A is first calculated.

Then each matrix element's cofactor is determined. The cofactors are subsequent-

ly put together to. form a second matrix. The product of the second matrix and the

determinant of A gives the inverse of A. However, it is difficult to set up mathe-

matical models for many real world situations. As computer tasks diversify, new

ways of programming which imitate real world situations are invented.

Since computers become more and more involved in our everyday lives, it

is natural for computers to simulate different aspects of our world. Our world is

not composed of variables or data to be passed between processes. Instead, our

world is made up of entities carrying information regarding their own states of

existance. This information can be changed only by giving the entities instruc-

tions. OOP imitates the above.

5

Ever since the idea of OOP was introduced in the 60's, there have been

some research conducted regarding the definition of object. More specifically, peo-

ple have been trying to decide which properties of the entities in our world should

be preserved in the definition of object. Research has led to several definitions for

object[9]. Subsequently, many OOP languages are introduced. Some of them are

based on existing computer languages, for example[9,10]:

C related: C++, Objective C.

Lisp related: CLOS (Common Lisp Object System), Flavors.

Prolog related: Concurrent Prolog.

Several application software use the OOP concept. The Graphical Net-

work Interface (GNET)[11] is written in Smalltai1J\I, an OOP language. Proteus

is an expert system tool incorporating both forward- and backward-chaining

searching methods[12]. Pogo combines user interface construction with the OOP

concept[12]. ODDESSY (Object-Oriented Database Design System) is a data-

base design system written in Smalltalk-80[12].

The OOP concept is suitable for prototyping software because OOP mod-

els the application domain directly, allows reusing existing program codes, and en-

courages modular programming. Time savings result.

1.3 Thesis Objectives

Maintaining proper operations in a power system is a task requiring inten-

sive knowledge in the area and quick response -- something that the operating

personnel sometimes failed to provide. The result of this may range from putting

an apparatus out of action to a systemwide collapse. The above is especially true

6

in the alarm-handling/fault-diagnosis area.

The objectives of this thesis are to outline criteria for and to propose a fast

searching algorithm for use in the power area. It is also proposed to construct an

alarm-handler/fault-diagnostician ES using the proposed algorithm. The ES is

part of the EMS proposed by the Power Research Group of the Electrical Engi-

neering Department[13]. The algorithm and the ES are implemented in an OOP

language, as the latter is ideal for prototyping large application software such as

the proposed EMS. The usefulness of the ES in diagnosing faults (alarms) is

demonstrated. Furthermore, the speed of the proposed algorithm is compared to

that of the searching algorithm most commonly used in the power area.

Demonstration of the alarm-handler/fault-diagnostician ES is performed

using a 5-substation example. Various combinations of alarms are presented to

the ES, which then infers the sources of the faults using the knowledge supplied

beforehand. The ES also explains how the results are obtained. The speed com-

parison is performed between the proposed algorithm and Prolog/V's searching al-

gorithm. Both algorithms are written in the same OOP language. Therefore, a fair

comparison can be made solely regarding the speed of searching.

1.4 Thesis Organization

This thesis is organized as follows.

Chapter 2 explains what an EMS is. An EMS proposed for the Power Re-

search Group of the Department of Electrical Engineering is described in detail.

The EMS's features, structure, and tasks are presented. It is followed by the dis-

cussion of prototyping the EMS software using an OOP language.

.7

Chapter 3 describes the various searching algorithms available. The

searching algorithms used in the power area are also identified. Several criteria

are then established for the construction of a fast algorithm for the proposed EMS

described in chapter 2. An algorithm is subsequently proposed which meets the

criteria. The pros and cons of the algorithm are also discussed.

Chapter 4 explains OOP in detail. A theorectical foundation is set for

OOP. The Smalltallc language is also introduced. Its features and properties are

described. It is followed by the description of the implementation of the proposed

search algorithm. A windowing man-machine interface for the algorithm is also

presented.

Chapter 5 shows some test results demonstrating the use of an alarm-

handler/fault-diagnostician. It is one of many possible applications of the pro-

posed algorithm. The substation schematic used in the tests is briefly described.

The results obtained are explained and discussed. There is also an execution

speed comparison between the proposed and a popular algorithm. The compari-

son results are also discussed.

Chapter 6 gives conclusions along with suggested modifications and fur-

ther research regarding the work done in this thesis.

Appendix A describes how the four Smalltallc properties -- abstraction, en-

capsulation, inheritance, and polymorphism -- .are involved in the formation of the

six new classes' protocols:

Appendix B contains a detail list, of all the methods defined in the new

classes created for the implementation of the proposed searching algorithm, and

the classes' immediate superciasses.

8

Appendix C carries the list of the rules involved in the alarm-handler/fault-di-

agnostician demonstrations in chapter 5.

Appendix D contains the production rules used in the execution speed compar-

ison in chapter 5.

9

CHAPTER 2

EMS AND OOP

An introduction to EMS is given in the first part of this chapter. Next, the

EMS proposed by the Power Research Group of the Department of Electrical En-

gineering is briefly described. It is followed by the discussion of problems related

to prototyping the EMS. Then a new programming technique, OOP, capable of

minimizing the problems is presented. Finally, the drawbacks of programming in

OOP are discussed.

2.1 An Introduction To EMS

EMS is a coordination and supervisory system. It is built on a Supervisory

Control And Data Acquisition (SCADA) system. SCADA receives, data and sta-

tus information on various field equipment via sensors and Remote Terminal Units

(RTUs). The information is passed to EMS for processing and interpretation.

There is a vast range of functions performed by different EMSs. Many

EMSs have been built, however, there is no standard format. An individual EMS

is built according to the builders' individual needs and specifications, and is sel-

dom integrated to another EMS. The only commonalities shared by different

EMSs are their general features: 1) a SCADA system; 2) a man-machine inter-

face; and 3) a data processing module, usually involving an expert system of some

sort.

The SCADA system, as mentioned, is responsible for collecting data and

10

status information. Among those collected in a power system are voltage and cur-

rent magnitudes, frequency deviation, and protective equipment status. As many

as 50,000 pieces of such information can be collected[14]. Some information is

presented directly to the operator, while other information is run through the data

processing module before the result is presented.

The data processing module has two functional submodules: a numeric da-

ta processing module, and a symbolic data processing module. The numeric data

processing module contains computer programs for load-flow analysis, MVA cal-

culations, time domain simulation, etc. The symbolic data processing module, usu-

ally referred to as expert system, is generally divided into two parts: a knowledge

base, and an inference engine. The most common form of storing knowledge is

production rules[5]. The inference engine contains a mechanism which, based on

either the information from the SCADA system or the results from the numeric

data processing module, infers a conclusion using knowledge from the knowledge

base.

All the above information, results and conclusions are presented to the

operator through the Man-Machine Interface (MMI). The MMI also allows com-

munications between the operator and the system. Graphics usually play an

important role in the interface. With the help of graphics, the interface gives a

clear picture of the power system's operating status.

2.2 A Proposed EMS

The Power Research Group of the Department of Electrical Engineering

has proposed an EMS. It is designed to be a long-term project for the group.

11

This EMS is a computerized supervision and control centre. It centralizes power

system operations in order to achieve efficiency. Expert System is used to aid

operating personnel in the event of disturbances. The following briefly describes

the EMS's selected features, structure, and various tasks[13]. Note that only

the software, not the hardware, of the EMS is dealt with in this chapter.

2.2.1 Features

The selected features are: training facilities, user friendliness, testing,

machine learning, and expansibility.

(i) Training facilities

The EMS should provide a built-in tutorial to train operators. This has an

obvious advantage over browsing volumes of operator's manual. The tutorial pro-

vides the trainees with a quicker and more thorough understanding of the opera-

tion of the system. It also increases the trainees' confidence in the system.

(ii) User friendliness

A comfortable working enviomment should be provided to the operator.

Using a combination of mouse and keyboard input along with windowing structure,

the EMS is built for ease of use and understanding. The user also has the free-

dom to customize the set-up of the window configuration to his/her preference.

(iii)Testing

The system supports a testing module which can be used to investigate

the validity of any conclusions made by either the operator or the system. This

detects unsound conclusions and hence prevents would-be disasters. Real-time

data from the power system is used in testing.

12

(iv)Machine learning

Some form of learning ability is expected to be incorporated into the soft-

ware system in the final stage of development so that the system can remember

past events. The system can then help the operator resolve present problems by

either recalling similar situations, or inducing conclusions from memory.

(v) Expansibility

New theory and concepts are bound to evolve during the course of the

development of this EMS. Therefore, care must be taken to make sure this EMS

can easily adopt new specifications.

2.2.2 Structure

The EMS has three components: Database, Logical Search Unit (LSU),

and Man-Machine Interface (MMI). The Database, which receives data informa-

tion from the SCADA system, provides data to the LSU. The LSU processes the

data, numerically or symbolically, and reaches a conclusion. The conclusion is pre-

sented through the MMI to the user.

(i) Database

The SCADA system feeds the database with real-time data information.

Each piece of information occupies a destined spot in the database. If changes are

made to the power. system, the database must be modified accordingly. Modifica-

tion of they database is done through the MMI.

The database provides a complete, easy to access, and up-to-date set of

data information of the power system. The above is essential because the LSU

may retrieve any data information from the database at any time.

13

(ii) Logical Search Unit

The LSU is composed of two modules, which perform two different types of

tasks. The Executive module performs mostly routine tasks to achieve a smooth

running of the EMS. The Expert System module performs tasks which execute

symbolic processing to aid the operator in handling power system disturbances.

Each module maintains its own specialized data structure. A circular

buffer contains a short historical record of the power system. This record enables

the Executive module to report the performance of the power system as a whole

or performance of individual apparatus. The other data structure is a Knowledge

Base (KB) used by the Expert System module. The knowledge base provides

knowledge upon which the Expert System can draw conclusions. The KB contains

three different types of knowledge: data strings, several Knowledge Task Descrip-

tion Files (KTDFs), and Network Topology File (NTF). The data strings contain

data and status information of power system apparatus. This information is

stored in a character string format which is understood by the Expert System mod-

ule. The KTDFs are discussed in section 2.2.3. The NTF stores connectivity in-

formation of all the apparatus in the power system.

Normally, the expert system tasks are not executed unless they are in-

voked by either the operator or the power system. On the other hand, the Execu-

tive module constantly performs tasks such as updating the different data struc-

tures, updating system log, and scheduling the execution of the other tasks.

(iii)Man-Machine Interface

The MMI is the means of communication between the human operator and

the system. In order to make the operator feel comfortable working with the inter-

14

face, and to reduce the operator's work load, the interface should be easy to

understand and use. In other words, the interface should be user-friendly. This is

achieved by the use of graphics and a combination of mouse and keyboard inputs.

The use of windowing structure also enhances user-friendliness by displaying in-

formation in a well organized and structured manner.

2.2.3 Tasks

There are three types of tasks in the EMS: Executive module tasks, Ex-

pert System module tasks, and MIVU tasks. A total of 20 tasks are present

among the three types of tasks.

(i) Executive module tasks

The Executive module performs seven tasks. Most tasks are related to in-

formation acquisition and update. Some tasks are run continuously or without the

operator's knowledge. The tasks are contained in the Executive Task Description

Files (ETDFs). Each EIDF describes the execution procedure of a task. The fol-

lowing briefly describes the seven tasks.

(a) Scheduling

It is important to schedule an order of execution for the other 19 tasks,

because scheduling the task enables the system to run smoothly and efficiently.

Requests for execution of tasks are queued. The execution order depends on both

the type of task to be executed and the present status of the EMS.

(b) Expert system module

This task allows the EMS to invoke the Expert System module during dis-

turbances without the operator's knowledge. The Expert System uses the knowl-

15

edge in the knowledge base to interpret the data from the SCADA system. It

then provides the operator a clear view of the power system.

(c) KB data strings update

As mentioned, the Expert System utilizes data in the KB. As new data

are collected by the SCADA system, this task is activated and updates the KB

data strings.

(d) Historical data update

When new data are collected, this task is also activated. It ensures a

short historical record of each power system apparatus is constantly refreshed, so

that the apparatus's performance can be displayed upon request.

(e) Historical data acquisition

This task is invoked when the display of historical data of power system

apparatus is requested. This request usually comes from the operator through the

Mll.

(1) KB statistics recording

The KB statistics recording task keeps a record of the usage of the Knowl-

edge Base. The record may be used by the expert system, along with the Knowl-

edge Base, to induce conclusions.

(g) Flag database input update

When this task is executed, it signals the adding of new data into the

database. All tasks related to the database should then be checked to be in corn-

plience with the change of data.

(ii) Expert system tasks

There are eight tasks related to the Expert System module of the LSU.

16

Usually these tasks are not executed. When the power system experiences a dis-

turbance, these tasks are activated either automatically or upon request of the op-

erator. The execution procedures of these tasks are stored in the KTDFs. The

following tasks, are described in the KTDFs in the form of production rules, and

are part of the KB.

(a) Alarm verification

When the power system experiences a major disturbance, alarms flood in.

False alarms may occur. This task -uses the data and status information from the

power system to verify all alarms.

(b) Alarm summarization

The number of incoming alarms may be overwhelming. This task provides

a summarization of related alarms into a short message fotm to reduce the burden

on the operator.

(c) Alarm source determination

Once alarms occur, this task can be invoked to determine the cause

(source) of the alarms. Although success is not guaranteed, the Expert System

infers conclusion using information available at the KB.

(d) Explanation

The operator can request the expert system to display the reasoning and

decision making process used to reach its conclusion. Based on this information,

the operator can evaluate the conclusion and decision making process.

(e) Remedial suggestions

As soon as the cause of the disturbance is determented, remedies can be

suggested. The relationships between the causes and remedies are stored in the

17

form of production rules in a KTDF. Upon the operator's request, this task takes

the cause, finds and suggests the related remedies to the operator.

(f) Scenario memory update

A scenario includes the alarms occurred, source determined, and remedies

suggested. This task records every scenario. These records are later used by the

Past Scenario Pattern Matching task.

(g) Past scenario pattern matching

Alarm source determination and remedy suggestion are not the only tasks

capable of determining the source of alarms and suggesting remedies. The Past

Scenario Pattern Matching task is also able to achieve the above objectives by

matching existing alarms with those on the scenario and displaying the deter-

mined source and suggested remedies.

(h) Anticipation of related events

Occasionally, events happen in a sequential manner. When this occurs,

this task can be activated to predict forthcoming events. This allows operating

personnel time to prepare. It also serves as a checking mechanism on the power

system apparatus.

(iii)Man-Machine Interface tasks

Five tasks are related to the MMJ. Most of the tasks are related to data

and information I/O. The operator is always involved in these tasks. The follow-

ing gives a summary of the tasks.

(a) Edit/View

This task allows editing and viewing of four different types of files, which

are: database description file, system description files, NTF, and task description

18

file (includes both KTDFs and E1DFs). The database description file contains in-

structions regarding the storing of data information in the database and the two

data structures in the LSU. The system description files include the Custom Dis-

play Configuration File and the Alarm Display Configuration File. The former is

related to the display format of the windowing interface. The latter allows the

alarms to be displayed in various formats, such as in chronological order and in

geographical order. The NTF contains the connectivity information among the ap-

paratus in the power system. The task description files store the execution proce-

dures of the various tasks described in previous sections.

(b) Historical record display

This task causes the scheduling of power system apparatus records to be

displayed. The only parameter needed is the name or identification code of the

apparatus.

(c) System log

This task is active all the time. It keeps an accurate record of the sys-

tem's operation. The log is kept for future reference and investigation.

(d) Run/Test

There are two functions involved. The Run function activates the Expert

System, which infers conclusions on the input data using knowledge from the

knowledge base. The Test function tests the EMS's operation by running test

data from a test file, and then comparing the results with those on the test file.

(e) Remedy response

This task prompts for the operator's response regarding remedy suggested

by the Expert System. The remedy and response are added to the past scenario

19

record and the knowledge base statistics record for future assestments.

2.3 Problems Related To Prototyping

This EMS is intended to be a long-term project spanning several years. A

large part of this project is to prototype the software described in the previous

sections. The prototype will subsequently be refined to yield the final software

application. There are several problems associated with the prototyping of such a

large software system.

First of all, development of the graphics interface with windowing structure

intended for the software is, if not difficult, very time consuming. It is supposed to

support everything from windows to graphs and charts, and symbols used in dis-

playing power system configurations. The interface must be versatile enough to

meet various requirements. Yet it should also be easy to maintain and modify.

Also, a lot of time is spent writing source code. The amount of source code to be

written for this EMS is obviously very large. This problem is closely related to

the capability of the software, i.e. the more functions the software performs, the

bigger the software is. The size of the software also depends on the choice of the

computer language. Some computer languages produce bulkier source codes than

others. Finally, there are the problems related to program bugs. The bulkier the

code, the higher the chance bugs exist, and the greater the time required for test-

ing and debugging. It is also easier to create program bugs in some computer lan-

guages, especially those with special features -- for example, structures and

pointers.

During the course of prototyping, the problematic relation among code size,

20

bug existance, and debugging will appear again and again. Effort and time to be

spent on this aspect, adds to the already huge amount of time and effort to be

spent on writing alone. It is therefore important to reduce the magnitude of, if not

totally eliminate, the problems.

2.4 OOP As A Solution

OOP provides a solution to the first problem because several OOP lan-

guages have built-in graphics capabilities. This enables the graphics interface to

be built with greater ease. Unfortunately, neither of the remaining two problems

can ever be solved. As long as there is software to be written, these problems

exist. The most that can be expected is to minimize the problems, i.e. to reduce

the time and effort necessary for writing codes, and to minimize the chance for pro-

gram bugs to exist hence reducing the time necessary for debugging. OOP is also

able to minimize these problems through its highly modular nature, and its strong

emphasis on code reuse.

Traditional procedural programming languages, on the other hand, do not

necessarily have any graphics capabilities. Nor do they possess any properties

which can minimize those problems.

How does OOP encourage code reuse? How highly modular is OOP? Be-

fore answering these questions, let's briefly look at OOP and two of its important

features. 'OOP is developed on the concept of objects. All objects are grouped in-

to classes and subclasses. Therefore, each class and subclass is an object. The

first feature is that each class contains its own data and methods of manipulating

the data. Both the methods and data structure of a class are inherited by its sub-

21

classes. Therefore, methods for manipulating a class's data must reside within

that class or its superclass. The other important feature is that the source codes

for most of these methods and data structure can be modified at any time. The lat-

ter feature facilitates the creation of new classes and methods. If a new method is

to be created for, a class where a similar method exists, implementing an altered

version of the method is all that is required. This creates a new method.

Code reuse is encouraged. By collecting the methods inside a class, OOP

alerts programmers to the presence of potentially reusable codes. At the same

time, OOP makes it easy for programmers to look for reusable codes.

Since methods and associated data must reside within the same class, it

follows that modular programming is enforced. Because of this requirement, a pro-

gram involving several classes is forced to be divided into modules. Each module

is related to only one of the several classes.

Time and effort spent on writing source codes can be greatly reduced by

reusing existing code. As demonstrated in the new method creation example,

time is spent only on making modifications to existing codes instead of writing the

new method from scratch. OOP's modular nature also reduces the effort neces-

sary for writing codes because several small simple modules are much easier to

write than a big complex one. The program bug problem is partly solved because

of both OOP's features. Code reusing is performed on existing source codes

which function properly, hence they are "bug-free". Besides, since only a small

area is modified, there is a smaller chance to create bugs. If bugs do occur, they

are confined to the modified area. The modular nature of OOP causes programs to

be decomposed into small modules, which facilitates program debugging.

22

2.5 Drawbacks Of OOP

There are two drawbacks for OOP, namely, slow exection speed and the

need of large memory space [15].

The large memory space requirement stems from the generality of OOP.

Large amount of memory space is required to hold the inherited methods and data

structure, in addition to those defined in a class. Much of the inherited code is

written to provide a wider application range, to increase versitality, although the

codes may not be used to their full extent or used at all. An obvious solution is to

remove all unnecessary codes. But this may handicap future maintenance and

expansion of the software, as those "unnecessary" codes may be needed in the

future to fulfill new specifications of the software system.

The slower speed is inevitable because of a large computation overhead.

The overhead is related to message passing, where parsing, hashing techniques

are performed for input text manipulation.

Despite the shortcomings, OOP is still a better choice for prototyping than

procedural programming. It is because the time and effort saved outweighs the

drawbacks. Smalltallc/V is the OOP language used for prototyping in this develop-

ment. A more detailed description of Smailtalk/V is presented in chapter 4.

23

CHAPTER 3

EXPERT SYSTEM SEARCH TECHNIQUES

Many search techniques have been developed[16]. Each has its own ad-

vantages and disadvantages. Some feature easy implementation, while others

emphasize intelligent decision making. In the first part of this chapter, several

commonly used search techniques are described. Not all are suited to power sys-

tem expert system applications. In fact, most search techniques are not. The

shortcomings of the techniques are stated. Then, several criteria for a power sys-

tem oriented search algorithm are listed. Using these criteria, a fast search algo-

rithm is constructed and presented. A discussion of the algorithm's benefits and

drawbacks is then given.

3.1 Search Techniques

Every expert system has a Knowledge Base (KB) and an inference

engine. Usually, the KB stores knowledge in the form of production rules and a

set of facts. The inference engine contains a mechanism which searches the KB

for the right piece of knowledge to solve a problem.

Most search techniques are composed of two parts. Each part is indepen-

dent of the other. The first part is the search strategy. It controls the general

direction of the search. The second part is the search method, which specifies de-

tails on how the search is conducted.

Before discussing the search techniques, three keywords must be ex-

24

plained: goal, condition, and subgoal. A goal is the conclusion. For example, in

the following two rules:

If a and b then c

If c and d then e

e is a goal. It is expressed as the RHS of a production rule. Condition is the re-

quirement that determines if a conclusion is true or not. In the above rules, a, b

and d are conditions. They are expressed on the LHS of a production rule. If a

goal is true, then part or all of its conditions (depending on how the conditions are

arranged) must be true, and vice versa. A set of facts is necessary to determine if

a basic condition is true. A basic condition is true if it matches any fact in the set.

A subgoal is both a condition and a goal. For example, c is a subgoal in the above

rules. It is a condition in one rule, and a goal of another rule. Sometimes a condi-

tion is satisfied as a subgoal when its dependent conditions are true.

If a condition cannot be matched to a fact or satisfied as a subgoal, it is tak-

en as false.

3.1.1 Search strategies

The search strategy controls the direction of the search, i.e., whether to

start from the goal or from the condition. There are three search strategies based

on the two directions of search: forward-chaining, backward-chaining, and bi-di-

rectional.

(i) Forward-chaining

In forward-chaining, the search starts from the conditions. If the condi-

tions are not true, the goal of the rule is not considered. If the conditions of a rule

25

are true, then the rule's goal is also true. When the' goal is verified as true, the

rule is referred to as "fired". The goal becomes a fact and is added into the set of

facts. Because of the newly added fact, all the rules and conditions are checked

again. If another rule fires, its goal becomes another fact, and the rules are again

checked. This cycle keeps going until no further rule can be fired. Since this strat-

egy focuses on the condition (data), it is also known as "data-driven".

(ii) Backward-chaining

In backward-chaining, the goal is first hypothesized, i.e. assumed to be

true. Then effort is spent to prove its conditions. If such effort fails, then that goal

is false. Some conditions are subgoals, i.e., they are conditions of some rules, and

goals of some other rules. In such cases, the subgoals' conditions are also inves-

tigated. This strategy is also known as "goal-driven" because of its emphasis on

the goal.

(iii)Bi- directional

This strategy combines both forward- and backward-chaining. On one

side, conditions are investigated to see which goal is true. On the other side,

hypothesis are made on goals and their conditions are checked. Both processes

occur at the same time. They stop when they meet in the middle with a subgoal

proven true by both processes. They also stop when they do not meet each other

and all possible path have been exhausted.

