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Abstract

In this dissertation, we study properties of Lucas sequences; specifically, proper-
ties of the sequences X,(n) and Y,(n), which are the sequences of solutions of the
Pell equation 22 — (a? — 4)y? = 4. Using these properties, we give definitions of
some new types of Lucas pseudoprime, and hence new methods for studying primes.
First we define several types of pseudoprime. Second we prove that if an integer n
is one of these kinds of pseudoprime, for sufficiently many bases a, then n must be
prime. Also we construct formulas for the number of incongruent bases a mod n
such that n is a pseudoprime to the base a for various types of Lucas pseudoprime.
In this dissertation, we also study related questions about ordinary pseudoprimes.
We construct formulas for the number of incongruent bases ¢ mod n such that »n is
a strong pseudoprime to the base a and the number of incongruent bases a mod n
such that n is an ordinary Euler pseudoprime to the base a. Finally, returning to
Lucas pseudoprimes, we show that for any odd composite integer n, the number of
incongruent bases mod n to which n is an Euler Lucas pseudoprime is always less
than (n — 2)/2, less than (n—2)/3 if n is not a Lucas Carmichael number, and less

than (n—2)/4 in some other cases.
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Introduction

In this dissertation, we study the properties of the sequence of solutions of the
Pell equation
(i) 2’ —(a® - 4)y’ = 4,
which includes the sequence of solutions of the Pell equation
(ii) 22— (a®-1)y? =1
as a special case. The sequences of solutions of the Pell equations (i) and (ii) are
examples of Lucas sequences. Lucas sequences played an important role in the
solution of Hilbert’s tenth problem by Matijasevié in 1970. In his original proof,
Matijasevié used a Lucas sequence, the sequence of Fibonacci numbers, to show
that exponentiation is Diophantine definable. This solved Hilbert’s tenth problem in
the negative, based on previous work of M. Davis, Julia Robinson and H. Putnam.
Now many modern, simplified proofs have been given. In these modern proofs the
original Fibonacci sequence has been replaced by the sequence of solutions of the
Pell equation (i) or (ii).

The sequence of solutions of (i} contains the sequence of solutions of (ii) as a
subsequence when a is even. Hence the former sequence is more general. Follow-
ing the notation of Y. Matijasevi¢ and J. Robinson [33] [20] [21], throughout this
dissertation, we denote the n*? z solution and the n** y solution of (i) by X,(n) and
Y,(n), respectively.

The sequences X,(n) and Y,(n) are equal to the Lucas functions V,(P, Q) and
U.(P,Q) when P = a and Q = 1. In general U, (P, Q) and V, (P, Q) are defined by



Un(P,Q) = (" - B")/(a—B), Va(P,Q)=0a"+p"
where o and 3 are the roots of the polynomial z2 — Pz + Q and P, Q are arbitrary
but fixed coprime integers. However ¢} =1 is not very restrictive since it is known
that ([52]) Q"WVa(P',1) = Voo (P, Q) (mod n)
PQ™ U, (P',1) = Uspy(P, Q) (mod n)
whenever (Q,n)=1 and QP' = P?2—2Q (mod n).
We will show in §1 that X,(n) = V,.(a,1) and Yy(n) = U,(a,1). Hence the theory
of X,(n) and Y;(n) becomes a part of classical Lucas - Lehmer theory. Throughout
the dissertation we are studying Lucas - Lehmer theory. However we have our own
point of view, coming from logic, and we emphasize different things which are useful
to us, for example, things useful in Diophantine representation. We also hope some
of these things may be relevant to the possible eventual attainment of a polynomial
time algorithm for primality testing.
We obtain the following new main results:
(1) We define some new types of pseudoprimes related to the sequences X,(n)
and Y,(n); namely, t-pseudoprime (tpsp), r-pseudoprime (rpsp) and a-pseudoprime
(apsp), which are consequences of Theorems 7.11 and 7.13 - 7.14, also slzpsp(a), an
exceptionally strong kind of strong Lucas pseudoprime. We also combine these new
types of pseudoprimes with certain classical ones, such as Lucas pseudoprime, Euler
- Lucas pseudoprime and strong Lucas pseudoprime in order to get some stronger
types of pseudoprime. For example we introduce the Lucas ¢-pseudoprime and strong
Lucas t-pseudoprime. From Theorem 7.17 we obtain several relationships among the

aforementioned new types of pseudoprime.



(2) In §11 we prove a large number of results to the effect that for an odd integer =,
the primality of n is equivalent to n being a type of pseudoprime to all possible bases.
See Theorems .11.22, 11.24, 11.25, 11.26, 11.27, 11.28, 11.29 and 11.31. Theorems
11.25, 11.26 are consequences of already known results on general Lucas sequences
Un(P,Q) (see [51]). However the others are new, particularly those about tpsp’s,
rpsp’s and apsp’s.

(3) In §12 and §13 we derive three formulas which count the number of incongru-
ent bases @ mod n such that n is a Lucas pseudoprime to the base a, an Euler -
Lucas pseudoprime to the base a, or a strong Lucas pseudoprime to the base a (see
Theorems 12.8, 12.7 12.9).

(4) In §14 we give upper bounds for EL(n), the number of incongruent bases a mod

n such that n is an Euler - Lucas pseudoprime to the base a. First we show that
n—2

for all odd composite integers n, EL(n) < . Then we show that in other cases
n— n—2

3 4
These results have some applications to primality testing, especially to probabilistic

we can get EL(n) < and EL(n) <

for certain types of composite n.

primality testing (see Theorems 14.24, 14.25, 14.26, 14.27, 14.28, 14.29).

In §1 we begin with background knowledge of general Lucas sequences, U, (P, @),
Va(P, Q). This is helpful to put the subject of the sequence of solutions of the Pell
equation into perspective. Based on the discussion in §1, §2 and §3, we derive some
general properties of Lucas sequences, specifically the sequences X,(n), Y,(n), their
derivatives, inequalities, identities and divisibility properties. These three sections
play the role of a toolbox for the later discussion. The Lucas sequence primality tests
using X,(n) and Y,(n), which we shall give, can all be carried out in polynomial

time, at each fixed base a. Proof of this is reviewed in §5. In §6 we give proofs



of some classical Lucas sequence results. Most results in §1 - §6 are known. Our
new results mostly occur in sections 7 through 14. In §7 we define some new types
of Lucas pseudoprimes and also give some examples which show that sltpsp(a) and
slzpsp(a) are very strong Lucas primality tests. In §8 we show that Lucas - Lehmer’s
test for Mersenne primes and Fermat primes can be deduced from our ltpsp test.
In §9 we derive many interesting results about prime powers. Some of these we
need in later sections and some of these are nice on their own. In §10 we define
the concept of Lucas primitive root for our sequences X,(n) and Y,(n), and show
that all integers have Lucas primitive roots. Also we prove some useful results
about quadratic residues and ranks. In §11 we define different kinds of Lucas -
Carmichael numbers. These are Lucas analogs of ordinary Carmichael numbers. For
each kind of Lucas - Carmichael defined in terms of factorization properties, we give
equivalent Lucas sequence conditions. These results show that some methods of
Lucas primality testing are not strong enough for primality, even if such tests are
passed for all bases, e.g. the test X,;(n) = a (mod n). An example showing this is
n = 7,056,721 = 7.47-89-241 (see Theorem 11.14). However, many of the tests we
mention in §7 are sufficient for primality if one of them is passed for all bases, and
some are enough on fewer bases. Section 11 makes all of this clear.

In §12 and §13 we derive some formulas which count the number of incongruent
bases for some kinds of ordinary pseudoprimes and Lucas pseudoprimes. These
results are used in §14 to show for example that if n is composite, then there are no
more than (n — 2)/2 incongruent bases to which n is an Euler - Lucas pseudoprime.

In the conclusion section, we state some open problems and conjectures.



§1. Background

In this section, we discuss the properties of general Lucas sequences U, (P, Q)
and V,(P,Q). The properties discussed in this section are the basis for our later
discussion about the sequence of solutions to the Pell equation
(1.1) 22— (a® - 4)y% = 4.

Obviously the family of Pell equations (1.1) includes the Pell equation
(1.2) 22— (a® -1)y? =1,
as a special case; for if we multiply by 4 we have (2z)% — ((2a)% — 4)y% = 4.

When a is odd in (1.1) we obtain a new family of Pell equations which are not of
the form (1.2). Equation (1.1) has infinitely many solutions, just as (1.2) does. (We
give a proof of this below.)

Following the notation of Y. Matijasevi¢ and J. Robinson, the sequence of solu-
tions of (1.1) will be denoted by z = X,(n) and y = Y,(n). These sequences are the
main interest of this tlllesis. .

When we use the Pell equation (1.1), this subject is part of the Lucas-Lehmer
theory developed by E. Lucas [32] and D.H. Lehmer [26] [27]. As described by
Lucas [32] it is the theory of two sequences
(1.3) Vo =a"+p7, U, = <=2,
where a and § are the roots of the equation
(1.4) - Pz+Q =0.

Here P and @ are any two nonzero integers. D = P? — 4(Q is the discriminant of
(1.4). D is assumed to be nonzero, hence we always have o # f,a # 0 and 3 # 0.

We can suppose |3| < |a|. We have also



(1.5) P=o+B, Q=a-f, D=(a—p)? D=P2—4Q.

If D > 0, then a and f are real, in addition to @ # f,a # 0 and § # 0. Also

since a + f# = P # 0, we have o # —f. Thus a # +0. Hence |a| # |8| so we can
suppose |f| < |a|. We also have a/f # +1. Since a and £ are real, this implies that
a/B is not an n** root of unity when D > 0. If D < 0, then |a| = |3|. Hence
(1.6) la| =B & D <0.
Thus when 0 < D, a/f is not an n** root of unity for any n. When D < 0, it is
possible for /8 to be an n® root of unity. In this case the sequences V, and U,
become periodically zero (degenerate). This happens if P2 = Q, P? = 2Q, P2 = 3Q
or P? = 4Q. In these cases a/f is a 3" ,4h 6% or 1* root of unity, respectively.
These are the only degenerate cases (Bundschuh and Shiue [4].) We give a proof of
this.

Theorem 1.7. Let o and S be the roots of 22— Pz +Q where P and Q are nonzero
integers. Then /8 is an n** root of unity if and only if P? = Q, P? = 2Q, P2 = 3Q
or P? = 4Q.

The proof of Theroem 1.7 will follow from several lemmas.

Lemma 1.7.1. For any positive integer n there exist integers cg,cy,- <, Cn1
such that 2cos(nf) can be expressed as a monic polynomial in 2cos(8), with integer
coefficients,

(1.7.1) 2cos(nf) = (2c0s(0))™ + cu—1(2c0s(8))"1 + - - - + ¢1(2cos(8)) + co.

Proof. From cos(a + ) + cos(a — ) = 2cos(a)cos(B) with o = nf and § = 0 we
have 2cos((n + 1)8) = 2cos(nb)-cos(8) — 2cos((n — 1)8).

By induction this identity implies (1.7.1). For example for n =2 and n = 3,



2¢0s(26) = 4cos?(9) — 2, 2¢05(30) = 8cos3(8) — 6cos(h).

This completes the proof of Lemma 1.7.1.

Lemma 1.7.2. If w is a complex n** root of unity, w® = 1 and Re(w) is a rational

number, then 2Re(w) is an integer.

Proof.  Suppose w® = 1. Then |w| = 1. Hence w = cos(#) + :-sin(f) so that
Re(w) = cos(f) and 2Re(w) = 2cos(f). From w” = cos(nf) + i-sin(nd) and w™ =1
we have cos(nf) = 1. Hence 2cos(nf) = 2, an integer. Therefore the result follows

from the Lemma 1.7.1.

Lemma 1.7.3. Suppose s is rational, r is real, some root w of 2 — sz +r = 0 is

also a complex n** root of unity w™ = 1 and s% — 4r < 0. Then s is an integer.

Proof. Suppose w?—sw+7r = 0. Multiply by 4 and complete the square to obtain
0=4w?—4sw+4r=(2w—s) +4r—s* = (2w—s)%2=s% — 4r = s=2Re(w). Hence the

conclusion of Lemma, 1.7.3 follows from Lemma 1.7.2.

Proof of Theorem 1.7. Let D = P2—4Q. If D >0, then, as mentioned, o/ cannot
be an n** root of 1. Consider the case D <0. In this case P2 <4Q so that 0< Q. Let
t=P2/Q and s=t—2. Then s and ¢ are rational and since D <0, 0<t<4 and hence

—2<5<2.@=af and Q#0 imply a#0 and f#0. Since Q@ =af and P=a+(, we
a B

S = I—B- + -O-t—

Hence a/f is a root of the polynomial 22 — sz + 1. Consequently a/8 = w where

s+iv4d—s?
w=-————2——.

Here ¢ = +/—1.Since 0 <t <4, ift is an integer, there are only 4 cases. When

have

t=1,5s = —1 and /B is a 3™ root of unity. When ¢ = 2,5 = 0 and o/ is a 4*



root of unity. When ¢t = 3,s = 1 and a/f is a 6% root of unity. When t = 4,s = 2
and a/f is a 1% root of unity. By Lemma 1.7.3 with r = 1, s is an integer. Hence

the conclusion of the theorem follows.

Later we will suppose 0 < D in addition to P # 0 and @ # 0. In this case, as we
observed above, o and § are real, a/f is not an n root of unity and by (1.6) we
have || # |a|. Hence we can suppose |3| < |a]. It is easy to see that
(1.8.) 0<p8& 0<PQ. Also 0<f<a&0<Pand 0<Q.

We also have 1 < |a/B] since |a/B| = |a|/|B| (and |B| # 0 since Q # 0). Also
I8] < |o| if and only if 8% < a2. So it follows from (1.4) and (1.5) that

(1.8.1) f<a & 0<P & a=%2D ad g=ED

Using (1.8.1) it is easy to see that

(1.8.2) 0<f<l & 0<QP-Q-1).

In this thesis we will usually suppose 0 < P. Hence the right side of (1.8.1) will hold.

Normally one may also suppose that D # O (D is not a perfect square). Then
B = @, so that § is the conjugate of a. Hence a and f are two irrational reals
and o # 6. One usually also assumes (P, Q) = 1, but it won’t be necessary here
because we will later put @ = 1.

From the hypotheses 0< D, Q # 0 and 1 <P, we can easily see that 1< o and
(1.8.3) -1<B8 & 0<P+Q+1.

Also since VD < P if and only if 0 < Q, by (1.5) and (1.8.2) we have
(1.8.4) 0<f & 0<@Q and fB<1 & Q+1<P
Consequently

(1.8.5) 0<f<l<a & 0<Q and Q+1<P.



In fact |8] < 1 if and only if |@ + 1| < P. Also when 1 < P we have

(1.86) —1<f<0<l<a & 0<P+Q+1<P+landl<f<a & P<Q+l.
By (1.8.1) we have from 0 < D that P < 2a. By (1.5) we have a8 = Q. It follows

that || = |af|/|a] = |@Q]/a < 2|Q|/P. Therefore § — 0 as P — +o00. Consequently

(1.8.7) lim ‘ij -9 _

P—400

0.

From the assumptions 0 < D, Q #0 and 1< P, it follows that 1 <V, and 0< U,
as well as 0 < U, for 0 <n. Shortly we will put () =1 and suppose 2< P. Then we
will have 2<V, and n<U,. Also it will follow that 0<f8<1<a, by (1.8.5).

For any P and @, if a # 3, the sequences U, and V, satisfy the Lucas identity:
(1.9) V2~ D-U? =4Q".
To prove (1.9) we shall use (1.3), (1.5), D = (e — §)? and af = Q. We have by (1.5)
V2 D.U2 = (a" + "2 — (a — B)? (MY
n n a—p
= (a" + ") — (a" — B")? = 4a"f" = 4Q".
The functions U, and V, satisfying the Lucas identity (1.9) can also be defined as
Lucas sequences, that is as sequences satisfying a second order linear recurrence:
(110) () Vo=2, WVi=P, Via=PVou—QV,
(¢3) Uy=0, Ui=1, Uppo=P-Upy1—-Q-U,.

Proof. Using (1.3) and P =a+ (3, @ = af}, we have

PVay1 = Q-V, = (a+ B)(a™! + ™) — aB(a” + B*) = ("2 + f"1?) = V0.

n+l __ an+l n__ An n+2 __ An+2
pina-atiror o (S5 S5 (£325)
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In a similar way one can derive the Addition Laws, (also due to Lucas [32]),

(1.11) 2Vaim = Vo Vi + DUy -Up,

(1.12) 2Q™"Voem = Voo Vi — DUy -Up,,

(1.13) Unim = Un Voo + V5 -Upy,

(1.14) 2Q™Upemn = Uy, -V — V- Up,.

As special cases of the Addition Laws, (m = 1) we have
(1.11) 2V = PV, 4+ DUy,

(1.12') 2Q-Vooy =PV, = D-U,,

(1.13)) 2Up41 = P-Uyp + Vi,

(1.14") 2Q Up-1=P-U, = V,.

From (1.11) and (1.13) we can obtain the Double Angle Formulas (Lucas [32]).
(1.18) () Usa=UnVa (#) Voo =V2-—2Q" = D-UZ+2Q".
If we replace n by n+ 1 and m by »n in (1.12), then we obtain the identity

Vat1:' Vo — D-Upyy-Up, =2P-Q".
From this identity we may derive
(1.16) U2 —Upt1:Upy = QL
Proof of (1.16). Using (1.12), (1.13) and also replacing D by P?—4 in (1.9) we have
4QUE—-4Q"=P?US~V? =(PUs+V,)(PUs = V,) = 2Un41-2QUn—1=4QUp41-Up-1.
Dividing both sides by 4Q and transposing terms we obtain (1.16).
Replacing n by n + 1 in (1.16) and Up42 by P-Uy41 — Q-Uy, in (1.10) (%) we obtain

(1.17) U2,y — PUp1-U, + Q-UZ =Q".
From (1.14"), (1.12") and (1.15) we have the identities
(1.18) P.U2-2Q-U,-Uyp_y = Usy,

(1.19) P-V2=2Q-V,-V,_1 = DUy,.
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By induction using (1.10) (é¢), (1.14') and (1.15) with n replaced by n + 1 one
can obtain (1.20) and from it, by (1.9), obtain (1.21).

(1-20) ﬂ+1 Q U U2n+1,
(121) n+1 - Q V = D- U2n+1
By adding and substracting Addition Equations (1.11) - (1.14) one obtains the
Lucas Product Formulas
(122) ‘/n-{-m + Qm“/n—m = V;VVm’
(123) Un+m + Qm‘Un—m = Un'Vma
(1.24) Vatm — Q™ Vaen = D-Uy, -Un,
(1.25) n+m Q Unem = Vo Unp.

