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Abstract 

In this dissertation, we study properties of Lucas sequences; specifically, proper-

ties of the sequences X.() and Ya(n), which are the sequences of solutions of the 

Fell equation x2 - (a2 - 4)y2 = 4. Using these properties, we give definitions of 

some new types of Lucas pseudoprime, and hence new methods for studying primes. 

First we define several types of pseudoprime. Second we prove that if an integer n 

is one of these kinds of pseudoprime, for sufficiently many bases a, then n must be 

prime. Also we construct formulas for the number of incongruent bases a mod n 

such that n is a pseudoprime to the base a for various types of Lucas pseudoprime. 

In this dissertation, we also study related questions about ordinary pseudoprimes. 

We construct formulas for the number of incongruent bases a mod n such that n is 

a strong pseudoprime to the base a and the number of incongruent bases a mod n 

such that n is an ordinary Euler pseudoprime to the base a. Finally, returning to 

Lucas pseudoprimes, we show that for any odd composite integer n, the number of 

incongruent bases mod n to which n is an Euler Lucas pseudoprime is always less 

than (n - 2)/2, less than (n-2)/3 if n is not a Lucas Carmichael number, and less 

than (n-2)/4 in some other cases. 
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Introduction 

In this dissertation, we study the properties of the sequence of solutions of the 

Fell equation 

(i) 2;2 - (a2 - 4)y2 = 4, 

which includes the sequence of solutions of the Fell equation 

(ii) X2 - (a2 - 1)y2 = 1 

as a special case. The sequences of solutions of the Fell equations (i) and (ii) are 

examples of Lucas sequences. Lucas sequences played an important role in the 

solution of Hubert's tenth problem by Matijasevië in 1970. In his original proof, 

Matijasevië used a Lucas sequence, the sequence of Fibonacci numbers, to show 

that exponentiation is Diophantine definable. This solved Hilbert's tenth problem in 

the negative, based on previous work of M. Davis, Julia Robinson and H. Putnam. 

Now many modern, simplified proofs have been given. In these modern proofs the 

original Fibonacci sequence has been replaced by the sequence of solutions of the 

Fell equation (i) or (ii). 

The sequence of solutions of (i) contains the sequence of solutions of (ii) as a 

subsequence when a is even. Hence the former sequence is more general. Follow-

ing the notation of Y. Matijasevië and J. Robinson [33] [20] [21], throughout this 

dissertation, we denote the nth x solution and the nth y solution of (i) by Xa(fl) and 

Y. (n), respectively. 

The sequences Xa(fl) and Y0 (n) are equal to the Lucas functions V0 (P, Q) and 

U(P, Q) when P = a and Q = 1. In general U(P, Q) and V(P, Q) are defined by 
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U(P,Q)=(a'1—f3')/(a-1i), V(P,Q)=&+/3 

where a and 3 are the roots of the polynomial x2 - Px + Q and P, Q are arbitrary 

but fixed coprime integers. However Q = 1 is not very restrictive since it is known 

that ([52]) QV(P', 1) V2 (P, Q) (mod n) 

PQ"'U(P', 1) U2 (P, Q) (mod n) 

whenever (Q, n)= 1 and QP' = P2-2Q (mod n). 

We will show in §1 that X,, (n)= V(a, 1) and Y. (n)= U(a, 1). Hence the theory 

of Xa(fl) and Ya(fl) becomes a part of classical Lucas - Lehmer theory. Throughout 

the dissertation we are studying Lucas - Lehmer theory. However we have our own 

point of view, coming from logic, and we emphasize different things which are useful 

to us, for example, things useful in Diophantine representation. We also hope some 

of these things may be relevant to the possible eventual attainment of a polynomial 

time algorithm for primality testing. 

We obtain the following new main results: 

(1) We define some new types of pseudoprimes related to the sequences Xa (n) 

and Y (n); namely, t-pseudoprime (tpsp), r-pseudoprime (rpsp) and a-pseudoprime 

(apsp), which are consequences of Theorems 7.11 and 7.13 - 7.14, also slxpsp(a), an 

exceptionally strong kind of strong Lucas pseudoprime. We also combine these new 

types of pseudoprimes with certain classical ones, such as Lucas pseudoprime, Euler 

- Lucas pseudoprime and strong Lucas pseudoprime in order to get some stronger 

types of pseudoprime. For example we introduce the Lucas t-pseudoprime and strong 

Lucas t-pseudoprime. From Theorem 7.17 we obtain several relationships among the 

aforementioned new types of pseudoprime. 
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(2) In §11 we prove a large number of results to the effect that for an odd integer n, 

the primality of n is equivalent to n being a type of pseudoprime to all possible bases. 

See Theorems 11.22, 11.24, 11.25, 11.26, 11.27, 11.28, 11.29 and 11.31. Theorems 

11.25, 11.26 are consequences of already known results on general Lucas sequences 

U(P, Q) (see [51]). However the others are new, particularly those about tpsp's, 

rpsp's and apsp's. 

(3) In §12 and §13 we derive three formulas which count the number of incongru-

ent bases a mod n such that n is a Lucas pseudoprime to the base a, an Euler - 

Lucas pseudoprime to the base a, or a strong Lucas pseudoprime to the base a (see 

Theorems 12.8, 12.7 12.9). 

(4) In §14 we give upper bounds for EL(n), the number of incongruent bases a mod 

n such that n is an Euler - Lucas pseudoprime to the base a. First we show that 

for all odd composite integers n, EL(n) < n-22 Then we show that in other cases 

we can get EL(n) < n -2 and EL(n) < 2 for certain types of composite n. 

These results have some applications to primality testing, especially to probabilistic 

primality testing (see Theorems 14.24, 14.25, 14.26, 14.27, 14.28, 14.29). 

In §1 we begin with background knowledge of general Lucas sequences, U(P, Q), 

V, (P, Q). This is helpful to put the subject of the sequence of solutions of the Pell 

equation into perspective. Based on the discussion in §1, §2 and §3, we derive some 

general properties of Lucas sequences, specifically the sequences Xa (n), Y. (n), their 

derivatives, inequalities, identities and divisibility properties. These three sections 

play the role of a toolbox for the later discussion. The Lucas sequence primality tests 

using Xa(fl) and Ya(n), which we shall give, can all be carried out in polynomial 

time, at each fixed base a. Proof of this is reviewed in §5. In §6 we give proofs 
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of some classical Lucas sequence results. Most results in §1 - §6 are known. Our 

new results mostly occur in sections 7 through 14. In §7 we define some new types 

of Lucas pseudoprimes and also give some examples which show that sltpsp(a) and 

slxpsp(a) are very strong Lucas primality tests. In §8 we show that Lucas - Lehmer's 

test for Mersenne primes and Fermat primes can be deduced from our ltpsp test. 

In §9 we derive many interesting results about prime powers. Some of these we 

need in later sections and some of these are nice on their own. In §10 we define 

the concept of Lucas primitive root for our sequences X, (n) and Y. (n), and show 

that all integers have Lucas primitive roots. Also we prove some useful results 

about quadratic residues and ranks. In §11 we define different kinds of Lucas - 

Carmichael numbers. These are Lucas analogs of ordinary Carmichael numbers. For 

each kind of Lucas - Carmichael defined in terms of factorization properties, we give 

equivalent Lucas sequence conditions. These results show that some methods of 

Lucas primality testing are not strong enough for primality, even if such tests are 

passed for all bases, e.g. the test Xa(fl) a (mod n). An example showing this is 

n = 7,056, 721 = 7.47.89.241 (see Theorem 11.14). However, many of the tests we 

mention in §7 are sufficient for primality if one of them is passed for all bases, and 

some are enough on fewer bases. Section 11 makes all of this clear. 

In §12 and §13 we derive some formulas which count the number of incongruent 

bases for some kinds of ordinary pseudoprimes and Lucas pseudoprimes. These 

results are used in §14 to show for example that if n is composite, then there are no 

more than (n - 2)/2 incongruent bases to which n is an Euler - Lucas pseudoprime. 

In the conclusion section, we state some open problems and conjectures. 



5 

§1. Background 

In this section, we discuss the properties of general Lucas sequences U, (P, Q) 

and V. (P, Q). The properties discussed in this section are the basis for our later 

discussion about the sequence of solutions to the Pell equation 

(1.1) x2—(a2 —4)y2 =4. 

Obviously the family of Pell equations (1.1) includes the Pell equation 

(1.2) S2 - (a2 - 1)y2 = 1, 

as a special case; for if we multiply by 4 we have (2x)2 - ((2a)2 - 4)y2 = 4. 

When a is odd in (1.1) we obtain a new family of Pell equations which are not of 

the form (1.2). Equation (1.1) has infinitely many solutions, just as (1.2) does. (We 

give a proof of this below.) 

Following the notation of Y. Matijasevi6 and J. Robinson, the sequence of solu-

tions of (1.1) will be denoted by x = Xa(fl) and y = Ya(fl). These sequences are the 

main interest of this thesis. 

When we use the Pell equation (1.1), this subject is part of the Lucas-Lehmer 

theory developed by E. Lucas [32] and D.H. Lehmer [26] [27]. As described by 

Lucas [32] it is the theory of two sequences 

(1.3) V=&+/3', 

where o and /3 are the roots of the equation 

(1.4) x2—Px+Q=O. 

Here P and Q are any two nonzero integers. D = P2 - 4Q is the discriminant of 

(1.4). D is assumed to be nonzero, hence we always have a 0 /3, a 0 0 and /3 0 0. 

We can suppose 1/31 ≤ IaI. We have also 
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(1.5) P=a+fl, Q=a•fl, D=(a—/3)2, D=P2-4Q. 

If D > 0, then a and f3 are real, in addition to a 0 #,a 0 0 and 3 96 0. Also 

suppose 1#1 <IaI. We also have a/fl 54 ±1. Since a and ,6 are real, this implies that 

a/fl is not an n1h root of unity when D > 0. If D ≤ 0, then IaI = Ifl. Hence 

(1.6) IaI=IflHD≤ 0. 

Thus when 0 < D, a/fl is not an nh root of unity for any n. When D ≤ 0, it is 

possible for a/fl to be an n1 root of unity. In this case the sequences V, and U, 

become periodically zero (degenerate). This happens if P2 = Q, p2 = 2Q, p2 = 3Q 

or P2 = Q. In these cases a/fl is a 3rd, 4th , 6th or 18t root of unity, respectively. 

These are the only degenerate cases (Bundschuh and Shiue [4].) We give a proof of 

this. 

Theorem 1.7. Leta and ,3 be the roots of x2 - Px + Q where P and Q are nonzero 

integers. Then a/fl is an flth root of unity if and only if P2 = Q, p2 = 2Q, p2 = 3Q 

or P2 = Q. 

The proof of Theroem 1.7 will follow from several lemmas. 

Lemma 1.7.1. For any positive integer n there exist integers c0, c1,• , 

such that 2cos(n9) can be expressed as a monic polynomial in 2cos(9), with integer 

coefficients, 

(1.7.1) 2cos(n8) = (2cos(9))12 + c_1(2cos(0))'' +... + ci(2cos(9)) + Co. 

Proof. From cos(a + ,6) + cos(a - fi) = 2c0s(a)cos(fl) with a = nO and fi = 0 we 

have 2cos((n + 1)0) = 2cos(nO). cos (0) - 2cos((n - 1)0). 

By induction this identity implies (1.7.1). For example for n = 2 and n = 3, 
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2cos(29) = 4cos2(0) - 2, 2cos(30) = 8cos3(9) - 6cos(9). 

This completes the proof of Lemma 1.7.1. 

Lemma 1.7.2. If w is a complex flth root of unity, wl = 1 and Re(w) is a rational 

number, then 2Re(w) is an integer. 

Proof. Suppose w" = 1. Then Iwl = 1. Hence w = cos(0) + i - sin(9) so that 

Re(w) = cos(0) and 2Re(w) = 2cos(9). From w'2 = cos (n9) + i. sin (nO) and w'2 = 1 

we have cos(n9) = 1. Hence 2cos(n9) = 2, an integer. Therefore the result follows 

from the Lemma 1.7.1. 

Lemma 1.7.3. Suppose s is rational, r is real, some root w of x2 - sx + r = 0 is 

also a complex n'h root of unity wn = 1 and s2 - 4r ≤ 0. Then s is an integer. 

Proof. Suppose w2 - sw + r = 0. Multiply by 4 and complete the square to obtain 

0=4w 2 —4sw+4r=  (2w—s)2+4r—s2 =. (2w— S)2= s2 - 4r = s = 2Re(w). Hence the 

conclusion of Lemma 1.7.3 follows from Lemma 1.7.2. 

Proof of Theorem 1.7. Let D = P2-4Q. If D >0, then, as mentioned, a//3 cannot 

be an n'h root of 1. Consider the case D≤0. In this case P2<4Q so that 0<Q. Let 

t = P2/Q and s = t —2. Then s and t are rational and since D ≤ 0, 0< t ≤ 4 and hence 

—2<s≤2. Q=a,8 and Q0 imply a0 and 0540. Since Q=aO and P=a+/3, we 

have a/3 
s=—+—. 

Hence a/fl is a root of the polynomial x2 - sx + 1. Consequently a/fl = w where 

s±W4_s2  
W = 

2 

Here i = Since 0 < t ≤ 4, if t is an integer, there are only 4 cases. When 

t = 1,s = —1 and a/fl is a 3' root of unity. When t = 2,s = 0 and a/fl is a 
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root of unity. When t = 3, s = 1 and a//3 is a 61h root of unity. When t = 4, s = 2 

and a//3 is a 18t root of unity. By Lemma 1.7.3 with r = 1, s is an integer. Hence 

the conclusion of the theorem follows. 

Later we will suppose 0 < D in addition to P 0 0 and Q 0 0. In this case, as we 

observed above, a and /3 are real, a//3 is not an nth root of unity and by (1.6) we 

have l/156 lal. Hence we can suppose 1/31 <lal. It is easy to see that 

(1.8.) O</30<PQ. Also 0<fl<aO<P and 0<Q. 

We also have 1 < Ia//31 since Ia//3I = IaI/I/31 (and 1/31 54 0 since Q 0 0). Also 

1/31 < lal if and only if /32 < a2 So it follows from (1.4) and (1.5) that 

(1.8.1) /3<a 0<P a=" j and 

Using (1.8.1) it is easy to see that 

(1.8.2) 0<8<1 0<Q(P—Q-1). 

In this thesis we will usually suppose 0 < P. Hence the right side of (1.8.1) will hold. 

Normally one may also suppose that D 96 0 (D is not a perfect square). Then 

/3 = , so that /3 is the conjugate of a. Hence a and /3 are two irrational reals 

and a 96 ±/3. One usually also assumes (P, Q) = 1, but it won't be necessary here 

because we will later put Q = 1. 

From the hypotheses 0< D, Q 0 0 and 1≤ P, we can easily see that 1< a and 

(1.8.3) —1 <fl * 0<P+Q+1. 

Also since ,/75 < P if and only if 0 < Q, by (1.5) and (1.8.2) we have 

(1.8.4) 0<fl 0<Q and /3<1 Q+1<P. 

Consequently 

(1.8.5) 0</3<1<a 0<Q and Q+1<P. 
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In fact I/Il <1 if and only if IQ + 11 <P. Also when 1 ≤ P we have 

(1.8.6) —1</I<O<1<a 0<P+Q+1<P+l and l</I<a P<Q+1. 

By (1.8.1) we have from 0 ≤ D that P ≤ 2a. By (1.5) we have a/I = Q. It follows 

that 191 = Ia/II/IaI = IQI/a ≤ 21Q1/P. Therefore /I - 0 as P - +00. Consequently 

(1.8.7) urn P—%/P2-4Q = 0. 
P-++oo 2 

From the assumptions 0<D,Q 96 0 and l≤P, it follows that 1:5 V. and O≤U,,, 

as well as 0< U,, for 0< n. Shortly we will put Q =1 and suppose 2< P. Then we 

will have 2≤V,, and n≤U,,. Also it will follow that 0</3<1<a, by (1.8.5). 

For any P and Q, if a 0 ,6, the sequences U,, and V,, satisfy the Lucas identity: 

(1.9) 

To prove (1.9) we shall use (1.3), (1.5), D = (a—/I)2 and a/I = Q. We have by (1.5) 

(\ 

V,—D.U,,=(a"+f3")2—(a—/I)2 an/I 2 a_/I) 

= (a" + on? -  (a" - /3n)2 = 4a"/I" = 4Q". 

The functions U,, and V,, satisfying the Lucas identity (1.9) can also be defined as 

Lucas sequences, that is as sequences satisfying a second order linear recurrence: 

(1.10) (i) 

(ii) 

V0 =2, V1 P, V,,+2 =P.V,, 1—Q.V,,, 

U0=0, U1=1, U,,+2=P.U,,+i—Q-U,,. 

Proof. Using (1.3) and P = a + ,8, Q = a/I, we have 

P. V 1 - Q.V,, = (a + /I) (a"' + /I n+1) - a,6 (a' + /3") = (a" + /In+2) = V,, 2. 

/I 
  al 
I an+'_/In+'\ Ia"—/I"\ (aM2_/If1 2' 

a—/I ) \a—/Ij  a—/I )=u+2. 
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In a similar way one can derive the Addition Laws, (also due to Lucas [32]), 

2Vn+rn = Vn Vrn + DUn Urn, 

91)rnlf - U .11 - D.TT .TT n-rn - r fl rn '-' n Um, 

2Un+m = Un Vm + Vn Urn, 

')f rn - 17 17 n-rn - n "m - Y Um - 

As special cases of the Addition Laws, (m = 1) we have 

2V 1 = P.V + D-U, 

2QV. 1 = PVn - DUn, 

2U 1 = P•U + V,, 

2Q-U.. 1 = P•U, - V,. 

From (1.11) and (1.13) we can obtain the Double Angle Formulas (Lucas [32]). 

(1.15) (i) U2n = Un Vn (ii) V2 = 2Q' = DU + 2Q'. 

If we replace n by n + 1 and m by n in (1.12), then we obtain the identity 

V,+1•V, - D•U +1 •U = 2P.QIZ. 

From this identity we may derive 

(1.16) - U1.U_1 = Qfl1 

Proof of (1.16). Using (1.12'), (1.13) and also replacing D by P2-4 in (1.9) we have 

4QU4Q?2 = P2U1—V, (PUs + Vn) (PUn —Vn) 2U +1 2QU i 4QU +1 U 1. 

Dividing both sides by 4Q and transposing terms we obtain (1.16). 

Replacing n by n + 1 in (1.16) and U, 2 by P.U, 1 - QU in (1.10) (ii) we obtain 

(1.17) - PUn+i Un + QUn2 = Q'. 

From (1.14"), (1.12") and (1.15) we have the identities 

(1.18) P.Un2 - 2Q.U.U_1 = 

(1.19) P•V - = DU2. 
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By induction using (1.10) (ii), (1.14) and (1.15) with n replaced by n + 1 one 

can obtain (1.20) and from it, by (1.9), obtain (1.21). 

(1.20) U.1 - Q.U2 = U2,,+1, 

(1.21) n+j -  Q.V = D.U21. 

By adding and substracting Addition Equations (1.11) - (1.14) one obtains the 

Lucas Product Formulas 

(1.22) Vn+m + QmVn_m = Vn Vm, 

(1.23) IT j_flm IT -IT TI '-'n+m T ' '-'n-rn - '-'n 

(1.24) Vn+rnQm Vn_rn=DUnUrn, 

(1.25) Un+rn - Qm'Un_rn = Vn'Urn. 

Nowlet i=n+m,j =n—m so that n= (i+j)/2 and m = (i—j)/2. Thenfrom 

(1.22) - (1.25) we obtain the Lucas Half Angle Formulas, 

(1.26.1) V, + QVj = V(IJ)/2. V(;_1)/2, 

(1.26.2) - Qi2V1 = D-U(IJ)/2 U(l_J)/2, 

(1.26.3) U1 + Qi2U = U(I+1)/2.V(I...J)/2, 

(1.26.4) U1 - 2 U1 = 

As a special case, if we put i = n,j = 1 and use V1 = P, U, = 1, then we obtain 

(1.27.1) 

(1.27.2) 

(1.27.3) 

(1.27.4) 

Vn + QP = 

V - Q9'P = D•U( l)/2•U( ....l)/2, 

Un + Q 2 = U(n+l)/2V(n_l)/2, 

Un - = V(n+l)/2U(n_l)/2. 
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Identities (1.11') - (1.14) can be combined into the following. Suppose e 

(1.28) (i) 2Q +2" V,-,, = PV, - 

2QUflC = —eVe + PUn, 

2QV+ = PV, + eDU, 

(iv) = €V + PU,,. 

Assuming 0 < D, by induction on n, using (1.10) (i) (ii) and Addition Laws (1.11') 

(1.13'), one obtains 

(1.29) (Vi+v'Ui) " = V,,+ /U  

Proof. n = 0. (Vl+%fUl •O 0 2+v V0+ ) —1— - f U0  
2 2 2 

Assume (1.29) holds for n. For n + 1, using (1.10) (i),(ii), (1.11') and (1.13') 

(Vi+ v'U ' - (Vi+ /DI-U1 j'V1+ i5U1' - •+V2 
-Ui'\(Vn -,/D—Un)2 )  2 ) 2 )  ) 2 

V1V,,+iDV1U,,+/U1V,,+DU1U,, PV,,+-,/PU+V,,+DU,, 
4 4 

- PV + DLI,, + (PU,, + V,,) - 2V,, 1 +  

- 4 - 4 

v+1 + TD.u, +1  
2 

We give next a proof by induction that, at least in the cases Q + 1 < P and 

Q = ±1, all solutions of the Lucas identity (1.9) are given by the Lucas sequences 

(1.10) (i) and (ii). For this we will use the following lemma. 

Lemma 1.30. Suppose D = P2-4Q, Q+1 <P and Q = ±1. Suppose V2—DU2 = 

4Qi for some i, 0 ≤ V and 1 < U. If Q = +1, then V < PU, (P - 2)U < V and 
DU≤PV.IfQ=-1, then PU≤V<(P+2)UandPV≤DU. 
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Proof. Suppose V2 - DU2 = 4Qi, 0 ≤ V and 1 < U. Since 1 < U we have 

- DI = 4IQI/U2 = 4/U2 ≤ 1 which implies IV/U - v'I <1/v'i. Hence 

(1.30') 2v'T 2v' 

If Q = +1, then P - 2 < DIP so the inequalities V ≤ PU, (P - 2)U < V and 

DU ≤ PV are equivalent to DIP ≤ V/U ≤ P which follows from (1.30') since it is 

easy to see that 

Q=+1 and 2<P 1 and /+ 1 <P. 
2-%/D—  2/ 

If Q = —1, then when P = 1 or P = 2, we have P+2 < DIP so that the inequalities 

PU ≤ V ≤ (P+2)U and PV ≤ DU are implied by the inequality P ≤ V/U ≤ P+2 

which follow from (1.30') since P ≤ - 1/(2V) and i/ + 1/(2v') <P +2. 

If Q = —1 and 2 < P, then DIP < P +2 so that the PU ≤ V < (P + 2)U and 

PV ≤ DU are implied by P ≤ V/U ≤ DIP which follows from (1.30') and the 

observation that 

Q=-1 and 2<P = P<T.— and 

Theorem  1.31 Suppose D = P2-4Q, Q+1 <P and Q = ±1. Suppose further 

that 0 ≤ V, 0 ≤ U. Then V2 - DU2 = 4Qi for some i if and only if it is possible to 

find a nonnegative integer n such that V = V, U = U,, also when Q = —1, we have 

n i (mod 2). 

Proof. Sufficiency follows from (1.9). 

To show the existence of n, we will use induction on U (Fermat's method of 

descent). First suppose U = 0 and 0 ≤ V. Then 

V2— DU2 =4Q V2=4Q' = IVI2=4 = V=2 
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so that we may take n = 0. If U = 1 and 0 ≤ V, then when i is even and Q = —1 
V2— DU2 =4Q = V2—P2+4Q=4Q V2—P2=0orV2—P2=8. 

IfV2—P2 =0,thenV=Pandwemaytaken=1. IfV2—P2 =8,thenP=l 

and V=1 orV=3. Hence we may take n=oorn=2. 

Suppose 1 < U, 0 ≤ V, V2 - DU2 = 4Q1 and the statement holds for all pairs 

(V', U') such that 0 ≤ U' < U and 0 ≤ V. Put V' = (PV - DU)/(2Q) and put 

U' = (—V + PU)/(2Q). From V2 - DU2 = 4Qt,Q = ±1 and D P (mod 2), we 

can see that U' and V' are integers. Also 0 ≤ U' < U and 0 ≤ V' by Lemma 1.30. 

Further 

V'2 - DU'2 = (PV - DU)2/(4Q2) - D(PU - V)2/(4Q2) 

= (P2V2 - DP2U2 + Dy2 - D2U2)/(4Q2) = ('p2 - D)(V2 - DU2)/(4Q2) 

= (P2 - D)4Q1/(4Q2) = 4Q4Qi/(4Q2) = 4Qi_l 

Thus V'2 - DU'2 = 4Q1 '. By the induction hypothesis there exists a nonnegative 

integer n such that V' = Vn_j and U' = U,_,. From P2 - D = 4Q one obtains 

V = (P-V' + D.U')/2 and U = (V' + P.U')/2. Hence V = (P.V_1 + D.U.. 1)/2 = 

(V1V_1 + DUiU_1)/2 = V,, by Addition Law 1.11. Also U = (V_1 + P.U_1)/2 = 

(U1V_1 + ViU_i)/2 = tJ, by Addition Law 1.13. Therefore the result holds for U. 

The equation corresponding to identity (1.17), 

(1.32) Y 2 - Pxy + Qx2 = Qn 

has a property similar to the Lucas equation (1.9). If IQ  = 1, then all solutions to 

(1.32) are given by x = U, y = U +1 where U, and U +1 are defined by (1.10) (ii). 

Theorem 1.33 Suppose Q = ±1. Then 0 ≤ x, 0 ≤ y and y2 - Pxy + Qx2 = Q1 

for some i if and only if it is possible to find a nonnegative integer n such that 

x=U,y=U 1 and nEi (mod 2) if Q = —1. 
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Proof. (=). By identity (1.17). (==.). Suppose y2—Pxy+Qx2 = Q for some i, x 

and y satisfying 0 ≤ x and 0 ≤ y. Put V = 2y—Px. Then y = (Px+V)/2. Substitute 

this y into y2 - Pxy + @2 = Qi to obtain (Px + V)2/4 - P(Px + V)x/2 + Qx2 = 

This equation is equivalent to (Ps + V)2 - 2P(Px + V)x + 4Qx2 = 4Q1 which 

simplifies to V2 - P2x2 + 4Qx2 = 4Qi which then becomes V2 - (P2 - 4Q)x2 = 4Qt• 

By Theorem 1.31 there exists n such that V = 1/, and x = U,. Hence from identity 

(1.13') we have 2y = Ps + V = PU, + V = 2U +1 which implies y = Hence 

= U, and y = U 1. 

The solutions of the Pell equation x2 - (a2 - 1)y2 = 1 do not satisfy the Lucas 

equation (1.9). However the solutions of the Pell equation x2 - (a2 - 4)y2 = 4 satisfy 

(1.9) and when a is even contain the solutions for x2 - (a2 —1) y2 = 1 as a subsequence. 

Hence we put P = a and Q = 1. 

From (1.5) with a=P,d=D and Q= 1,we have /3=c' and c—/3= /= 

/a2 - 4. Then the Lucas equation (1.9) becomes the Pell equation (1.1): 

(1.34) V—(a2-4)U =4. 

Hence the sequence of the solutions to the Pell equation (1. 1), denoted by X. (n) and 

Ya(n), are Y0(n) = U, and Xa(fl) = V. That is 

(1.35) Xa(fl)2 - (a2 - 4)Ya(fl)2 = 4. 

Also X2 - (a2 - 4)y2 = 4 2n[x = Xa(fl) and y = 

From (1.29), we have 

(136) Xa(n)+Ya(n) .Fa 2-4 - (a+ \fi2_4\lZ 

2 2 ) 
(1.36) shows that the algebraic integer a= (a-i-')/2, called the generator, generates 
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all solutions for (1.35). Its conjugate, 3 = ZF is its inverse, ,6 = a'. Thus 

137 a—v'a2-4 - (a+/a2_4\' 
(.) 2 2 )• 
Taking the conjugate of the both sides of (1.36) we get 

(138) Xa(n)Ya(n)41a2-4 - (a_\/a2 _4) ' 

This shows that X(fl) and Ya(fl) can be defined also by ,8 = = = a— a2 —4, 

i.e. by the conjugate of the generator. Next we prove 

11 39\ X. (n + Ya(nm) a2 —4 - X, (n) + Ya(n)/a2 - 4 s\m 
\/ 2 2 ) 

Proof. Replace n by nm in (1.36) to get 

Xa(nm) +Ya(flm)\rd - (a+V' nm - ((a-i-V71r\m - (Xa()+Ya()/Th\ m 
2 2) 2 )) 2 ) 

Adding and subtracting equations (1.36) and (1.38) we obtain 

a+/i2_4\ I* fa_/a2 _4\ 

(1.40) X,, (n) a + ( 2 ) +  2 ) 
(1.41) Ya(fl)(&!)  1  Va --4)"] . a24[(a+Va2-4)7' 2  (a_ 
The equations may also be written in the form 

(1.42) 

(1.43) 

Xa(fl) = 

Ya(n) = 

= (i + = a' (i + 1 ) , 

a) = . i - a' / 1 \ 

Hence we have also 

fa+'Th'11 
(1.44) Xa(fl) = 1.. 2 ) (i + +Nfd-)n) 
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1 1  (1.45) Ya(fl) = (a+ ,fd 
2 ) t1 (&b)n)' 

The functions X0(n) and Ya(fl) can also be defined for negative values of n. This is 

useful in identities involvings ± signs. Lucas [32] gave the following as definitions 

(1.46) X,,(—n) = Xa(fl), Ya(fl) = —Y0(n). 

Proof. Using (1.42) and (1.43) we have 

Xa(fl) = a + = f +-n = Xa(fl). 

Y.(—n) = 1 (a - a-(_n)) = 1 (a-n - an) = 1 (an - a_n) = Ya(). 

The functions Xa(fl) and Ya(fl) may also be defined in a natural way for negative 

values of a. The following relations will be used in the later sections. 

(1.47) X_a(n) = (1)Xa(fl), Y.. a(n) = 

Proof. Replacing a by —a in (1.40) and (1.41) we have 

X-,,, (n) = 

Y_a(fl) = 

(_a+V)?2+ ( — a — fd-) n 

(_)n (a 2) + (_1)n (a +)fl = (_1)nX0(n), 

1 ((—a+Vd-) ld-) n) 

(_1)' ufa-a\) '1 2 (a+ Vd- )n) = (_1)n(_Ya(fl)). 
Vd-

Here ,/ = v'a2 —4 remains unchanged when a is replaced by —a. Thus (1.47) is 

proved. 

Our main interest in this thesis is the sequence of the solutions for the Pell 

equation (1.1). Hence we usually let Q = 1. The above is only included to explain 
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how our theory of the Pell equation (1.1) fits into the classical Lucas - Lehmer theory 

of Lucas [32] and Lehmer [26]. 

The following Jacobi symbols will play a special role, 

(1.46) = (d)   =   p , (a2_4) , - _(a_2) r = (a+2'\n  n n n) 

When it is necessary to specify what a is or what n is, we use Ea, Pa, Ta or 

Pa(n), and Ta(fl) to denote these Jacobi symbols. 
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§2. Derivatives and inequalities 

In this section, we derive formulas for the derivatives and some inequalities for 

Lucas sequences. These derivatives will actually be used and together with the iden-

tities which we derive in the next section play important roles in the later sections. 

For the derivatives, we shall begin with the general sequences, V, and U,. We shall 

consider derivatives with respect to P. V,, and U. are polynomials in P and Q. So if 

Q is held constant, then, for fixed n, V,, and U,, are polynomials in P. Consequently 

they have derivatives with respect to P. Let V = dV,,/dP and U,', = dU,,/dP denote 

these derivatives. We will show 

Theorem 2.1. (1) V = n - U,, and (ii) DU,', = nV,, - PU,,. 

Proof. (i) and (ii) hold for n = 0. Assume they hold for n. We shall use (1.10'), 

(1.12') and D' = 2P. 

n+1 = (2V 1) = J(PVI, + DU,,) = V,, + PV, + 2PU,, + DU,' 

= V,, + P(nU,,) + 2PU + nV,, - PU,, (by the induction hypothesis) 

= V,, + P(nU,,) + PU,, + nV,, = (n + 1)(PU,, + V,,) 

= (n + 1)2U,, 1 = 2(n + 1)U,,+1. (by (1.12')) 

Thus V +1 = (n + 1)U,, 1. Hence (1) holds for n + 1. Similarly 

2DU,',+1 = Dp(2Un+i) = D/(PU,, + V,,) (by (1.12')) 

= D(U,,+PU,',+V')=DU,,+PDU',+DV,,' 

= DU + P(nV,, - PU,,) + nDU,, (by induction hypothesis and (i)) 

= DU,,+nPV,, —P2U,, +nDU,, 
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= (n+1)PV+(n+l)DU—P2U—PV 

= (n + l)(PV + DUD) - P(PU + V) 

= (n + 1)2V +1 - P•2U +1. (by (1.10') and (1.12') again) 

This shows that DU' +1 = (n + 1)V +1 - PU, +1. 

Thus (i) and (ii) are proven. 

Ifweput P=a, Q= 1 and write D = d, then we have 

Corollary 2.2. X(n) = nY.() and dYa'(n) = flXa(fl) - aYa(n). 

Corollary 2.3. (Ya'(fl),Ya(fl)) 2(fl,Ya(fl)). 

Proof. Let k = (Ya'(fl),Ya(fl)). Then k I (n) and k I Y0(n). By 2.2, k I nX0(n). 

Hence k I (flXa(fl),Ya(fl)). Since Xa(n)2—dYa(n)2 = 4, (Xa(fl),Ya(fl)) 12. Therefore 

k 12 (n,  Ya(fl)). 

Next we mention some inequalities for the sequences Xa and Ya. 

Suppose 2< a, d = a2 -4, and a = (a+\/)/2. Then a < 2a < 2a. Since 

Z=a',we have 0< 1/a <?< 2/a <1andalso1<a_1<iV'<a<a<2VL 

Further, 

(2.4) 0< 1/v'i< ,k1< 2/a <a—V7i<2/'<2/(a-1) ≤3/a≤ 1. 

Next we will use x2 = dy2 +4 and d = a2 —4 to prove that for a > 2, n > 1, 

(2.5) dYa(fl)2 < a2"—l. 

From (1.43) we have '1',(n) = a"(l - a 2"). If we square both sides of this 

equation and use the inequality (1 - x)2 < 1 - x (which holds for 0 <x < 1, then 

we get dYa(fl)2 = a211(1 - a 2")2 <a(1 - a 2 ) = a2' - 1. Hence (2.5) holds for 

2 < a and 1 ≤ n. 
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From x2 = dy2 +4 and d = a2 —4 one can show that for a >2 and n > 0 

(2.6) Xa(fl) < Yfri) Xa(fl) Xa(fl) Xa(fl) 
a '.J  a—i 2 

From (2.5) we also have dYa(fl)2 < 2a2n and hence rdYa(n) <&. It is not difficult 

to see that for 2 < a, 3≤n: 

(2.7) !(a i)1 < 1 (a 2) Xa(n) Y() < (a+2) 

Here we need the assumption 3 ≤ n only for the rightmost inequality. For most 

of the others it is sufficient to suppose only 2 < a and 1 < n. For example for 

Ya(fl)2 <a's this is enough. For the leftmost inequality we can suppose 2 ≤ n. 

This inequality is easy to prove for n = 2. The rightmost inequality, for which we 

need to assume n = 3, can be proved by using a3 + /3 2a2NFd to show that 

a3 < a 2 v ' holds for 2 < a. For n greater than these values the rightmost (and 

leftmost) inequalities can be proved by induction using a — 1 <a < a. 

Lemma 2.8. For 2 <a and 1 ≤ n, 

(i) (a-1)"'<Xa(n+1) <a'', 

<a''. 

(ii) (a1)?1<Ya(n+1)<az, 

n < a = a'2 <Xa(fl + 1) ≤ a12+l, (iv) n <a = a'21 <Ya(fl + 1) :5a", 

Most of these inequalities follow from (2.6). The left side of the first inequality 

(i) (a - i)"' < Xa(fl + 1), is slightly stronger than what would follow directly 

from (2.6). It is most easily derived by induction using the Lucas Equations for 

Xa(fl) and Ya(fl) (see (1.8) and (1.9) or (3.10) and (3.11) below). In the proofs of 

inequalities (iii) and (iv), which hold when n < a, we use the elementary inequality 

0 ≤ x ≤ 1 = 1 - nx ≤ (1 - x)". Put x = 1/a. Since 1 + n < a, we have 

a'21 = a"/a < a'2(l - n/a) ≤ a"(l - 1/a)" = (a —1)". 
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Lemma 2.9. For all n, we have the following inequalities 

(i) If 2 < a, then 2Y0(n - 1) <aY(n - 1) <Ya(fl), 

(ii) If 2 <a, then Ya(n)+Ya(n - 1)<2Ya(fl)< v'dY0(n) <Xa(n), 

(iii) If 3 <a, then 2Y4(fl - 1) + 2Ya(fl) <Xa(fl), 

(iv) If 2<a, then Xa(fl2)+2Xa(fl1) <Xa(fl), 

(v) For 2≤a, a≤b=Xa(n) ≤Xb(fl), Ya(fl) ≤Yb(fl), 

(vi) For 2 ≤ a, 2 ≤ Xa(fl) and n < Ya(fl). 

Proof. 2 <a = 2 < a = 2Ya(n - 1) < crYa(n - 1) <Ya(fl). This last inequality, 

- 1) <Ya(fl), follows from (1.43) since 1 < a. For the proof of the second 

inequality, (ii), we use (2.6). We have \/'(n) < X,(fl) and 2 < a implies that 

2 < ≤ s/a2 —4 = v'i. Inequality (iii) follows from (i), (2.5) and the implication 

3<a = 3<v'. Thus X(n)>v'(n)>3Y(n)=Y0(n)+2Y(n) > 2Ya(fl4)+Ya(). 

Hence 2Ya(fl - 1) + 2Ya(n) <X(n). To prove (iv) from (2.7), it is enough to show 

(a + aa)/v' a2 Using a - 1 < < a < a, one sees that when 3 < a, this 

inequality follows from a(a + 1) < a3. For Y0(n) inequality (v) follows from (1.45) 

since a and a/,/d— are increasing functions of a for a ≥ 2. For Xa(fl) inequality (v) 

can be deduced from inequality (v) for Y(n) and (1.35). If a < b, then Xa(fl)2 = 

(a2 - 4)Ya (n)2 + 4 < (b2 - 4)Yb(n)2 + 4 = X&(n)2. Finally, inequality (vi) follows from 

inequality (v) by taking b = a and a = 2 in (v). 
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§3. Identities 

We list some of the identities which hold for the sequences X. and Ya. Most of 

these identities were known to Lucas and Lehmer. Many will be directly used in 

later discussion. Some are not used directly. However we list them for possible use 

in the future. 

These identities have an algebraic interpretation as equations which hold for 

polynomials in Z[a]. See (3.10.1) and (3.11.1) below and (4.13.1) - (4.13.3) in the 

next section. 

In these identities many ± signs occur. In this connection recall that X (n) 

and Ya(n) are defined for negative values of n by (1.46) Xa(n) = Xa(n) and 

Y,(—n) = —Ya(n). 

From (1.36) and 4n+m = 2& 2m and 4 n-m = 2&' - 2a-1 we have 

(3.1) 2X,, (n± m) + 2Y. (n± m)v'?d = (Xa(fl) + Ya(n)sa)(Xa(m) ± Y(m)). 

Taking rational and irrational parts of (3.1), we get the Addition Equations. 

(3.2) 2Xa(fl ± m) = Xa(n)Xa(m) ± dYa(n)Ya(m), 

(3.3) 2Y,, (n± m) = Ya(n)Xa(m) ± Xa(n)Ya(m). 

Here the ± signs correspond. Putting m = n in these equations, taking the signs to 

be + and using (1.1) we obtain the Lucas [32] Double Angle Formulas. 

(3.4) Xa(2n) = Xa(n)2 - 2 = dY0(n)2 + 2, 

(3.5) Ya(2n) = Xa(fl)Ya(fl). 

The following identities were also known to Lucas [32]. We will call them 

Periodicity Equations. 
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(3.6) Xa(m±2n) = Xa(n)Xa(m±n)—Xa(m), 

(3.7) Y. (m± 2n) = Xa(n)Ya(m ± n) - Y. (m). 