3.1.2 Search methods

During searching, a question always appears: Should the search proceed to

the sibling nodes or the children nodes? In order to provide an answer, heuristics

26

have to be brought in. Heuristics may also resolve the problem of search explo-

sion. This problem arises if every node is visited in a search. If a large tree is in-

volved, such a process requires an immensely large memory and an extremely

long search time. Simple heuristics, such as those used in the breadth-first and

depth-first search (described later in this section), may not be capable of solving

the problem. More complicated heuristics may suggest search paths which avoid

unnecessary node visiting and thus reduce search time. In the simplest term, heu-

ristic is a function that chooses one of the several available choices based on

some given criteria. Different criteria result in different heuristic functions, and

hence different search methods. Only five common search methods are discussed

here. They are[16]: breadth-first, depth-first, best-first, hill-climbing, and A*.

(i) Breadth-first

The heuristics used here is simple: always go to the next sibling node if

possible. In this method, all nodes at one level are investigated before a node at

the next level. This method selects the shortest path possible. However, it also

wastes memory storage space and computation time, because many of the nodes

visited are not in a solution path.

(ii) Depth-first

"Always go to the first child node" is the heuristic used in this method. At

any level of a search tree, the order of the nodes always goes from left to right.

Hence, the leftmost child node is always the first to be visited. The search can go

as deep as possible without finding a goal. If a goal is not found in the lowest lev-

el, the search backtracks to the previous level and checks the next leftmost node.

Any search path that does not end with a goal is removed from memory. There-

27

fore, the depth-first method promises a small memory space. However, in this

method, many of the nodes visited are also not in the solution path. Moreover, it

does not guarantee a shortest solution path.

(iii)Best-first

This search uses a numeric function as its heuristics. The function assigns

a value to each node. Depending on the implementation, the search selects the

node with either the highest or the lowest value from the children and sibling

nodes. Therefore, this search selects a path based on a heuristic function. The

success of this search method depends on the accuracy of the function. If the func-

tion is accurate most of the time, then this search method finds the solution path

quickly and easily. If the function is inaccurate, the solution path is not easily

found and causes the search to jump around and waste time.

(iv)Hi1I-climbing

This is basically a depth-first search with the order of nodes selected by a

numeric function. Similar to the best-first search, hill-climbing's heuristic function

also assigns values to the nodes. But unlike the best-first search, hill-climbing

search focuses on children nodes only. The method selects the most suitable child

node. The benefit of small memory space is inherited from the depth-first search.

The use of a numeric heuristic function minimizes unnecessary node-visiting.

This method does not guarantee a shortest solution path because of the nature of

depth-first search. Again, the effectiveness of this method depends upon the se-

lection of the numeric function.

(v) A*

The A* method is basically the best-first method with two numeric func-

28

lions assigning two different values to each node. One of the values relates the

node to the starting node -- the root. The other value relates the node to the goal

node. The two values do not have to have the same units. The search routine is

basically the same as that of the best-first search. It selects a path in response

to the most suitable values. This method has the same advantages and disadvan-

tages as the best-first search.

(vi) Other search methods

Several other search methods exist. Most of them are basically different

combinations of the breadth-first, depth-first search methods, and the two numer-

ic heuristic functions. They are not described in detail because their basic features

have just been described and because they are not commonly used.

3.1.3 The "best" method or strategy

Each search method and strategy has its benefits and drawbacks, the ef-

fect of which can be significantly influenced by the appropriateness of the heuristic

function being used. Each method and strategy is suitable for a certain kind of

problem. A method that works well with one problem may be a disaster for anoth-

er problem, and vice versa. Therefore, a "best" method or strategy does not ex-

ist. The only fair statement is that all methods and strategies have equal poten-

tial.

It is also difficult to determine the "best" method or strategy for a particu-

lar problem. Whether or not the benefits outweigh the drawbacks is usually a

subjective opinion.

3.2 Search Techniques In Power Systems

29

Expert systems are used in power systems for various purposes: fault di-

agnosis, alarm reduction, restoration, to name a few. Most of the search tech-

niques used in these expert systems have been described in the previous section.

The following gives a brief summary of the techniques used in power system ex-

pert systems.

3.2.1 Pure forward-chaining

Expert system using pure forward-chaining is rare. However, it ex-

ists[6, 171. The search mechanism has been described before, and will not be re-

peated here.

3.2.2 Backward-chaining depth-first

Most of the expert systems in the power system area use a backward-

chaining search strategy[7,18-29], especially Prolog[7,20-29]. Prolog's search

technique can be classified as a backward-chaining, depth-first technique. During

the search, Prolog verifies each rule by disproving its negated conditions. The

search starts with a query from the user. The query is then matched with each

rule's goal, starting from the first rule. When a match is found, the rule's condi-

tions are negated and put into a list. Effort is then spent to disprove the

(negated) conditions. If a (negated) condition is disproved, it is deleted from the

list. When the list is empty, the goal is true and the 'rule fires. If the rule cannot

fire, matching is then performed between the query and the remaining rules. The

above continues until either a rule fires or none of the rules can fire.

The disproving of the conditions is performed by matching the conditions

with the facts and the rules' goals. If a condition matches a goal, the rule's condi-

30

tions are negated and put into a list, and the process described in the previous

paragraph is performed. The process repeats recursively if a condition in the list

matches a goal. If such recurrence occurs, the conditions in the newly created list

are investigated before the next condition in the old list is investigated.

3.2.3 Indexed forward-chaining

A couple of expert systems use the Rete pattern matching algorithm[8,30-

35]. The Rete algorithm can be classified as an indexed forward-chaining search

technique. In a simple indexed forward-chaining search technique[36J, each con-

dition carries a list of the rules which contain the condition. Matching is then per-

formed between the conditions and facts. A match between a condition and a fact

is registered in every rule containing that condition. All rules are subsequently

checked to see if any of them fires. If one fires, its goal becomes a fact and the

matching is performed. All rules are again checked. The above is repeated until

no more rules fire.

In the Rete algorithm[36], both the facts and conditions are grouped into

classes. Each condition and fact is represented by a class, attributes, and values.

For example, the fact of circuit breaker CB 1 is open is represented by a class

(circuit breaker), two attributes (name, and status), and two values (CB 1, and

open). In conditions, values can be variables.

Eaöh rule is compiled into a discrimination network[35,36]. Figure 3.1

shows a simplified rule and its discrimination network. The network is composed

of several branches, which represent the conditions in the rule. Each branch con-

sists of nodes which represent the class and attributes with values in each condi-

31

A simple rule:

If A:uw=13 and B:dx=4 and C:mni=960 then goal.

Note: The format of the conditions for the above rule is: class:attribute=value.

This format is used only in this example, not in the actual Rete algorithm.

The discrimination network:

class = A

uw=13

goal

class = C

mni= 960

Figure 3.1. A simple rule and its corresponding discrimination network.

32

tion. Since there can be common conditions among the rules, the networks of all

the rules are jointed together through the common branches.

The search begins with matching the conditions with the facts -- classes

with classes, attributes with attributes, and values with values. The results are

stored in memory. Whenever there are changes to the facts, matching is per-

formed on these changed facts. If all the conditions of a rule match the facts, the

rule fires.

3.3 An Ideal Search Technique

The search techniques mentioned above are not flawless. As mentioned,

there is no perfect search technique. Each technique has its limits. The same can

be said for the different search techniques in the various expert or knowledge-

based systems used in the power area. In the following, the pros and cons of the

search techniques are discussed. Based on the discussion, several criteria for a

power system oriented search technique are defined.

3.3.1 Pros and cons

Each of the above techniques used is discussed here in terms of its merits

and disadvantages.

(i) Pure forward-chaining

The only benefits of this technique are that it is conceptually simple and

easy to implement. Since a goal proven true becomes a fact which can be used to

fire other rules, the search algorithm is implemented inside a loop. Inside the loop

only two functions are performed: matching the facts with the conditions, and add-

ing goals to the facts. When no more rules can be fired, the loop is exited.

33

This algorithm wastes time in several ways. Firstly, every rule is investi-

gated, whether or not it fires. If a rule does not fire, the time spent on investigat-

ing that rule is wasted. Secondly, this phenomena repeats as many times as the

number of iterations. And lastly, the last iteration only serves the purpose of exit-

ing the loop.

(ii) Backward-chaining depth-first

This technique is used by the Prolog language as its search technique. Be-

sides the benefit that this technique is already part of the language, it is also fast-

er than pure forward chaining.

This technique has its drawbacks. Most significant is the time wasted in

the rule searching. This is due primarily to the fact that rules containing the condi-

tions matching the facts must be found. A blind search is necessary.

Also, there is the drawback of late binding. During the search, there are

actually two processes performed at the same time: constructing the search tree,

and finding the solution path. The search first constructs a branch of the tree, then

checks if that branch is part of the solution path. If not, it constructs another

branch, and checks again. Strictly speaking, only the second process can be called

searching. The first process is a burden of the second one. Moreover, a tree is

constructed everytime a search is conducted. It goes without saying that the

same branch of tree may be built over and over again. This wastes time.

(iii)Indexed forward-chaining

Forward-chaining methods bear, theoretically, more resemblence to human

diagnosis process than backward-chaining. When a human expert diagnoses a

problem, he usually starts with the facts and works towards a conclusion. For ex-

34

ample, when a doctor diagnoses a patient, the doctor looks at the symptoms, and

gradually works toward a conclusion of which illness the patient has. Seldom

does a doctor start with a hypothesis (an illness), and then tries to match that ill-

ness' symptoms with the patient's.

An indexed rulebase saves time. It makes the searching of rules much

easier and faster than non-indexed rulebase. This speeds up the investigation.

The simple indexed forward-chaining technique has two drawbacks. First-

ly, rules with more than one condition are multiply indexed. This wastes time be-

cause a rule indexed in several places is investigated again and again even though

it failed to fire during the first investigation. Secondly, late binding consumes

time, as discussed in previous section.

The Rete algorithm has a pre-constructed network, hence it avoids the

drawbacks of late binding. However, it still suffers from a drawback which wastes

time. A false condition does not automatically exclude the rules which contain the

false condition from the set of rules that may fire. The former rules are still inves-

tigated even though they cannot be fired because of the false condition.

3.3.2 Criteria for a suitable technique

A set of criteria is proposed for a power system oriented search technique.

This set of criteria results from analysing the pros and cons of other techniques.

The set contains only four criteria, which is enough to create a suitable search

technique. The criteria .are: forward-chaining, depth-first, restrictive intensive in-

dexing, and early binding.

Since forward-chaining resembles the human diagnosis processes, its ad-

35

vantage over backward-chaining search lies on the basic verification process. In

both the forward- and backward-chaining approach, the search must verify the

conditions before firing a rule. Hence it is more direct to check data and decide if

the rule should fire (forward-chaining) than to pick a rule, check the data and then

decide if the rule should fire (backward-chaining). An expert uses the former ap-

proach to diagnose a power system problem.

The above forward-chaining strategy is not possible without restrictive in-

tensive indexing of the rulebase. It is essential that the rtilebase is intensively in-

dexed so that each condition indicates the next condition that should be checked

or the next goal encountered. This is obviously better than simple indexing that

only indicates rules related to a particular condition. However, intensive indexing

must be restrictive to avoid multiple indexing of a rule. That is, there should be

only one path leading to the firing of each rule, so a rule that failed to fire is not in-

vestigated again.

It is obvious that the A*, hill-climbing, and best-first search methods are

unsuitable because there are no numeric values involved in the search. The

breadth-first search method is also unsuitable because it does not make the best

use of the result of node verification. On the other hand, the depth-first method

does. Hence, the depth-first search method is the choice.

Early binding can savetime. With early binding, the tree is constructed in

advance and only once. Then during the search, investigating the nodes is suffi-

cient.. The tree is constructed when the expert system is not performing a search.

Therefore, only the verification process is performed during the search. After the

tree has been constructed, it is stored. Hence, it need not be constructed again.

36

The two features save considerable time together.

3.4 A Proposed Fast Algorithm

Based on the above criteria, a search algorithm is created. In addition to

the mentioned criteria, this algorithm also includes an important concept: key con-

dition. This feature avoids multiple indexing. It also allows smart partitioning of

the rules.

3.4.1 An important concept: key condition

The concept was introduced by Dr. Shi-Jie Cheng, who was a member of

the Power Research Group. In an unpublished computer program, Dr. Cheng used

a set of handpicked key conditions to represent all the rules in the rulebase. Back-

ward-chaining searches are then conducted using the key conditions. Unfortu-

nately, Dr. Cheng left the group shortly afterwards, and was unable to pursue the

idea. The concept was further developed and implemented by the author, with

help from members of the group.

This concept avoids multiple indexing of the rules in the rulebase. In this

concept, a set of conditions is selected to represent all the rules in the rulebase.

This is made possible by the fact that many conditions are common to several

rules. Such a condition becomes a key condition, and it is said to represent the

rules which have the key condition as a condition. A set of such key conditions

are selected in such a way that no two key conditions represent the same rule.

This effectively avoids multiple indexing.

A 'special process also allows intelligent selection of key conditions. Key

conditions are selected to maximize the number of rules that can be ignored when

37

one key condition is found to be false.

Key conditions are applied repeatedly to divide the rules. Therefore, key

conditions at the top level lead to several sets of key conditions on the next level.

Each key condition on this level then leads to another set of key conditions on the

next level down. This carries on until a key condition represents only one rule.

This feature is very beneficial for the search process because the set of key

conditions to be investigated is small, and rules are ignored when their key

condition are proven false. If all the first level key conditions are proven false, the

search terminates.

3.4.2 The proposed algorithm

The proposed algorithm can be divided into three parts: dissociation and

substitution of rules, transformation, and search. Each one of them is discussed in

detail.

(i) Dissociation and substitution of rules

The LHSs of the rules are expected to be in a complex format, containing

any combinations of the following: subgoals, brackets, "and", "or", and the "not"

logic operators. The rules go through two processes: substitution, and dissocia-

tion. The former substitutes all subgoals. The latter breaks down the complex

format of the LHSs of the rules into a simple one: one that contains only the "and"

logic operator. The following explains the two processes in greater detail.

Subgoals are substituted into rules. For example, in the following two

rules:

Ifa and b then c (1)

38

If c and d then e (2)

goal c of equation (1) -- equation (1) defines a subgoal -- is substituted into

equation (2), and the following is obtained:

Ifa and b then c (l)

If a and b and d then e (3)

If c is a condition or a goal of another rule, further substitution occurs. For

example, for the following rules:

Ifa and b then c (1)

Iff and g then c (4)

If c and d then e (2)

If c and h then i (5)

the subgoals are substituted into the other rules and the following is obtained:

Ifa and b then c (1)

Iff and g then c (4)

If a and b and d then e (3)

If f and g and d then e (6)

Ifa and b and h then j (7)

If f and g and h then i (8)

Notice that this causes the number of rules in the database to increase. It should

be pointed out that sometimes (1) and (4) can occur as one combined rule of the

form

If (a and b) or (f and g) then c.

Rules of this kind are dissociated, which is the second process performed

on the rules. The dissociation process breaks the rules written with any combina-

39

tion of the three operators and brackets down into rules written in terms of "and"

operator only. To illustrate this point, suppose the following rule exists:

If !(a orb and c) then d

where ! denotes the not operator. The rule is subsequently dissociated into two

rules:

If !a and !b then d

If !a and !c then d

Both dissociation and substitution of rules are needed because the

transformation process assumes that rules are written with the "and" operator

only.

(ii) Transformation process

The rules in the rulebase are transformed into a search tree. The tree's

leaf nodes represent the goals, while other nodes represent the conditions of the

rules. The transformation of a condition into a node requires a sum value. The

sum value is the sum of a weight and an occurrence number.

Each condition carries a weight. The weight indicates the relative

importance if the conditions. Each weight has a default value of 0, and can be

arbitrarily changed to any value. Each condition's total number of appearances

among the rules is calculated, which yields the occurrence number. The

occurrence number is then added to die weight of the condition to give the sum

value. The condition with the largest sum value becomes the key condition.

There are actually two uses of the weight of each condition: select, and

destinate. If two or more conditions have the same largest occurrence number,

then their weights can be used to select the key condition from the conditions. On

40

the other hand, with a large weight, a condition with a small occurrence number

can suppress all others and becomes a key condition. Thus, a condition can be

destinated as a key condition by giving it a large weight. The user can assign the

weight as he sees appropriate. The weight can also be assigned or changed by

the computer software based on statistics and historical records. These records

show whether or not a condition occurs more often than the others and always

leads to the firing of a rule.

The following steps describe the formation of a search tree.

(1) A key condition is selected which becomes a first level node of the

search tree.

(2) The rules represented by the key condition are extracted from the rule-

base and placed into a temporary rulebase. The rulebase, part of which has been

extracted, becomes a residue rulebase.

(3) At the same time, the key condition is removed from the extracted

rules.

(4) Another key condition is selected from the rules in the temporary rule-

base. This key condition becomes a child node of the previous node.

(5) The rules represented by the latest key condition are extracted and put

into another temporary rulebase. Again, the rulebase from which the rules have

been extracted is called a residue rulebase.

(6) Steps (3) to (5) are performed repeatedly until there is only one rule in

the latest temporary rulebase AND the rule has no condition left. The goal of the

rule becomes a leaf node connected to the last node formed. The rule is then re-

moved from the temporary rulebase which is subsequently deleted. At this point,

41

the leftmost branch of the search tree is constructed. (It should be noted that a

branch is "constructed" only if it terminates with a leaf node.)

The other •branches and nodes of the tree are constructed using the

following procedures.

(7) Steps (4) to (6) are performed on the latest residue rulebase to con-

struct the next leftmost branch extending from the node associated with the

residue rulebase. When all the rules are extracted from the residue rulebase, the

residue rulebase is deleted.

(8) Step (7) is performed repeatedly on the most recent residue rulebase

to construct another branch.

(9) The transformation process is complete when all the residue rulebases

are deleted and all the branches of the search tree are constructed.

As a result of the way the search tree is constructed, it looks unbalanced,

with more nodes and branches to the left of the tree. As a matter of fact, the

leftmost nodes, at any level, always represent the same or more number of rules

than any of their sibling nodes. Therefore, the leftmost nodes tend to have more

prosperous branches than other nodes.

Once a tree is built for an application domain, the tree needs not be rebuilt

unless the application domain's characteristics change.

(iii)Search

The search is conducted using a set of facts. A fact is a condition that is

true. Therefore, the set of facts contains a set of conditions which are true. The

search compares the nodes of the tree with the facts in the set. Comparison

starts from the highest level, and goes from left, to right. If a node matches a fact

42

in the set, that node's children nodes are immediately compared with the facts.

The comparison proceeds deeper and deeper, until a leaf node is reached. The

successful comparison path -- from root to leaf node -- is then stored in memory,

and the search backtracks to find other solutions. The search stops when the

whole tree has been searched and all solutions found.

If a node fails to match any facts, the sibling node to the right is examined

next. If the rightmost node fails, the search backs up to the node's parent node,

and proceeds to the node to the right. If the parent node is also a rightmost node,

the search backs up one more level. The procedure continues until the first level

is reached which terminates the search.

If the leftmost node at any level does not match the facts, then the largest

branch from that level can be ignored. This feature effectively and quickly directs

the focus of the search onto a small set of rules. Hence, the feature enables the

search to fire the correct rule in a short period of time.

3.5 Merits Of The Proposed Search Algorithm

The proposed search algorithm has several merits. First of all, the pro-

posed algorithm performs fast search. Also, it is' efficient. Finally, the algorithm

is versatile. The following explains the merits in detail.

3.5.1 Fast search

The algorithm performs fast search because it adopts the early binding fea-

ture. This feature separates the tree searching process from the tree construction

process. As a result, only the former is executed during search. Therefore,

searching is fast.

43

A fast searching algorithm is essential in Power System (PS) related

expert systems because when PS experiences disturbances, its operating person-

nel have to make decisions within short periods of time. A fast searching algo-

rithm can provide the operating personnel with the necessary information in a

short time.

3.5.2 Efficiency

The search algorithm is efficient because it uses forward-chaining and con-

tains both the early binding and key condition features. The forward-chaining

strategy eliminates the time-wasting step of investigating the rules one by one

before finding a rule that fires. The early binding feature minimizes the number of

times the search tree is constructed. And the key condition feature reduces the

number of tree-node visiting by allowing a node's descendant nodes to be ignored

if the node does not match the facts.

An efficient search algorithm is desirable not only because it makes the

best use out of the information available, but it also results in faster search pro-

cess. As explained in the previous section, fast searching is necessary in PS re-

lated expert systems.

3.5.3 Versatile

The algorithm is versatile because it allows the rules to be written in com-

plex formats described in section 3.4.2. As a matter of fact, these are the basic

production rule formats. Therefore, it is important that the algorithm allows such

formats to exist, understands them, and is able to process them. Lacking the

above abilities causes great inconvenience to the users who input and maintain

44

the production rules.

3.6 Disadvantages Of The Proposed Algorithm

Two things can be regarded as the drawbacks of the proposed algorithm.

This algorithm needs extra memory storage space for the storing of the tree. It

also needs considerable time for the initial construction of the tree.

3.6.1 Extra memory space

After the tree is constructed, it must be saved in memory. This is unavoid-

able for early binding, as the tree must be available for a search. This is the oppo-

site to late binding, where the constructed (partial) tree is temporary and is delet-

ed once the search terminates. Also, in contrast to algorithms such as Prolog

which constructs only part of the tree, this algorithm constructs the whole tree,

therefore it requires more memory space than its counterpart in Prolog.

The size of the memory required to store a tree depends on the tree's size,

which depends on the size of the knowledge base. Since the number of rules in

the knowledge base varies among different applications, there is no typical memo-

ry size required.

The requirement for large memory space is a drawback, but it is not signifi-

cant because current computers have larger memories.

3.6.2 Extra time for constructing tree

It is true that constructing the tree for this algorithm requires more time

than constructing trees for some other algorithms. This is due to the fact that the

whole tree is constructed. However, this feature can actually save time because

45

the tree is constructed only once. The tree construction process is independent of the,

real search process; whereas in other algorithms, tree construction is part of the

search process. In other algorithms, such as Prolog, a partial tree is constructed ev-

erytime a search is initiated. Very often the same partial tree is built over and over

again. As a result, the more frequently a search is conducted using this algorithm, the

more time is saved.

The disadvantages discussed in this and the previous sections are undesir-

able. However, the merits offered by the algorithm outweigh the disadvantages.

46

CHAPTER 4

SMALLTALK AND IMPLEMENTATION OF THE ALGORITHM

The algorithm is implemented on Smalitalk. A discussion of the Smalitalk

language is given in the first portion of this chapter. This is followed by the de-

tailed description of the implementation.

4.1 Smalltalk

Smalltaik is an Object Oriented Programming (OOP) language. It is differ-

ent from traditional procedural programming language such as FORTRAN and C.

In this section, a theoretical foundation of OOP is presented. It is followed by the

descriptions of object properties and Smailtaik features.

4.1.1 Theoretical foundation

OOP can be best described by a definition. However, there are many defi-

nitions for OOP. Among them is the one written by 0. L. Madsen and B. Moller-

Pedersen{37}, which seems quite adequate. Their definition is,

"A program execution is regarded as a physical mod-

el, simulating the behaviour of either a real or imagi-

nary part of the world."

This means there is a referent system belonging to our world, as shown in

figure 4.1, and a model system which is the program execution written in an OOP

language. The referent system is the part of the world to be simulated. The

47

Referent System

(Our World)

Model System

(Program Execution)

Figure 4.1. The Model System and the Referent System.

48

things that happen in the referent system are called phenomena. In the model

system, objects are created. The phenomena is simulated by passing messages

to the objects; In other words, modelling of the referent system is achieved using

objects and message passing rather than data, variables and procedural calls, as

in procedural languages.

4.1.2 Features and properties

In Smailtalk, objects are characterized by four properties, which are[38]:

abstraction, encapsulation, inheritance, and polymorphism. Smalitalk has several

distinct features. Some of them are related to the four properties. The features

are[3 8]: message, method, instance, class, and class hierarchy. Both the proper-

ties and features contribute to the simulation of phenomena of the referent system.