Now let i = n+m,j = n — m so that n = (¢ + 7)/2 and m = (¢ — j)/2. Then from
(1.22) - (1.25) we obtain the Lucas Half Angle Formulas,

(1.26.1) Vi+ QY = Visiz - Vi
(1.26.2) Vi = QFV; = D-Ugejpya- Uiy
(1.26.3) Ui + Q“f Uj = Ugtiyjz-Vii-i) /2
(1.26.4) Ui — QFU; = Visajpja-Ugg-iy 2

As a special case, if we put i = n,j =1 and use V; = P,U; =1, then we obtain

(1.27.1) Vo+ QT P= Vintry/2- Vin-1)/2s
(1.27.2) Vo— QT P= D -Uns1y/2-Un-1)/2,
(1.27.3) Up + Q" = Un+1y/2:Vin-1)/2,

(1.27.4) Un — QT = Vipt1y2-Un-1)/2-
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Identities (1.11") - (1.14') can be combined into the following. Suppose € = 1,

(1.28) (i) 2Q*5*V,_. = PV, — eDU,,
) 2Q'F U, = —€V,, + PU,,
(i43) 2Q*%Viye = PV, + eDU,,
(iv) 2Q5 Upye = €V, + PU,.

Assuming 0 < D, by induction on =, using (1.10) () (i¢) and Addition Laws (1.11')

(1.13'), one obtains

(1.29)

(m+¢5vl)" _ Va+VDU,
2 -2

Proof. n=0. (Y-l-'f%z@’l)o = 1= 2yD0 - YoiyDlp

Assume (1.29) holds for n. For n + 1, using (1.10) (2),(¢%), (1.11’) and (1.13")
(V1 + \/Bvl) " (Vl + s/T)Ul) (v1 + JEUI)“ _ (Vl + \/T)Ul) (V,, + \/EUn)
B B 2

2 2 2 2
- ‘/].Vn + \/-D"/IUn + \/EUIVn + DUlUn _ PVn + \/D—PUn + \/_D_Vn + DUn
- 4 - 4
_ PV,+DU,+VD(PU,+V,) _ 2Va41+ VD -2Upp1 _ Vo + VD-Un1
- 4 - 4 - 2 )

We give next a proof by induction that, at least in the cases @ +1 < P and
Q@ = %1, all solutions of the Lucas identity (1.9) are given by the Lucas sequences

(1.10) (¢) and (4¢). For this we will use the following lemma.

Lemma 1.30. Suppose D = P2—4Q, Q+1 < P and Q = +1. Suppose V2—DU? =
4Q forsome i, 0 < Vand 1 < U. If Q = +1, then V < PU,(P —2)U < V and
DU < PV.If Q = —1, then PU <V < (P +2)U and PV < DU.
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Proof. Suppose V2 — DU? = 4Q%, 0 < Vand 1 < U. Since 1 < U we have
|V2/U? — D| = 4|Q|’/U? = 4/U? < 1 which implies [V/U — v/D| < 1/v/D. Hence

, 1 |4 1
(1.30" \/_—mﬁ-lj S\/B+-27—D—

If Q = +1, then P — 2 < D/P so the inequalities V < PU,(P — 2)U < V and
DU < PV are equivalent to D/P < V/U < P which follows from (1.30) since it is

easy to see that

D 1 1
—+land 2<P = Z<vVD——— and VD+——<P.
@ an P ovD ¢ 2vD

If @ = —1, then when P =1 or P = 2, we have P+2 < D/P so that the inequalities
PU <V < (P+2)U and PV < DU are implied by the inequality P < V/U < P+2
which follow from (1.30") since P < v/D —1/(2v/D) and vD +1/(2V/D) < P + 2.

If@Q =—-1and 2 < P, then D/P < P+ 2 so that the PU < V < (P + 2)U and
PV < DU are implied by P < V/U < D/P which follows from (1.30°’) and the

observation that

Q=-land 2<P = P<VD-z5 and VD+35<5.

Theorem 1.31 Suppose D = P?~4Q, Q+1< P and Q = £1. Suppose further
that 0<V, 0<U. Then V2—DU?=4Q" for some i if and only if it is possible to
find a nonnegative integer n such that V=V, U ='U,,, also when @ =—1, we have

n =1 (mod 2).

Proof. Sufficiency follows from (1.9).
To show the existence of n, we will use induction on U (Fermat’s method of

descent). First suppose U =0 and 0 < V. Then
V2-DU?=4Q' = V?=4Q' = |V|’=4 = V=2
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so that we may take n =0. If U =1 and 0 < V, then when ¢ is even and Q = —1
VZ-DU?=4Q' = V*-P*+4Q=4Q' = V2—P? =0 or V- P%=3,
fV2—-—P2=0,then V=P and wemay taken=1. f V2— P2 =8 then P=1

and V =1 or V = 3. Hence we may take n =0 or n = 2.

Suppose 1 < U,0 £ V,V2 — DU? = 4@Q' and the statement holds for all pairs
(V',U") such that 0 < U’ < U and 0 < V'. Put V' = (PV — DU)/(2Q) and put
U' = (=V + PU)/(2Q). From V2 — DU? = 4Qf,Q = %1 and D = P (mod 2), we
can see that U’ and V' are integers. Also 0 < U’ < U and 0 < V' by Lemma 1.30.
Further

V2 — DU" = (PV — DU)?/(4Q?) — D(PU - V)?/(4Q?)

= (P?*V?-DP2U?+ DV? - D?U?)/(4Q?% = (’P2 — D)(V? - DU?%)/(4Q?)

= (P’ D)4Q'/(4Q%) = 4Q4Q°/(4Q%) = 4@,
Thus V2 —~ DU = 4Q*-1. By the induction hypothesis there exists a nonnegative
integer n such that V' = V,_; and U’ = U,_;. From P2 — D = 4Q one obtains
V=PV +DU)[2and U = (V' + P-U’)/2. Hence V = (P-V,_1 + D-U,_1)/2 =
(ViVoae1 + DULU,—1)/2 = V,, by Addition Law 1.11. Also U = (V,_; + P-U,_;)/2 =
(U1Va-1 + V1U,-1)/2 = U, by Addition Law 1.13. Therefore the result holds for U.

The equation corresponding to identity (1.17),

(1.32) y? — Pzy + Qz? = Q"
has a property similar to the Lucas equation (1.9). If |@Q| = 1, then all solutions to
(1.32) are given by x = U,,y = Un41 where U, and U,4; are defined by (1.10) (42).

Theorem 1.33 Suppose Q = +1. Then 0 < z, 0 < y and 3% — Pzy + Q1% = @
for some ¢ if and only if it is possible to find a nonnegative integer n such that

2 =U,,y=Up4 and n =i (mod 2) if Q = —1.
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Proof. (<). By identity (1.17). (=>). Suppose y%— Pzy+ Qz% = Q' for some i, z
and y satisfying0 < r and 0 < y. Put V = 2y— Pz. Then y = (Pz+V)/2. Substitute
this y into y2 — Pzy+ Q2% = Q' to obtain (Pzx+V)%/4— P(Pz+V)z/2+ Q22 = Q'
This equation is equivalent to (Pz + V)2 — 2P(Pz + V)z + 4Qz? = 4Q° which
simplifies to V2 — P23? 4 4Qx? = 4Q* which then becomes V2 — (P2 — 4Q)z? = 4Q'.
By Theorem 1.31 there exists n such that V =V, and = = U,,. Hence from identity
(1.13') we have 2y = Pz +V = PU, + V, = 2U,,; which implies y = U,;. Hence
z=U, and y = Up4;.

The solutions of the Pell equation z? ~ (a® — 1)y = 1 do not satisfy the Lucas
equation (1.9). However the solutions of the Pell equation 22 — (a? — 4)y? = 4 satisfy
(1.9) and when a is even contain the solutions for z2—(a®?—1)y? = 1 as a subsequence.
Hence we put P =a and Q = 1.

From (1.5) witha=P,d=Dand Q=1,wehave f=olanda~f=Vd =
v/aZ — 4. Then the Lucas equation (1.9) becomes the Pell equation (1.1):

(1.34) V2— (a2 —4)U2 =4.
Hence the sequence of the solutions to the Pell equation (1.1), denoted by X,(n) and
Ya(n), are Yy(n) = U, and X,(n) =V,,. That is

(1.35) Xa(n)? — (a® — 4)Y,(n)? = 4.
Also z? — (a2 - 4)y? =4 & 3nf[z = X,(n) and y = Y,(n)].

From (1.29), we have

Xa(n) +Ya(n)vaZ -4 _ (a + \/2?2?2)".

(1.36) )

(1.36) shows that the algebraic integer a= (a+v/d)/2, called the generator, generates
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all solutions for (1.35). Its conjugate, § = @ is its inverse, § = a~!. Thus

a—Va¥=1 _ <a+\/252-_4)-1.

(1.37) >

Taking the conjugate of the both sides of (1.36) we get

Xa(n)—x;(n)\/m _ (a_m)n.

(1.38) -

This shows that X,(n) and Y,(n) can be defined alsoby 8 =@ = a~! = a—+/a? — 4,

i.e. by the conjugate of the generator. Next we prove

Xa(nm) + Y (nm)v/aZ — 4 _ (Xa(n) +Ya(n)«/52_:-_74-)m
5 .

(1.39) Y

Proof. Replace n by nm in (1.36) to get

Xa(nm)+Ya(nm)Vd _ (a+¢3)"”'= ((awa)")"‘: (xa(n>+n(n)¢z>m |

2 2 2 2

Adding and subtracting equations (1.36) and (1.38) we obtain

(1.40)  Xu(n) = o™ +T" = (%—-—m)n+(ﬂ)n,

2
1 o a1 a+vVaZ—4\" f(a—+aZ-4\"
(1.41) Y;(n)—-—‘/—a(a a) = a2—-4[( 5 ) ( 3 )]
The equations may also be written in the form
— B —n n ~2n) _ _.n 1
(1.42) Xs(n) = a"+a™ = « (1+a ) = a (I+E),

an

(1.43) Ya(n) = -\;_C-l (a“ - a"") = % (1 - a"2“) = 73 (1 - 'alz_n) .

Hence we have also

(1.44) Xa(n) = (“+2‘/3) (1+( ml@)n),
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(1.45) Ya(n) = %(—%‘/—‘7) (1—(—_1__227))

The functions X,(n) and Y,(n) can also be defined for negative values of n. This is
useful in identities involvings + signs. Lucas [32] gave the following as definitions
(1.46) Xa(—n) = X4(n), Ya(—n) = —Y,(n).

Proof. Using (1.42) and (1.43) we have
Xa(—n)=a™ + " =" + a" = X,(n).

1 —n —(-n 1 -n n 1 n -n
Y},(—-n):\—/_g(a —a~¢ ))=ﬁ(a —a)=——\7§(a -0 )=-—Y;(n).

The functions X,(n) and Y,(n) may also be defined in a natural way for negative

values of a. The following relations will be used in the later sections.
(1.47) X_a(n) = (-1)"Xa(n), Y_a(n) = —(=1)"Ya(n).

Proof. Replacing a by —a in (1.40) and (1.41) we have

X_o(n) = (—_—a;—\/&)nq—(j;—"/&)n

= o (358) e (58 = o,

i = (59 - (=39

- (55 - (£59)- o

Here v/d = v/a? — 4 remains unchanged when a is replaced by —a. Thus (1.47) is

proved.

Our main interest in this thesis is the sequence of the solutions for the Pell

equation (1.1). Hence we usually let @ = 1. The above is only included to explain
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how our theory of the Pell equation (1.1) fits into the classical Lucas - Lehmer theory
of Lucas [32] and Lehmer [26].

The following Jacobi symbols will play a special role,

o (-5 ) -8

When it is necessary to specify what a is or what n is, we use €,, p,, 7, or €,(n)

pa(n), and 74(n) to denote these Jacobi symbols.
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§2. Derivatives and inequalities

In this section, we derive formulas for the derivatives and some inequalities for
Lucas sequences. These derivatives will actually be used and together with the iden-
tities which we derive in the next section play important roles in the later sections.
For the derivatives, we shall begin with the general sequences, V, and U,. We shall
consider derivatives with respect to P. V,, and U, are polynomialsin P and Q. So if
Q is held constant, then, for fixed n, V,, and U, are polynomials in P. Consequently
they have derivatives with respect to P. Let V] = dV, /dP and U], = dU,/dP denote

these derivatives. We will show
Theorem 2.1. (i) V) =n-U, and (iiy DU, = aV, — PU,.
Proof. (i) and (ii) hold for n = 0. Assume they hold for n. We shall use (1.10),
(1.12') and D' = 2P.
2V, = —51—(2V )= —‘-i—(PV + DU,) =V, + PV! +2PU, + DU!
n+1 dP n+1 dP n n n n n n
= Vp+ P(nU,) + 2PU, + nV, — PU, (by the induction hypothesis)
= Va+ P(nU,) + PU, +nV, = (n+ 1)(PU, + V,)

= (n+1)2Un41 = 2(n + 1)Uny1. (by (1.12))

Thus V], = (n + 1)Un41. Hence (i) holds for n + 1. Similarly

d d
2DU,,, = D75 (2Unt) = Dg5(PUn +V2) (by (1.12))

= D(U, + PU, +V,) = DU, + PDU, + DV,
= DU, + P(nV, — PU,) + nDU, (by induction hypothesis and (i))

= DU, + nPV, — P?U, + nDU,
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(n + 1)PV, + (n + 1)DU, — P*U, — PV,

(n +1)(PV, + DU,) — P(PU, + V,)
= (n+1)2V,41 — P-2Up4;.  (by (1.10°) and (1.12°) again)
This shows that DU}, = (n + 1)Voyy — PUpys.
Thus (i) and (ii) are proven.

If we put P = a, Q = 1 and write D = d, then we have
Corollary 2.2. X!(n) = nY,(n) and dY](n) = nX,(n)— aY¥,(n).

Corollary 2.3. (¥V(n), Ya(n) | 2(n, Ya(n).

Proof. Let k = (Y!(r),Ya(n)). Then k | Y!(n) and k | Ya(n). By 2.2, k | nXa(n).
Hence k | (nXa(n), Ya(n)). Since Xa(n)2—dY,(n)? = 4, (Xa(n),Ya(n)) | 2. Therefore
£]2(n, Ya(n)). |

Next we mention some inequalities for the sequences X, and Y,.

Suppose 2 < a, d = a® — 4, and @ = (a + v/d)/2. Then a < 2a < 2a. Since
a@=o!,wehave 0<1l/a<@<2/a<landalsol<a—-1<+Vd<a<a<2/d
Further,

(2.4) 0<1/vVd<2/d<2/a<a-Vi<2/Vi<2/(a—1)<3/a<1.
Next we will use 22 = dy? + 4 and d = a® — 4 to prove that fora > 2, n > 1,

(2.5) dY,(n)? < o™ —1.

From (1.43) we have +/dY,(n) = o®(1 — a~2"). If we square both sides of this
equation and use the inequality (1 — z)2 < 1 — z (which holds for 0 < z < 1, then
we get dY,(n)? = o®*(1 — a™?)? < @®*(1 — a~2") = o?" — 1. Hence (2.5) holds for

2<aand1<n.
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From z? = dy? + 4 and d = ¢ — 4 one can show that fora > 2 and n > 0

Xa)  y < Kl Kalr) ¢ ole)

From (2.5) we also have dY,(n)? < 202" and hence VdY,(n) < o®. It is not difficult

(2.6)

to see that for 2< a, 3 < n:

(2.7) %(a -1l % (a-;;/&)“ < X“a(n) <Y,(n) < \—;_2 (a +2‘/E>n <a*t,

Here we need the assumption 3 < n only for the rightmost inequality. For most

of the others it is sufficient to suppose only 2 < a and 1 < n. For example for
Vd - Y,(n)? < o" this is enough. For the leftmost inequality we can suppose 2 < n.
This inequality is easy to prove for n = 2. The rightmost inequality, for which we
need to assume n = 3, can be proved by using a3 + \/Za < 2a2v/d to show that
o3 < a2v/d holds for 2 < a. For n greater than these values the rightmost (and

leftmost) inequalities can be proved by induction usinga — 1 < & < a.

Lemma 2.8. For2<aand1<mn,

() (a=-1D)""<X,(n+1)<a™, (X)) (a-1)"<Y.(n+1)<a"

(1) n<a=>a"< Xs(n+1) <a™tl, () n<a=a""1 <Y, (n+1)<La”
Most of these inequalities follow from (2.6). The left side of the first inequality
() (a—1)** < X,(n + 1), is slightly stronger than what would follow directly
from (2.6). It is most easily derived by induction using the Lucas Equations for
Xa(n) and Yy(n) (see (1.8) and (1.9) or (3.10) and (3.11) below). In the proofs of
inequalities (4é¢) and (¢v), which hold when n < a, we use the elementary inequality
0<z<1l=1-nr< (1—2z) Put z = 1/a. Since 1 +n < a, we have

e l=a"fa<a"(1-nfa) <a™(l—1/a)* = (a—1)".
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Lemma 2.9. For all n, we have the following inequalities

(1) If 2<a, then 2Y,(n-—1) < a¥,(n—1) <Y,(n),

(i) If 2<a, then Y,m)+Yalr —1)<2Yalr) <VdYaln)<X.(),

(¢5) If 3<a, then 2Y (n—1)+2Y,(n) < Xs(n),

(fv) H 2<a, then X,(n—2)+2X,(n—1) < X,(n),

(v) For 2<a, a < b= X,(n) < Xip(n), Yo(n) < Yi(n),

(vi) For 2<a, 2 < X,(n) and n <Y,(n).
Proof. 2 < a =2 < a = 2Y,(n —1) < a¥y(n — 1) < Yy(n). This last inequality,
aYy(n — 1) < Y,(n), follows from (1.43) since 1 < a. For the proof of the second
inequality, (i5), we use (2.6). We have v/dY,(n) < Xu(n) and 2 < a implies that
2 < V5 < VaZ — 4 = v/d. Inequality (iii) follows from (7), (2.5) and the implication
3<a = 3<Vd. Thus X,(n)>VdY,(n) >3Y,(n) =Y, (n)4+2Y,(n) > 2Y,(n—~1)+Y.(n).
Hence 2Y,(n — 1) + 2Y,(n) < X4(n). To prove (iv) from (2.7), it is enough to show
(a 4+ aa)/Vd < o?. Using a— 1 < vd < @ < a, one sees that when 3 < a, this
inequality follows from a(a + 1) < a3. For Y,(n) inequality (v) follows from (1.45)
since o and a/+/d are increasing functions of a for a > 2. For X,(n) inequality (v)
can be deduced from inequality (v) for Y,(n) and (1.35). If a < b, then X,(n)? =
(a® —4)Y,(n)? +4 < (b2 —4)Yy(n)% +4 = X(n)?. Finally, inequality (vi) follows from

inequality (v) by taking b = a and @ = 2 in (v).
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§3. Identities

We list some of the identities which hold for the sequences X, and Y,. Most of
these identities were known to Lucas and Lehmer. Many will be directly used in
later discussion. Some are not used directly. However we list them for possible use
in the future.

These identities have an algebraic interpretation as equations which hold for
polynomials in Z[a]. See (3.10.1) and (3.11.1) below and (4.13.1) - (4.13.3) in the
next section.

In these identities many =+ signs occur. In this connection recall that X,(n)
and Y,(n) are defined for negative values of n by (1.46) X,(—n) = X,(n) and
Yo(—n) = —Yu(n).

From (1.36) and 4a™*™ = 20" - 2a™ and 4a"™™ = 2a™ - 2a~™ we have
(8.1)  2X,(nEm) +2Ya(n £ m)Vd = (Xa(n) + Ya(n)Vd)(Xa(m) £ Yo(m)Vd).
Taking rational and irrational parts of (3.1), we get the Addition Equations.