Proof. Multiply the left side by 2, then expand by (3.2), (3.3), (3,4) and (3.5), 

2X(m ± 2n) = X(m)X(2n) ± dY(m)Y(2n) 

= X(m)(X(n)2 —2) ± dY(m)X(n)Y(n) 

= X(n)X(m)X(n) ± dX(n)Y(m)Y(n) - 2X(m) 

= X(n)[X(m)X(n) ± dY(m)Y(n)] - 2X(m) 

= X(n)2X(m ± n) - 2X(m) 

= 2[X(n)X(m ± n) - X(m)]. (3.6) is proved. 

2Y(m ± 2n) = Y(m)X(2n) ± X(m)Y(2n) 

= Y(m)(X(n)2 —2) ±X(m)X(n)Y(n) 

= X(n)Y(m)X(n) ± X(n)X(m)Y(n) - 2Y(m) 

= X(n)[Y(m)X(n) ± X(m)Y(n)] - 2Y(m) 

= X(n)2Y(m ± n) - 2Y(m) 

= 2[X(n)Y(rn ± n) - Y(m)]. (3.7) is proved. 

Note that since (3.1) - (3.5) hold algebraically as statements about polynomials 

in a, (3.6) and (3.7) must also hold as statements about polynomials. 

Putting m =1 in the Addition Equations and using Xa (1) = a and Y (1) =1 we get 

(3.8) 2Xa(+1) = aXa(n)+dYa(n), 2Ya(fl+1) = aYa(n)+Xa(n), 

(3.9) 2Xa(n1) = aXa(n)—dYa(n), 2Y(n-1) = aYa(n)—Xa(n). 

Formulas (3.8) and (3.9) tell us how to obtain Ya(n 1) from Ya(fl) and Xa( 1) 

from X(fl), without knowing n. This is because we can get Xa(fl) from Ya(fl) (and 



25 

Y,, (n) from X,, (n)) by (1.35). Thus (3.8) and (3.9) prove that the Y. and Xa sequences 

are each polynomial time retraceable (see 5). 

From (3.8), (3.9) and d = a2 —4 we have 

(3.8.1) 2X,, (n) = aXa(n+1)—dYa(n+1), 2Y. (n) = Xa(n+1)+aYa(n+1), 

(3.9.1) 2X,,, (n) = aXa(n-1)+dYa(n-1), 2Y,, (n) = Xa(n1)aYa(n1). 

Adding corresponding pairs of equations (3.8) and (3.9) and replacing n by n +1 

we obtain the Lucas second order recurrence equations: 

(3.10) (i) X. (0) = 2, X,, (1) a, Xa(fl + 2) = aXa(n + 1) - X,, (n). 

(ii) Y. (0) = 0, Ya(1) = 1, Ya(fl+2) = aYa(n+1)—Ya(n). 

The Lucas equations can be used to prove the following, for fixed n, 

Xa(fl) is a polynomial in a of degree n. 

Ya(fl) is a polynomial in a of degree n - 1. 

The sequnces Xa and Ya are not yet defined for a =0, 1, or 2. When a =0, the 

defining equation (1.1) is x2+4y2 = 4. When a=1 (1.1) is x2+3y2 = 4. When a=2 

(1.1) is x2 = 4. We shall define functions Xo, Xi, X2, Yo, Yi and Y2 giving solutions 

to these equations simply by following the Lucas equations. That is we define 

(3.11) Xo(n) = 0 (n odd), Yo (n) = (—i)9 (n odd), 

X0 (n) = 2(-1) (n even), Yo (n) = 0 (n even), 

(3.12) X1(3i) = 

X, (3i ± 1) = (_1)i, 

Y1 (3i) = 0 

Y1 (3i ± 1) = 

(3.13) X2 (n) = 2, Y2 (n) = n. 
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Observe that these functions are periodic. Xo is 2,0,-2, 0 (mod 4), Y0 is 0, 1, 0, —1 

(mod 4), X1 is 2,1,-1,-2,-1,1 (mod 6) and Yo is 0,1,1,0,-1,-1 (mod 6). 

X0, Y0 and Y1 are degenerate Lucas sequences since they are periodically 0. 

However the Lucas Equations (3.10) and (3.11) hold for them, as well as for X1, X2 

and Y2. In fact all the identities (3.2) - (3.9) hold for these functions since the Lucas 

equations can be used to derive the Addition Equations. Defining equation (1.1) also 

holds. Throughout this thesis we therefore allow a = 0, a = 1 and a = 2. 

By means of (1.46) and (1.47) we can also extend the definitions of the functions 

Xo, X1, X2, Y0, Yi and Y2 so that they are defined on negative n and for negative 

values of a. Below we consider a = —1 and a = —2. We shall also need the following 

simple properties of the JC and Y1 functions. 

Lemma 3.14 If (n,6) = 1, then X, (n) = 1 and Yi(n) = (-a) = n (mod 6). 
If 3 1 n, then X, (n) = 2(_1)hhl3 and Yi(n) = 0. 

Proof. From Definition 3.12, X1 and Y1 can be seen to be periodic with period 6. 

If(n,6)=1, then n=6j±1so that X1(6j±1)=1 and Y1(6j±1)=±1. From the 

theory of quadratic residues it is known that if (n, 6) = 1, then (-3/n) n (mod 6). 

In other words, if n = 6j ± 1, then (-3/n) = ±1. Consequently (-3/n) = Y1 (n). 

Adding and subtracting pairs of Addition Equations (3.2) (3.3) we get the 

Lucas [32] Product Formulas: 

(3.15) Xa(n+m) + X(n — m) = Xa(n)Xa(m), 

(3.16) Xa(fl + m) - Xa(rt - m) = dYa(fl) Ya(m), 

(3.17) Ya(fl + m) + Ya(fl - m) = Ya(fl) . Xa(m), 

(3.18) Ya( + m) - Ya(n - m) = Xa(fl) . Ya(m). 
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Letting i = n + m and j = n - m so that n = (i + j)/2 and m = (i - j)/2, the 

product formulas give us the Half Angle Formulas: 

(3.19) Xa() + Xa(j) = Xa (3) Xo (i j), 

(3.20) x(i) Xa(j) = dYa (i i) Ya (i 2 i) 

(3.21) Ya() + Ya(j) = Ya() x0(;), 

Ya() - Ya(j) = Xa(i + ) Ya( 2 ). (3.22) 

Putting i = n, j = 1, using Xa(1) = a and Ya(1) = 1, we have the special cases, 

(3.19') 

(3.20') 

(3.21') 

(3.22') 

X. (n) 

Xa(fl) 

Ya(fl)+1 

Ya(fl) - 1 = 

+a=Xa( ') Xa( 2 1), 

_a=dYa(1) Ya(2') 

Ya(') X_ (n  

X.. (') y(n;1) 

Replacing i by 2i and j by 2j, equations (3.19) - (3.22) can be rewritten in the form 

(3.23) Xa(2) + Xa(2j) = Xa(j+j)Xa(jj), 

(3.24) Xa(2i) - Xa(2j) = dYa(i+j) Ya(_j), 

(3.25) Ya(2) + Ya(2j) = Ya(j + j) Xa(i - j), 

(3.26) Ya(2) Ya(2j) = Xa(+j)Ya(i_j). 

Letting i = n and j = 1 in (3.23) - (3.26) and using (3.4) and (3.5), we get the 

identities 

(3.27) Xa(fl)2 + d = Xa(n+1)Xa(n1), 

(3.28) Ya(n)2 - 1 = Ya(fl + 1) . Ya(fl - 1), 

(3.29) Ya(2fl) + a = Ya(fl+1)Xa(n1), 
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(3.30) Ya(2fl) - a = Xa(fl+1)Ya(fl1). 

Identities (3.27) and (3.28) were known to Lucas [32]. As a corollary we obtain 

(3.28') Y, (n + 1).Y0(n - 1) = (Ya(fl) + 1)(Ya(fl) - 1). 

Multiplying (3.19') and (3.20') together and using (3.5) and (3.28') we obtain 

(3.29') (X. (n)+ a)•(Xa(n) - a) = d(Ya(fl) + 1) (Y. (n) -  1). 

If we replace n by n +1 and m by n in Addition Equations (3.2) - (3.3) and take the 

sign -' then the result is 

(3.31) X. (n+ 1) Xa(fl) - dYa(fl + 1) Y,, (n) = 2a, 

(3.32) Ya(fl+1)Xa(fl) - Xa(fl+1)Ya(fl) = 2. 

Using (3.8) (3.9) and (1.35) one may verify the following identities. 

(3.33) Xa(n + 1)2 - a Xa(fl + 1) Xa(fl) + Xa(n)2 = —d, 

(3.34) Ya(fl + 1)2 - a Ya(fl + 1) . Ya(fl) + Ya(fl)2 = 1. 

Applying (3.31) and (3.32) to (3.33) and (3.34) we get 

(3.35) Xa(fl+1)2 + Xa(fl)2 - adYa(n+1).Ya(n) = a2+4, 

(3.36) dYa(fl + 1)2 + dYa(fl)2 - aX0(n + 1) . Xa(fl) = —d —8. 

Using (3.8) and (1.35) it is easy to show that 

(3.37) Xa(fl + 1)2 - dXa(fl) . Y0(n + 1) - Xa(fl)2 = 

(3.38) Ya(n + 1)2 - Xa(fl) Y(n + 1) - Ya(fl)2  

Applying (3.32) to these we have 

(3.39) Xa(fl+1)2 - dXa(fl+1)Ya(fl) - Xa(fl)2 = d, 

(3.40) Y0(n+1)2 - Xa(fl+1)'Ya(fl) Ya(fl)2 = 1. 

Taking m = 1 in (3.6) and (3.7) and using (1.46) it is easy to show that 

(3.41) Xa(2fl±1) = Xa(n)'Xa(n±1) - a, 
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(3.42) Y0(2n±1) = Xa(fl)Ya(fl±1) + 1. 

Here the signs ± correspond. Applying (3.42) to (3.37) and (3.38) or directly from 

(1.20) and (1.21) we obtain the following identities of Lucas [32] which can also be 

found in Smorynski [48]. 

(3.43) dYa(2fl+1) = Xa(fl+1)2 - Xa(fl)2, 

(3.44) Ya(2n + 1) = Ya(fl + 1)2 - Ya()2. 

As a corollary 

(3.43') dYa(fl) = Xa (fl+ 1)2 - x0(; 1)2 

(3.44') Ya() = Ya (fl 2 ) - Ya ( 2 2 -1) 
Applying (3.41) to (3.33) and (3.36) we get 

(3.45) aXa(2n+1) = Xa(+1)2 + Xa(fl)2 + 2a2 - 4, 

(3.46) aXa(2n + 1) = dYa(n + 1)2 + dYa(fl)2 + 2a2 + 4. 

Replacing n by (n - 1)/2 in (3.45) and (3.46) gives 

(3.45') aX(n) = Xa(') +xa(; 1)2 + 2a2 4, 

(3.46') aXa(n) = dY (fl 1)2 + dYa (Th; 1)2 + 2a2 + 4. 

By applying (3.8) and (1.35) to (3.45) and (3.44), we get 

(3.47) 2Xa(2fl + 1) = aXa(n)2 - 2a + dXa(fl)Ya(fl), 

(3.48) 2Ya(2fl + 1) = dYa(fl)2 + 2 + aXa(n)Ya(n), 

(3.48.1) 2Ya(j±j) = Xa(j)(Ya() ± Ycz (j)) ± Ya(j)(Xa(i) - Xa(j)). 

Identities (3.43) and (3.44) are the case m = 1 of more general identities of 

Lucas [32]. 

(3.49) Xa(n + rn)2 - Xa(fl)2 = dYa(2 + rn) . Ya(rn), 
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(3.50) Y. (n+ m)2 - Y. (n)'= Y. (2n+ m) Y. (m). 

Replacing n by j and m by i - j in (3.49) and (3.50) we obtain 

(3.49.1) 

(3.50.1) 

Xa(i)2 - Xa(j)2 = dYa( +j) Ya(i _j), 

Ya(j)2 = Ya(i+j)Ya(_j). 

Putting i = nm and j = m in (3.23) and (3.26) and using (3.4), (3.5) we obtain four 

identities, the first two of which, (3.51) and (3.52) were known to Lucas [32]. 

(3.51) Xa(nm)2 + dYa(m)2 = Xa(nm + m) Xa(nm - m), 

(3.52) Y0(nm)2 - Y0(m)2 = Ya(nm + m) Ya(nm - rn), 

(3.53) Ya(2nm) - Y. (2m)= X(nm + m) . Ya(nm - m), 

(3.54) Ya(2nm) + Y. (2m)= Ya(nm + in) Xa(nm - m). 

Corresponding to identity (3.34) we have the Diophantine equation x2—axy+y2 = 1. 

Like the Lucas equation x2—dy2 = 4 this equation completely defines the Y, sequence. 

For x > 0 and y ≥ 0 we have x2 - axy + y2 = 1 if and only if (3n) [y = Y,, (n) and 

S = Y,,,( + 1)]. (See Theorem 1.33 for the proof of this.) 

We prove next 
k-I 

(3.55) If 1 ≤ k odd, Y0(kn) - kYa(fl) = dYa(n)>Ya(ni)2. 

Proof. The identity will be proved by induction on k. First multiply both sides of 

the identity by 2. It holds for k = 1, because then both sides equal 0. Assume the 

identity holds for k. We will show that it holds for k +2. 

As k increases from k to k +2, twice the left side (3.55) increases by the amount: 

2[Y((k + 2)n) - (k + 2)Y(n)] - 2[Y(kn) - kY(n.)] 

= 2Y(kn + 2n) - 2Y(kn) - 4Y(n) 

= Y(kn)X(2n) + X(kn)Y(2n) - 2Y(kn) - 4Y(n) (by (3.3)) 
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= X(kn)Y(n)X(n) + [X(2n) - 2]Y(kn) - 4Y(n) (by (3.5)) 

= Y(n)X(kn)X(n) + dY(n)2Y(nk) - 4Y(n) (by (3.4)) 

= Y(n)[X(nk)X(n) + dY(nk)Y(n)J - 4Y(n) 

= Y(n) . 2X(nk + n) - 4Y(n) (by (3.2)) 

= 2Y(n)[X(nk + n) —2] 

= 2Y(n) [dY ((nk + n)/2)2] (by (3.4)) 

= 2dY(n)Y ((nk + n)/2)2 

This is also the increase in twice the right side of (3.55) as k changes to k + 2. 

k-2 

(3.56) If 2 ≤ k even, Ya(kn) - Ya(2) = dYa(n) 2 Ya(fl)Ya( + n). 

Proof. The identity will be proved as before by induction on k. First multiply both 

sides of the identity by 2. It holds for k = 2 because then both sides equal 0. Assume 

the identity holds for k. We will show that it holds for k +2. 

As k increases from k to k +2, twice the left side (3.56) increases by the amount: 

2[Y((k + 2)n) - k 2Y(2n)] - 2[Y(kn) - Y(2n)} 

= 2Y(kn + 2n) - 2Y(kn) - 2Y(2n) 

= Y(kn)X(2n) + X(kn)Y(2n) - 2Y(kn) - 2Y(2n) (by (3.3)) 

= Y(2n)[X(kn) - 2] + Y(kn)[X(2n) - 2] 

= Y(n)X(kn)[X(kn) - 2] + Y(nk)dY(n)2 (by (3.4)) 

= Y(n)X(n)dY(k/2. n)2 + dY(k/2 . n)X(k/2. n)Y(n)2 (by (3.5)) 

= dY(n)Y(k/2. n)[Y(k/2 n)X(n) + X(k/2. n)Y(n)] 

= dY(n)Y(k/2. n)[2Y(k/2 . n + n)] (by (3.3)) 
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= 2dY(n)Y(k/2. n)Y(k/2 . n + n) 

This is also the increase in twice the right side of (3.56) as k changes to k +2. 

From the Product Formulas (3.16) and (3.18) we have 

(3.57) dYa(fl)Ya(2in) = Xa((2i + 1)n) - X,,((2 - 

(3.58) Ya()Xa(2jfl) = Y.((2 + 1)n) - Ya((2i - 1)n). 

When we sum (3.57) and (3.58) for i = 1, 2,. . . , m, they telescope giving 

(3.59) dYa(fl)>2Ya(2fl) = Xa(2mn + n) - Xa(fl), 
i=1 

(3.60) Ya(fl)EXa(2 fl) = Ya(2mn+n) - Ya(fl). 
i=1 

Applying (3.20) and (3.22) to (3.57) and (3.58) we have 

(3.61) dYa(fl)LYa(2) = dYa(mn + n) . Ya(mn), 
i=1 

(3.62) Ya(fl)EXa(2fl) = Xa(mn+n) .Ya(mn) 
i=1 

The next group of identities which hold for E = ±1 we call the e identities, where 

e can be ±1. The first set (3.68) - (3.71) can be proved from (3.8) and (3.9) by 

considering the cases € = ±1. The other identites can be derived in a similar way. 

(3.68) 2Xa(fl + ) = aXa(n) + EdYa(fl), 

(3.69) 2Ya(fl + €) = €Xa(n) + aYa(n), 

(3.70) 2Xa(fl - €) = aXa(n) - EdYa(fl), 

(3.71) 2Ya(fl€) = —€Xa(n) + aYa(n), 

(3.72) 2Xa(fl) = aXa(n + €) - €dYa(fl + f), 

(3.73) 2Ya(fl) = —€X0(n + €) + aYa(n + e), 

(3.74) 2Xa(fl) = aXa(n - €) + EdYa(fl 
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(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

For c = ±1. 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

2Y. (n) = EXa(fl€) + aYa(n—€), 

2Xa(fl + €) = (a2 - 2)X0(n - €) + €adYa(n - 

2Ya(fl + €) = caXa(n - e) + (a2 - 2)Y0(n - 

2Xa(fl - €) = (a2 - 2)X(n + e) - 6adYa(n + E), 
2Ya(n - €) = —eaXa(n + €) + (a2 - 2)Ya( + €). 

When ii is odd, all quantities below are integers. 

2Xa() = axa(') + €dYa 

—E\  

2Ya() = ay (fl 2 ) + X. (n  2 )' 

2Xa (fl; C) = aXa 2 ) - €dYa 2 ) 
2Y0 (n 2 E) = aYa() - 'EX_ 2 ) 

) 

For e = ±1 and n odd, we have from (3.19') - (3.22') 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

Xa(n)+a = X a () - Xa (n —c) 

Xa(n)a = dYa() Ya(n 2  

Y(fl)+E = Ya() Xa( 2 ), 

Ya(fl)E = Xa()Ya(2). 

From (3.4) and (3.5) with n replaced by (n—€)/2 and (n+€)/2 we obtain the following 

identities. 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

(n—€)/2 and (n+€)/2 are both integers when €=±1 and ii is odd. 

Xa(flE) = X,, 2 In - ) 2 = dYa( 2 )+2, 

Ya (n — c) Xa ( n 2 ) Ya ( n  2 )' 

Xa(fl+€) = Xa()_2 = dYa()+2, 

Ya(fl+€) = Xa() Ya(). 
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(n - €)/4 and (n + e)/4 are integers when 4 1 (n - or 4 I (n + e). 

(3.92) 

(3.93) 

(3.94) 

(3.95) 

X. In—f")2 2 dYa ( /fl - f\ )2 
+2, =( =  

X, ( n 4 ) Ya( ), 
= x0(n)2_2 = dY0(n)+2, 

=Xa() Ya(). 

By (1.35), (3.28') and (3.29') we have 

(3.96) (Xa(fl)+2)(Xa(fl)2) = dYa(fl)2, 

(3.97) Xa(fl)2 + d = Xa(n + ,E) Xa(fl - 

(3.98) Xa(fl)2 - a2 = d(Ya(n)2 - 1), 

(3.99) (X, (n)+ a). (X. (n) -  a) = d. (Y (fl) + c) (Y, (n) -  

From (3.53) and (3.54) for any 6 = ±1 

(3.100) Ya(2nm) - 6Y0 (2m) = Xa(nm + €m) Y(nm - €m). 

Hence by (3.5) 

(3.101) Xa(nm)Ya(nm) - €Xa(m)Ya(m) = Xg(nm + €m) . Ya(nm - €m). 

From (1.14') and (1.12) we have 

(3.106) aY(n) - 2Ya(fl - 1) = X. (n), aXa(n) 2Xa(fl - 1) = dYa(fl). 

By induction on n one can prove 

(3.107) (a-2)>Ya(i) = Y0(n+ 1) —Y(n) —1, 
i=1 

(3.108) (a —2) >Xa(i) = Xa(fl +1) - Xa(fl) + a— 2. 

Also by induction on n we have 
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(3.109) 

(3.110) 

(3.111) 

(3.112) 

d>2Ya(2j) = 2Y,, (2n + 2) - aYa(2n + 1) - a, 

dEYa(2j+ 1) = 2Ya(2fl+2)2Ya(2fl+1)2, 
1=1 

d>2Xa(21) = 2X,, (2n+ 2) - aXa(2n + 1) + d, 
1=1 

dXa(2i+1) = aXa(2n+2)-2Xa(2n+1). 
i=1 

Theorem 3.113. If (n,6)=1, then Xi(n) = 1 and Yi(n) = (-3/n) n (mod 6). 

If 3m, then X, (n) = 2 (_ 1) n/3 and Yi(n) = 0. 
Proof. If (n, 6) = 1, then n = 6j±1 so that X, (6j±1) = 1 and Yi(6j±1) = ±1. From the 

theory of quadratic residues it is know that if (n, 6) = 1, then (-3/n) n (mod 6). 

In other words, if n = 6j ± 1, then (-3/n) = ±1. Consequently (-3/n) = Yi(n). 
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§4. Divisibility properties 

In this section we derive some divisibility properties of the sequences X. (n) and 

Ya(fl). Many of these divisibility properties are known. We believe the following 

to be new: Lemma 4.36 and Theorem 4.50, 4.52 and their generalization, Theorem 

4.61. The following divisibility properties may possibly be new or at least the proofs 

are new: Lemma 4.23, Lemma 4.24 and Lemma 4.37. Also the proof of 4.56 is new. 

From the fact that for fixed n the functions X,, (n) and Y. (n) are polynomials in 

a, one obtains the Congruence Rules: 

(4.1) Xa() Xb(fl) (mod a - b), Ya(n) Y(n) (mod a - b). 

Congruence Rule (4.1) is due to Julia Robinson [33]. In these congruences b can also 

be negative. Equations (1.47) can be proved by induction from the Lucas Equations 

(3.10) and (3.11). Thus we have also the Congruence Rules 

(4.2) Xa(fl) = (-1)'X&(n) (mod a + b), Y0(n) = (-1)''Yb(n) (mod a + b). 

From this it follows that if a ±b (mod n), then for any k, 

(4.2.1) Xa(k) ±X6(k) (mod n), and Ya(k) ±Yb(k) (mod n). 

The Congruence Rules (4.1), (4.2) and (4.2.1) also hold when a or b is 0, 1 or 2. If 

we substitute these values 0, 1 and 2 into (4.1) and (4.2) and use Definitions (3.12) 

- (3.14) for Xo,X1,X2, Yo, Y1 and Y2 we then obtain the special congruence rules. 

(4.3) X. (n) 2 (mod a - 2), 

(4.4) Xa(fl)2(1)'2 (mod a+2), 

(4.5) Xa(2i) 2(_l)i (mod a), 

(4.6) X0(2i+1)0 (mod a), 

Ya(n) n (mod a - 2), 

Ya(fl) n(-1)'' (mod a + 2), 

Ya(2i) 0 (mod a), 

Ya(2+1) (_l)i (mod a). 



37 

(4.7) PARITY LEMMA If Y. (n) is even, then X. (n) is even and X. (n) 2 (mod 4). 

X(n) a - rem(n2 , 3) (mod 2), Ya(fl) rem(n2 , 3) + an + n (mod 2). 

When a is even: For all n, Xa(fl) 0 (mod 2) and Ya(fl) n (mod 2). Also 

Y4(n) even n even = Xa(n)2(mod 4) Y0(n)a[(-1)'/2-1]/2(mod 4). 

Y0(n) odd n odd Xa(n) a (mod 4) 4* Y0(n) n (mod 4). 

When a is odd: For all n, X0(n) Y(fl) rem(n2,3) (mod 2). Also 

Ya(fl) even 4*Xa(fl) even * Xa(n)2(mod4) 4* Ya(n)0(mod 4)4*3In. 

Y. (n) odd * X. (n) odd (3,n) = 1. 

Proof. By induction on n, using (3.10) and (3.11). 

Lemma 4.8. For any a, (Xa(n),2Ya(n)) 12, (Xa (n) 2,Xa(fl) +2)14. 

(Xa (fl),Xa(fl + 1)) 12, (Ya(),Ya(fl + 1) = 1. 

a is even * (Xa(fl),Xa(fl + 1)) = 2. a is odd * (Xa(fl),Xa(fl + 1)) = 1. 

When a is even: 21n * (Xa (fl),Ya(fl))=2 (Xa (fl)2,Xa(fl)+2)4. 

When a is odd: 3m (Xa(fl),Ya(fl))=2 4* (Xa (n) — 2, Xa (n) + 2) 4. 

If a 2 (mod 4), then X. (n) 2 (mod 4) and (X, (n) -  2,Xa(fl) + 2) = 4. 

If a M 0 (mod 4), then Xa (n) = 1+( 1)z (mod 4) and (Xa (n) —2, Xa(fl) +2) = 3+ (-1)'. 

Proof. (Xa (n), 2Ya(fl)) 12 follows from (4.7) and defining equation (1.35), 

Xa(fl)2 — dYa(fl)2 = 4. (Ya(n),Ya(fl + 1)) = 1 follows from identity (3.34). For the 

proof of (Xa (n), Xa (n +1)) 12, we note that identity (3.33) implies that when a prime 

I X(n+1) and pXa(n), then p2 Id. Then Xa(n)2—dYa(n)2 =4 implies p2 4 s 

that p 12. Hence (Xa (n), Xa (n+ 1)) I 2. Proofs of the other statements are similar. 



38 

(4.9) PERIODICITY CONGRUENCES Let m and n be natural numbers and i any 

integer. Then 

Xa(2fl ± m) —Xa(m) (mod X.()), Ya(2fl ± m) X.(m) (mod X(n)), 

Xa(4n ± m) Xa(m) (mod Xa(fl)), Ya(4fl ± m) ±Ya(m) (mod Xa(fl)), 

Xa(4fl ± m) Xa(m) (mod Xa(n)), Ya(4ni ± m) ±Ya(m) (mod Xa(fl)), 

Xa2ni±m) (-1)1X(m) (mod X, (n)), Y02ni ± m) (-1)Ya(m) (mod X. (n)), 

Xa(4ni±2n±m)E—Xa(m) (mod X0(n)), Ya(4ni±2n±m)FYa(m) (mod Xa(n)). 

Proof. The first two congruences follow directly from the Periodicity Equations, 

(3.6) and (3.7). The other congruences follow from the first two using the Periodicity 

Equations and induction on i. The ± signs correspond. They depend essentially on 

the number of multiples of 2n, and also of course follow the signs on m. 

Lemma 4.10. The following congruences hold both number theoretically and 

algebraically. 

Ya(flk) 0 (mod Ya(n)), 

Xa(2flk) 2 (mod Y. (n)), 

2X0(2nk ± r) 2X. (r)(mod Y. (n)), 

2Ya(2flk ± r) ±2Ya(r) (mod Ya(fl)), 

2Xa(2flk + n ± r) Xa(n)Xa(r) (mod Ya(fl)), 

X. (n)'4 (mod Y. (n)'), 

2Ya(2flk + n ± r) ±Xa(n)Ya(r) (mod Ya(fl)), 

41Xa(fl)1 (mod Y. (n)') 

Proof. We prove Congruence (i) by induction on k using Periodicity Equation (3.7). 
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The statement holds trivially for k = 0 and k = 1. Assume it holds for k and k + 1. 

Then 

Y(n(k + 2)) = Y(nk + 2n) = X(n)Y(nk + n) - Y(nk) 

= X(n)Y(n(k + 1)) - Y(nk) 0 (mod Y(n)). 

Congruence (ii) follows from (i) and Double Angle Formula (3.4) by replacing n by 

nk in (3.4). Congruence (iii) follows directly from (i) and (ii) and Addition Equation 

(3.2). Congruence (iv) follows from (i), (ii) and Addition Equation (3.3). Congru-

ence (v) follows from (iii) (with r replaced by n + r) and Addition Equation (3.2). 

Congruence (vii) follows from (iv) (with r replaced by n + r) and Addition Equation 

(3.3). Congruence (vi) is evident from defining equation (1.35). Congruence (viii) 

follows trivially from (vi). 

Now we can establish the divisibility properties of the sequences X0, Y, 

DIVISION THEOREM 4.11. (Lucas [32]). We have the following divisibilities which 

hold also algebraically 

(4.11) nlm * Ya(n) Ya(m). (2≤a) 

(4.12) n I m and rn/n is odd Xa(fl) I X(m). (2 <a) 

Proof. If a = 2, Y(n) = ii. Hence (4.11) holds. Suppose 2<a. For (4.11). 

. Suppose n I m. Let m = nk. Then by Lemma 4.10 (i) Ya(fl) I Ya(m). 

. Suppose Ya(fl) I Ya(rn). Write rn in the form m = 2nk ± r with 0 < r < n. 

By Lemma 4.10 (iv) we have 0 2Y(m) = 2Y(2nk ± r) ±2Y(r) (mod Y(n)). 

Hence Y(n) I 2Y(r). From 0 < r < n, it follows that 0 ≤ 2Y(r) ≤ 2Y(n— 1) <Y(n) 

using the inequality in Lemma (2.9) (i). Therefore we have 0 ≤ 2Y(r) <Y(n) and 

Y(n) 12Y(r) which implies r = 0. Hence rn = 2nk so that n I M. 
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For the proof of (4.12) in the direction =, suppose n I rn and rn/n is odd. From 

the Periodicity Congruences (4.9) 

X(2n(2i) + n) = X(4ni + n) X(n) 0 (mod X(n)) and 

X(2n(2i + 1) + n) = X(4ni + 2n + n) —X(n) 0 (mod X(n)). 

Hence for j = 2i or j = 2i + 1, X(2nj + n) 0 (mod X(n)). Equivalently 

X(n(2j + 1)) 0 (mod X(n)). Hence X(n) I X(n(2j +1)). This proves that for any 

odd k, X(n) I X(nk). 

For the proof of (4.12) in the direction .=, suppose X(n) I X(rn). We can write 

m = 2nk ± r with 0 < r ≤ n. By the Periodicity Congruences (4.9) we have 

0 X(m) = X(2nk±r) (1)cX(r) (mod X(n)). Hence X(n) I X(r). If 0< r < n, 

then X(r) <X(n). Consequently r = n and rn = 2nk ± n = (2k ± 1)n so that n I m 

and rn/n is odd. 

Divisibility statements (4.11) and (4.12) can be interpreted algebraically as 

statements about divisibility of polynomials in Z[a]. As a result of this we have 

Corollary 4.13. If k In, then there exists a polynomial Q(a), depending on n and 

k, with integer coefficients and degree n - k, such that Y,, (n) -  Ya(k).Q(a). 

Lemma 4.14. Suppose nr (mod rn) and Ya (m) is even. Then Ya(n)Ya(r) (mod 2). 

Proof. From the Parity Lemma 4.7. Consider separately the cases a even and a odd. 

Lemma 4.15. n r (mod m) = (Ya (n), Ya (m)) = (Ya (r),Ya(m)). 

Proof. By symmetry it is enough to show that (1's (n), Ya (rn)) I (1'0 (r), Ya (m)). 

Trivially (Ya (n), Ya (m)) I Ya (m). Hence we need only show (Ya (n), Ya (m)) I Ya (r). 

Let k = (Y (n), Ya (rn)). Let n = r ± qrn, then ±qm = n - r. By the Division Theorem 
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4.11 and Addition Equation (3.3) we have 

Ya(m)) I Y(qm) and ± 2Y(qm)) = Ya(n)Xa(r)) - X0(n)Y0(r). 

Since k I Ya(m), we have 

(*) k I Y. (n) and 2k I Ya(n)Xa(r) - Xa(n)Ya(r). 

Case 1. Y,, (m) or Y. (n) is odd. In this case k must be odd and (Xa(fl),2Ya(fl)) 12 

implies (k,Xa(fl)) = 1 so that k I Y,, (r) by (*). 

Case 2. Ya(m) and Ya(fl) are both even. In this case by Lemma 4.14 Ya(r) must be 

even. Hence X(n) and Xa(r) are even by the Parity Lemma 4.7. Hence from (*) 

we have 

k I Y, ,(n) and k I Ya (n). Xa(r) - Xa(n) Y, (r). 

But now we have (X,, (n), 2Y,, (n))= 2 which implies (Xa(fl)/2, Y,, (n))= 1 so that 

(k, Xa(n)/2) = 1 since k I Y,, (n). It follows that k J Y,, (r). This completes the proof. 

GCD THEOREM 4.16. (Lucas [32]). For all a > 2, 

(i) (Ya(fl), Y. (m))= l'( (n, in) ), 

(ii) If n and mare odd, then (Xa(n),Xa(m)) = X0( (n, m) 

Proof. We show that (Ya(fl), Ya(m)) = Ya( (n, m) ). Suppose m < n. We will apply 

Lemma 4.15 to the equations arising in the Euclid Algorithm for (n, m). Let the 

sequence of remainders in the Euclid Algorithm be 0 = rn <r_ < ... < ri < m < n 

where 7'n1 = (n, m). Suppose the equations are 

n = mq1 + ri, 

r2 = r3q4 + 7'4,• 

m=r1q2+r2, rl=r2q3+r3, 

rn_3 = rn_2qn 1 + 7'n-2 = Tn_iqn + r,. 
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By applying Lemma 4.15 n + 1 times to these equations we have 

(Ya(n),Ya(m)) = (Ya(m),Ya(ri)) = (Ya(rj),Yc(r2)) = = (Ya(rn_2),Ya(rn.. i)) 

= (Ya(rn_i),Ya(rn)) = (Ya(rn_i),Ya(0)) =Ya(rn....i) =Ya((n,m)). 

The last equality is due to r_1 = (n, m). Hence (Ya(n),Ya(m)) = 

Theorem 4.16 (ii) can be derived in a similar way from (4.12) (McDaniel [36]); 

(ii) also holds under slightly more general hypotheses, that n/ (n, in) and m/ (n, m) 

are odd. 

Corollary 4.17. (Y,, (n), Y,, (m)) = I (n, m) = 1. Also [Y,,, (n), Ya(m)]I Y,, ([n, m]). 

Proof. The first statement follows from the GCD theorem. For the second, from the 

Division Theorem, we have Ya(n) I Y([n, in]) and Ya(in) I Ya([fl, m]). Therefore 

[Y. (n), Y(rn)] I Y.,([n, in]). 

REMARK. [Ya(n),Ya(m)] <Ya([n,m]) is possible, e.g., let a = 3, n = 4 and in = 6. 

Corollary 4.18. Suppose a > 2. Then n I m implies Ya(n) . Y0 (m) I Ya(n . in). 

Corollary 4.19. Let E = ±1. Then 

n odd = (Ya(n+E),Ya(n—E))=a, 

n even = (Ya(fl +,E), Y. (n - €)) = 1. 

Proof. By the GCD Theorem. If n is odd, then (n+ €,n - c) = 2 and Y,, (2) = a. If 

n is even, then (n +€,n - e) = 1 and Ya(1) = 1. 

Corollary 4.20. If n is odd, then (Ya(( + €)/2),Y((n - €)/2)) = 1. 

Corollary 4.21. If (n, 2a) = land € = ±1, then n I Ya(±€) (fl,Ya(fl€)) = 1. 

Lemma 4.21.1. If n is odd and d = a2 —4, then (d, ii) = (a + 2, n)(a - 2, n). 
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Proof. It is known that ((a + 2)(a - 2), n) I (a + 2, n)(a - 2, n). Therefore 

(d, n) I (a + 2, n) (a — 2, n). But ((a + 2, n), (a — 2, n)) = 1 as n is odd. 

Theorem 4.22. (i) 2n I m * X(n) I Ya(m), 

(ii) Xa(2kfl) ±2 (mod Xa(fl)), 

(iii) (Xa(fl),Xa(2kfl)) 12. 

Proof. Put m = 0 in the Periodicity Congruences 4.9. 

Lemma 4.23. If k is odd, Y0(mk) kY(rz) (mod Ya(fl)3). 

Lemma 4.24. If k is even, Y0(nk) Xa(fl)Ya(fl) (mod Ya(fl)3). 

Proof. By identities (3.55) and (3.56). 

Lemma 4.25. If k is odd, Xa(flk) k(1)Xa(fl) (mod Xa(fl)2). 

Lemma 4.26. If k is even, Xa(nk) 2(-1) (mod Xa(fl)2). 

Proof. Induction on k. The congruences hold for k = 1 and k = 2. Suppose 

Congruence (4.25) holds for an odd k and Congruence (4.26) holds for k+1. Consider 

k + 2 (which is odd). Using the induction hypothesis and Periodicity Equation (3.6) 

we have 

X(n(k + 2)) = X(nk + 2n) = X(n)X(nk + n)—X(nk) = X(n)X(n(k + 1))—X(nk) 

X(n)2(-1)' 12 —k(-1) k-l"2X(n) = X(n)(k + 2)(_1)41)12 (mod X(n)2). 

Hence (4.25) holds for k +2. Suppose next that k is Seven and that (4.26) holds 

for k + 1. Using Periodicity Equation (3.6) again we get 

X(n(k + 2)) = X(nk + 2n) = X(n)X(n(k + 1)) - X(nk) 

X(n)(±1) (k+ 1)X(n) —X(nk) —X(nk) _2(l)k12 =2(—l) (k+2)/2(mod  X(n)2). 
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Hence (4.26) holds for k +2. Both congruences are proved. 

Lemma 4.27. For all a and all n, Ya()2 IYa(flYa(fl)). 

Proof. Replacing k by Y(n) in Lemmas 4.23 and 4.24 we get the two congruences 

(i) Y(nY(n)) Y(n)2 (mod Y(n)3), (ii) Y(nY(n)) = X(n)Y(n)2 (mod Y(n)3). 

where the (i) holds when Y(n) is odd and (ii) holds when Y(n) is even. If k is even, 

by the Parity Lemma 4.7 then X(n) is even, so the right side of (ii) is an integer. 

Hence (i) and (ii) imply that Y(n)2 I Y(nY(n)) holds in any case. 

First Step Down Lemma 4.28. nY0(n) J m Ya(fl)2 I Ya(lfl) (2 < a). 

Proof. =. Suppose nY(n) I m. Then Y(nY(n)) I Y(m) by the Division Theorem. 

From Lemma 4.27 we have Y(n)2 I Y(nY(n)); thus, Y(n)21Y(m). 

. For the converse suppose Y. (n)2 Ya(m). Certainly Ya(fl) I Ya(m). Hence by the 

Division Theorem n I m. Let m = nk. Then we are given Y(n)2 I Y(nk). 

Case 1. k odd. Lemma 4.23 = Y(n)2 I kY(n) so Y(n) I k. So nY(n) Ink or flYa(fl) J m. 

Case 2. k even. Lemma 4.24 implies Ya(flk) (1/2)Xa(fl)Ya(fl)k (mod Ya(n)3). 

Then Y(n)2 I Y(nk) implies Y(n) I (1/2)X(n)k. From Lemma 4.8 (Y(n),X(n)) 12. 

Hence if Y(n) is odd, then Y(n) I k. If Y(n) is even, by Parity Lemma 4.7 then 

X(n) 2 (mod 4). Hence (Y(n), (1/2)X(n)) = 1 so that again Y(n) I k. Hence 

flYa(fl) Ink and therefore flYa() Im. 

Corollary 4.28.1. Ya(fl) I k * Ya(fl)2 I Ya(nk). (2 ≤ a). 
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Second Step Down Lemma 4.29. For 2 < a and 1 ≤ n. 

Ya(k) ±Ya(m) (mod Xa(fl)) k ±m (mod 2n). 

Proof. =. Suppose k = 2nj ± m where j is an integer. When j is even, j = 2i we 

have by the Periodicity Congruences 4.9 Y(k) = Y(4ni±m) ±Y(m) (mod X(n)). 

When j is odd, j = 2i± 1, we have Y(k) = Y(4ni+2n±m) Y(m) (mod X(n)). 

So Y(k) ±Y(m) (mod X(n)) in any case. (Since j can be any integer there is no 

correspondence between ± signs.) 