In the referent system, each entity carries information regarding its own

state. For example, the power generator gi can be in operational state, producing

1 MegaWatt (MW) of power, or in inoperational state and produces 0 MW. The

changing of state is accomplished by sending the generator messages (shut-

down, for example).

Abstraction is a representation of ideas or concepts in the real world. "The

generator is in state", and "producing - MW" are both abstractions.

Objects are encapsulations of abstractions. Objects with similar data

structure are grouped into subclasses and classes. Therefore, each class and sub-

class carries the data structure common to all objects of that class. An instance is

a specific object of a class. For example, the class Generator contains the data

variables, state and output. And gi is an instance of the class, with the data, op-

49

erational and 1, stored in the variables. These data can be manipulated by send-

ing messages to the instance. So, sending the message "shut-down" to gi chang-

es the data variable content to inoperational and 0. The messages are defined

within the class, and are called methods.

The available classes constitute the class hierarchy. The class Object is

the superclass of all classes. Each class then has its subclasses. The inheritance

property allows a class's data structure and methods to be inherited by its sub-

classes. Therefore, a method can manipulate not only the data in the class where

the method is implemented, but also in the class's subclasses.

Messages can be redefined in any of the classes or subclasses. This is

the polymorphism property. Therefore, sending the same "shut-down message

to an instance of another class changes some other variables. This resembles

phenomena in the referent system, where the same "shut-down" instruction can

be sent to other entities and produces different results.

4.2 Algorithm Implementation

Implementation of the algorithm involves several classes in the class hier-

archy. New subclasses are created under the classes. Both the classes involved

and the new subclasses created are described. It is followed by the descriptions

of the implementation of the algorithm. Finally, an interface for running the algo-

rithm is presented.

4.2.1 Classes created

Six subclasses are created during the implementation of the algorithm.

The following briefly describes the six subclasses. A more detailed description of

50

the subclasses can be found in Appendix A. A listing of the subclasses', and their

superclasses', class protocol is given in Appendix B.

(i) StringRules

Its superclass is Dictionary. Data is stored in the key/value pair format in

class Dictionary. The keys are unique, whereas the values can be the same.

Both key and value are objects. Therefore, they can be anything: an integer, a

character string, or a set. The pair can be retrieved by searching for either the key

or the value.

The StringRules subclass is created to hold the production rules in their

original form. Each goal, a character siring, is a key, and each rule's entire LHS --

in a long character string -- constitutes the value. Each instance of StringRules

can be given a name which is stored in the variable, name.

(ii) RuleBases

This is also a subclass of Dictionary. The RuleBases subclass is designed

to hold the substituted and dissociated production rules. In this subclass, the key

is a set containing a goal, and the value is another set containing each and every

condition of a rule. Therefore, rules with identical goal can coexist because every

set is unique, regardless of its content. The RuleBases has two variables: name,

and stringRule. The former stores the name of the instance of RuleBases, and the

latter stores the name of the instance of StringRules from which the instance of

RuleBases is obtained.

(iii)Table

Table is also a subclass of Dictionary. This' subclass facilitates the cre-

ation of weight tables which store the conditions' weights. The condition/weight

51

pair constitutes the key/value pair. The keys are unique. The values take inte-

gers only. Table has three variables: name, stringRule, and ruleBase. They store

the name of the table, and the names of related instances of StringRules and Rule-

Bases, respectively. Several weight tables can be created from the same instance

of RuleBases to assign different weight patterns to the conditions.

(iv)Tree

Tree's superclass is OrderedCollection. As the name suggests, Ordered-

Collection stores objects in an ordered fashion. The objects are arranged accord-

ing to the order the objects entered the collection. The collection can be searched

by either the object or the position index.

A subtree has a node, also known as the root, and branches coming out of

the node. Connecting these branches with other subirees' roots ultimately forms

a tree. In this implementation, search trees are constructed using instances of

subclass Tree. Each search tree contains many instances. Each instance is actu-

ally a subtree, and can be viewed as a series of empty slots. It has a variable,

root, to store the subtree's root's name, and the empty slots functionally resem-

ble branches. Putting an instance into another instance's empty slot resembles

connecting a root to a branch. Therefore, a search tree is composed of instances

within instances of subclass Tree. The order of the instances in another instance

represents the left-to-right order of the nodes in the search tree. Besides root,

the Tree subclass has four other variables: stringRule, ruleBase, table, and name.

The first three store the name of related instances of StringRules, RuleBases and

Table. The last variable stores the name given to the search tree.

(v) SetOfFact

52

Its superclass is Set. Set collects objects in an unordered manner. Dupli-

cated objects are discarded. The objects are hashed to facilitate the searching of

objects in instances of Set.

SetOfFacts is created to store facts. Its only variable, name, stores the

name given to the instance.

(vi)Stack

This is also a subclass of OrderedCollection. Successful search paths are

stored in instances of Stack. Therefore, the objects stored in instances of Stack

can be nodes of the search tree. The nodes on the instances of Stack always bear

a simple relationship: every node is a child node of the node below it on the stack.

Stack has six variables: ruleBase, tree, setOfFact, stringRule, table, and name.

The first five store the names of related instances of RuleBases, Tree, SetOfFact,

StringRules, and Table, respectively. The sixth one, stores the name of the in-

stance of Stack. As indicated later, objects stored in an instance of Stack can be

other instances of Stack.

The following gives an example which shows the usage of the six sub-

classes. Suppose the following production rule is involved:

If a and b then Gi

It is stored in an instance of StringRules. 'Gi' and 'a and b' are the key and val-

ue, respectively. After the substitution and dissociation process, the rule is

stored in an instance of RuleBases. 'Gi' is put into a set and becomes the key.

Another set which contains 'a' and 'b' becomes the value. An instance of Table

is created. It has two key/value pairs: W/O and 'b'/O. The transformation process

creates an instance of Tree. Suppose two facts exist: 'a' and V. They are put in-

53

to an instance of SetOfFact. After the search process, the successful search path

is stored on an instance of Stack. Its content is, from top to bottom: 'Gi', 'b', and

'a'.

4.2.2 Implementation

Implementation is divided into three steps. First the substitution and dis-

sociation of rules is implemented. This is followed by the transformation of rules.

The search process is last. In order to facilitate the description of the implementa-

tion, the following convention is used. Instances of each of the above six sub-

classes are represented by the names of the subclasses in lower case letters with

trailing "s" truncated. For example, rulebase represents an instance of subclass

RuleBases. Note that both the upper case "R" and "B" have been changed to low-

er case, and the trailing "s" is omitted. The latter provision allows both the singu-

lar and plural forms, i.e. rulebase and rulebases, to exist.

(i) Substitution and dissociation

The dissociation process takes the value of a key/value pair in a stringrule,

and separates the string at each space. The result is an array of objects where

each object is a character string. The objects can be classified into three different

types: conditions, logic operators, and conditions with either the left or right paren-

thesis. A "breakdown" message is sent to the array. In that method, a set is cre-

ated and holds the first object of the array. If the second object is the "and" opera-

tor, then the third object is added into the set. However, if the second object is

the "or" operator, then the third object is added into a new set instead. Every

even numbered object in the array is checked for operator type, and the odd num-

54

bered objects followed are added into the set(s) accordingly. The message then

returns the set(s) created. If the left parenthesis is encountered, then the objects

within the pair of parenthesis are sent the same "breakdown" message which

returns the set(s) created. These set(s) are then combined with other set(s)

accordingly. The goal of the rule then pairs with each set to become a key/value

pair and is added into a rulebase.

Sometimes, an original rule is split into several rules, each being repre-

sented in the rulebase by two sets. The first set contains the goal and is the key.

The second set contains each individual condition and is the value. The goal is

true only if all conditions in the value are true. The rules then undergo substitu-

tion. First, the dissociated rules are checked for subgoals. If a subgoal exists,

then every condition of the rule whose goal is a subgoal is duplicated and added

into each and every set of conditions containing the subgoal. The subgoal is sub-

sequently removed from the set(s) of conditions. If more than one rule has the

same subgoal as the goal, then the rules whose sets of conditions contain the sub-

goal are duplicated. The substitution takes place subsequently. The resulting

rulebase is used for the transformation process.

(ii) Transformation

A weight table, an instance of subclass Table, is created first. It contains

every condition which appears in the rulebase. The conditions are the keys. The

conditions' weights are the values. All weights are set to 0 initially, and can be

changed later. The rulebase is duplicated. The following steps are performed

recursively on the duplicate.

(1) An instance of subclass Tree is created.

55

(2) The sum values of the conditions are calculated. A key condition is

selected out of the rulebase.

(3) Another tree is created, whose root variable carries the name of the

key condition. This tree is added into the previous tree. A node of the search tree

is thus created.

(4) The rules represented by the key condition are moved into a temporary

rulebase, and the key condition is removed from the rules. The original rulebase is

now called a residue rulebase.

(5) Steps (2) to (4) are repeated recursively with the temporary rulebase.

With each repetition, a new temporary rulebase, a new residue rulebase and a

new tree are created. The repetition ends when only one rule exists in the tempo-

rary rulebase and the rule's conditions are all removed.

(6) The goal is stored into the root variable of a new tree, and the tempo-

rary rulebase is deleted.

(7) The new tree is added into its previous tree.

(8) Steps (2) to (7) are performed repeatedly on the most recent residue

rulebase.

The transformation process terminates when the duplicated rulebase is

empty. At this point, the tree construction is completed.

(iii)Search

The search process requires a setoffact, which contains facts. It also

needs- a stack, which stores the solution path. When the search visits a node, the

node is pushed into a stack. If the node does not match the facts, it is popped out

of the stack, and its sibling node is visited and pushed into the stack. If the node

56

matches a fact in the setoffact, the search visits the node's children node. If the

search reaches a goal, then the existing stack is duplicated and pushed into a

master stack, which is also an instance of Stack. The search then visits other

nodes and pushes other solution paths into the master stack. When the search

ends, the master stack contains all the solution paths.

4.2.3 Interface

An interface between the expert system and the user is constructed using

the class Pane. The interface includes four windows, which are: System window,

Edit window, Search window, and Transform window.

(i) System window

When the expert system is invoked, the System window appears, as

shown in figure 4.2. On the top left pane, the choice "fast algorithm" appears. If

this is selected, three choices appear on the top right pane: edit, search and trans-

form, as shown in figure 4.3. They invoke the Edit, Search and Transform win-

dows respectively. The bottom pane is reserved for message display.

(ii) Edit window

When the edit choice in the System window is selected, the Edit window

appears, as shown in figure 4.4. This window allows the contents of rulebases,

setoffacts, stringrules, and tables to be modified. The window is divided into up-

per and lower panes. The upper pane is subdivided into left, center, and right sub-

panes. On the left subpane, four choices are available: RuleBases, SetOfFacts,

StringRules, and Tables. Selecting any one of them displays. that subclass' in-

stances in the middle subpane. Selecting an instance displays its content in the

57

fast algorithm

Figure 4.2. The System window.

58

Sjste

fst.igôiitJim. edit
search
traiisf arm

(

Figure 4.3. The System window with the three choices in the top right subpane.

59

Edit":,

Ru leBases
SetOf Facts
Str ingRu les
Tables

(

Figure 4.4. The Edit window with menus.

60

right subpane. If a table or stringrule is selected, only the keys are displayed. If a

rulebase is selected, the key/value pairs appear. Otherwise, the facts are dis-

played. The above are shown in figures 4.5 to 4.8. A menu allowing two choices,

add and, remove, is available in each subpane. If add is selected, the user is

prompted for the object to be added. The remove choice deletes the object select-

ed.

If an object is selected in the right subpane, it or its associated object(s)

appears in the lower pane, where they can be modified.

(iii)Search window

The Search window allows searches to be conducted. This window resem-

bles the Edit window except that a middle pane is inserted. The names of the

available trees, setoffacts and stacks are displayed in the left, centre and right

subpanes respectively, as shown in figure 4.9. In the left subpane, there is a

menu which provides only one choice: search. If this is selected, the user is

prompted for the names of the setoffact and stack to be used. The selected tree is

subsequently searched, using the setoffact supplied by the user. The resulting

master stack is stored under the name given by the user. The search result is al-

so displayed in the middle pane. Explanation is provided in the lower pane. A

tree's content cannot be displayed. But a setoffact's or a stack's content can be

displayed in the middle pane by selecting the instance. A stack can also be re-

moved. This is achieved by selecting the instance and choosing the only choice on

the menu, remove, in the right subpane. The middle pane also has a single-

choice-menu. The choice allows the expert system to explain the search result

stored on the stacks. The explanation is displayed in the lower pane.

61

ID 1. Edit

SetOf Facts
Str iiiglkL les
Tables

Bi
BBZ
9112
RB3
BB4
RB5
RB6
RB?

Gi / g5 fS eS d5 bS a5
Glø / b2 g2 £2 e2
Gil / b2 j2 112 £2 e2
G1Z / h2 k2 12 fZ e2
G13 / b2 n2 m2 liZ £2 e2
G14 / b3 e3 6
G15 / c3 a3
G16 / c3
GI? /a4d4b4
GIB /f4e4d4
G19/e5c5b5a5
(.2 / Al 31 14

Figure 4:5. An instance of RuleBases is selected in the Edit window.

62

Edit, :i

Ru leBases--
fFacis

Str ingRules
Tables

SOFI
SUEZ
SOE3
5014
SUES
3016
5017

al
hi
liZ
e2
£1
F2
gi
hZ
M2
n2

Figure 4.6. An instance of SetOfFact is selected in the Edit window.

63

1 T.E&1t QM

Ru leBases
Setoff acts
Stries.
Tables

SBZ
SEB
5B4
SRS
5R6
SB?

GI

Gil
G1Z
G13
G14
G15
G16
Gi?
G18
G19

Figure 4.7. An instance of StringRules is selected in the Edit window.

64

Ru leilases
SetOf Facts
StringRules
Tables

TB2
1B3
1114
1115
1116
TB?

al
a2
a3
a4
aS
hi
liZ
b3
b4
bS
ci

Figure 4.8. An instance of Table is selected in the Edit window.

65

Searcli. We)
TR1
TRZ
1R3
TR4
IRS
IRS
TB?

SOF1
SOF2
50Th
5014
5015
5016
SOY?

Psi
P52
Ps2
P53
P54
P55
P56

(

Figure 4.9. The Search window with menus.

66

(iv)Transformation window

The dissociation and substitution, and transformation processes can be ac-

tivated only in the Transform window. This window also resembles the Edit win-

dow, except that the upper pane is subdivided into four subpanes, as shown in fig-

ure 4.10. Names of the available stringrules, rulebases, tables, and trees are dis-

played in the four subpanes. Each subpane has a menu. The stringrules' menu

only allows the choice of dissociation, which includes substitution. The result is

put into the rulebase specified by the user. The rulebases' menu provides four

choices: remove, create table, relationship, and transformation. The second

choice, create table, creates a new weight table whose name is given by the user.

When the fourth choice, transformation, is chosen, the selected rulebase is trans-

formed. The resulting search tree is put into the tree specified by the user. Before

the transformation takes place, the user is prompted for the weight table to be

used. The remaining two choices also appear in the tables' and trees' menu. The

remove choice removes the instance selected. The relationship choice shows the

names of other subclasses' instances related to the selected instance. Contents

of the instances can be displayed -- except trees -- in the lower pane.

I
it

67

&

IdissociationI
remove
create table
relationship
transforiaat io

remove
relationshi

rove
relationship

Figure 4.10. The Transform window with menus.

68

CHAPTER 5

ALGORITHM ILLUSTRATIONS

This chapter contains five illustrations. The first four illustrations demon-

strate the algorithm's ability to handle various combinations of alarms in power

substations. The fifth one compares the execution speed between this algorithm

and the search algorithm used in Prolog.

5.1 Background

Electricity is transmitted at very high voltage to minimize power losses.

Part of the electricity is stepped-down to lower voltages at substations to feed lo-

cal consumptions. Therefore, bus-bars and transformers form the skeletons for

most substations. Normally, double bus-bar systems are employed in substa-

tions to prevent bus-bar malfunctioning from disrupting the electricity flow. Sub-

stations are interconnected by transmission lines. These apparatus are protected

by circuit breakers. When an apparatus develops a fault, its associated circuit

breakers trip to avoid damages.

Tests of the algorithm are performed on a 5-substation model. A schemat-

ic for the model is shown in figure 5.1. There is a pair of 240kV bus-bars in every

substation. In addition, each of substations Si, S2, S3, and S5 also has a pair of

138kV bus-bars. Two transformers serve each of the above four substations.

Each transformer is connected to a 240kV and a 138kV bus-bar. Transmission

lines are also connected to the bus-bars, transmitting electricity both into and out

B 138B-1 CB757B • CB717A L717
B138B-2 CB717B YCB755A

f ci CB88 CB 76

B138A-1 S CB9 U CB81 B138A-2 CB44 CB74

Si TI-1 ''' T2-1 S2 fIM T1-2 T2-2

B240B-1 f

EI

B1O1 CB23 B240B-2 1 CB45 f B8O

CB11 [CB 12 c3 CB63 CBS LI

B240A-1 CB9O6B th CB918A CB900A B240A-2 4i CB900B CB929A CB9O1A

B240A-3

L906

CB9O6A

L900
L918

L929

Legend

i Transformer
rj

Bus bar

- Transmission line

El Circuit breaker

CB916A

6 cr 1 EJ CB54

B240B-3

S3

B138A-3

EJ CB52

B 138B-3

L
CB13 thCB4O

luJ T1-3 t.AA) T2-3

EJ CB36 LCB6O

a CB797A
CB62El

CB3A

L916 L917
B240A-5

U E3CB73 f I CB77U

CB916B E1 0 CB917AB240B5 th CB97 CB6

CB21 jB4OA-4 CB28 S5 w T1-5 JJ T2-5

B240B-4 Ej1CB911B B138A-5 iCBI ICB55

S4 EJCB7O CB79LI

B138B-5 a CB3B 0 CB727A
L3

CB917B

70

of the substations. Each of the bus-bars, transformers, and transmission lines is

protected by several circuit breakers. Each device is given a name. Bus-bars'

names start with the letter "B't. Transformers' names start with the letter "T".

Transmission lines.' names start with the letter "L". And circuit breakers' names

start with letters "CB".

Several assumptions are made when writing the production rules to handle

alarms. Firstly, only alarms indicating that circuit breakers have tripped are con-

sidered. Secondly, when an apparatus develops a fault -- for example, a trans-

mission line short-circuits -- all circuit breakers connected to it trip. And lastly,

at most only one circuit breaker falls to trip when a fault occurs.

With the above assumptions, a total of 118 rules are created. The rules

conceive the knowledge for most faults that can occur in the substations. Eigh-

teen of the 118 rules deal with the 18 bus-bars in the five substations. Eight

rules are related to the eight transformers in substations Si, S2, S3, and S5. An-

other eight rules are devoted to the eight transmission lines interconnecting the

five substations. These 34 rules assume that all circuit breakers function normal-

ly, and that all circuit breakers connected to an apparatus trip when it develops a

fault. For example, the following rule states that when a bus-bar is faulty, the

four circuit breakers connected to it trip:

If CB8_tripped and CB95_tripped and CB757B_tripped and

CB 1_tripped then B138A- 1_fault

However, in reality, circuit breakers may fall to trip. Therefore, the remaining 84

rules are dedicated to situations where a circuit breaker does not trip when a fault

occurs. For example, the following three rules describe the situation that a fault

71

occurs and a circuit breaker fails to trip:

If CB8_tripped and CB95_tripped and CB757B_tripped and

CB23_tripped and ! CB8 1—tripped then possible_B 138A- 1—fault

If CB8_tripped and CB95_tripped and CB757B_tripped and

CB23_tripped and ! CB8 1_tripped then CB 8 1_failstotrip

If CB8_tripped and CB95_tripped and CB757B_tripped and

CB23_tripped and! CB8 1—tripped then possible—T2- 1—fault

Where "1" denotes the "not" logic operator. Note that in the above situation, it is

logical to suggest that the fault occurs at either the bus-bar or the transformer be-

cause either situation, when combined with the failed-to-trip CB81, results in the

tripping of the four circuit breakers. A list of the 118 rules can be found in Appen-

dix C.

The 118 rules are subsequently dissociated into 184 simplier rules which

do not contain the "or" logic operator among the conditions. The latter rules are

then transformed into a search tree.

5.1.1 Single fault examples

The first example deals with the simple situation that a transmission line

short-circuits. As shown in figure 5.2, transmission line L3 develops a fault. Sub-

sequently, circuit breakers CB3A and CB3B trip. Two alarms indicating the trip-

ping of circuit breakers are received. The alarms become facts and are stored into

Example 1, an instance of SetOfFact. As shown in figure 5.3, Example 1 contains

two facts: CB3A_tripped and CB3B_tripped. A search is conducted. As expect-

ed, the search concludes that transmission line L3 is faulty. The resulting solution

Legend

® Fault

• Tripped circuit breaker

Failed-to-trip circuit
breaker

r
CB3A

L3

S5

CB3B

Figure 5.2. The substation schematic for the first example.

4

73

U :Edit

Ru leBases
Se1OiYacts
StringRules
Tables

ElT1 CB3tr ipped
CB3B tripped

Figure 5.3. Example 1 containing alarms for the first example.

74

path and explanation is shown in figure 5.4. In figufe 5.4, the top left, top center,

and top right subpanes show the available instances of Tree, SetOfFact, and

Stack respectively. The solution path is stored on a stack. Content of the stack is

displayed in the middle pane. It shows the sequence of tree nodes visited which

leads to the solution:

CB3B_tripped->CB3A_tripped->L3_fault

The explanation, shown in the bottom pane, indicates the rules involved:

If CB3A_tripped and CB3B_tripped then L3--fault

and the facts used:

CB3B_tripped, CB3A_tripped.

In .the second example, a fault occurs at bus-bar B138A-2, causing circuit

breakers CB88, CB76, CB717B, and CB74 to trip. However, CB74 fails to trip,

forcing CB8O to trip. The above can be seen in figure 5.5. The four alarms are re-

ceived and stored into Example 2, another instance of SetOtFact. As seen in fig-

ure 5.6, four facts are present in Example 2: CB717B_tripped, CB76_tripped,

CB8O_tripped, and CB88_tripped. A search is subsequently performed. The re-

suits are shown in figure 5.7. The solution path is put into a stack, Solution 2. It

shows that a circuit breaker fails to trip:

CB74_failstotrip

and the fault occurs at either the bus-bar or the transformer:

possible_B 138A-2_fauit

possible_T2-2_fault

Again, the rules and facts involved are shown in the explanation in the bottom

pane. Because of the limited space in the bottom pane, the full explanation is re-

75

Search OW
I Ilustrat ion Example 1 Solution 1

CM tripped->CB3A tr ipped->L3_f au It

If CB3A tripped and CB3B_tripped then L3_fault.
And the following facts are true: CO -tripped C13_tripped.

Figure 5.4. Solution paths and explanation for the first example.

Ei aCB717B EI

EJ CB88 CB76

£ B138A-2 CB74

t1tY' T2-2

E1 ICB80

Legend

® Fault

Tripped circuit breaker

Failed-to-trip circuit
breaker

. y

Figure 5.5. The substation schematic for the second example. ON

77

ED
Ru leBases

Str ingRules
Tables

CB?1?Btripped
CR76 tripped
CR80. tripped
CB88tr ipped

I

Figure 5.6. Example 2 containing alarms for the second example.

78

Illustration

earch

Example 2 Solution 2
iO

CR76 tripped-'>CBB8_tripped-> CR? 17B tripped-> CR74 tr ippetl->CBBØ tripped
->poss iblel2-Zfau it
CB76tr ipped->Cll t'tr ipped->CB717B_tr ipped-> !CB?4 tr ippcd->CB8 tripped
->CB74fa I lstotr ip
CB76tripped-M88tripped->CB717B_tr ipped-> ?CB74 tripped->CB8ti_tr ipped
-)possihle_1113BA-2__fault

If C :+ .-tripped and CR76_tripped and C1171711-tripped, and C1188-tripped and
tCB74 tripped or (CR63_tripped and CBS tripped and CR98811_tripped and
CR74 tripped and ?C tripped) then possible-12-2-fault.
And the following facts_ are true: CR76_tripped Cm- ,,--tripped CR71711_tripped
tC1174 tripped Itripped.