(3.2) 2Xa(n £ m) = Xo(n)Xa(m) £ dYa(n)Ya(m),
(3.3) 2Ya(n £ m) = Ya(n)Xa(m) £ Xo(n)Ya(m).

Here the + signs correspond. Putting m = n in these equations, taking the signs to
be + and using (1.1) we obtain the Lucas [32] Double Angle Formulas.

(3.4) Xa(2n) = Xo(n)?2—2 = dY,(n)? +2,

(3-5) Ya(2n) = Xa(n)Ya(n).

The following identities were also known to Lucas [32]. We will call them

Periodicity Equations.
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(3.6) Xa(m£2n) = Xu(n)Xa(m £ n) — X,(m),
(3.7) Yo(m £2n) = Xo(n)Ya(m £ n) =Y, (m).
Proof. Multiply the left side by 2, then expand by (3.2), (3.3), (3,4) and (3.5),
2X(m+2n) = X(m)X(2n)+ dY(m)Y(2n)
= X(m)(X(n)’ - 2) £ dY(m)X (n)Y (n)
= X(n)X(m)X(n) £ dX ()Y (m)Y (n) — 2X (m)
= X(n)[X(m)X(n) £ dY (m)Y (n)] — 2X (m)
= X(n)2X(m +n) — 2X(m)

= 2[X(n)X(m<£n)—X(m)]. (3.6) is proved.
2Y(m£2n) = Y(m)X(2n) £ X(m)Y(2n)

= Y(m)(X(n)’ - 2) £ X(m)X (n)Y (n)
= X(n)Y(m)X(n) £ X(n)X(m)Y (n) — 2Y (m)
= X(n)[Y(m)X(n) £ X(m)Y (n)] — 2Y (m)
= X(n)2Y(m % n) — 2Y(m)
= 2X(n)Y(m+n)—Y(m)]. (3.7) is proved.
Note that since (3.1) - (3.5) hold algebraically as statements about polynomials

in a, (3.6) and (3.7) must also hold as statements about polynomials.
Putting m=1 in the Addition Equations and using X,(1) =a and Y, (1) =1 we get
(3.8) 2Xu(n+1) = aXo(n) +dYa(n), 2Yy(n+1) = aYe(n)+ Xu(n),
(39) 2Xi(n—1) = aXa(n) —dYu(n), 2Ya(n—1) = a¥a(n)— X,(n).
Formulas (3.8) and (3.9) tell us how to obtain Y,(n—1) from Y,(r) and X,(n—1)

from X, (n), without knowing n. This is because we can get X,(n) from Y,(n) (and
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Y, (n) from X,(n)) by (1.35). Thus (3.8) and (3.9) prove that the Y, and X, sequences
are each polynomial time retraceable (see §5).
From (3.8), (3.9) and d = a% — 4 we have
(38.1) 2X.(n) = aX,(n+1)—dY,(n+1), 2Y,(n) = —X.(n+1)+aYy(n+1),
(3.9.1) 2X,(n) = aXa(n—1)+dYe(n—1), 2Y,(n) = X.(n—1)—aY¥,(n—1).
Adding corresponding pairs of equations (3.8) and (3.9) and replacing n by n+1

we obtain the Lucas second order recurrence equations:
(3.10) (2) X.(0) = 2, X.(1) = q, Xa(n+2) = aXo(n+1) — X, (n).
(i) Y.(0) = 0, Y.(1) = 1, Ya(n+2) = aYe(n+1) —Yao(n).
The Lucas equations can be used to prove the following, for fixed n,
Xa(n) is a polynomial in a of degree n.
Y.(n) is a polynomial in a of degree n — 1.
The sequnces X, and Y, are not yet defined for =0, 1, or 2. When a=0, the
defining equation (1.1) is 22 +4y? = 4. When a=1 (1.1) is 22 +3y? = 4. When a=2
(1.1) is 22 = 4. We shall define functions Xy, X1, X2,Yp,Y: and Y; giving solutions

to these equations simply by following the Lucas equations. That is we define

(3.11) Xo(n) = 0 (n odd), Yo(n) = (=1)*F (n odd),
Xo(n) = 2(=1)7 (n even), Yo(n) = 0 (n even),
(3.12) X1(31) = 2(-1)f, ﬁ(&‘) =0
Xi(B8i£1) = (1), YiBi£1) = £(~1)},

(3.13) Xo(n) = 2, Ye(n) = n.
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Observe that these functions are periodic. X is 2,0,—2,0 (mod 4), Y5 is0,1,0,—1
(mod 4), X;is2,1,-1,-2,—1,1 (mod 6) and Y;is0,1,1,0,—1,~1 (mod 6).

Xo, Yo and Yy are degenerate Lucas sequences since they are periodically 0.
However the Lucas Equations (3.10) and (3.11) hold for them, as well as for Xi, X»
and Y3. In fact all the identities (3.2) - (3.9) hold for these functions since the Lucas
equations can be used to derive the Addition Equations. Defining equation (1.1) also
holds. Throughout this thesis we therefore allow a = 0,a =1 and a = 2.

By means of (1.46) and (1.47) we can also extend the definitions of the functions
X0, X1,X2,Y,Y1 and Y, so that they are defined on negative n and for negative
values of a. Below we consider a = —1 and a = —2. We shall also need the following

simple properties of the X3 and Y; functions.

Lemma 3.14 If (n,6) = 1, then X;(n) =1 and Y;(n) = (Tg) =n (mod 6).
If 3 | n, then X;(n) = 2(—1)*2 and Y;(n) = 0.

Proof. From Definition 3.12, X; and Y} can be seen to be periodic with period 6.
If (n,6) = 1, then n = 65+ 1 so that X;(6j+1) =1 and Y;(65 % 1) = 1. From the
theory of quadratic residues it is known that if (n,6) = 1, then (—3/n) = n (mod 6).
In other words, if n = 6j & 1, then (—3/n) = +1. Consequently (—3/n) = Y;(n).

Adding and subtracting pairs of Addition Equations (3.2) (3.3) we get the
Lucas [32] Product Formulas:

(3.15) Xa(m+m) + Xo(n—m) = X (n) - Xz(m),
(3.16) Xa(n+m) — Xa(n—m) = dYa(n) - Y.(m),
(3.17) Yo(n 4+ m) + Yo(n—m) = Y,(n) - X,(m),

(3.18) Yo(n+m) — Yo(n—m) = X,(n)-Yo(m).



27

Letting ¢ = n+m and j = n — m so that n = (i + j)/2 and m = (i — j)/2, the

product formulas give us the Half Angle Formulas:

(3.19) X0) + X0) = % (132) % (52),

(320) X.6) - X.0) = av. (332) % (52),

(3:21) v.6) + Y0) = Y. (32) % (52),

(3.22) %6 - %0) = % (32) v (52).

Putting i = n, j = 1, using X,(1) = a and Y,(1) = 1, we have the special cases,
(3.19") X.n) +a = X, (-’-";—1) - X, (n;'l)

(3.20) X, - o = av. (25) v (B57),

(3.21') Yy(n) + 1 = 1’,,(”'2”) X, (";1) |

(3.22) Yo(n) — 1 = X, (%i) Y, (";1)

Replacing ¢ by 2¢ and j by 2j, equations (3.19) - (3.22) can be rewritten in the form

(3.23) Xa(2) + Xa(2)) = Xali+35)- Xali - j),

(3.24) Xa(2i) — Xa(2j) = dYa(i+7) - Ya(i - J),

(3.25) Ya(20) + Ya(25) = Ya(i +J) - Xa(i — ),

(3.26) Ya(2) ~ Ya(2§) = Xa(i+74) Ya(i—J).

Letting ¢ = n and j = 1 in (3.23) - (3.26) and using (3.4) and (3.5), we get the
identities

(3.27) Xo(n)? + d = Xo(n+1)-X,(n—1),

(3.28) Ya(n)? = 1 = Ya(n+1)-Ya(n - 1),

(3.29) Y.(2n) + a = Yo(n+1) X,(n—1),
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(3.30) Yo(2n) — a = X,(n+1)-Yi(n—1).

Identities (3.27) and (3.28) were known to Lucas [32]. As a corollary we obtain
(3.28) Ya(n+1)-Ya(n—1) = (Ya(n) +1)-(Ya(n) - 1).
Multiplying (3.19’) and (3.20') together and using (3.5) and (3.28’) we obtain
(3.29) (Xa() + @)+ (Xa(n) — 0) = d(Ya(n) +1) - (Ya(n) - 1).

If we replace n by n+1 and m by n in Addition Equations (3.2) - (3.3) and take the
sign —, then the result is

(3.31) Xa(n+1)- X4(n) — dYa(n+1)-Y,(n) = 2a,

(3.32) Yo(n+1) - Xa(n) — Xa(n+1) - Ye(n) = 2.

Using (3.8) (3.9) and (1.35) one may verify the following identities.

(3.33) Xa(m+1)? - a-X,(n+1)  Xo(n) + Xa(n)? = —d,
(3.34) Ya(n+1)2 — a-Yy(n+1)-Ye(n) + Yo(n)? = 1.
Applying (3.31) and (3.32) to (3.33) and (3.34) we get

(3.35) Xo(n+1)2 + Xo(n)? — adYy(n+1)-Y,(n) = a®+4,
(3.36) dY,(n+1)? + dY,(n)? — aX,(n+1) - X,(n) = —d—8.
Using (3.8) and (1.35) it is easy to show that

(3.37) Xe(n+1)2 — dX,(n)-Ya(n+1) — Xo(n)? = —d,

(3.38) Ya(n +1)2 — X,(n) - Ya(rn+1) — Yo(n)? = —1.
Applying (3.32) to these we have

(3.39) Xa(n+1)2 — dX,(n+1)-Ys(n) — X,(n)? = d,

(3.40) Ya(n+1)?2 — Xa(n+1)-Ye(n) — Yo(n)2 = 1.

Taking m = 1 in (3.6) and (3.7) and using (1.46) it is easy to show that
(3.41) Xa(2n£1) = X,(n)  Xa(n£1) — a,
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(3.42) Yo(2n£1) = X,(n)-Yo(n£1) + 1.
Here the signs =+ correspond. Applying (3.42) to (3.37) and (3.38) or directly from
(1.20) and (1.21) we obtain the following identities of Lucas [32] which can also be

found in Smorynski [48].

(3.43) dY,2n+1) = Xi(n+1)? — Xu(n)?,

(3.44) Y,@n+1) = Yi(n+1)? — Y(n)2

As a corollary

(3.43) dYu(n) = X, ("T“)2 - X, (";1)2,

(3.44) Ya(n) = Y,,(“',Z”)2 - n(”;l)z.

Applying (3.41) to (3.33) and (3.36) we get

(3.45) aX,(2n+1) = Xa(n+1)2 + X,(n)? + 2a% — 4,
(3.46) aX,(2n+1) = dY,(n +1)? + dY¥,(n)?® + 24® + 4.

Replacing n by (n — 1)/2 in (3.45) and (3.46) gives

2 182
(3.45) eXo(n) = X, (";1) + X, (” . 1) + 2a — 4,
2 _ 2
(3.46") eX.(n) = dY, (1'—;—1) + av, (” . 1) + 22 + 4.

By applying (3.8) and (1.35) to (3.45) and (3.44), we get

(3.47) 2X,(2n+1) = aX,(n)? — 2a + dX,(n)Ya(n),

(3.48) 2Y,(2n +1) = dY.(n)? + 2 + aX,(n)Yi(n),

(3.48.1) 2Ya(i £7) = Xa()(Ya(d) + Ya(j)) * Ya(5)(Xa(®) — Xa(4)).
Identities (3.43) and (3.44) are the case m = 1 of more general identities of
Lucas [32).

(3.49) Xe(n+m)? — X,(n)? = dY,(2n + m) - Y (m),
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(3.50) Yo(n+m)? — Yo(n)? = Ya(2n +m)- Yo(m).
Replacing n by j and m by ¢ — 7 in (3.49) and (3.50) we obtain
(3.49.1) Xa(i)? — Xa(j)? = dYa(i+j) - Ya(i - 5),
(3.50.1) Y0 - Ya(§)? = Ya(i+3) - Yali - 9).

Putting ¢ = nm and j = m in (3.23) and (3.26) and using (3.4), (3.5) we obtain four

identities, the first two of which, (3.51) and (3.52) were known to Lucas [32].

(3.51) Xa(nm)? + dYy(m)? = Xo(nm +m) - X(nm — m),
(3.52) Yo(nm)? — Ya(m)? = Ya(nm +m) - Ya(nm —m),
(3.59) Yo(@nm) — Ya(@m) = Xu(nm +m) - Ya(nm — m),
(3.54) Y.(2nm) + Yo(@m) = Ya(nm +m) - Xo(nm — m).

Corresponding to identity (3.34) we have the Diophantine equation 22 —azy+y® = 1.
Like the Lucas equation z2—dy? = 4 this equation completely defines the Y, sequence.
For z > 0 and y > 0 we have 22 — azy + y% = 1 if and only if (3n)[y = Y,(n) and
z = Y,(n+ 1)]. (See Theorem 1.33 for the proof of this.)

We prove next

k-1
2

(355) Ifl<kodd, Yi(kn) — kYi(n) = dYu(n)> Ya(ni)2
i=0

Proof. The identity will be proved by induction on k. First multiply both sides of
the identity by 2. It holds for k£ = 1, because then both sides equal 0. Assume the
identity holds for k. We will show that it holds for & + 2.
As k increases from k to k+ 2, twice the left side (3.55) increases by the amount:
Y ((k+2)n) — (k+2)Y(n)] — 2[Y(kn) — kY (n)]
= 2Y(kn+2n) — 2Y(kn) — 4Y(n)

= Y(kn)X(2n) + X(kn)Y(2n) — 2¥(kn) ~ 4Y(n)  (by (3.3))
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= X(kn)Y(n)X(n) + [X(2n) —2]Y (kn) — 4Y(n) (by (3.5))
= Y(n)X(kn)X(n) + dY(n)%Y (nk) —4Y (n) (by (3.4))
= Y(n)[X(nk)X(n) + dY (nk)Y (n)] — 4Y(n)

= Y(n)-2X(nk+n) — 4Y(n) (by (3.2))
= 2Y(n)[X(nk +n) — 2]

= 2Y(n) [dY ((nk + n)/2)?] (by (3.4))
= 2dY(n)Y ((nk +n)/2)?

This is also the increase in twice the right side of (3.55) as k& changes to k + 2.

k=2

(856) H2<keven, Ya(kn) — ¥a(2m) = dYa(n) Y- Ya(ni)Ya(ni + ).

i=0

Proof. The identity will be proved as before by induction on k. First multiply both
sides of the identity by 2. It holds for k¥ = 2 because then both sides equal 0. Assume
the identity holds for k. We will show that it holds for £ + 2.

As k increases from k to k + 2, twice the left side (3.56) increases by the amount:

AV ((k +2)m) — k—;f—znzn)] _ oY (kn) — -gY(Zn)]

= 2Y(kn+2n) — 2Y(kn) — 2Y(2n)

= Y(kn)X(2n) + X(kn)Y(2n) — 2Y(kn) — 2V (2n) (by (3.3))
= Y(2n)[X(kn) — 2] + Y (kn)[X(2n) — 2]

= Y(n)X(kn)[X(kn) — 2] + Y(nk)dY (n)? (by (3.4))
= Y(n)X(n)dY (k/2-n)? + dY(k/2-n)X(k/2 - n)Y (n)? (by (3.5))
= dY(n)Y (k/2-n)[Y (k/2-n)X(n) + X(k/2-n)Y(n)]

= dY(n)Y(k/2-n)[2Y (k/2-n +n)] (by (3.3))
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= 2dY(n)Y(k/2- n)Y (k/2-n +n)

This is also the increase in twice the right side of (3.56) as k changes to k + 2.

From the Product Formulas (3.16) and (3.18) we have

(3.57) dYs(n)Ya(2in) = Xo((2i+1)n) — X,((2i - 1)n),
(3.58) Ya(n)Xa(2in) = Yo((2¢ +1)n) — Yo((2¢ — 1)n).
When we sum (3.57) and (3.58) for ¢ = 1,2,...,m, they telescope giving
(3.59) dYa(n)i Y.(2in) = X,(2mn+n) — X.(n),

(3.60) Ya(m)Y, Xa(2in) = Ya(2mn+n) — Ya(n).

i=1

Applying (3.20) and (3.22) to (3.57) and (3.58) we have

(3.61) 4Y,(n)3  Ya(2in) = dYa(mn +n)- Yu(mn),
=1

(3.62) Vo). Xo(2in) = Xo(mn +n) - Yy(mn).
i=1

The next group of identities which hold for € = £1 we call the € identities, where
€ can be +1. The first set (3.68) - (3.71) can be proved from (3.8) and (3.9) by
considering the cases € = Z=1. The other identites can be derived in a similar way.
(3.68 2X,(n+¢€) = aX,(n) + edYy(n),
(3.69 2Yz(n+€) = eXa(n) + aYa(n),
(3.70 2X4(n—¢€) = aXs(n) — edYy(n),
(3.72 2Xa.(n) = aXa(n+€) — edYy(n + €,
2Ya(n) = —eXa(n+¢€) + aYa(n +¢),

2Xa(n) = aXyz(n—¢€) + edYy(n—e),

)
)
)
(3.71) 2Ya(n—€) = —eXa(n) + a¥a(n),
)
(3.73)
)

(3.74



(3.75)
(3.76)
(3.77)
(3.78)
(3.79)
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2Y,(n) = eXa(n—¢€) + aYy(n—e),

2Xa(n+€) = (a>—2)Xa(n—€) + eadY,(n —e),
2Ya(n+e€) = eaXy(n—e) + (a® —2)Ya(n—e¢),
2Xyn—€) = (=D Xa(n+6) — eadValn+e),
2Y,(n—¢) = —eaXy(n+e€) + (a®—2)Yq(n+e¢).

For € = 1. When n is odd, all quantities below are integers.

(3.80)
(3.81)
(3.82)

(3.83)

2Xa (n+e) =aX( 2 )+€dy( 26)’
% (%5) = % (f5) + e (P5),
a("z)==a«("§3'-w“("§3’

o (359 - (259 - o (559

For € = %1 and n odd, we have from (3.19') - (3.22')

(3.84)
(3.85)
(3.86)

(3.87)

n+e€ n—e
X +e = X (57) % (555),

n+e€ n—e
dY"( 2 )Y( 2 )

V) +e = Yo () % (255),

- = 1 () % (559,

Xo(n) —a

From (3.4) and (3.5) with n replaced by (—¢/2 and (n+¢/2 we obtain the following

identities. (n—¢)/2 and (n-+¢€)/2 are both integers when e==1 and n is odd.