=. Suppose Y(k) ±Y(m) (mod X(n)). Choose k' such that 0 ≤ k' < n and 

k ±k' (mod 2n). Choose m' such that 0 < m' < n and m ±m' (mod 2n). 

Then there exist integers i and j such that k = 2ni ± k' and m = 2nj ± m'. 

Using the Periodicity Congruences we get Y(k') = Y(2ni±k) ±Y(k) ±Y(m) = 

±Y(2nj±m') ±Y(m') (mod X(n)). Hence Y(k') ±Y(m') (mod X(n)). Thus it 

follows that X(n) I IY(k') Y(m')I. If k'54 m', then from inequality (ii) in Lemma 

2.9, Y(n-1)+Y(n) <X(n). This implies 0 <IY(k') Y(m')I ≤Y(k')+Y(m') 

Y(n-1)+Y(n)<X(n), a contradiction. Hence k'=m'. Therefore k_±m (mod 2n). 

In the following lemma there is also no correspondence between the ± signs. 

Lemma 4.30. For 4≤a, 2Ya(k)_±2Ya(m) (mod Xa(fl)) * k=—±m (mod 2n). 

Proof. =. The result follows from Lemma 4.29. 

=. Suppose 2Y (k) ±2Ya (m) (mod Xa (n)). As before choose m' < n and k'< n such 

that k M ±k' od 2n) and m ±m' (mod 2n). Proceed as in the proof of Lemma 

4.29 and multiply the congruences by 2. One obtains finally X. (n) I 2Y (k') ±2Ya (in'). 

At this point we use inequality 2.9 (iii), 2Ya(fl1) ±2Ya(fl) <X(n) to conclude that 

= m'. 
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(4.31) 2X0(nk ± r) 2Xa(r) (mod Ya(fl)), for k even, 

(4.32) 2X,, (nk± r) Xa()Xa() (mod Y. (n)), for k odd. 

Proof. The first congruence, which holds for k even, is a consequence of (4.10) (iii). 

The second congruence, which holds for k odd, is a consequence of (4.10) (v). 

We also have, from (4.10) (iv) and (4.10) (vii), 

(4.34) 2Ya(flk ± r) ±2Ya(r) (mod Ya(fl)), for k even, 

(4.35) 2Ya(flk ± r) ±Xa(fl)Ya(T) (mod Ya(fl)), for k odd. 

Lemma 4.36. Suppose p is an odd number and € = ±1. Then for all j ≥ 1, 

(1) 2X    Xa (2j) x ) a (mod Y  2 a2k, 2 ))' 

(2) 2Y (p+1....EI+'\ - €1Xa Y (2 7—) Y 
a 2 )- a2) 2 

(3) 2X 7, +1+cI+1 \ 2 )EXa()Xa(2? ) (mod Ya(2 )), 

(4) 2Y (p'  ) 1+EI1\ = E'Xa (2.=) () (mod Ya (L)) 
2 2 2 

Proof. By (4.32) and (4.35) with n = (p1 — €i)/2 and k = p. For (1) and (2) let 

r = S(p - e)/2. nk + r = (p1 - €')p/2 + eip — €)/2 = p1' — S')/2. For (3) and 

(4), put r = ci(p + €)/2. nk + r = (p1 — S)p/2 + e3(p + €)/2 = (p1+1 + €i-'-')/2. Use 

also (1.46), Xa(€1 (p — €)/2) = Xa((p — €)/2) and Ya(S(p — €)/2) = E'Ya((p — 

We give next a Step Down Lemma for the X. sequence: 

Lemma 4.37. For 2<a, Xa(k)±Xa(m) (mod Xa(fl)) * k=—±m (mod 2n). 

Proof. =. Suppose k = 2ni ± m. Then from (4.9), we have X(k) = X(2ni ± m) 

(-1)X(m) X(m) (mod X(n)). So X(k) ±X(m) (mod X(n)). 
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=. Suppose X(k) ±X(m) (mod X(n)). Choose k' such that 0 ≤ k' ≤ n and 

k ±k' (mod 2n). Choose m' such that 0 ≤ m' < n and m ±m' (mod 2n). 

Then there exist integers i and j such that k = 2ni ± k' and m = 2nj ± m'. Using 

the Periodicity Congruences 4.9 we get X(k') = X(2ni ± k) ±X(k) ±X(m) = 

±X(2nj ± m') X(m') (mod X(n)) so X(k') ±X(m') (mod X(n)). Hence 

X(n) I IX(k') X(m') 1. We claim that k' = m'. If one of k' and m' equals n, say 

k'=n, then X(k')±X(m') (mod X(n)) would imply that X(m') =—O (mod X(n)), 

so X(n) I X(m'). Hence it must be that m' = n therefore k' = m' in this case. Next 

we suppose k' ≤ n—i and m' ≤ n—i. If k' 54 m', then k' ≤ n-2 or m' < n-2 so that 

by Lemma 2.9 (iv), 0 < IX(k') X(m')I ≤ X(k') + X(m') ≤ X(n —2) + X(n - 1) < 

X(n). This would contradict X(n) I X(k') ± X(m'). Hence again k' = m'. The 

claim is proved. Therefore k ±m (mod 2n). 

Theorem 4.50. (i) X+k(fl) X, (n)+ kriYa(n) (mod k2), 

(ii) X.-k(n) X,, (n) -  kYa(fl) (mod k2), 

(iii) dYa+k(fl) kflXa(fl) + (d—ak)Ya(n) (mod dlc2), 

(iv) dYa...ic() knXa(fl) + (d+ak)Ya(n) (mod dk2). 

From Corollary 2.2, X(n) = flYa(fl) and dYa'(n) = flXa(fl) - aYa(n), it is easy to 

see that Theorem 4.50 is equivalent to the following theorem. Hence we shall prove 

Theorem 4.52. For any integer k, 

Xa+k(fl) Xa(fl) + kX(n) (mod k2), 

Xa...ic(fl) Xa(fl) - kX(n) (mod k2), 

Ya+jc(fl) Ya(fl) + kY(n) (mod k2). 

Ya-k(fl) Ya(n) - kY(n) (mod k2). 
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Proof. (ii) is obtainable from (i) and (iii) is obtainable from (iv) by replacing k 

by —k. Hence we need only prove (i) and (iii). Taking derivatives of both sides of 

identities (3.10) and (3.11), we have 

(*) X(n+2) =X(n+l)+aX(n+l)—X(n), Ya'(n+2) =Ya(n+l)+aYa'(n+])—Ya'(n). 

Now we use induction on n. For n = 0 or ii = i, congruences (i) and (iii) become 

identities. 

Suppose (i) and (iii) hold for n and n + 1. Consider the case n +2 for (i): 

Xa+k(fl + 2)Xa(fl + 2) =(a + k)Xa+k(fl + 1)Xa+k(n)(aXa(n + 1)Xa(fl)) 

= a(Xa+k(n + 1)— Xa(fl + 1))— (Xa+k (fl) - Xa(fl)) + kXa+k (fl + 1) 

akX(n + 1) - kX(n) + kXa+k (fl + 1) (by the induction hypothesis) 

= akX(n + 1) - kX(n) + kXa+k (fl + 1) - kXa+ic( + 1) + kXa+k (ri + 1) 

k (aX (n + 1) - X (n)) + k2X (n + 1) + kX0(n + 1) (by the induction hypothesis) 

k(aX(n + 1)+Xa(fl + 1)—X(n))+0 =kX(n+ 2) (mod k2) (by(*)). 

Hence (i) is proved by induction. Consider the case n +2 for (iii): 

Y+k(n +2) —Y(n +2) =(a + k)Ya+ic(fl + 1)—Y4+k(fl) —(aYa(n + 1) —Ya(n)) 

= a(Y0+k(n + 1) - Ya(fl + 1)) - (Ya+k (fl) - Ya(fl)) + kYa+k (fl + 1) 

akYa'(n + 1) - kYa'(n) + kYa+k (fl + 1) (by the induction hypothesis) 

= akYa'(n + 1) - kYa'(n) + kY +k(n + 1) - kYa+k (fl + 1) + kYa+ic(n + 1) 

k(aY'(n+ 1)—Ya'(n))+k2 Ya'(n+ 1)+kYa(fl+1) (by the induction hypothesis) 

k(aY'(n + 1)+Ya(fl + 1)—Ya'(n))+O =kY'(n +2) (mod k2) (by(*)). 

Thus (iii) is proved. 

Later we shall see how to generalize Theorem 4.52, and at the same time find a 
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simple proof of Hensel's Lemma. Theorem 4.52 holds for X0(n) and Ya(fl) simply 

because they are polynomials in a. We shall show 

Theorem 4.61 . Let f(x) be a polynomial in Z[x]. For any integers a and b, 

(4.61) 1(b) - f(a) (b - a)f'(a) (mod (b — a)2). 

Proof. Let f(x) = ckxC + ck_lxk_l +••• + c1x + co, 

so that f'(x) = ckkXlc_l + ck_1(k - 1)x 2 + + c. Hence 

(*) f(b) - 1(a) t )+Ck 
b' - a' _1 - a 1 \ lb - a 

(  
b — a b—a b—a b — a 

From the geometric series we have 

bi - a' = b' + V-2 a' +... 
" + b2a 3 + b'a12 + a11. 

b — a 
(**) 

Here there are j terms in the sum. Since b a (mod b - a), (**) implies 

—a  =a'+a52a'+...+a2a 3+a1a 2+a'=ja5 ' (mod b—a). 

Hence from (*) 

f(b)—f(a) 

b — a 
= ckkak 1 + ck_1(k - 1)a' 2 +'" + c22a + c1 = f(a) (mod b - a). 

Therefore 1(b) - 1(a) (b - a)f'(a) (mod (b - a)2), establishing the theorem. 

From Theorem 4.61, we can rewrite Theorem 4.52 in the form 

Corollary 4.62. For any n and any a and b, 

(i) Xb(fl) - Xa(fl) M (b - a)X,(a) (mod (b - 

(ii) Yb(n) - Ya(fl) (b - a)Y(a) (mod (b - a)2). 

Theorem 4.61 can also be used to prove Hensel's Lemma without using Taylor's 

Theorem. As we shall need Hensel's Lemma later, we give this proof here. 
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Definition 4.64. A solution a of f(x) 0 (mod pe) is called nonsingular if both 

1(a) 0 (mod pe) and f(a) # 0 (mod p). 

Suppose 0 ≤ a <pe and a is a solution of f(x) 0 (mod pC). We say a lifts to 

a solution b of f(x) 0 (mod p') if f(b) 0 (mod pe41) and b a (mod pC). 

Note that a lifts to b is equivalent to saying there is a (unique) t such that 

b = a + tpe and 1(b) 0 (mod pe+l). If 0 ≤ a <p 1 and 0 ≤ b <pe+l, then we 

can also suppose 0 ≤ t <p. 

Theorem 4.65. (Hensel's Lemma [15]). Suppose 1(x) is a polynomial in Z[x] and 

a is a nonsingular solution of 1(x) 0 (mod pC) Then a lifts to a unique solution b 

of f(x)0 (mod pc+l) 

Proof. Suppose a is a nonsingular solution of 1(x) 0 (mod pC). Hence f(a)/pe 

is an integer and p % f'(a). Therefore f'(a)x _f(a)/pe (mod p) has a unique 

solution t mod p. Hence 

(*) tf'(a) _f(a)/pe (mod p) and 0:5 t <p. 

Let b - a + tpe. To prove the theorem we now need only to show that b is a solution 

of 1(x) 0 (mod p 1). By Theorem 4.61 with b = a + tpe, we have 

1(b) = f(a + tpe) 1(a) + tpef(a) (mod (tpe)2). Since e > 1, 2e > e + 1. Hence 

1(b) 1(a) + tpefl(a) (mod pe+l). Therefore by (*) 

f(b)/pe f(a)/pe + tf'(a) f(a)/pe - f(a)/pe = 0 (mod p). 

Thus 1(b) 0 (mod p1). The theorem is proved. 

REMARK. Suppose pf'(a). If 1(a) 0 (mod p 1), then a lifts top different values 

of b mod pe• If 1(a) # 0 (mod p 1), then a lifts to no values of b. 
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For the proof of the remark, suppose p I f'(a) and f(a) 0 (mod p'), then all 

values oft, 0 ≤ t <p satisfy the congruence tf'(a) _f(a)/pe (mod p). Note that 

f(a + tpe) 0 (mod p1) * tf'(a) _f(a)/pe (mod p) as shown in the proof 

of Theorem 4.65. Therefore all such t satisfy f(a + tpe) 0 (mod pe+l). Suppose 

PI f(a) and 1(a) # 0 (modp 1). Then note that we have f(a+tpe) O (modpe+l) 

f(a) + tpefl(a) 0 (modpe+l) f(a) + 0 0 (modp 1), which implies 

1(a) 0 (mod p1). This contradicts the assumption 1(a) # 0 (mod pe4.l). Hence 

no t satisfies f(a + tpe) = 0 (mod p'). It follows that there is no b such that 

f(b)0 (mod pe+l) and ba (mod p). 

Corollary 4.68. Suppose f(x) E Z[x]. If f(x) 0 (mod pe) has exactly n solutions 

mod pC and that they are all nonsingular, then f(x) 0 (mod pe+l) has exactly n 

solutions mod p 1 and they are all nonsingular. 
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§5. Computational complexity of Xa(fl) and Ya(fl) 

In this section we consider the computational complexity of computing the 

sequences X. (n) and Y. (n). We show that the four functions X. (n), Y. (n), rem (K. (n), m) 

and rem(Y(n), m) are computable in polynomial time (a theorem of Lehmer [29], 

Lehmer, Selfridge and Brilihart [5]). We present a proof of this and give an upper 

bound on the degree of the polynomial. 

To estimate exactly the amount of time required to carry out an algorithm on 

an input n it is necessary to know the amount of time required to perform one bit 

operation. Since this depends on the size of words, capacity of the registers and 

computer architecture, we will estimate the time complexity of our algorithms in 

terms of the number of bit operations. By a bit operation we understand a single 

addition, subtraction or multiplication of two numbers consisting of one binary digit, 

(1 bit, 0 or 1). We shall also include as a bit operation division by 2 or right shift. 

When estimating the number of bit operations needed to perform an algorithm 

on an input n, we will use the binary length of n as a measure of the size of n. By 

the length of n we mean the number of digits base 2. This number, which will be 

denoted by IInII, is essentially log(n). More precisely, 

(5.0) IInII = Lloy2(n)+1i. 

With respect to this measure of size of n, a function f is said to be computable in 

polynomial time if there exists a constant c, such that f is computable in O(IjnIIc) 

bit operations. It is customary to refer to this by saying that f is computable in 

time O(IInIIi. 
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It is known that multiplication of two n-bit integers can actually be carried out 

in time 0&111 where c = 1og2(3) = 1.585... < 2. ([23]) However, in estimating 

the complexity of the algorithms below, we will assume that the ordinary school 

algorithms are used for the elementary arithmetical operations. More precisely, we 

will suppose that the number of steps needed in the basic operations is as follows: 

Number of steps needed to add or subtract two integers a and b ≤ n: O(IInIJ). 

Number of steps needed to multiply two integers a and b < n : O(IInII2). 

Number of steps needed to divide two integers a and b < n : O(!III2). 

Number of steps needed to divide an integer a < n by 2: OGInID. 

Number of steps needed to obtain the integer part of the square root of a: O(IInI Is). 

Number of steps needed for the remainder after a is divided by b, a, b ≤ n : O(IInI 13). 

Number of steps needed to compute the GCD of a and b ≤ n : O(IInII3). 

Number of steps needed to obtain ac mod b, a,b,c ≤ n: O(IIII3). 

Number of steps needed to compute the Jacobi symbol (a/b), a, b ≤ n : O(IInIj3). 

The estimate for the time to obtain the GCD of a and b is based on Lamé's Theorem 

about the Euclidean Algorithm. Lamé's Theorem says that the number of divisions 

in the Euclidean Algorithm is ≤ 511n1l where IInI is the decimal length of n and 

n= max (a, b). In other words, 0 II). Each division costs O(11n112). Hence O(lIIJ3) 

bit operations are sufficient. 

The estimate of O(I!n113) for the time required to compute the remainder 

rem(alc, m ), where k ≤ n, a < n and m < n, is based on the estimate of O(1inil) 

for addition and O(IInII2) for multiplication. Using the repeated squaring algorithm 

(Lehmer [23]), the number of bit operations is proportional to 11kM . IIII2 Since 
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IIa'II kilall, the time to compute ac mod m is 

O(IIkII . IIaIi) + O(IImII2) = °(IInII) + O(jlnhl2) = °(IInII). 

About the complexity of Xa(fl) and Ya(fl) we will prove: 

Theorem 5.1. The functions rem(Xa(n) , m) and rem(Ya(n) , m) are computable in 

polynomial time. There is an algorithm to compute rem(Xa(n) , m) and rem (Ya(n) , m) 

in O((IIaIH-IInII+IImII)3) bit operations. The functions Xa(IIflhI) and Ya(IIflhI) are 

also computable in polynomial time. There is an algorithm to compute Xa(I(flI) and 

Ya(IflhI) in O((IIIl + lIaII)) bit operations. 

Proof. We first sketch a proof for the case a even and m odd. This will use only 

identities (5.2) - (5.5) below. In the case when a is odd there is a small problem with 

division by 2, (see (5.6) and (5.7)). We can get around it when in is odd (by adding 

in occasionally), but when m is even, we will need identities (5.6) - (5.9) below. 

The final claim of the theorem, that the functions X4(IInII) and Ya(IIflhI) are 

computable in polynomial time, follows from the first claim since if rem(Xa(n) , m) 

and rem(Ya(n),m) are computable in polynomial time O((IIaII + unit + limit)3), we 
can put 

m = aII2hI 

in this result. Since Xa(lIII) a'tn" and Ya(IInlI) a"', (which follow from the 

inequality (2.8 (i) (ii)), we have 

Xa(IIThIi) = rem(Xa(linhi), a11") and Ya(llflhl) = rem(Yo(llnhl), aHII) 

because both sides are less than the modulus. 



55 

Hence it will be enough to prove the first part, that rem(Xo(IInhI), m) and 

rem(Ya(IInhI), m) are computable in polynomial time, O((IIaIHInIHImII)3). Initially 

the algorithm will be based on the following identities. 

(5.2) Xa(2) = X. (n)' -2, (doubling) 

(5.3) Xa (2n+ 1) = (aXa (n)2 - 2a+dXa(n)Ya (n)) = aXa(2n) +dYa(2fl), (sidestep) 

(5.4) Ya(2fl) = Xa(fl)Ya(fl), (doubling) 

(5.5) Ya (2n + 1) = (dY0(n)2 +2 + aXa(n)Ya (n)) = Xa (2n) + aY(2n). (sidestep) 

Identity (5.2) is (3.4), (5.3) is (3.47), (5.4) is (3.5) and (5.5) is (3.48). In identities 

(5.3) and (5.5) there is an indicated division by 2. With (5.3) note that aXa(n)2 + 

dXa(n)Ya(n) is always even because it is divisible by aXa(n) + dYa(fl) , which is even 

by (3.8). Hence the division by 2 can be carried out. Similarly, in connection with 

(5.5), dYa(fl)2 + aXa(n)Ya(n) is even, being divisible by dYa() + aXa(n). So the 

indicated division by 2 can again be carried out. 

We define functions Va(c, x, y) and U,, (c, x, y) by 

(5.6) Va(C,X,Y) = - 2, (mod m), if c is even, 

L(ax2 - 2a + dxy)/2J, (mod m), if c is odd. 

(5.7) Ua(C,X,y) = x. Y) (mod m), if c is even, 

[(dy2 + 2 + axy)/2J, (mod m), if c is odd. 

V. (C' x, y) and Ua(C, x, y) are functions of m as well as a, c, x and y. We have 

V,, (c, x, y) <m and U. (c, x, y) <m. Hence V. (c, x, y) and U. (c, x, y) are computable 

in polynomial time. The time would be O((IIaII + Ilcil + IIxII + IIyII + IImPI)2) bit 
operations. 

Given n, put 1 = Ilnil. We define a decreasing sequence, b1, (i = 0, 1,... , 1), by 
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b0 = n and b11 = [b1/2j, i = 0, 1,. •, 1 - 1. Eventually b,_1 = 1 and b1 = 0. We 

also define an increasing sequence (reversed sequence) c, i = 0, 1,- - •, 1, by ci = b1_. 

Then c0 =0,c1=1,...,c1=n. 

Define sequences xi and y, i = 0, 1,... , 1, by xo = 2 and yo = 0, and for 

i=0,1,...,l—lby 

(5.8) = V(c1+1, Xi, y1), Yi+1 = Ua(Ci+i, Xi, yi). 

We will show by induction that 

(5.9) Xa(Cj) (mod m) and y Ya(cj) (mod m), (i = 0,. , 1). 

It will follow that x Xa(fl) (mod m) and Yl Ya(fl) (mod m) since c = n. 

As an example, suppose we want to determine rem(Xa(n) , m) and rem(Ya(n) , m) 

where n = 21. Since 21 101012 in binary, we have 11n1l = 5. Then b0 = 21, 

b1 = 10,b2 = 5,b3 = 2,b4 = 1,b5 = 0. Consequently co=0,c1=1,c2=2,c3=5, 

c4 = 10,c5 = 21. Thus (5.8) and (5.9) imply: 

X1 Va(Ci,X0,y0) V(1,X0(0),Y0(0)) Xa(1) (mod m), 

= Va(C2,Xi,yi) Va(2,Xcz(1),Ya(1)) Xa(2) (mod m), 

= Va(C3,X2,y2) Va(5,Xa(2),Ya(2)) Xa(5) (mod m), 

= Va(c4,xs,y3) Va(10,Xa(5),Ya(5)) Xa(10) (mod m), 

= Va(C5,X4,y4) Va(21,Xcz(10),Ya(10)) Xa(21) (mod m), 

and yi = Ua(Ci,X0,yO) Ua(1,Xa(0),Ya(0)) Ya(1) (mod m), 

Y2 Ua(C2,Xi,yi) _Ua(2,Xa(1),Ya(1)) _Ya(2) (mod m), 

J3 = Ua(C3,2,y2) Ua(5,Xa(2),Ya(2)) Ya(5) (mod m), 

= Ua(C4,3,y3) Ua(10,Xa(5),Ya(5)) Ya(10) (mod m), 

J5 = Ua(C5,X4,y4) Ua(21,Xa(10),Ya(10)) Ya(21) (mod m). 
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To prove that x5 Xa(21) (mod m) and y Y0(21) (mod m) and more 

generally that x, Xa(Cj) (mod m) and y, Ya(Ci) (mod m), we have to prove 

that (5.9) holds for all i. The induction step is the following lemma. 

Lemma 5.10. Suppose a is even and m is odd. Let xi and y1 be defined by 

xo = 2, Yo = 0. Suppose xi and yj are integers and x = Va(Cj+i, X, y), and 

Yi+1 = Ua(Ci+i, xi, yi) (i = 0,,l - 1). If Xi Xa(Ci) (mod m) and y Ya(Cj) 

(mod m), then x+i and Yi+1 are integers and x 1 Xa(Cj+i) (mod m) and Yi+1 

Ya(Ci+i) (mod m). 

Proof. Induction on i. Suppose x1 Xa(Cj) (mod m) and y Y0(c1) (mod m). 

There are two cases to consider, according as c11 is even or odd. 

Case 1: c.1 is even. Then c 1 = 2c1. 

Xi+iVa(Cj+i,Xi,yi)Va(2Ci,Xi,yi)X?2Xa(Ci)22Xa(2CXa(Ci+i) (mod m). 

Yi+1Ua(Ci+1, X, y) Ua(2Ci, X, yi XiyiXa(Ca(Ci) a(2Ci)Ya(ci+i) (mod m). 

Case 2. cji is odd. Then c+i=2cj+1. a and d are even so x 1 and Yi+1 are integers. 

2x+i = 2Va(Ci+i, X, y) 2Va(2Ci + 1, x, y) = ax - 2a + dx1y1 

aX(c)2 - 2a + dXa(cj)Ya(cj) = 2X0(2c1 + 1) = 2Xa(Ci+i) 

= 2Ua(Cs+i,j,yi) = 2Ua(2Ci + 1,x1,y1) = dy +2+ax1y1 

dYa(i)2 + 2 + aXa(cj)Ya(cj) = 2Ya(2C1) = 2Ya(Ci+ i) 

(mod m). 

(mod m). 

Since (m,2) = 1, we have x 1 Xa(Cj+i) (mod m) and Yi+1 Ya(Cj+j) (mod m). 

Since x0 = 2 and yo = 0 and c0 = 0, we have xo = Xa(C) and Yo = Ya(C). Hence 

Xa(CO) (mod m) and Yo Y(co) (mod m). Therefore by induction and 

Lemma 5.10 it follows that x, Xa(Ci) (mod m) and y, Ya(cj) (mod m). 
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This procedure works when a is even and m is odd. When a is odd or m is 

even, there is a problem with division by 2. We obtain only rem(2Ya(k), m) and 

rem(2Xa(k), m) at each stage. To get rem(Y(k) , m) and rem(Xa(k), m) we have 

to calculate rem(2Yg(k) , 2m) and rem(2Xa(k) , 2m) somehow, using other identities. 

For example the above algorithm fails in the cases when a = 4, n = 3, m = 8, or 

when a = 3,n = 3,m = 8 or if a = 3,n = 4 and m =7. 

When a is even and m is odd, it may be possible to modify (5.6) and (5.7) by 

occasionally adding m when some intermediate quantity is odd and we wish it were 

even so we could divide it by 2. Possibly for odd m the above algorithm could be 

modified and made to work, for all a. 

In general when a is odd or m may be even one should use a slightly different 

algorithm described below and based on identities (5.11) - (5.14). These identities 

provide a general algorithm which works in all cases. A small price is to be paid 

however. With the old algorithm based on identities (5.2) - (5.5), it was simpler to 

prove correctness. It was also enough to store pairs at each stage. The new algorithm 

based on identities (5.11) - (5.14) requires storage of quadruples. 

We will use the following equations, (5.11) - (5.14). (For their derivation see 

identities (3.4), (3.5), (3.41) and (3.42).): 

(5.11) Xa(2fl) = Xa(fl)22, 

(5.12) Xa(2fl+1) = Xa(n)Xa(n+1)a. 

(5.13) Ya(2fl) = Xa(fl)Ya(fl), 

(5.14) Ya(2fl+1) = Xa(fl)Ya(fl+1)1. 

With equations (5.11) - (5.14), instead of storing pairs of variables such as (x, y) 
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in two copies, (x, y) and (x', y'), we will store a quadruple of variables (x, y, x', y') 

(fortunately not in two copies). 

The algorithm for computing rem (Ya(k) , m) and rem (Xa(k), m) using (5.11) - 

(5.14) begins as before by computation of the sequence b (or sequences b1 and ci), 

= 0, 1,... , 1, where again 1 = Llog2(n) + 1] is the length of n. One then initializes 

the variables x, y, x', y' by setting them to x = 2, x' = a, y = 0, and y' = 1. One lets i 

run from 1 to 1, and, in accordance with (5.11) - (5.14), modifies x, x'y, y' as follows, 

depending on C:: 

When ci is even, we put 

(5.15) y'=xy'-1, y=x.y, x'=xx'—a, x=xx-2, 

When ci is odd, we put 

(5.16) y=x.y'—1, y'=x'.y', x=x•x'—a, 

Continue this. After exiting the loop, the values of x and y are Xa(fl) and Ya(fl) 

respectively. Normally we compute (5.15) and (5.16) mod m. In this case we have 

Xa(fl) (mod m) and y Ya(n) (mod m). 

Many modifications and simplifications are possible. For example, we need not 

store the actual values of the sequence b. It is of course enough to store only the 

remainders mod 2 of these values. Also the second sequence ci is not needed. One 

can equally well test whether b1_1 is even or odd and let i run from 1 - 1 to 0. 

What is the computation time for this algorithm? Using the standard algorithms 

for arithmetic mentioned above, the cost is O(IImII3) bit operations. O(IInII) op-

erations are needed initially to obtain the sequence b1. We then have 1 = I II I 

evaluations of the functions Va(cj, x, y) and U,(c1, x, y), where x and y are always 

of size < Ilmil. Using the estimate O(IImII2) for the additions, subtractions and 
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multiplications of numbers of size ≤ I Imi I, we find that 0 (11 nIl I Imi 12) = 0 ( I ml I) 
bit operations are sufficient in total. 
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§6. Laws of apparition and repetition 

In this section, we study some classical properties of primes and Lucas sequences. 

Many of these properties were known to E. Lucas [31] [32] and D.H. Lehmer [26] 

[27]. Based on the results in this section, various kinds of Lucas pseudoprimes will 

be defined in §7. First we give the definition of ranks. 

Definition 6.0. Let n be a positive integer. The rank of apparition of n in the 

sequence Y. is the least positive integer r such that n I Y (r). We denote the rank of 

n by ra(n). 

We first prove that the rank exists. 

Lemma 6.1. Suppose a ≥ 2. For any positive n the rank ra(n) exists. 

Proof. Suppose a positive integer n is given. By (1.35) or (1.36) we know that the 

equation x2—dy2 = 4 has infinitely many solutions if d 54 0. Hence x2—(a2-4)n2y2 = 4 

has infinitely many solutions since (a2 —4)n 20 0. Let x, y be a nontrivial solution of 

- (a2 - 4)n2y2 = 4, i.e. y > 0. Then X = x, Y = ny is a nontrivial solution of the 

equation X2 - (a2 - 4)Y2 = 4. By (1.35) there exists a k > 0 such that Y = Ya(k). 

Hence there is a k > 0 such that my = Y. (k) and therefore n I Y0 (k). Choosing the 

least such positive k we get the rank of n. 

Lemma 6.2. For any n, (i) a ±b(mod n) = ra(n) = rb(n); (ii) r0(n) = r-a(n). 

Proof. (i) By Congruence Rules (4.2.1), for all k, we have 

a ±b(mod n) = Ya(k) ±Yb(k) (mod n). Hence for all k, fllYa(k) nlYb(k). 

(ii) By (1.47) Ya(k) = (_1)k+1Y_a(k). Hence ra(n) = T-a(n). 



62 

Lemma 6.3. For all m,n and a≥2, ra(m)In*mlYa(n). 

Proof.(='.). If r(m) I n, then Ya(ra(m)) I Ya(fl) by the Division Theorem 4.11. But 

by definition we have m I Ya(ra(m)). Hence m I Y(fl). 

(=). Suppose m I Ya(n). Let r = ra(m). Write n = rq + s where 0 ≤ s < r. By 

the Addition Law (3.3), 2Ya(S) = 2Y(n - rq) = Ya(n)Xa(rq) - Xa(n)Yo(rq). Then 

m Ya(r) and Ya(r) I Ya(rq) imply m I Y(rq). Hence m I 2Ya(S). We claim that 

m Ya(S). If m is odd this is obvious. Suppose m is even. Then by Parity Lemma 

4.7 Ya(fl) is even and hence X(n) is even. Also m I Ya(rq) implies that Ya(rq) is 

even. Again by the Parity Lemma Xa(rq) is even. Therefore from above, we have 

Ya(S) = Ya(n)(Xa(rq)/2) - (Xg(n)/2)Y(rq) 0 —0 = 0 (mod m). 

Since 0≤s<r and r is the rank of m, we have s=0. Hence n = rq so that nfl. The 

lemma is proved. 

Corollary 6.4. For any n, m and a≥2 if mm, then ra(m)Ira(n). 

Proof. If m I n, then m I Ya (ra (n)) since n I Y (ra (n)). So by Lemma 6.3 ra (m) I ra (n). 

Theorem 6.5. Law of Repetition for primes. (Lucas [32] Lehmer [27].) Let p 

be any prime, 2 ≤ a and 0 ≤ j. Then 

(i) For any k, 1 ≤i, 

For (k,p) = 1, 1< i,  PIIYa(fl) p1 'IIYa(nkp5). 

Proof. (i) and (ii) follow by induction on i from 

(i') For any k, 1 ≤ i, p1 I Y0(n) p1k' I Ya(flkp), 

(ii') For (k,p) = 1, 1< i,  P1IF1'(n) = p1'IIYa(nkp). 
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We can prove (i') and (ii') by using (4.23) when k is odd and (4.24) when k is even, 

k odd Ya(flkp) kp. Ya(fl) (mod Y0(n)3), 

k even Ya(flkp) Ikp Xa(fl)Ya(fl) (mod Ya(fl)3). 

This completes the proof. 

Lemma 6.6. Suppose pis an odd prime, (p, d) 1≤e<c and O≤f. Then 

pe Ya (ra (p C)) r, (pe+f) I pf (pc), pe lYe (ra (pc)) r (pe+f) = p1 r, (pc). 

Proof. (p, d) =1 = (p, r. (p)) =1. (See Corollary 6.12.1.) The first is by the Law of 

Repetition 6.5 with k = 1 and n = r. (pc). For the second we use (p, r,, (p)) = 1 t show 

first r,, (p) = ra(pe). Then by the Law of Repetition, we obtain ra(pe+f) = p1•ra(p'). 

Lemma 6.7. Suppose p > 3 and (p, d) = 1. If r. V) = ps, then for all e ≥ 0, 

r,, V+') = pes. Conversely if there exists e, 1 ≤ e and ra(pe+l) = pes, then r. (p2) p3 

and r,, (p) = s. 

Proof. Since p2 I Y. (ps), we have p I Y. (ps) and so r. (p) I ps. It follows that r. (p) I S 

since (ra (p) , p) = 1. By the Law of Repetition 6.5 p I Ye (ra (p)) implies p2 I Ye (p. ra (p)) 

so that r. (p2) I  r. (p). But r. (p2) =ps. Hence ps IPTa(P) and therefore s I r. (p). 

Consequently r,,, (p) = s. Then we have r. (p) = s and ra(p2) = ps. It follows that 

ra(p3)=p2s since pllYa(s) = p2 Y(ps) p31 V(p2s), etc., by the Law of Repetition. 

Therefore pe+hllYa(peS) and ra(pe+l) = p6s for all e > 0. The converse may be proved 

by induction. The lemma has the following generalization. 

Lemma 6.7.1. Suppose p> 3, (p, d) = 1 and 1 < c. r. (p'+ ') = ps implies that 

Ye ≥ 0 [r0(p) = pes]. Conversely if there exists e, 1 ≤ e and ra(p) = pes, then 

Ta (p(+l) = ps and for all 1 ≤ i ≤ c, r. (p') = s. 
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How large is the rank of n? The rank of an arbitrary integer is very hard to 

calculate. To estimate the rank we will define a function T", (n) such that r. (n)T. (n) 

(analogous to Euler's 0 fuction). Ta is called the totient. 

Deflniton 6.8. The totient of n corresponding to a, written T0(n), is defined by: 

Ta(1)1. Ta(2)2 if a is even, Ta(2) = 3 ifaisodd. 

For an odd prime p, we define 

Ta (p) = p if p I a2 —4 and T. (p) = (p—€) /2 if (p, (a2 —4)) = 1 where E = 

For all primes p (including p = 2), 

Ta(pe+l) = Ta(p) . pe 

iTt (Pei Ck\ - rrr I 6\ p ( e 
.LaPi Pic I - LakP1 j, " 

We will see later that for each integer n, n I Ya(Ta(fl)). With this, we shall prove 

some lemmas and theorems of Lehmer. 

Lemma 6.9. Suppose n is odd, a ≥ 2 and d = a2 —4 / 0. Then 

(6.9) 2"1Xa(fl) = () a'd'f' + (;) ad +" + (n2) a'2d1 + () a"d°. 

Proof. From the identity (1.36) we have 

Xa(n)+Ya(n)v/a2_4 (a+Va2 _ 4 )n 2_fl( +)fl 

This implies 2"'Xa(fl) + 2' 1Ya (n) V'2 = (a + /2)u1. Expanding (a + /2)fl by the 

Binomial Theorem and equating rational parts we obtain 

2°'Xa(fl) = > (!) a/2" = > (7•i) a21'd"21''2. 
i=O, i odd j=O 

Lemma 6.9.1. Suppose n is odd, a> 2 and d = a2 —4 0 0. Then 

(6.9.1) 2"'Ya(fl) = () a°d9' + () an  +... + (,) a' 3 d' + (:1) a"' d°. 
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Proof. By solving for 2''Ya(fl) instead of 2'1Xa(fl) in the expansion of (a + v' 

we get (n-1)/2 

2"1Ya(fl) = :: ()av"' = : ()a21V1"2', 
i=, i even j=O 

after dividing by Ji. This proves the lemma. 

Using such expansions D.H. Lehmer proved the following theorems. 

Theorem 6.10. (Lehmer [27]). Suppose n is an odd prime, 0 < d and d 34 0. Then 

Xa(n)a (mod n). 

Proof. If a=O or a=1, the theorem follows from (3.12), (3.14) and Lemma 3.13. If 

a = 2, the conclusion follows from X2 (n) = 2. Assume a> 2, then 0 < d and d 0 0. 

Hence we may apply Lemma 6.9. Since ii is prime, n () holds for all k such that 

1≤k≤n-1. Then by Lemma 6.9 we have 

2''Xa(fl) = () a'd° = an (mod n). 

Now applying Fermat's Theorem, 2 1 = 1 (mod n) and an a (mod n), we have 

Xa (n) = an = a (mod n), which proves the theorem. 

REMARK. The proof generalizes to any Lucas sequence. If Vn and U, are defined 

by (1.8), (1.9) and A 54 0, B5PO, 0 < D = A2-4B 0 and n is an odd prime, then 

VA (mod n). 

Theorem 6.11. (Lehmer [27]) If n is an odd prime, (n, d) = 1 and d = a2 —4 0 0, 

then Ya(n) Ea (mod n). 

Proof. If a = 0 or a = 1, then the result follows from (3.12), (3.14) and Lemma 

3.13. If a = 2, then the condition (n, d) = 1 does not hold. Assume a > 2, 

then 0 < d = a2 - 4 54 0. Hence we may apply Lemma 6.9.1. Since n is prime, 
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n () holds for all k such that 1 ≤ k ≤ n —1. Then by Lemma 6.9 we have 

9 fl-'Va (n) () a0d' = d 
' ' (mod n). 

Applying Fermat's Theorem 2'' = 1 (mod n) and Euler's Criterion 

d9' (d/n) = € (mod n), we obtain Ya(fl) d9 e (mod n) which proves the 

theorem. 

This proof generalizes to any Lucas sequence V,, and U,, defined by (1.10) (i) (ii). If 

P 54 0, Q j4 0, 0< D 54 0, (n, D) = 1 and n is an odd prime, then U,, e (mod n) 

where € = (D/n) and D = P2 - Q. 

REMARK. The converses of Theorem 6.10 and Theorem 6.11 do not hold. Also 

Xa (n) a (mod n) and Y, ,(n) €a (mod n) are independent of each other, even 

when (n, 2ad) = 1. As examples we may take n = 115 = 5.23, a = 41 or take 

n=119=7.17, a=6. 

The following theorem was also known to D.H. Lehmer. 

Theorem 6.12. If n is an odd prime, (n, d) = 1 and d = a2 —4 and € = (d/n), then 

we have Ya(fl - €) 0 (mod n). Furthermore, we have Ya((fl - €)/2) 0 (mod n). 

Proof. By identity (3.71) and Theorems 6.10, 6.11: 

2Ya(fl - E) = EXa(fl) + aYa(n) —€a + a€ = 0 (mod n). 

Hence Ya(fl - E) 0 (mod n). By (3.89) and (3.84) 

Xa( 2 )Ya( 2 )Ya(n_€)EO (mod n) and 

Xa( 2 )Xa() Xa(n)+aa+a2a (mod n). 

If (n, a) = 1, then the second congruence implies (n, Xa((fl - €)/2)) = 1. Hence the 

first congruence implies fllYa((fl - €)/2). If nia, then 
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€ = (-4/n) = (-1/n) = J 1 

—1 ifn-1 (mod 4) 

Hence n € (mod 4) so that (n—€)/2 is even. Then by the Division Theorem and 

since a=Ya(2) and nla, it follows that n IYa((fl - €)/2). This completes the proof. 

Corollary 6.12.1. If p is an odd prime, (p, d) = 1 and €= (d/p), then r. (p) I (P)/2. 

and Ta (pe) Ipe_l(p_e)/2. Hence (p, ra(p)) = 1. 

Proof. The conclusion ra(p) I (p—c)/2 follows from Theorem 6.12. And the conclusion 

Ta(pC) I pe_l(p_)/2 follows from Theorem 6.12 and the Law of Repetition 6.5. 