If C N_tripped and CR76tripped and C1171711-tripped and C
tfl74 frjnnpd fbpn ('1t74_ 1j1c*nfiin

ll tripped and

Figure 5.7. Solution paths and explanation 'for the second example.

79

printed in figure 5.8.

5.1.2 Multiple faults examples

The following two examples demonstrate the algorithm's ability to handle

multiple faults. In the first example, faults occur in three substations. As figure

5.9 shows, faults occur on bus-bar B240B-1 in substation Si, transformer T2-3 in

substation S3, and bus-bar B 138A-5 in substation S5. Circuit breakers CB 11,

CBl2, CB23, CB900A, CB4O, CB6O, CB7O, CB79, CB1, and CB727A tripped.

These alarms are received and stored in an instance of SetOfFact, Example 3, as

shown in figure 5.10. A search provides the results in figure 5.11. The stack, So-

lution 3, contains three solution paths. As expected, they indicate that the sourc-

es of the alarms are B240B-1, T2-3, and B138A-5:

B240B- 1_fault

B 138A-5_fault

T2-3—fault

Explanations in the bottom pane give the related rules and facts. Again, because

of limited space, the full explanation is reprinted in figure 5.12.

The second example has two faults and two failed-to-trip circuit breakers.

As figure 5.13 shows, a fault occurs on bus-bar B240B-3 in substation S3. An-

other fault occurs on transmission line L917. Circuit breakers CB9O6A and

CB917A fail to trip. As a result, eight circuit breakers tripped: CB54, CB61,

CB4O, CB9O6B, CB917B, CB28, CB21, and CB911B. The alarms are stored in

Example 4, as shown in figure 5.14. The search quickly identifies CB9O6A and

CB917A to be the circuit breakers which failed to trip:

80

If CB88_tripped and CB76_tripped and CB717B_tripped and
CB80_tripped and !CB74_tripped or (CB63_tripped and
CB5_tripped and CB900B_tripped and CB74_tripped and
CB80_tripped) then possible—'r2-2—fault.

And the following facts are true: CB76_tripped CB88_tripped
CB717B_tripped CB7 4_tripped CB80_tripped.

If CB88_tripped and CB76_tripped and CB717B_tripped and
CB80_tripped and !CB74_tripped then CB74_failstotrip.

And the following facts are true: CB76_tripped CB88_tripped
CB717E_tripped CB74_tripped CB8ø_tripped.

If CB76_tripped and CB717B_tripped and CB755A_tripped and
CB44_tripped and CB74_tripped and !CB88_tripped or
(CB88_tripped and CB717B_tripped and CB755A_tripped and
CB44_tripped and CB74_tripped and !CB76_tripped) or
(CB88_tripped and CB76_tripped and CB717B_tripped and
CB80_tripped and !CB74_tripped) or (CB88_tripped and
CB76_tripped and CB717A_tripped and CB74_tripped and
CB717B_tripped) then possibleB138A-2_fault.

And the following facts are true: CB76_tripped CB88_tripped
CB717B_tripped !CB74_tripped CB80_tripped.

Figure 5.8. The reprint of the full explanation for the second example.

Si

B240B-1

CB11

ccI

B23

LcB12 0 c

CB900A

Legend

® Fault

U Tripped circuit breaker

Failed-to-trip circuit
breaker

B4O

S3

a

S5

B138A-5

I CB7O
CB1

Figure 5.9. The substation schematic for the third example.

0 CB79

'CB727A

00

82

1uIeBases
SetOfFáçts
8tringlkdes
Tables

CB11 tripped
CBIZ tripped
CB1 tripped
CM-tripped
CB4@tr ipped
CB6@trippetl
CB7.tripped
CB?2?Atr ipped
CB79 tripped
CB9@Atr ipped

Figure 5.10. Example 3 containing alarms for the third example.

83

"Sèarcli

Illustration Example 3 Solution 3

CB12tripped->CB11trippi->CB98A_tripped->CB23_tripped->B248B1_fatilt
CB79tr ipped->CB7B tr ipped->CBI tr ipped->C117271 tr ipped-)B138l-5 fault
CB68tr ipped->CBI@tripped->12-3_fault

If CR11 tripped and C1112 -tripped and CR23_tripped and C'. ' ;',,,,--tripped then
B248B-lfault.
And the following facts are true: C1112 -tripped, CR11_tripped CB908_tripped
CM _tripped.

If CR78 tripped and C1179 -tripped and CBI-tripped and CB727A_trippcd then
B138A-S fault.

AnSI AP cnh1ninff farfe arp fnip Mq fiinma1 f'R7M frinnP4 t'11 h'inmI

Figure 5.11. Solution paths and explanation for the third example.

84

If CB11..tripped and CB12_tripped and CB23_tripped and
CB900A_tripped then B24øB-1.Eau1t.

And the following facts are true: CB11_tripped CB12...tripped
CB900A_tripped CB23tripped.

If CB40_tripped and CB60_tripped then T2-3_fault.
And the following facts are true: CB60_tripped 0B40_tripped.

If CB7øtripped and 0B79—tripped and CB1_tripped and
CB727A_tripped then B138A-5_fault.

And the following facts are true: CB1_tripped CB79_tripped
CB727Atripped CB70_tripped.

Figure 5.12. The reprint of the full explanation for the third example.

Si

CB9O6B th

L906

CB9O6A

CB54

B240B-3

S3

Legend

® Fault

• Tripped circuit breaker

Failed-to-trip circuit
breaker

CB61

B4O

L917
CB917B

CB917A

CB21 + (0 CB28 ss
B240B-4 t CB911B

S4

a

Figure 5.13. The substation schematic for the fourth example. 00

86

&
RuleBases
StfFacts
Str iwjBu lee
Tables

Expe.:. CB21tr ipped
CB2Btripped
CB4@tr ippeti
CB54tr ipped
C1161 tripped
CBø1Btripped
CB911Btr ipped
CB9I?Btripped

Figure 5.14. Example 4 containing alarms for the fourth example.

87

CB9O6A_failstotrip

CB9 17A_failstotrip

and that the faults may have occurred at bus-bar B240B-3 or B240B-4, or trans-

mission line L906 or L917:

possible_B240B-3_fauit

possible_B240B-4_fault

possiblej9O6_fault

possible_L9 17_fault

The above results are stored in Solution 4. Its content is displayed in the middle

pane in figure 5.15. The bottom pane in the figure contains the explanations of the

results. Both the middle and bottom panes are too small to display the full results

and explanations. Therefore, they are reprinted in figures 5.16 and 5.17, respec-

tively.

5.2 Comparison

A Smalitalk version of Prolog, called Prolog/V, is available in the Small-

talk/V programming environment. It combines the characteristics of both Small-

talk/V and Prolog. Prolog/V is written in Smalitalk. Thus Smalltallc features such

as class hierarchy, polymorphism, and inheritance can be found in Prolog/V[39].

The Prolog/V predicates are actually Smalltallc messages. They are all imple-

mented in the class Prolog. New predicates can be added into the class. As a re-

sult, there is a substantial difference between Prolog/V and standard Prolog.

However, they use the same searching algorithm. Prolog/V presents its solutions

in a different way than standard Prolog. While the latter shows the solutions one

88

4W6h:- 0M

illustration Example 4 Solution 4

CR54 tripped->CB6I_tr ipped-> ! CB9O6A tripped->CB90611_tr ipped->CB4O tripped
->poss thie BZ4OB-3 fau it
CB54tripped->CR6I_tripped-> tCB986i_tr ipped->CB9O6B_tr ipped-)CB4O.tr ipped
->poss iii le_L96jau it
CB54_tripped->CB61_tr ipped-> t CB9O6A tripped->CB9O6B_tr ipped->CB4O_tr ipped
->CB966fa i lstotr ip
CBZBtr ippeti->CBII_tr ipped->C1191111_tr ipped->CB91Th_tr ipped-> ! CB91?i_tr ipped
-nn_fli1 1q17 cit

If CR61_tripped and CB986_tripped and CB916_tripped and CR13_tripped and
CR40 tripped and tCBS4_tripped or (CR54_tripped and CB96A_tripped and
CB916(tripped and CR13 tripped and CR40 tripped and !C1161 tripped) or
(CR54_tripped and CR61_tripped and CB9O6E_tripped and CR40_tripped and
?CB906_tripped) or (CR54_tripped and CR61 tripped and 060-tripped and
CB9fl6 tripped and !CB4U_tr ipped) then pass ible_11240B3_fault.

And the_ following facts are true: CR54_tripped CR61 tripped !CB906_tripped
RQR fiinmw1 MR trhm1

Figure 5.15. Solution paths and explanation for the fourth example.

89

CB54_tripped->CE61_triPPed> ! CB906A_tripped->CB906B_tripped
- >CB40_tripped- >poss ib1e24øB-3_fau1t
CB54_tripped->CB61_tripPed-> CB906A.Jripped->CB906B_triPPed
_>CB40_tripped->possibl&J.i906_faUlt
CB54_tripped->CB61_triPped> ! CB906A_tripped->CB906B_tripped
-> CB40_tripped- >CB9ø6Afai1stotrip
CB28_tripped_>CB21_tripped->CB911B_triPPed>CB917B_triPPed
-> !CB917A_tripped->Pos$ible_L917_fault
CB28_tripped_>CB21_tripped->CB911B_triPPed>CB917B_triPPed
-> I CB917A_tripped->possib1e_E24øB-4_aU1t
CB2 8_tripped- >CB2 1_tripped->CB9 fiB_tripped- >CB9 173_tripped
-> !C3917A_tripped->CB917A_failstOtriP

Figure 5.16. The reprint of the full result for the fourth example.

90

If CB61_tripped and CB906A_tripped and CBS16A_tripped and
CB13_tripped and CB40_tripped and !CB54_tripped or
(0B54-tripped and CB906A_tripped and CB916A_tripped and
CB13_tripped and CB40_tripped and !CB61_tripped) or
(CB54_tripped and CB61_tripped and CB906B_tripped and
CB40_tripped and !CB906A_tripped) or (CB54_tripped and
CB6Ltripped and CB60_tripped and CB9ø6Atripped and
CB40_tripped) then possible--13240B-3—fault.

And the following facts are true: CB54_tripped CB61_tripped
CB906A_tripped CB906B_tripped CB40_tripped.

If CEll_tripped and CB12_tripped and CB906A_tripped and
CB918A_tripped and CB1Ø1_tripped and !CB906E_tripped or
(CB54_tripped and CB61_tripped and CB906B_tripped and
CB40_tripped and CB906A_tripped) then possible_L906_fault.

And the following facts are true: CB54_tripped CB61_tripped
CB906A_tripped CB906B_tripped CB40_tripped.

If CB54_tripped and CB61_tripped and CB906E_tripped and
CB40_tripped and CB9ø6A_tripped then CB906A_failstotrip.

And the following facts are true: CB54_tripped CB6L.tripped
CB906A_tripped 0B906B_tripped CB40_tripped.

If CB21_tripped and CB28_tripped and CB917B_tripped and
CB911B_tripped and !CB917A_tripped or (CB73_tripped and
CB77_tripped and 0B97—tripped and CB917A_tripped and
C2918B_tripped and ! CB917B_tripped) then possible—L917—fault.

And the following facts are true: CB28_tripped CB21_tripped
CE911B_tripped CB917Btripped CB917A_tripped.

If CB28_tripped and CB916B_tripped and CB917A_tripped and
CB911B_tripped and !CB21_tripped or (CB21_tripped and
CB916B_tripped and CB917A_tripped and CB911B_tripped and
CB28_tripped) or (CB21_tripped and CB28_tripped and
CB917B_tripped and CB911B_tripped and 1CB917A_tripped) then
pass ible_B240B-4_fault.
And the following facts are true: CB28_tripped CB21_tripped
CB911B_tripped CB917B_tripped ! C3917A_tripped.

If CB2 1_tripped and CB28_tripped and CB917B_tripped and
CE911B_tripped and CB917A_tripped then CB917A_failstotrip.

And the following facts are true: CB28_tripped CB21_tripped
CE911B_tripped CB917B_tripped CB917A_tripped.

Figure 5.17. The reprint of the full explanation for the fourth example.

91

at a time, the former presents all solutions at the same time.

Comparison is made on the searching speed between the proposed algo-

rithm and Prolog/V's search algorithm. This comparison is fair as both algorithms

are written in Smailtalk, and both give complete solutions.

5.2.1 illustration

The comparison procedure is as follows.

(1) A set of production rules is created. For simplicity, the conditions and

goals of the rules consist of at most three alphabets.

(2) The rules are added into the appropriate rulebases for the two algo-

rithms.

(3) A search tree, is constructed for the proposed algorithm.

(4) Five sets of facts are created and stored.

(5) Five searches are subsequently conducted with each algorithm using

the set of rules. Each search uses one of the five sets of facts. The five searches

fall into three categories, namely, Single, Multiple, and Recursive. The Single cat-

egory focuses on situations where only one rule is involved, such as the first ex-

ample in section 5.1.1. The Multiple category focuses on situations where several

rules are involved. However, these rules bear no relationship among each other.

The Recursive category focuses on situations where recurrence occurs, i.e., the

proving of a rule requires the proving of another rule which requires the proving of

another rule ..., and so on. Each of the last two categories includes two searches,

which are: control, and worst-case. In the control search, the same sets of facts

are used in each comparison. This shows the effect of the number of rules on the

92

search speed. In the worst-case search, the longest time required to reach a solu-

tion in the category is selected.

(6) Times needed to find the solutions are compared.

In this illustration, five comparisons are performed. In other words, steps

(1) to (6) are repeated five times. In each comparison, more rules are involved.

In the first comparison, only three rules are created. In the second one, seven

more rules are added. Ten additional rules are created for each of the remaining

three comparisons. The time needed in each search is put into table 5.1. The

rules used in the comparisons are listed in Appendix D.

As table 5:1 shows, the Prolog search algorithm takes more time to reach

a solution as more rules are involved than the proposed algorithm. In most cases,

the number of rules has little effect on the proposed algorithm's search time.

However, the Prolog search algorithm's search time increases significantly as the

number of rules increases. The most dramatic results can be seen in the last row

of the table. In that row, Prolog's search time increases more than 250 times from

the first to the fifth comparison, whereas its counterpart has increased only by a

factor of 13.2. In short, the proposed algorithm is faster than Prolog's search algo-

rithm.

93

(Number umber of rules)"\ Comparison

First

(3)

Second

(10)

Third

(20)

Fourth

(30)

Fifth

(40)

Single
110 330 990 2140 3240

(-0) (50) (50) (50) (60)

control
110 500 1320 2750 4010

Multiple
(50) (50-60) (50-60) (50-60) (60)

Category
110 500 1490 3570 5000 worst

(50-60) (60) (60) (60)

control
110 390 1100 2310 3460

Recursive
(50) (50-60) (50-60) (50-60) (50-60)

worst
110 500 3840 12410 28340
(50) (50-60) (220) (550) (660)

Table 5.1. Search times using the proposed algorithm (in brackets) and Prolog/V.

94

CHAPTER 6

CONCLUSIONS

As the demand for electrical power increases, larger and more complex

power systems are designed and built. Existing power systems are also expand-

ed and upgraded. Accompanying this trend towards larger power systems is the

need for Energy Management Systems (EMSs) capable of not only managing the

existing power systems, but also accommodating future expansions and modifica-

tions. As power systems become more complex, it becomes more difficult for op-

erating personnel to maintain proper control of a power system when disturbances

occur. ES has been introduced as a solution. An EMS incorporating an ES has

been proposed by the Power Research Group of the. Department of Electrical Engi-

neering.

6.1 General Conclusions

Every ES has an inference engine. It is a mechanism which infers conclu-

sion(s) on the existing facts using knowledge. This knowledge always exists in

extremely large quantities (otherwise, the human brain would be able to handle

the knowledge and there would be no need for ES). The inference engine is basi-

cally a searching mechanism which locates the applicable knowledge in the pool of

available knowledge. The search mechanisms used in ESs in the power area are

slow.

In this thesis, a fast searching algorithm is developed, which has several

95

advantages over other algorithms used in the power area. The advantages are as

follows:

(1) The search algorithm separates the tree construction and search pro-

cesses. The separation results in improved response as the search process be-

comes independent of the construction process.

(2) The separation also eliminates repeated construction of the same par-

tial search trees.

(3) The key condition feature adopted by the algorithm enables the search

tree to be constructed in a way that facilitates rapid elimination of nonapplicable

production rules during search. Hence, the search process is both efficient and

fast.

The proposed EMS is large. Prototyping such a large software using pro-

cedural language consumes a disproportionally large amount of time. Instead, an

Object-Oriented Programming (OOP) language is proposed. OOP has several

advantages over procedural programming. First of all, OOP encourages reuse of

program codes, thus reducing time and effort required to develop and maintain ap-

plication software. Secondly, OOP enforces modular programming. The enforce-

ment is achieved through the basic definition of objects -- that objects encapsu-

late both data and methods manipulating these data. Modular programming sim-

plifies the task of writing application software by simply dividing the software into

modules. In this case, each module is a class. Lastly, OOP models the applica-

tion. OOP simulates the relations among the various entities in the application.

Therefore, it is easier to fine-tune the software to the user's requirement.

Since the proposed algorithm will become part of the EMS software, the al-

96

gorithm is implemented in an OOP language -- Smailtalk. A windowing interface

is also constructed to allow the algorithm to be run and tested. Comparisons be-

tween the fast searching algorithm and Prolog/V's searching algorithm, which is

the most commonly used search algorithm in the power area, show that the former

reaches a solution in less time than the latter. The time difference magnifies sig-

nificantly as the number of rules involved increases. The fast searching algorithm

also shows enormous reduction in time needed for a recursive search, especially

when the recurrence is intense, illustrations also demonstrate the algorithm's

ability to serve as an alarm-handler/fault-diagnostician. Besides stating the

search results, the alarm-handler/fault-diagnostician also provides explanations

of the results.

6.2 Future Work

Several improvements and follow-up works are suggested in the following.

Firstly, a more efficient parser should be constructed. The parsing algo-

rithm currently used in the dissociation process is written for the sole purpose of

parsing. Efficiency of the parsing algorithm has not been considered. Optimizing

the parsing algorithm would save time, and result in a faster dissociation process.

Secondly, the range of logic operators accepted by the algorithm should be

expanded. In its present form, the algorithm accepts only "and", "or", and "not"

logic operators. By accepting a wider range of operators, the algorithm becomes

more versatile and hence user-friendly.

Thirdly, the algorithm and the windowing interface should be incorporated

into the proposed EMS. Modifications should be made so that the search algo-

97

rithm should be activated both manually by the operator and automatically by the

EMS. Changes should also be made to automatize the dissociation and transfor-

mation processes.

Fourthly, the knowledge base should be expanded to accommodate all the

knowledge necessary to perform the proposed EMS's expert system tasks out-

lined in chapter 2.

Fifthly, a conflict resolving mechanism should be added to the proposed al-

gorithm. It resolves possible conflicts within the knowledge supplied by the ex-

pert, or in the solutions suggested by the search algorithm.

And finally, a subclass should be created for search trees of power substa-

tions. Since substations have similar characteristics, their search trees should be

similar. Therefore, the trees should be grouped to form a subclass.

98

REFERENCE

[1] D. Soulier, "The Hydro-Quebec System Blackout of March 31, 1989",

IEEE Power Engineering Review, Vol. 9, No. 10, Oct. 1989, pp. 17-18.

[2] H. Schildt, "Artificial Intelligence Using C", Osborne McGraw-Hill, Berke-

ley, California, USA, 1987.

[3] Z. Z. Zhang, G. S. Hope, 0. P. Malilc, "Expert Systems in Electric Power

Systems -- A Bibliographical Survey", IEEE/PES, 1989, Winter Meeting,

Paper No.: 89 WM 212-2.

[4] D. Thomas, "What's in an Object?", BYTE magazine, March 1989, pp.

231-240.

[5] J. Hsu, J. Kusnan, "The Fifth Generation: The Future of Computer Technol-

ogy", Windcrest Books, USA, 1989, pp. 162-167.

[6] G. De Montravel, "A Real Time Expert System for Alarm Handling in the

Future EDF Regional Control Centres", CIGRE 5C39, Sept. 1986.

[7] R. Fujiwara, Y. Kohno, T. Sakaguchi, H. Suzuki, "An Intelligent Load Flow

Engine for Power System Planning", IEEE Transactions on Power Sys-

tems, Vol. PWRS-1, No. 3, Aug. 1986, pp. 302-307.

[8] E. Cardozo, T. Perry, S. N. Talukdar, "The Operator's Assistant -- An In-

telligent, Expandable Program for Power System Trouble Analysis", IEEE

Transactions on Power Systems, Vol. PWRS-1, No. 3, Aug. 1986, pp. 182-

187.

[9] P. Wegner, "Learning the Language", BYTE magazine, March 1989, pp.

99

245-253.

[10] C. V. Ramamoorthy, P. C. Sheu, "Object-Oriented Systems", IEEE Ex-

pert, Fall 1988, pp. 9-15.

[11] R. Wheatley, B. J. Frey, G. S. Hope, 0. P. Malik, "Object Based Expert

Systems in Integrated Power System Analysis", Proceedings of Canadian

Conference on Electrical and Computer Engineering, Montreal, Quebec,

Canada, Sept. 1989, pp. 1059-1062.

[12] W. Kim, F. H. Lochovsky, "Object-Oriented Concepts, Database, and Ap-

plications", ACM Press, New York, New York, 1989, pp. 127-197.

[13] R. Wheatley, T. Hui, "Proposal for Integrated Energy Management System

Development Toolldt", Department of Electrical Engineering, May 1989.

[.14] B. F. Wollenberg, "Feasibility Study for an Energy Management System

Intelligent Alarm Processor", Proceedings 1985 Power Industry Computer

Applications Conference, San Francisco, California, pp. 249254.

[15] B. J. Cox, Object-Oriented Programming -- An Evolutionary Approach,

Addison-Wesley Publishing Company, USA, 1986.

[16] N. C. Rowe, "Artificial Intelligence Through Prolog", Prentice Hall, Engle-

wood Cliffs, New Jersey, USA, 1988.

[17] Y. Akimoto, D. B. Klapper, W. W. Price, H. Tanaka, K. A. Wirgau, J.

Yoshizawa, "Transient Stability Expert System", IEEE Transactions on

Power Systems, Vol. 4, No. 1, Feb. 1989, pp. 312-320.

[18] T. Sakaguchi, "Development of a Knowledge Based System for Power Sys-

tem Restoration", IEEE Transactions on Power Apparatus and Systems,

Vol. PAS-102, No. 2, Feb. 1983.

100

[19] E. N. Dialynas, A. V. Machias, C. A. Protopapas, "An Expert System Ap-

proach to Designing and Testing Substation Grounding Grids", IEEE

Transactions on Power Delivery, Vol. 4, No. 1, Jan. 1989, pp. 234-240.

[20] C. Fukui, J. Kawakami, "An Expert System for Fault Section Estimation

Using Information from Protective Relays and Circuit Breakers", IEEE

Transactions on Power Delivery, Vol. PWRD-1, No.4, Oct. 1986.

[21] B. D. Russell, K. Watson, "Power Substation Automation Using a Knowl-

edge Based System -- Justification and Preliminary Field Experiments",

IEEE Transactions on Power Delivery, Vol. PWRD-2, No. 4, Oct. 1987,

pp. 1090-1097.

[22] S. J. Lee, C. C. Liu, S. S. Venkata, "An Expert System Operational Aid for

Restoration and Loss Reduction of Distribution Systems", IEEE Transac-

tions on Power Systems, Vol. 3, No. 2, May 1988, pp. 619-626.