(3.88)
(3.89)

(3.90)

(3.91)

—e\2 —e\2
X (n—¢) = X.,(” 6) 2= dYa(nze) +2,
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(n—€)/4 and (n + €)/4 are integers when 4 | (n —¢€) or 4 | (n + ¢€).

oo X (%) = x () -2 - e () e
(399) %(57) = % () % (F).
n+e n+€\? n+e\2
(3.94) Xa( ;)_X.,( I)-z:«m( :)+2,
n+e€ n-+e n+e€
(8.95) Y"( 2 )—X“( 4 )Y( 4 )
By (1.35), (3.28') and (3.29') we have
(3.96) (Xa(n) +2)(Xa(n) — 2) = d-Ya(n)?,
(3.97) Xo(n)2+d = X(n+e€) - Xo(n—e),
(3.98) Xa(n)2 —a® = d(Y.(n)?-1),
(3.99) (Xa(n) + a) - (Xa(n) —a) = d- (Ya(n) +¢€) - (Ya(n) —¢).
From (3.53) and (3.54) for any € = +1
(3.100) Yo(2nm) — €Y,(2m) = X,(nm + em) - Yo(nm — em).
Hence by (3.5)
(3.101) Xa(nm)Ya(nm) — eXo(m)Yy(m) = X,(nm + em) - Yy(nm — em).

From (1.14') and (1.12') we have
(3.106) aY,(n) —2Y,(n —1) = X,.(n), aXa(n) —2X,(n — 1) = dY,(n).

By induction on n one can prove

(3.107) (@=2)2%0) = Yaln+1) ~Ya(n) = 1,
i=1
(3.108) (@=2) 3 Xali) = Xaln+1) = Xoln) +a—2.

Also by induction on n we have



(3.109)
(3.110)
(3.111)

(3.112)
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d) Y,(20) = 2Y,(2n+2) —aY,(2n +1) —a,

i=1

dY Y,(2i+1) = 2Y,(2n +2) - 2Y,(2n+ 1) — 2,
i=1 .

d) " X.(20) = 2X.(2n+2) — aX,(2n +1) +d,

=1

A3 Xo(2i+1) = aXa(2n+2) — 2X,(2n + 1).

i=1

Theorem 3.113. If (n,6)=1, then X;(n) =1 and Y1(n) = (—3/n) = n (mod 6).

If 3|n, then X;(n) = 2(—~1)"/3 and Y;(n) = 0.

Proof. If (n,6) =1, then n=6j=+1 so that X;(6j+1)=1 and Y;(6j+1) ==1. From the

theory of quadratic residues it is know that if (n,6) =1, then (—3/n) = n(mod6).

In other words, if n = 65 £ 1, then (—3/n) = £1. Consequently (—3/n) = Y;(n).
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§4. Divisibility properties

In this sectibn we derive some divisibility properties of the sequences X,(n) and
Ya(n). Many of these divisibility properties are known. We believe the following
to be new: Lemma 4.36 and Theorem 4.50, 4.52 and their generalization, Theorem
4.61. The following divisibility properties may possibly be new or at least the proofs
are new: Lemma 4.23, Lemma 4.24 and Lemma 4.37. Also the proof of 4.56 is new.

From the fact that for fixed n the functions X,(n) and Y,(n) are polynomials in

a, one obtains the Congruence Rules:
(4.1) Xa(n) = Xp(n) (mod a —b), Ya(n) = Ys(n) (mod a —b).
Congruence Rule (4.1) is due to Julia Robinson [33]. In these congruences b can also

be negative. Equations (1.47) can be proved by induction from the Lucas Equations

(3.10) and (3.11). Thus we have also the Congruence Rules

(4.2) Xu(n) = (-1)"Xp(n) (mod a+b), Yi(n)=(-1)""1Ys(n) (mod a +b).
From this it follows that if @ = £b (mod n), then for any k&,

(4.2.1) Xa(k) = £X3(k) (mod n), and Yi(k) = £Y,(k) (mod n).

The Congruence Rules (4.1), (4.2) and (4.2.1) also hold when a or bis 0, 1 or 2. If

we substitute these values 0, 1 and 2 into (4.1) and (4.2) and use Definitions (3.12)

- (3.14) for Xy, X1, X>5,Ys,Y: and Y, we then obtain the special congruence rules.
(4.3) Xa(n) =2 (mod a — 2), Ya(n) =n (mod a — 2),

(44)  Xu(n)=2(=1)" (moda+2),  Yi(n)=n(~1) (moda+2),
(4.5) Xa(28) = 2(~1) (mod a), Y.(2{) =0 (mod a),

(4.6) Xa(2¢+1) =0 (mod a), Y,(2i +1) = (~1)* (mod a).
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(4.7) PARITY LEMMA IfY,(n) is even, then X,(n) iseven and X,(n) =2 (mod 4).

X.(n) = a-rem(n?,3) (mod?2), VY,(n)=rem(n%3)+an+n (mod2).
When a is even: For all n, X,(n) =0 (mod 2) and Y,(n) =n (mod 2). Also
Y,(n) even ¢ n even = X,(n)=2(mod 4) & Y,(n)=4a[(—1)*/2—1]/2(mod 4).
Ya(n) odd & nodd = X,(n) =a (mod 4) & Y,(n) =n (mod 4).

When q is odd: For all n, X,(n) = Y,(n) = rem(n?,3) (mod 2). Also
Y.(n) even & X,(n) even & X,(n)=2(mod 4) & Y,(n)=0(mod 4) & 3|n.
Ya(n) odd & X,(n) odd & (3,n) =1.

Proof. By induction on n, using (3.10) and (3.11).

Lemma 4.8. For any a, (X.(n),2Y4(n)) |2, (Xa(n) — 2,X,(n) +2) | 4.
(Xa(n), Xa(n+1)) |2, (Ya(n),Ya(n+1)=1.

aiseven & (X,(n),Xa(n+1)) =2. aisodd & (X;(n),X,(n+1)) =1.

When a is even: 2|n & (X,(n),Ya(n))=2 = (Xu(n)—2,Xs(n)+2)=4.

When ¢ is odd: 3|n & (X,(n),Ya(n))=2 & (X.(n)-2,X.(n)+2)=4.

If a =2 (mod 4), then X, (n) =2 (mod 4) and (X,(n) — 2, X,(n) +2) = 4.

If a = 0 (mod 4), then X,(n)=1+4(-1)" (mod 4) and (X.()—2, X.()+2)=3+(-1)".

Proof. (X,(n),2Y,(n))|2 follows from (4.7) and defining equation (1.35),

Xa(n)? — dYa(n)? = 4. (Ya(n),Ya(n + 1)) = 1 follows from identity (3.34). For the
proof of (X,(n), X,(n+1)) |2, we note that identity (3.33) implies that when a prime
p | Xa(n+1) and p | X,(n), then p? | d. Then X,(n)? — dY,(n)? = 4 implies p? | 4 so

that p | 2. Hence (Xq(n), Xa(n + 1)) | 2. Proofs of the other statements are similar.
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(4.9) PERIODICITY CONGRUENCES Let m and n be natural numbers and i any

integer. Then

Xa(2n £ m) = —X,(m) (mod Xu(n)), Ya(2n+m) = FX,(m) (mod X,(n)),
Xa(4n £ m) = Xo(m) (mod Xo(n)),  Ya(d4n+m) = £Y(m) (mod X4(n)),
Xa(4ni £ m) = Xo(m) (mod Xo(n)),  Ya(4nim) = +Y¥o(m) (mod Xu(n)),
Xo@nixtm) = () X,(m) (mod X,(), Yu@nitm)=(1Y,(m) (mod X,M),
Xalnit2ntm)=—X,(m) (mod X,(n), Yalnit2ntm)=FY,(m) (mod X,(n).

Proof. The first two congruences follow directly from the Periodicity Equations,

(3.6) and (3.7). The other congruences follow from the first two using the Periodicity

Equations and induction on i. The + signs correspond. They depend essentially on

the number of multiples of 2n, and also of course follow the signs on m.

Lemma 4.10. The following congruences hold both number theoretically and

algebraically.
()
(20)
(33)
(2v)
(v)
(vi)
(vid)

(vidi)

Ya(nk) =0 (mod Y,(n)),

X,(2nk) =2 (mod Y,(n)),

2X,(2nk £ 1) = 2X,(r) (mod Y,(n)),

2Y,(2nk £ 1) = £2Y,(r) (mod Y,(n)),
2Xq(2nk 4+ n 1) = Xo(n)X,(r) (mod Ya(n)),
Xa(n)? =4 (mod Y(n)?),

2Y,(2nk +n £ 1) = £X.(n)Ya(r) (mod Yi(n)),

Xa.(n)¥+ = 49X, (n)! (mod Yy(n)?)

Proof. We prove Congruence (¢) by induction on & using Periodicity Equation (3.7).
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The statement holds trivially for ¥ = 0 and k = 1. Assume it holds for k and k + 1.

Then
Y (n(k + 2))

Y(nk + 2n) = X(n)Y (nk + n) — Y(nk)

= X)Y(n(k+1))—-Y(nk) = 0 (mod Y (n)).

Congruence (i¢) follows from (i) and Double Angle Formula (3.4) by replacing » by
nk in (3.4). Congruence (#it) follows directly from (¢) and (#¢) and Addition Equation
(3.2). Congruence (iv) follows from (), (¢) and Addition Equation (3.3). Congru-
ence (v) follows from (44¢) (with r replaced by » + r) and Addition Equation (3.2).
Congruence (viz) follows from (iv) (with r replaced by n+r) and Addition Equation
(3.3). Congruence (vi) is evident from defining equation (1.35). Congruence (viis)

follows trivially from (v?).

Now we can establish the divisibility properties of the sequences X,,Y,.

DivisioN THEOREM 4.11. (Lucas [32]). We have the following divisibilities which
hold also algebraically

(4.11) n|lm & Yi(n)|Ys(im). (2<a)

(4.12) n|mandm/nisodd & X,(n)|X.(m). (2<a)

Proof. If a = 2, Yy(n) = n. Hence (4.11) holds. Suppose 2<a. For (4.11).

=>. Suppose n | m. Let m = nk. Then by Lemma 4.10 (i) Y,(n) | Ya(m).

<. Suppose Y,(n) | Ya(m). Write m in the form m = 2nk +r with 0 < 7 < n.
By Lemma 4.10 (iv) we have 0 = 2Y(m) = 2Y(2nk £ r) = £2Y(r) (mod Y (n)).
Hence Y'(n) | 2Y(r). From 0 < 7 < n, it follows that 0 < 2Y (r) < 2Y (n—1) < Y (n)
using the inequality in Lemma (2.9) (7). Therefore we have 0 < 2Y(r) < Y(n) and

Y (n)|2Y (r) which implies r = 0. Hence m = 2nk so that n|m.
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For the proof of (4.12) in the direction =, suppose n | m and m/n is odd. From
the Periodicity Congruences (4.9)
X(2n(2¢) + n) = X(4ni +n) = X(n) = 0 (mod X(n)) and
X(2n(20+1) + n) = X(4ni 4+ 2n + n) = —X(n) = 0 (mod X(n)).
Hence for j = 2i or j = 2i + 1, X(2nj + n) = 0 (mod X (n)). Equivalently
X(n(2j+1)) =0 (mod X(n)). Hence X(n) | X(n(24+1)). This proves that for any
odd k, X (n) | X(nk).

For the proof of (4.12) in the direction <=, suppose X (n) | X (m). We can write
m = 2nk £ r with 0 < r < n. By the Periodicity Congruences (4.9) we have
0=X(m)=X(2nk+r)=(-1)*X(r) (mod X(n)). Hence X(n) | X(r). f 0<r<n,
then X(r) < X(n). Consequently 7 = n and m = 2nk+n = (2k £ 1)n so that n | m
and m/n is odd.

Divisibility statements (4.11) and (4.12) can be interpreted algebraically as
statements about divisibility of polynomials in Z[a]. As a result of this we have
Corollary 4.13. If k|n, then there exists a polynomial Q(a), depending on n and

k, with integer coefficients and degree n — k, such that Y,(n) = Y,(k)-Q(a).
Lemma 4.14. Suppose n=r(mod m) and Y, (m) is even. Then Y,(n)=Y,(r)(mod 2).
Proof. From the Parity Lemma 4.7. Consider separately the cases a even and a odd.

Lemma 4.15. n =7 (mod m) = (Y;(n),Ya(m)) = (Ya(r), Ya(m)).

Proof. By symmetry it is enough to show that (Y,(n),Y,(m)) | (Ya(r),Ya(m)).
Trivially (Y;(n),Ya(m)) | Yao(m). Hence we need only show (Yg(n),Ys(m)) | Ya(r).
Let k= (Y;(n),Ya(m)). Let n=r £ gm, then tgm=n—r. By the Division Theorem
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4.11 and Addition Equation (3.3) we have
Yo(m)) | Ya(gm) and = 2Ya(gm)) = Ya(n)Xa(r)) — Xo(n)Ya(r).

Since k | Ya(m), we have

) B| Ya(n) and 2k | Ya(n)Xa(r) — Xa(n)Ya(r)

Case 1. Y,(m) or Y,(n) is odd. In this case k must be odd and (X,(n),2Y.(n)) | 2
implies (k, X,(n)) = 1 so that k | Y(r) by (%).

Case 2. Y,;(m) and Y,(n) are both even. In this case by Lemma, 4.14 Y;(r) must be
even. Hence X,(n) and X,(r) are even by the Parity Lemma 4.7. Hence from (x)

we have
Xa(r) _ Xa(n)
2 2

But now we have (X,(n),2Y,(n)) = 2 which implies (X,(n)/2,Y;(n)) = 1 so that

k| Ya(n) and k| Ya(n)-

- Yu(7).

(k, Xa(n)/2) = 1 since k | Y,(n). It follows that k | Y,(r). This completes the proof.

GCD THEOREM 4.16. (Lucas [32]). For all a > 2,

(1) (Ya(n),Ya(m)) = Yo( (n,m)),
(ii) If » and m are odd, then (X,(n), Xs(m)) = Xu( (n,m)).

Proof. We show that (Y,(n),Y,(m)) = Ya( (n,m) ). Suppose m < n. We will apply
Lemma 4.15 to the equations arising in the Euclid Algorithm for (n,m). Let the
sequence of remainders in the Euclid Algorithmbe 0 =, <71 < .- <M< m<n

where r,_; = (n,m). Suppose the equations are

n=mq + 71, m =T1q2 + Tg, Ty = T2q3 + T3,

T2 =7T3Q4+ T4y * Th-3 = Tp-2qn-1+ Tn-1, Tn-2 = Tn-1qn + Tn.
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By applying Lemma 4.15 n + 1 times to these equations we have
(Ya(n),Ya(m)) = (Ya(m),Ya(r1)) = (Ya(r1),Ya(r2)) = --+ = (Ya(rn—2), Ya(rs-1))
= (Ya(7n-1),Ya(rs)) = (Ya(rn-1),¥a(0)) = Ya(rn-1) = Ya((n, m)).
The last equality is due to r,—; = (n,m). Hence (Ya(n), Ys(m)) = Ya((n, m)).
Theorem 4.16 (ii) can be derived in a similar way from (4.12) (McDaniel [36]);

(ii) also holds under slightly more general hypotheses, that n/(n,m) and m/(n,m)

are odd.

Corollary 4.17. (Y3(n),Ya(m))=1 & (n,m)=1. Also [K,(n),YL(m)]lY,,([n,m])
Proof. The first statement follows from the GCD theorem. For the second, from the
Division Theorem, we have Y,(n) | Ya([n,m]) and Yo(m) | Ya([n,m]). Therefore
[Ya(n), Ya(m)] | Ya([n, m]).

REMARK. [Y;(n),Y,(m)] < Yy([n,m]) is possible, e.g., let a = 3,n =4 and m = 6.

Corollary 4.18. Suppose a > 2. Then n | m implies Y;(n) - Yo(m) | Yo(n - m).
Corollary 4.19. Let ¢ = 1. Then

n odd = (Ya(n+e¢),Y,(n—¢€) =aq,

n even = (Yz(n+e€),Yq(n—¢)) =1.
Proof. By the GCD Theorem. If n is odd, then (n + ¢,n —€) = 2 and Y;(2) = a. If
n is even, then (n +¢€,n —¢€) =1 and Y,(1) = 1.
Corollary 4.20. If n is odd, then (Y,((n + €)/2),Ya((n —€)/2)) = 1.

Corollary 4.21. If (n,2a¢) =1 and € = £1, then n | Yo(nte) = (n,Ya(nFe)) =1.

Lemma 4.21.1. If n is odd and d = a? — 4, then (d,n) = (a + 2,n)(a — 2,n).
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Proof. It is known that ((a + 2)(a — 2),5) | (a + 2,n)(a — 2,n). Therefore
(d,n) | (¢ +2,n)(a— 2,n). But ((a+2,n), (e —2,n)) = 1 as n is odd.
Theorem 4.22. (i) o |m & Xa(n)|Ya(m),

(i) X.(2kn) = £2 (mod X,(n)),

(i) (Xa(n), Xa(2kn)) | 2.

Proof. Put m = 0 in the Periodicity Congruences 4.9.

Lemma 4.23. If k is odd, Y,(nk) = kY,(n) (mod Y,(n)3).
Lemma 4.24. If k is even, Y,(nk) = gXa(n)Ya(n) (mod Yg(n)3).

Proof. By identities (3.55) and (3.56).
Lemma 4.25. If k is odd, Xo(nk) = k(—l)k—;lXa(n) (mod X,(n)?).
Lemma 4.26. If k is even, Xo(nk) = 2(—1)5 (mod X,(n)?).

Proof. Induction on k. The congruences hold for ¥k = 1 and k¥ = 2. Suppose

Congruence (4.25) holds for an odd k and Congruence (4.26) holds for k+1. Consider

k+2 (which is odd). Using the induction hypothesis and Periodicity Equation (3.6)

we have

Xk +2) = Xk +2n) = X(n) Xk + n)— X k) = X(n) X (n(k + 1))~ X nk)

= X(n)2(=)* D2 _p()*-D2X (n) = X (0)(k + 2))*D/2 (mod X (n)?).
Hence (4.25) holds for k + 2. Suppose next that k is-even and that (4.26) holds

for k + 1. Using Periodicity Equation (3.6) again we get

X(n(k+2)) = X(nk+2n) = X(n)X(n(k + 1)) — X(nk) =

X (n)(£1)(k+1) X (n)— X (nk) = =X (nk) = —2(—1)¥2=2(—1)*+2/2(mod X (n)?).
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Hence (4.26) holds for k + 2. Both congruences are proved.

Lemma 4.27. Foralla and all n,  Y,(n)?|Y,(nYa(n)).

Proof. Replacing k by Y(n) in Lemmas 4.23 and 4.24 we get the two congruences
. — 2 3 .. —_ X (n) 2 3
(?) Y(»Y(n)) =Y (n)* (mod Y (n)?), (i) Y(nY(n)) = TY(n) (mod Y (n)?).

where the (i) holds when Y'(n) is odd and (ii) holds when Y (n) is even. If k is even,
by the Parity Lemma 4.7 then X (n) is even, so the right side of (ii) is an integer.
Hence (i) and (ii) imply that Y'(n)? | Y(nY (n)) holds in any case.

First Step Down Lemma 4.28. nY,(n) | m & Yy(n)? | Ya(m) (2<a).

Proof. =. Suppose nY(n) | m. Then Y (nY (n)) | Y (m) by the Division Theorem.
From Lemma 4.27 we have Y (n)2|Y (nY (n)); thus, Y (n)?|Y (m).

<. For the converse suppose Y,(n)? | Y,(m). Certainly Y,(n) | Ya(m). Hence by the
Division Theorem n | m. Let m = nk. Then we are given Y (n)? | Y (nk).