Lemma 6.13. Suppose p is an odd prime, (p, s) = 1, 1 <s and 1 i <e. Then 

(i) ra(pe) = s = sl(p — €)/2 for some € = ±1, 

(ii) ra(pc) S Va(P) = 

(iii) ra(pe) = s = r(p1) = s, 

(iv) ra(p) = s and pe 11 Ya(pS) T(p) = pis, 

(v) (ra(pe),p) = 1 = ra(pe) = ra(p1) = 

(vi) r. (p) =8 = ra(pe) = pis for some j, 1≤j<e. 

Proof. (i) follows from Corollary 6.12.1 and the GCD Theorem 4.16. To prove (ii), 

suppose ra(pe) = s. Put r = ra(p). Then r I s by Corollary 6.4.1. Pt Ya(r) implies 

pe IYa(pe_lr) by the Law of Repetition. Hence S Ipe_lr. But (p, s) = 1. Hence sir. 

Since r I s, this implies r = s. Proofs of (iii) and (vi) are similar. (v) is a restatement 

of (iii) and (ii). For (iv), consider two cases according as i = 0 or i ≥ 1. If i = 0, the 

implication is trivial. If i ≥ 1, then we have pC it' (p1 ' s), by the Law of Repetition. 
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Lemma 6.14. If p is a prime and p  d, then p I Y. (p). More generally, if pe (n and 

pad, then Y. (n) 0 (mod pe). 

Proof. Suppose p is an odd prime, p I d where d = a2 - 4 and pe I n. Then since 

d=(a+2)(a-2) and (a+2, a-2)14, pla-2 orpa+2. By (4.2.1) a_±2 (mod pe) implies 

Ya(p) ±(p) =:±p 0 (mod p). Hence p I Ya(p). Then by the Law of Repetition 

Pc I Ya (pC). By the Division Theorem pe n = Ya (pe) I Y (n). Hence pe I Ya (n). 

REMARK. It can be shown that if p I d and p> 3, then ra(pe) = pe. The proof uses 

the fact that if p is prime , p >3 and pld, then 2P—'Ya(p) paP' (mod p2). This 

congruence can be derived from Theorem 6.11. 

The Lemma 6.14 also holds when p = 2. Suppose p = 2, 2 I d and 2elln where 

1≤ e.In this case 2 Id and d= (a+2)(a-2) implies 2 Ia. Hence by the Law 

of Repetition, 2C I Ya (21). By the Division Theorem 21 I n Ya (2e) I Ya (n). Hence 

2elYa(fl). 

Corollary 6.14.1. Suppose 0 ≤ i < e, 1 <s, (p, s) = 1 and r3 (pe) = pis. Then 

(p,a2-4) = 1. 

Proof. Suppose (p,a2-4) > 1. Then p  a2-4. Put n =pC in Lemma 6.14 which 

implies that ra (pe) z. Since ra (pe) = pis, we then have s I pe• This contradicts the 

hypothesis that 1< s, (p, s) = 1. Hence (p, a2-4) = 1. 

Theorem 6.15. n I Ya(Ta(fl)). Equivalently r0 (n) I Ta(n). 

Proof. Let n = p'• . .p7. If (pj,a2 -4) = 1, by Theorem 6.12, P1 Ya((pi€i)/2). 

Since in this case, Ta(pj) = (p - €)/2, pi I Ya(Ta(pj)). Then by the Law of 

Repetition 6.5, for 1 ≤ i ≤ k, p7'f Ya (p 1P1.i) = Ya(Ta(p7')). So we have 
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P7' I Ya (ET0 (p')," , Ta(p k )J) = Ya (Ta (n)). Hence n I Y (Ta (n)). If pi I a2 - 4, 

then by Lemma 6.14, pi I Ya(pt). Since in this case Ta(pt) = pi and 7?, I Ya(Ta(pi)), 

by the Law of Repetition 6.5, we have p7 I Yap71), i.e. p71 I Ya(Ta(p71)). Hence 

Pi' I Ya([Ta(p 1)," ,Ta(p)]) = Ya(Ta(fl)). Since this holds for each p7 f n, we then 
have n I Ya(Ta(fl)). This proves the theorem in either case. 

Corollary 6.15.1. Let p be an odd prime. Then (p, a2 —4) = 1 if and only if 

ra(pe) Ip'((p - €a(P))/2). 

Lemma 6.16. Suppose 2 ≤ k, 6i = ±1, 3 < m1 and mi 0 mj for i j. Then 

(6.16) (m - 5i) <  (IiL- mi) -  1  
j 11 

Proof. Induction on k. To make the notation simple let LHS denote fl1((m—öj)/2) 

and RHS denote ((ilL m)-1)/2. For case k = 2, 

LHS - m1 - 61 m2 -  62  - mim2—m1&—m28j+6iS2 <m1m2+ml+m2+1  
2 4 - 4 

RHS= m1m2-1  

RHS - LHS ≥ m1rn2 1 m1m2+mi+m2+1 = m1m2 —  (MI +m2+3) >0 

Hence (6.16) holds for k = 2. Suppose (6.16) holds for k ≥ 2. Consider k + 1. 

LHS = mj4 - 8k+1 k (mi - mk+1 - 6k+1 (ilL1 rn1) - 1 

= mk+1 ilL m1 - m4 - '5k+1 rIL m1 + 6k+1 = rj'±1' ml—mk+1-8k+1 (ilL1 m-1)  
4 4 

≤11mi_ m +l+ 11Li m i_ 1 < 2flmi_ 4 flmi_2RHS. 
4 - 4 2 

Hence (6.16) holds for k + 1. The lemma is proved. 

Theorem 6.17. Suppose n is odd. Then n is prime 4* (n - e)/2 = Ta(n) and also 

n is prime * (n - E) /21 IT. (n), where e = ((a2 - 4)/n). 



70 

Proof. (=) By definition of Ta(n). 

(=) Suppose n is not prime. Case (1). n = pe with e 2. Then 

Ta(fl) = pe-1P —'E(P) 56 p -  pe - (pe) -  f(p)  
2 ,also 2 2 

Case (2). n = . . . pkkwhere k ≥ 2. Then using Lemma 6.16 we have 

Ta(fl) = [T(j'),...,T0(p)}= [Pi e1_iPi — i(Pi) ek_1Pkk(Pk) 2 2 j 

= p 1_l .. . p k— 1 [P1 ;.  €1 ,••• , Pk — Ek] ≤ pr' .. . pklW k Pi 2 Ei) 

< e,-1 ek—1 (fl  1p) 1 — (flk e\ ei-1 •• ek 1 - I n — €(n)  iP ) Pi Pk  << 
Pi PIC 2 — — 2 2 2 

Hence T. (n)(n — E)/2 and (n - e)/2 %Ta(). This completes the proof. 

Theorem 6.18. Suppose (n, 2a(a2 — 4)) = 1 and e = ((a2-4)/n). If (n—€)/2 I ra(n) 

or (n — f) /2 = Va (n), then n is prime. 

Proof. Suppose (n—E)/21 r(n) or (n—E)/2=rg(n). By Theorem 6.15 ra(n)ITg(n). 

Hence (n - e)/2 IT,, (n). By Theorem 6.17 this implies that n is prime. 

Lemma 6.19. Suppose (n,2a(a2-4)) = 1, c = ((a2-4)/n), 4 1n—E and n _E=2e for 

some e. Then Ya (!!_!) = 0 (mod n) and Ya (fl_E) 0 (mod n) n is prime. 

Proof. By assumption we are given r. (n) I (n — €)/2 and ra(n) % (n — €)/4. Since 

(n — €)/2 is a power of 2, a(fl) = (n — €)/2. Then by Lemma 6.11, n is a prime. 

Lemma 6.20. Suppose n is odd, c = ±1 and 4! n — €. Then 

Ya( 2 )0 (mod n) and (nYa( ))=1 * flIXa n 4 

Proof. (=). By identity (3.93) Ya((fl e)/2) = Ya((n — E)/4)Xa((fl — €)/4), and also 

by coprimality of Y. ((n — €)/4) and Xa((fl — 

(=). By identity (3.93). 
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Lemma 6.2 1. Suppose (n,2a(a2-4)) = 1,e = ((a2-4)/n),41n--e and ri = 2e for 

some e. Then fl I Xa (fl s n is prime and ra(n) - 

Proof. (=.). By (3.93) and Lemma 6.13, n is prime and ra(n) = (n - 

(.=). By identity (3.93) Ya(( - = Ya((fl - - we have 

7IXa(). 

Lemma 6.22. Suppose (n, 6) = 1. If p2 I n for some prime p, then it is possible to 

find at least two a such that 2 < a < n-2, (n, a(a2-4)) = 1, and plTa(p2), (actually 

ra(p2) = 3p and hence ra(pe+l) = 3pe for all e ≥ 0 ). For such an a we have the 

following: 

Ya()2 1 (mod p2), Ya(±1)0 (mod p2), 

Y,,, ((n± 1)/2) $ 0 (mod p2), Y,, ((n -  l)/2) $ 0 (mod p2), 

Ya((fl + 1)/2) $ 0 (mod p2), Ya((n ± 1)/2)2 $ 1 (mod p2), 

X0(n)2 $ a2 (mod p2), Xa((fl ± 1)/2)2 $ a2 (mod p2). 

Proof. Suppose (n, 6) = 1, p2I n and p is prime. Let j be the product of the other 

primes dividing n (1 if there are none). Put a = jp ± 1. Then a - 2 = jp - 1 and 

a+2  = jp + 3 or a - 2 = jp - 3 and a+2  = jp + 1. Since (n, 3) = 1, we have 

(a+2,n) = land (a-2,n) = 1. Hence (a2-4,n) = 1 s that (n,a(a2 -4)) = I. 

Then Ya(3) = a2 - 1 = (jp ± 1)2 - 1 = j2p2 ± 2jp = jp(jp ± 2). Hence we have 

7'a (p) = 3 so that ra (p2) = 3p by the Law of Repetition. Therefore p J ra (p2) and 
also Ta(pe+l) = 3pe 

Suppose P2 I Ya(fl ± 1) or p2 I Ya(fl)2 - 1. Then from (3.28) we would have 

Ya(fl4)Ya(fl+l) = Ya(fl)2 1 0 (mod p2). By the GCD Theorem the two terms on 

the left are not both divisible by p, since (n + 1, n - 1) = 2, Y,, (2)= a and (p, a) = 1. 
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Consequently p2 I Y(n ± 1). Hence r(p2) I n ± 1. But p I r0(p2). Hence p I fl ± 1, 

contradicting pan. Thus Y. (n± 1)2 #  0 (mod p9 and Y,,()2# 1 (mod p2). 

To show X(n)2 # a2 (mod p9 and Xa((fl ± 1)/2)2 # a 2 (mod p9, we will use 

(3.28') and (3.99). By (3.99) we have that if Xa((n ± 1)/2)2 a2 (mod p9, then 

P2 I Ya( 1 ± 1). Hence ra(p2) Z.1 ± 1. Since z I ra(p2), it follows that p I ± 1 

which contradicts pin. The proof for Xa(fl)2 # a2 (mod p9 is the same. 

Lemma 6.23. SQUAREFREE LEMMA. Suppose (n, 6) = 1. If any one of the 

following congruences holds for all a, 1 < a < n such that (n, a(a2 - 4)) = 1, then n 

is squarefree: 

(1) '(n) 1(mod n), (2) Y.( - 1) 0 (mod n), 

(3) Ya(fl+ 1) 0 (mod n), (4) Ya(± 1) 0 (mod n), 

(5) Ya((n - 1)/2) 0 (mod n), (6) Y((n + 1)/2) 0 (mod n), 

(7) Ya(( ± 1)/2) 0 (mod n), (8) Ya((fl ± 1)/2)2 = ] (mod n), 

(9) Xa(fl)2 a2 (mod n), (10) Xa((fl ± 1)/2)2 a2 (mod n). 

Proof. It follows directly from Lemma 6.22. 

In the following theorem we give several equivalent congruences. 

Theorem 6.24. Let d = a2 - 4. For (n, 2ad) = 1 and E = (d/n), the following 

statements are equivalent: 

(i) Xa(fl) a (mod n) and Ya(fl) € (mod n), 

(ii) X(fl + e) a2 - 2 (mod n) and Ya(fl + €) a€ (mod n), 

(iii) Xa(fl - €) 2 (mod n) and Ya(fl - €) 0 (mod n), 

(iv) 
- 

Ya 2 ) (n 0 (mod n) 
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(v) 2X0 (2 +6) = aX (fl 6) (mod n), 

(vi) 2Ya (1) EXa (fl ) (mod n), 
(viz) aYa 2 ) = X. ( 2 ) (mod n), 
(viii) Xa(fl + €) a2 - 2 (mod n) and Xa(n - 2 (mod n), 

(ix) Y. (n + €) a€ (mod n) and Y4 (n - 0 (mod n). 

Proof. (i) = (ii). By (3.68) we have 2Xa(fl + 6) = aXa(n) + €dYa(fl) aa + ede = 

a2 + d = 2a2 - 4(mod n). Hence X. (n+ e) a2 - 2(mod n). And by (3.69) we have 

2Ya(fl+€) = Xa(n)+aYa(n) E ea+ac = 2ae(mod n). Hence Ya(fl+f) ae(mod n). 

(ii) = (iii). By (3.78) we have 2Xa(fl -6) = (a2 - 2)Xa(fl + €) - €adYa(n + e) 

(a2-2)(a2-2)--eadea=a4-4a2-i-4—a2(a2-4) =4 (mod n). Hence Xa(flE)2 (mod n). 

By (3.79) we have 2Y0(n - e) = —eaXa(n + e) + (a2 - 2)Y0(n + e) —ca(a2 —2) + 

(a2 - 2)ae = 0 (mod n). Thus Ya(n - e) 0 (mod n). 

(iii) = (iv). Since X (zr) = X(n - e) + 2 2 + 2 = 4 (mod n), we have 

(fl,Xa((fl - e)/2)) = 1. Then Ya((fl - E)/2)Xa((fl - E)/2) = Ya(fl - e) 0 (mod n) 

implies that Ya((fl - €)/2) 0 (mod n). 

(iv) = (i). By identities (3.85) and (3.87). 

To finish the proof of 6.24, (iv) (v) follows from (3.80), (iv) (vi) follows 

from identity (3.81), (iv) (vii) follows from (3.83) and (viii) (ii) follows from 

(3.76) and (3.77). The proof is complete. 

REMARK. That (i) - (iv) are equivalent does not need the hypothesis that (n, a) = 1. 

Corollary 6.25. If n is an odd prime and (n, d) = 1, then n satisfies all the 

congruences in Theorem 6.24. 
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7. Pseudoprimes related to the sequences Xa(fl) and Ya(fl) 

In this section, we introduce several types of pseudoprimes related to the se-

quences X. (n) and Y. (n) and set forth the relationships among them. Some of these 

kinds of pseudoprimes are classical, like Lucas pseudoprimes (lpsp), Euler Lucas 

pseudoprimes (elpsp) and strong Lucas pseudoprimes (slpsp); some are new, like t 

- pseudoprimes (tpsp), a - pseudoprimes (apsp), r - pseudoprimes (rpsp) and extra 

strong Lucas pseudoprime (slxpsp). 

A. Rotkiewicz [46] considered an odd composite number n to be a pseudoprime if 

n divided Ufl_E where Uk is defined by (1.10) (ii). Accordingly we will call a number 

ii satisfying Ya(flfa) 0 (mod n), a Lucas pseudoprime in the sense of Rotkiewicz, 

or simply a Lucas pseudoprime. Normally we would suppose either (n, (a2-4)) = 1 

or (n, a(a2-4)) = 1. However (n, a2-4) = 1 is implied by Ya(fl..fa(fl)) 0 (mod n). 

The congruences Ya(n - fa(n)) 0 (mod n) and Ya(fl) €a(fl) (modn) are 

not equivalent. The example n = 77 and a = 6 shows that Ya(fl€a) 0 (mod n) 

does not imply Ya(fl) € (mod n). The example n = 115 and a = 41 shows that 

Ya(fl) a (mod n) does not imply Ya(fl€a) 0 (mod n). We will use the condi-

tion Ya(!) 0 (mod n), which is stronger than both of them. This condition is 

equivalent to the notation of Euler Lucas pseudoprime, elpsp, as defined by Baillie 

and Wagstaff [2]. There is another condition in turn stronger than this one, namely 

strong Lucas pseudoprime, slpsp, [2]. 

Suppose n = u2t + fa is an odd prime, where u is odd and (n, a2-4) =1. Applying 

Double Angle Formula (3.5) t— 1 times to Ya(fl€a), one obtains 
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(—e)=X.  n—€(7.0) 0 _Ya(fl n— ) Y. (.. 2 ) Xa X. (7€) Y. ( ) = 
(n—,,) 'n—€ 'n—€ n— n—e'=.x" 2 Xa )Xa ) Xa()Ya( 2t) (mod n). 

Hence one of the following conditions must be satisfied: 

(i) (2i) [i ≤ i ≤ t and n I X. (71 E)] or (ii) n I Ya (n_ ETt—) 

This condition gives a stronger primality test when n a (mod 4). 

Now we formalize the definitions used throughout this thesis. In the following d 

denotes a2 —4 and € denotes the Jacobi symbol (d/n). 

Definition 7.1. n is a 1psp(a) if (n,2d) = 1 and Y(n—€) 0 (mod n). 

Definition 7.2. n is an elpsp(a) if (n, 2d) = 1 and Ya (-n— e)2 = 0 (mod n). 
Definition 7.3. Suppose m = u2t + €a with u odd. Then n is a strong Lucas 

pseudoprime to the base a, slpsp(a) , if (n, 2d) = 1 and n satisfies one of the following 

conditions: 

(i) (3i) {i ≤ i ≤ t and n Xa (Ii— E)} or (ii) n Ya (n- E) 

From (3.96) (Xa(k)+2)(Xa(k)2) =dYa(k)2 with k replaced by (fl__€)/2t, we can 

strengthen the condition 7.3 (ii) to get the following stronger type of pseudoprimes. 

Definition 7.4. Suppose n = u2t + fa with u odd. Then n is an extra strong Lucas 

pseudoprime to the base a, slxpsp(a) , if (n, 2d) = 1 and n satisfies one of the following 

conditions: 

(3i)[1<i<t and nIXa(' )] or 

2t ) and X. ( 2t ) = ±2 (mod n). 
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Clearly slxpsp(a) = slpsp(a). Howeyer the example, n = 143 and a = 12, 

shows that slpsp(a) $. slxpsp(a). By the Double Angle Formula, it is easy to see 

that elpsp(a) = 1psp(a). The implication slpsp(a) = elpsp(a) is due to Baiflie and 

Wagstaff [2]. 

Theorem 7.5. (Baillie and Wagstaff [2]) n is a slpsp(a) = n is an elpsp(a). Further, 

If n = u2 + a and u is odd, then n is a slpsp(a) * n is an elpsp(a). 

Proof. Suppose n = p' p is a slpsp(a). Let n = u21 + €,(n) with u odd. 

Then m I Ya(u) or for some s, 0 ≤ S < t1, n I Xa(U28). Since Ya(U) and Xa(U2) 

(s ≤ t - 2) are factors of Y4(u2 1) = Ya((fl - a)/2), to show that n is elpsp(a) we 

need only show that n %Xa(u2'). If flIXa(U2tl ), then for all pi In, ra(pj)ju2t and 

ra(pj) %U21_1. This shows 2tIIrapj) for all i (i = 1,. . ., k). However by Theorem 6.12 

we have 2r,,, (pi) lpi - e. (pi). Thus p ea (pi) (mod 2t+1) (i = 1, . . . , k). Therefore 

k k 

m = 11p7' II 'Ea (pi)C = fa (n) (mod 2t+1) 
1=1 i=1 

which contradicts our assumption n—e.  Thus m %Xa(U2t1) and hence n is an 

elpsp(a). The second statement is true because (fl€a)/2 is odd and then condition 

(ii) of Definiton 7.3 holds. Hence slpsp(a) elsps(a) in this case. 

From Theorem 7.5, we have the following corollary. 

Corollary 7.5.1. Suppose n = u2t + €4(m) with u odd. Then m is slpsp(a) if one of 

the following conditions holds: 

(i) (2i) [     and ThJXa (2< i<t Th €)] or (ii) flIYa (Th  ). 
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Lemma 7.6. Suppose n is odd and a prime power. Then n is a elpsp(a) if and only 

if n is a slpsp(a). 

Proof. By Theorem 7.5 we only need prove the implication =. Suppose n = pe 

and n is elpsp(a). Write n = 2tu+€ where u is odd, s ≥ 1 and c = (d/p). Since 

(Xa ,Xa(5)) 12 when i j and (Xa ),Ya(!!)) 12 for all i ≤ t, by (7.0) 
we have pe Xa((flE)/21) for some i or pC Yo((n_f)/2t). Hence n is slpsp(a) by 

Definition 7.3. 

The aforementioned are some classical types of Lucas pseudoprimes (except for 

slxpsp). Next we define some new types of pseudoprimes connected with the Lucas 

sequences Xa and Ya. These are based on the binomial expansion and the identity 

(7.7) 4(a±2)('4)=(a±2+v1a2_4)2. 

Raising both sides of the identity to the flth power, we obtain 

(a+ ,/a2 _4\'2 
(7.7.1) 4'(a±2)'  2 ) = (a±2+V'a2 _4) 2T . 

Putting d = a2 —4 and applying (1.36) we have 

(7.7.2) 4z(a ± 2)72 (Xa(fl) +Ya(n)V) = (a ±2+ /)2n. 

Expanding the right side of (7.7.2) by the binomial theorem and solving respectively 

for X(fl) and Ya(n): 

(7.8) 472 (a ± 2)72Xa(fl) = 2> () (a ± 2)2'2d. 

(7.9) 472 (a ± 2) 72Ya(n) = 2(a ± 2) ( .i) (a ± 2)2'2d'. 

These two equations will be used to prove the following theorems. 
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(a-2) Theorem 7.10. If p is a prime, (p, 2d) = 1, a = (), Ta = (2) and f = 
then 

(7.10) 2X.( P+ 1) pa(a-2)+pa€a(a+2) (mod p). 

Proof. Put n = (p+ 1)/2 in (7.8). Then p for each i, 1 ≤ i ≤ (p— 1)/2. Thus 

I ('') holds for all i unless i = 0 or i = (p + 1)/2. Hence (7.8) implies 

4P(a ± 2)PXa (1 1) = 2(a ± 2)1+1 + 2d '+2I (mod p) 

Applying Euler's Criterion and Fermat's Theorem we obtain 

4(a ± 2)(a ± 2)Xa (P 1) = 2(a ± 2)2 + 2€.d (mod p). 

Since d = (a + 2)(a —2) we may divide by 2(a ±2) to obtain 

2(a±2)Xa( 1)= (a±2)+c,,(a :F 2)  (modp). 

Multiplying by (a ±2) 2 and replacing (a ± 2) P-21 by p,, or Ta we obtain (7.10). The 

theorem is proved. 

Theorem 7.11. If p is an odd prime, (p, d) = 1, ca = () and T. = (2) , then 

(7.11) Xa (P 2 "a) =— 2r (mod p). 

Proof. Let Pa = ((a - 2)/p). Then e. = TaPa. 

First suppose € = —1. Then p + 1 = p - €. Hence from Theorem 7.10 we have 

1\ 
2Xa (P_ €a)2X fp 2 + ) = p(a-2) +p(-1)(a+2)=-4p=4€p = 4T (mod p). 

Hence (7.11) holds in this case. 
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Next suppose e = 1. By Theorem 7.10 and (3.80), 

aXo(-!) 2Xa() =2Xa(" ') =p(a-2)+pl(a+2) =2pa=2Epa = 2ra (mod p). 

If (p, a) =1, divide both sides of the congruence by a to get (7.11) in this case also. 

If pla, the result can be proved from Definition 3.12 and (4.1). See Theorem 7.25. 

Theorem 7.12. If p is a prime, (P,2d)=1,Ea = () A and Pa = (2) , then 

(7.12) 2Ya (P 1) Pa (a + 1) (mod p). 

Proof. Put n = (p+ 1)/2 in (7.9). Then for each i, 2 ≤ i ≤ (p— 1)/2. That 

is p (2+1  for all i except i = 1 and i = (p + 1)/2. Hence from (7.9) and p + 1 

(mod p) we obtain 

4P(a - 2)PY (P 1) = 2(a - 2)" + 2(a - 2)dT (mod p). 

Dividing by a - 2 and applying Fermat's Theorem to obtain (a —2)P-1 1 (mod p) 

and 2P+1 4 (mod p), we have 

4(a_2)TY( ')2+2d (mod p). 

Next apply Euler's Criterion and Fermat's Theorem to obtain 

4PaYa is.. p f +---1 ) \ 2 = 2+ 2€a (mod p). 

Multiplying by pa and dividing by 2, using p2a = 1, we obtain (7.12). 

Theorem 7.13. If p is prime, (p, 2d) = 1, c. = () and Pa = (v), then 
(7.13) Ya(') p (mod p). 

Proof. For € = fa = 1 or e = e.= —1 this can be deduced from Theorem 7.12, (3.81) 

and Corollary 6.23. 

2ya(16) €Xa( 2 ) €2€p=2p (mod p). 
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Theorem 7.14. If p is prime, (p, 2d) = 1, c. 
= () and Ta = (f), then 

(7.14) Xa (P +6a) ara (mod p). 

Proof. This can be deduced from Theorem 7.13, (3.83). 

Xa(' ) =EEXa( ) =eaY6( ) Ecap =ar (mod p). 

As before, the conditions expressed by Theorems 7.11, 7.13 and 7.14 are not 

equivalent. Hence we can define some new types of pseudoprimes. 

Definition 7.15. Suppose (n, 2d) = land d = (a2-4), fa = (din), pa = ((a-2)/n) 

and T. =((a+2)/n). 

Xa ( = 2; (mod n) * n is t-pseudoprime to base a, tpsp(a), 

Xa ( 2  )+ Ca a; (mod n) * n is a-pseudoprime to base a, apsp(a), 

fn+60\ 
Ya 2 ) = Pa (mod n) '* n is r-pseudoprime to base a, rpsp(a). 

These concepts are all independent each other and also independent of 1psp(a), 

elpsp(a) and slpsp(n). 

n is a slpsp(a) does not imply n is a tpsp(a), rpsp(a) or apsp(a). For example 

put n=17.19=323anda=3,n=5.7=35anda=6orn=5.11=55and 

a = 21. 

n is a rpsp(a) does not imply n is a 1psp(a) , tpsp(a) or apsp(a). For example put 

n= 11•13= 143 and a=3,orn=71•73=5183 and a=3. 

n is a tpsp(a) does not imply n is a 1psp(a) , rpsp(a) or apsp(a). For example put 

n=72=49 and a=3,orn=72.23=ll27anda=3. 

n is an apsp(a) does not imply n is a 1psp(a), tpsp(a) or rpsp(a). For example 

put n= 11.13= 143 and a= 7, or a= 19. 
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However, we will show that if (n, a) =1 in addition to (n, d) =1, then any two of 

1psp(a), tpsp(a) , rpsp(a) and apsp(a) together imply all others. Also the same holds 

for the group of elpsp(a), tpsp(a), rpsp(a) and apsp(a). Although elpsp(a) implies 

1psp(a), these two groups are equivalent. Namely, any two in the former group imply 

any one in the latter group. i.e. 1psp(a) together with tpsp(a) imply elpsp. Hence 

we can define the following stronger pseudoprimes. 

Definition 7.16. If(n,2d)=1, n is alpsp(a) and n is atpsp(a), then we say n is an 

Lucas t-pseudoprime to the base a, ltpsp(a). If n is a rpsp(a) and n is an apsp(a), 

then we say n is an rapsp(a). 

Theorem 7.17. Suppose (n, 2ad) = 1, then n is an ltpsp(a) if and only if 

(0) Ya() E 0 (mod n) 

(i) Ya(flE)0 (mod n) 

(ii) Ya (!) = 0 (mod n) 

(iii) Ya ) = Pa (mod n) 
- 2  

(iv) Y. (!) E 0 (mod n) 

(v) Xa () 2Ta (mod n) 

(vi) Y (n+,,) Pa (mod n) a 2 -  

(vii) Y. (zp) Pa (mod n) 

(viii) Xa (!!) 2Ta (mod n) 

(ix) Xa (!!?) ara (mod n) 

(x) Xa (ne) ara (mod n) 

and Xa () 2; (mod n), 

and X. (ar) 2; (mod n), 

and Y. () Pa (mod n), 

and x (a±\ 2 1 ara a  

and X (z±\ 2 ) a'r a  

and X (!±\ ) 2 a; 

(mod n), 

(mod n), 

(mod n), 

and Ya(fl) ca (mod n), 

and Xa(fl) a (mod n), 

and Ya (n) e (mod n), 

and Xa (n) a (mod n), 

and Ya (n) 16a (mod n). 

Proof. Here (i) is the definition of ltpsp(a). From r = p€ and identities (3.80) - 

(3.91) and Theorem 6.22 it is easy to see that conditions (ii) - (x) are all necessary. 
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To show that (o) is necessary, we use the Double Angle formula and the condition 

Xa((fl - 2; (mod n) to get Ya((n - 0 (mod n). For the sufficiency 

proof we observe that (o) (i) is trivial. Then (ii) = (i) by (3.81). (iii) =. (i) by 

(3.82) and (3.83). (iv) = (i) by (3.80). (v) = (i) by (3.80). (vi) = (ii) by (3.87) 

and (1.1). (vii) (ii) by (3.85). (viii) (vi) by (3.87). (ix) = (v) by (3.84). 

Finally (x) = (ix) by (3.87) and (3.85). 

Corollary 7.17.1. Suppose (n, 2d) = 1. n is ltpsp(a) = elpsp(a). Also n is an 

ltpsp(a) if and only if n is a rapsp(a). 

Proof. Directly from the three E - identities (3.80) - (3.83). 

REMARK. That the conditions (o), (i), (ii), (vi) and (viii) are equivalent does not 

need (n, a) = 1. 

From Theorem 7.17, n is a ltpsp(a) implies n is an elpsp(a). However n is a 

ltpsp(a) does not imply n is a slpsp(a) (n = 385, a = 6). Also we already saw that 

n is a slpsp(a) does not imply n is a ltpsp(a) (n = 35, a = 6). 

We next define a stronger type of pseudoprime condition: 

Definition 7.18. Suppose n is odd and (n, d) = 1 where d = a2 —4. n is said to 

be a strong Lucas t-pseudoprime to the base a if n is both a slpsp(a) and a tpsp(a) 

(written as sltpsp(a)). 

By Theorem 7.17, we have 

Theorem 7.19. Suppose n> 1, n odd and (n, ad) = 1. If n is sltpsp(a), then n is 

slpsp(a), elpsp(a), 1psp(a), apsp(a), rpsp(a) and tpsp(a). 
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Next we will discuss some general properties of pseudoprimes. We will show that 

for all odd integers n > 3, there always exist 3 trivial incongruent bases such that n 

is a sltpsp(a). First we need a lemma. 

Lemma 7.20. Suppose ii is odd, (n, d) = 1 where d= a2-4, ea = (d/n), pa = ((a-2)/n) 

and Ta = ((a+ 2) /n).  Then the Jacobi symbols Pa, ,r,,, and c,, satisfy 

_ n—cp 

W (-1) 2 (-1) 2 Pa = Ta, (ii) (-1) 2 (-1) 2 Ira = Pa 

n—en 

T_a = (-1) 2 Ta , (iv) P—a = (1) 2 Pa 

(v) T3 = (-1/n) = (-1), (vi) pi = (-1/n) = (-1), 

(vii) T_a = P1Pa, (viii) P—a = PiTa. 

Proof. Trivial since Ea = Pa Ta and e,, = (-1/n)(-1)9. 

Theorem 7.21. Suppose n is odd and a b (mod n). Then 

n is an 1psp(a) n is an 1psp(b), n is an elpsp(a) * n is an elpsp(b), 

n is a tpsp(a) n is a tpsp(b), n is a rpsp(a) s n is a rpsp(b), 

n is an apsp(a) s n is an apsp(b), n is a slpsp(a) n is a slpsp(b), 

n is a slxpsp(a) n is a slxpsp(b). 

Proof. Suppose a b (mod n). Then €a = 4, Ta = Tb and Pa = Pb. The conclusion 

then follows from the Congruence Rule (4.1). 

Theorem 7.22. Suppose n is odd and a —b (mod n). Then 

ii is an 1psp(a) n is an 1psp(b), n is an elpsp(a) n is an elpsp(b), 

n is a. tpsp(a) n is a tpsp(b), n is a rpsp(a) n is a rpsp(b), 

n is an apsp(a) n is an apsp(b), ii is a slpsp(a) n is a slpsp(b), 

n is a slxpsp(a) n is a slxpsp(b). 
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Proof. Since a —b (mod n), c. = ((a2-4)/n) = (((—b)2-4)/n) = ((b2-4)/n) = 

Since n I a + b, Congruence Rule (4.2.1) implies that for any k, 

(*) Ya(k) = (_1)k_lYb(k) (mod n). 

Putting k = (n - €) and k = (n - €)/2 respectively, then this congruence implies n is 

1psp(a) if and only if n is 1psp(b) and n is elpsp(a) if and only if n is elpsp(b). Also 

by (4.2.1) we have for any k, 

(**) Xa(k) (1)'Xb(k) (mod n). 

This together congruence (*) shows that n is slpsp(a) if and only if n is slpsp(b). To 

show n is tpsp(a) if and only if n is tpsp(b) , we use Lemma 7.20 (iii). To show n is 

rpsp(a) if and only if ii is rpsp(b) , we use Lemma 7.20 (iv) and (-1)' = 1. To show 

n is apsp(a) if and only if n is apsp(b) , we use Lemma 7.20 (iii) and (— 1)n = —1. 

If we put b = n—a or b = —a in Theorem 7.22, then we obtain the following two 

corollaries as special cases: 

Corollary 7.23. Suppose n> 1 is odd. Then 

n is an 1psp(a) * n is an 1psp(n—a), n is an elpsp(a) n is an elpsp(n—a), 

n is a tpsp(a) ' n is a tpsp(n—a), n is an rpsp(a) n is an rpsp(n—a), 

n is an apsp(a) n is an apsp(n—a), n is a slpsp(a) n is a slpsp(n—a), 

n is a slxpsp(a) n is a slxpsp(n—a). 
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Corollary 7.24. Suppose n> 1 is odd. Then 

n is an 1psp(a) * n is an 1psp(—a), n is an 1psp(a) n is an 1psp(—a), 

n is a tpsp(a) * n is a tpsp(n - a), n is an rpsp(a) * n is an rpsp(—a), 

n is an apsp(a) * n is an apsp(—a), n is a slpsp(a) n is a slpsp(—a), 

n is a slxpsp(a) n is a slxpsp(—a). 

Theorem 7.25. For all odd n > 1, n is an sltpsp(0) and slxpsp(0). Hence n is 

slpsp(0), apsp(0), rpsp(0) and tpsp(0). 

Proof. Suppose n is odd. Co = ((02 — 4)/n) = (-4/n) = (-1/n) = ±1. Put 

n = u2t + co where u is odd. To show n is slxpsp(0), note that u = (n — 0)/2t is 

odd. Hence by Definition 3.12, Xo(u) = 0 0 (mod n) so that n is slxpsp(0) by 

(7.4) (i). Therefore n is slpsp(0). 

For the proof that n is a tpsp(0) we shall use (2/n) = (_1)(2_1)18, known from 

the theory of quadratic residues. Since r0 = ((0 + 2)/n) = (2/n), we need to show 

that Xo((n — Eo)/2) 2(2/n) (mod n). For this we consider 4 cases: 

n1 (mod 8) = c=+1,T=+1,(n—E)/20 (mod 4) = Xo((n—€)/2)=+2, 

n3 (mod 8) e=-1,r=-1,(n—E)/2E2 (mod 4) Xo((n—E)/2)=-2, 

n5 (mod 8) = €=+1,r=-1,(n - €)/2E2 (mod 4) Xo((n - 

n7 (mod 8) = e=-1,r=+1,(n - €)/20 (mod 4) Xo((n - 

Thus n is a tpsp(0). This proves the theorem. 

Using the Congruence Rule, we have the following corollary: 

Corollary 7.26. If a 0 (mod n), then n is an sltpsp(a) and slxpsp(a). Hence n 

is slpsp(a), apsp(a), rpsp(a) and tpsp(a). 
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Lemma 7.27. If (n,6)=1, a ±1 (mod n) and 6=(d/n), then n E (mod 6). 

Proof. Since (n, 6)=1, and a ±1 (mod n), d = a2 —4 (± 1)2-4 = -3 (mod n). 

Hence € = (d/n) = (-3/n). From the theory of quadratic residues it is known 

that (-3/n) = 1 if n 1 (mod 6) and (-3/n) = —1 if n —1 (mod 6). Hence 

€ = (-3/n) n (mod 6). 

Theorem 7.28. If (n, 6) =1 and a ±1 (mod n), then n is sltpsp(a) and slxpsp(a). 

Proof. By Corollary 7.24, we need only to prove the theorem for case a 1 (mod n). 

Put n = u2t + e where u is odd. For the proof that n is slxpsp(a), by Lemma 7.27, 

we have 6 1 n—€ and then 3 1 n—€. Thus 3 I (fl_€)/2t. Hence by (3.13) we have 

Ya((fl€)/2t)EY1((fl_E)/2t) = 0 (mod n) and X0((n—€)/2t)Xi((n—e)/2t)=±2 

(mod n). By 7.4 (ii) these two congruences show that n is slxpsp(a). Therefore n is 

slpsp(a). 

The proof that n is tpsp(a) is similar to the one used to prove Theorem 7.25. 

We consider the cases n ±1 (mod 12), where (3/n) = 1, and n ±5 (mod 12), 

where (3/n) = —1. 

The Theorems 7.25, 7.28 show that for any odd integer n, (n, 6) = 1, there always 

exist at least 3 bases, a = 0, a = 1 and a = n—i, in a complete residue system 

mod n, for which n passes all the types of pseudoprime tests discussed above. These 

three bases are the so called the trivial bases. Hence when we test the primality of 

any odd integer n, these 3 bases may always be omitted. 

How well do sltpsp(a) and slxpsp(a) work in primality testing? We looked at 

all integers up to 2.5 x 109 and found only three composite integers which can pass 
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an sltpsp(a) test for all three values a = 3, 4, 5. These three composite integers 

are 79,398,901 = 6301.12601, 133,800,661 = 109.5412269 and 579,606,301 = 

109-541-9829. They all fail to pass the sltpsp(a) test with a = 6. In fact, we have 

not found any composite number which is an sltpsp(a) for consecutive values of a 

for a = 3, 4, 5 and 6 so far. However, for the ltpsp(a) test, up to 2.5 x ion, there 

are 11 composites which are ltpsp(a) for a = 3,4,5, some of them are even ltpsp(a) 

for a = 3,4,5,6,7,8, e.g. 140,384,161 = 6841•20521. Also we found that under 

2.5 x 109 no composite integer can pass the slxpsp(a) test for a = 3,4,5. 
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§8. Mersenne numbers and Fermat numbers 

In this section we will show that for Mersenne numbers and Fermat numbers, 

their primality is equivalent to that they are ltpsp(a) for some fixed bases a. We also 

relate other classical Lucas-Lehmer tests for Mersenne numbers and Fermat numbers 

to our new tests by using Xa and Ya. Hence we give a new proof from Thereom 5.1 

for the classical result that the primality of Mersenne numbers and Fermat numbers 

can be decided in polynomial time (see Corollary 8.2 and Corollary 8.4). 

Suppose n is an integer of the form n = 2t - 1, t ≥ 2. If n is a prime, then it 

is called a Mersenne prime. Clearly, if n is prime, then t is prime. Also we have 

n 1 (mod 3), n 3 (mod 4), and n —1 (mod 8). 

To test the primality of n = 21 - 1, there are many positive integers a such that 

for the Jacobi symbols € = ((a2 - 4)/n) and r = ((a + 2)/n), we have e = —1 and 

r=-1,e.g. a=4ora.=10. 

If a = 4, then a2-4 = 12. Since n 1 (mod 3), and n 3 (mod 4), we 

have € = (12/n) = (3/n)(4/n) = (3/n) = —(n/3) = —(1/3) = —1. So E = —1. Since 

n —1 (mod 8), r=((4+2)/n)=(6/n)=(2/n)(3/n)=(+1)(-.-1)=-1. So r=-1. 

If  = 10, then a2-4 = 96. Since n 1 (mod 3), and n —1 (mod 8), we 

have e = (96/n) = (16/n) (6/n) = (2/n)(3/n) = (+1)(—(n/3)) = —(1/3) = —1. Also 

r = ((10 + 2)/n) = (12/n) = (4/n)(3/n) = (+1)(-1) = —1. Hence € = r = —1. 