[23] K. Nara, S. Yamashiro, Y. Yanaura, "Application of an Expert System to

Decisions on Countermeasures Against Snow Accretion on Transmission

Lines", IEEE Transactions on Power Systems, Vol. 3, No. 3, Aug. 1988,

pp. 1052-1058.

[24] F. Gubina, M. Mihelcic, A. Ogorelec, "An Approach to Power Network

Fault Location Diagnosis", Proceedings of Symposium on Expert Systems

Application to Power Systems, Stockholm-Helsinki, Aug. 1988.

[25] A. J. Germond, D. Niebur, L. Palmieri, M. Stalder, "A Rule Based System

for Substation Monitoring: The Switching Operation", Proceedings of Sym-

posium on Expert Systems Application to Power Systems, Stockholm-

Helsinki, Aug. 1988.

101

[2611 H. E. Dijk, G. P. T. Roeiofs, A. W. van dei Weegen, "An Expert System

for Power System Restoration", Proceedings of Symposium on Expert Sys-

tems Application to Power Systems, Stockholm-Helsinki, Aug. 1988.

[27] S. J. Cheng, 0. P. Malik, G. S. Hope, "An Expert System for Voltage and

Reactive Power Control of a Power System", IEEE Transactions on Power

Systems, Vol. 3, No. 4, Nov. 1988, pp. 1449-1455.

[28] A. A. Girgis, M. B. Johns, "A Hybrid Expert System for Faulted Section

Identification, Fault Type Classification and Selection of Fault Location Al-

gorithms", IEEE Transactions on Power Delivery, Vol. 4, No. 2, Apr. 1989,

pp. 978-985.

[29] J. L. Chen, Y. Y. Hsu, "An Expert System for Load Allocation in Distribu-

tion Expansion Planning", IEEE Transactions on Power Delivery, Vol. 4,

No. 3, Jul. 1989, pp. 1910-1918.

[30] C. C. Liu, K. Tomsovic, "An Expert System Assisting Decision -- Making

of Reactive Power/Voltage Control", IEEE Transactions on Power Sys-

tems, Vol. PWRS-1, No. 3, Aug. 1986, pp. 195-201.

[31] P. Ackerman, C. C. Liu, S. Pope, K. Tomsovic, "An Expert System As a

Dispatchers' Aid for the Isolation of Line Section Faults", IEEE Transac-

tions on Power Delivery, Vol. PWRD-2, No. 3, Jul. 1987, pp. 736-743.

[32] E. Cardozo, S. N. Talukdar, "A Distributed Expert System for Fault Diag-

nosis", IEEE Transactions on Power Systems, Vol. 3, No. 2, May 1988,

pp. 641-646.

[33] S. F. Borys, R. T. Goeltz, K. M. Hemmelman, S. L. Purucker, R. D. Ras-

mussen, B. E. Tonn, "Communication Alarm Processor Expert System",

102

Proceedings of Symposium on Expert Systems Application to Power Sys-

tems, Stockholm-Helsinki, Aug. 1988.

[34] D. Lubkeman, T. Taylor, "Applications of Knowledge-based Programming

to Power Engineering Problems", IEEE Transactions on Power Systems,

Vol. 4, No. 1, Feb. 1989, pp. 345-352.

[35] C. C. Liu, K. Tomsovic, S. Zhang, "Efficiency of Expert System As On Line

Operating Aids", Proceedings of the 9th Power Systems computation Con-

ference, Cascais, Portugal, Sept. 1987, pp. 695-701.

[36] C. L. Forgy, "Rete: A Fast Algorithm for the -Many Paftern/Many Object

Pattern Match Problem", Artificial Intelligence, Vol. 19, 1982.

[37] 0. L. Madsen, B. Moller-Pedersen, "What object-oriented programming

may be -- and what it does not have to be", proceedings of ECOOP '88

European Conference on Object-Oriented Programming, Oslo, Norway,

Aug. 1988.

[38] L. J. Pinson, R. S. Wiener, "An Introduction to Object-Oriented Program-

ming and Smalitalk", Addison-Wesley Publishing Company, USA, 1988.

[39] t'Prolog.doc", a documentary file in the Smalltallc/V software, Digitalk Inc.,

CA, USA.

103

APPENDIX A

The new classes and their implementations

Implementation of the new classes is discussed in the following sections.

Each of the six new classes is described in terms of the four Smalitalk properties:

abstraction, encapsulation, inheritance, and polymorphism. The data protocol and

part of the function protocol, i.e. data and messages, are presented and explained.

A complete list of the messages can be found in Appendix B. The convention

used in section 4.2.2 is adopted in this appendix.

,New class -- RuleBases

Abstraction -- A rulebase is a collection of production rules, each of which has

two parts: a goal, and the conditions. In each rule, all the condi-

tions are operands of only one logic operator -- "and". Quite of-

ten, the goals also serve as indexes through which the rules' are

extracted from and inserted into the rulebase. Each rulebase is

a result of the dissociation of the 'set of stringrules entered by

users. The rulebases may then be transformed into search

trees. Each rulebase also has a name and carries information

about the related set of stringrules.

Encapsulation -- The above abstraction is encapsulated into the following proto-

col. The goal and conditions of each rule are put into two differ-

ent sets. One set contains an object' which is the goal, while

104

the other set contains objects which are the conditions.

Data -- All data are private. There is no shared and global shared data.

name -- An object identifies the name of the rulebase.

stringrule -- An object identifies the instance of StringRules from which

the rulebase is created.

Messages -- The following is a partial list of the messages for the class. A

detail listing is given in Appendix B.

transformWith: aTable -- Answers a search tree constructed from the

receiver and the argument. The argument, aT-

able, is an instance of class Table.

nameSR: aString -- Stores the name of the instance of Strin-

gRules from which the receiver is created.

The name, aString, is an instance of class

String.

srName -- Answers the name of the instance of Strin-

gRules from which the receiver is created.

findKey: aSet value: aSet -- Answers the key in the receiver whose

key/value pair contains the same objects, re-

spectively, as the argument set. Both argu-

ments are instances of class Set.

Inheritance -- The new class is implemented as a subclass of class Dictionary,

because the latter allows data to be manipulated through an in-

dex -- the key. Class Dictionary's data and messages are in-

herited. Some of the messages are polymorphically redefined.

105

Data -- The following are the inherited data.

contents -- An array containing the objects stored in the instance of

class Dictionary.

elementCount -- The number of objects stored in the instance of class Dic-

tionary.

Messages -- All except three messages are inherited and used as is. A list

of the messages is given in Appendix B under class Dictionary.

The three redefined messages -- values, add:, at: put: -- are

mentioned later in this section.

Polymorphism -- Since both the keys and values in an instance of RuleBases are

sets of objects while the keys and values in an instance of Dic-

tionary can be any objects, so the two messages which insert

key/value pairs are polymorphically redefined. Besides, the

message returning a bag containing all the values is also rede-

fined.

add: anAssociation -- Add an association, which is a key/value pair, into

the receiver. Both the key and value must be in-

stances of class Set. If not, an error message is

displayed.

at:aKey put: aSet -- Add the key/value -- aKey/iSet -- pair into the re-

ceiver. If àKey already exists in the receiver, its

associated value is replaced by aSet. Both aKey

and aSet must be instances of class Set. If not, an

error message is displayed.

106

values -- Answers a set containing the contents in each val-

ue set of all the key/value pairs.

New class -- SetOfFact

Abstraction -- A setoffact is basically a set containing facts. There is no differ-

ence between a setoffact and an ordinary set, except that the

former has a name. The name is a character string which can be

used to distinguish the different setoffacts.

Encapsulation -- The above abstraction is encapsulated into the following proto-

col.

Data -- The data is private. There is no shared and global shared data.

name -- An object identifies the name of the instance of SetOfFact.

Messages -- Only two messages have been created for this class.. The fol-

lowing is a description of the two messages. A detail listing is

given in Appendix B.

nameSeif: aString -- Gives the receiver a name. The name, aString, is an

instance of class String.

selfName -- Answers the name of the receiver.

Inheritance -- The new class is implemented as a subclass of class Set. All

data and message protocol are inherited. There is no polymor-

phically redefined message. The following is the data and part

of the messages inherited. A complete list of messages is giv-

en in Appendix B.

Data -- The following are the inherited data protocol.

107

contents -- An array containing the objects stored in the instance of

class Set.

elementCount -- The total number of objects stored in the instance of

class Set.

Messages -- The following are some of the inherited functional protocol.

sameAs: aSet -- Answers true if the receiver and the argument contain

identical objects, else answers false.

subsetOf: aSet -- Answers true if the receiver is a subset of the argu-

ment, else answers false.

union: aSet -- Answers a set of objects which is the union of the re-

ceiver and the argument.

Polymorphism -- There is no polymorphically redefined message.

New class -- Stack

Abstraction -- A stack is a collection of objects in an ordered manner. The ob-

jects are manipulated in the last-in-first-out sequence. In other

words, new objects are always put on the top of the stack, and

only the top object can be removed from the stack. Since the

stacks are created primarily to store solution paths of searches,

each stack should carry information regarding the search itself,

such as: the set storing the facts, the search tree involved, the

origin of the tree, and so on. Each stack also has a name.

Encapsulation The above abstraction is encapsulated into the following proto-

col.

108

Data --

name --

tree --

All data are private. There is no shared and global shared data.

An object identifies the name of the stack.

An object identifies the search tree involved.

setoffact -- An object identifies the set storing the facts.

rulebase -- An object identifies the rulebase from which the search tree

is constructed.

stringrule -- An object identifies the instance of StringRules from which

the rulebase is created.

table -- An object identifies the weight table related in the construc-

tion of the search tree.

Messages -- The following are explanations of several messages for the

class. A detail listing can be found in Appendix B.

emptyStack -- Answers true if the receiver is an empty stack, else an-

swers false.

push: anObject -- Places an object on top of the stack.

POP -- Answers the object removed from the top of the stack.

If the stack is empty, answers nil.

nameTr: aString -- Stores the name of the search tree related to the re-

ceiver. The name, aString, is an instance of class

trName --

Inheritance --

String.

Answers the name of the search tree related to the re-

ceiver.

Since a stack collects objects in an ordered fashion, so the new

class is implemented as a subclass of class OrderedCollection.

109

All the data and messages of class OrderedCollection are inher-

ited by subclass Stack. However, because of the limited choice

of stack operations, many of the inherited messages are use-

less. The following list the inherited data and some messages.

A complete list of messages can be found in Appendix B.

Data -- The following are the inherited data protocol.

contents -- An array containing the objects in the collection.

endPosition -- The position index of the last object in the collection.

startPosition -- The position index of the first object in the collection.

Messages -- The following are the inherited functional protocol.

size -- Answers the number of objects in the re-

ceiver.

includes: anObject -- Checks if the receiver contains the argu-

ment. Answers a Boolean value.

do: aBlock -- For every object in the receiver collection,

performs aBlock.

copyFrom: beginning to: end -- Answers a new collection which contains

only the objects between beginning and

end of the receiver.

Polymorphism -- Many inherited messages become useless and have to be rede-

fined due to the fact that stacks can only be popped and pushed.

The following outlines messages which are polymorphically re-

defined.

all add messages -- All nine messages which intend to

11.0

add an object into the collection are

redefined to display error messag-

es when used.

all remove messages -- All four messages for removing ob-

jects from the collection are rede-

fined to display error messages

when used.

all retrieve messages -- The after:, at:, before: messages

which retrieve objects anywhere in

the collection are also redefined to

display error messages when used.

replace and concatenate messages -- Both the replaceFrom: to: and

messages are redefined to display

error messages when used.

New class -- StringRules

Abstraction -- A stringrule is a collection of production rules written in a differ-

ent format. Each rule is divided into two parts: the goal in the

form of a character string, and all the conditions and logic opera-

tors in another character string. In other words, each rule is rep-

resented by two character strings. This is the original form of

representation of a production rule entered by users. The goals

also serve as indexes through which the manipulation of rules is

performed. Dissociation may then be performed on each strin-

111

grule to create a rulebase. Each stringrule also carries a name.

Encapsulation -- The above abstraction is encapsulated into the following proto-

col.

Data -- The data is private. There is no shared and global shared data.

name -- An object identifies the name of the instance of StringRules.

Messages -- The following is a partial list of the messages for the class. A

detail listing can be found in Appendix B.

dissociate -- Answers an instance of RuleBases which is created

from the dissociation of the receiver.

nameSeif: aString -- Gives the receiver a name. The name, aString, is an

instance of class String.

selfName -- Answers the name of the receiver.

Inheritance -- Since manipulation of the rules is performed through referring to

the goals, so the new class is implemented as a subclass of Dic-

tionary. Except for two messages, all the data and messages

protocol of class Dictionary are inherited. The followings are

the descriptions of the inherited data and messages.

Data -- The following are the inherited data.

contents -- An array containing the objects stored in the instance of

class Dictionary.

elementCount -- The number of objects stored in the instance of class Dic-

tionary.

Messages -- All except two messages are inherited. A list of the messages

can be found in Appendix B under class Dictionary. The two re-

112

defined messages -- add:, at: put: are mentioned later in this

section.

Polymorphism -- Since both the keys and values in an instance of StringRules are

character strings, so the two messages which add key/value

pairs into a stringrule must be redefined to meet the require-

ment.

add: anAssociation -- Add an association -- a key/value pair -- into the

receiver. Both the key and value must be instanc-

es of class String. Otherwise, an error message

is displayed.

at: aKey put: aString -- Add the key/value -- aKey/aString -- pair into

the receiver. If aKey already exists, its associat-

ed value is replaced by aString. Both the key and

value must be instances of class String. If not, an

error message is displayed.

New class -- Tables

Abstraction -- A table is simply a collection of data pairs. Each data pair con-

tains a name and a numerical value. The name in the data pair

is the means through which the data pair can be modified. Each

table should carry information about its related rulebase and the

instance of StringRules. Each table also has a name.

Encapsulation -- The above abstraction is encapsulated into the following proto-

col.

113

Data -- All data are private. There is no shared and global shared data.

name -- An object identifies the name of the table.

rulebase -- An object identifies the related rulebase.

stringrule -- An object identifies the instance of StringRules from which

the rulebase is created.

Messages -- The following is a partial list of the messages for the class. A

detail listing can be found in Appendix B.

newWeightAt: aString to: aNumber -- Assigns a new numerical val-

ue to the data pair whose

name matches the first argu-

ment. The name, aString, is

an instance of class String,

and the new value, aNumber,

is an instance of class Num-

ber.

maximizeWeightAt: aString to: aNumber -- Assigns a maximum value to

the data pair whose name

matches the first argument.

The maximum value is select-

ed between the original value

in the data pair and the sec-

ond argument.

nameRB: aString -- Stores the name of the rule-

base related to the receiver.

114

The name, aString, is an in-

stance of class String.

rbName -- Answers the name of the re-

lated rulebase.

Inheritance -- The new class is implemented as a subclass of class Dictio-

nary. The data and most of the messages of class Dictionary

are inherited and used as is. Only, two of the inherited messag-

es are polymorphically redefined, which are discussed later in

this section. The following are the inherited protocol.

Data -- The following are the inherited data.

contents -- An array containing the objects stored in the instance of

class Dictionary.

elementCount -- The number of objects stored in the instance of class Dic-

tionary.

Messages -- All except two messages are inherited and used as is. A list of

the messages can be found in Appendix B under class Dictio-

nary. The two redefined messages -- add:, at: put: -- are men-

tioned later in this section.

Polymorphism -- Since the values in all key/value pairs must be numbers, so the

two messages which add key/value pairs must be polymorphi-

cally redefined.

add: anAssociation -- Add a key/value pair into the receiver. The val-

ue must be an instance of class Number. Other-

wise, an error message is displayed.

115

at: aKey put: aNumber -- Add the aKey/aNumber pair into the receiver. If

aKey already exists, its associated value is re-

placed by aNumber. The second argument,

aNumber, must be an instance of class Num-

ber. If not, an error message is displayed.

New class -- Tree

Abstraction -- In a common perception of a tree, there are three kinds of nodes.

The root is the origin of the tree and has only children nodes. It

has no parent or sibling nodes. A leaf node has parent and may

be sibling nodes, but no children nodes. A tree node lies be-

tween the root and the leaf nodes, and has both parent and chil-

dren nodes. It may also has sibling nodes.

A second kind of perception of a tree, which is as popular as the

previous perception and is adopted in this abstraction, is that a

tree is itself a subtree, and every subtree is composed of other

subtrees. Each subtree has a root and subtree(s) connected to

the root.

A special kind of subtree exists which has only root and no sub-

trees. This is equivalent to the leaf node. The subtrees in each

subtree maintain an order of precedence. The order exists dur-

ing the lifetime of the tree, and is not modified.

Each tree has a name and should also carry information regard-

ing its construction, i.e., the stringRule, ruleBase, and table re-

116

lated to the construction. A tree may subsequently be involved

in searching.

Encapsulation -- The subtree perception is encapsulated into the following proto-

col.

Data -- All data are private. There is no shared and global shared data.

name -- An object identifies the name of the tree.

root -- An object identifies the root of a subtree.

rulebase -- An object identifies the rulebase from which the tree is con-

structed.

stringrule -- An object identifies the instance of StringRules from which

the rulebase is created

table -- An object identifies the weight table related in the construc-

tion of the tree.

Messages -- The following are explanations of several messages for the

class. A detail listing can be found in Appendix A.

searchWith: aSetOfFact -- Answers a stack storing the solution paths

which are results from the searching of the re-

ceiver using the argument. The argument is

an instance of class SetOfFact.

nameTb: aString -- Stores the name of the related table. The

name, aString, is an instance of class String.

tbName -- Answers the name of the related weight table.

Inheritance -- Because of the order of precedence of subtrees inside a subtree,

the new class is implemented as a subclass of class Or-

117

deredCollection. All the data and messages of class Or-

deredCollection are inherited by subclass Tree. Partial descrip-

tion of the inherited data and messages can be found in the sec-

tion describing the new class Stack. A complete list of

messages can be found in Appendix B.

Polymorphism -- There is no polymorphically redefined message.

118

APPENDIX B

Listing of class protocol

The following sections list the class data and methods. The listing in-

cludes both the new classes -- RuleBases, SetOfFact, Stack, StringRules, Table,

and Tree -- and their immediate super classes -- Dictionary, Set, and Or-

deredCollection. Discussions on how the four Smalitalk properties -- Abstrac-

tion, Encapsulation, Inheritance, and Polymorphism -- are preserved in the new

classes are placed in Appendix A.

Super class -- Dictionary

Set subclass: #Dictionary
instanceVariableNames:"
classVariableNames:"
poolDictionaries:"

Dictionary methods

add: anAssociation

"Answer anAssociation. Add anAssociation to the
receiver."

I index element I

index := self fmdKeylndex: anAssociation key.
(element := contents at: index) == nil

ifTrue: [
elementCount := elementCount + 1.
contents at: index put: anAssociation]

ifFalse: [element value: anAssociation value].
self adjustSize.
AanAssocjaljon

associationAt: aKey

119

"Answer the Association whose key equals aKey
from the receiver. If not found,
report an error."

"self
associationAt: aKey
ifAbsent: [self errorAbsentKey]

associationAt: aKey ifAbsent: aBlock
"Answer the Association whose key equals aKey
from the receiver. If not found,
evaluate aBlock (with no arguments)."

(answer I
"(answer := self lookUpKey: aKey) == nil

ifTrue: [aBlock value]
ifFalse: [answer]

associationsDo: aBlock
"Answer the receiver. For each key/value pair
in the receiver, evaluate aBlock with that
pair as the argument."

super do: aBlock

at: aKey

"Answer the value of the key/value pair whose key
equals aKey from the receiver. If
not found, report an error."

I answer I

"(answer := self lookUpKey: aKey) == nil
ifTrue: [self errorAbsentKey]
ifFalse: [answer value]

at: aKey ifAbsent: aBlock
"Answer the value of the key/value pair whose key
equals aKey from the receiver. If not found,
evaluate aBlock (with no arguments)."

I answer I

"(answer := self lookUpKey: aKey) == nil
ifTrue: [aBlock value]
ifFalse: [answer value]

at: aKey put: anObject

"Answer anObject. If the receiver contains
the key/value pair whose key equals aKey,

120

replace the value of the pair with anObject.
Else add the aKey/anObject pair."

self add: (Association key: aKey value: anObject).
AanObject

deepCopy
"Answer a copy of the receiver with shallow
copies of each element."

answer I
answer := self species new.
self associationsDo: [:element I

answer add: element copy].
"answer

do: aBlock
"Answer the receiver. For each value
in the receiver, evaluate aBlock with
that value as the argument."

super do: [:association
aBlock value: association value]

duplicate
"Answer a copy of the receiver with
duplicate copies of each element.
Receiver -- a Dictionary.
Return -- a copy of the receiver."

IanswerI
answer := self species new.
self associationsDo: [:element I

answer add: element deepCopy].
"answer

errorAbsentKey
"Private - Report an error to the effect
that the desired key was not found in the
receiver."

self error: 'Key is missing'

findKeylndex: aKey
"Private - Answer the index position of the
key/value pair in the receiver whose key equals
aKey or the index of the first empty position
where such an pair would be stored."

121

I index answer anAssociation I
index := contents size.
answer := (aKey hash) \\ index + 1.
[((anAssociation := contents at: answer) isNil)

or: [aKey = anAssociation key]]
whileFalse: [

(answer := answer + 1) > index
ifTrue: [answer := 1]]. "wrap-around"

Aanswer

grow
"Private - Answer the receiver doubled in
size to accomodate more key/value
pairs."

I AIDictionary I
aDictionary := self class new: contents size * 2.
self associationsDo: [:anAssociation I

aDictionary add: anAssociation].
contents := aDictionary contents

includes: anObject
"Answer true if the receiver contains the
key/value pair whose value equals anObject,
else answer false."

self do: [:element I
element = anObject

ifTrue: ["true]],
"false

includesKey: aKey
"Answer true if the receiver contains aKey,
else answer false."

"(self lookUpKey: aKey) notNil

inspect
"Open a dictionary inspector window
on the receiver."

Dictionarylnspector new openOn: self

keyAtValue: anObject
"Answer the key in the receiver whose paired value
equals anObject. If not found, answer nil."

"self keyAtValue: anObject ifAbsent: [nil]

122

keyAtValue: anObject ifAbsent: aBlock
"Answer the key in the receiver whose paired value
equals anObject. If not found, evaluate aBlock
(with no arguments)."

self associationsDo: [:anAssociation I
anAssociation value = anObject

ifTrue: [AanAssociation key]].
AaBlock value

keys
"Answer a Set containing all the keys
in the receiver."

I answer I
answer := Set new: self size * 2.
self associationsDo: [:assoc

answer add: assoc key].
Aanswer

keysDo: aBlock
"Answer the receiver. For each key
in the receiver, evaluate aBlock with
the key as the argument."

self associationsDo: [:anAssociation I
aBlock value: anAssociation key]

looklJpKey: aKey
"Private - Answer the association
in the receiver whose key equals
aKey or nil if it doesn't exist."

I index limit anAssociation I
limit := contents size.
index := (aKey hash) \\ limit + 1.
[((anAssociation := contents at: index) == nil)

or: [aKey = anAssociation key]]
whileFalse: [

• (index := index+ 1) > limit
I. ifTrue: [index := 1]]. "wrap-around"

AanAssociation

occurrencesOf: anObject

"Answer the number of key/value pairs in the receiver;
whose values are equal to anObject."

I answer I

123

answer := 0.
self do: [:element I

element = anObject
ifTrue: [answer := answer + 1]].

Aanswer

rehashFrom: anlnteger
"Private - Rehash the keys of the receiver
from the index position anlnteger
to the last index position."