Case 1. k odd. Lemma 4.23 = Y (n)2|kY (n) so Y (n)|k. So nY (n)|nk or nY,(n)|m.
Case 2. k even. Lemma 4.24 implies Y,(nk) = (1/2)X.(n)Ya(n)k (mod Y,(n)3).
Then Y (n)? | Y (nk) implies Y (n) | (1/2)X(n)k. From Lemma 4.8 (Y(n),X(n))|2.
Hence if Y(n) is odd, then Y(n) | k. If Y(n) is even, by Parity Lemma 4.7 then
X(n) = 2 (mod 4). Hence (Y(n),(1/2)X(n)) = 1 so that again Y(n) | k. Hence
nYy(n)|nk and therefore nY,(n)|m.

Corollary 4.28.1. Ya(n) |k & Y,(n)?|Ya(nk). (2<Za).
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Second Step Down Lemma 4.29. ‘For2<aand1l<n.

Ya(k) = £Y,(m) (mod X,(n)) & k= =xm (mod 2n).

Proof. <. Suppose k = 2nj £ m where j is an integer. When j is even, j = 2 we
have by the Periodicity Congruences 4.9 Y (k) = Y (4nitm) = £Y(m) (mod X(n)).
When j is odd, j = 2i+1, we have Y (k) = Y(4ni+2n£tm) = FY(m) (mod X(n)).
So Y (k) = £Y(m) (mod X (n)) in any case. (Since j can be any integer there is no
correspondence between =+ signs.)

=>. Suppose Y (k) = Y (m) (mod X(n)). Choose k' such that 0 < k' < n and
k = +k' (mod 2n). Choose m' such that 0 < m' < n and m = +m’' (mod 2n).
Then there exist integers ¢ and j such that k£ = 2ni £ k' and m = 2nj £ m'.
Using the Periodicity Congruences we get Y (k') =Y (2ni+k) =4V (k) =1V (m) =
+Y (2nj+m') =+Y (m') (mod X (n)). Hence Y (k') =£Y (m’) (mod X(n)). Thus it
follows that X (n) | |Y (k') FY (m')|. If k' # m/, then from inequality (ii) in Lemma
2.9, Y(n—1)+Y(n) < X(n). This implies 0 < |Y(K') FY(m')| <Y(¥)+Y () <
Y (n—1)+Y (n) < X(n), a contradiction. Hence k' =m’. Therefore k= m (mod 2n).

In the following lemma there is also no correspondence between the =+ signs.

Lemma 4.30. For 4<a, 2Y,(k)=+2Y,(m) (mod X,(n)) & k=xm (mod 2n).

Proof. <. The result follows from Lemma 4.29.

=>. Suppose 2Y, (k) =+2Y,(m) (mod X,(n)). As before choose m'<n and k' <n such
that k = &' (mod2n) and m = +m’ (mod 2n). Proceed as in the proof of Lemma
4.29 and multiply the congruences by 2. One obtains finally X,(n) |2Y, (k') £2Y,(m/).
At this point we use inequality 2.9 (iii), 2Y,(n—1) £2Y,(n) < X,(n) to conclude that

K =m
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(4.31) 2X,(nk+£7)=2X,(r) (mod Y,(n)), for k even,
(4.32) 2X,(nk 1) = Xo(n)Xo(r) (mod Yy(n)), for k odd.

Proof. The first congruence, which holds for k even, is a consequence of (4.10) (iii).
The second congruence, which holds for k odd, is a consequence of (4.10) (v).

We also have, from (4.10) (iv) and (4.10) (vii),

(4.34) 2Y,(nk £7) = £2Y,(r) (mod Y,(n)), for k even,
(4.35) 2Y,(nk £ 1) = £X,(n)Ya(r) (mod Ya(n)), for k odd.

Lemma 4.36. Suppose p is an odd number and € = 1. Then for all j > 1,

) 20 (£ =, (452) X, () (mod Y (452))

© 0 (£252) =, (25, (o) (oo ¥ (59)).

(®) 2X. (F5) = X (B5%) X (3) (mod Yo (%5%)),

() 2% (FH=5) = 60X, (25) Ya (%) (mod Ya (%5%)).

Proof. By (4.32) and (4.35) with n = (p’ — ¢/)/2 and k = p. For (1) and (2) let
r=e(p—¢€)/2. nk+r= " —€&)p/2+¢(p—¢) /2= (p — et!)/2. For (3) and
(4), put T = €¥(p+€)/2. nk+7=(p! — €)p/2+ € (p+¢€)/2 = (PP + @11) /2. Use
also (1.46), Xa(€'(p — €)/2) = Xa((p — €)/2) and Yo(¢'(p — €)/2) = €Yo((p — €)/2).

We give next a Step Down Lemma for the X, sequence:
Lemma 4.37. For 2<a, X,(k)=£X,(m) (mod X,(n)) & k=+m (mod 2n).

Proof. <. Suppose k = 2ni £ m. Then from (4.9), we have X (k) = X(2ni £ m) =
(=1 X(m) = FX(m) (mod X(n)). So X(k) = £X(m) (mod X(n)).
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=. Suppose X (k) = +£X(m) (mod X(n)). Choose k' such that 0 < ¥’ < n and
k = k' (mod 2n). Choose m’ such that 0 < m' < n and m = +m' (mod 2n).
Then there exist integers ¢ and j such that k = 2ni + k' and m = 2nj &= m/. Using
the Periodicity Congruences 4.9 we get X(k') = X(2ni £ k) = £X (k) = £X(m) =
+X(2nj £ m') = FX(m') (mod X(n)) so X(k') = £X(m') (mod X(n)). Hence
X(n) | |X(K') F X (m')|. We claim that k' = m'. If one of k' and m' equals n, say
k' =mn, then X(k')=+X(m') (mod X(n)) would imply that X (m')=0 (mod X (n)),
so X(n) | X(m'). Hence it must be that m' = n therefore &' = m/' in this case. Next
we suppose k' <n—land m' < n—1. If¥ # m/, then k' < n—2 or m’' < n—2so that
by Lemma 2.9 (iv), 0 < | X (k') F X(m')] < X(K') + X(m) S X(n—-2) + X (n—1) <
X(n). This would contradict X(n) | |X (k') £ X(m')|. Hence again k' = m'. The

claim is proved. Therefore k = =m (mod 2n).

Theorem 4.50. (i) Xpk(n) = Xu(n)+knYe(n) (mod k?),
(1)  Xer(n) = Xuln)—knY(n)  (mod K?),
(i)  dYapr(n) = knXa(n) + (d—ak)Ya(n) (mod dk?),
()  dYak(n) = —knX,M) + (d+ak)Ya(n) (mod dk?).

From Corollary 2.2, X!(n) = nY¥,(n) and dY](n) = nX,(n) — a¥,(n), it is easy to

see that Theorem 4.50 is equivalent to the following theorem. Hence we shall prove

Theorem 4.52. For any integer k,

() Xotr(n) = Xa(n) + kX,(n) (mod k?),
(ii) Xa-k(n) = Xo(n) — kX'(n) (mod k?),
(iii) Yorr(n) = Yo(n) + kY!(n) (mod k2).

(iv) Yok(n) = Yo(n) — kY!(n) (mod k?).
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Proof. (ii) is obtainable from (i) and (iii) is obtainable from (iv) by replacing k
by —k. Hence we need only prove (i) and (iii). Taking derivatives of both sides of
identities (3.10) and (3.11), we have
(*) Xer+2=Xn+D)+aeX 0+ 1) - X\, Y.(+2=Y.(r+1)+aY!(n+1)-Y!(n).
Now we use induction on n. For n = 0 or n = 1, congruences (i) and (iii) become
identities.
Suppose (i) and (iii) hold for » and n + 1. Consider the case n + 2 for (i):
Xotk(n +2)—Xa(n +2) =(a + k) Xayi(n + 1) = Xask(n) — (aXa(n + 1) — Xo(n))
= a(Xgpk(n+1) — Xo(n + 1)) — (Xaqk(n) — Xa(n)) + kXoir(n + 1)
= akX.(n+1) — kX.(n) + kXpr(n + 1) (by the induction hypothesis)
= akX (n+1) —kX.(n) + kXork(n + 1) — kXope(n + 1) + kX pr(n + 1)

= k(aX,(n+1)—X.(n))+k*X"(n+1)+kX,(n+1) (by the induction hypothesis)

il

k(aX(n + 1)+ Xa(n +1)—X(n))+0 =kX,(n + 2) (mod k%) (by(x)).
Hence (i) is proved by induction. Consider the case n + 2 for (iii):

York(n +2)=Ya(n +2) =(a + k)Yair(n + 1)~ Yas(n) = (a¥a(n + 1) - Ya(n))
= a(Yopr(n + 1) — Ya(n + 1)) — (Yorr(n) — Ya(n)) + kYari(n + 1)
= akY,(n+1) — kY](n) + kY,qx(n + 1) ~(by the induction hypothesis)
= akY (n+1) = kY)(n) + kYour(n + 1) — kYoir(n + 1) + kY yr(n + 1)
= k(aY](n+1)=Y.(n))+k%Y!(n+1)+kYs(n+1) (by the induction hypothesis)
= k(aYy(n + 1)+Yy(n +1)=Y;(n))+0 =kY](n + 2) (mod ¥?) (by(*)).

Thus (iii) is proved.

Later we shall see how to generalize Theorem 4.52, and at the same time find a
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simple proof of Hensel’s Lemma. Theorem 4.52 holds for X,(n) and Y,(n) simply

because they are polynomials in a. We shall show

Theorem 4.61 . Let f(z) be a polynomial in Z[x]. For any integers a and b,
(4.61) f() — f(a) = (b-a)f'(a) (mod (b~ a)?).
Proof. Let f(z) = ct2* + cpyz* 1 + -+ + 17 + ¢y,

so that f'(z) = ckz* ! + cp_y(k —1)2*24 ... +¢;. Hence

(+) M___Ck <bk_“k>+ck_l (M) 4ok (b_a).

b—a b—a b—a b—a

From the geometric series we have

(%) b;-—z =14 2% o+ 02T b2 4 0L
Here there are j terms in the sum. Since b = a (mod b — a), (**) implies
b; =2 =14 a2l + - + a2 + alaf 2 + oF! = joi~! (mod b — a).
—a

Hence from (*)
—————f(bl)) : i(a) = cpka* 4 ey (k= 1)a¥ 2 + -+ + 20+ ¢; = f'(a) (mod b— a).

Therefore f(b) — f(a) = (b— a)f'(a) (mod (b— a)?), establishing the theorem.
From Theorem 4.61, we can rewrite Theorem 4.52 in the form

Corollary 4.62. For any n and any a and b,

(i) Xb(n) —Xa(n) = (b—0a)Xi(a) (mod (b—a)?),

(i) Yi(n) —Ya(n) = (b—a)¥;(a) (mod (b—a)?).
Theorem 4.61 can also be used to prove Hensel’s Lemma without using Taylor’s

Theorem. As we shall need Hensel’s Lemma later, we give this proof here.
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Definition 4.64. A solution a of f(z) =0 (mod p®) is called nonsingular if both
f(a) =0 (mod p°) and f'(a) #0 (mod p).

Suppose 0 < @ < p® and a is a solution of f(z) =0 (mod p®). We say a lifts to
a solution b of f(z) =0 (mod p*!) if f(b) =0 (mod p**!) and b = a (mod p°).

Note that a lifts to b is equivalent to saying there is a (unique) ¢ such that

b=a+1tp® and f(b) =0 (mod p°*!). If 0 < a < p*! and 0 < b < p**!, then we

can also suppose 0 <t < p.

Theorem 4.65. (Hensel’s Lemma [15]). Suppose f(z) is a polynomial in Z[x] and
a is a nonsingular solution of f(z)=0 (mod p°). Then a lifts to a unique solution b

of f(z)=0 (mod p°*1).

Proof. Suppose a is a nonsingular solution of f(z) = 0 (mod p®). Hence f(a)/p®
is an integer and p J f'(a). Therefore f'(a)z = —f(a)/p° (mod p) has a unique
solution ¢ mod p. Hence
(%) tf'(a) = —f(a)/p® (modp) and 0 <t <p.
Let b = a+tp®. To prove the theorem we now need only to show that b is a solution
of f(z)=0 (mod p*+!). By Theorem 4.61 with b = a + £p®, we have
f(®) = fla+1tp°) = f(a) +tp°f'(a) (mod (tp°)?). Since e > 1, 2e > e+ 1. Hence
f(b) = f(a) +tp°f'(a) (mod p°*!). Therefore by (x)
F(0)/p* = f(a)/p® +tf'(a) = f(a)/p* — f(a)/p® =0 (mod p).
Thus f(b) = 0 (mod p*!). The theorem is proved.

REMARK. Suppose p| f'(a). If f(a) =0 (mod p°*!), then a lifts to p different values
of b mod pe. If f(a) 3 0 (mod p*+?), then a lifts to no values of b.
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For the proof of the remark, suppose p | f'(a) and f(a) =0 (mod p°=t?), then all .
values of ¢, 0 < t < p satisfy the congruence tf'(a) = —f(a)/p® (mod p). Note that
fla+tp°) = 0 (mod p**!) & tf'(a) = —f(a)/p® (mod p) as shown in the proof
of Theorem 4.65. Therefore all such ¢ satisfy f(a + tp®) = 0 (mod p°*!). Suppose
p| f'(a) and f(a) # 0 (modp°*!). Then note that we have f(a+tp®) =0 (mod p*+?)
& f(a) + tp°f'(a) = 0 (modp**!) & f(a) + 0 = 0 (modp°t!), which implies
f(a) =0 (mod p*!). This contradicts the assumption f(a) % 0 (mod p**!). Hence
no t satisfies f(a+tp®) = 0 (modp°*!). It follows that there is no b such that
F(b)=0 (mod p**!) and b=a (mod p?).

Corollary 4.68. Suppose f(z) € Z[z]. If f(z) = 0 (mod p°) has exactly n solutions
mod p® and that they are all nonsingular, then f(z) = 0 (mod p®*!) has exactly n

solutions mod pt! and they are all nonsingular.
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§5. Computational complexity of X,(n) and Y,(n)

In this section we consider the computational complexity of computing the
sequences X, () and Y, (). We show that the four functions X, ), Yo(), rem(X, ), m)
and rem(Yy(n), m) are computable in polynomial time (a theorem of Lehmer [29],
Lehmer, Selfridge and Brillhart [5]). We present a proof of this and give an upper
bound on the degree of the polynomial.

To estimate exactly the amount of time required to carry out an algorithm on
an input n it is necessary to know the amount of time required to perform one bit
operation. Since this depends on the size of words, capacity of the registers and
computer architecture, we will estimate the time complexity of our algorithms in
terms of the number of bit operations. By a bit operation we understand a single
addition, subtraction or multiplication of two numbers consisting of one binary digit,
(1 bit, 0 or 1). We shall also include as a bit operation division by 2 or right shift.

When estimating the number of bit operations needed to perform an algorithm
on an input n, we will use the binary length of n» as a measure of the size of n. By
the length of n we mean the number of digits base 2. This number, which will be

denoted by ||n||, is essentially log(n). More precisely,
(5.0) lInl] = |logz(n) +1].

With respect to this measure of size of n, a function f is said to be computable in
polynomial time if there exists a constant c, such that f is computable in O(||n||°)

bit operations. It is customary to refer to this by saying that f is computable in

time O(||n[¢)-
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It is known that multiplication of two n-bit integers can actually be carried out
in time O(|n||9 where ¢ = logs(3) = 1.585--- < 2. ([23]) However, in estimating
the complexity of the algorithms below, we will assume that the ordinary school
algorithms are used for the elementary arithmetical operations. More precisely, we
will suppose that the number of steps needed in the basic operations is as follows:
Number of steps needed to add or subtract two integers a and b < n : O(||n||).
Number of steps needed to multiply two integers a and b < n : O(||n|[?).

Number of steps needed to divide two integers a and b < n : O(|[n||?).

Number of steps needed to divide an integer a < n by 2 : O(||n|}).

Number of steps needed to obtain the integer part of the square root of a : O(||n|]?).
Number of steps needed for the remainder after a is divided by b, a,b < n : O(||n|}3).
Number of steps needed to compute the GCD of a and b < n : O(||n]|?).

Number of steps needed to obtain a® mod b, a,b,c < n : O(||n|]?).

Number of steps needed to compute the Jacobi symbol (a/b),a,b < n : O(||n|[?).
The estimate for the time to obtain the GCD of a and b is based on Lamé’s Theorem
about the Euclidean Algorithm. Lamé’s Theorem says that the number of divisions
in the Euclidean Algorithm is < 5||n|| where ||n]| is the decimal length of n and
n=maz(a,b). In other words, O(||n|]). Each division costs O(||n||?). Hence O(||n|[®)
bit operations are sufficient.

The estimate of O(||n||®) for the time required to compute the remainder
rem(a*, m), where k < n, a <n and m < n, is based on the estimate of O(||n||)
for addition and O(||n||?) for multiplication. Using the repeated squaring algorithm

(Lehmer [23]), the number of bit operations is proportional to ||k|| - ||n]|2. Since
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|la*|| = k||all, the time to compute a* mod m is
O(lIll - llall®) + O(lm[*) = O(ll=ll*) + O(|Inl[?) = O(|=||*).

About the complexity of X,(n) and Y;(n) we will prove:
Theorem 5.1. The functions rem(X,(n), m) and rem(Y,(n), m) are computable in
polynomial time. There is an algorithm to compute rem(X,(n), m) and rem(Y,(n), m)
in O((]|al|+]|n||+]lm]|)®) bit operations. The functions X,(||n||) and Y,(||n||) are
also computable in polynomial time. There is an algorithm to compute X,(||n||) and

Ya({[nl]) in O((||n|| + ||al])) bit operations.

Proof. We first sketch a proof for the case ¢ even and m odd. This will use only
identities (5.2) - (5.5) below. In the case when a is odd there is a small problem with
division by 2, (see (5.6) and (5.7)). We can get around it when m is odd (by adding
m occasionally), but when m is even, we will need identities (5.6) - (5.9) below.
The final claim of the theorem, that the functions X,(||n]|) and Y,(||n]|) are
computable in polynomial time, follows from the first claim since if rem(X,(n), m)
and rem(Y,(n), m) are computable in polynomial time O((||a|| + ||n|] + ||m]|)?), we

can put

m = gl

in this result. Since X,(||n||) < /™! and Y;(||n|]) < @™, (which follow from the

inequality (2.8 (i) (ii)), we have
Xa(llnll) = rem(Xa(|[n]l), al™) and Yi(|nl)) = rem(¥a(|Inl]), ™)

because both sides are less than the modulus.
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Hence it will be enough to prove the first part, that rem(X,(||n||),m) and
rem(Yq(||n|]), m) are computable in polynomial time, O((||al}H|n|FH|m|])?). Initially

the algorithm will be based on the following identities.