Thus if n= 2' - 1, t ≥ 2 and t is odd, then we can take a = 4 or a = 10 and 

it will be the case that (n, 2(a2 - 4)) = 1 and € = T = —1. There exist also other a 

such that € = —1 and r = —1. With such an a the Xa and Ya sequences can be used 

to give criteria for primality of n. The Lucas sequences X0 and Ya can also be used 
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to give a quick proof of the Lucas - Lehmer test for primality of Mersenne numbers 

—1. 

Theorem 8.1. (Mersenne primes.) Suppose n = 2t - 1, t ≥ 2 and t is odd, 

(n, a(a2 - 4)) = 1, c,, = 1 and Ta = —1. Then each of the following conditions is 

necessary and sufficient for primality of n. 

n is an ltpsp(a), 

2r = —2 (mod n) and Ya "" 0 (mod n), 

aT = —a (mod n) and Y. 2 ) p = 1 (mod n), 

Xa (11) 0 (mod n), 

Proof. Since c=-1, n—c= n—(-1) = n+1=2t, so n—c is apowerof2. 

Sufficiency. Suppose any one of (o) - (iv) holds. We will show that n is prime. If 

(iv) holds, then n is prime by Theorem 6.11. By Lemma 6.21, (iii) implies (iv). By 

(3.93), (3.92) and r = —1, (i) implies (iii), and so (o) or (ii) is also sufficient by 

Theorem 8.17 (i) and 8.17 (iii). 

Necessity. Suppose n is prime. Then n is ltpsp(a). Hence (o), (i) and (ii) hold. By 

(3.93) (i) implies (iii) and by Lemma 6.21 (iii) implies (iv). Therefore (iii) and (iv) 

are also necessary. 

Corollary 8.2. (Lucas [32] - Lehmer [28] Test). For t > 2, t odd, n = - 1 

is prime if and only if n I St_i where sk is defined by s1 = 4, sk+i = 4 - 2. 

Proof. We shall use Theorem 8.1 with a=4. Since €=-1, (fl€)/4=(fl+1)/4=2t_2. 

By Theorem 8. 1, n is prime if and only if n I Xa((fl + 1)/4). Hence n is prime if and 

only if n I X (2t_2). Thus it suffices to show 
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(8.2) sk = X4(2Ic_1), for all k ≥ 1. 

(8.2) can be proved by induction on k. If k = 1, then s1 = 4 = X4(1) = X4(2°) = 

X4(2''). Suppose (8.2) holds for k. Then by (3.4) Sk+1 = 4-2 = X(2'_') —2 = 

X4(2. 2'') = X4(2') = X4(2 1_'). Hence (8.2) is proved. 

Let n be an integer of the form n=2t+1, 41t. Then nE2 (mod 3), n1 (mod 8), 

n 2 (mod 5) and if n is a prime, then t is a power of 2. Such primes are called 

Fermat primes, and such numbers are called Fermat numbers. 

For testing primality of a Fermat number n, there exist many positive integers 

a such that for the Jacobi symbols € = ((a2 - 4)/n) and r = ((a + 2)/n), we have 

€=+1 and T=-1,e.g. we can take a = 8 or a = 12. 

If a= 8, then a2 - 4= 60 = 4-3-5. Since n 2 (mod-3), n 1 (mod 8) and 

n 2 (mod 5), we have € = (60/n) = (3/n) (4/n) (5/n) = (3/n) (5/n) = (n/3) (n/5) = 

(2/3)(2/5) = (-1)(-1) = 1. Also since n_ 1 (mod 8) and a = 8, r = ((8 + 2)/n) = 

(10/n) = (2/n)(5/n) = (+1)(5/n) = (+1)(-1) = —1. So r = —1. 

If a=12 and t is a power of 2, then n=2t+13,5 (mod 7). Both 3 and 5 are 

nonresidues mod 7, so (7/n) = (n/7) = —1. Thus when a = 12, € = ((122 - 4)/n) = 

(140/n) = (4/n)(5/n)(7/n) = —(5/n) = —(n/5) = —(2/5) = —(-1) = +1 and r = 

((12+2)/n) = (14/n) = (2/n)(7/n)=(+1)(-1)= —1. Hence €=+1 and r= —1. 

Thus if  = 2+l, t ≥ 4 and t is a power of 2, then we can take a = 8 or a = 12 

and it will be the case that (n, 2(a2 - 4)) = 1 and E = 1, r = —1. There exist also 

other a such that € = 1 and r = —1. We will show that any such a can be used to 

formulate a criterion for primality of n in terms of the sequences X (n) and Ya (n). 
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Theorem 8.3. (Fermat primes.) Suppose n = 2 + 1, t ≥ 4 and t is a power of 

2, (n,(a2-4)) = 1, € = 1 and r = —1. Then each of the following conditions is 

necessary and sufficient for primality of n. 

(o) n is an ltpsp(a), 

(i) X6 (if) 2r = —2 (mod n) and Ya () 0 (mod n), 

(ii) X. (!) ar = —a (mod n) and Y. (i) p = —1 (mod n), 

X. 4 0 (mod n), 

(iv) 

Proof. Since € = +1, n - € = n - 1 = 2, so n - € is a power of 2. Hence the same 

proof as for Theorem 8.1 will establish the theorem here. 

Corollary 8.4. (Lucas [32] - Lehmer [28] Test) For t ≥ 4, t is a power of 2, we have 

n = 2 + 1 is prime if and only if n St_i where sk is defined by s1 = 8, 8k+1 = 4-2. 

Proof. We shall use Theorem 8.3 with a=8. Since €=1, (n - €)/4=(n - l)/4 = 2t_2. 

By Theorem 8.3, n is prime if and only if n I Xa((fl - 1)/4). Hence n is prime if and 

only if n I Xa(2t_2). Thus it suffices to show 

(8.4) Sk = X8(2'), for all k ≥ 1. 

One can prove (8.4) by a similar induction procedure as in the proof of (8.2). 
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§9. Prime powers 

In this section we collect together results about pe as an elpsp(a) , rpsp(a) , apsp(a) 

and tpsp(a). Some results in this section will be used in the later sections. Through-

out p denotes an odd prime. 

Lemma 9.1. For any e≥0 and all a such that (p,2d)=1, Y,, 0 (mod p). 

Proof. Certainly Pa (P) I pe (p)e. Hence ilk = (pea (p)e) / (P--ea (p)), then k will be 

an integer and pe — Ea (p)e=k.(p_e(p)). This implies (pe_Ea(p)e)/2=k.(p_Ea(p))/2. 

Consequently by Lemma 6.17 and Lemma 4.10 (i) we have Ya((pC - fa(p)e)/2) = 

Ya(k(p - 6a(P))/2) 0 (mod p). 

Lemma 9.2. Suppose p is an odd prime and (p, d) = 1. Then for any j ≥ 0, 

(1) X(pi) a (mod p) and (ii) Ya(p1) Ca(p)1 (mod p). 

Proof. Suppose (p, d) = 1. 

Case 1: €a(p) = +1. Then by Lemma 9.1, (i) holds by (3.20'), (ii) holds by (3.22'). 

Case 2: Ea(p) = —1. Then by Lemma 9.1, (i) holds by (3.20'), (ii) holds by (3.21'). 

Lemma 9.3. Let p be an odd prime and suppose (p, ad) = 1. The following are 

equivalent: 

(i) p e is an elpsp(a), (ii) Xa(pe) a (mod pe), (iii) Ya(pe) = Ca (p)e (mod pe), 

(iv) Xa(pC)2 a2 (mod pe), (v) Ya(pe)2 1 (mod pe), (vi) Ya(pe ± 1) 0 (mod pe). 

Proof. If (1) holds, then (ii), (iii), (iv), (v) and (vi) hold by Theorem 6.24 with 

= p . Conversely suppose (ii), (iii), (iv) or (v) holds. Then by (1.35) or (3.99) 

with n = p e, (X. (pe)+ a)(Xa(pe) - a) = d(Ya(pe) + 1)(Ya(pe) - 1) 0 (mod pe). 
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It is obvious that (Ya (pe) +1, Ya (pe) —1) 12 and (Xa (p) + a,Xa (pe) - a) I 2a. Since 

(p, ad) = 1 and pe is a prime power, we have Y. (p) ±1 (mod pe) and X. (P') 

±iz (modp"). But by Lemma 9.2, Y. (pe) (4e (modp) and X,, (pe) a (modp). 

Hence (ii) and (iii) hold. Consequently (iv) and (v) hold. By Theorem 6.22, (i) 

holds. Finally, suppose (vi) holds. Then by (3.96) with n = pe, (v) holds. Hence (i) 

holds. 

Lemma 9.4. Suppose (p, 2d) = 1. Then 

P' is an elpsp(a) Ya (P_(P)) = 0 (mod pe). 

Proof. . Suppose (p, 2d) = 1 and that pe is an elpsp(a). Since Ca (Pe)= €a(P)C, from 

the definition of elpsp(a) we have pe I Y, ((pe - Ea (p)e) /2). Hence ra (pe) I (pC - (p) C ) /2. 

This implies (ra(pe),p) = 1. But by Theorem 6.12, ra(pe) Ip'( Ea(p))/2. Since 

(ra(pe),p) = 1, this implies Va(PC) I (p - 6a(P))/2. Consequently by Lemma 6.4 we 

have pely (p - €a(p))/2. 

<=. Suppose (p, 2d) = 1 and pC Ya((p— Ea(P))/2). Trivially p— e. (p) I pe - E (p)e. 

Hence (p€a(p))/2 I (pe_(p)e)/2 From the Division Theorem 4.11, we then have 

Ya((p€a(p))/2) 1 Ya((p Ea (p)e)/2). Hence pe Ya(pe_Ea(p)1/2). Thus pe is elpsp(a). 

Corollary 9.5. If (p, 2d) =1 and pC is elpsp(a) , then for all j ≥ 0 

Y.   =0 (mod pe). 
2 

Proof. We have p - c. (p)Jp - Ea (P)1. Hence if we put k = (pi - €(p))/(p - 

then k will be an integer and we will have p - €a(p)1 = k (p - Ea(P)). This implies 

(pi - Ca(p)j)/2 = k (p - Ea(p))/2. Consequently by Lemma 9.4 and Lemma 4.10 (i) 

we have Ya(p - E(p)3)/2) = Ya(k(p - ca(p))/2) 0 (mod pe). 
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Theorem 9.6. Suppose p is prime, (p, 2ad) = 1 and pe is elpsp(a). Then for all 

k ≥ 0 and allj ≥ 0, we have 

(1) Xa(p) Xa(p) (mod pe+i) and (ii) Ya(P) 6a(p)kYa(pi) (mod pe+i). 

Proof. Let E = €a(P). By (3.49.1) and (3.50.1) with i replaced by p5 and j by p1, 

we have 

(iii) Xa(p)2 - X(pi)2 = dY0(p5 (k + 1)) Ya(p5 (pk - 1)), and 

(iv) y(pi+k)2 Ya (p5)2 = Y (p5 (k + 1)) Ya (p5 (p1"  

By Lemma 9.4, pe Y((p - c)/2). Also since p - - k and elc = ±1, we have 

- pk ± 1. Hence (p - e)/2Ip' ± 1. Therefore by the Division Theorem 4.11 

Ya(P_6)IYa (pk +l) orYa()IYa (pk _l). 

Since pC I'((P - E)/2), from the Law of Repetition 6.5 we get 

pi+elYa (pi (pk + 1)) orp Y(pi(pk —1)). 

By (iii) and (iv) this implies 

X,(p5)2 (mod pe+i) and Y(p5+)2 Y(p5)2 (mod pe+J). 

Since pJ is a prime power and (p, a) = 1, Lemma 9.2 implies 

X a(p) ±Xa(p5) (mod p 1) and Ya(pi+) ±€a(p)Ya(p5) (mod pe+i). 

Consequently by Lemma 9.2, 

Xa(p5 1) Xa(p5) (mod pe+i) and Ya(p5) €(p)ky0(p5) (mod pe+i). 

Corollary 9.7. Suppose (p, 2ad) = 1 and pe is an elpsp(a). Then for all n > j and 

all m > j, Xa(p") X,. (pm) (mod pe+i) 

Proof. By Theorem 9.6, n ≥ j and m ≥ j, Xa(p'2) X0 (p5) Xa(pm) (mod pe4.i). 
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Theorem 9.8. Suppose (p, 2ad) = 1. Then the following are equivalent: 

(i) pe is an elpsp(a), (ii) Xa(p) a (mod pe) , (iii) Ya(p) €a(p) (mod pe), 

(iv) Xa(p)2 a2 (mod pC), (v) Y(p)2 = 1 (mod pC), (vi) Y0(p ± 1) 0 (mod pe). 

Proof. Suppose (p, 2ad) =1 and (i) holds. Then (ii) holds by identity (3.85) (with 

n =p) and Lemma 9.4. Also (iii) holds by identity (3.87) (with n =p and e= 

and Lemma 9.4. Obviously (ii) = (iv) and (iii) (v). (i) (vi). So (i) = all the 

others. Suppose (p, 2ad) =1 and (ii), (iii), (iv) or (v) holds. By (3.99) with n =p and 

= fa (P)' (Xa (p) + a) (Xa (p) - a) = d(Ya (p) + fa (P)) (Ya (P) a (P)) 0 (mod pe). 

Clearly (Ya(p)+ 1,Ya(p) - 1)12 and (Xa(p)+a,Xa(p)—a)I2a. Since (p, ad) =1 and 

pe is a prime power, Xa(p) ±a (mod pe) and Y0(p) ±€a(p) (mod pe). But by 

Theorems 6.10 and 6.11, Xa(p) a (mod p) and Ya(p) a(P) (mod p). 

Therefore (ii) and (iii) hold. Now by identities (3.85) and (3.87) with n = p, we have 

Y. (7) Y. (?) = 0 (mod pe) and X. (P+"-"P)) Ya (r_€()) = 0 (mod pe). 

But by Corollary 4.20 and Theorem 6.12 (p, Ya((p+€a(p))/2)) = 1. Also since (p, a) = 1 

we have (p, X. ((P+a (p)) /2)) =1 and X. ((p4-fa (p) ) /2)2 = X. (p+Ea (p))+2 a2-2+2 = 

a2 (mod p), by Theorem 6.24 (ii) and identity (3.90) with n =p and e = € (p). Hence 

(i) holds. Finally, suppose (vi) holds. Then by (3.96) with n = p, (v) holds. Hence 

(i) holds. 

Corollary 9.9. Suppose (p, 2d) = 1. Then p6 is an elpsp(a) if and only if 

(Vk ≥ 0)[Xa(p'C) a (mod p6)]. 

Proof. . Let k = e and apply Lemma 9.3 or let k = 1 and use Theorem 9.8. 

*. Suppose pe is an elpsp(a). Put j = 0 in Theorem 9.6. 
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Corollary 9.10. Suppose (p, 2d) = 1, c < e and pe is an elpsp(a). Then pC is an 

elpsp(a). 

Proof. By Theorem 9.8 (ii), Xa(p) a (mod pe) implies Xa(p) a (mod pc). 

Lemma 9.11. If n < m and b a (mod ptm), then Xo(plz) X0 (p') (mod pm+fl). 

Proof. Suppose n < m and b = a ± jpm. By Theorem 4.50 (i) (ii), with k = jpm, 

Xb(p1) = Xa±jprn(p'2) Xa(p'3) ±jprnpfl.Y(p?2) (mod p2112). 

Since n < m, we have m + n < 2m. Hence Xb(p') X,(p') (mod pm). 

Lemma 9.12. If (p, 2ad) = 1, p is elpsp(a) and b = Xa(p), then b a (mod p1) 

and p11 is elpsp(b). 

Proof. Suppose 1 < i, p1 is elpsp(a) and b = Xa(p). By Theorem 9.8, Xa(p) 

a (modp1). Hence b a (mod p). By Lemma 9.11 with n = 1 and m = i, we have 

Xb(p) Xz(p) = b (mod p1k'). Consequently by Theorem 9.8, p11 is an elpsp(b). 

Theorem 9.13. If pe is an elpsp(a), pe is an elpsp(b) and a b (mod p), then 

a b (mod pe). 

Proof. Suppose 1≤e, (p, 0-4) = 1, pe is elpsp(a), pe is elpsp(b) and ab (mod p). 

We shall show by induction on i that a b (mod pi) for every i, (i = 1, . . . , e). 

i = 1 is given. Suppose a b (mod pi) where 1 ≤ i < e. Then i+1 < e. 

We show that a b (mod pi1 ). By Lemma 9.11 with n = i + 1 and m = e, 

Xb(p1 ') Xa(p') (mod pe+i+l). Hence Xb(p1 ') Xa(p'') (mod p1 '). By 

Corollary 9.10, pC is elpsp(a) implies p1k' is elpsp(a) and pe is elpsp(b) implies p11 

is elpsp(b). Therefore by Lemma 9.3 (ii) we have X(p11) a (mod p1+') and 
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Xb(p+l) b (mod p'). Hence b Xb(p1+l) X a(p+l) a (mod p1). Thus 

b a (mod p'). This proves the theorem for case i+1 and so the theorem is proved. 

Lemma 9.14. If (n,2d)=1 and n is an elpsp(a), then (n,Ya' (';()))=i. 

Proof. Suppose (n, 2d) = 1 and n is an elpsp(a). Put k = (n - €a(fl))/2. Then 

(n,k)=1 and fllYa(k). By Lemma 4.8, (fl,Xa(k))=1. By Corollary 2.2, dY(k)= 

kXa(k)aYa(k). Hence if p I n and p I Ya(k), then we would have i' i Ya(k) and 

P I kXa (k), a contradiction. 

Theorem 9.15. If (p, a2-4) = 1, then there exists a unique b mod pe such that pe 

is elpsp(b) and b=a (mod p). 

Proof. Suppose (p, a2-4) = 1. Put a1 = a. Then p is elpsp(ai). By Lemma 9.12, 

if a2 = Xa1 (p), then p2 is elpsp(a2) and a2 a1 (modp1). If we put a3 = Xa2 (p), 

then p3 is elpsp(a3) and a3 a2 (mod p2). Continuing, if we put a4 = Xa3 (p), then 

p4 is elpsp(a4) and a4 a (modp3). Etc. Finally if we put ae = Xac_i (p), then pe 

is elpsp(a) and ae ae...l (mod pe-1). Thus if b = ae, then pe is elpsp(b). To show 

b is unique mod pe, suppose there is another b1, b1 = b + kp1, (k,p) = 1 and pe is 

elpsp(bi). Notice that eb = 4, we denote them by € and then by Theorem 4.52 we 

have , (p, 
Ybi (PC €e) = (pe €C) + kpYb ' 2 ) (mod pi+1). 

Since pe is elpsp(b) and elpsp(bi) , we obtain 

kp1Y6' pe Ce) 0 (mod pi+l), 

which implies p I k since p % Y This contradicts (k, p) = 1. Hence b is 

unique. This completes the proof. 
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Theorem 9.16. For any odd prime p, the number of incongruent bases a mod pe, 

such that (p, a2-4) = 1 and pe is an elpsp(a), is p-2. 

Proof. By Theorems 9.13 and 9.15, there is a 1-1 correspondence between the sets 

D = {a : O≤a<p, a2, ap-2} and 

D' = {b: O≤b<pe, (p,b2-4) = 1 and pe is an elpsp(b)}. 

This correspondence is given by the remainder function, f(b)=rem(b, a). 

Corollary 9.17. Suppose p Ia. Then pC is an elpsp(a) pe I a. 

Proof. Suppose pC is an elpsp(a). By Theorem 7.25 pe is an elpsp(0). Hence we can 

apply Theorem 9.13, a 0 (mod p) = a 0 (mod pC) . e Ia. 

Theorem 9.19. Let p be an odd prime and 6a = ((a2-4)/p). Among 0,1,.. 

there are ((p-1)/2)-1 = (p-3)/2 a's such that Ea = +1 and ((p+l)/2)—1 = (p—l)/2 a's 

such that Ea=l. 

Proof. Let A = {a: 0 ≤ a <p and pJ.a2 - 4}. Then clearly IAI = p —2. By Theorem 

6.12, Ya (Pa) = 0 (mod p) holds for all a E A. Hence Ya((p1)/2) 0 and 

Ya((p+1)/2) 0 have in total p-2 solutions mod p. 

For Ea 1, Ya (it!) = Y. (P_€a) = 0 (modp) has at most (p—l)/2—l=(p-3)/2 

solutions since Y((p— 1)/2) is a polynomial of degree (p— 1)/2— 1 in a. 

Similarly in the case Ca = —1, Ya (P + 1) = (P Ea) = 0 (mod p) can have at 

most (p + 1)/2 - 1 = (p - 1)/2 solutions. 

Since (p-3)/2+(p--l)/2=p-2, it follows that the number of the solutions for each 

congruence reaches its maximum. This proves the theorem. 



99 

Lemma 9.20. Suppose p is an odd prime and e > 1. Then for any e = ±1, the 

number of incongruent bases a mod p6, such that (n, d) =1, e.(P) = E and pe is an 

elpsp(a), is (p—€)/2-1. 

Proof. Put f (x)=Y((p-c)/2). Then f'(a)=Ya((p-c)/2). Hence ifn=p, then Lemma 

9.14 states that (p, f'(a)) = 1. Therefore every solution of f(a) 0 (mod pe) is 

nonsingular in the sense of Definition 4.64. By Theorem 9.19, f(a) 0 (mod p) has 

exactly (p—€)/2---1 solutions a with c(p) = €. Hence by Theorem 4.65 and Corollary 

4.68, f(a) 0 (mod p6) has exactly (p—c)/2—1 solutions a with ca (p) = 6. 

Lemma 9.21. For any e > 0 and all a such that (p, 2d) =1, 

y   =0 (mod p6). 
2 

Proof. This follows from Corollary 6.8, r(p6)p6_l (p - Ca(p))/2 and Lemma 6.4. 

Theorem 9.22. Suppose n = p 6 , e 2, (p,6) = 1 and c = ±1. If a = P— e, then 

(n, ad) =1 and n is not an elpsp(a). 

Proof. Suppose e = ±1, n—p6 where e > 2 and (p,6)=1. Put a =p — c. Then 

(n, d) = 1 since d —3 (mod p). Since Y,, (3)= a2 - 1 0 (mod p), we have 

= 3 and therefore r4(p) = 3pe_l Since e > 2, we have p I ra(p). Suppose n 

is an elpsp(a). Then Ya((flEa(n))/2) 0 (mod n). Put k = (n—€6(n))/2. Then 

Ya(k) 0 (mod n). Therefore p 1 Y0 (k). Hence r. (p)I k. But p I r6 (p), so this implies 

I k. Hence p I 2k. Therefore ptp6 - ca (n). Hence Pt e,, (ii), a contradiction. Thus n is 

not an elpsp(a). This proves the theorem. 
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Theorem 9.23. Suppose n = pC, e ≥ 2, (p, 6) =1 and € = ±1. If a = p - €, then 

(n, ad) =1 and n is not a rpsp(a). 

Proof. Suppose € = ±1, n = pe where e ≥ 2 and (p, 6) = 1. Let a = p—€. Then 

(n, d) = 1 since d —3 (mod p). Since Ya(3) = a2 - 1 0 (mod p), we have 

ra(p) = 3 and therefore ra(pe) = 3p'. Since e ≥ 2, we have p I r0(p). Suppose n 

is a rpsp(a). Then Ya((fl + €(n))/2) pa(fl) (mod n). Hence Y0((n + €0(n))/2)2 

1 (mod n). Put k = (n + €a(n))/2. Then Ya(k)2 1 (mod n). Hence by (3.96) 

Ya(k + 1)Ya(k - 1) 0 (mod n). Therefore plYa(k ± 1). Hence ra(p)k ± 1. Since 

plra(p), this implies plk± 1. Hence pJ2k±2. Therefore plpe+ea(n) ±2. Hence 

pl Ca (n) ±2 and therefore p 3, a contradiction. Thus n is not a rpsp(a). 

Theorem 9.24. Suppose n = pC, e ≥ 2, (p,6)=l and c = ±1. If a = p - €, then 

(n, ad) = 1 and n is not an apsp(a). 

Proof. The proof is similar to the previous one. Suppose €= ±1, n =pe where c > 2 

and (p,6) = 1. Let a = p - e. Then again (n, d) = 1 and p I r. (p). Suppose n is 

an apsp(a). Then Xa((fl+ Ea(fl))/2) ar0(n) (mod n). Hence Xa((fl+Ea(fl))/2)2 E a2 

(modn). Put k = (n + €a(fl))/2. Then Xa(k)2 M a2 (mod n). Hence by (1.35), 

Ya(k)2 = 1 (mod n). Therefore by (3.28'), Ya(k + 1)Ya(k - 1) 0 (mod n). There-

fore again p I Ya(k ± 1). Hence ra(p) j k ± 1. Since z I ra(p), this implies p I k ± 1. 

Hence again p I 2k ±2. Therefore p I € (n) ±2 so that p ≤ 3. A contradiction. Hence 

n is not an apsp(a). 

Theorem 9.25. For any prime p, if (p, 2d) = 1, then 

(i) X. (i2_1) = ±2 (modp2) and (ii) Ya (P2e_1) = 0 (modp). 
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Proof. Put € = e. (p). Then (p+1)(p-1).=p2-1=p—€p2—1 and p2_1p2e_1. 

Hence (R:Ef  (2) = £1 and (p2_1)/41(p2e_1)/4 Therefore (p_E)/2(p2e_1)/4. 

By Lemma 6.17, p I Y,, ((p €)/2). Hence P I ya( (p2e - 1)/4) by the Division Theorem 

4.11. This proves (ii). Now (i) can be derived from (ii). To obtain (i), let k = 

(p2e_1)/2. By identity (1.35) and (ii), Xa(k)2 = dYa(k)2 + 4 4 (modp2). Hence 

p21(Xa(k) + 2)(Xa(k) —2). By Lemma 4.8, (X,, (k)+ 2, X,, (k) - 2)14. Consequently 

Xa(k)±2 (mod p2). 

Lemma 9.26. If p is prime, (p, 2d) =1, e = €, (P), r = ,r. (p) and p = Pa () then 

XX  - x (E T (mod p), Ya (P e+1  = 0 (mod p), .  - 

2Xa ( 2 ) = a (E.) a7- (mod p), 2Ya -ke+l = ECXa (2) p (mod p), 

Proof. By Lemma 4.36 with j = e, Lemma 9.1 and Theorems 7.11, 7.13 and 7.14. 

Theorem 9.27. If p is prime and (p, 2d) =1, then for all j 

(i) Xa (i'i)') = 2Ta(p) (mod p), (ii) Ya (i_€ ()i) = 0 (mod p), 

(iii) Xa (2'.')') = ara (p)3 (mod p), (iv) Y. (Pi+e()1) = pa(p)J (mod p). 

Proof. By Lemma 9.26 and induction on j. 

Corollary 9.28. Suppose p is an odd prime, e > 0 and (p, 2d) = 1. Then 

(i) Xa(pC_ Ea (p)C) 2 (mod p), (ii) Ya(p€a(p)C) 0 (mod p), 

(iii) Xa(pe+€a(p)e) a2-2 (mod p), (iv) Ya(pe+€a(p)e) a€0 (p)e (mod p). 

Proof. A straightforward calculation using Theorem 9.27 and identities (3.88), (3.89), 

(3.90) and (3.91) with n = pe• Use also (are)2-2 =a 2 — 2 and are pC = a(rp)e = aec. 
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Lemma 9.29. If n> 1 and (n, 2d) =1, then 

n is ltpsp(a) X. (n_c;(n)) = 2Ta(fl) (mod n2). 

Proof. Suppose n> 1, n odd. Let €a=€a(fl), TaTa(fl). From (3.96), 

(X- ( n 2 Ca ) + 2ra) (Xa (n 2 "a) 2Ta)=d.Ya(fla) 

and (n, Xa((fl€a)/2)+2Ta) = 1, we have n is ltpsp(a) if and only if X. 

2Ta(fl) (mod n2) since (Xa((fl  ca) /2) + 2Ta,Xa((fl  Ca) /2)2Ta) = 1. 

n--e. (n) - 

- 

Lemma 9.30. If a b (mod m) and m and n have the same set of prime divisors, 

then 60(n) = fb(fl), 7-a(n) = Tb(fl) and pa(fl) = pb(fl). 

Proof. Suppose n = p 1 .. . pk and m  = pj" p. Since a b (mod m), we have 

a b (mod p) for each p. Hence 

Thus we have c. (n) = Eb(n). Proofs of 7-a (n) = rb(fl) and p. (n) = pb(n) are analogous. 

Lemma 9.31. Suppose p is an odd prime, m_—p'Q, nph+9Q, and g≤h. Suppose 

b a (mod m) and n is an elpsp(a). Then n is a ipsp(b) * n is a tpsp(a). 

Proof. The hypotheses on m and n imply that n I m2 and also that m and n 

have the same set of prime divisors. Since b a (mod m) the second implies that 

Eb(fl) = Ea (n) and Tb(fl) = r. (n), by Lemma 9.30. We have also (n, a2-4) = 1 which 

implies (n, b2-4) = 1. Now b a (mod m) also implies that there exists i such that 

b = a ± im. By Theorem 4.50 with n replaced by (n - c(n))/2 and k replaced by 

im, we have 

Xb (n— Ea(n)) - (n—ca(n)) ±im (n—Ea(n)) Ya (n—e,,(n)) 
  (mod (im)2) 

2 2Thus n is an elpsp(a) implies nIY((n - E. (n))/2). Hence from n Im2 we have 
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Xb (n - Ea(fl)) X, (  2 ) (mod n). 
Since €b(n) = Ea(fl) and 7-b(n) = Ta(n), we have n is a tpsp(b) if n is a tpsp(a). 

Lemma 9.32. Suppose n is odd and n> 1, n = p9Q, m = pZQ where g ≤ h. 

Then nis atpsp(a) for all bases b of the form b = im and b= im±l, (i = 0,1,2,...). 

Proof. By Lemmas 9.31, 7.25 and 7.28. (n is an elpsp(0) and an elpsp(±1).) 

REMARK. Examples of n and m to which the corollary applies are: ii =p2 and m=p, 

n=p3 and m=p2, n=p4 and m=p2, n=p5 and m=p3, n=p6 and m=p3. 

Theorem 9.33. Suppose n> 1, n is odd and (n, 3) = 1. Then 

n is squarefree * (Va)[(n,d) = 1 and n is tpsp(a) n is elpsp(a)}. 

Proof. Suppose n> 1 and (n, 6) = 1. = . Suppose n is squarefree, (n, d) = 1 and n 

is a tpsp(a). Then Xa((fl €a(fl))/2) 2;(n) (mod n). Hence Xa((fl - Ea(fl))/2) E 

±2 (mod n) so that by (3.96) 

0 (Xa (n 2 flEa(fl)\ 
_€a(n)) +2) (X., ( — ; ))_2) = dYa (  2 ) (mod n). 

Therefore n I Ya((flEa(fl))/2)2, since (n, d) = 1. So n I Ya((flEa(fl))/2), since n is 

squarefree. 

4=. Suppose n> 1 and (n, 6) = 1. Suppose n is not squarefree. Write n = 

where 1 ≤ h and (p, Q) = 1. Let m = phQ, Then phllm and n I m2. We will find b 

such that n is a tpsp(b) and n is not an elpsp(b). Let a = ±1 and put b = m+a. Then 

b ±1 (mod m) but b # ±1 (mod n) since p'IIm. Also (ii, 3) = 1 = (n, b+2) = 1 

and (n,b-2) = 1. Hence (n,b2-4) = 1 (and (n, b) = 1). By Lemma 9.32, n is a 

tpsp(b). But we will show n is not an elpsp(b). Since b—a = m, from Theorem 4.50 
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with k = m we have Xb(fl) X(fl) ± mnYa(n) (mod m2). 

Since n m2, Xb(fl) X(n) (mod n). Since a = ±1 and (n,3) = 1, X4(n) = 

±Xi(n) =±1, by (3.13). Hence X6(n) ±1 (mod n). But b # ±1 (mod n), since 

phllm. Hence Xb(fl) # b (mod n). Therefore n is not an elpsp(b) by Theorem 6.24. 

Theorem 9.34. Suppose n> 1, n odd and (n, 3) = 1. Then 

n is a prime power = (Va)[(n, d) = 1 and n is an elpsp(a) = n is a tpsp(a)J. 

Proof. Suppose n>1 and (n,6)=1. Suppose n is a prime power, n =pe By (3.96), 

(e_) + 2a(fl)) (X (1C_E;) 2a(fl)) = d•Ya (P;)2 0 (mod pC), V.  

which implies pd). But by Theorem 9.27 with j = e 

X((ye_f(j.,)e)/2) E2Ta(pC) (modp). Hence Xa((pC_Ea(p)C)/2) _2r (pe) (modpe). 

Theorem 9.35. If (p, d) = 1, pe is apsp(a) = pe is rpsp(a). If (p, ad) = 1, pC is 

apsp(a) pe is rpsp(a). 

Proof. Let n = pe. By (3.97) (Xa((fl + E)/2) + ara(n))(Xa((n + e)/2) - ara(n)) = 

d(Ya((fl + E)/2)2 - 1). Hence Xa(( + €)/2) ±ara(n) (mod pe) Ya((fl + E)/2) 

±pa(fl) (mod pC). Therefore the result follows from 9.27 (iii), Xa((fl + €)/2) 

ara(n) (mod p) and Ya((n + €)/2) Pa(fl) (mod p), using Lemma 4.21. 

Corollary 9.36. Let p be an odd prime. If (p, d) = 1 and pe is an elpsp(a) or 

apsp(a), then pe is sltpsp(a). If (p, ad) = 1 and pe is an elpsp(a) , apsp(a) or rpsp(a), 

then pe is a sltpsp(a). 

Proof. By Theorems 9.34, 9.35, 7.5, 7.23 and Corollary 7.17.1, we have 

(n, 2d) = 1 = n is a ltpsp(a) * n is a rapsp(a). 
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Lemma 9.37. Suppose p is prime and p> 3. If (p, d) = 1, then pe is rpsp(a) = pe 

is tpsp(a). Also if p I a, then pe is a rpsp(a) pe is a tpsp(a) plC/21 a. 

Proof. Suppose p> 3, (p, d) = 1 and pe is a rpsp(a). By (3.99) with n = (pe+€e)/2 

we have 

Xa((pe+€e)/2) _are) .X ((pe+€e)/2)+are) =d(Ya((pe+Ee)/2)2_.1) 0 (mod pe). 

The GCD of the two terms on the left divides 2a. So if (p, a) = 1, these terms are 

coprime and hence Theorem 9.27 (iii) = pe is an apsp(a). Then by Corollary 9.36 

Pe is tpsp(a). 

Suppose p I a and pe is a rpsp(a). Suppose p1 ha where f ≥ 1. Then ra(pf ) = 2 

and ra(p' 1) = 2p. Also Ya((pe + €e)/2) p(p)e (mod p e ). Hence by (3.28') with 

n = (pe + 6e)/2, we have Ya((pC + 6e)/2 6e).ya((pe + ce)/2 + 6C) 0 (mod pe). In 

other words Ya((pC - EC)/2)•Ya((PC + 3€e)/2) 0 (mod pe). 

Since I y((pe - Ee)/2), 21 (pe - Ee)/2. Hence pf II1Pa((PC - cc)/2) since ra(p1') = 2p. 

Since 21 (pe +3€e)/2 and (p, (pe+3Ee)/2) = 1, we also have pf IIlPa((Pe+3)/2). Hence 

e 2f. Therefore le/21 ≤ f. Now by (3.96) 

(Xa((pe_€e)/2)_2T(p)e)(Xa((pe_€e)/2)+2T(p)e) =dY((pC - €e)/2)2 = 0 (mod p21). 

Consequently pX divides the left side and hence pe divides the left side. We have 

(Xa((pEe)/2)_2Ta(p)e,Xa((pEe)/2)+2Ta(p)e) = 1. Also by Theorem 9.27 (i) we 

have PIXa((P Ee)/2)2Ta(P)e. Hence pe hXa((PC_€i/2)_2Ta(P)C) so pe is a tpsp(a). 

This proves the first statement. 

For the second statement suppose p h a and pe is a tpsp(a). Assume 2 ≤ e and p'lla. 

Then r(pf) =2 and r(pf')=2p. Since pe is a tpsp(a) , by (3.96) with n= (pe_e)/2, 

dYa((pe_Ee)/2)2 = 0 (mod pe). 



106 

Hence pe y ((pe. e) /2)2. Therefore pie!21 Y ((pe....e) /2). But since (p, (pe__€c) /2) =1, 

Ya((pe - 6e)/2) # 0 (mod pf+1). Hence re/21 ≤ f and so e < 2f. Since r,, (p) = 2 

and 21 (pe - €e)/2 + 2€, we have o1 fly - €e)/2 + 2e"), i.e. pfI Y0(( + 3€e)/2). 

Therefore pe I Ya((pe + €e)/2 - €e ) Ya((pC + €e)/2 + Consequently by (3.28') with 

= (pe + Ee)/2, we have pc I (y((pe + €e)/2) - Pa(P)(Ya((pC + e) /2) + Pa(P)e). By 

Theorem 9.27 (iv) we know that plYa((p0+ee)/2)_pa(p)e. Since the two factors are 

relatively prime it follows that pe I Y, ((pe + e) /2) - pa(p)e. Therefore pe is a rpsp(a). 

Theorem 9.38. Suppose p is an odd prime, p> 3, e ≥ 1 and (p, d) = 1. Then 

(i) pe is a tpsp(a) X (1 ()) = 2Ta(p) (mod pe) p fe/21 is an elpsp(a), 

(ii) pe is an apsp(a) Xa   = ara(p) (mod pe) p is an elpsp(a), 

(iii) pe is a rpsp(a) Ya (P". €2-(P)) = Pa(P) (mod pe) . p ie!21 is an elpsp(a). 

Proof. (i) = . Suppose pe is a tpsp(a), i.e. that Xa((pC - €e)/2) 2Ta (p)e (mod pe) 

where € = fa(p). By (3.96) with n = (pe - €e)/2, € = €(p) and 'r = 'r, (p), we have 

(Xa((pe _fe)/2) +2re) (Xa((pC_€C)/2) _2re) = dYa((p/_€e)/2)2. 

Hence pe Ya((pe - €e)/2)2 . ,1e/21 IYa((pe - €e)/2) . ra(ple/21) 1 (pe_ €e)/2  

(ra(pld/21),p) = 1 => ra(pld/21) (p—€)/2 . ie/21 is elpsp(a) = p1C121 I1'a((P)/2) 

pe y ((p— €) /2)2. Then by (3.96) with n = (p—e)/2, c = a (P) and T = Ta (p), 

(Xa((p€)/2) +2T)(Xa((p€)/2)2T) = dYa((p€)/2)2. 

Now (Xa((p€)/2)+2T, Xa((pE)/2)2T)14. Also by Theorem 9.27 (i), 

Xa((p€)/2) 2Ta(p) (mod p). Hence X((p—€)/2) = 2a (p) (mod pe). 

(i) =. Suppose Xa((p - €)/2) = 2Ta(p) (mod pe) where € = ca(p). By (3.96) with 

n = (p - c)/2 where c = ea (p) and with r = Ta(p), we have 
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(Xa((pE)/2) +2r) (Xa((p)/2) —2r) = dYa((P6)/2)2. 

Hence pe Ya((p€)/2)2 fC/'2] Ya((p€)/2) r,(p1d/2l) I (p—€)/2 (r0 (p[e/21),p) = 1 

= r (pIe/2l) I (p - €)/2 = ra(yld/21) (pe - . p1121 Y((pe - Ee)/2) 

pdIYa((pef.e)/2)2. So by (3.96) with n = (pe_Ee)/2, € = Ea(p) and T = Ta(p), 

Xa((pe€e)/2)+2Te)(Xa((pe_€e)/2) _2TC) =dYa((pC_EC)/2)2 0(mod pe). 

Since the GCD of Xa((pe_6e)/2)+2T and Xa((peEe)/2)_2r divides 4, also by Theorem 

9.27 (i) Xa((pe_€e)/2) 2;(p) (mod p), we then obtain Xa((pe_€e)/2) 2r,(p)e 

(mod pe), i.e. pe is a tpsp(a). 

(ii) = . Suppose pe is an apsp(a). By Corollary 9.36 pe is an elpsp(a) and a tpsp(a). 