I index size searchlndex anAssociation I
size := contents size.
index := anlnteger.
[(index := index + 1) > size

ifTrue: [index := 1]. "wrap-around"
(anAssociation := contents at: index) isNil]

whileFalse: ["test next assoc for relocation"
searchindex := self findKeylndex: anAssociation key.
(contents at: searchlndex) isNil

ifTrue: ["found assoc to move"
contents

at: searchlndex
put: anAssociation.

contents
at: index
put: nil]]

remove: anObject ifAbsent: aBlock
"Remove the key/value pair whose value is anObject
from the receiver dictionary. This method
reports an error since the values are
not unique in a dictionary, the keys are."

"self invalidMessage

removeAssociation: anAssociation
"Answer the receiver after anAssociation has been
removed from it. If anAssociation is not in the
receiver, report an error."

self removeKey: anAssociation key

removeKey: aKey

"Answer the receiver with the key/value pair whose
key equals aKey removed. If such a pair is not found,

124

report an error."
self removeKey: aKey ifAbsent: [self errorAbsentKey].

removeKey: aKey ifAbsent: aBlock
"Answer aKey. Remove the key/value pair whose key
equals aKey from the receiver. If such a pair
is not found, evaluate aBlock (with no arguments)."

I index I
index := self findKeylndex: aKey.
(contents at: index) == nil

ifl'rue: [AaBlock value].
contents at: index put: nil.
elementCount := elementCount - 1.
self rehashFrom: index.
AaKey

select: aBlock
"For each key/value pair in the receiver, evaluate
aBlock with the value part of the pair as the argument.
Answer a new object containing those key/value pairs
for which aBlock evaluates to true."

I answer I
answer := self species new.
self associationsDo: [:each I

(aBlock value: each value)
ifTrue: [answer add: each]].

Aanswer

shallowCopy
"Answer a copy of the receiver which shares
the receiver elements."

I answer I
answer := self species new.
self associationsDo: [:element I

answer add: element].
Aanswer

storeOn: aStream
"Append the ASCII representation of the
receiver to aStream from which the
receiver can be reinstantiated."

I firstTime I
firs tTime := true.

125

aStream
nextPutAll:

nextPutAll: self class name;
nextPutAll: 'new)'.

self associationsDo: [:assoc I
firstTime

ifFalse: [aStream nextPut: $;].
aStream

cr;
nextPutAll: 'add:

assoc storeOn: aStream.
aStream nextPut: $).
firstTime := false].

firstTime
ifFalse: [aStream nextPutAll: ';yourself'].

aStream nextPut: $)

values
"Answer a Bag containing all the values of the
key/value pairs in the receiver."

I answer I
answer := Bag new.
self associationsDo: [:assoc

answer add: assoc value].
"answer

Super class -- OrderedCollection

IndexedCollection subclass: #OrderedCollectjon
instanceVariableNames:
'startPosition endPosition contents'

classVariableNames:"
poolDictionaries:"

OrderedCollection class methods

new
"Answer an instance of OrderedCollection
capable of holding 12 elements initially."

Aseif new: 12

new: anlnteger

"Answer an initialized instance of OrderedCollection

126

capable of holding anlnteger number of elements."
"(super new) initPositions: anlnteger

OrderedCollection methods

aCollection
"Answer an OrderedCollection containing all
the elements of the receiver followed by
all the elements of aCollection."

"self copy
addAll: aCollection;
yourself

add: anObject
"Answer anObject. Add anObject after the
last element of the receiver collection."

endPosition = contents size
ifTrue: [self putSpaceAtEnd].

endPosition := endPosition + 1.
contents at: endPosition put: anObject.
"anObject

add: newObject after: oldObject
"Answer newObject. Insert newObject immediately after
the element oldObject in the receiver collection. If
oldObject is not in the collection, report an error."

index I
index := 1.
[index <= self size]

whileTrue: {
oldObject = (self at: index)

ifTrue: ["self add: newObject afterindex: index].
index := index + 1].

"self errorAbsentElement

add: anObject afterindex: anlnteger
"Answer anObject. Insert anObject at index position
anlnteger + 1 in the receiver collection. If anlnteger
is out of the collection bounds, report an error."

self putSpaceAfter: anlnteger.
"self at: anlnteger + 1 put: anObject

add: newObject before: oldObject

127

"Answer newObject. Insert newObject immediately before
the element oldObject in the receiver collection. If
oldObject is not in the collection, report an error."

I index I
index := 1.
[index <= self size]

whileTrue: [
oldObject = (self at: index)

ifl'rue: ["self add: newObject beforelndex: index].
index := index + 1].

"self errorAbsentElement

add: anObject beforelndex: anlnteger
"Answer anObject. Insert anObject at index position
anlnteger - 1 in the receiver collection. If anlnteger
is out of the collection bounds, report an error."

self putSpaceAfter: anlnteger - 1.
"self at: anlnteger put: anObject

addAllFirst: aCollection
"Answer aCollection. Add all the elements
contained in aCollection to the receiver
before its first element."

I index I
index := aCollection size.
[index <=0]

whileFalse: [
self addFirst: (aCollection at: index).
index := index - 1].

"aCollection

addAliLast: aCollection
"Answer aCollection. Add all the elements
contained in aCollection to the receiver
after its last element."

I index size I
size := aCollection size.
index := 1.
[index <= size]

whileTrue: [
self addLast: (aCollection at: index).
index := index + 1].

"aCollection

128

addPirst: anObject
"Answer anObject. Add anObject before
the first element of the receiver."

startPosition = 1
ifTrue: [self putSpaceAtStart].

startPosition := startPosition - 1.
contents at: startPosition put: anObject.
"anObject

addLast: anObject
"Answer anObject. Add anObject after
the last element of the receiver."

endPosition = contents size
itTrue: [self putSpaceAtEnd].

endPosition := endPosition + 1.
contents at: endPosition put: anObject.
"anObject

after: anObject
"Answer the element that immediately follows
anObject in the receiver collection. If anObject
is not an element of the receiver, report an error."

"self
after: anObject
ifNone: [Aseif errorAbsentElement]

after: anObject ifNone: aBlock
"Answer the element that immediately follows
anObject in the receiver collection. If anObject
is not an element of the receiver, aBlock is
evaluated (with no arguments)."

l index i
index := startPosition.
[index < endPosition]

whileTrue: [
anObject = (contents at: index)

ilTrue: ["contents at: index + 1].
index := index + 1].

AaBlock value

at: anlnteger

"Answer the element of the receiver at index
position anlnteger. If anlnteger is an invalid

129

index for the receiver collection, report an error."
I index I
index := anlnteger + startPosition - 1.
(startPosition <= index and: [index <= endPosition])

ifFalse: [
Aseif errorinBounds: anlnteger].

"contents at: index

at: anlnteger put: anObject
"Answer anObject. Replace the element of the
receiver at index position anlnteger with the
anObject. If anlnteger is an invalid index
for the receiver collection, report an error."

I index I
index := anlnteger + startPosition - 1.
(startPosition <= index and: [index <= endPosition])

ifFalse: [
Aseif errorinBounds: anlnteger].

contents at: index put: anObject.
"anObject

before: anObject
"Answer the element that immediately precedes
anObject in the receiver collection. If anObject
is not an element of the receiver, report an error."

Aseif
before: anObject
ifNone: ["self errorAbsentElement]

before: anObject ifNone: aBlock
"Answer the element that immediately precedes
anObject in the receiver collection. If anObject
is not an element of the receiver, aBlock is
evaluated (with no arguments)."

I index I
index := startPosition + 1.
[index <= endPosition]

whileTrue: [
anObject == (contents at: index)

ilTrue: [Acontents at: index - 1].
index := index + 1].

"aBlock value

130

copyFrom: beginning to: end
"Answer an OrderedCollection containing the
elements of the receiver from index position
beginning through index position end."

I answer I -

(answer := self species new: self size)
startPosition: 1
endPosition: end - beginning + 1.

Aanswer

replaceFrom: 1
to: end - beginning + 1
with: self
startingAt: beginning

distributeFrom: start to: stop with: anArray
"Distribute the contents in anArray evenly among
the receiver between start and stop.
Receiver -- an OrderedCollection.
1st argument -- the beginning.
2nd argument - the end.
3rd argument -- an array.
Return -- number in the receiver accepted content

in anArray."
Iperiod index I
index := start.
period := (stop - start + 1)11 anArray size.
anArray do: [:eachSet I

period timesRepeat: [
(self at: index) addAll: eachSet.
index := index + 1]].

'index - start

do: aBlock

"Answer the receiver. For each element in the receiver,
evaluate aBlock with that element as the argument."

I index I
index := startPosition - 1.
{(index := index + 1) <= endPosition]

whileTrue: [aBlock value: (contents at: index)]

duplicate

"Answer an OrderedCollection containing the
elements of the receiver.

131

Receiver -- an OrderedCollection.
Return -- a copy of the receiver."

tanswerl
answer := self species new: self size.
self do: [:element I

answer add: element].
Aanswer

errorAbsentElement
"Private - Produce a walkback to the effect
that the desired object was not in the collection."

Aseif error:
'attempt to access absent element'

grow
"Private - Answer the receiver expanded in
size to accomodate more elements."

self growTo: contents size + self growSize

growTo: anlnteger
"Private - Answer the receiver expanded
to accomodate anlnteger number of elements."

I aCollection I
aCollection Array new: anlnteger.
aCollection

replaceFrom: startPosition
to: endPosition
with: contents
startingAt: startPosition.

contents := aCollection

includes: anObject
"Answer true if the receiver contains an element
equal to anObject, else answer false."

I index I
index := startPosition - 1.
[(index := index + 1) > endPosition]

whileFalse: [
anObject = (contents at: index)

ilTrue: ["true]].
"false

initPositions: anlnteger

132

"Private - Answer the receiver after initializing
it to be an empty OrderedCollection with
anlnteger number of slots."

startPosition := 1.
endPosition := 0..
contents := Array new: anlnteger

multiplyFrom: start to: stop with: anArray
"Multiply the contents in anArray with the receiver
between start and stop.
Receiver -- an OrderedCollection.
1st argument -- the beginning.
2nd argument -- the end.
3rd argument -- an array.
Return -- the multiplied receiver."

lendi
end := self selfMultiplyFrom: start to: stop times: (anArray size - 1).
"self distributeFrom: start to: end with: anArray

putSpaceAfter: anlnteger
"Private - Answer the receiver with room for an
element immediately after index position anlnteger."

l index i
endPosition = contents size

ifTrue: [self putSpaceAtEnd].
anlnteger =0

ifTrue: [
startPosition = 1

ifTrue: [self putSpaceAtStart].
startPosition := startPosition - 1.
"self].

endPosition := endPosition + 1.
index := self size - 1.
[index> anlnteger]

whileTrue: {
self

at: index + 1
put: (self at: index).

index := index - 1]

putSpaceAtEnd
"Private - Answer the receiver with room for more
elements following the last element of the collection."

133

I size index start I
startPosition = 1

ifTrue: ["self grow]
ifFalse: [

size := self size.
start := startPosition II 2.
index := 0.
[index < size]

whileTrue: [
contents

at: start + index
put: (contents at: startPosition + index).

index := index + 1].
startPosition := start.
endPosition := startPosition + size - 1].

index := contents size.
[index > endPosition]

whileTrue: [
contents at: index put: nil.
index := index - 1]

putSpaceAtStart
"Private - Answer the receiver with room for more
elements before the first element of the collection."

I size index end I
endPosition = contents size

ifTrue: [self grow].
size := self size.
end := contents size + endPosition + 1112.
index := 0.
[index < size]

whileTrue: [
contents

at: end - index
put: (contents at: endPosition - index).

index := index + 1].
startPosition := end - size + 1.
endPosition := end.
index := 1.
[index < startPosition]

whileTrue: [
contents at: index put: nil.
index := index + 1]

134

remove: anObject ifAbsent: aBlock
"Answer anObject. Remove the element anObject from
the receiver collection. If anObject is not an
element of the receiver, aBlock is evaluated
(with no arguments)."

I index I
index := startPosition.
[index <= endPosition]

whileTrue: [
anObject (contents at: index)

ifTrue: [
self removelndex: index.
"anObject].

index := index + 1].
"aBlock value

removeFirst
"Remove and answer the first element of the receiver.
If the collection is empty, report an error."

I answer I
startPoaltion > endPosition

ifTrue: ["self errorAbsentElement].
answer := contents at: startPosition.
contents at: startPosition put: nil.
startPosition := startPosition + 1.
Aanswer

removelndex: anlnteger
"Answer the receiver. Remove the element of the receiver
at index position anlnteger. If anlnteger is an invalid
index for the receiver, report an error."

I index

(anlnteger between: startPosition and: endPosition)
ifFalse: ["self errorAbsentElement].

index := anlnteger.
[index < endPosition]

whileTrue: [
contents

at: index
put: (contents at: index + 1).

index := index + 1].
contents at: endPosition put: nil.
endPosition := endPosition - 1

135

removeLast
"Remove and answer the last element of the receiver.
If the collection is empty, report an error."

answer I
startPosition > endPosition

ifTrue: ["self errorAbsentElement].
answer := contents at: endPosition.
contents at: endPosition put: nil.
endPosition := endPosition - 1.
Aanswer

replaceFrom: start to: stop with: aCollection
"Answer a new OrderedCollection containing the
receiver whose elements at index position start
through stop have been replaced by the elements
of aCollection."

I finalSize size index I
size := aCollection size.
finalSize := self size + size -

(stop - start + 1).
finalSize> contents size

ifTrue: [self growTo: finalSize + (finalSize /13 + 10)].
self

startPosition: startPosition
endPosition: contents size.

self
replaceFrom: start + size
to: finalSize
with: self
startingAt: stop + 1.

self
replaceFrom: start
to: start + size - 1
with: aCollection
startingAt: 1.

self
startPosition: startPosition
endPosition: startPosition + finalSize - 1.

index := endPosition + 1.
[index <= contents basicSize]

whileTrue: [
contents at: index put: nil.
index := index + 1].

136

Aseif

selfMultiplyFrom: start to: stop times: anlnteger
"Expand the receiver between start and stop
anlnteger times.
Receiver -- an OrderedCollection.
1st argument -- the beginning.
2nd argument -- the end.
3rd argument -- number of times of expansion.
Return -- the end position of the receiver."

lindex length[
index := stop + 1.
length := stop - start + 1.
(length * anlnteger) timesRepeat: [

self add: (self at: (index - length)) shallowCopy.
index := index + 1].

Ajndex - 1

size
"Answer the number of elements contained by
the receiver collection."

AenDosjtion - (startPosition - 1)

startPosition: start endPosition: end
"Private - Answer the receiver. Set the position
of the first and last elements of the receiver',
to the arguments start and stop respectively."

startPosition := start.
endPosition := end

New class -- RuleBases

Dictionary subclass: #RuleBases
instanceVariableNames:
'name stringRule'

classVariableNames:
poolDictionaries:"

RuleBases methods

add: anAssociation
"Add anAssociation to the receiver. Both the key
and value must be instances of Set. If not, an

137

error will be displayed.
Receiver -- a RuleBases.
Argument -- a key/value pair.
Return -- the key/value pair."

(anAssociation key class = Set)
ifTrue: [(anAssociation value class = Set)

ilTrue: [Asuper add: anAssociation]
ifFalse: ["self errorValueNotSet]]

ifFalse: ["self errorKeyNotSet]

at: aKey put: aSet
"Add the aKey/aSet pair into the receiver. If aKey
already exists in the receiver, its associated
value will be replaced by aSet. Both aKey and
aSet must be instances of class Set. If not, an
error message will be displayed.
Receiver -- a RuleBases.
1st argument -- the key.
2nd argument -- the value.
Return -- the value."

(aKey class = Set)
ifTrue: [(aSet class = Set)

ifTrue: ["super at: aKey put: aSet]
ifFalse: ["self errorValueNotSet]]

ifFalse: ["self errorKeyNotSet]

attachLeafTo: tree
"Finds the leaf node from the receiver and attach
it to the argument one at a time.
Receiver -- a RuleBases.
Argument -- a Tree.
Return -- no return."

mode subtreel
node := self findLeaf.
[node = nil]

whileFalse: [
subtree := Tree new.
subtree narneNode: node.
tree add: subtree.
node := self findLeaf]

condlsGoal

"Find the goal that is a subgoal.

138

Receiver -- a RuleBases.
Return -- the subgoal in a set or nil."

Iconds goals I
conds : self values.
goals := self keys.
goals do: [:goal I

(goal subSetOf: conds)
ifTrue: ["goal]].

"nil

createWeightTable
"Create a weight table.
Receiver -- a RuleBases.
Return -- the new table."

Itablel
table := Table new.
(self values) do: [:cond I

table newWeightAt: cond to: 0].
"table

duplicateAssocAt: aKey times: anl.nteger
"Duplicate an association at aKey for anlnteger
times.
Receiver -- a RuleBases.
1st argument -- the key whose value is to be

duplicated.
2nd argument -- number of duplications.
Return -- the modified self."

[index arrayl
array := Array new: anlnteger.
index := 1.
anlnteger' timesRepeat: [

array at: index put: ((aKey contents) asSet).
self at: (array at: index) put: ((self at: aKey) asArray asSet).
index := index + 1].

"self

errorKeyNotSet
"Private - Report an error to the effect that the

key in the key/value pair is not an
instance of class Set."

self error: 'Key is not a Set'

139

errorValueNotSet
"Private - Report an error to the effect that the

value in the key/value pair is not an
instance of class Set."

self error: 'Value is not a Set'

extractAt: aKey
"Answer a string containing the key/value pair at
aKey.
Receiver -- a RuleBases.
Argument -- the key.
Return -- the string."

stringI
string := aKey asArray at: 1.
string := (string, '/') asString.
((self at: aKey) isNil)

ifFalse: [(self at: aKey) do: [:each
string := (string,' ',each) asString]].

"string

findKey: aKey value: aValue
"Answer the key which is the same as aKey and whose
value is the same as aValue.
Receiver -- a RuleBases.
1st argument -- the key in a set to be compared.
2nd argument -- the value in a set to be compared.
Return -- the matched key."

Ivaluel
self keysDo: [:key I

(key sameAs: aKey)
ifTrue: [value := self at: key.

((value = aValue) or: [value sameAs: aValue])
ifTrue: ["key]]].

"nil

findLeaf
"Finds the leaf from the receiver one at a time.
Receiver -- a RuleBases.
Return -- a leaf node or nil."

(self keys) do: [:key I
((self at: key) size = 0)

ifTrue: [self removeKey: key.
key do: [:goall"goal]]}.

140

Afljl

findsKey: aKey
"Answers the key in the receiver containing aKey.
If the key is not found, answer nil.
Receiver -- a RuleBases.
Argument -- content of a key.
Return -- the found key or nil."

self keysDo: [:key
(key includes: aKey)

ifTrue: [Akey]]
A nil

formNode: aString with: aTable
"Answer a subtree created with aTable. The
subtree's root is aString.
Receiver -- a RuleBases.
1st argument -- name of the subtree's root.
2nd argument -- a weight table.
Return -- a subiree."

ftrans keycond keyrules treel
tree := Tree new.
keyrules := RuleBases new.
treenameNode: aString.
self attachLeafTo: tree.
[(self keys) size > 0]

whileTrue: [
trans := self transpose.
keycond := trans maxKeyWith: aTable.
(trans at: keycond) do: [:goal I

keyrules add: (self associationAt: goal).
self removeKey: goal.
(keyrules at: goal) remove: (keycond deset) ifAbsent: ['not found']].

tree add: (keyrules formNode: (keycond deset) with: aTable)].
Atree

goalHasCond: aCond
"Answer the goal whose rule contains aCond.
Receiver -- a RuleBases.
Argument -- a condition.
Return -- the goal or nil."

self do: [:conds I
(aCond subSetOf: conds)

141

ifTrue: ["(self keyAtValue: conds)]].
"nil

maxKeyWith: aTable
"Find the key whose set has the maximum number of
values.
Receiver -- a RuleBases.
Argument -- a weight table.
Return -- the key."

Imax maxkey sumi
max := 0.
sum := 0.
self keysDo: [:keyl
sum := (self at: key) size * 10 + (aTable at: (key deset)).
(sum> max)

ifTrue: [max := sum.
maxkey := key]].

"maxkey

nameSeif: aString
"Name the receiver aString.
Receiver -- a RuleBases.
Argument -- name given to the receiver.
Return -- no return."

name := aString

nameSR: aString
"Stores the name (aString) of the StringRules
from which the receiver is created.
Receiver -- a RuleBases.
Argument -- name of the related StringRules.
Return -- no return."

stringRule := aString

returnKey: aKey

"Answers the key in the receiver containing aKey.
If the key does not exist, it is added to the
receiver.
Receiver -- a RuleBases.
Argument -- content of a key.
Return -- the key."

Ikeyl

key := (self findsKey: aKey).

142

(key isNil)
ifTrue: [key := Set new.

key add: aKey.
self at: key put: Set new].

Akey

rulesWithGoal: goal
"Answer a set of goals that are the same as goal.
Receiver -- a RuleBases.
Argument -- the goal to be matched.
Return -- the set."

iseti
set := Set new.
self keysDo: [:key I

(goal sameAs: key)
ifTrue: [set add: key]].

Aset

selfName
"Answer the receiver's name.
Receiver -- a RuleBases.
Return -- the receiver's name."

Aname

srName
"Answer the name of the StringRules
from which the receiver is created.
Receiver -- a RuleBases.
Return -- name of the Stringkules."

'stringRule

subAllSubgoal
"Substitute all subgoals by their conditions.
Receiver -- a RuleBases.
Return -- the modified self."

Isubgoal goall
subgoal := self condlsGoal.
[subgoal isNil]

whileFalse: [
goal := self goalHasCond: subgoal.
self subSubgoal: subgoal at: goal.
subgoal := self condlsGoal].

Aseif

143

subS ubgoal: subGoal at: aGoal
"Substitute subgoal in a rule with the subgoal's
conditions.
Receiver -- a RuleBases.
1st argument -- the subgoal in a set.
2nd argument -- the,rule containing the subgoal.
Return -- the modified self."

kemp set indexi
temp := RuleBases new.
set := self rulesWithGoal: subGoal.
(self at: aGoal) remove: (subGoal deset) ifAbsent: ['not found'].
temp at: aGoal put: (self at: aGoal).
self removeKey: aGoal.
temp duplicateAssocAt: aGoal times: (set size - 1).
index := 1.
temp do: {:conds I

conds addAll: (self at: (set asArray at: index)).
index := index + 1].

temp associationsDo: [:pair I
self add: pair].

Aseif

transformWith: aTable
"Answer the search tree created with aTable.
Receiver -- a RuleBases.
Argument -- a weight table.
Return -- a search tree."

[trans keycond keyrules treel
tree := Tree new.
tree nameNocle: 'root'.
keyrules := RuleBases new.
self attachLeafTo: tree.
[(self keys) size > 0]

whileTrue: [
trans := self transpose.
keycond := trans maxKeyWith: aTable.
(trans at: keycond) do: [:goal I

keyrules add: (self associationAt: goal).
self removeKey: goal.

(keyrules at: goal) remove: (keycond deset) ifAbsent: ['not found']].
tree add: (keyrules formNode: (keycond deset) with: aTable)].

Atree

144

transpose
"Transposes the receiver into a new RuleBases. The new RuleBase
uses the values of the receiver as the keys, and the keys of the
receiver as the values.
Receiver -- a RuleBases.
Return -- a RuleBases."

Ikeyset transposed aKeyl
transposed := RuleBases new.
keyset := self keys.
(self values) do: [:value I

keyset do: [:key I
((self at: key) includes: value)

ifTrue: [aKey := (transposed returnKey: value).
(transposed at: aKey) add: key]]].

Atransposed

values
"Returns a Set containing all the values in the sets of the
key/set pairs in the receiver.
Receiver -- a RuleBases.
Return -- a Set."

IanswerI
answer := Set new.
self do: [:value I

value do: [:element I answer add: element]].
Aanswer

Super class -- Set

Collection subclass: #Set
instanceVariableNames:
'elementCount contents'

classYariableNames:"
poolDictionaries:"

Set class methods

new
"Answer a new Set."