(5.2) Xa.(2n) = X,(n)? -2, (doubling)
(5.3) Xa(2n+1) =% (X (n)?—20+dX(n) Ya(n)) = aXo(20) +dY,(2n), (sidestep)
(5.4) Ya(2n) = Xa(n)Ya(n), (doubling)

(5.5) Ya(2n+1) =-;- (dYa(n)2+2+aXa(n)Y:,(n)) = Xa(2n)+aY,(2n). (sidestep)

Identity (5.2) is (3.4), (5.3) is (3.47), (5.4) is (3.5) and (5.5) is (3.48). In identities
(5.3) and (5.5) there is an indicated division by 2. With (5.3) note that aX,(n)? +
dX,(n)Y,(n) is always even because it is divisible by aX,(n) + dY;(n), which is even
by (3.8). Hence the division by 2 can be carried out. Similarly, in connection with
(5.5), dYq(n)? + aX,(n)Y,(n) is even, being divisible by dY,(n) + aX,(n). So the
indicated division by 2 can again be carried out.

We define functions V,(c, z,y) and U,(c,z,y) by

,

22 -2, (mod m), if cis even,

(5.6) Va(e,z,y) = |
‘ |(az® — 2a + dzy)/2], (mod m), if cis odd.
z-y, (mod m), if cis even,

k [(dy® +2+azy)/2], = (mod m), ifcis odd.

(5.7)  Uale,zy) =

Va(e,z,y) and U,(c,z,y) are functions of m as well as a,c,z and y. We have
Va(e, z,y) < m and U,(c,z,y) < m. Hence V,(c,z,y) and U,(c, z,y) are computable
in polynomial time. The time would be O((||a|| + ||¢]| + ||=]] + ||y]] + {|m|[)?) bit
operations.

Given n, put | = ||n||. We define a decreasing sequence, b;, (¢ = 0,1,---,1), by
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bo = n and biy; = |b;/2], ¢ = 0,1,--+,1 — 1. Eventually b;_; = 1 and b = 0. We
also define an increasing sequence (reversed sequence) ¢;, i = 0,1,--+,1, by ¢; = b_;.
Then ¢y =0,¢c; =1,-++,¢1 = n.

Define sequences z; and y;, ¢ = 0,1,:--,l, by zg = 2 and yy = 0, and for
§=0,1,--+,1—1by
(5.8) Tip1 = ValCiv1, T, %), Yir1 = Ua(Ciy1, Zi, ¥i)-

We will show by induction that
(5.9) z; = X,(c;) (modm) and y=Ye(e) (modm), (:=0,---,0).
It will follow that z; = X,(n) (mod m) and y = Y,(n) (mod m) since ¢ = n.

As an example, suppose we want to determine rem(X,(n), m) and rem(Y,(n), m)
where n = 21. Since 21 = 10101, in binary, we have ||n|| = 5. Then b, = 21,
by = 10,bs = 3,b3 = 2,b4 = 1,b5 = 0. Consequently ¢y =0,¢c; =1,c0 =2,c3 =5,
¢4 = 10, ¢5 = 21. Thus (5.8) and (5.9) imply:

z1 = Va(er, %o, %0) = Va(1, Xa(0),Ya(0)) = Xu(1) (mod m),
zo = Vy(eo, 21, %1) = Va(2,Xa(1),Ya (1)) = X,(2) (mod m),
= Va(cs, 22, ¥2) = Va(5,Xa(2),Ya(2)) = Xo(5) (mod m),
x4 = Vg(cs, 23,y3) = Va(10, Xa(5), Ya(5)) = X,(10) (mod m),
x5 = Va(es, 24, ys) = V4(21,X,(10),Y,(10)) = X,(21) (mod m),
and Y1 = Us(cr, 20, %0) = Ua(1,X0(0),Ya(0)) = Yo (1) (mod m),
o = Ua(n, 21, 31) = Ua(2, Xa(1), Ya(1)
= Ua(cs, 22, 42) = Ua(5, Xa(2), Ya(2)

(
Ua(csy 23,y3) = Ua(10, X4 (5), Ya(5)) = Y,(10) (mod m),
(

Ya(2) (mod m),

)
)
) =Ye(5) (mod m),
)

= Us(cs, 24, a) = Ua(21,X,(10),Y,(10)) = Y,(21) (mod m).
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To prove that 25 = X,(21) (mod m) and y5 = Y,(21) (mod m) and more
generally that z, = X,(¢) (mod m) and y, = Y,(¢) (mod m), we have to prove
that (5.9) holds for all . The induction step is the following lemma.

Lemma 5.10. Suppose a is even and m is odd. Let z; and y; be defined by
g = 2,y0 = 0. Suppose z; and y; are integers and z;4; = V,(ciy1,%i,¥:), and
Yir1 = Ua(Cip1,Ti, %) (2 = 0,---,1 = 1). If z; = X;(¢;) (mod m) and y; = Y,(ci)
(mod m), then z;y; and y;4; are integers and z;41 = Xo(ciy1) (mod m) and yip1 =
Ya(ciy1) (mod m).

Proof. Induction on i. Suppose z; = X,(c;) (mod m) and y; = Y,(¢;) (mod m).
There are two cases to consider, according as c;4; is even or odd.

Case 1: c;41 is even. Then ¢4 = 2¢;. “

Tip1= ValCir1, i, ) = Va Rei, 71, y) =22 —2= X, ()2 —2=XoQc) = X4 (ci+1) (mod m).
Yir1 =Ua(Cit1, Ti, ¥) =Ua R0, T4, ¥) = 2:9: = Xa () Ya (6) = YaQc) =Yalei+) (mod m).

Case 2. ¢ is odd. Then ¢;41=2c;+1. a and d are even so z;4; and y;4 are integers.

2zi1 = 2Va(Cit1, %, ) = 2Va(20i + 1, 5, %) = az? — 2a + dzyy;

aXa(c))? —2a + dX, () Ya(c) = 2Xa(2¢i + 1) = 2X,(ciy1)  (mod m).

2ir1 = 2Ua(Ci1, T 3) = 2U.(2¢; + 1,2, 4;) = dy? + 2 + aziy;

= dY(c:)? + 2+ aX,(c;)Ya(c:) = 2Ya(26) = 2Yo(cis1) (mod m).

Since (m,2) = 1, we have z;;; = X,(ciy1) (mod m) and y;41 = Y, (cit1) (mod m).
Since o = 2 and yp = 0 and ¢y = 0, we have 2o = X,(cp) and yo = Ya(co). Hence
zg = Xa(cp) (mod m) and yo = Yi(cp) (mod m). Therefore by induction and

Lemma 5.10 it follows that z, = X,(¢;) (mod m) and y, = Y,(c;) (mod m).
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This procedure works when a is even and m is odd. When a is odd or m is
even, there is a problem with division by 2. We obtain only rem(2Y,(k),m) and
rem(2X,(k), m) at each stage. To get rem(Y,(k),m) and rem(X,(k), m) we have
to calculate rem(2Y,(k),2m) and rem(2X,(k),2m) somehow, using other identities.
For example the above algorithm fails in the cases when ¢ = 4,n = 3,m = 8, or
whena=3,n=3,m=8orifa=3,n=4and m="7.

When a is even and m is odd, it may be possible to modify (5.6) and (5.7) by
occasionally adding m when some intermediate quantity is odd and we wish it were
even so we could divide it by 2. Possibly for odd m the above algorithm could be
modified and made to work, for all a.

In general when a is odd or m may be even one should use a slightly different
algorithm described below and based on identities (5.11) - (5.14). These identities
provide a general algorithm which works in all cases. A small price is to be paid
however. With the old algorithm based on identities (5.2) - (5.5), it was simpler to
prove correctness. It was also enough to store pairs at each stage. The new algorithm
based on identities (5.11) - (5.14) requires storage of quadruples.

We will use the following equations, (5.11) - (5.14). (For their derivation see
identities (3.4), (3.5), (3.41) and (3.42).):

(6.11) Xa(2n) = X.(n)? -2,

(5.12) Xa(2n+1) = Xo(n) - Xa(n +1) —a.
(5.13) Ya(2n) = Xu(n)Ya(n),

(5.14) Yo2n+1) = X,(n)-Ya(n+1)—1.

With equations (5.11) - (5.14), instead of storing pairs of variables such as (z,y)
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in two copies, (z,y) and (z',y’), we will store a quadruple of variables (z,y,z',y)
(fortunately not in two copies).

The algorithm for computing rem(Y,(k), m) and rem(X,(k),m) using (5.11) -
(5.14) begins as before by computation of the sequence b; (or sequences b; and ¢;),
i=0,1,---,l, where again I = |logy(n) + 1] is the length of n. One then initializes
the variables z,y, ',y by setting them to £ = 2,2’ = a,y = 0, and ¢/ = 1. One lets ¢
run from 1 to I, and, in accordance with (5.11) - (5.14), modifies z, z'y, ¢/ as follows,
depending on c;:

When ¢; is even, we put

(5.15) y=z-y-1, y=z-y, 2’ =2-2'—a, z=x-2—2,

When ¢; is odd, we put

(5.16) y=z-y-1, vy=2-v, z=z-2'—a, 2'=2"-2"-2.

Continue this. After exiting the loop, the values of z and y are X,(n) and Y,(n)
respectively. Normally we compute (5.15) and (5.16) mod m. In this case we have
z = X,4(n) (mod m) and y = Ya(n) (mod m).

Many modifications and simplifications are possible. For example, we need not
store the actual values of the sequence b;. It is of course enough to store only the
remainders mod 2 of these values. Also the second sequence c; is not needed. One
can equally well test whether b;_; is even or odd and let ¢ run from ! — 1 to 0.

What is the computation time for this algorithm? Using the standard algorithms
for arithmetic mentioned above, the cost is O(||n||?) bit operations. O(||n||) op-
erations are needed initially to obtain the sequence b;. We then have | = ||n||
evaluations of the functions V,(c;, z,y) and U,(c;, z,y), where = and y are always

of size < ||m||. Using the estimate O(||m||?) for the additions, subtractions and
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multiplications of numbers of size < |[m||, we find that O(||n|| - [|m|]?) = O(||n|[?)

bit operations are sufficient in total.
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§6. Laws of apparition and repetition

In this section, we study some classical properties of primes and Lucas sequences.
Many of these properties were known to E. Lucas [31] [32] and D.H. Lehmer [26]
[27). Based on the results in this section, various kinds of Lucas pseudoprimes will

be defined in §7. First we give the definition of ranks.

Definition 6.0. Let n be a positive integer. The rank of apparition of n in the
sequence Y is the least positive integer 7 such that n|Y,(r). We denote the rank of

n by r.(n).

We first prove that the rank exists.

Lemma 6.1. Suppose a > 2. For any positive n the rank r,(n) exists.

Proof. Suppose a positive integer n is given. By (1.35) or (1.36) we know that the
equation 22—dy? = 4 has infinitely many solutions if d# 0. Hence z%(a>4)n%y% =4
has infinitely many solutions since (a>~4)n? 0. Let z,y be a nontrivial solution of
72— (a® —4)n%*y? =4, ie. y > 0. Then X = z,Y = ny is a nontrivial solution of the
equation X2 — (% —4)Y?2 = 4. By (1.35) there exists a k > 0 such that Y = Y, (k).
Hence there is a k > 0 such that ny = Y,(k) and therefore n |Y;(k). Choosing the

least such positive k we get the rank of n.
Lemma 6.2. For any n, (i) a = £b(mod n) = r4(n) = rp(n); (ii) re(n) = r_a(n).

Proof. (i) By Congruence Rules (4.2.1), for all k, we have
a = *b(mod n) = Yy(k) = £Y;,(k)(mod n). Hence for all k, n|Y,(k) & n|Y;(k).
(ii) By (1.47) Y.(k) = (—=1)¥*'Y_,(k). Hence r4(n) = r_o(n).
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Lemma 6.3. For all m,n and a > 2, r,(m)|n & m|Y,(n).

Proof.(=>). If r4(m) | n, then Y;(r4(m)) | Ya(n) by the Division Theorem 4.11. But
by definition we have m | Y,(r4(m)). Hence m | Y,(n).

(«<). Suppose m | Y4(n). Let 7 = ra(m). Write n = rq + s where 0 < s < r. By
the Addition Law (3.3), 2Y,(s) = 2Y,(n — rq) = Ya(n) X, (rq) — Xa(n)Ya(rq). Then
m | Ya(r) and Yo(r) | Ya(rq) imply m | Ya(rq). Hence m | 2Yg(s). We claim that
m | Ya(s). If m is odd this is obvious. Suppose m is even. Then by Parity Lemma
4.7 Y,(n) is even and hence X,(n) is even. Also m | Y,(rq) implies that Y(rg) is
even. Again by the Parity Lemma X,(rq) is even. Therefore from above, we have

Yo(s) = Ya(n)(Xa(rq)/2) — (Xa(n)/2)Ya(rg) =0 — 0 =0 (mod m).

Since 0<s<r and r is the rank of m, we have s=0. Hence n = rq so that r|n. The

lemma is proved.

Corollary 6.4. For any n,m and a>2 if m|n, then r,(m)|rq(n).

Proof. If m|n, then m|Y,(r,(n)) since n|Y;(ra(n)). So by Lemma 6.3 74(m)|7r.(n).

Theorem 6.5. Law of Repetition for primes. (Lucas [32] Lehmer [27].) Let p

be any prime, 2 < @ and 0 < j. Then

(i) Forany k, 1<i,  p'|Ya(n) = p*t7 | Ya(nkp’),

(i) For (k,p)=1, 1<i,  pYa(n) = p™||Ya(nkp)).
Proof. (i) and (ii) follow by induction on ¢ from

(i') Forany k, 1<i, p'|Yy(n) = p*! | Yu(nkp),

(@) For (k,p)=1,1<4,  pY|Ya(n) = p™*!||Ya(nkp).
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We can prove (i) and (i) by using (4.23) when k is odd and (4.24) when k is even,
k odd = Y,(nkp) =kp-Y.(n) (mod Y,(n)?),
k even = Y,(nkp) = 1kp- Xi(n)Ya(n) (mod Yy(n)?).

This completes the proof.

Lemma 6.6. Suppose p is an odd prime, (p,d)=1, 1<e<c¢ and 0<f. Then
P°|Ya(ra(p?)) = ra(@**) |/ 1a(p%),  P¥||Ya(ra(®)) = ra(p=tf) = pora(p).

Proof. (p,d)=1 = (p,7.(p)) =1. (See Corollary 6.12.1.) The first is by the Law of
Repetition 6.5 with k = 1 and n = r,(p°). For the second we use (p, 7,(p)) =1 to show

first 7,(p°) = r4(p®). Then by the Law of Repetition, we obtain r,(p*tf) = p/-r,(p°).

Lemma 6.7. Suppose p > 3 and (p,d) = 1. If r,(p?) = ps, then for all e > 0,
Ta(p®*!) =p®s. Conversely if there exists e, 1 <e and r,(p*t!) =p°®s, then r,(p?) =ps

and 7,(p) = s.

Proof. Since p?|Ya(ps), we have p|Y.(ps) and so r,(p) | ps. It follows that r,(p) | s
since (r4(p),p) = 1. By the Law of Repetition 6.5 p|Y;(r4(p)) implies p?| Y, (p-7.(p))
so that 74(p?) | p- ra(p). But 74(p%) =ps. Hence ps|p-rq(p) and therefore s|r,(p).
Consequently r,(p) =s. Then we have 74(p) = s and 7,(p?) = ps. It follows that
r4(p®) =p?s since p||Ya(s) = p?||Ya(ps) = p3||Ya(p?s), etc., by the Law of Repetition.
Therefore p°+}||Y,(p®s) and r4(p®*!) = p®s for all e > 0. The converse may be proved

by induction. The lemma has the following generalization.

Lemma 6.7.1. Suppose p > 3, (p,d) = 1 and 1 < c. 7,(p°t!) = ps implies that
Ve > 0[rqs(p°t¢) = ps). Conversely if there exists e, 1 < e and 7,(p°*®) = p°s, then

Ta(p°tt) = ps and for all 1 < i < ¢, r,(pf) = 5.
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How large is the rank of n? The rank of an arbitrary integer is very hard to
calculate. To estimate the rank we will define a function T, (n) such that r,(n) | To(n)

( analogous to Euler’s ¢ fuction). T, is called the fotient.

Definiton 6.8. The totient of n corresponding to a, written T,(n), is defined by:
To(1) =1. T,(2) =2 ifaiseven, T,(2) =3 if a is odd.
For an odd prime p, we define

T.(p) =p ifp| a®—4 and T,(p) = (p—e€)/2 if (p, (a®—4)) = 1 where e = (12—"—4-)

)
For all primes p (including p = 2),

Ta(p*t!) = Ta(p) - p°

Ta(pfl ot 'Pi") = [Ta(p?)? v ,Ta(sz) ]

We will see later that for each integer n, n|Y,(T,(n)). With this, we shall prove

some lemmas and theorems of Lehmer.

Lemma 6.9. Suppose n is odd, a > 2 and d = a® — 4 # O. Then

n—1

(69) 2771 X,(n) = () d"F + (§) a®d"T 4o+ (,2,) @ %" + (2) 0",
Proof. From the identity (1.36) we have

Xelr) + XV (a+ ve -4) — 27" (a+Va)".

This implies 2*~1X,(n) + 2"~1Y,(n)Vd = (a + vd)". Expanding (a + v/d)" by the

Binomial Theorem and equating rational parts we obtain

n . - (n—1)/2 . )
()= Y MV = Y (o) a¥tde-E,
i=0, i odd j=0

Lemma 6.9.1. Suppose n is odd, a > 2 and d = a® — 4 # O. Then

(6.9.1) 27'Yo(n) = (}) ®dT + (3) a®d™F + -+ + (,25) "% + () @™l
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Proof. By solving for 2"~1Y,(n) instead of 2"~'X,(n) in the expansion of (a + v/d)"

~ we get . m—ing (D)2 . m—2j-1
W)= Y @eVd T = Y @edVd
i=0, i even j=0

after dividing by v/d. This proves the lemma.
Using such expansions D.H. Lehmer proved the following theorems.

Theorem 6.10. (Lehmer [27]). Suppose n is an odd prime, 0 < d and d # O. Then
Xa(n) =a (mod n).

Proof. If a=0 or a=1, the theorem follows from (3.12), (3.14) and Lemma 3.13. If
a=2, the conclusion follows from X,(n)=2. Assume a>2, then 0 < d and d # O.
Hence we may apply Lemma 6.9. Since n is prime, n | (}) holds for all k£ such that
1 <k <n-—1. Then by Lemma 6.9 we have

21X, (n) = (M) a*d® = a™ (mod n).
Now applying Fermat’s Theorem, 2"~! =1 (mod n) and ¢ = a (mod n), we have
Xa(n) =a" =a (mod n), which proves the theorem.
REMARK. The proof generalizes to any Lucas sequence. If V,, and U, are defined
by (1.8), (1.9) and A#0, B#0,0 < D = A2—4B # 0O and n is an odd prime, then
Vo = A (mod n).

Theorem 6.11. (Lehmer [27]) If n is an odd prime, (n,d) =1 and d = a®> — 4 # 0O,
then Y;(n) =€, (mod n).

Proof. If a =0 or a =1, then the result follows from (3.12),(3.14) and Lemma
3.13. If a = 2, then the condition (n,d) = 1 does not hold. Assume a > 2,

then 0 < d = a®? — 4 # O. Hence we may apply Lemma 6.9.1. Since n is prime,
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n | (§) holds for all k¥ such that 1 < k < n—1. Then by Lemma 6.9 we have
2*-1Y,(n) = () %™ =d*T (mod n).