Lemma 9.4 implies Ya((p€)/2) 0 (mod pe) where e = ,,(p). Since pe is a tpsp(a), 

by Theorem 9.27 (i) we have Xa((p—E)/2) E 2Ta(p) (modpe). Hence by (3.80), 

2Xa (i+  = aXa (P— a(P)) + 6dYa (  - (1)) ar. (p) = 2ar (p) (mod pe). 

Dividing by 2 we have the result, Xa((p+ea(p))/2) a;(p) (mod pe). 

(ii) -=. Suppose X((p+ ca(p))/2) a;(p) (mod pe). By (3.29') with n = (p— €)/2, 

(Xa((p + e)/2) - a)(X0((p + €)/2) + a) = d(Y0((p + €)/2) - €)(Ya((p + €)/2) + c). 
where € = €a(p). Hence Y((p + €)/2) ±€ (mod pe). By (3.28) we have 

Y((p + e)/2 - €).Ya((p + c)/2 + €) = (Ya((p + €)/2) + €)(Y0((p + e)/2) - 
Hence pe 11'a((P + €)/2+€) Ya((p + e)/2—€). We consider two cases: 

Case 1. (p, a) = 1. Corollary 4.19 states that (Ya((p+€)/2€),Ya((p+€)/2+€)) I a. 

Since (p, a) = 1 we have pe Ya((p+€)/2€) or pe Ya((p+E)/2+E). In the first case 

P6 111'a((P)/2) so that pe is an elpsp(a) and hence by Corollary 9.36 pe is an apsp(a). 

In the second case pe I Yg ((p+€) /2+€). Hence pe I Ya ((p+3€) /2) and then p6 I Y. (p+3€). 

Since (p,3)=l, this implies (ra(pe),p)=1. By Lemma 6.13 (v), ra(pe) = ra(p) and 
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hence ra (pe) (p - €)/2. Therefore by Lemma 9.4, pe is an elpsp(a). Hence by Lemma 

9.27, pe is an apsp(a). 

Case 2. pla. We will show that pa and X. ((p + fa(p))/2) ±a (mod pe) . pe I a. 

Suppose pf Ila where 1 ≤ f and / ≤ e. Let € = €a(P). Since pf ha and f ≤ 

P1 I Xa((p + e)/2). Also pulla and Ya(2) = a = f I Y,(2) so that ra(p1) = 2 and 

ra(p1 ') = 2p. By Lemma 6.12,plYa((p€)/2). Hence p'IYa((p€)/2). By (3.99), 

(Xa((p+€)/2)+a)(Xa((p+e)/2)—a)=d(Ya((p+€)/2)+pa(p))(Ya((p + €)/2)pa(p)). 

Now pe+f divides the left side. Also p I Ya((p + 6)/2) —p4(p), by Theorem 9.27 (iv). 

And (Ya((p+€)/2)+pa(p), Ya((p+6)/2)pa(p)) = 1. Hence pe+f Ya((p+ €)/2)Pa(P). 

By (3.28') we obtain 

Ya((p€) /2) (Ye ((p+3€)/2) = (Y0((p+€) /2)+Pa(P)) (Y ((p+€) /2)Pa(P)) 0 ( mod pe+f). 

Thus p 1 I Ya((p - €)/2)(Ya((p + 3c)/2). Since pfIYa((p - €)/2), it follows that 

I Y((p + 3c)/2) and hence that pe Y(p+3€). Therefore ra(pe) I p + 3€. Since 

(p,3) = 1, we have (p,p+3e) = 1. But pIra(p'). Hence r(pe)p±3e = e < f. 
This proves pe I a. Hence a 0 (mod pe). By Theorem 7.25, pe is an apsp(0). Hence 

pe is an apsp(a). 

(iii) = . Suppose pe is a rpsp(a). Then (p, d) =1. We consider two cases: 

Case 1. (p, a) = 1. Let € = c,, (p). By Theorem 9.35, pC is an apsp(a) and hence pe 

is an elpsp(a) and a tpsp(a). By Lemma 9.4, pe is an elpsp(a) Ya((p-.€)/2) 

0 (mod pe). Since pe is a tpsp(a), by Theorem 9.27 (1) we have Xa((p€a(p))/2) 

2Ta(P) (modpe). Hence by (3.81) with n replaced by p we have 

2Ya   = aYa (i_)) + EXa (P_ 2a(P)) = 0+ €a2a(p)= 2Pa(P) (mod pe). 

Dividing by 2 we have the result, Ya((p + 6a(P))/2) Pa(P) (mod pe). 
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Case 2. p I a. Let e = €(p). In this case by Lemma 9.37, since pe is a rpsp(a) , pe is 

a tpsp(a) and plC/2] a. By (3.96), with n = (p—€)/2, and by Theorem 9.38 (i), we 

have pe I Ya((p_E)/2)2. Hence plC/21 Ya((pE)/2). Therefore pe I aY0((p—c)/2) since 

pie!21 a. By Theorem 9.38 (i), since pe is tpsp(a), Xa((pE)/2) 27-. (p)(mod pe). 

Therefore by (3.81) with n replaced by p, again we have 

2Y0 = aY0 (1) +eX0 (i)) = O+Ea2Ta(p) = 2po(P) (Mod pe). 

Dividing by 2 we obtain the result, Ya((p + fa(P))/2) Pa (P) (mod pe). 

(iii) = . Suppose Ya((p + €a(p))/2) Pa(P) (mod pe). We will consider two cases: 

Case 1. (p, a) = 1. Let c= e. (p). By (3.99) with ii replaced by (p+c)/2, we have 

(Xa ((p+€)/2)+a) (Xa ((p+€)/2)-2) = d(Ya ((p+€) /2)+1) (Ya ((p+€) /2)—i) (mod pe). 

Since (p, a) = 1, by Theorem 9.27 (i) this implies Xa((p+€)/2) az,(p) (mod pe). 

Hence by Theorem 9.38 (ii), pC is an apsp(a). Hence by Theorem 9.35 P, is an rpsp(a). 

Case 2. pja. We will show Y ((p+E (p))/2)±1(modpC) = pe is tpsp(a). 

(Also that pie/21 Ia.) Since p I a, it will follow by Lemma 9.37 that pe is a rpsp(a). 

Suppose pla and Ya((p+E)/2) ±1 (mod pC) where c= E0 (p). Suppose p'IIa where 

1 ≤ f. Again we have Ta(p') = 2 and r(pf 1) = 2p. By (3.28') with fl = (P + c)/2, 

we have 

Ya((p - €)/2)Ya((p + 3E)/2) = (Ya((p + €)/2) + 1)(Ya((p+ €)/2) - 1) 0 (mod pe). 

Since p1llYa((p€)/2) and p1llYa((p+3€)/2), we have e ≤ 2f and hence that e/2 ≤ f. 

Now p1 IYa((pe - Ee)/2) P21 I1a((Pe - €e)/2)2. Also by (3.96) with n = (pe - 

(Xa ((p) /2)-2Ta (p)e) (Xa ((pe_e) /2)+2Ta(p)e) = dYa ( (pe_Ee ) /2)2 = 0 (mod pe). 

Thus the product of the two factors on the left side is divisible by pe Their GCD 

divides 4 and p divides the first, by Theorem 9.27 (i). Hence 
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Pe I Xa((pe_€e)/2)._2Ta(p)e. Thus pe is a tpsp(a). By Lemma 9.37, since p I a, we 

have pe is a rpsp(a). 

Remark. In Theorem 9.38 the hypothesis p> 3 is necessary since e.g. if p = 3, e = 4 

and a = 3, then (iii) fails to hold in the direction because 34 is not a rpsp(3). 

However Y3((3 + e3(3))/2) Y3((3 + (-1))/2) Y3(1) = 1 = p(3) (mod 34). 

Theorem 9.39. If p is prime, (p, 2d) = 1 and pC is an elpsp(a), then 

(i) pe is a tpsp(a) (Vi ≥ 0) {xa (1_)') = 2a(p) (mod pe)] 

pe is an apsp(a) (Vi ≥ 0) [Xa (P+Ea(P)1\ - ara(p)1 (mod pe)] 
2 

pe is a rpsp(a) * (Vi ≥ 0) y I p'+ca(p)') - pa(p)' (mod pe)] 
2  

Proof. = is trivial. 

=-. By Theorem 9.38, Corollary 9.5 and induction on i using Lemma 4.36. 

Corollary 9.40. If c≤ e and pC is a tpsp(a) , then pc is a tpsp(a). 

Lemma 9.41. Suppose k is odd and E = ±1. Then 

(1) 2Xa(pCk) Xa(pe - €e)Xa(k) (mod Ya(Pe 

(ii) 2Ya(pCk) = CeXa(pe - fe)y(k) (mod Ya(pe ce)) 

Proof. By (4.32) and (4.35) with n = pe - e and r = OEek. Also for any odd k, 

Xa(Eek) = Xa(k) and Ya(€e1C) = feya(k) by (1.46). 

Theorem 9.43. If p is an odd prime, k is odd and (p, d) = 1, then 

(i) Xa(pfk) Xa(k) (mod p), (ii) ya(pek) = fa(p)eYa(k) (mod p). 

Proof. By Corollary 9.28 and Lemma 9.41 with e = 
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Corollary 9.44. If p and q are distinct odd primes, (p, a2-4) = 1 and (q, a2-4) = 1, 

then (1) aX0(peqf) X(pe)X(qf) (mod pq), 

(ii) Y (peqf) Y(pe)Y(qf) (mod pq). 

Proof. By Lemma 9.2 we have X6(pe) = a (mod p), Xa(qf) = a (mod q), 

Ya(pC) = €a (p)C (mod p) and Y0(qf) = c(q)f (mod q). Hence by Theorem 9.42, 

aX(pCqf) X(pC)x(qf) (mod p), y(peqf) y(pe)y(qf) (mod p), 

aX (peqf) X(pe)X(qf) (mod q), Y (peqf) y(pe)y(qf) (mod q). 
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10. Quadratic residues and Lucas primitive roots 

In this section, we will discuss some results about quadratic residues. These will 

be used in next section. Also we will define a new concept, Lucas primitive roots 

mod n, prove that each prime has a Lucas primitive root and that each odd integer 

n has a Lucas primitive root. Recall the definition of the totient function which we 

defined in §6. Ta(fl) is analogous to Euler's 0 function in that it has the properties: 

(i) n I Ya(Ta(fl)), (ii) if r,, (n) denotes the rank of n, then ra(n) I Ta(n). 

Theorem 10.1. Let p be an odd prime and Ea = ((a2-4)/p). Among 0,1,.. 

there are ((p-1) /2)—1 = (p-3)/2 a's such that Ea = +1 and ((p+1) /2)—1 = (p-1)/2 a's 

such that 

Proof. This is proved in §9. (Theorem 9.19.) 

Lemma 10.2. Suppose p is an odd prime. For any E = ±1, if r I (p - E)/2, then 

(10.2) Ya(r) 0 (mod p) 

has exactly r - 1 solutions in a, each satisfying (p, a2-4) =1 and Ea(p) = 6. 

Proof. Suppose € = ±1. If r =1, then Ya (r) =1. Hence it is clear that (10.2) has no 

solution. Suppose r> 1 and r I (p—€)/2. Let the congruence (10.2) have k incongruent 

solutions. Since the degree of Ya (r) is r-1 and since the leading coefficient is 1 which 

is prime to p, by Lagrange's theorem k ≤ r-1. Also we know by Theorem 10.1 that 

(1) Ya (P; 6) =0 (mod P— E 

has exactly 1 solutions mod p. Since r —i—, by the Division Theorem 4.11, 

we have 
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(2) Y . (P Ya(r) .H(a). 

where H(a) is a polynomial in a of degree ((p - - r. Since congruence (10.2) 

has k solutions, (1) and (2) imply H(a) 0 (mod p) has exactly ((p - - 1 - k 

solutions. Hence ((p - c)/2) - 1 - k ≤ ((p - €)/2) - r. This implies k > r - 1. Then 

k ≤ r-1 and k ≥ r-1 imply k = r —1. That each solution a satisfies (p, a2-4) = 1 

and €a(p) = e follows from the GCD Theorem. This proves the lemma. 

Definition 10.3. 0,, (r) = I{a: 0 < a < n, (ii, a2-4) = 1 and ra(n) = r} I. 

In particular, if n is a prime power, n = pe, then for € = ±1 we define 

2(r) = I{a: 0≤a<n,(n,a2-4)=1,ea(p)=andra(n)=r}I. 

Lemma 10.4. Suppose p is an odd prime, € = ±1 and k is a positive integer. Then 

if k I P , then E &(r) = k - 1. 
rk 

If k % (p - E)/2, then the sum is 0. 

Proof. By Lemma 6.4, ra(p) I k * Ya(k) 0 (mod p). Hence by the Division 

Theorem 4.11 the above sum Er r) counts the elements in the union of the sets 

in the definition 10.3. Thus by Lemma 10.2 

>b(r)= I{a:0≤a<p,(p,a2-4)=1,ca(p)=E and Ya(k)0(modp)}I=k-1 
rik 

We shall use next the Möbius function p. Recall that iz(l) = 1, p2 I n = p(n) = 0 

and if n is squarefree, n = P1P2 Pk, then p(n) = (-1)". Recall also that p satisfies 

Lemma 10.5. If 1 <k, then E p(j) = 0. For any k, Ep(i) = q5(k). 
ilk ilk 
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Theorem 10.6. (Williams [51]). If €=±1, 1<k and kf?j .!, then Op" (k)=ci(k). 

Proof. We use 10.4, 10.5 and Möbius Inversion. Since i I k and j I (k/i) if and only if 

ik and il(k/i), 

(k) = E 7PP"i)1 =E ipp" (i) ( (i) = E 01i(j) = E 
i=k ilk \ilk/i / ilk ilk/i ilk ilk/i 

=(i) (Ei =p(j) ( _i) =p(j) - z(j) = 
ilk \ilk / ilk .1 ilk 3 ilk 

by Lemmas 10.4 and 10.5, since (k/j) I (p - e)/2. This proves the theorem. 

Lemma 10.7. Suppose e =  ((a2-4)/p) and r (p— e)/2. If Ya(r) 0 (mod p), then 

0 (mod p). 

Proof. This is Lemma 9.14. 

Lemma 10.8. (1) If p> 3 is a prime, then there exists a such that (p, a(a2-4)) = 1 

and r(p) = (p+ 1)/2. If p > 5, there exists a such that (PA O-4)) —4)) = 1 and 

r(p) = (p-1)/2. 

(ii) If p is an odd prime, then there exists a such that (p, a2 —4) = 1 and ra (P) = 

(p+ 1)/2. If p> 3, there exists a such that (p,a2-4) = 1 and ra(p) = (p_ 1)/2. 

Proof. Let k = (p— c)/2. 5≤p = 1<k. Hence by Theorem 10.6, Opt (k)=(k) >0. 

Here p = 3 and € = +1 is an exception since then 4((p - E)/2) = 4((3 - 1)/2) = 

= q!(1) = 0, but the number of Lucas primitive roots a with a(p) = E is 0. 
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Lemma 10.9. Suppose p n and p is an odd prime. (i) If p ≥ 5, then there exists 

a such that (n, a(a2 —4)) =1 and r. (p) = (p+ 1) /2. If p ≥ 5, there exists a such that 

(n,a(a2-4))=1 and ra(p) = (p—l)/2. 

(ii) If p ≥ 3, then there exists a such that (n, a2-4) = 1 and ra(p) = (p+l)/2. If 

p ≥ 5, then there exists a such that (n, a2-4)= 1 and ra(p) = (pl)/2. 

Proof. Let n = m pe with (m,p) = 1. For (i). By Lemma 10.8 (i), we can find a 

such that ra(p) = (p ± 1)/2 and (p,a(a2-4)) = 1. By the CRT, there exists b, 

b a (mod p) and b 1 (mod m). Hence rb(p) = ra(p) = (p ± 1)/2. To show that 

(n,b(b2-4)) = 1, it is enough to show that if a prime q In, then (q,b(b2-4)) = 1. 

If q = p, since b a (mod p) and (p,a(a2-4)) = 1, it implies (q,b(b2-4)) = 1. If 

q 0 p, then q I m. Hence from b 1 (mod m), we have b 1 (mod q). Thus 

b # ±2 (mod q) and b # 0 (mod q) so that (q,b(b2-4)) = 1. The proof of (ii) is 

same as the proof of (i). 

Theorem 10.10. Suppose p is an odd prime. Let € = ±1. If r I (p—€)/2, then the 

congruence Ya(r) 0 (mod pe) has r - 1 incongruent solutions in a mod pC, each 

satisfying (p, a2-4) = 1 and Ca (P) =  E. 

Proof. Suppose € = ±1 and r I (p - e)/2. Suppose Ya(r) 0 (mod p). Then by 

Lemma 10.7 we have p % 1'(r). Since Ya(r) 0 (mod p) has r - 1 incongruent 

solutions, by Theorem 4.65 and Corollary 4.68, it follows that Ya(r) 0 (mod pe) 

also has r - 1 incongruent solutions. 

Lemma 10.11. Suppose n> 1 and (n, 6) = 1, then 

(i) there exists a such that (n, a2-4) = 1 and €(n) = 1. 

(ii) n 0 0 implies that there exists a such that (n, a2-4) = 1 and e. (n) = —1. 
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Proof. For the proof (1). Suppose pl,... ,pk are all prime divisors of n. Since 

(n,6)=1, pi >3 for all 1 ≤ i ≤ k. Hence by Theorem 10. 1, we can find a• for each i 

such that e,,, (pt) = 1. Applying the CRT, we can find a such that (n, a2 —4) =1 and 

Ca (pi) = €, (pi) for each i. Therefore fa (n) = 1. 

For the proof (ii). Suppose p, . . . ,Pk are all prime divisors of n. Since n i4 0, there 

is a i such that p91n and e1 is odd. By Theorem 10.1, we can find ai such that 

Eai(pi) = —1 and for all j 54 i find a3 such that €0,(p5) = 1. Using the CRT we can 

find a such that (n)a2-4)=1 and €a(pj) = 6a8(Pi) for all i. Hence we have Ea(fl) = 1. 

Lemma 10.12. If n>3 and nD, then there exist a,b such that 

1≤a,b≤n, (n, ab(a2 — 4) (b2 — 4)) = 1 and Pa=Pb. 

If n >3 and n 54 D, then exist a,b such that 

1 < a,b ≤ n, (n,ab(a2-4)(b2-4))=1 and Ta = —Tb. 

Proof. This is directly from the theory of quadratic residues. 

Lemma 10.13. If n > 1, (n, 6) = 1 and n i4 0, then there exist a, b such that 

1 ≤ a,b ≤ n, (n, a(a2 —4)) = 1, (n, b(b2-4)) = 1, C. = 6b and Pa = 

Proof. Since n 0, by Lemma 10.12, there exist 1≤ a, b≤ n such that (n, a(a2-4)) = 1, 

(n,b(b2-4))=1 and Pa=', Pb= — '• Put 

A={a: 1≤a≤n,(n,a(a2- 4)) = 1 and Pal} 

B={b: 1≤b≤n,(n,b(b2-4)) = 1 and pb=-1}. 

If for all a E A, all b E B, € b, then either 

(i) Va E AVb € B( a = 1 & € = —1) or (ii) Va E AVb € B(€0 = —1 & b = 1). 

Let C=AUB={1 ≤ c≤ n: (n,c(c2-4))= 1}. Since €=p-r, case (i) implies p,=, 

for all c E C, and case (ii) implies Pc = —e for all c E C. Since n 54 0, r is not 
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constantly 1 and also r is not constantly —1. It shows neither (i) nor (ii) holds. So 

the lemma follows. 

Lemma 10.14. Suppose n = uv, u 96 0, (u, v) = 1, then there exist 1 < a,b ≤ n 

such that (n, ab(a2-4) (b2 —4)) = 1, pa(fl) = —pb(n), ca(n) = fb(n) and  b (mod v). 

Proof. Applying Lemma 10.13 with ii = u, we can find 1 ≤ a, a1 < u, such that 

(u, aai(a2-4)(a?-4)) = 1, pa (u) = Pai (u) and e. (u) = a1 (u). By the CRT we can 

make (n, aa1 (a2 —4) (a 2 —4)) = 1. Then using the CRT we can find 1 ≤ b ≤ n such 

that b a1 (mod u) and bE a (mod v). Hence (n,b(b2-4))=1 and 

pa(n) = pa(U)pa(V) = (Pa1 (U))Pa(V) = — Pb(U)Pb(V) = Pb(fl), 

Ea (n) = €a(U)€a(V) = fai(tL)€a(V) = €b(u)€b(v) = 

This completes the proof. 

Now we give the definition of Lucas primitive root mod n and then prove the 

existence of Lucas primitive roots for each odd integer n> 1. 

Definition 10.15. a is a Lucas primitive root mod n if ra(n) = Ta(n). In the case 

that n is a prime power, n = pe, a is a Lucas primitive root+ for pe if (p, a2-4) = 1, 

fa(p) = 1, ra(pe) = Pe —l(p - a(p))/2 = p'(p - 1)/2, and a is a Lucas primitive 

root— for pe if (p, a2-4) = 1, €,(p) = —1 and ra(pe) = pe_l(p....fa(p))/2 = p' (p+1)/2. 

Examples: 0 is a Lucas primitive root— for 3. 3 is a Lucas primitive root— for 3e• 

0 is a Lucas primitive root+ for 5. ±1 are Lucas primitive roots— for 5. 

5 is a Lucas primitive root+ for 5e• ±1 are Lucas primitive roots+ for 7. 
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Lemma 10.16. Suppose p is an odd prime and e ≥ 1. Then for all a such that 

(p,a2-4)=1, 

(i) —a is a Lucas primitive root for pe a is a Lucas primitive root for pe• 

(ii) a is a Lucas primitive root for P  = a is a Lucas primitive root for p. 

(iii) If 5 <p, then 0 is not a Lucas primitive root for p. 

(iv) If 5 <p, then p is not a Lucas primitive root for p2. 

(v) If 7 <p, then 1 and —1 are not Lucas primitive roots for p. 

Proof. (i) holds since E....a(p) = €a(P), (Vk)[Y_a(k) = ±Ya(k)J and r—a (Pe) = Tg(p/). 

For others use Lemma 6.7. 

Theorem 10.17. Every odd prime has a Lucas primitive root. If p> 3, then p has 

Lucas primitive roots of both + and - type. If e = ±1, then there exists an integer 

a such that (p,0-4) = 1, (p) = E and r0(p) = '. Further, for each c = ±1, 

the number of a which satisfy Ea (P) = € and are Lucas primitive roots mod p, is 

- 

Proof. This follows from Theorem 10.6. 

Lemma 10.18. Suppose p is an odd prime, p> 3, (p, a2-4) = 1, 1 < c and (p, s) = 1. 

Then ra(pc) = g ra (p 1) = ps or ra±pc(p't1) = PS. 

Proof. . Suppose ra (PC) = s. Note that by Lemma 6.3, a ± pc a (mod p c) 

implies ra,. (pc) = ra (pc) = S. Since ra (pc) = s implies p c Ya (s), we consider 2 cases: 

Case 1: PCIIYa(S). In this case, since ra(PC) = s, we have p'IYa(ra(p')). Hence by 

Lemma 6.6 with e = c and f = 1 we have ra (p'') = p.r(pc) Hence ra (p' 1) = pS. 
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Case 2: pC+l I'(s). By Theorem 4.50 with k = pC and n = s, we have 

dYa±pc(S) E ±pCSXa(S) + (d apc)Yo(s) (mod p2C). 

Since pC+l Ya(S) and c + 1 ≤ 2c, this implies 

dY±c(s) ±p'sX(s) (mod pc+l). 

Since p is odd, Lemma 4.8 implies p I Y0(s) (p, Xa(s)) = 1. By assumption 

(p, s) = 1. Thus (p, SXa(S)) = 1. Hence pCllYa±pc(S). Therefore pcllya±pc(ra(pc)) and 

pcllYa±pc(ra±pc(pc)). Consequently by Lemma 6.6 with a replaced by a ± pC, e = C 

and f = 1, we have 

ra±pc(p*1) = p.ra±pc (pc) = p.ra(pc) = PS, 

which completes the proof in the = direction. Next we consider the converse. 

. Suppose ra(p'') =ps or ra ,c(p*l) =ps. Since (p, d) = 1, Lemma 6.7.1 (with 

e = 0) applies to both cases and tells us that ra (pc) = s or ra,c (pC) = s. By Lemma 

6.3 the second equality implies ra (pc) = s. Hence we have ro(pc) = s. 

Corollary 10.19. Suppose p is an odd prime, p> 3 and (p, a2-4) = 1. Then 

a is a Lucas primitive root for p * a or a ± p is a Lucas primitive root for 02. 

Proof. Put c = 1 and s = (p—€)/2 in Lemma 10.18. 

REMARK. a and a±p can both be Lucas primitive roots for p2. For example if p = 23 

and a = 4, then both a and a±p are Lucas primitive roots for p2. Ca (P) = +1. Also if 

p = 23 and a = 3, then a and a ± p are both Lucas primitive roots for p2. Ea(p) = —1. 

p = 23 and a = 12 is an example of p and a where a is a Lucas primitive root for p 

but not a Lucas primitive root for p2. (In this example Ea(p) = +1.) Another such 

example is p = 23 and a = 15. (In this example €a(p) = —1.) 
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Theorem 10.20. Suppose p is an odd prime and p> 3. Then the following are 

equivalent: 

(i) a is a Lucas primitive root for p2, 

(ii) a is a Lucas primitive root for pC for some e ≥ 2, 

(iii) a is a Lucas primitive root for p6 for all e > 2. 

Proof. Obviously (i) (ii) and (iii) (i). Hence we need to show (ii) (iii). This 

will be done by showing (ii) (i) and (i) = (iii). First we show (i) = (iii). 

To see that (i) = (iii) we use Lemma 6.7 with s = (p - c)/2. (i) implies ra(p2) = 

ps = p(p - €)/2. Hence by Lemma 10.18 and the Law of Repetition 6.5, r0 (pe+l) = 

p6s = p6(p - e)/2 for all e ≥ 0. 

To see that (ii) = (i), suppose a is a Lucas primitive root for p6 and c > 2. Then 

ra(p') = pc_l(p_ €)/2. Hence p2 %Y((p—E)/2) for if p2 I Ya((p)/2), then by the 

Law of Repetition, 6.5, pc Y6(p6_2(p - 6)/2, contradicting ra(p') = pc_l(p - 

Hence p2 % Y,, ((p -  E)/2). Therefore we must have r. (p2) = ps for some s such that 

s I (p—E)/2. By Lemma 6.7 ra(pc) = p'-'s and s = r. (p). But ra(pc) = p'(pE)/2. 

Consequently s = (p - E)/2 and therefore we have ra(p2) = p(p - e)/2 which proves 

a is a Lucas primitive root for p2. 

Theorem 10.21. Suppose p is an odd prime and e and f are integers such that 

2 < e < f. Then a is a Lucas primitive root for p6 if and only if a is a Lucas primitive 

root for pf. 

Proof. = . By Theorem 10.20. =. Suppose a is a Lucas primitive root for p1 and 

2 ≤ e < f. Then ra(p1) = p1 '(p—E)/2. Again it is easy to see that p2 %l',((p—€)/2. 

Hence ra(p2) = ps for some s such that s I (p - c)/2. Then by Lemma 6.7, s = r,, (p) 
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and ra(Pf) = p''s. Thus s = (p - so that ra(p2) = p(p—c)/2. Hence a is a 

Lucas primitive root for p2. By Theorem 10.20, a is a Lucas primitive root for pe• 

Theorem 10.22. Suppose pe is a power of an odd prime and p ≥ 5. Then there 

exist Lucas primitive roots a for pC of both positive and negative type and 0 < a <p. 

Proof. By Theorem 10.17, since p > 3, p has a Lucas primitive root a. Hence by 

Corollary 10.19, a or a ± p is a Lucas primitive root for p2. If a is not a Lucas 

primitive root for p2, then by Lemma 10. 16, —a is also not one, so —a+p is a Lucas 

primitive root for p2 and 0 < —a + p <p. 

Theorem 10.23. For each odd integer n, (n,3)=1, 3a[1 < a < n, r,, (n) = Ta(fl)}. 

Proof. Put ii = p71 p7. By Theorem 10.22, for each i (1 ≤ i k), we can choose 

- a1, 1 :5 a1 p such that (pi, a —4) =1, and ra1 (Pi - Pe-1 ) (pi 6i) /2. 

By the CRT we can find b such that 1 :5 b ≤ n and for each i, a b (mod p71). 

- Then for each i, rb(p71) = ra1 (p 1) - . . (p - Ej/2. Therefore 

1P1 - 'b(P1) p1 i - fb(P1) ei-1 Pk - 4(Pk) e—1 
rb(n) = [rb(p7'),.. ,rb(p)1= 2 Pi 2 Pk ] =Tb(fl). 

This establishes the theorem. 

If n is a prime power, n = pe, we have following new results. We will generalize 

Lemma 10.4 and Theorem 10.6. (see Theorems 10.30 and 10.34 below.) 

Lemma 10.24. If p is an odd prime, € = ±1 and k I (p - €)/2, then 

= k — i. 

If k %pe_i(p - e)/2, then the sum is 0. 
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Proof. By Lemma 6.4 ra(pe) I k Ya(k) 0 (mod pe). By the Division Theorem 

4.11, the sum Er Op. (r) counts the number of elements in a union of the sets in 

Definition 10.3. Thus by Lemma 10.4 

?be(r) = I{a :0 ≤a <pe, (p,a2 4)=1,Ea(p)=E and Ya(k) 0 (mod pe)}I =k-1 
rjk 

as kl(p— e)/2. If k %p 1(p—€)/2, then the sum is 0 by Corollary 6.15.1. 

Lemma 10.25. Suppose p is an odd prime, e = ±1, 1 ≤ i, 1 ≤ c and s  (i - 

Then 
i—" 

E = p t,i(ps). 

Proof. Suppose p is an odd prime, € = ±1, 1 ≤ i, 1 ≤ c and s I (p - €)/2. Using 

Lemma 6.7.1 with e replaced by i, we see that if (p, d) = 1 and fa (P) = €, then 

= Pis ui ra(p*l) = ps. Also there are pi-1 times as many such a in the 

interval 0≤ a<p asain the interval 0a<p''. 

Lemma 10.26. If p is an odd prime, e=±1, 1<s and sI(p—)/2, then b(S)-4(S). 

Proof. We will use Lemma 10.24 and the method of proof of Theorem 10.6, 

i&(s)= E(i)1= E Op'. M (E p(j)) = b(i)1t(j)= E E /t(j)iI.'(i) 
i=8 us/i i1a 318/2 its *18/3 

p(j)( e(i))=(j)( - 1)=p(j) — Eit(j) = 
iI Is/i jjs i18 2 

Lemma 10.27. Suppose p is an odd prime, 2 ≤ e, 1 ≤ i <e, 1 <s and (p, s) = 1. 

Then for any b there exist a and j such that b = a + jpe_i, (j, p) = 1 and r(pe) = 

if rb(pe) = pis. Furthermore for each b, the values of a mod pe and j mod pi are 

unique. j ranges over p - p11 values. 
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Proof. Suppose p is an odd prime, 2 ≤ e, 1 ≤ i < e, 1< sand (p,$)=1. 

=. Suppose b = a+jpe_i, (j,p) = 1 and ra(pe) = s. Then ra(p) = s by Lemma 

6.13 (ii). Also pI i Ya(8). By Corollary 6.14.1, r(pC) = s, 1 < s and (p, s) = 1 

imply (p, a2-4) =1. Since a b (mod p), we have ra(p) = rb(p). Hence rb(p) = s. 

Applying Theorem 4.50 with k = jpe_i and n = s, we get 

(a2 - 4)Yb(S) = jpe_isXa(s) + (a2 - 4 - ajp)Y(s) (mod p2(ei)). 

Since i<e, e—i+1 ≤ 2(e—i). Also since 1≤i, e—i+1≤e. Hence pe_I+l lya (S). This 

implies (a2-4)Yb(s) =jpe sx,() (mod pe—i+1). 

Since p is odd, p I Ya (s) implies (p, Xa(S)) = 1. Hence (p, Xa(S)) = 1, (p, (a2-4))js) = 1 

and e - i < e - i +1. Therefore pe-'I I Yb (s). By the Law of Repetition 6.5, applied 

i times, we obtain pIIYb(ps). Hence by Lemma 6.13 (iv) rb(p) = s and pellYb(pis) 

imply rb(pe) = 

4=. Suppose r& (pe) = pt• By Corollary 6.14.1, 1 <s and (p, s) = limply (p, b2-4) = 1. 

Since rb(p) = ps and 1 ≤ i < e. Lemma 6.7.1 implies that rb(p'') = ps and 

rb(pe*) = S. Thus p 1 I Yb(s). Also r(pC ') = s implies rb(p) = s by Lemma 

6.13 (ii). Hence s I (i - Eb(p))/2, by Corollary 6.12.1. Therefore by Lemma 9.4, 

is an elpsp(b). Since (p, b2 —4) = 1, by Theorem 9.14 there exists a unique a 

mod pe such that a b (mod p) and pe is elpsp(a). Then a b (mod p) implies 

ra(p) = rb(p) = s and la(P) = eb(p). By Corollary 9.10 since e - i ≤ e, pc_i is 

elpsp(a). Since p 1 is elpsp(a), pc_i is elpsp(b) and a b (mod p), Theorem 9.13 

implies a b (mod pe-'). Consequently there exists j such that b = a + jpC_ 

Since pC is an elpsp(a), we have pe Y((pC_€6)/2). Hence (ra(pe),p) = 1. Therefore 

since ra(p) = s, we have r(pC_l) = s by Lemma 6.13 (v). But rb(pdi+l) 
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Hence a # b (mod pe.1). Therefore (j,p) = 1. To see that j is unique mod p1, 

suppose b = a + kpe_i. Then we have a+kj/ 1 a+jpe (modpe) * kp 

jpe_i (modpe) = k j (modpt). This proves the lemma. 

Corollary 10.28. Suppose p is an odd prime, (p,b2-4) = 1, 2 ≤ e, € = ±1 and 

s  (-€)/2. Then there exist a and j such that (j,p) = 1, b = a+jp' and ra(pe) = 

if r(pe) = ps. Further, for each b, a is unique mod pe and j is unique mod 

ranges over p - 1 values mod p. 

Proof. Put i = 1 in Lemma 10.27. 

Lemma 10.29. If p is an odd prime, € = ±1, 1 <s and s I (p - e)/2, then for any 

C ≥ 2, Op'. (Ps) = ft(ps) = (p — 1)q5(s). 

Proof. s I (p - €)/2 implies (p, s) = 1. Hence by Corollary 10.28, every b, for which 

,,(pc) = ps, has a unique representation in the form b = a+jp'_1, where 1 ≤ j <p 

and Ta (pC) = s. Thus /4c(ps) = ç5(ps) = (p - 1)&,(s). Therefore by Lemma 10.26, 

= O(s), we have Op", (ps) = 4(ps) = (p —  l)q5(s). 

Theorem 10.30. Suppose p is an odd prime. If € = ±1, e ≥ 2, 0 ≤ i < e, 1 < s 

and s I (p - c)/2, then b;(ps) = q(p1s). 

Proof. Suppose pisan odd prime, €=±1,e≥2,Oi<e, 1<s and sl(p—E)/2. 

We will consider 3 cases for i. The case i = 0 is Lemma 10.26. The case i = 1 is 

Lemma 10.29. Suppose i ≥ 2. In this case we may calculate (pis) by Lemma 10.25 

with c = e - i and Lemma 10.29 with c = e - i + 1, 

o(Pis) = _1+ (ps) = p,_1+, (ps) = p1 '(p - 1)(s) = 
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Corollary 10.31. Suppose p is an odd prime, p> 3 and € = ±1. Then the number 

of Lucas primitive roots a mod pC of type € is q,(pe_l(p - 

Proof. Put i = e - 1 in Theorem 10.30. 

tl 

Lemma 10.32. If p is an odd prime, (p, s) = 1 and 1 ≤ n, then E  q(ps) = p'cb(s). 
j=0 

Proof. Induction on n. 

pc5(s) +p'(p - i)4(s) = [pfl +p"(p - 1)] q5(s) = 

Lemma 10.33. For any positive integer s, E 4(r) = s. Hence E ç1(r) = s—i. 
na n18,r>1 

Proof. Well known. 

Theorem 10.34. Suppose p is an odd prime, c = ±1, k = pis where 0 < i < e and 

s(p—€)/2. Then 
Eafr) =pts — p. 
nih 

Proof. Write each r = pit where 0 ≤ j <i, 1 <t and t I s. Then by Lemmas 10.30, 

10.32 and 10.33 we have 

nih, 
C (r) = (p1t) = > (p5t) = E p1 (t) =p1 (t) =p (s—i). 

t18,t>1 .O t18,t>1 j=O tia,t>1 t18,t>1 

The theorem is proved. 

Corollary 10.35. Suppose p is an odd prime, € = ±1, k = where 0 ≤ i < e 

and s I (p - €)/2. Then the congruence Ya(k) 0 (mod pe) has exactly pis - p1 

incongruent solutions a mod pe• Each solution a satisfies (p, a2-4) =1 and c. (P) = c. 

Proof. If i = 0, this is by Lemma 10.24. If i ≥ 1, then this is by Theorem 10.34. 

The following two theorems may be used to give a constructive proof of Lemma 

10.26 and Corollary 10.35. 
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Theorem 10.36. Suppose p is an odd prime, 1 ≤ c ≤ e and (p, s) = 1. Then for 

any  ra(pc) = s * 3b[r&(pe)=s and ba (mod pc)]. 

Here b is unique mod pl. 

Proof. By Lemma 6.13, Theorems 9.13, 9.14 and Corollary 9.10. 

Theorem 10.37. Suppose p is an odd prime, 1 ≤ e, 0 < k < e and (p, s) =1. Then 

for all b, 3a,j (b = a+jp and Ya(p's) 0 (mod pe)) y&(pkr) = 0 (mod pC). 

Proof. . Suppose Ya(pC_lS) 0 (mod pe)) and b = a+jp. Since k—i < e, 

we have (p, a2 —4) = 1. Hence (a (p), p) = 1. Let w = ra (p). Then (w, p) = 1 and 

w I s. Since a = b (mod p), we also have (p, b2 —4) = 1. Hence r. (P) = rb(p). 

Let j = jipt where 0 < t and (p,j') = 1. Put i = k - t. Then b = a+j1pe_i and 

I Ya(p 1W). Suppose t <k. Then 1 ≤ i < e since k <e. Therefore by Corollary 

10.28 rb(p) = pw. Then pe Yb(pw). Hence pe I Y(ps). Suppose k ≤ t. Then 

b= a+jtptpe - k=a+ j1pt_1 = a b (mod pe). So by (4.1) y&(pk 1s) = Ya(pk_15) 

(mod pe). Hence pe I Yb(PklS), which implies pe IYbpks). 

=. Suppose Yb(p'S)= 0 (mod pe). Since  < e, (p,b2-4)=1. Hence (rb(p) ,p)=l. 

Thus rb(p) Is. Let w = rb(p). Then w I 8. Since k < e-1, rb(pe) Iplcs and rb(pe) Ipe_iw 

imply rb(pe) I pkw. Let i be such that rb(pe) = pw. Then we have 1 ≤ i ≤ k < e. 

Hence 1 ≤ i <e. So by Corollary 10.28, 3a,j' such that (j',p) = 1, a = 

ra(p)=w and ra(pe) I p'— 'w. Let j = ik_i . Then a=b+jpe_k. Also i—i ≤ k—i, 

wis and pe IYa(P'W) pey(pk4s). Hence we have Ya(pk_18) = 0 (mod pe) and 

b=a+jpe_c. 
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11. Lucas Carmichael numbers 

In this section we will show that properties of Lucas sequences are very closely 

connected with factorization. Recall that an odd composite integer n is called an 

(ordinary) Carmichael number if for all a, (a, n) = 1, a'1 = 1 (mod n). Carmichael 

numbers sometimes are also called absolute pseudoprimes. In this section, we will 

define various types of Lucas Carmichael number, analogous to ordinary Carmichael 

numbers. We will show some kind Lucas Carmichael numbers n satisfy classical 

Lucas pseudoprime tests like Xa (n) a (mod n), for all possible bases a, even if n 

is composite. We will also show that if n is an odd composite integer, then n is not 

an absolute Lucas pseudoprime, not an absolute a-pseudoprime, not an absolute r-

pseudoprime and that if n 0 0, then n is not an absolute t-pseudoprime. Hence if n 

is composite, then n is not an absolute Euler Lucas pseudoprime, is not an absolute 

strong Lucas pseudoprime and is not an absolute extra strong Lucas pseudoprime. 

First we give some definitions. 