Aseif new: 4

new: anlnteger

"Answer a new Set with an initial

145

capacity of anlnteger elements."
"super new initialize: (1 max: anlnteger)

Set methods

add: anObject
"Answer anObject. Add anObject to the receiver
if the receiver does not already contain it."

I index I
anObject isNil

ifTrue: ["anObject].
self adjustSize.
(contents at:

(index := self findElementlndex: anObject)) isNil
if'True: [

elementCount := elementCount + 1.
"contents at: index put: anObject].

"anObject

adjustSize

"Private - Answer the receiver. If the receiver set is
getting full, expand it to accomodate more objects.".

(elementCount * 10) >= (contents size - 2 * 9)
ifTrue: ["self grow]

at: anlnteger
"Access the element at index position anlnteger
in the receiver. This method reports
an error since sets cannot be indexed."

"self errorNotlndexable

at: anlnteger put: anObject
"Replace the element at index position anlnteger
in the receiver with anObject. This method
reports an error since sets are not indexable."

Aseif errorNotlndexable

contents
"Private - Answer an Array containing
contents of the receiver."

"contents

deset

146

"Answers the only element in the receiver. If it
has more than one element, report an error.
Receiver -- a Set.
Return -- the only object in the receiver or an error message."

(self size =1)
ifTrue: [self do: [:element I

"element]]
ifFalse: ["self errorMultipleElement]

do: aBlock
"Answer the receiver. For each element in the receiver,
evaluate aBlock with that element as the argument."

I index element I
index := contents size.
[index> 0]

whileTrue: [
(element := contents at: index) == nil

ifFalse: [aBlock value: element].
index := index - 1]

errorMultipleElement
"Private - Report an error to the effect that the

set contains more than one element."
self error: 'Set has several elements'

findElementlndex: anObject
"Private - Answer the index position of anObject in the
receiver or the first empty element position."

I index indexedObject lastlndex I
lastindex := contents size.
index := (anObject hash) \\ lastlndex + 1.
[(indexedObject := contents at: index) = anObject]

whileFalse: [
(indexedObject nil)

ifTrue: ["index].
(index := index + 1) > lastlndex

ilTrue: ["index wraparound"
index := 1]].

"index

grow

"Private - Answer the receiver expanded
to accomodate more elements."

147

I aSet I
aSet := self species new: contents size * 4/13 + 10.
self do: [:element I aSet add: element].
contents := aSet contents

includes: anObject
"Answer true if the receiver includes anObject
as one of its elements, else answer false."

A((contents at:

(self findElementlndex: anObject)) == nil) not

initialize: aninteger

"Private - Initialize the instance variable
elementCount to zero, contents to an Array
of size anlnteger."

elementCount := 0.
contents := Array new: anlnteger

notlncludes: anObject
"Answer false if the receiver includes anObject
as one of its elements, else answer true.
Receiver -- a Set.
Argument -- an object.
Return -- a Boolean value."

'((contents at:
(self findElementlndex: anObject)) == nil)

occurrencesOf: anObject
"Answer 1 if the receiver includes anObject as
one of its elements, else answer zero."

(self includes: anObject)
ifTrue: [Al]

AU

rehashFrom: aninteger
"Private - Rehash the receiver from the index
position anlnteger to the last index position."

I deletelndex lastlndex searchlndex testObject I
lastlndex := contents size.
deletelndex := anlnteger.
[(deletelndex := deletelndex + 1) > lastlndex

ifTrue: ["index wraparound"
deletelndex := 1].

148

(testObject := contents at: deletelndex) == nil]
whileFalse: ["test next object for relocation"

searchlndex := self findElementlndex: testObject.
(contents at: searchlndex) == nil

ifTrue: ["found object to move"
contents at: searchlndex

put: testObject.
contents at: deletelndex

put: nil]]

remove: anObject ifAbsent: aBlock
"Answer anObject. Remove the element anObject from
the receiver collection. If anObject is not an
element of the receiver, aBlock is evaluated
(with no arguments)."

I index
index := self findElementlndex: anObject.
(contents at: index) == nil

ifTrue: ["aBlock value].
contents at: index put: nil.
elementCount := elementCount - 1.
self rehashFrom: index.
"anObject

sameAs: originalset
"See if the receiver is the same as the argument.

Receiver -- a set.
Argument -- a set.
Returns -- Boolean value."

(self size = originalset size)
ifFalse: ["false]

self do: [:member I
(originalset includes: member)

ifFalse: ["false]].
"tp,je

size
"Answer the number of elements contained
in the receiver."

AelementCount

subSetOf: originalSet

"See if the receiver is a subset of the argument.

149

Receiver -- a set.
Argument -- a set.
Returns -- Boolean value."

self do: [:member I
(originalSet includes: member)

ifFalse: ["false]].
"true

union: aSet
"Returns a union of the receiver and argument.
Receiver -- a Set.
Argument -- a Set.
Return -- a Set."

IanswerI
answer := self asSet.
answer addAll: aSet.
Aanswer

New class -- SetOfFact

Set subclass: #SetOfFact
instanceVariableNames:
'name'

classVariableNames:"
poolDictionaries:"

SetOfFact methods

nameSelf: aString
"Name the receiver aString.
Receiver -- a SetOfFact.
Argument -- name given to the receiver.
Return -- no return."

name := aString

selfName.
"Answer the receiver's name.
Receiver -- a SetOfFact.
Return -- the receiver's name."

"name

New class -- Stack

150

OrderedCollection subclass: #Stack
instanceVariableNames:

stringRule ruleBase table tree setOfFact name'
classVariableNames:
poolDictionaries:"

Stack methods

aCollection
"Answer a Stack containing all the elements of the
receiver followed by all the elements of
aCollection. This method reports an error because
contents of a Stack can only be pushed or popped."

Aself errorConcateNotAllow

add: anObject
"Add anObject after the last element of the
receiver. This method reports an error because
contents of a Stack can only be pushed or popped."

"self errorAddNotAllow

add: newObject after: oldObject

"Insert newObject immediately after the element
oldObject in the receiver collection. This method
reports an error because contents of a Stack can
only be pushed or popped."

"self errorAddNotAllow

add: anObject afterindex: anlnteger
"Insert anObject at index position anlnteger + 1
in the receiver collection. This method reports
an error because contents of a Stack can only be
pushed or popped."

"self errorAddNotAllow

add: newObject before: oldObject
"Insert newObject immediately before the element
oldObject in the receiver collection. This method
reports an error because contents of a Stack can
only be pushed or popped."

"self errorAddNotAllow

add: anObject beforelndex: anlnteger

151

"Insert anObject at index position anlnteger - 1
in the receiver collection. This method reports
an error because contents of a Stack can only be
pushed or popped."

Aself errorAddNotAllow

addAllFirst: aCollection
"Add all the elements contained in aCollection to
the receiver before its first element. This method
reports an error because contents of a Stack can
only be pushed or popped."

Aseif errorAddNotAllow

addAliLast: aCollection
"Add all the elements contained in aCollection to
the receiver after its last element. This method
reports an error because contents of a Stack can
only be pushed or popped."

Aseif errorAddNotAllow

addFirst: anObject
"Add anObject before the first element of the
receiver. This method reports an error because
contents of a Stack can only be pushed or popped."

"self errorAddNotAllow

addLast: anObject
"Add anObject after the last element of the
receiver. This method reports an error because
contents of a Stack can only be pushed or popped."

"self errorAddNotAllow

after: anObject

"Answer the element that immediately follows
anObject in the receiver collection. This method reports an error because
contents of a Stack can only be retrieved using the pop message."

"self errorAddNotAllow

after: anObject ifNone: aBlock
"Answer the element that immediately follows
anObject in the receiver collection. If anObject
is not an element of the receiver, aBlock is
evaluated (with no arguments). This method

152

reports an error because contents of a Stack can
only be retrieved using the pop message."

Aseif errorRtrieveNotA1low

at: anlnteger
"Answer the element of the receiver at index
position anlnteger. This method reports an error
because contents of a Stack can only be retrieved
using the pop message."

Aseif errorRetrieveNotAllow

at: anlnteger put: anObject
"Replace the element of the receiver at index
position anlnteger with the anObject. This
method reports an error because contents of a
Stack can only be pushed or popped."

A self errorAddNotAllow

before: anObject
"Answer the element that immediately precedes
anObject in the receiver collection. This method
reports an error because contents of a Stack can
only be retrieved using the pop message."

Aseif errorRetrieveNotAllow

before: anObject ifNone: aBlock
"Answer the element that immediately precedes
anObject in the receiver collection. If anObject
is not an element of the receiver, aBlock is
evaluated (with no arguments). This method
reports an error because contents of a Stack can
only be retrieved using the pop message."

Aseif errorRetrieveNotAllow

duplicate
"Answer a Stack containing the elements of the
receiver.
Receiver -- a Stack.
Return -- a copy of the receiver."

lanswerl
answer := self species new: self size.
self do: [:element I

answer push: element].

153

Aanswer

emptyStack
"Checks if a stack is empty.
Receiver -- a Stack.
Return -- Boolean value."

0

errorAddNotAllow
"Private - Report an error to the effect that pop

and push are the only stack operations
allowed."

self error: 'Add objects into stacks not allowed'

errorConcateNotAllow
"Private - Report an error to the effect that the

concatenation of two stacks is not
allowed."

self error: 'Concatenation of stacks not allowed'

errorRemoveNotAllow
"Private - Report an error to the effect that pop

and push are the only stack operations
allowed."

self error: 'Remove objects from stacks not allowed'

errorReplaceNotAllow

"Private - Report an error to the effect that pop
and push are the only stack operations
allowed."

self error: 'Replace objects in stacks not allowed'

errorRetrieveNotAllow
"Private - Report an error to the effect that pop

and push are the only stack operations
allowed."

self error: 'Retrieve objects from stacks not allowed'

nameRB: aString
"Stores the name (aString) of the RuleBases
from which the receiver is created.
Receiver -- a Stack.
Argument -- name of the related RuleBases.

154

Return -- no return."
ruleBase := aString

nameS elf: aString
"Name the receiver aString.
Receiver -- a Stack.
Argument -- name given to the receiver.
Return -- no return."

name := aString

nameSOF: aString
"Stores the name (aString) of the SetOfFact
from which the receiver is created.
Receiver -- a Stack.
Argument -- name of the related SetOfFact.
Return -- no return."

setOfFact := aString

nameSR: aString
"Stores the name (aString) of the StringRules
from which the receiver is created.
Receiver -- a Stack.
Argument -- name of the related StringRules.
Return -- no return."

stringRule := aString

nameTb: aString
"Stores the name (aString) of the Table
from which the receiver is created.
Receiver -- a Stack.
Argument -- name of the related Table.
Return -- no return."

table := aString

nameTr: aString
"Stores the name (aString) of the Tree
from which the receiver is created.
Receiver -- a Stack.
Argument -- name of the related Tree.
Return -- no return."

tree := aString

POP

155

"Retrive the top of the stack.
Receiver -- a Stack.
Return -- nil or top of stack."

(self emptyS tack)
ifTrue: ["nil]

"super removeLast

push: anObject
"Put an entry onto the stack.
Receiver -- a Stack.
Argument -- an object.
Return -- size of the Stack."

super add: anObject.
"endPosition

rbName
"Answer the name of the RuleBases
from which the receiver is created.
Receiver -- a Stack.
Return -- name of the RuleBases."

"ruleBase

remove: anObject ifAbsent: aBlock
"Remove the element anObject from the receiver
collection. If anObject is not an element of the
receiver, aBlock is evaluated (with no arguments).
This method reports an error because contents of
a Stack can only be pushed or popped."

Aself errorRemoveNotAllow

removeFirst
"Remove and answer the first element of the
receiver. This method reports an error because
contents of a Stack can only be pushed or popped."

Aseif errorRemoveNotAllow

removelndex: anlnteger
"Remove the element of the receiver at index
position anlnteger. This method reports an error
because contents of a Stack can only be pushed or
popped."

"self errorRemoveNotAllow

156

removeLast
"Remove and answer the last element of the receiver.
This method reports an error because contents of
a Stack can only be pushed or popped."

Aseif errorRemoveNotAllow

replaceFrom: start to: stop with: aCollection
"Answer a new OrderedCollection containing the
receiver whose elements at index position start
through stop have been replaced by the elements
of aCollection. This method reports an error
because contents of a Stack can only be modified
using the pushed and popped messages."

Aseif errorReplaceNotAllow

selfName
"Answer the receiver's name.
Receiver -- a Stack.
Return -- the receiver's name."

Aflame

sofName
"Answer the name of the SetOfFact
from which the receiver is created.
Receiver -- a Stack.
Return -- name of the SetOfFact."

AsetOfFact

srName
"Answer the name of the StringRules
from which the receiver is created.
Receiver -- a Stack.
Return -- name of the StringRules."

AsthngRule

tbName
"Answer the name of the Table
from which the receiver is created.
Receiver -- a Stack.
Return -- name of the Table."

,"table

trName

157

"Answer the name of the Tree
from which the receiver is created.
Receiver-- a Stack.
Return -- name of the Tree."

"tree

New class -- StringRules

Dictionary subclass: #StringRules
instanceVariableNames:
'name'

classVariableNames:"
poolDictionaries:"

StringRules methods

add: anAssociation
"Add anAssociation to the receiver. Both the key
and value must be instances of class String. If
not, an error will be displayed.
Receiver -- a StringRules.
Argument -- a key/value pair.
Return -- the key/value pair."

(anAssociation key class = String)
ifTrue: [(anAssociation value class = String)

ifTrue: ["super add: anAssociation]
ifFalse: ["self errorValueNotString]]

ifFalse: ["self errorKeyNotString]

at: aKey put: aString
"Add the aKey/aSet pair into the receiver. If aKey
already exists in the receiver, its associated
value will be replaced by aString. Both aKey and
aString must be instances of class String. If not,
an error message will be displayed.
Receiver -- a StringRules.
1st argument -- the key.
2nd argument -- the value.
Return -- the value."

(aKey class = String)
ifTrue: [(aString class = String)

ifTrue: ["super at: aKey put: aString]
ifFalse: ["self errorValueNotString]J

158

ifFalse: ["self errorKeyNotString]

dissociate
"Dissociates the rules in the receiver. Answer
a RuleBases containing the dissociated rules.
Receiver -- a StringRules.
Return -- the dissociated rules."

lindex returnArray setArray aRulebasel
aRulebase := RuleBases new.
self keysDo: [:key I

returnArray := (self at: key) breakDown.
setArray := Array new: returnArray size.
index := 1.
returnArray size timesRepeat: [

setArray at: index put: Set new.
(setArray at: index) add: key.
aRulebase at: (setArray at: index) put: (returnArray at: index).
index := index + 1]].

AaRulebase

errorKeyNotString
"Private - Report an error to the effect that the

key in the key/value pair is not an
instance of class String."

self error: 'Key is not a String'

errorValueNotString
"Private - Report an error to, the effect that the

value in the key/value pair is not an
instance of class String."

self error: 'Value is not a String'

nameSeif: aString
"Name the receiver aString.
Receiver -- a StringRules.
Argument -- name given to the receiver.
Return -- no return."

name := aString

selfName
"Answer the receiver's name.
Receiver -- a StringRules.
Return -- the receiver's name."

159

Aflame

New class -- Table

Dictionary subclass: #Table
instanceVariableNames:
'ruleBase stringRule name'

class VariableNames:
poolDictionaries:"

Table methods

add: anAssociation
"Add añAssociation to the receiver. The value in
anAssociation must be an instance of class Number.
If not, an error will be displayed.
Receiver -- a Table.
Argument -- a key/value pair.
Return -- the key/value pair."

(anAssociation value isKindOf: Number)
ifTrue: [Asuper add: anAssociation]
ifFalse: ["self errorValueNotNumber]

at: aKey put: aNumber

"Add the aKey/aNumber pair into the receiver. If
aKey already exists in the receiver, its associated
value will be replaced by aNumber. The second
argument must be an instance of class Number. If
not, an error message will be displayed.
Receiver -- a Table.
1st argument -- the key.
2nd argument -- the value.
Return -- the value."

(aNumber isKindOf: Number)
ifTrue: [A superat: aKey put: aNumber]
ifFalse: ["self errorValueNotNumber]

errorValueNotNumber
"Private - Report an error to the effect that the

value in the key/value pair is not an
instance of class Number."

self error: 'Value is not a Number'

160

maxiGoalWeightAt: aKey to: aWeight
"Change the weight of aKey in the RuleBases to the
maximum of aWeight and original weight.
Receiver -- a Table.
1st argument -- the key.
2nd argument -- suggested weight.
Return -- no return."

Irbi
rb := RuleBDict at: (self rbName).
rb keysDo: [:key I

(key includes: aKey)
ifTrue: [

(rb at: key) do: [:cond I
self maxiinizeWeightAt: cond to: aWeight]]]

maximizeWeightAt: aKey to: aWeight
"Change the weight of aKey in self to the maximum
of aWeight and original weight.
Receiver -- a Table.
1st argument -- the key.
2nd argument -- suggested weight.
Return -- the maximum weight."

"self at: aKey put: (aWeight max: (self at: aKey))

nameRB: aString
"Stores the name (aString) of the RuleBases
from which the receiver is created.
Receiver -- a Table.
Argument -- name of the related RuleBases.
Return -- no return."

ruleBase := aString

nameSeif: aString
"Name the receiver aString.
Receiver -- a Table.
Argument -- name given to the receiver.
Return -- no return."

name := aString

nameSR: aString

"Stores the name (aString) of the StringRules
from which the receiver is created.
Receiver -- a Table.

161

Argument -- name of the related StringRules.
Return -- no return."

stringRule := aString

newWeightAt: aKey to: aWeight
"Change the weight of aKey in self to aWeight.
Receiver -- a Table.
1st argument -- the key.
2nd argument -- new weight.
Return -- the new weight."

Aseif at: aKey put: aWeight

rbName
"Answer the name of the RuleBases
from which the receiver is created.
Receiver -- a Table.
Return -- name of the RuleBases."

"ruleBase

selfName
"Answer the receiver's name.
Receiver -- a Table.
Return -- the receiver's name."

Aflame

srName
"Answer the name of the StringRules
from which the receiver is created.
Receiver -- a Table.
Return -- name of the StringRules."

"stringRule

New class -- Tree

OrderedCollection subclass: #Tree
instanceVariableNames:
'root stringRule ruleBase table name'

classYariableNames:
poolDictionaries:"

Tree class methods

new

162

"Answer a new tree.
Receiver -- a Tree.
Return -- a new Tree."

'super new initialize

Tree methods

attach: anObject
"Append anObject to the parent node self.
Receiver -- a Tree.
Argument -- an object.
Return -- the position index of anObject."

self add: anObject.
Aenffosjtjon

initialize
"Private - Initialize the instance variable root

to nil.
Receiver -- a Tree.
Return -- no return."

root := nil

isLeaf
"Checks if the node is a leaf node.
Receiver -- a Tree.
Return -- Boolean value."

(endPosition =0)
ifTrue: [Atpje]

A false

nameNode: aString
"Name the tree-node aString.
Receiver -- a Tree.
Argument -- the name.
Return -- no return."

root := aString

nameRB: aString
"Stores the name (aString) of the RuleBases from
which the receiver is created;
Receiver -- a Tree.
Argument -- name of the related RuleBases.
Return -- no return."

163

ruleBase aString

nameSeif: aString
"Name the receiver aString.
Receiver -- a Tree.
Argument -- name given to the receiver.
Return -- no return."

name := aString

nameSR: aString
"Stores the name (aString) of the StringRules from
which the receiver is created.
Receiver -- a Tree.
Argument -- name of the related StringRules.
Return -- no return."

stringRule := aString

nameTb: aString

"Stores the name (aString) of the Table from which
the receiver is created.
Receiver -- a Tree.
Argument -- name of the related Table.
Return -- no return."

table := aString

nodeName
"Answer the name of the node.
Receiver -- a Tree.
Return -- name of the node."

Aroot

rbName
"Answer the name of the RuleBases from which the
receiver is created.
Receiver -- a Tree.
Return -- name of the RuleBases."

"ruleBase

searchWith: aSOF

"Search the receiver and answer a Stack containing
all the results.
Receiver -- a Tree.
Argument -- the set storing facts.

164

Return -- stack containing all the solution paths."
lindex aStack name pathS tacki
pathStack := Stack new.
aStack := Stack new.
index := 1.
self do: [:node I
name := node nodeName.
(node isLeaf)

ifFalse: [
(((name notStartWithNot) &
(aSOF includes: name)) I
((name startWithNot) &
(aSOF notlncludes: (name asStringFrom: 2 to: name size))))
ifTrue: [

aStack push: name.
((self at: index) searchWith: aSOF with: aStack) do: [:each I

pathStack push: each].
aStack pop]]

ifTrue: [aStack push: name.
pathStack push: (aStack duplicate).
aStack pop].

index := index + 1].
ApathStack

searchWith: aSOF with: aStack
"Search the receiver and answer a Stack containing
all the results.
Receiver -- a Tree.
1st argument -- the set storing facts.
2nd argument -- stack storing the path currently

being searched.
Return -- stack containing all the solution paths."

lindex name pathStackl
pathStack := Stack new.
index := 1.
self do: [:node I
name := node nodeName.
(node isLeaf)

ifFalse: [
(((name notStartWithNot) &
(aSOF includes: name)) I
((name startWithNot) &

(aSOF notlncludes: (name asStringFrom: 2 to: name size))))

165

ifTrue: [
aStack push: name.
((self at: index) searchWith: aSOF with: aStack) do: [:each I

pathStack push: each].
aStack pop]]

ifTrue: [aStack push: name.
pathStack push: (aStack duplicate).
aStack pop].

index := index + 1].
ApathStack

selfName
"Answer the receiver's name.
Receiver -- a Tree.
Return -- the receiver's name."

Aflame

srName

"Answer the name of the StringRules from which the
receiver is created.,
Receiver -- a Tree.
Return -- name of the SiringRules."

AstringRule

tbName

"Answer the name of the Table from which the
receiver is created.
Receiver -- a Tree.
Return - name of the Table."

Atable

166

APPENDIX C

Listing of the rules used in the 5-substation illustrations

The following are the 118 rules used in the four illustrations involving the

5-substation model.