Applying Fermat’s Theorem 2"~! =1 (mod n) and Euler’s Criterion

d*7 = (d/n) = € (mod n), we obtain Y;(n) = d*F = (mod n) which proves the
theorem.

This proof generalizes to any Lucas sequence V, and U, defined by (1.10) (i) (ii). If
P#0,Q#0,0<D#0, (n,D)=1 and n is an odd prime, then U, = € (mod n)
where € = (D/n) and D = P? — 4Q.

REMARK. The converses of Theorem 6.10 and Theorem 6.11 do not hold. Also
Xa(n) = a (mod n) and Y,(n) = ¢, (mod n) are independent of each other, even
when (n,2ad) = 1. As examples we may take n = 115 =5.23, a = 41 or take
n=119=7.17, a=6.

The following theorem was also known to D.H. Lehmer.

Theorem 6.12. If n is an odd prime, (n,d) = 1 and d = a® — 4 and € = (d/n), then

we have Y, (n — €) = 0 (mod n). Furthermore, we have Y,((n — €¢)/2) = 0 (mod n).

Proof. By identity (3.71) and Theorems 6.10, 6.11:

2Y,(n — €) = —eX,4(n) + aY,(n) = —ea + ae = 0 (mod n).
Hence Y,(n — €) = 0 (mod n). By (3.89) and (3.84)

Xa (n;e)Ya<n;e) =Y,(n—¢€) =0 (mod n) and

Xa (P—;—e) X (-7—7'—2.*-—-5) = X,(n) + a = a + a = 2a (mod n).

If (n,a) = 1, then the second congruence implies (n, X,((n ~ €)/2)) = 1. Hence the

first congruence implies n|Y,((n — €)/2). If n]a, then
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1 ifn=1 (mod 4)
e=(—4/n) = (-1/n) =
-1 ifn=—1 (mod 4)

Hence n = € (mod 4) so that (n—¢)/2 is even. Then by the Division Theorem and

since a=Y,(2) and n|a, it follows that n|Y,((n — €)/2). This completes the proof.

Corollary 6.12.1. If p is an odd prime, (p,d) = 1 and e=(d/p), then r,(p) | (p—¢)/2.
and 7,(p®) |p*~t(p—¢)/2. Hence (p,74(p))=1.

Proof. The conclusion r,(p) | (p—¢) /2 follows from Theorem 6.12. And the conclusion
7a(p?) | p*~1(p—¢) /2 follows from Theorem 6.12 and the Law of Repetition 6.5.

Lemma 6.13. Suppose p is an odd prime, (p,s) =1,1 <sand 1 <i <e. Then
(i) ra(@®)=s = s|(p—¢€)/2 for some € = %1,

(i)  ra(p) =5 = ra(p) =5,

({il)  ra(p’) =5 = r(p’) =5,

(iv)  7a(p) =5 and p¥| Ya(p's) = ra(p®) = p's,

(V) (ra(p),p) =1 = 14(p°) = 1a(p’) = ra(p),

(vi) Ta(p) =5 = 1,(p?) = psforsome j,1<j<e.

Proof. (i) follows from Corollary 6.12.1 and the GCD Theorem 4.16. To prove (ii),
suppose 74(p°) = 5. Put r = r,(p). Then r|s by Corollary 6.4.1. p|Y,(r) implies
p°| Yo(p®~'7) by the Law of Repetition. Hence s|p*~!r. But (p,s) = 1. Hence s|r.
Since r|s, this implies r = s. Proofs of (iii) and (vi) are similar. (v) is a restatement
of (iii) and (ii). For (iv), consider two cases according as i = 0 or i > 1. If i = 0, the

implication is trivial. If ¢ > 1, then we have p® [ Y,(p'!s), by the Law of Repetition.
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Lemma 6.14. If p is a prime and p|d, then p|Y,(p). More generally, if p°|n and
p|d, then Yy(n) =0 (mod p°).

Proof. Suppose p is an odd prime, p| d where d = a® — 4 and p®|n. Then since
d=(a+2)(a—2) and (a+2,a—2) |4, p|a—2 or p|a+2. By (4.2.1) a==2 (mod p®) implies
Y.(p) = £Y2(p) = 2p=0 (mod p). Hence p|Y,(p). Then by the Law of Repetition
p°|Ya(p®). By the Division Theorem p®|n = Y,(p®)|Ya(n). Hence p®|Y,(n).

REMARK. It can be shown that if p|d and p > 3, then r,(p®) = p°. The proof uses
the fact that if p is prime , p > 3 and p|d, then 2°~'Y,(p) = pa®~! (mod p?). This
congruence can be derived from Theorem 6.11.

The Lemma 6.14 also holds when p = 2. Suppose p = 2, 2 | d and 2¢||n where
1 < e. In this case 2 | d and d = (a + 2)(a — 2) implies 2 | a. Hence by the Law
of Repetition, 2¢ | Y;(2¢). By the Division Theorem 2° | n = Y,(2¢) | Y,(n). Hence
2° | Ya(n).

Corollary 6.14.1. Suppose 0 <i<e, 1< s, (p,s) =1 and r,(p?) = p's. Then
(p) a® — 4) =L

Proof. Suppose (p,a®?—4) > 1. Then p|a®—4. Put n=p°® in Lemma 6.14 which
implies that 7,(p®) | p®. Since 74(p®) =p's, we then have s|p®. This contradicts the
hypothesis that 1<s, (p,s) = 1. Hence (p,a®—4) = 1.

Theorem 6.15. n | Y,(T,(n)). Equivalently r4(n) | To(n).

Proof. Let n = pf'---pi*. If (p;,a® — 4) = 1, by Theorem 6.12, p | Yo((p: —€:)/2).
Since in this case, To(p;) = (i — €)/2, pi | Ya(Tu(p:i)). Then by the Law of

Repetition 6.5, for 1 < i < k, p¥.| Y, (p&~1854) = Y (TL(pF)). So we have
3
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pi | Ya([Tu(pi'), -, Ta(pi!)]) = Ya(Tu(n)). Hence n | Yo(Ta(n)). If pi|a® -4,
then by Lemma 6.14, p; | Yo(p:). Since in this case T,(p;) = p; and p; | Yo(To(pi)),
by the Law of Repetition 6.5, we have p{* | Ya(pf*), i.e. pf | Yo(Tu(pf)). Hence
pi | Ya([Ta(®P'), - - \Ta(PF*)]) = Ya(Tua(n)). Since this holds for each pf* | n, we then

have n | Y3(T,(n)). This proves the theorem in either case.
Corollary 6.15.1. Let p be an odd prime. Then (p,a® —4) =1 if and only if
7a(p) [P*~ 1 ((p — €a(p)) /2).

Lemma 6.16. Suppose 2 < k, §; = £1, 3 < m; and m; # m; for ¢ # j. Then

(6.16) ﬁ (mtz ) s 7;%,)—1

i=1

Proof. Induction on k. To make the notation simple let LHS denote [T%_, ((m;—é;)/2)
and RHS denote (([T5_, m;)—1)/2. For case k = 2,

my — 01 mo — O _ myma—myda—mad; +06102 _ mimo+my+mo+1

= = <
LHS 2 . 2 4 - 4
RHS = —"’1—"‘22—_-
RHS — LHS > mymg — 1 _mamga+my +me+1 _ mymg — (my + ma + 3) > 0.
2 4 4
Hence (6.16) holds for k = 2. Suppose (6.16) holds for k > 2. Consider & + 1.
Mg — Gk oy (M= 8\ iy — Giqr (T me) — 1
LHS ==+ I='[1 ( 5 > <~ 5
_ Mg Ty 4 — g — S Ty 4 + Gkn TR m—mmpeq1 — e (T ma—1)
- 4 - 4
LI ma = myg + Tl mi — 1 2 mi—4 M mi—
1 1 5 = RHS.

Hence (6.16) holds for k¥ + 1. The lemma is proved.

Theorem 6.17. Suppose n is odd. Then n is prime < (n — €)/2 = T,(n) and also
n is prime & (n — €)/2|T,(n), where € = ((a® — 4)/n).
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Proof. (=) By definition of T,(n).

(<) Suppose n is not prime. Case (1). n = p® with e > 2. Then

Ta(n) = pe—lp '—25(?) :'é pe _;(pe) pe _2€(pe) /rpc—lp ‘—25(]7) .

Case (2). n = pi'...ps* where k > 2. Then using Lemma 6.16 we have
€ - € er— —c
Ta(n) = [Ta(p1'), - .-, Ta(pi)] = [ ar-1PL = €1(P1) P k(Pk)]

, also

5 yeeey 2
ot [ B ] (B29)
i=1
k e1—1 ep—1
< pa-l...poxl (H.'=1127i) _ (&, pf) = .;’ B P ; lon- 26(7‘)0

Hence Ty(n) # (n —€)/2 and (n —€)/2 fT,(n). This completes the proof.

Theorem 6.18. Suppose (n,2a(a® —4)) =1 and € = ((a®—4)/n). If (n—¢)/2|r.(n)

or (n—e)/2 = r4(n), then n is prime.
Proof. Suppose (n—e€)/2|rs(n) or (n—¢€)/2=r,(n). By Theorem 6.15 r,(n)|T,(n).
Hence (n—e€)/2|T,(n). By Theorem 6.17 this implies that n is prime.

Lemma 6.19. Suppose (n,2a(a?—4)) = 1, € = ((a®—4)/n), 4|n—¢ and n—e=2¢ for

n—e

some e. Then Y, (-——2—) =0 (mod n) and Y, ( ) # 0 (mod n) = nis prime.

4

Proof. By assumption we are given r,(n) | (n—€)/2 and r4(n) J (n—¢€)/4. Since

(n —€)/2 is a power of 2, r,(n) = (n — €)/2. Then by Lemma 6.11, n is a prime.
Lemma 6.20. Suppose n is odd, e = +1 and 4 | n — €. Then
Vet o n1x (2.

Proof. (<=). By identity (3.93) Y,((n —€)/2) = Ya((n —€)/4) Xa((n — €) /4), and also
by coprimality of Yo ((n — €)/4) and X,((n — €)/4).

Y, (n;e) =0 (mod n) and (n,Y, (n;-

(=). By identity (3.93).
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Lemma 6.21. Suppose (n,2a(a®?—4)) = 1,¢ = ((a®~4)/n),4|n—e and n—e = 2¢ for
n —
4

n-—e
2

some e. Then p|X, ( 6) & nis prime and 7,(n) =

Proof. (=). By (3.93) and Lemma 6.13, n is prime and 7,(n) = (n — €)/2.
(¢=). By identity (3.93) Y((n — €)/2) = Ya((n — €)/4)Xa((n — €)/4) we have
n| Xa (255).

Lemma 6.22. Suppose (n,6) = 1. If p? | n for some prime p, then it is possible to
find at least two @ such that 2 < a < n—2, (n,a(a®—4)) = 1, and p|r,(p?), (actually
Ta(p?) = 3p and hence r,(p°*!) = 8p° for all e > 0 ). For such an a we have the
following:
Y,(n)?2 # 1 (mod p?), Ya(n £ 1) # 0 (mod p?),
Yo((n£1)/2) # 0 (mod p?), Ya((n—1)/2) #0 (mod p?),
Yo((n+1)/2) # 0 (mod p?), Ya((n£1)/2)®#1 (mod p?),
Xa(n)? # a® (mod p?), Xa((n£1)/2)% # a® (mod p?).
Proof. Suppose (n,6) = 1, p?|n and p is prime. Let j be the product of the other
primes dividing n (1 if there are none). Put a = jp+ 1. Then a — 2 = jp — 1 and
a+2=jp+3ora—2=jp—3and a+2 = jp+ 1. Since (n,3) = 1, we have
(a+2,n) =1 and (a — 2,n) = 1. Hence (a® — 4,n) = 1 so that (n,a(a® — 4)) = 1.
Then Y,(3) = a® — 1 = (jp+1)2 — 1 = j%p? £ 2jp = jp(jp + 2). Hence we have
7a(p) = 3 so that 7,(p®) = 3p by the Law of Repetition. Therefore p | r,(p?) and
also r,(pet!) = 3p°.
Suppose p? | Yo(n £ 1) or p? | Yo(n)? — 1. Then from (3.28) we would have
Ya(n—1)Y,(n+1) = Y,(n)?—1 =0 (mod p?). By the GCD Theorem the two terms on
the left are not both divisible by p, since (n+1,n—1) =2, ¥,(2) = @ and (p,a) = 1.
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Consequently p? | Yz(n & 1). Hence 74(p?) | n & 1. But p | 7,(p?). Hence p | n =+ 1,
contradicting p|n. Thus Y,(n £ 1)? # 0 (mod p?) and Y,(n)? # 1 (mod p?).

To show X,(n)? # a® (mod p?) and X,((n % 1)/2)? # a2 (mod p?), we will use
(3.28') and (3.99). By (3.99) we have that if X,((n £ 1)/2)? = a? (mod p?), then
P?| Yo(®52 £ 1). Hence rq(p?) | 25 + 1. Since p|ra(p?), it follows that p | 25 + 1

which contradicts p|n. The proof for X,(n)? # a? (mod p?) is the same.

Lemma 6.23. SQUAREFREE LEMMA. Suppose (n,6) = 1. If any one of the
following congruences holds for all @, 1 < a < n such that (n,a(a®? —4)) = 1, then n
is squarefree:

(1) Y2(n) =1 (mod n), (2) Ya(n—1)=0 (mod n),

(3) Yi(n+1)=0 (modn), (4) Ya(n=£1) =0 (mod n),

(5) Ya((n—1)/2)=0(modn), (6) Ya((n+1)/2)=0 (modn),

(7). Ya((n£1)/2) =0 (mod ), (8) Ya((n+£1)/2)*=1 (mod n),

(9) X.(n)? = a? (mod n), (10) X.((rn£1)/2)? = a? (mod n).

Proof. It follows directly from Lemma 6.22.
In the following theorem we give several equivalent congruences.

Theorem 6.24. Let d = a® — 4. For (n,2ad) = 1 and ¢ = (d/n), the following

statements are equivalent:
(?) Xa(n) = a (mod n) and  Y,(n) =€ (mod n),
(i) Xi(n+e€)=a’>—2(modn) and Yy(n+e€) = ae (mod n),

(4i1)) Xa(n—€)=2(modn) and Y,(n—e¢€) =0 (modn),

(iv) Y, (" - €) = 0 (mod n),
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(v) 2X, (n -2'- e) =aX, (n ; e) (mod n),
(vi) 2Y, (n ; e) =eX, (n ; €) (mod n),
(viz) aY, (n ; 6) = eX, (n -2*. E) (mod n),

(viii) Xi(n+e€)=a®—2(modn) and X,(n—¢€) =2 (modn),

(iz) Ya(n+e)=ac(modn) and Yy(n—e) =0 (mod n).

Proof. (i) = (ii). By (3.68) we have 2X,(n + ¢€) = aX,(n) + edY,(n) = aa + ede =
a? +d = 2a® — 4(mod n). Hence X,(n + €) = a® — 2(mod n). And by (3.69) we have
2Y,(n+e) = eX,(n)+aY¥,(n) = ea+ac = 2ae(mod n). Hence Y;(n+¢€) = ae(mod n).

(ii) => (iii). By (3.78) we have 2X,(n—¢€) = (a2 = 2)X,(n +¢€) — eadYy(n +¢) =
(a2-2)(a?—2)—eadea = a*~4a’+4—a%(a®>—4) =4 (mod n). Hence X,(n—e)=2 (mod n).
By (3.79) we have 2Yy(n — €) = —eaX,(n + €) + (a% — 2)Yo(n + €) = —ea(a? — 2) +
(a® — 2)ae = 0 (mod n). Thus Y,(n — €) = 0 (mod n).

(iii) = (iv). Since X2 (1‘—2‘—‘) = Xa(n—€)+2 =2+ 2 = 4 (mod n), we have
(n, Xa((n — €)/2)) = 1. Then Ya((n — €)/2)Xa((n — €)/2) = Ya(n — €) = 0 (mod n)
implies that Y,((n — €)/2) = 0 (mod n).

(iv) = (i). By identities (3.85) and (3.87).

To finish the proof of 6.24, (iv) & (v) follows from (3.80), (iv) & (vi) follows
from identity (3.81), (iv) > (vii) follows from (3.83) and (viii) < (ii) follows from
(3.76) and (3.77).  The proof is complete.

REMARK. That (z) - (iv) are equivalent does not need the hypothesis that (n,a) = 1.

Corollary 6.25. If n is an odd prime and (n,d) = 1, then n satisfies all the

congruences in Theorem 6.24.
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§7. Pseudoprimes related to the sequences X,(n) and Y,(n)

In this section, we introduce several types of pseudoprimes related to the se-
quences X,(n) and Y,(n) and set forth the relationships among them. Some of these
kinds of pseudoprimes are classical, like Lucas pseudoprimes (Ipsp), Euler Lucas
pseudoprimes (elpsp) and strong Lucas pseudoprimes (slpsp); some are new, like ¢
- pseudoprimes (tpsp), a - pseudoprimes (apsp), r - pseudoprimes (rpsp) and extra
strong Lucas pseudoprime (slzpsp).

A. Rotkiewicz [46] considered an odd composite number n to be a pseudoprime if
n divided U,_. where U, is defined by (1.10) (ii). Accordingly we will call a number
n satisfying Yo(n—e,) =0 (mod n), a Lucas pseudoprime in the sense of Rotkiewicz,
or simply a Lucas pseudoprime. Normally we would suppose either (n, (a2—4))=1
or (n,a(a®—4))=1. However (n,a?—4) = 1 is implied by Y,(n—e,(n)) = 0 (mod n).

The congruences Yi(n — €,(n)) = 0 (mod n) and Yi(n) = €,(n) (modn) are
not equivalent. The example n = 77 and a = 6 shows that Y,(n—e¢,) =0 (mod n)
does not imply Y,(n) = ¢, (mod n). The example n = 115 and a = 41 shows that
Ya(n) = ¢, (mod n) does not imply Y,(n—e¢,) =0 (mod n). We will use the condi-
tion Y,(%52) =0 (mod n), which is stronger than both of them. This condition is
equivalent to the notation of Euler Lucas pseudoprime, elpsp, as defined by Baillie
and Wagstaff [2]. There is another condition in turn stronger than this one, namely
strong Lucas pseudoprime, slpsp, [2].

Suppose n = u2*+¢, is an odd prime, where u is odd and (n,a?~4)=1. Applying

Double Angle Formula (3.5) t—1 times to Y;(n—¢,), one obtains
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Hence one of the following conditions must be satisfied:

(i) (az')[1gi_<_t and n|Xa(";€)] or (i) nm("—;—e).

This condition gives a stronger primality test when n = ¢, (mod 4).
Now we formalize the definitions used throughout this thesis. In the following d

denotes a® — 4 and € denotes the Jacobi symbol (d/n).

Definition 7.1. n is a lpsp(a) if (n,2d) =1 and Y,(n—e¢) =0 (mod n).

Definition 7.2. n is an elpsp(a) if (n,2d)=1 and Y, (P-;—e) =0(mod n).

Definition 7.8. Suppose n = u2' + ¢, with « odd. Then n is a strong Lucas
pseudoprime to the base a, slpsp(a), if (n,2d)=1 and n satisfies one of the following

conditions:

@) (3) [1gigt and n|x("2—‘€)] or (i) nm(%}-e).