Definition 11.1. An odd integer n is a two sided Lucas Carmichael if n is square-

free and for all p I n, (p - 1)/2 I n ± 1 and (p + 1)/21 n ± 1 hold for some choice of 

signs ±. 

Definition 11.2. An odd integer n is a strong two sided Lucas Carmichael if n is 

squarefree and for all pin, p - 11 n ± 1 and p + 11 n  ± 1 for some choice of signs ±. 

Definition 11.3. An odd integer n is a one sided Lucas Carmichael + if n is 

squarefree and (p - 1)/2 n - 1 and (p+ 1)/21 n - 1 for all p I n. 
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Definition 11.4. An odd integer n is a one sided Lucas Carmichael - if n is 

squarefree and (p - 1)/2 1 n + 1 and (p + 1)/2 I n + 1 for all p I n. Equivalently if 

V- 1)141 n+1 for allpl n. 

Definition 11.5. An odd integer n is a strong one sided Lucas Carmichael + if n 

is squarefree and (p2 - 1)/2 I n. - I for all p I n• 

Definition 11.6. An odd integer n isa strong one sided Lucas Carmichael - if n 

is squarefree and (p2 - 1)/2 I n + 1 for all p I n. 

Definition 11.7. An odd integer n is a super one sided Lucas Carmichael + if n 

is squarefree and (p2 - 1) 1 n - 1 for all pin. 

Definition 11.8. An odd integer n is a super one sided Lucas Carmichael - if n 

is squarefree and (p2 - 1)1 n + 1 for all pen. 

It can be seen that for a fixed sign, + or -, super one sided = strong one sided 

= one sided; strong two sided = two sided. But one sided and strong two sided are 

independent. It is clear that every prime is a strong two sided Lucas Carmicheal, 

and hence is a two sided Lucas Carmicheal. However we are more interested in 

composite ones. One sided Lucas Carmichael numbers are rare, as can be seen from 

the following list (with types of one sided indicated + or - and if without sign + and 

-, then two sided). The numbers in the following list which are ≥ 63, 278, 892, 599 

were found by R.G.E. Pinch [41]. 
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3, (a strong + and a strong -), 1,930,499 = 89.109.199—, 

5—, 7,056,721 = 7.47.89.241, (strong) 

35 -, 7,110,179 = 37•41.43•109—, 

3,059= 7.19.23, 15,857,855=5•13•17.113•127—, 

6479=11.19.31—, 17,966,519=23.67.89.131, 

84,419=29.41.71—, 35,626,501= 19.59.61.521, 

63,278,892,599=13•47•137.239.3163—, 

79,397,009,999= 23.29.41.43.251.269—, (super  

28,295,303,263)921 = 29 - 31 67 - 271•331•5237+, 

443,372,888,629,441=1731.41.43•8997.167.331+, (super +), 

582792070807863,121 = 41-53-79-103-239-271-509 + (strong +), 

894,221,105,778,001= 17.23.29.31.79.89. 1811999+ 

2,013, 745, 337,604, 001 = 17. 37. 41. 131 . 251 . 571 . 4159 +, 

39,671, 149,333,495,681 = 17-37-41-71-79-97-113-131-191 +, (super +). 

If n is a strong one sided Lucas Carmichael +, then n is an ordinary Carmichael 

number. The converse holds only very rarely. 

Lemma 11.9. Every odd prime is a strong two sided Lucas Carmichael. However 

3 and 5 are the only primes which are one sided Lucas Carmichacis. 

Proof. Any prime p is a strong Lucas Carmichael since (p+ 1) Ip+ 1 and (p—i) Ip- 1. 

However it is easy to see that only 3 or 5 can meet the condition (p2 - 1)/4 I p - 1 

or the condition (p2 - 1)/4 1 p + 1. 
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Since we normally suppose (n, 2ad) = 1 which implies (n, 3) = 1, 3 should probably 

be excluded from the set of Lucas Carmichaels. Another reason to exclude 3 is the 

following. 

Lemma 11.10. If n is a Lucas Carmichael and n>3, then (n,3)=1. 

Proof. Suppose n> 3. If 3 I n, then 3p I n for some p > 3. If p 1 (mod 3), then 

31 (p—l)/2. Hence (p—l)/2 %n±1. If  —1(mod 3), then 31(p+l)/2. Hence 

(p + 1)/2 In ±1. Thus n is not a Lucas Carmichael. 

Lemma 11.11. Suppose 1 <n and (n, 6) = 1. Then n is a Lucas Carmichael if and 

only if n is squarefree and for all a, such that (n, a2-4) = 1, if pIn, then 

(11.11) P6a(P) In±1. 

Proof. Certainly every Lucas Carmichael satisfies (11.11). To show the converse, 

suppose p I n. Then p> 3. By Theorem 10.1, there exists a such that Ea(p) = —1 

and also there exists b such that €b(p) = 1. These two together show that n is a 

Lucas Carmichael. 

Condition (11.11) is similar to the divisibility conditions that for all a such that 

(n,a2-4)=1, (i) PEa(P) Ia(), (ii) pEa(p)IflEa(fl). 

Condition (ii) was considered by Williams [50]. (His results about it are difficult 

to compare to ours because he considered a fixed discriminant D, D = A2 - 4B.) 

Conditions (i) and (ii) are very strong. Either one will imply that n is prime provided 

n is squarefree. Clearly (ii) implies (i). Later we will prove (Theorem 11.24) that 

if n I Ya(fl - E,, (n)) for all a such that (n, a2-4) = 1, then n is prime. From this we 

can show that if n is squarefree and (i) holds for all a such that (n, d) = 1, then n is 
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prime. Here is the proof: Assume Theorem 11.24 and suppose n is squarefree. Let 

pin. Then pIYa(") for all a, (n, a2-4) = 1. Hence (i) and the Division Theorem 

together imply p1 Ya (n—fa (n)) for all such a. Since p is arbitrary and n is squarefree, 

it follows that flIYa(fl€a(fl)) for all a, (n,a2-4)=i. Thus by Theorem 11.24, n is 

prime. 

Theorem 11.12. The only Lucas Carmichael with exactly two prime factors is 

n = 35. If n 0 35, n is composite and n is Lucas Carmichael, then n has at least 

three prime factors. 

Proof. Suppose n = pq, where p and q are odd primes. By Lemma 11.10 we can 

suppose 3<p<q. Then 5≤p and 7:5 q. We will show p=5 and q=7, and hence 

n=35. 

Case 1. q = p + 2. In this case n = pq = p(p + 2) 1(1 + 2) = 3 (mod p - 1). Hence 

n — i M 2 (mod p-1) and n+14 (mod p-1). Hence (p-1)/2 cannot divide 

n—1 unless (p—i)/2=2in which case p=5 and q=7.If(p-1)/2(n+1,then 

(p—l)/2I4=(p-1)/2=i, 2or4=p=3, p=5orp=9=q=7. 

Case 2. q > p +2. In this case we can suppose p +4 ≤ q. We claim that 

(i) (1%n1 and j ! %n +1) or (%n-1 and %n+1). 

First we shall show that 

(ii) q-  1 In ±1 and (iii) q + 1 In ± 1. 

The proof of (ii) is that n = pq p. 1 = p (mod q - 1), which implies n ± 1 p ± 1 

(modq-1), and we havep±1 p+1<p+3<q-1. The proof of (ii) isthat 

n = pq p. (-1) = —p (mod q + 1), which implies n ± 1 —p ± 1 = —(p 1) 

(mod q+1),andwehavep±1≤p+1<p+3<q+1. 
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Now we can prove (i). Suppose (i) does not hold, i.e. suppose q 1 1 n ± 1 and 

q + 1 n ± 1. Then there are 4 possible cases: 

Case 1. q 'Inl and q+l1_1 Case 2.2lfl and 

2 2Case 3. q 1Inl and 1 n+l. Case4. 2 l11 and 

2 2Since ((q+1)/2, (q-1)/2) = 1 and 41 q + 1 or 41 q - 1, cases 1 and 2 are impossible by 

(ii) and (iii). Case 3 is also impossible since (q + 1)/2 - (q - 1)/2 = 1 implies one of 

(q + 1)/2 or (q - 1)/2 is odd. Suppose (q - 1)/2 is odd. Then since n - 1 is even, if 

(q - 1)/2 1 n - 1, then q - 11 n - 1, contradicting (ii). Similarly if (q + 1)/2 is odd, 

then since n - 1 is even, if (q + 1)/2 In - 1, then q + 11 n - 1, contradicting (iii). A 

similar argument shows case 4 is also impossible. 

Theorem 11.13. Suppose 1 <n and (n, 6) =1. Then n is a Lucas Carmichael if 

and only if n satisfies any one of 

(i) (Ya){(n,a2-4)=1 Ya(fl + 1)Ya(n - 1) 0 (mod n)}, 

(ii) (Va)[(n,a2-4)=1 = Y(n)2 1 (mod n)}, 

(iii) (Va)[(n,a2-4)=1 = X(n)2 a2 (mod n)]. 

(iv) (Va)[Xa(n)2 a2 (mod n)]. 

Proof. Let d = a2 - 4. From (1.35) Xa(fl)2 - a2 = d(Y0(n)2 - 1) and (3.28) 

Ya(n - 1)Ya(fl + 1) = Ya(fl)2 - 1, we have (i), (ii) and (iii) are equivalent. Obviously 

(iv) = (iii). To prove the theorem we show that n is a Lucas Carmichael = (iv) and 

(i) = n is a Lucas Carmichael. 

Suppose n is a Lucas Carmichael. Then n is squarefree, put n = P1 pa,. Let 

an arbitrary integer a be given and consider an arbitrary prime p dividing n. If 

(n, d) = 1, then by (11.11) p - Ea(p)/2 1 n ± 1. Thus from the Division Theorem 4.11, 
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Y. (P 2 6:) Y. (n ± 1). Hence Theorem 6.12 implies that r I Y. (n ± 1). Therefore 

P I Ya(fl - l)Ya(fl + 1). Using (1.35) and (3.28) we obtain pI X,(fl)2 - a2. If p I d, 

then by (3.28) we also have that p I Xa(fl)2 - a2. Since n is squarefree and a, p are 

arbitrary, it follows that (iv) holds. 

Suppose (i) holds. Then n is squarefree by the Squarefree Lemma 6.23. Suppose 

z I n. Since 3 <p, by Lemma 10.8, we can find a such that (n, a2 —4) = 1 and 

ra(p) = (p— 1)/2. Also we can find b such that (n, b2-4) = 1 and rb(p) = (p+l)/2. 

Hence by (),PI'a(n1)1'a(T1+1) and PIYb(n — 1)Yb(fl+ 1). Thus PI'a(11± 1). 

Then (p-1)/2=ra(p)In±1 and (p + 1)/2 = rb(p) I n ± 1. Hence n is a Lucas 

Carmichael. 

Theorem 11.14. Suppose 1 <n and (n, 6) =1. Each of the following conditions is 

equivalent to n being a strong two sided Lucas Carmichael: 

(i) (Va)[(n,a(a2-4)=1 = Xa(fl) a (mod n)], 

(ii) (Va)[(n,a2-4)=1 = Xa(fl) a (mod n)], 

(iii) (Va)[Xa(n) a (mod n)]. 

Proof. Obviously we have (iii) = (ii) (i). First we show that n is a strong two 

sided Lucas Carmichael = (iii). Then we show (i) = n is a strong two sided Lucas 

Carmichael. 

Suppose n > 1, (n, 6) = 1 and n is a strong two sided Lucas Carmichael. By 

definition then n is squarefree, n = P1P2 p. Also p—i I n ±1 and p+l I n ±1 for all 

p I n. Let an arbitrary integer a be given and consider an arbitrary prime p dividing 

n. Since p—lln±1 and p+1n±1, p—€(p)n±1. Hence (p€a(p))/2I(fl±1)/2. 

Therefore by the Division Theorem 4.11, we have Ya((p€0(p))/2) 1 Ya((fl ± 1)/2). If 
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(p,d)=1, then by Theorem 6.12piYa((fl€a(p))/2), and hence that plYa((n±1)/2). 

Therefore if (p,d)=1, pjd.Y0((n - 1)/2)Y0((n + 1)/2). Identity (3.20') states that 

(iv) Xa(n)—a=dYo(')Ya(n 2 ') 0 (mod p). 

Hence if (p, d) = 1, then p Xa (ii) - a holds. But this same identity (iv) implies 

PIXa(fl) holds also when pf d. Thus pIXa(n)—a holds whether (p,d)=i or not. 

Thus for all a, Xa(fl) a (mod p). Since p was arbitrary and n is squarefree, the 

congruence Xa(fl) a (mod n) holds for all a. Hence (iii) holds. 

To prove that (i) implies n is a strong two sided Lucas Carmichael, suppose (i) 

holds. Then n is squarefree by the Squarefree Lemma. Let pen. Then p>3. Ifp=5, 

then p-1 = 41n± 1 holds. Next we show that ifp=5, then p+1n ± 1 and that if 

p>5, then p— un ± 1 and p+lln± 1. By Lemma 10.8, we can find a and b such 

that (n, a(a2 —4)) = 1, (n, b(b2-4) = 1 and ra(p) = 9!, rb(p) = 11. Then by (3.20') 

and (iv) we have 

2 fn-1\ ( n+i\ 
(a - 4)Ya . 2 ) Y, 2 ) = 0 (mod p) and 

2 fn-1\ fn+1\ 
(b —4)YbI\ 2 )Yb 2 )0 (mod .P). 

Since (p,a2-4) = 1 and (p,b2-4) = 1, we have I Ya N-) Y. (!1) , and hence 

rap) 1• Also piYb (9:1) Yb (z1) , and hence rb(p) I Therefore 1=ra(p) IP 

and 9! =rb(p) !.1• Since p is arbitrary, it shows that n is a strong two sided Lucas 

Carmichael. Hence (i) holds. 

Theorem 11.15. If 1 <n and (n, 6)= 1, then the following conditions are equivalent. 

(i) n is a one sided Lucas Carmichael +, i.e. pjn = (p ± 1)/2 In - 1, 

(ii) (Va)[(n, d) = 1 = Y. (n -  1) E 0 (mod n)], 

(iii) (Va)[(n, ad) = 1 Ya(n - 1) 0 (mod n)]. 
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Proof. (i) = (ii). Suppose (i). Then n is squarefree by definition. Suppose (n, d) = 1. 

Let pn. Then (p,d)=1. Hence plYa((p—ea(p))/2). By (i), (p±1)/21n-1, then 

(P - fa(P))/2 1 n - 1. Thus the Division Theorem and p I Y,, ((p - a(P))/2) together 

imply p1 Y,, (n -  1). Since p is arbitrary and n is squarefree, n - 1). Therefore 

(ii) holds. (ii) = (iii) is trivial. 

(iii) = (i). Suppose (iii) holds. Then n is squarefree by the Squarefree Lemma 6.23. 

Let p I n. Then 3 <p. By Lemma 10.8, we can find b such that rb(p) = (p + 1)/2 

and (n, b(b2 —4)) = 1. Hence n I Yb(n— 1). Then p I Yb(fl - 1). So by Lemma 6.3 

(p + 1)/2 = rb(p) I n - 1. Again let p I n. We will show (p - 1)/21 n - 1. If p = 5, 

this is true since (5 - 1)/2 = 21 n - 1. If 5 <p, then the condition of Lemma 10.8 is 

satisfied. Hence by same argument we can show (p - 1)/2 In - 1. 

Thus for any prime pin we have shown that (p± 1)/21n-1. So mis a one sided 

Lucas Carmichael +. (i) holds. 

Theorem 11.16. If 1<n and (n, 6) = 1, then the following conditions are equivalent. 

(1) n is a one sided Lucas Carmichael -, i.e. p I n = (p ± 1)/2 I n + 1, 

(ii) (Va)[(n,d)=1 * Y. (n + 1) 0 (mod n)], 

(iii) (Va)[(n, ad) = 1 Ya(fl + 1) 0 (mod n)]. 

Proof. Similar to the proof of Theorem 11.15, replacing m - 1 by n + 1. 

Theorem 11.17. Suppose 1 <n and (n, 6) =1. Then the following conditions are 

equivalent. 

(i) n is a strong one sided Lucas Carmichael +, i.e. pn (p2 - 1)/2 in - 1, 

(ii) (Va)[(n, d) = 1 = Ya((fl - 1)/2) 0 (mod n)], 

(iii) (Va)[(n,d)=1 =Xa(n-1) 2 (mod n) and Y(n-1) 0 (mod n)}, 
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(iv) (Va)[(n, d)= 1 = X0(n + 1)a2-2 (mod n) and Y. (n + 1)a (mod n)}, 

(v) (Va)[(n, d) =I = X. (n) a (mod n) and Ya() 1 (mod n)}. 

Proof. Similar to the proof of Theorem 6.24 with € = 1 we can show that (ii) - (v) 

are equivalent. Hence we need only show (i) (ii). 

(i) (ii). Suppose (i) holds. Let pn. For all a, we have plYa((p—€)/2) and (p—€) /2J 

(p— l)(p+1)/4 = (p2-1)/4 imp1ypYa((p2-1)/4). Then by (i) (p2-1)/41(n-1)/2 

and hence Ya((p2 1)/4)JYa((-1)/2). Thus pIY0((n-1)/2). Since p is arbitrary 

and n is squarefree, n I Ya((1)/2) for all a. 

(ii) = (i). Suppose (ii) holds. By Squarefree Lemma 6.23, n is squarefree. Let p 

then p > 3. By Lemma 10.8, we can find a1 and a2 such that r01 (p) = (p+l)/2, 

r,2 (p) = (p— 1)/2 and (n, (a-4)(4--4)) = 1. Then (ii) implies I Ya1 ((n— 1)/2) and 

PlYa2((121)/2). Hence (p+1)/2=r 1(p)(n-1)/2 and (p1)/2=a2(p) I (n-1)/2. 

It follows (p2-1) /4 I (n— 1)/2. Note that p is arbitrary and so (i) holds. 

Theorem 11.18. Let 1< ii and (ii, 6) = 1. The following conditions are equivalent. 

(i) n is a strong one sided Lucas Carmichael—, i.e. pn = (p2-1)/21n+1, 

(ii) (Va)[(n, d) = 1 = Ya((fl + 1)/2) 0 (mod n)], 

(iii) (Va)[(n, d)= 1 Xa(fl + 1) 2 (mod n) and Ya(fl + 1) 0 (mod n)], 

(iv) (Va)[(n,d)=1 = X,(n— 1)a2-2 (mod n) and Ya(n— 1)—a (mod n)], 

(v) (Va)[(n,d)=1 = Xa(fl) a (mod n) and Ya(fl) —1 (mod n)]. 

Proof. Similar to the above with 1 replaced by —1. 

Theorem 11.19. Suppose 1 <n and (n, 6) =1. Then n is a super one sided Lucas 

Carmichael + if and only if 41 n - 1 and 

(11.19) (Va)[(n,d)=1 Ya((fl1)/4) 0(modn)]. 
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Proof. =. Suppose n is a super one sided Lucas Carmichael +. Let p I n. Then by 

definition p2 - fl n - 1. Since p2 - 1 is divisible by 4, we have 41 n - 1. Also by the 

Division Theorem, p1 Y. ((p - €) /2) implies p1 Ya ((p2 - 1)/4). Then p I Y. ((n - 1) /4). 

Since p is arbitrary and n is squarefree, n IYa((fl — 1)/4). 

=. Suppose (11.19) holds. Then it follows that Ya((fl - 1)/2) 0 (mod n) for 

all a; thus n is squarefree. Let p I n. As above, by Lemma 10.8, we can find a1 

and a2 such that (n, (a —4) (a —4)) = 1 and ra1 (p) = (p - 1) /2, raa (p) = (p +1) /2. 

Hence (11.19) implies p I Ya1 ((n — 1) /4) and p I Ya2 ((n - 1)/4). It is equivalent to 

(p-1)/2 = Ta (p) I (n-1)/4) and (p+1)/2= r (p) I (n-1)/4. Hence (p2-1)/4 I (n-1)/4. 

This is true for all p l n. Thus n is a super one sided Lucas Carmichael +. 

Theorem 11.20. Suppose 1 <n and (n, 6) =1. Then n is a super one sided Lucas 

Carmichael — if and only if 41 n + 1 and 

(11.20) (Va)[(n,d)=1 Y0 ((n + 1)/4) 0 (mod n)]. 

Proof. Similar to the proof of Theorem 11.19. Replace n — 1 by ii + 1. 

Theorem 11.21. Suppose 1 < n and (n,6) = 1. Then n is prime if and only if 

following three conditions hold simultaneously 

(i) (2a)[(n,a(a2-4))=1 and Ya(fl) +1 (mod n)], 

(ii) (2b)[(n,b(b2-4))=1 and Yb(n) —1 (mod n)], 

(iii) (Vc)[(n,c(c2-4))=1 Y(n) ±1 (mod n)J. 

Proof. =. Suppose n is prime. Then n > 3. By Theorem 10.1, there are (n - 3)/2 

a's such that e. (n) = 1, and there are (n - 1)/2 b's such that fb(fl) = —1. Then by 

Theorem 6.11, (i) (ii) and (iii) are all hold. 

=. Suppose (i) (ii) and (iii) hold. By the Squarefree Lemma 6.23, (iii) implies n is 



138 

squarefree. If n is composite, put n = u.v, (u, v) =1, v >3 and v >3. Let a and b 

satisfy (i) and (ii) respectively. By the CRT we can find c such that c a (mod u) 

and c b (mod v). From (n, a2 —4) = 1 and (n, b2-4) = 1, we have (u, C2 —4) = 1 

and (v, c2 —4) = 1 and so (n, c2 —4) = 1. The Congruence Rule (4.1) implies that 

Y, (n) Y. (n) (mod u) and Y, (n) Yb(fl) (mod v). Hence Y,, (n) 1 —1(mod u) 

and Y(n) —1 # 1 (mod v). Then Y(n) # 1 (mod n) and Y(n) —1 (mod n) 

which contradicts (iii). Thus n is prime. 

Theorem 11.22. Suppose 1 <n and (n, 6) = 1. Then n is prime if and only if 

(11.22) (Va) [(n, a(a2 — 4)) = 1 = Y,, (n) fa (n) (mod n)]. 

Proof. =. This is Theorem 6.11. 

=. n is squarefree by Lemma 6.23. From Lemma 10.8, we can find a and b such that 

(ii, a2-4) = 1, (n, a2-4) = 1, €(n) = 1 and Eb(n) = —1. Then (11.22) will imply that 

all conditions (1), (ii) and (iii) in Theorem 11.21 hold. Hence n is prime by 11.21. 

Theorem 11.23. Suppose n > 1 and (n, 6) = 1. Then n is prime if and only if 

following conditions hold simultaneously 

(i) 3a[(n,a(a2-4))=1 and Ya(fl —1) M 0 (mod n)], 

(ii) 2b[(n,b(b2-4))=1 and Yb(n + 1) 0 (mod n)}, 

(iii) Vc[(n, c(C2-4)) = 1 = Y(n ± 1) 0 (mod n)]. 

Proof. =. Suppose n is prime. Then n > 3. By Theorem 10.1, there are (it - 3)/2 

a's such that c. (n) = 1, and there are (n - 1)/2 b's such that €&(n) = —1. Then by 

Theorem 6.12, (i) (ii) and (iii) are all hold. 

4=. Suppose (i) (ii) and (iii) hold. By Lemma 6.23, (iii) implies n is squarefree. If n 

is composite, put n = u.v, (u,v)=1, u > 3 and v> 3. Let a and b satisfy (i) and (ii) 
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respectively. By the CRT we can find c such that c a (mod u) and c b (mod v). 

Then from (n,a(a2-4)) = 1 and (n,b(b2-4)) = 1, we have (u,c(c2-4)) = 1 and 

(v,c(c2-4)) = 1 and hence (n,c(c2-4)) = 1. The Congruence Rule (4.1) implies 

that Y(n - 1) Y0(n - 1) (mod u) and Y(n + 1) Yb(n + 1) (mod v). And the 

GCD Theorem implies (Y(n - 1),Y(n + 1)) = Y(2) = c. Hence (n, c) =1 implies 

Y(n+1)0 (mod u) and Y(n-1)0 (mod v). Then Y(n+1)0 (mod n) 

and Y(n - 1) # 0 (mod n) which contradicts (iii). Consequently n is prime. 

Theorem 11.24. Suppose 1 <n and (n, 6) = 1. Then n is prime if and only if 

(11.24) (Va) [(n, a (a2 — 4)) = 1 = Ya(flEa(fl)) 0 (mod n)}. 

Proof. =. This is Theorem 6.12. 

=. By Lemma 6.23, n is squarefree. From Lemma 10.11, we can find a and b such 

that (n, a2-4)=l, (n, a2-4)=l, 6a(fl) = 1 and Eb(n) = —1. Then (11.24) will imply 

all conditions (i), (ii) and (iii) in Theorem 11.23 hold. Hence n is prime by 11.23. 

Theorem 11.25. Suppose 1 <n and (n, 6) = 1. Then n is prime if and only if 

(11.25) (Va)[(n, a(a2-4)) 1 = n is an elpsp(a)]. 

Theorem 11.26. Suppose 1 <n and (n, 6) = 1. Then n is prime if and only if 

(11.26) (Va)[(n,a(a2-4))=1 n is a slpsp(a)}. 

Theorem 11.27. Suppose 1 <n and (n, 6) = 1. Then n is prime if and only if 

(11.27) (Va)[(n,a(a2-4))=1 = n isaslxpsp(a)]. 

Theorem 11.28. Suppose 1 <n and (n, 6) = 1. Then ii is prime if and only if 

(11.27) (Va)[(n,a(a2-4))=1 = n is arpsp(a)]. 

Proof. =. This follows from Theorem 7.13. 
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. Suppose (11.28) holds. Let p I n. By Lemma 6.23, n is squarefree. Hence 

(p,n/p)=l. By Lemma 10.14 we can find 1 ≤ a,b ≤ n, (n, ab(a 2 —4) (b2-4)) = 1 such 

that a b (mod n/p) and pa(fl) = Pb(fl), a(fl) = eb(n). Denote them e. From the 

hypothesis on n, 

" ( 2 ) = p0(n) (mod n), hence Y , 2 ) = pa(fl) (mod n/p), 

Yb 2 ) = Pb(fl) (mod n), hence Yb 2 1 = Pb(fl) (mod n/p). 

Then 'Pb(fl) = Pa(fl) Ya (!p) a () pb(n) (mod nip). 

It follows 2pb(fl) 0 (mod n/p). Then we must have n/p = 1 and so n is prime. 

Theorem 11.29. Suppose 1 <n and (n, 6) = 1. Then n is prime if and only if 

(11.29) (Ya)[(n,a(a2-4))=1 n is an apsp(a)}. 

Proof. =. This follows from Theorem 7.14. 

4=. Suppose (11.29) holds. Let p I n. By Lemma 6.23, n is squarefree. Hence 

(p, n/p) = 1. By Lemma 10.14 we can choose 1 ≤ a, b ≤ n such that (n, ab(a2 - 

4)(b2-4)) = 1, a b (mod n/p), pa(fl) = — pb(n) and Ea(fl) = Eb(n) = E. Hence 

ra(n) = —rb(fl). The hypothesis on n implies 

Xa 
In + €\ 
2 ) = a'ra (n) (mod n), In + ,,) 

° 2  = aTa (n) (mod n/p), 

Xb (fl E) = brb(n) (mod n), so Xb (fl +,,) = brb(fl) (mod n/p). 

Since a M b (mod n/p), 

—a7-a(n) =— —ba(n) = b7-b(n) = Xb (9 = X. ( ) = aTa(n) (mod n/p). 
It follows that —ara(n) a7-a(n) (mod n/p) and hence 2ara(n) 0 (mod n/p). 

Since (n, a) =1, we must have n/p = 1 so that n = p and n is prime. 
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The condition (11.28) or (11.29) with rpsp(a) or apsp(a) replaced by tpsp(a) is not 

sufficient for primality of n. We have a slightly weaker version. To prove it we first 

need a lemma. 

Lemma 11.30. Suppose 1<n, (n,6)=1 and (Va)[(n,a(a2-4))=1 = n is atpsp(a)]. 

Then n is cube-free. 

Proof. Suppose there exists an odd prime p such that p3 1 n. By Lemma 6.22, we 

can choose a such that (n,a(a2-4)) = 1 and p I r(p2). Hence p2 I Y((n±1)/2). 

However by the assumption, for this a, we have 

Xa((fl€a)/2)_=2Ta (mod n) Xa((fl€a)/2)_2Ta (mod p3) = Xa((flEa)/2)2_4 

(mod p3) = dYa((fl-€a)/2)2_0 (mod p3) = Ya((n—€a)/2)0 (mod p2). 

This is a contradiction. Hence p3 In. The lemma follows. 

Theorem 11.31. Let 1< n, (n, 6) =1 and n 54 0. Then n is prime if and only if 

(11.31) (Va)[(n,a(a2-4))=1 = n isatpsp(a)]. 

Proof. =. This follows from Theorem 7.11. 

4=. Suppose (11.31) holds. If n is composite, from Lemma 11.30 and n 0 0, n is 

not a prime power. Let n = m .pe with e odd and (m, p) = 1. By Lemma 10.14 

we can choose 1 < a, b ≤ n such that (n, ab(a2 —4)(b2-4)) = 1, a b (mod p1, 

and pa(fl) = Pb(fl), €a(fl) = Eb(n) = E. Hence Ta(fl) = —Tb(fl). The hypothesis on n 

implies c) Xa (' 2 = 2Ta (mod n), so Xa (-2fl f) = 2Ta (mod pe), 

Xb (fl 2 = —9 2Tb (mod n), so Xb 2 ) = 2Tb (mod pe). 
Hence 2Ta = 2r& X6((n—€)/2) Xa((fl€)/2) 2Ta (mod pe). 

It follows 2Ta 0 (mod pe). So pe 12. This contradiction shows that ii is a prime. 
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The assumption of n 96 0 in Theorem 11.31 cannot be removed. This can be 

seen from the following lemma. 

Lemma 11.32. Suppose n = p2 with p> 3. Then 

(11.32) (Va)[(n,a2-4)=1 = n isatpsp(a)J. 

Proof. For any given a with (n, a2-4) = 1, since n = p2 = 0, e. (n) = r. (n) = 1. From 

Theorem 6.12, plYa((p_Ea(p))/2), then plYa((p2 - 1)/4) by the Division Theorem. 

Hence p2 l'a((p2 - 1)/4)2 .  By the Double Angle Formula (3.4), we have 

(*) xa(P_)xa(P; 1)dYa( 1)+2o+22ra(p2)(modp2). 

Since n = p2, congruence (*) shows that n is a tpsp(a). Since a is arbitrary, the 

lemma follows. 

The Corollary 7.23 shows that 

n is a 1psp(a) n is a 1psp(n—a), n is an elpsp(a) * n is an elpsp(n—a), 

n is a tpsp(a) * n is a tpsp(n—a), n is a rpsp(a) n is a rpsp(n—a), 

n is an apsp(a) 4* n is an apsp(n—a), n is a slpsp(a) m is a slpsp(n—a), 

n is a slxpsp(a) * n is a slxpsp(n—a). 

Also for any odd integer n, 0, 1, ii —1 are trivial bases of all types of pseudoprimes we 

discussed so far. Hence applying Theorems 11.22, 11.24, 11.25, 11.26, 11.27, 11.28, 

11.29 and 11.31, we have following theorem 
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Theorem 11.33. Suppose n> 1 and (n, 6) = 1. Each of the following statements is 

equivalent to primality of n: 

(i) Va[3 ≤ a ≤ (n-1)/2 and (n,a(a2-4))=1 = Y(fl) € (mod n)], 

(ii) Va[3 a (n-1)/2 and (n,a(a2-4))=1 

(iii) Va[3 a ≤ (n-1)/2 and (n,a(a2-4))=1 

(iv) Va[3 ≤ a ≤ (n-1)/2 and (n, a(a2 — 4)) = 1 

(v) Va[3 < a < (n-1)/2 and (n, a(a2-4))= 1 

(vi) Va[3 < a < (n-1)/2 and (n, a(a2-4))= 1 

(vii) Va[3 a (n-1)/2 and (n,a(a2-4))=1 

=' n is a 1psp(a)], 

= n is an elpsp(a)], 

n is a slpsp(a)], 

n is a slxpsp(a)], 

. n is a rpsp(a)], 

= n is an apsp(a)], 

(viii) n 0 0 and Va[3 a (n-1)/2 and (n,a(a2-4))=1 n is atpsp(a)J. 

Some variants of statements in this theorem are known for general Lucas 

sequences U,, (P, Q) and V(P, Q), e.g. variants of (iii) and (iv). See Lieuwens [30], 

Rotkiewicz [46] and Williams [51]. 
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§12. Formulas for the number of ordinary pseudoprime 

bases 

In this section we will discuss properties of ordinary pseudoprimes and give for-

mulas for the number of bases to which an odd integer n is a pseudoprime, Euler 

pseudoprime and strong pseudoprime. Three of these formulas are known, ((12.9), 

(12.10) and (12.11)), and three are new, ((12.12), (12.13) and (12.14)). 

Recall the concept of order of a mod n, which is the least positive integer t such 

that at 1 (mod n). We shall denote it here by Oa(fl). Lots of properties are shared 

by the rank, denoted here by ra(n) and the order Oa(). E.g. ac = 1 (mod n) if 

and only if Oa(n) I k, corresponds to the divisibility property of the rank, Lemma 

6.4. Another one is k I p - 1 implies there are (k) a's such that Oa(p) = k. This 

is easy to prove from the theorem of the primitive element and we can generalize 

this theorem mod p to mod pe• This is analogous to the property of the rank r,, (p): 

there are q5(k) a's such that ra(p) = k, provided k I (z - Ea(P))/2 and k> 1, which 

we proved in Section 10. Note that there is a small difference here. For order, this 

property still holds even for k = L. If k I p - 1, then there are exactly k solutions 

mod p of ac = 1 (mod p). 

We shall need some definitions. 

Definition 12.1. An odd integer n> 1 is a pseudoprime to the base a, psp(a), if 

a"' = 1 (mod n). (Here we can add (n, a) = 1, but it is implied.) 

Definition 12.2. An odd integer n> 1 is a Euler pseudoprime to base a, epsp(a), 

if (a, n) = 1 and a'''2 = (a/n) (mod n), where (a/n) is a Jacobi symbol. 
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Definition 12.3. A odd number n, n = u2t +1 and u odd, is a strong pseudoprime 

to base a, spsp(a) , if 

(i) a3 1 (mod n) or (ii) a2t —1 (mod n) for some r (0 r <t). 

Obviously epsp(a) = psp(a). Also it is known that spsp(a) = epsp(a) (Williams 

[52]). We mention some other needed lemmas. 

Lemma 12.4. If m has a primitive root and (a, m) = 1, then the congruence 

(12.4) a (mod m) 

has (k, (m)) solutions x or no solutions, mod in. 

Proof. Let g be a primitive root mod m. By the index argument, we can write x = gi 

and a=g. Hence xkEa (mod in) 4* ggJ (mod m) * ik=j (mod 0(m)). The 

number of solutions of the last congruence is (k, qf(m)), or 0 if (k, (m)) does not 

divide j. In particular, if a = 1, then j = 0. Hence (k, (m)) I j. In this case the 

congruence (12.4) has exactly (k, 4(m)) incongruent solutions. 

Lemma 12.5. If pe divides n, then the number of solutions mod pe of 

(12.5) x' 1 1 (mod pe) is (n - 1,p - 1). 

Proof. pC has a primitive root so Lemma 12.4 can be applied. Put k = n - 1 and 

M  = pe in Lemma 12.4. Then it says there are (n—i, q5(pe)) solutions to (12.5). Since 

pe I, we have (n-1,p) = 1 so that (n - 1, (pe)) = (n - i,pe(p - 1)) = (n - l,p - 1). 

Lemma 12.6. Suppose (k,p) = 1. If ac = 1 (mod pe), then O(pe) I (k,p - 1). 

Further, Oa(pe) I (k, (p - 1)/2) if and only if (alp) = 1. 

Proof. From a' = 1 (mod pe) and aP'(P 1) = 1 (mod pC), we have 

Oa (pe)I (k,p'(p—i)) = (k,p-1). Here we can drop p' since (k,p) = 1. If (a/p) = +1, 

then a"''2 = 1 (mod p). This implies a"''2 = 1 (mod pe) by the identity 
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= (a 1_1)12+1)(a(1 _1)12 _1) and the fact p I a" 1'2-1. Hence Oa(Pë) I (k, 21). 

If (a/p) = —1, then a similar argument shows a'''2 = —1 (mod pe). Then 

Oa (pe) %(p-1)/2. 

Theorem 12.7. Suppose (k, p) =1. Then the following two congruences have the 

same set of solutions mod pC, 

(1) 

(2) 

a1' = 1 (mod j/) and 

1 (mod pe). 

Proof. Let T be the set of solutions of (1) and S be the set of solutions of (2). Since 

(k,p - 1)1 k, we know each solution of (2) is a solution of (1). Hence S g T. Next 

we show T C S. If not, then there exists a such that 

a  1 (mod pe) and a"_1 1 (mod pe). 

This is equivalent to saying there exists a such that 

(*) Oa(Pe) I k and (**) Oa(Pe) %, - 1. 

By Euler's Theorem we have Oa(pe) I ç5(pe) where 0(pe) = pe_l(p..... 1). This together 

with (**) implies p j O(pe). Hence by (*) we have uì I k, which contradicts the 

assumption (p, k) =1. Therefore S = T. The theorem is proved. 

Theorem 12.8. For any (k, p) = 1, there are (2k,p - 1) - (k,p - 1) solutions mod 

pe for ac = —1 (mod pe). 

Proof. We use Theorem 12.7 and the identity a 2 - 1 = (av - 1)(a' + 1). 
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Let .8(n) = : 0 ≤ a < n and n is an psp(a)}I, 

E(n) = I{a:0≤a<n and n is an epsp(a)}I, 

S(n) = I{a:0≤a<n and n isa spsp(a)}I. 

Suppose n = p1 • p. Baillie and Wagstaff [2] give the following formula for B(n): 

Ic 

(12.9) B(n) = [J(n - 1,p - 1). 
1=1 

About the same time, Monier [38] gave the following formula for E(n): 

Suppose n =p' •'•pek , and n = r2' + 1, r odd, P1= r128' + 1, r odd (i = 1,...,k). 

Suppose further the pi have been ordered so that s1 s2 ≤ s. Then 

(1 B2.10) E(n) = Ic ( - 1 1), 
- 

where O, has one of the values 2, 1/2 or 1 according to the rule 

2 ifs1=t, 

= 1/2 if si <t holds for some prime pi with e1 odd, 

1 otherwise. 

Monier [38] also gave the following formula for S(n): 

Suppose n =p 1• and n = r2t + 1, r odd, P1= r128 +1, r1 odd (i = 1,.-. ,k). 

Suppose further the pi have been ordered so that s1 ≤ 82 ≤ ≤ Sk. Then 

/ k 

S(n) = (\ 2k_1  

We give some different formulas for B(n), E(n) and S(n). 

Theorem 12.12. Suppose n - - Pi e Then 

(12.12) B(n) = tj (n_i P1i) 
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Prof. We have ((n—i) /2, (pi-1) /2) = (n—i, pi-1) /2 and the ej = ±1 range over exactly 

2k values. Hence fl1[(n - l,p - 1)/2] = E(1/2c) IIL1(n - 1,p - 1) = 

(2/c) . (1 /2k) fl 1(n - 1,p - 1) = fl 1(n - 1,p - 1). The formula is equivalent to 

that of 12.9. 

In the next formula the ej will range over same set, el = ±1,... , 6/c = ±1. 

Theorem 12.13. Suppose n = p1 . . . p. Then 

(12.13) 
/1—€\ In — i ps — i  'l—e\ /n—i p—i\ 

2 ) 2 '2 )(2)( 2 )  2' 2 )i 
where € = • . €7', p = and 2 fa p• = 

*  

k 

1(n-1 Pi_i) (1—Ej)(n—i pi-1 
c,=±1 1=1 

E(n) = R 2/1 ' 2Pi 2 ' 2 ) 

Proof. Let Oa(pC) denote the order of a mod pl. Also for 1 ≤ i ≤ k, 6 = ±1 and 

€=±i, define 

In—i pi-1 \ (1_€t) In—i p-1\ /1-6' In—]. pi-1\ 
Ai (e, E) =  2 ' 2/" ) - 2P ' 2 ) . — 2 ) t 2 ' 2P' ) 

+ 
((i_€)(1_c) i 

4 ) 'n —i 2p ' 2 ) 
The sum over the k-tuples (€i,• .• , €) represents a consideration of all possible cases 

(a/n) = € and (a/pi) = €. We divide these cases into 4 groups and consider them 

separately for each fixed p78. 