If CB8_tripped and CB95_tripped and CB757B_tripped and CB8 1_tripped then

B138A-1_fault

If CB8_tripped and CB95_tripped and CB9_tripped and CB717A_tripped then

B138B-1_fault

If CB88_tripped and CB76_tripped and CB717B_tripped and CB74_tripped then

B 138A-2 fault

If CB88_tripped and CB76_tripped and CB44_tripped and CB755A_tripped then

B 138B-2_fault

If CBS2_tripped and CB62_tripped and CB36_tripped and CB3A_tripped then

B 138A-3_fault

If CB52_tripped and CB62_tripped and CB797A_tripped and CB6O_tripped then

B 138B-3_fault

If CB7O_tripped and CB79_tripped and CB1_tripped and CB727A_tripped then

167

B 138A-5 fault

If CB7O_tripped and CB79_tripped and CB3B_tripped and CB55jripped then

B 138B-5_fault

If CB11_tripped and CB12_tripped and CB9O6B_tripped and CB1O1_tripped and

CB918A_tripped then B240A- 1_fault

If CB 1 1_tripped and CB 12_tripped and CB23_tripped and CB900A_tripped then

B240B- 1_fault

If CB63_tripped and CB5_tripped and CB900B_tripped and CB8O_tripped then

B240A-2 fault

If CB63_tripped and CB5_tripped and CB45_tripped and CB929A_tripped and

CB9O lA_tripped then 13240B-2_fault

If CB54_tripped and CB61_tripped and CB13_tripped and CB916A_tripped then

13240A-3_fault

If CB54_tripped and CB61_tripped and CB9O6A_tripped and CB4O_tripped then

B240B-3_fault

If CB21_tripped and CB28_tripped and CB916B_tripped then B240A-4_fault

If CB21_thpped and CB28_tripped and CB917A_tripped and CB91 1B.jripped

then B240B-4_fault

168

If CB73_tripped and CB77_tripped and CB6_tripped and CB929B_tripped then

B240A-5_fault

If CB73_tripped and CB77_tripped and CB917B_tripped and CB97_tripped and

CB918B_tripped then B240B-5_fault

If CB9_tripped and CB1O1_tripped then Ti-i_fault

If CB 1-tripped and CB23_tripped then T2- 1-fault

If CB44_tripped and C845_tripped then TI-2-fault

If CB74_tripped and CB8O_tripped then T2-2,-fault

If CB13_tripped and CB36_tripped then Ti-3_fault

If CB4O_tripped and CB6O_tripped then T2-3-fault

If CB97_tripped and CB i_tripped then Ti-5_fault

If CB6_tripped and CB55_tripped then T2-5-fault

If CB3A_tripped and CB3B_tripped then L3-fault

If CB7i7A_tripped and CB717B_tripped then L717-fault

If CB900A_tripped and CB900B_tripped then L900-fault

If CB9O6A_tripped and CB9O6B_tripped then L906_fault

169

If CB916A_tripped and CB916B_tripped then L916-fault

If CB917A_tripped and CB917B_tripped then 1,917-fault

If CB918A_tripped and CB918B_tripped then L918 fault

If CB929A_tripped and CB929B_tripped then L929-fault

If CB757B_tripped and CB717A_tripped and CB9_tripped and CB81jripped and

CB95_tripped and !CB8_tripped or (CB757B_tripped and CB717A_tripped and

CB9_tripped and CB8 1_tripped and CB8_tripped and !CB95_tripped) or

(CB8_tripped and CB95_tripped and CB757B_tripped and CB23_tripped and

!CB8 1-tripped) then possible_B 138A-1_fault

If CB757B_tripped and CB717A_tripped and CB9_tripped and CB8 1_tripped and

CB95_tripped and !CB8_tripped or (CB757B_tripped and CB717A_tripped and

CB9_tripped and CB8 1_tripped and CB8_tripped and !CB95_tripped) or

(CB8_tripped and CB95_tripped and CB717A_tripped and CB1O1_tripped and

!CB9_tripped) or (CB8_tripped and CB95_tripped and CB9_tripped and

CB7 17B_tripped and ! CB7 17A_tripped) then possible_B 138B- 1_fault

If CB76_tripped and CB717B_tripped and CB755A_tripped and CB44_tripped and

CB74_tripped and !CB88_tripped or (CB88_tripped and CB717B_tripped and

CB755A_tripped and CB44_tripped and CB74_tripped and !CB76_tripped) or

(CB88_tripped and CB76_tripped and CB717B_tripped and CB8O_tripped and

!CB74_tripped) or (CB88_tripped and CB76_tripped and CB717A_tripped and

170

CB74_tripped and! CB7 17B_tripped) then possible_B 138A-2_fault

If CB76_tripped and CB717B_tripped and CB755A_tripped and CB44_tripped and

CB74_tripped and !CB88_tripped or (CB88_tripped and CB717B_tripped and

CB755A_tripped and CB44_tripped and CB74_tripped and !CB76_tripped) or

(CB88_tripped and C1376—tripped and CB755A_tripped and CB45_tripped and

I CB44_tripped) then possible_B 138B-2_fault

If CB62_tripped and CB36_tripped and CB6O_tripped and CB797A_tripped and

CB3A_tripped and !CB52_tripped or (CB52_tripped and CB36_tripped and

CB6O_tripped and CB797A_tripped and CB3A_tripped and !CB62_tripped) or

(CB52_tripped and CB62_tripped and CB 13_tripped and CB3A_tripped and

!CB36_tripped) or (CB52_tripped and CB62_tripped and CB36_tripped and

CB3B_tripped and !CB3A_tripped) then possible_B 138A-3_fault

If CB62_tripped and CB36_tripped and CB6O_tripped and CB797A_tripped and

CB3A_tripped and !CB52_tripped or (CB52_tripped and CB36_tripped and

CB6O_tripped and CB797A_tripped and CB3A_tripped and !CB62_tripped) or

(CB52_tripped and CB62_tripped and CB4O_tripped and CB797A_tripped and

!CB6O_tripped) then possible_B 138B-3—fault

If CB79_tripped and CB1_tripped and CB55_tripped and CB3B_tripped and

CB727A_tripped and !CB7O_tripped or (CB7O_tripped and CB1_tripped and

CB55_tripped and CB3B_tripped and CB727A_tripped and !CB79_tripped) or

(CB7O_tripped and CB79_tripped and CB97_tripped and CB727A_tripped and

171

CB 1—tripped) then possible_B 13 8A-5_fault

If CB79_tripped and CB 1_tripped and CB55_tripped and CB3B_tripped and

CB727A_tripped and !CB7O_tripped or (CB7O_tripped and CBI-tripped and

CB55_tripped and CB3B_tripped and CB727A_tripped and !CB79_tripped) or

(CB7O_tripped and CB79_tripped and CB3A_tripped and CB55_tripped and

!CB3B_tripped) or (CB7O_tripped and CB79_tripped and CB3B_tripped and

CB6_tripped and! CB55_tripped) then possible_B 138B-5 'fault

If CB12_tripped and CB101_tripped and CB23_tripped and CB9O6B_tripped and

CB918A_tripped and CB900&..tripped and !CB11_tripped or (CB11_tripped and

CB1O1_tripped and CB23_tripped and CB9O6B_tripped and CB918A_tripped

and CB900A_tripped and !CB 12_tripped) or (CB 11_tripped and CB 12_tripped

and CB9O6A_tripped and CB918A_tripped and CB1O1_tripped and

ICB9O6B_tripped) or (CB11_tripped and CB12_tripped and CB9O6B_tripped and

CB918B_tripped and CB101_tripped and !CB918A_tripped) or (CB11_tripped

and CB12_tripped and CB9O6B_tripped and CB918A_tripped and CB9_tripped

and! CB 101—tripped) then possible_B240A- 1_fault

If CB12_tripped and CB101_tripped and CB23_tripped and CB9O6B_tripped and

CB9 18A_tripped and CB900A_tripped and I CB 1 1_tripped or (CB 1 1_tripped and

CB1O1_iripped and CB23_tripped and CB9O6B_tripped and CB918A_tripped

and CB900A_tripped and !CB12_tripped) or (CB1 1_tripped and CB12_tripped

and CB900B_tripped and CB23_tripped and !CB900A_tripped) or

(CB1 1_tripped and CB12_tripped and CB900A_tripped and CB8 1_tripped and

172

CB23_tripped) then possible_B240B-1_fault

If CB5_tripped and CB45_tripped and CB8O_tripped and CB900B_tripped and

CB929A_tripped and CB9O1A_tripped and !CB63_tripped or (CB63_tripped and

CB45_tripped and CB8O_tripped and CB900B --- tripped and CB929A_tripped and

CB9O1A_tripped and !CB5_tripped) or (CB63_tripped and CB5....tripped and

CB900A_tripped and CB8O_tripped and !CB900B_tripped) or (CB63_tripped

and CB5_tripped and CB900B_tripped and CB74_tripped and !CB8O_tripped)

then possible_B240A-2_fault

If CB5_tripped and CB45_tripped and CB8O_tripped and CB900B_tripped and

CB929A_tripped and CB9O1A_tripped and !CB63_tripped or (CB63_tripped and

CB45_tripped and CB8O_tripped and CB900B_tripped and CB929A_tripped and

CB9O lA_tripped and !CB5_tripped) or (CB63_tripped and CB5_tripped and

CB44_tripped and CB929A_tripped and CB9O1A_tripped and !CB45_tripped) or

(CB63_tripped and CB5_tripped and CB929B_tripped and CB45_tripped and

CB9O 1A..tripped and ! CB929A_iripped) then possible_B240B-2_fault

If CB61_tripped and CB9O6A_tripped and CB916A_tripped and CB13_tripped and

CB4O_tripped and !CB54_tripped or (CB54_tripped and CB9O6A_tripped and

CB916A_tripped and CB13_tripped and CB4O_tripped and !CB61_tripped) or

(CB54_tripped and CB61_tripped and CB36_tripped and CB916A_tripped and

!CB13_tripped) or (CB54_tripped and CB61_tripped and CB916B_tripped and

CB 13_thpped and 1 CB9 16A_tripped) then possible_B 240A-3_fault

173

If C1361—tripped and CB9O6A_tripped and CB916A_tripped and CB13_tripped and

CB4O_tripped and !CB54_tripped or (CB54_tripped and CB9O6A_tripped and

CB916A tripped and CB13_tripped and CB4O_tripped and !CB61_tripped) or

(CB54_tripped and CB61_tripped and CB9O6B_tripped and CB4O_tripped and

!CB9O6A_tripped) or (CB54_tripped and CB61_tripped and CB6O_tripped and

CB9O6A_tripped and! CB4O_tripped) then possible_B240B-3_fault

If CB28_tripped and CB916B_tripped and CB917A_tripped and CB911B_tripped

and !CB21_tripped or (CB21_tripped and CB916B_tripped and CB917A_tripped

and CB911B_tripped and !CB28_tripped) or (CB2 1_tripped and CB28_tripped

and CB9 16A_tripped and !CB9 16B_tripped) then possible_B240A-4_fault

If CB28_tripped and CB916B_tripped and CB917A.jripped and CB911B_tripped

and !CB21_tripped or (CB21_tripped and CB916B_tripped and CB917A_ipped

and CB911B_tripped and !CB28_tripped) or (CB21_tripped and CB28_tripped

and CB917B_tripped and CB911B_tripped and !CB917A_tripped) then possi-

ble_B240B-4_fault

If CB73_tripped and CB917B_tripped and CB918B_tripped and CB929B_tripped

and CB97_tripped and CB6_tripped and !CB77_tripped or (CB77_tripped and

CB917B_tripped and CB918B_tripped and CB929B_tripped and CB97_tripped

and CR6_tripped and !CB73_tripped) or (CB73_tripped and CB77_tripped and

CB55_tripped and CB929B_tripped and !CB6_tripped) or (CB73_tripped and

CB77_tripped and CB929A_tripped and CB6_tripped and !CB929B_tripped)

then possible_B240A-5_fault

174

If CB73_tripped and CB917B_tripped and CB918B_tripped and CB929Btripped

and CB97_tripped and CB6_tripped and !CB77_tripped or (CB77_tripped and

CB917B_tripped and CB918B_tripped and CB929B_tripped and CB97...tripped

and CB6_thpped and !CB73_tripped) or (CB73.jripped and CB77_tripped and

CB1_tripped and CB917B_tripped and CB918B_tripped and !CB97_tripped) or

(CB73_tripped and CB77_tripped and CB97_tripped and CB917A_tripped and

CB918B_iripped and !CB917B_tripped) or (CB73_tripped and CB77_tripped and

CB97_tripped and CB917B_tripped and CB918A_tripped and !CB918B_vripped)

then possible_B240B-5_fault

If CB8_tripped and CB95_tripped and CB717A_tripped and CB1O1_tripped and

!CB9_tripped or (CB11_tripped and CB12_tripped and CB9O6B_tripped and

CB918A_tripped and CB9_tripped and !CB1O1_tripped) then possible—Ti-

1-fault

If CB8_tripped and CB95_tripped and CB7S7B_tripped and CB23_tripped and

!CB81_tripped or (CB11_tripped and CB12_tripped and CB900A_tripped and

CB 1—tripped and ! CB23_tripped) then possible—T2- 1—fault

If CB88_tripped and CB76_tripped and CB755A_tripped and CB45_tripped and

!CB44_tripped or (CB63_tripped and CB5_tripped and CB44_tripped and

CB929A_tripped and CB9O1A_tripped and !CB45_tripped) then possible_Ti-

2_fault

If CB88_tripped and CB76_tripped and CB717B_tripped and CB8O_tripped and

175

!CB74_tripped or (CB63_tripped and CB5_tripped and CB900B_tripped and

CB74_tripped and !CB8O_tripped) then possible—T2-2—fault

If CB52_tripped and CB62_tripped and CB13_tripped and CB3A

!CB36_tripped or (CB54_tripped and CB61_rripped and CB36

CB9 16A_tripped and! CB 13_tripped) then possible_T1-3_fault

—tripped and

tripped and

If CB52_tripped and CB62_tripped and CB4O_tripped and CB797A

!CB6O_tripped or (CB54_tripped and CB61_tripped and CB6O

CB9O6A_tripped and !CB4O_tripped) then possible_T2-3_fault

_tripped and

_tripped and

If CB7O_tripped and CB79_tripped and CB97_tripped and CB727A

CB 1_tripped or (CB73_tripped and CB77_tripped and CB 1_

CB917B_tripped and CB918B_tripped and !CB97_tripped) then

5—fault

If CB7O_tripped and CB79_tripped and CB3B_tripped and CB6

!CB55_tripped or (CB73_tripped and CB77_tripped and CBS5

CB929B_tripped and !CB6_tripped) then possible_T2-5_fault

_tripped and

tripped and

possible_Ti -

_tripped and

_tripped and

If CB52_tripped and CB62_tripped and CB36_tripped and CB3B

!CB3A_tripped or (CB7O_tripped and CB79_tripped and CB3A

CB55_tripped and !CB3B_tripped) then possible_L3_fault

_tripped and

_tripped and

If CB8_tripped and CB95_tripped and CB9_tripped and CB717B_tripped and

_tripped and _ !CB717A_tripped or (CB88_tripped and CB76iripped and CB717A,

176

CB74_tripped and! CB7 17B_tripped) then possible_L7 17_fault

If CB 1 1—tripped and CB 12—tripped and CB900B_tripped and CB23_tripped and

!CB900A_tripped or (CB63_tripped and CB5_tripped and CB900A_iripped and

CB8O_tripped and !CB900B_tripped) then possible_L900_fault

If CB1 1_tripped and CB12_tripped and CB9O6A_tripped and CB918A_tripped and

CB1O1_tripped and !CB9O6B_tripped or (CB54_tripped and CB61_thpped and

CB9O6B_tripped and CB4O_tripped and !CB9O6A_tripped) then possi-

b1e_L906_fault

If CB54_tripped and CB61_tripped and CB916B_tripped and CB13_iripped and

!CB916A_tripped or (CB21_tripped and CB28....tripped and CB916A_tripped and

CB9 16B_tripped) then possible_L9 16_fault

If C1321—tripped and CB28_tripped and CB917B_tripped and CB911B_tripped and

!CB917A_tripped or (CB73_tripped and CB77_tripped and CB97_tripped and

CB917A_tripped and CB918B_tripped and !CB917B_tripped) then possi-

ble_L9 17_fault

If CB11_tripped and CB12_tripped and CB9O6B_tripped and CB918B_tripped and

CB1O1_tripped and !CB918A_tripped or (CB73_tripped and CB77_tripped and

CB97_tiipped and CB917B_tripped and CB918A_tripped and !CB918B_tripped)

then possible_L9 18_fault

If CB63_tripped and CB5_tripped and CB929B_tripped and CB45_tripped and

177

CB9O1A_tripped and !CB929A_tripped or (CB73_tripped and CB77_tripped and

CB929A_tripped and CB6_tripped and !CB929B_tripped) then possi-

ble_L929_fault

If CB7O_tripped and CB79_tripped and CB97_tripped and CB727A_tripped and

!CB1_tripped then CB1_fáilstotrip

If CB11_tripped and CB12_tripped and CB9O6B_thpped and CB918A_tripped and

CB9_tripped and !CB1O1_tripped then CB1O1_failstotrip

If CB12_tripped and CB1O1_tripped and CB23_tripped and CB9O6B_tripped .and

CB918A_tripped and CB900A_tripped and !CB1 1_tripped then CB1 1_failstotrip

If CB11_tripped and CB1O1_tripped and CB23_tripped and CB9O6B_tripped and

CB918A_tripped and CB900A_tripped and !CB12_tripped then CB12_failstotrip

If CB54_iripped and CB61_tripped and CB36_tripped and CB916A_tripped and

CB 13—tripped then CB 13_failstotrip

If CB28_tripped and CB916B_tripped and CB917A_tripped and CB911B_tripped

and !CB2 1—tripped then CB21_failstotrip

If CB 1 1_tripped and CB 12_tripped and CB900A_tripped and CB8 1_tripped and

!CB23_tripped then CB23_failstotrip

If CB21_tripped and CB916B_tripped and CB917A_tripped and CB911B_tripped

and! CB28_tripped then CB28_failstotrip

178

If CB52_tripped and CB62_tripped and CB 13_tripped and CB3A_tripped and

!CB36_tripped then CB36_failstotrip

If CB52_tripped and CB62_tripped and CB36_tripped and CB3B_tripped and

!CB3A_tripped then CB3A_failstotrip

If CB7O_tripped and CB79_tripped and CB3A_tripped and CB55_tripped and

!CB3B_tripped then CB3B_failstotrip

If CB54_tripped and CB61_tripped and CB6O_tripped and CB9O6A_tripped and

!CB4O_tripped then CB4O_failstotrip

If CB88_tripped and CB76_tripped and CB755A_tripped and CB45_tripped and

!CB44_tripped then CB44_failstotrip

If CB63_tripped and CB5_tripped and CB44_tripped and CB929A_tripped and

CB9O lA_tripped and !CB45_tripped then CB45_failstotrip

If CB63_tripped and CB45_tripped and CB8O_tripped and CB900B_tripped and

CB929A_tripped and CB9O1A_tripped and !CB5_tripped then CB5_failstotrip

If CB62_tripped and CB36_tripped and CB6O_tripped and CB797A_tripped and

CB3A_tripped and !CB52_tripped then CB52_failstotrip

If C1361—tripped and CB9O6A_tripped and CB916A_tripped and CB13_tripped and

CB4O_tripped and! CB54_tripped then CB54_failstotrip

If CB7O_tripped and CB79_tripped and CB3B_tripped and CB6_tripped and

179

!CB55_tripped then CB55_failstotrip

If CB73_tripped and CB77_tripped and CB55_tripped and CB929B_tripped and

!CB6_tripped then CB6_failstotrip

If CB52_tripped and CB62_tripped and CB4O_tripped and CB797A_tripped and

!CB6O_tripped then CB6OJai1stotrip

If CB54_tripped and CB9O6A_tripped and CB916A_tripped and CB 13_tripped and

CB4O_tripped and !CB6 1_tripped then CB61_failstotrip

If CB52_tripped and CB36_tripped and CB6O_tripped and CB797A_tripped and

CB3A_tripped and !CB62_tripped then CB62_failstotrip

If CB5_tripped and CB45_tripped and CB8O_tripped and CB900B_tripped and

C929A_tripped and CB9O lA_tripped and !CB63_tripped then CB63_failstotrip

If CB79_tripped and CB1_tripped and CB55_tripped and CB3B_tripped and

CB727A_tripped and !CB7O_tripped then CB7O_failstotrip

If CB8_tripped and CB9S_tripped and CB9_tripped and CB717Bjripped and

CB7 17A_tripped then CB7 17A_failstotrip

If CB88_tripped and CB76_tripped and CB717A_thpped and CB74_tripped and

!CB717B_tripped then CB717B_failstotrip

If CB77_tripped and CB917B_tripped and CB918B_tripped and CB929B_tripped

and CB97 tripped and CB6_tripped and !CB73_tripped then CB73_failstotrip

180

If CB88_tripped and CB76_tripped and CB717B_tripped and CB8O_tripped and

!CB74_tripped then CB74_fai1stotrip

If CB88_tripped and CB717B_thpped and CB755A_tripped and CB44_tripped and

C1374-tripped and !CB76_tripped then CB76_failstotrip

If CB73_tripped and CB917B_tripped and CB918B_tripped and CB929B_tripped

and CB97_tripped and CB6_tripped and !CB77_tripped then CB77_failstotrip

If CB7O_vripped and CB 1_tripped and CB55_tripped and CB3B_tripped and

CB727A_tripped and !CB79_tripped then CB79_failstotrip

If CB757B_tripped and CB717A_tripped and CB9_tripped and CB8 1_tripped and

CB95_tripped and ! CB8_tripped then CB 8_failstotrip

If CB63_tripped and CB5_tripped and CB900B_tripped and CB74_tripped and

!CB8O_tripped then CB8O_failstotrip

If CB8_tripped and CB95_tripped and CB757B_tripped and CB23_tripped and

!CB8 1_tripped then CB81_failstotrip

If CB76_tripped and CB717B_tripped and CB755A_tripped and CB44_tripped and

CB74_tripped and !CB88_tripped then CB88_failstotrip

If CB8_tripped and CB95_tripped and CB717A_tripped and CB101_tripped and

!CB9_tripped then CB9_failstotrip

If CB 1 1_tripped and CB 12_tripped and CB900B_tripped and CB23_tripped and

181

CB900A_tripped then CB900A_failstotrip

If CB63.jripped and CB5_tripped and CB900A_tripped and CB8O_tripped and

CB900B_tripped then CB900B_failstotrip

If CB54_tripped and CB61_tripped and CB9O6B_tripped and CB4O_tripped and

CB9O6A_tripped then CB9O6A_failstotrip

If CB 1 1_tripped and CB 12_tripped and CB9O6A_tripped and CB9 18A.Jripped and

CB 10 1—tripped and I CB9O6B_tripped then CB9O6B_failstoirip

If CB54_tripped and CB61_tripped and CB916B_tripped and CB13_tripped and

CB9 1 6A_tripped then CB9 16A_failstoirip

If CB21_tripped and CB2S_tripped and CB916A_tripped and !CB916B_tripped

then CB9 16B_failstotrip

If CB2 1_tripped and CB28_tripped and CB917B_tripped and CB91 lB_tripped and

I CB9 17A_tripped then CB9 17A_failstotrip

If CB73_tripped and CB77...tripped and CB97_tripped and CB917A_tripped and

CB918B_tripped and !CB917B_tripped then CB917B_failstotrip

If CB11_iripped and CB12_tripped and CB9O6B_tripped and CB918B_tripped and

CB101_tripped and !CB918A_tripped then CB918A_failstotrip

If CB73_tripped and CB77_tripped and CB97_tripped and CB917B_tripped and

CB918A_tripped and ICB918B_tripped then CB918B_failstotrip

182

If CB63_tripped and CB5_tripped and CB929B_tripped and CB45_tripped and

CB9O 1 A_tripped and! CB929A_tripped then CB929A_failstotrip

If CB73_tripped and C1377—tripped and CB929A_tripped and CB6_tripped and

!CB929B_tripped then CB929B_failstotrip

If CB757B_tripped and CB717A_tripped and CB9_tripped and CB8 1_tripped and

CB8_tripped and !CB95_tripped then CB95_failstotrip

If CB73_tripped and CB77_tripped and CB1_tripped and CB917B_tripped and

CB918B_tripped and !CB97_tripped then CB97_failstotrip

183

APPENDIX D

Listing of the rules used in speed comparison

The following are the 40 rules used in the search speed comparison be-

tween the proposed and Prolog/V's search algorithm. The first three, first ten,

first 20, first 30, and 40 rules are used in the first, second, third, fourth, and fifth

comparison, respectively.

If a and b then A

If c and then B

If B and then C

If a and d and f then D

If g and h and i and j then C

IfC and k and 1 then D

If a and m then E

If m and n and o then F

If p and q and r and s and t then G

If u and v and w and E then G

184

If D and G and x and then H

If a and t and then I

If z and aa and H and bb then J

If cc and and then K

If A and dd and B then L

If ee and ff and then M

If gg and hh and ii and E then M

If p and aa and K then M

If e and 111 and then M

If jj and kk and u and bb then N

If M and G and 11 and mm then 0

If L and II and p then 0

If x and z and mm then P

If oo and 0 then Q

If P and pp and qq then R

If R and w and ss and rr then S

185

If a and bb and o then S

If g and 11 and tt then Q

If S and M then T

If land tt and rr then S

If uu and vv andww and xx then T

If yy and zz then U

If U and aaa then V

If V and bbb and then W

If W and and then Z

If ccc and ddd and eee then X

If fff and ggg and oo then Y

If hhh and S then X

If uuu and zzz then YY

If vvv and www and xxx and yyy then ZZ