Case (i). (a/n) = 1 and (a/p1) = 1. Let € = (a/n) and e• = (a/p1). Then p = 1 

and yj = 1. Thus 

(1) A1(€,€1) =A(1,1) = (11 ,2ji) . 

Suppose a'''2 (a/n) = 1 (mod n). Since ((n—i)/2,pi) = 1 and (a/p1) = 1, 

by Lemma 12.6, for all these bases a, we have Oa(p7') I (ii , 2Li) = A1(€, €i). 
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Thus A (€, j) counts the number of bases mod p7' such that n is an epsp(a), (a/n) =1 

and (a/p1) = 1. 

Case (ii). (a/n) = 1 and (a/p1) = —1. Let € = (a/n) and €, = (a/p,). Then 

M= 1 and ji =0. Thus 

(2) A1(€, €) = A1(l, —1) = (ai'Pi - i) - (1 
2' 2 j 

Suppose a'''2 = (a/n) = 1 (mod n). Then a"''2 (a/n) = 1 (mod p7'). By 

Lemma 12.6, we have 0 ,,(p7') I (n - ,pi - i) and Oa(p7') % (ni Pi-1).Now T' 2 

- (n-i a.i\ is the number of bases mod p7' such that Oa @7' I p - 
' 2) 

and Oa(p7') V (z.i 2iZ.!). Hence A(e,e1) - ---,pj - 2 /n-i i) - (n—i Pi-1) counts the 
4\2' 2 

number of bases mod p71 such that n is an epsp(a), (a/n) = 1 and (a/p1) = —1. 

Case (iii) (a/n) = —1 and (a/pi) = 1. Let c = (a/n) and e. = (a/pi). Then 

p = 0 and p = 1. Thus 

(3) A1(e, €j) = A1(-1, 1) = (n - 1 2l.i\ 2 1n 2 1 2i..i\ 
)I.' 2 

If a('')12 = (a/n) = —1 (mod n), then a"''2 —1 (mod p7'). Hence Oa (p7') In-i 

and Oa(p7) % (n - 1)/2. Then using Lemma 12.6, Oa(p71) I (n - 1, (p - 1)/2) and 

0. (p7') % ((n - 1)/2, (p - 1)/2). Hence A1(€, €i) = (m - 1' Pi 2 ) .1't - 2 ' 1 21. 2 .1) counts 

the number of bases mod p71 such that n is an epsp(a), (a/n) = —1 and (a/pi) = 1. 

Case (iv) (a/n) = —1 and (a/pi) = —1. Let € = (a/n) and € = (a/pi). Then 

p = 0 and pi = 0. Thus 

(4) Ai(€,€i)=Aj(—i,-1)=(n-1,pi—i)—(n—i 2i-1"_(z-1,p1_i) i (n-i ELZI\ 
2) 1 2, 2) 

If a(1)/2 (a/n) = —1 (mod n), then a'—l)/2_ —1 (mod p71). Hence O(p71) In-i 

and Oa (p7') % Since (a/p7') = —1, from Lemma 12.6, Oa (p71) I (n - 1, pi - 1), 

Oa (p7') % ((n - 1), (p - i)/2) and Oa (p7') A' ((n - i)/2, (p - 1)). As we know 
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(n-1,p1-1)—((n--i), (p-1)/2) is the number of incongruent bases mod p7' such that 

Oap7') I (n-1, pi-1) and Oa (p7') % (n—i, (p-1)/2. Also (n-1,p1-1)—((n— l)/2,p—l) 

is the number of incongruent bases mod p7' such that Oa p) I (n - 1,p —1) and 

0 (p7') % ((n - 1)/2,p - 1). Thus it would appear that 

(n - i,p - 1) - ((n - 1)/2,p - 1) - (n - 1, (pi - 1)/2) would count the number of 

bases mod p71 such that Oa p7') I (n - 1, pi 1), Oa P7') X ((n - 1), (pi - 1)/2) and 

Oa (P7') % ((n - 1)/2, (p - 1)). However, since 

((n - 1, (p - 1)/2), ((n - l)/2,p - 1)) = ((n - 1)/2, (p1 - 

when we subtract (9.1,p1) and (n_1, 21 .1),wesubtract (9:.1,.1) twice. Thus 

this must be added in again. Therefore by (4) A1(€, e) counts the number of bases 

mod p7' such that n is an epsp(a), (a/n) = —i and (a/p1) = —1. 

Since for each p7' A1(€, €) always counts the number of bases a mod p71 such that 

n is an epsp(a), by the CRT, the product Iji Ai (c, €) counts the number of bases a 

corresponding to a fixed k-tuple , e) such that n is an epsp(a). Hence the 

sum over all k-tuples, [Ii A(€, €), gives the number of bases a mod n such 

that ii is an epsp(a). This completes the proof. 

Our formula E(n) looks like much more complicated than that of Monier's. How-

ever, when one uses Monier's formula (12.10) to count E(n) he has to express n in 

the form n = r2t + 1 and each prime factor pi of n in the form pi = rj2t1 + 1, and 

then decide the complicated coefficient 5; while in using our formula (12.13), these 

are all omitted. Hence we think our formula is easier to use. 
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Theorem 12.14. Suppose n = • pkk is odd, and n = u2t + 1 where u odd. 

Then the number of incongruent bases a such that n is a spsp(a) is given by 

k ni t k [(n —i 
(12.14) S(n)=Jj( 2 1) 

i1 81i1 

Proof. By Lemma 12.7, the first term in S(n) counts the bases a such that 

1 (mod n). By Lemma 12.8, the second term in S(n) counts the bases a 

such that for some s, 1 < s < t and a —1 (mod n). Thus the sum of these two 

terms, S(n), is the number of incongruent bases such that n is a strong pseudoprime. 

This completes the proof. 

Again, by the same reason as the above, we think that our formula (12.14) has 

its advantage to use. 
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§13. Formulas for the number of Lucas pseudoprime bases 

In this section we will give formulas which count the number of incongruent bases 

a mod n to which n is 1psp(a), or elpsp(a) , or slpsp(a). These three formulas (13.7), 

(13.8) and (13.9) appear to be new. 

Lemma 13.1. Suppose n = . . . pk is odd and (n, d) = 1. Let € = (d/n) and 

Ei = (d/p). Then n is elpsp(a) if and only if for all i (1 ≤ i ≤ k), 

r(p) I ((n - €)/2, (p - 

Proof. =. Suppose that for all p' I n, we have r. (pie') I ((ii - e)/2, (pi - e)/2). Then 

ra(P) I (n - e)/2. Hence Ya(( - )/2) 0 (mod pr). Since for i j, (p, p7) = 1, 

this implies Ya((fl - €)/2) 0 (mod n), we have that n is an elpsp(a). 

. Suppose pn and Ya((flC)/2)EO (mod n). Then Ya((flE)/2)O (mod pr). 

Hence r(p7') I (n—)/2. From Theorem 6.15 we have ra(p71) ITa') where Ta(p7')= 

p'(p—c)/2. Hence ra(p7') I ((n—€)/2,pr'(p--€)/2) = ((n—€)/2, (p—€)/2). The 

last equality holds since (pi, n-E) = 1. This proves the lemma. 

Lemma 13.2. Suppose n = p1 ... pkk is odd and (n, d) = 1. Let E = (d/n) and 

Ei = (d/p1). Then n is 1psp(a) if and only if for all i (1 ≤ i ≤ k), 

ra(p7') I (n - €, (p - 

Proof. Recall that 1psp(a) means Ya (n - E) 0 (mod n). Then use an argument 

similar to that of the proof for 13.1. 
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Theorem 13.3. Suppose e = ±1 and k I ( - €)/2. Then there are exactly k - 1 

incongruent solutions a mod pe f Ya(k) 0 (mod pC) with E0 = e. 

Proof. This is Theorem 10.10. 

Lemma 13.4. Suppose e=±1, p€(mod4) and kl(p- €)/4. Then 

Xa(k) 0 (mod pe) has k incongruent solutions with (n, d) = 1 and Ea(P) = E. 

Proof. Suppose k I (p-c)/4. Then 2k I (p—€)/2 and k I (p—€)/2. By Theorem 13.3, 

(*) Ya(2k) 0 (mod pe) 

has 2k - 1 incongruent solutions and 

(**) Ya(k) 0 (mod pe) 

has k—i incongruent solutions. It remains to count the number of solutions of 

(***) X(k) 0 (mod p'). 

By (3.5), we know that the set of solutions to (*) is the union of the sets of solutions 

to (**) and (* * *). By Lemma 4.8, (Xa (k), Ya (k)) 12. Thus the sets of solutions 

for Ya(k) 0 (mod pe) and Xa(k) 0 (mod pe) are disjoint. Hence the number of 

solutions mod pC for the congruence (* $c *) is 2k - 1 - (k - 1) = k. It is easy to see 

that for all these solutions a, ea = e. This proves the lemma. 

Theorem 13.5. Suppose (k,p) =1. Then the following two congruences have the 

same set of solutions mod pe: 

(1) Ya(k) 0 (mod pe) and (2) Ya ((k,  _))) 0 (mod pe). 

Proof. Let T be the set of solutions to (1) and S be the set of solutions to (2). Since 

(k, (p - a (p) ) /2) I k, the Division Theorem tells us that each solution of (2) is a 

solution of (1). Hence S C T. Next we show T C S. If T 17= S, then there exists 



154 

an a such that Ya(k) 0 (mod pe) and Y. ((k, P_c;)) 0 (mod pC). This is 

equivalent to saying that there exists an a such that 

(**) ra(pe) 1PEa(P)  (*) r(pe)k and 

By Theorem 6.15, we have r. (pe) I T. (pe) where Ta(pe) = pe_l - ( - Ea(P))/2. This 

together with (**) implies p I ra (pe). Hence p I k which contradicts the assumption 

(p, k) = 1. Therefore S = T. The theorem is proved. 

Theorem 13.6. Suppose € = ±1 and (k, p) = 1. Then there are exactly 

(2k, ) - (k, 2) solutions a mod pe for Xa(k) 0 (mod pe) with fa (P) = C. 

Proof. Consider those a with (p) = € and Xa(k) 0 (mod pe). From (3.5) we 

have Ya(2k) = Ya(k)Xa(k) 0 (mod pe). By Theorem 13.5 and Theorem 13.3, 

Y,, (2k) 0 (mod pe) has ((2k, (p - - 1 incongruent solutions mod pe and 

Ya(k) 0 (mod pe) has ((k, (p - - 1 incongruent solutions mod pe• Since 

(Y, (k), X, (k)) 12, it follows that the sets of solutions for Y. (k) 0 (mod pe) and 

Xa(k) 0 (mod pe) are disjoint. Hence the number of solutions mod pe for the 

latter congruence equals ((2k, (p - e)/2) - ((k, (p - E)/2). This proves the theorem. 

REMARK. Theorem 13.6 is the generalization of Lemma 13.4. 

Let L(n) = I{a:0≤a <n,(n,a2-4)=landnisalpsp(a)}I, 

EL(n) = I{a:0 <a < n,(n,a2-4)=1 and n is an elpsp(a)}I, 

SL(n) = I{a :0 a < n,(n,a2-4)=1 and n is a slpsp(a)}I. 
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Theorem 13.7. Suppose n = p' • p is odd. Then 

k fl—€ Pii  
EL(n) = E II K 2 ' 2 ) " 

E,±1i1  

Proof. For a given k-tuple (El . . . €,), where €, E {- 1, 11, consider those a such 

that n is elpsp(a), for each prime power p7' where the Jacobi symbol (d/p) = ei 

and therefore (din) = E. Let s be the number of those bases a, i.e. the number of 

solutions of Ya ((n - €)/2) 0 (mod n). By the CRT, then s = s1 s2... Sk, where 

Si is the number of solutions of Ya ((n - €)/2) 0 (mod p7'), (i = 1,... , k). 

Since ((n—e)/2,pi) =1, we may apply Theorem 13.5 to obtain s = j) - 1. 

Hence by the CRT s = fl.1[((n - e)/2, (p - i)/2) - 1]. The sum over all possible 

k-tuples, that is 11 [(9, %L) - 1], then gives the total number of bases 

a such that n is an elpsp(a). 

Using a similar idea one can give a formula for the number of bases a to which n 

is a Lucas pseudoprime in the sense of Rotkiewicz [46], 1psp(a). 

Theorem 13.8. Suppose n = p' . . . pk and n is odd. Then the number of incon-

gruent bases a mod n to which n is a Lucas pseudoprime is given by 

(13.8) L(n) = H [(n - Pi  ) 
q=±1 1=1 

where e = 

Next we give a formula for the number of bases a to. which n is a strong Lucas 

pseudoprime, slpsp(a). 



156 

Theorem 13.9. Suppose n = p '• .p and n = u2t+w where u is odd, w = ±1 

and 2 ≤ t. Then the number of bases to which n is a strong Lucas pseudoprime, 

slpsp(a), is given by SL(n) = 

.- ft[(fl_E,Pi_€i) 1]+ 
E1—E1,E--  11—W i=1 

rf - € p 1 - 

k t k n ei  j€j 1≥ 
K 2t ' 2 ) ']+Efl [(28_i ' 2 ) (n—c 2 ' 2 )] 

'..i=i 8=21=1 

where € = 

Proof. We consider 3 possible types of bases: 

Type (i). The bases a such that (d/p1) = ej and (d/n) = E = —w. Then (n—€)/2 is 

odd. It follows from Theorem 7.5 that n is a slpsp(a) if and only if n is an elpsp(a). 

Hence by Theorem 13.7, for case € = —w, the number of bases is 

[(n—.c ,Pi_Ei) 1]. 
R 

Type (ii). The bases a such that (d/p1) = ej, (d/n) = c= w and n I Ya(!). Since 

((n_€)/2t,pi) = 1 for each i, we may apply Theorem 13.5. The sum over all possible 

k-tuples which satisfy € = w gives the number of all such bases, 

(2) > 111. 
Ci=±1'f=Wi'I P'2-F' Pi 2, =1 

Type (iii). The bases a such that (d/p1) = €, (d/n) = € = w and for some 

2≤s≤t, 
(*) Xa ( 28 ) = 0 (mod n). 

Since ((n - )/28,p) = 1 for each 2 ≤ s < t and each 1 ≤ i ≤ k, we may apply 
Theorem 13.6 to see that the number of solutions of congruence (*) for each s is 

HL[(Ef, 21) - (i?, 2ii)] . Then summing from s = 2 to s = t and taking the 
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sum over all possible k.-tuples such that € = w, we find that the number of bases in 

this case is 

(3) 
t k 

r(- )i 
Pi6i'\ (n_f Pi_fi' 

11 L ' 1 \. ' q=±1,€=w a=2 1=1 \ 2 2 2 2 

Hence the total number of bases such that n is a strong Lucas pseudoprime is the 

sum of these 3 sums: (1), (2) and (3), i.e. the formula given in the statement of the 

theorem. This completes the proof. 
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§14. Estimates of the number of bases for Euler Lucas 

pseudoprimes 

Recall that EL(n) is the number of bases a, 0 ≤ a < n, such that (n, a2-4) =1 and 

n is an elpsp(a). Suppose n> 1 and n is odd. If n is prime, then EL(n) = n —2 and 

so EL(n)/(n —2) = 1. In this section we will give upper bounds for EL(n)/(n - 2). 

We will show that if n is an odd composite integer, then EL(n)/(n - 2) <1/2 and 

if n is not a Lucas Carmichael, then EL(n)/(n - 2) <1/3. Also we will show that 

if n satisfies some further conditions, such as 

(i) n is not squarefree and (n, 6) = 1, 

or (ii) n is squarefree and n has a special prime divisor p such that p - 11 n + 1, 

p-1%n-1,p+1%n+l and p+1%n-1, 

or (iii) n is a product of two primes, 

then EL(n)/(n - 2) <1/4. 

Theorem 14.1. Suppose p is an odd prime and e 1. Then EL(pe) = p —2. 

Proof. This was proved in Section 9 (Theorem 9.16). 

Lemma 14.2. Suppose mi ≥ 2 and k ≥ 2. Then fl1(m - 1) < (n mi) —2. 

Proof. Induction on k. Consider the first case k = 2. 

fl1(m— 1) = (Ml - 1)(m2-1) =m1m2—m1—m2+1 

≤ m1m2-2-2+1< m1m2-2= (fl.1mj) —2. 

Suppose the lemma holds for k ≥ 2. Consider the case k + 1. 
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- 1) = (mk+1 - 1) flL..i(mi - 1) < (mk+1 - 1) ((n. m) - 2) 

= mk+1 fl m - 2mk+1 - fl m +2 < m1 — 2(mk•1 — 1) ≤ (ri± mj) —2. 
Hence the inequality holds for k + 1. The lemma is proved. 

Lemma 14.3. Suppose n> 1, n is odd and n=fl1p7. Then 

EL(n) ≤ (n-2)/(p' 1 ... p 1). 

Hence if n is not squarefree, then EL(n) :5 (n - 2)/pi for some i. 

Proof. Case k = 1. By Theorem 14.1, we have 

EL(n) = EL(pe) = p - 2 = (pe - 2pe_l)/pe_l < (pe — 2)/p 1. 

Case k ≥ 2. For each i, (1 < i < k), we have, for the GCD, 

(fl—€ Pj6i'\ j< pi_ 61 i<Pi+l 1 p-1 P_P7'1<p7'_1 
s'.. 2 •' 2 ) — 2 — — 2 — — 2 — 2pr'  

Since k ≥ 2 and pi ≥ 2, we can apply Lemma 14.2, with mi = p7, to get 

n E 7j — E P7 1 flL(7  ' ' )  J — . ç ,-1  i—tic c e-1 

1=1 "Pi 

— fl1(p7 -1) (H1p7) - 2 n-2  
— 21cp1l .. . p k4 2cp 1 l .. . pkl — 2k — 1 . . . pk 4  

Therefore using the formula for EL(n) that we derived in Theorem 13.7 and observing 

that it is a sum over 2k terms, we get 

r n—€ jEj\ ]<2  k n p —2  n-2  1 EL(n) = > 2 ' 2 ) 2el_l.. e-1 ei-1 ek-1 
1 Pic Pi Pic 

This proves the lemma. 

Lemma 14.4. Let a, b and c be positive integers. Then the following hold. 

(i) (a, b) = 1 = (a, c) + (b, c) ≤ c + 1. 

(ii) (a, b) =1, c A' a, c A' b = (a, c) + (b, c) ≤ c/2 + 2. 

(iii) (a, b) =1, c A' a, (a, c) >1 = (a, b) = 1, c A' a, c A' b. 
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Proof. Since (a, c) Ic, 2A [c = (a, c)A and 1 ≤ A ≤ c]. Since (b, c) Ic, 

3B [c = (b, c)B and 1 ≤ B ≤ c]. Also (a, b) = 1 implies ((a, c), (b, c)) = 1. Hence 

(b,c)lc and c= (a,c)A = (b,c)IA. Then (b, c) :5 A. Now for the proof of (i), 

1 ≤ A ≤ c = (A— 1)A ≤ (A—i) c = A2—A ≤ Ac—c = c+A2< Ac+A => c/A+A ≤ c +1. 

This proves (i) since (a, c) + (b, c) = c/A + (b, c) ≤ c/A + A. 

For the proof of (ii), suppose further c A' a and c A' b. Then c %a (a, c) <c, 

so c= (a, c)A < cA = 1< A 2 < A. Hence (a, c) = c/A ≤ c/2. 

Similarly we can show (b, c) ≤ c/2. If (a, c) ≤ 2, then (a, c) + (b, c) ≤ 2 + c/2. 

Suppose (a, c) >2. Then 2A < (a, c)A = c = 2A <C. Since c %a, 2 ≤ A. Hence 

2 <A and 2A < c = (A-2)2A ≤ (A-2)c = 2A2-4A ≤ Ac-2c 

= 2c+2A2 < cA+4A => c + A2 ≤ cA/2 + 2A = c/A + A ≤ c/2 +2. 

Since (b, c) ≤ A, (a, c) + (b, c) = c/A + (b, c) ≤ c/A + A ≤ c/2 + 2. This proves (ii). 

For the proof of (iii), if c I b, then (a, b) = 1 . (a, c) = 1. But (a, c) >1. So c %b. 

This shows (iii). 

Throughout the remainder of this section we will use the following definitions to 

simplify the notation. 

Definition 14.5. Suppose n = P1P2" Pk is odd, p = ±1, 5= ±1 and 1 ≤ i ≤ k. 

('\ H(5) p n—j. p-5 
,p1,n) = 2 ' 2 ) 

Definition 14.6. Suppose n = P1P2•• Pk, n is odd, -y = ±1 and 1 ≤ 1 < k. Then 

n) = [1 K  TYi"i Pi — E  
2 ' 2 ) 

Definition 14.7. Suppose n = P1P2 Pk, n is odd and 1 ≤ 1 ≤ k. Then 



161 

S(1, n) = M(+1,l,n) +M(-1,l,n). 

Let A(p)=(p-1)/2 and B(p) = (p+ 1)/2. Then for all n, A(p) and B(p) satisfy 

(148) ( 2 ' 2 fl±1 P—l' ) \ / 2 2 ) n±1 p+l\ 1≤A(p)-1 and 1≤B(p)-1. 

Suppose n = P1P2 ph is odd and k ≥ 1. Then the following propositions hold. 

(1) EL(n) =M(1,k,n), (2) M(1,1,p)=p-2, 

(3) M(-1,1,p)=O, (4) S(1,p)=p-2, 

(5) M(-y, 1, n) = EE1=±1±1 riL1 .H(€1, 'y€1 . •€j, j, n), 

(6) A(p)-1 < (p—l)/2 and B(p)-1 ≤ (p-1)/2, (7) A(p) + B(p)-2 ≤ p —2. 

(8) Ifp-1 %n+1,p-1 %n-1,p-1 %n+landp+1 In— 1,thenwecan 

define A(p) = (p - 1)/4 and B(p) = (p + 1)/4 and (14.8) will still hold. 

(9) If (p—l)/2 %n-1 and (p—l)/2 %n+1, or if (p+1)/2 %n-1 and (p+l)/2 %n+1, 

then we can define A(p) and B(p) in such a way that (14.8) holds and also 

A(p)+B(p)-2 < 2(p-2)/3 holds. 

Proof. Proposition (1) is Theorem 13.7. Proposition (2) is Theorem 14.1 with e= 1. 

Proposition (3) holds since ((p - c)/2, (p + e)/2) = 1. Proposition (4) follows from 

Definition 14.7 and (2) and (3). Proposition (5) follows from Definitions 14.5 and 

14.6. Propositions (6), (7) and (8) are trivial. For the proof of (9), we consider 

two cases. First we suppose that (p - 1)/2 % n - 1 and (p - 1)/2 % n + 1. Then 

((n-1)/2, (p— i)!2) ≤ (p— l)/6 and ((n+1)/2, (—i)/2) ≤ (p— l)/6. Hence we have 

((n± 1)/2, (p— 1)/2) —1 ≤ (p-7)/6. In this case we can define A(p) = (p-1)16 and 

B(p) = (p+1)/2. Then clearly (14.8) holds. Secondly suppose (p+1)/2 In-1 and 

(p4-1)12 %n-f.1. Then ((n-1)/2, (p+l)/2) ≤ (p.f-1)/6 and ((n+1)/2, (p1-1)/2) ≤ (p4-1) /6. 
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Hence ((n±1)/2, (p+l)/2)—1 ≤ (p-5)/6. In this case we can define A(p) = (p—l)/2 

and B(p) = (p+ 1)/6. Again (14.8) holds. But in either case, we always have 

A(p) + B(p)-2 < 2(p - 2)/3. This completes the proof of (9). 

Lemma 14.9. M(-y,1,n) = H(1,-y,pi,n) +H(-1,-7,pi,n). 

Proof. M('y,1,n) = E [( fl —7f1 pi el 

2'2 
i] 

[(n ^, p, 1) ] [(n 7 +P1+l) 
= 2 ' 2 2 ' 2  H(1,y, pi, n)+H(-1,-7, pi, n). 

If A(p) and B(p) satisfy (14.8), then for p = ±1 the following inequalities hold. 

(14.10) H(1,z,p1,n) ≤ A(p1) —1, H(-1,p, pi, n) ≤ B(p) —1. 

(14.11) H(1, /.z,pj, n) + H(1, —p,pj, n) ≤ (p - 3)/2, 

(14.11') H(-1,p,p1,n) +H(-1,—,p1,n) (pj - 

Proof. The first two inequalities are equivalent to (14.8). For the proof of (14.11) 

since ((n—p)/2, (n+p)/2) = 1, we can apply Lemma 14.4 (i) to get 

H(1,t, pi, n) + H(1, —p, pi, n) = (fl 1) 1+ (fl , 1) —1 

- (n—p Pi_1\+(n+P pi-1 2< 2< 1+1 2_p13 
2'2)2'2) 2 - 2 

The proof of (14.11') is similar to the proof of (14.11). 

Lemma 14.13. Suppose n = p' ... pj, is odd, squarefree and A(p), B(p) are arbitrary 

functions satisfying (14.8). Then for 7 = ±1, 0 ≤ 1 < k and 2 ≤ k, we have 

M(7,l + 1,n) ≤ (A(p1 j) - 1)M(7,l,n) + (B(p1+j) - 1)M(-7,l,n). 

Proof. Using (5) and inequalities (14.10) we have 
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1+1 

M(-y, 1 + 1, n) = E  II H(€, y€• 61I+1,Pj, n) 
Ei±lr,+I ±l i=1 

(E1 = 1) 
i=1 

+ E H(-1,-7Ei...€l,p i,n) HH(e,—ei. fhPi,fl) (ei = —1) 
i=1 

1 

E1±lrEj=±l i=1 

+ (B(p.i)-1)[JH(e,--y6i ... ej, pi, n) 
i=1 

=(A (pi)-1) flH(E,7€i...ez,p1,n) 
€i±lq•cj=±l 1=1 

+(B(p+i)—l) flH(e, —'ye1.. el, pi, n) 
c1±lrEg=±l i=1 

= (A(p1+i) - 1)M(y,l,n) + (B(p,j) 1)M(—'y,l,n). 

This proves the lemma. 

Lemma 14.14. Suppose n =p1••Pk is odd. Then S(1, n) ≤pi -2. 

Proof. By Lemma 14.9 and inequalities (14.11) and (14.11'), we have 

S(1, n) = M(1,1,n) +M(-1,1,n) 

= [H(1,1,pi,n)+H(-1,-1,pi,n) ]+ [ H(1,-1,pi,n)+H(-1,1,pi,n) 

= [H(1, 1,pi,n)+H(1, —1,p, ii) I + [H(-1, 1,pj,n)+H(-1, —1,Pi, n) ] 

≤(pi-3)/2+(pi-1)/2=pi-2. 

Lemma 14.15. Suppose n is odd, n = pk and 1 ≤ 1 < k. Suppose also A(p) 

and B(p) satisfy (14.8). Then 

S(l + 1, n) ≤ S(l, n) (A(pi+i) + B(pz 1) - 2). 
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Proof. By Definition 14.7 and Lemma 14.13, 

S(l+ 1, n) = M(1,l+ 1,n)+M(-1,l+ 1,n) 

≤ (A(pz 1) - 1)M(1, 1, n) + (B(p, 1) - 1)M(-1, 1, n) 

+(A(p, 1)—l)It'f(-1, 1, n)+ (B(p,+i) —1).M(1, 1, n) 

= (A(pz j) —1) [.M(1, 1, n)+M(—1, 1, n) ]+ (B(pj+i) —1) [.M(1, 1, n)+.&[(-1, 1, n) } 

=(A(pz 1)—l)S(l,n) + (B(p1+i)-1)S(l,n) = S(l,n)(A(pi+i) + B(pz+i) —2). 

This proves the lemma. 

Lemma 14.16. Suppose n odd, n = P1 p (primes in any order) and 1 ≤ 1 ≤ k. 

Then S(l, n) <P1P2 

Proof. By induction on 1. If 1 = 1, then the lemma holds by Lemma 14.14, 

S(1, ii) ≤ Pi - 2 <p. The induction step follows from Lemma 14.15 and (7), 

S(l+1,n)≤S(l,n)(pi-2)<S(l,n)p,+i ≤P1P1+i. 

This proves the lemma. 

Lemma 14.17. Suppose n is odd and n = Pi Ph (primes in any order) and 2 < k. 

Then 
f Ph — i 

EL(n)< 2 )S(k_1,n). 

Proof. By (1), (6) and Lemma 14.13, 

EL(n) = M(1,k,n) ≤ (A(pk)-1)M(1,k - 1,n) + (B(pk)-1)M(-1,k - 1,n) 

<(Ph —l)M(1,k_1 ,fl)+ (Pk -l)M(_1,kl ,fl) 

= (pk 2 1) {M(1,k—i,n)+M(-1,k-1,n)]= (Pk 2 1) S(k — 1, n) 

This completes the proof of the lemma. 
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Lemma 14.18. Suppose n = p p,, 2 ≤ k, n is odd and n has a special prime 

divisorpnsuch that p-1 %n+1,p1-1 %n-1,p+1 %n+1 andp1+1 %n-1. 

Then 
EL(n) < (Pi-3)s(k_l,n). 

Proof. Without loss of generality we can assume that Pk is a such special prime 

divisor. Then by (8), (14.8) still holds for A(pk) = (Pk —1)/4 and B(pk) = (pk+1)/4. 

Hence by (1) and Lemma 14.13 

EL(n)=M(1, k, n) ≤(A(pk)— 1)M(1, k - 1, n) + (B(pk)— 1)M(-1, k - 1, n) 

< (P" 4 ') M(l, k. 

< (Pk 4 3) (M(l, k 

The lemma is proved. 

I Pk —3 
-1,n)+ )M(_1,k_1,n) 

—1,n)+M(-1,k—1,n))= (Pk-3)s(k_lfl) 

Recall the definition that n is a Lucas Carmichael means that for all primes p, if 

pin, then (p-1)/2n±1 and (p+1)/21n±1. Hence that mis not a Lucas Carmichael 

means there exists p such that pin and either (p—l)/2 %n —1 and (p—l)/2 %n + 1, 

or (p+l)/2 In —1 and (p+1)/2 %n+ 1. We now prove the following lemma. 

Lemma 14.19. Suppose n = pk is odd, squarefree, 3 ≤ k and n is not Lucas 

Carmichael. Then 

EL(n)< fl27h 1 _2 
3 

Proof. Suppose n = P1P2" Pk where 3 ≤ k. Without loss of generality we can 

suppose Pk-1 = p is the prime divisor such that 

either (p - 1)/2 In -  1 and (p -  1)/2 %n + 1 

or (p+1)/2%n—1 and (p+1)/2%m+1. 

Since 3 ≤ k and so 1 ≤ k-2, we can apply Lemma 14.15, with 1 = k-2, to get 
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S(k - 1, n) ≤ [A(p-1) + B(ph_1) - 2]S(k - 2, n). 

Hence by (9) we can suppose A(pk_1) + B(p-i) —2 <2(pk_1 - 2)/3. Therefore 

S(k-1,n) ≤ 2(Pk4_2)s(k_2,fl). 

Using Lemma 14.17, since 3 ≤ k we have 

Ph  " 2(Pk_12)s(k_2,fl). EL(n) < (Phi) S(k - 1,n) ≤ (  2 1  ) 3 

Then by Lemma 14.16, it follows that 

EL(n)<(' 2 1) Pi"Pk-2 fPhph-1 - 2\ n-2p1 ... ,2 
3 jP1Pk2— p3 

This proves the lemma. 

Lemma 14.20. Suppose n = Pi Pk, 2 ≤ k, n is odd and squarefree. Then 

EL(n) < — PI '"Pk-1  

Proof. By Lemmas 14.16 and 14.17 with 1 = k - 1, we have 

fPkl\ (Pkl'\ 
EL(n)  . 2 )S(k-1n)< 2 )P1P2 .. . Pk_1 =  

2 

This proves the lemma. 

Lemma 14.21. Suppose n = P1P2 Ph, 2 ≤ k and n has a special prime divisor p, 

1≤i≤k, suchthatp1-1 %n+1,p-1 %n-1,p1+1 %n+1 andp-1 %n - 1. 

Then 
EL(n) < 3P1P2"Ph-1  

4 

Proof. Without loss of generality we can assume that Ph 15 the special prime divisor 

of n. Since 2 ≤ k we can use Lemma 14.16 with 1 = k - 1 and Lemma 14.18 to get 

EL(n) Pk - 3 ) S(k — 1,n) < (pk — 3) PlP2***Pk-1 = n — 3P1P2 ... Pk-1  

This proves the lemma. 
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Lemma 14.22. Suppose p and q are odd primes and p < q. Then 

(i) q-1%pq-.1; 

(iii) q+1%pq+1; 

Proof. (i). 

(ii) q+1%pq-1; 

(iv) q-1pq+1 p+2=q. 

pq— 1=p(q— l)+p — 1 p— 1 $0 (mod q— 1). 

(ii). pq- 1=p(q+1) -p-i = -p-i = —(p+1) $O(mod q+1) 

(iii). pq+1=p(q+1)-p+1=-p+1=-(p-1)$O(modq+1) 

(iv). pq + 1 = p(q - 1) + p + 1 p + 1 (mod q - 1). Hence 

pq+1O (mod q-1)4p+1=q-1=p+2=q. 

Lemma 14.23. Suppose p, q are odd primes and p +2 = q. Then 

EL(pq)/(pq - 2) <1/4. 

Proof. Suppose q = p+2.  Hence p + 1 = q-  1 and p +3 = q + 1. 

Since 

we have 

Since 

we have 

Since 

we have 

Therefore 

EL(n) = 

+ 

pq-1 p(p+2)-1 p2+2p-i - (p+1)2 1 

2 - 2 - 2 - 2 -, 

(pq-1p+1'\'pq-1q-1 1 

. 2 ' 2 2 ' 2 - 

pq-lp(p+2)-1p2+2p-3+2(p-1)(p+3)  
+1 

2 2 2 2 , 
fpq-1 p-l\ land (pq-1 p+3\ fpq-1 q+1\ =1. 

2 '2 2 = ' 2 ) 2 2 ) ) 

pq+lp(p+2)+1p2+2p-3+4(p-1)(p+3)  
+2, 

2 2 2 2 

Ipq+1 p- i fpq+i p+3\ (pq+1 q+12 ' 2 12and 2 ' 2 ) 2 ' 2 )≤2. 

f(pq-1 p-i\ [(pq-1 q-1 

R 2 ' 2 1 JR 2 ' 2 Kpq-1 p+l\ 11f(pq1 q+i 
2 ' 2 1 JR 2 ' 2 
+i p-1\ [(pq+1 q++ [(pq 
2 ' 2 ) JR 2 ' 2 
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+ [(pq  p+l\ [(pq +l 2_ ' 2 ) i 2 ' 2 

1 i)(; 1) 

= °+°+'+1 
2 2 4 4 

The last inequality holds since 9 < q + 3p. This completes the proof. 

Theorem 14.24. Suppose n = P1P2 Pk, 2 < k and n has a special prime divisor 

pin such thatp-1%n+1,p-1 In— 1,p+1%n+landp+1%n--1.Then 

EL(n) 1 
n-2 < 4 

Proof. This is by Lemma 14.21, EL(n) <(n - 3p. . 'Pk-1)/4 < (n - 2)/4. 

Theorem 14.25. Suppose n = pq and p, q are distinct odd primes. Then 

EL(n) 1 
n-2 < 

Proof. Suppose n = pq and p < q. Consider two cases. Case 1. q = p + 2. The 

theorem then follows from Lemma 14.23. Case 2. q 54 p +2. Then q > p +2. Then 

by Lemma 14.22 q is a special prime divisor of n, i.e. q - 11 n  + 1, q - 1 % n - 1, 

q + 1 % n + 1 and q + 1 %n - 1. Hence by Theorem 14.24, EL(n)/(n - 2) <1/4. 

This completes the proof. 

Theorem 14.26. If n> 1, n is odd and n is not squarefree, then 

EL(n) < 1 

n-2 - 3 

Proof. Suppose n is odd and not squarefree. Then there exists an odd prime p such 

that p2 1 n. Hence by Lemma 14.3, we have EL(n) ≤ (n - 2)/p ≤ (n - 2)/3 so that 

EL(n)/(n - 2) 1/3. This proves the theorem. 
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Theorem 14.27. If n> 1, (n, 6) = 1 and n is not squarefree, then 

EL(n) < 1 

n-2 - 5 

Proof. Suppose (n, 6) =1 and n is not squarefree. Then there exists an odd prime p, 

p ≥ 5 such that p2 I. Hence by Lemma 14.3, we have EL(n) ≤ (n-2)/p ≤ (n-2)/5 

so that EL(n)/(n - 2) ≤ 1/5. This proves the theorem. 

Theorem 14.28. If n> 1, n is odd, composite and n is not Lucas Carmichael, then 

(14 EL(n) 1 28)  
n-2 < 3 

Proof. By Theorem 14.26, (14.28) holds for the case n is not squarefree. Hence 

we can suppose n is squarefree. If n is a product of two primes, then (14.28) holds 

by Theorem 14.25. And (14.28) also holds for the case that n has at least 3 prime 

divisors. This is from Lemma 14.19. This proves the theorem for all cases. 

Theorem 14.29. Suppose n> 1, n is odd and composite. Then 

EL(n) 

n-2 

Proof. If n is not squarefree, then by Theorem 14.26 EL(n)/(n-2) :5 1/3. Hence 

EL(n)/(n-2) < 1/2. If n is squarefree, say n = p' • p, then 2 ≤ k so by Lemma 

14.20 EL(n) <(n—pi. . .pi)/2< (n-2)/2. Hence EL(n)/(n-2) <1/2. The theorem 

is proved. 

The number n = 1,930,499 with EL(n)/(n - 2) 0.2645 shows that the hy-

potheses in Theorems 14.24 and 14.25 are necessary. The example 

n = 582,920,080,863, 121 (strong Lucas Carmichael +) with EL(n)/(n-2) 0.4289 

shows that 1/4 or even 1/3 is not an upper bound of EL(n)/(n —2) for all composite 
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integers n. Also the number n = 39203 = 197.199 with EL(n)/(n —2) 0.245 shows 

that only a small improvement is possible in Theorem 14.25. 

From Corollary 7.23, we know that for any odd integer n> 1, n is elpsp(a) if 

and only if n is elpsp(n - a). Hence a consequence of Theorem 14.29 is 

Theorem 14.30. Suppose n> 1, (n, 6) =1 and i = ±1 and is such that 41 n - i. 

Then m is prime if and only if 

Va[3 ≤ a≤ (n — i)/4 and (n, a2-4) = 1 = niselpsp(a)]. 
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Conclusion 

In this thesis we have studied properties of Diophantine equations and Lucas 

sequences, especially the sequences of solutions of the Pell equation 

x2—(a2-4)y2 =4. 

By studying these sequences, we believe we have obtained some interesting results. 

Some of these results may have applications to the study of prime numbers, to 

primality testing and to Diophantine representation of r.e. sets such as the set of 

primes, also to exponential Diophantine representation of r.e. sets. 

This whole subject is a very rich one. Below we list some unsolved problems and 

some conjectures which we think are worth further study. 

(1) In §11 we defined some types of Lucas Carmichaels. (Definitions 11.1 - 11.8.) 

A natural problem is: for each type of Lucas Carmichael, are there infinitely many 

of them? 

Since all odd primes are two sided strong Lucas Carmichaels, the question, for 

example for the two sided strong Lucas Carmichael, should be: are there infinitely 

many composite ones? Methods of Alford, Granville and Pomerance [1] probably 

extended to include these kinds of numbers. 

(2) Is the following statement true? 

Va [n is an elpsp(a) = n is a tpsp(a)] = n is a prime power. 

we don't know but we believe it to be true. In Theorem 9.34 we proved the converse. 

See also Theorem 9.33 where squarefree has been characterized in this way. 

(3) Is the following statement equivalent to the primality of it? 

Va [n is a tpsp(a) * n is an elpsp(a)]. 
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(4) Does it hold that n is an slxpsp(a) implies n is a tpsp(a) and hence implies n. 

is a sltpsp(a)? We don't know it now but we believe it to be true. 

(5) Let SLT(n) denote the number of incongruent bases a mod n to which n is a 

sltpsp(a). We conjecture the following inequality holds if n> 25 and n is an odd 

composite number: 

SLT(n) <n-2 

(6) Let SLX(n) denote the number of -incongruent bases a mod n to which n is a 

slxpsp(a). We conjecture the following inequality holds if n> 25 and n is an odd 

composite number: 

SLX(n) <n-2 
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