From (3.96) (X,(k)+2)(Xa(k)—2) =dY,(k)? with k replaced by (n—¢)/2¢, we can

strengthen the condition 7.3 (i%) to get the following stronger type of pseudoprimes.

Definition 7.4. Suppose n = u2! + ¢, with u odd. Then 7 is an extra strong Lucas
pseudoprime to the base a, slzpsp(a), if (n,2d) =1 and n satisfies one of the following

conditions:

(2) () [1 <i<tand n|X, (n; 6)] or

(¢2) n|Y, (n — e) and X, (-72-—_—6) = +2 (mod n).

2t 2t
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Clearly slzpsp(a) = slpsp(a). However the example, n = 143 and a = 12,
shows that slpsp(a) # slzpsp(a). By the Double Angle Formula, it is easy to see
that elpsp(a) = Ipsp(a). The implication slpsp(a) = elpsp(a) is due to Baillie and
Wagstaff [2].

Theorem 7.5. (Baillie and Wagstaff [2]) n is a slpsp(a) = n is an elpsp(a). Further,

If n=u2+¢, and u is odd, then n is a slpsp(a) < n is an elpsp(a).

Proof. Suppose n = pi'---pi¥ is a slpsp(a). Let n = u2! + ¢,(n) with u odd.
Then n | Y,(u) or for some s, 0 < s < t—1, n| X, (u2°). Since Y,(v) and X, (u2®)
(s <t —2) are factors of Y, (u2"1) = Y ((n — €,)/2), to show that n is elpsp(a) we
need only show that n f X (u2'"1). If n| X, (u2!"1), then for all p;|n, ro(p;) |42t and
Ta(pi) Y u2'=1. This shows 2¢||r,(p;) for all ¢ (i = 1,...,k). However by Theorem 6.12
we have 27,(p:) | pi — €.(p;). Thus p; = €4(p;) (mod 2!*1) (i = 1,...,k). Therefore

k k

n=J]pf =[] ea(pi)* = €a(n) (mod 2'*)

i=1 i=1
which contradicts our assumption 2*|[n—e,(n). Thus n J X,(u2:~!) and hence n is an
elpsp(a). The second statement is true because (n—e¢,)/2 is odd and then condition
(ii) of Definiton 7.3 holds. Hence slpsp(a) < elsps(a) in this case.

From Theorem 7.5, we have the following corollary.

Corollary 7.5.1. Suppose n = u2* + ¢,(n) with « odd. Then n is slpsp(a) if one of

the following conditions holds:

@) (3) [2gigt and n|X, ("2_6)] or (i) nlY, ("’;6)
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Lemma 7.6. Suppose n is odd and a prime power. Then n is a elpsp(a) if and only

if n is a slpsp(a).

Proof. By Theorem 7.5 we only need prove the implication =>. Suppose n = p°
and n is elpsp(a). Write n = 2*u+¢ where u is odd, s > 1 and € = (d/p). Since
(Xa (%), Xa(5%5%)) | 2 when 4 # j and (Xo(25%),Ya(%)) | 2 for all ¢ < ¢, by (7.0)
we have p° | X,((n—¢)/2¢) for some i or p°|Y,((n—¢)/2!). Hence n is slpsp(a) by
Definition 7.3.

The aforementioned are some classical types of Lucas pseudoprimes (except for
slzpsp). Next we define some new types of pseudoprimes connected with the Lucas

sequences X, and Y,. These are based on the binomial expansion and the identity
(7.7) 4(a:{:2)(“+‘/—_) = (a£2+ Va2 -4

Raising both sides of the identity to the n** power, we obtain

(7.7.1) 4*(a + 2)" <9+—‘/——2“_2__4>n = (a£2+Va® - 4%

Putting d = a® — 4 and applying (1.36) we have

(772) 4"((1 + 2)" (Xa(n) +2},a(n)\/(—l> — (a 194 \/&‘)27’

Expanding the right side of (7.7.2) by the binomial theorem and solving respectively
for X,(n) and Y,(n):

n

(7.8) a+2)"X(n) = 23 (3) (a £ 2)%d.
=0
(7.9) 4*(a £ 2)"Y,(n) = 2(a+2) znj (21) (a £ 2)2-2a1,

i=1
These two equations will be used to prove the following theorems.
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Theorem 7.10. If p is a prime, (p,2d) =1, ¢, = (%), Ty = (“%2) and p, = (2:;;2)
then

(7.10) 2X, (2-1211) = pa(a—2) + pacala+2) (mod p).

Proof. Put n = (p+1)/2 in (7.8). Then p|(”2'f1) foreach i, 1 <i<(p—1)/2. Thus
P | (”2”': 1) holds for all ¢ unless = 0 or i = (p + 1) /2. Hence (7.8) implies

4 (g £2)F X, (1%1) =2(a+ 2" +2d%F (mod p).

Applying Euler’s Criterion and Fermat’s Theorem we obtain

ptl

4a+2)F(at2)X, ( :

) = 2(ax2)? +2¢,d (mod p).
Since d = (a + 2)(a — 2) we may divide by 2(a £ 2) to obtain
ety (P+1
2a+2)5 X, (T) =(a£2) +e(@aF2) (modp).

Multiplying by (a £ 2)&;—1 and replacing (ai2)"%l‘ by p, or 7, we obtain (7.10). The

theorem is proved.
Theorem 7.11. If p is an odd prime, (p,d) =1, €, = (%) and 7, = (“—;2), then
(7.11) Xa (p—_zﬁ) = 27, (mod p).

Proof. Let p, = ((@ — 2)/p). Then €, = 7,p,.

First suppose € = —1. Then p+ 1 = p — e. Hence from Theorem 7.10 we have

2X, (p _2 6“) =2X, (%l) = pla —2) + p(—1)(a + 2)=—4p=4ep = 47 (mod p).

Hence (7.11) holds in this case.
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Next suppose € = 1. By Theorem 7.10 and (3.80),

aX, (1%—-6-) =2X, (2-2*-:—6-) =2X, (;_):;_1) = pla—2+pla+2) =2pa=2¢pa = 2ra (mod p).

If (p,a)=1, divide both sides of the congruence by a to get (7.11) in this case also.
If p|a, the result can be proved from Definition 3.12 and (4.1). See Theorem 7.25.

Theorem 7.12. If p is a prime, (p,2d)=1,¢, = (%) and p, = (9%-2-) , then

(7.12) oy, (2-;—1-) = pa(éa+1) (mod p).

Proof. Put n = (p+1)/2in (7.9). Then p|(57) for each i, 2 <i < (p—1)/2. That
is p| (’2’;"_11) for all 7 except i = 1 and ¢ = (p + 1)/2. Hence from (79) and p+1=1
(mod p) we obtain

40— 2%y, (1%1) = 2(a—2)° +2(a— 2)d°" (mod p).
Dividing by a — 2 and applying Fermat’s Theorem to obtain (a—2)P"1 =1 (mod p)

and 2°*! = 4 (mod p), we have

4(a — 2)";—1}’; (1%1) =2+ 24T (mod p).
Next apply Euler’s Criterion and Fermat’s Theorem to obtain

4p,.Y, (‘1%1) = 2+ 2¢, (mod p).

Multiplying by p, and dividing by 2, using p2 = 1, we obtain (7.12).

Theorem 7.13. If p is prime, (p,2d) = 1,¢, = (%) and p, = (%), then

(7.13) Yo (P25) = oo (mody).

Proof. For € = ¢; = 1 or € = ¢, = —1 this can be deduced from Theorem 7.12, (3.81)
and Corollary 6.23.

2Y, (?) = eX, (IL;—G) = e2ep = 2p (mod p).
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Theorem 7.14. If p is prime, (p,2d) = 1,¢, = (g) and 7, = (9%3), then

(7.14) Xa (p ;6“) = a7, (mod p).

Proof. This can be deduced from Theorem 7.13, (3.83).
X (p_—i-__e_) = eeX, (‘E-;—e) = eaY, (p;—e) = eap = ar (mod p).

2

As before, the conditions expressed by Theorems 7.11, 7.13 and 7.14 are not

equivalent. Hence we can define some new types of pseudoprimes.

Definition 7.15. Suppose (n,2d) = 1 and d = (a®~4), €, = (d/n), pa = ((a—2)/n)
and 7, = ((a + 2)/n).

Xe (%) = 27, (mod n) < nis t-pseudoprime to base a, tpsp(a),

X, (” -; Ga) = ar, (mod n) 4 nis a-pseudoprime to base a, apsp(a),

Y, (F—-;ﬁ) =p, (mod n) <& nisr-pseudoprime to base a, rpsp(a).

These concepts are all independent each other and also independent of Ipsp(a),
elpsp(a) and slpsp(n).

n is a slpsp(a) does not imply = is a tpsp(a), rpsp(a) or apsp(a). For example
put n =17-19=323ande=3,n=5-T=35and a =6 or n = 5:11 = 55 and
a=2l.

n is a rpsp(a) does not imply n is a Ipsp(a), tpsp(a) or apsp(a). For example put
n=11-13=143and a =3,0or n = 71-73 = 5183 and a = 3.

n is a tpsp(a) does not imply n is a Ipsp(a), rpsp(a) or apsp(a). For example put
n=T7=49and a =3, or n = 72.23 = 1127 and a = 3.

n is an apsp(a) does not imply n is a Ipsp(a), tpsp(a) or rpsp(a). For example
put n=11-13=143and a="7,0r a = 19.
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However, we will show that if (n,a)=1 in addition to (r,d)=1, then any two of
Ipsp(a), tpsp(a), rpsp(a) and apsp(a) together imply all others. Also the same holds
for the group of elpsp(a), tpsp(a), rpsp(a) and apsp(a). Although elpsp(a) implies
Ipsp(a), these two groups are equivalent. Namely, any two in the former group imply
any one in the latter group. i.e. Ipsp(a) together with ¢psp(a) imply elpsp. Hence

we can define the following stronger pseudoprimes.

Definition 7.16. If (n,2d)=1, n is a lpsp(a) and n is a tpsp(a), then we say n is an
Lucas t-pseudoprime to the base a, ltpsp(a). If n is a rpsp(a) and n is an apsp(a),

then we say n is an rapsp(a).

Theorem 7.17. Suppose (n,2ad)=1, then n is an ltpsp(a) if and only if

()  Yu(%%) =0 (mod n) and X, (%%) =27 (mod n),
() Yoln—€)=0 (modn) and X, (%F)=2m (modn),
() Y.(%5%)=0(modn)  and Y,(%%)=p. (modn),
(#))  Y.(%*) =pa (modn)  and X, (%)

(iv) (1'—;—‘) =0 (mod n) and X, (1215) = a7, (mod n),
(v) €) =27, (modn) and X, (-’g—*ﬁ)

(vi)
(vid)

.

~—~
|:3
o
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]
N
1.
N—
1]

pa (mod n) and Yi(n) =€, (mod n),
(mod n) and X,(n) =a (mod n),

BoRoR S S RS
il
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(viii) (%) =27, (modn) and Y,(n) =€ (mod n),
(iz) (ﬂzﬁ) =a7, (modn) and X,(n)=a (mod n),
(z) (1‘-'21‘—‘) =ar, (modn) and Y,(n)=¢, (mod n).

Proof. Here (¢) is the definition of l¢psp(a). From 7 = pe and identities (3.80) -

(3.91) and Theorem 6.22 it is easy to see that conditions (i) - (z) are all necessary.
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To show that (o) is necessary, we use the Double Angle formula and the condition
Xa((n — €)/2) =27, (mod n) to get Y;((n — €)/2) = 0 (mod n). For the sufficiency
proof we observe that (o) = (¢) is trivial. Then (i¢) = (i) by (3.81). (#) = (i) by
(3.82) and (3.83). (iv) = (i) by (3.80). (v) = (i) by (3.80). (vi) = (i5) by (3.87)
and (1.1). (vi¢) = (i¢) by (3.85). (viis) = (vi) by (3.87). (iz) = (v) by (3.84).
Finally (z) = (iz) by (3.87) and (3.85).

Corollary 7.17.1. Suppose (n,2d) = 1. n is ltpsp(a) => elpsp(a). Also n is an
Iltpsp(a) if and only if » is a rapsp(a).

Proof. Directly from the three € - identities (3.80) - (3.83).

REMARK. That the conditions (o), (2), (é¢), (vi) and (viii) are equivalent does not
need (n,a) = 1.

From Theorem 7.17, n is a ltpsp(a) implies n is an elpsp(a). However n is a
ltpsp(a) does not imply n is a slpsp(a) (n = 385,a = 6). Also we already saw that
n is a slpsp(a) does not imply n is a ltpsp(a) (n = 35,a = 6).

We next define a stronger type of pseudoprime condition:

Definition 7.18. Suppose n is odd and (n,d) =1 where d =a?—4. n is said to
be a strong Lucas t-pseudoprime to the base a if n is both a slpsp(a) and a tpsp(a)

(written as sltpsp(a)).

By Theorem 7.17, we have
Theorem 7.19. Suppose n > 1, n odd and (n,ad)=1. If n is sltpsp(a), then n is

slpsp(a), elpsp(a), Ipsp(a), apsp(a), rpsp(a) and tpsp(a).
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Next we will discuss some general properties of pseudoprimes. We will show that
for all odd integers n > 3, there always exist 3 trivial incongruent bases such that n
is a sltpsp(a). First we need a lemma.

Lemma 7.20. Suppose n is odd, (n, d) =1 where d=a?—4, €,=(d/n), po=((a~2)/n)
and 7,=((a+2)/n). Then the Jacobi symbols p,, 7, and ¢, satisfy

@) (DT ()T, = 7, @) (D)% (-1)"Fr = p,,
(@) T4 = (-1)Fr, () poa = (-1)"Fpq,

(W s = (-l/n) = (-1)F, () m = (-1/n) = (1),
(vid)  T_o = pipa, (viid) pog = p17a .

n—eg

Proof. Trivial since €, = p, - 7, and ¢, = (=1/n)(-1)"z .
Theorem 7.21. Suppose n is 0odd and a = b (mod n). Then
n isan Ipsp(a) & n isan lpsp(b), n isan elpsp(a) & n isan elpsp(d),
n isa tpsp(a) & n isa tpsp(b), n isa rpsp(e) & n is a rpsp(b),
n is an apsp(a) & n isan apsp(b), n isa slpsp(a) & n isa slpsp(b),
n is a slzpsp(a) < n isa slzpsp(b).
Proof. Suppose a = b (mod n). Then ¢, = €,7, = 7, and p, = p;. The conclusion
then follows from the Congruence Rule (4.1).
Theorem 7.22. Suppose n is odd and ¢ = —b (mod n). Then
n isan Ipsp(a) < n isan lpsp(b), n isan elpsp(a) < n isan elpsp(b),
n is a tpsp(a) & n isa tpsp(d), n is a rpsp(a) & n isa rpsp(b),
n is an apsp(a) < n isan apsp(b), n isa slpsp(a) & n isa slpsp(b),
<

n is a slzpsp(a) n is a slzpsp(b).
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Proof. Since a = —b (mod n), €, = ((a2—4)/n) = (((=b)2—4)/n) = ((b?—4)/n) = €.
Since n|a + b, Congruence Rule (4.2.1) implies that for any k,

(*) Ya(k) = (-1)*Y4(k) (mod n).

Putting k = (n—¢€) and k = (n — €) /2 respectively, then this congruence implies 7 is
Ipsp(a) if and only if n is Ipsp(b) and n is elpsp(a) if and only if n is elpsp(b). Also
by (4.2.1) we have for any k,

(%) X.(k) = (-1)*X3(k) (mod n).

This together congruence () shows that n is slpsp(a) if and only if n is slpsp(b). To
show 7 is tpsp(a) if and only if n is ¢psp(b), we use Lemma 7.20 (ié7). To show n is
rpsp(a) if and only if n is rpsp(b), we use Lemma 7.20 (4v) and (—1)"~'=1. To show
n is apsp(a) if and only if » is apsp(b), we use Lemma 7.20 (i%i) and (—1)"=-1.

If we put b = n—a or b = —a in Theorem 7.22, then we obtain the following two

corollaries as special cases:

Corollary 7.23. Suppose n > 1 is odd. Then

n is an Ipsp(a) n is an Ipsp(n—a), nis an elpsp(a) < n is an elpsp(n—a),

n is an apsp(a)

&

nis atpsp(a) & nisatpsp(n—a), nisan rpsp(a) < nisan rpsp(n—a),
& nis an apsp(n—a), nis a slpsp(a) < n is a slpsp(n—a),
&

n is a slzpsp(a) n is a slzpsp(n—a).
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Corollary 7.24. Suppose n > 1 is odd. Then
nis an Ipsp(a) & nisanlpsp(—a), nisanlpsp(a) ¢ nis an Ipsp(—a),
nis atpsp(a) & nisatpsp(n—a), nisanrpsp(a) < nisan rpsp(—a),
n is an apsp(a) 4 nis an apsp(—a), n is a slpsp(a) < n is a slpsp(—a),
&

n is a slzpsp(a) n is a slzpsp(—a).

Theorem 7.25. For all odd n > 1, n is an sltpsp(0) and slxpsp(0). Hence n is
slpsp(0), apsp(0), rpsp(0) and tpsp(0).

Proof. Suppose n is odd. € = ((02 — 4)/n) = (—4/n) = (—1/n) = £1. Put
n = u2’ + ¢y where u is odd. To show = is slzpsp(0), note that u = (n — €)/2" is
odd. Hence by Definition 3.12, Xg(u) = 0 = 0 (mod n) so that n is slzpsp(0) by
(7.4) (i). Therefore n is sipsp(0).

For the proof that n is a tpsp(0) we shall use (2/n) = (—1)®*~1/8 known from
the theory of quadratic residues. Since 75 = ((0 + 2)/n) = (2/n), we need to show
that Xo((n — €)/2) = 2(2/n) (mod n). For this we consider 4 cases:

n=1 (mod 8) = e=+1,7=+1,(n — €)/2=0 (mod 4) = Xo((n — €)/2)=+2,

n=3 (mod 8) = e=—1,7=—1,(n — €)/2=2 (mod 4) = Xo((n —€)/2) =2,

n=5 (mod 8) = e=+1,7=—1,(n — €)/2=2 (mod 4) = Xo((n —€)/2)=-2,
n=7 (mod 8) = e=~1,7=+1,(n — €)/2=0 (mod 4) = Xo((n —€)/2)=+2.

Thus n is a tpsp(0). This proves the theorem.

Using the Congruence Rule, we have the following corollary:

Corollary 7.26. If a = 0 (mod n), then n is an sltpsp(a) and slzpsp(a). Hence n

is slpsp(a), apsp(a), rpsp(a) and tpsp(a).
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Lemma 7.27. If (n,6)=1, a = %1 (mod n) and e=(d/n), then n = € (mod 6).

Proof. Since (n,6)=1, and @ = %1 (mod n), d=a?—4 = (£1)2—4=-3 (mod n).
Hence ¢ = (d/n) = (—3/n). From the theory of quadratic residues it is known
that (—3/n) = 1 if n = 1 (mod 6) and (—3/n) = —1 if n = —1 (mod 6). Hence
€ = (—3/n) = n (mod 6).

Theorem 7.28. If (n,6)=1 and a = 1 (mod n), then n is sltpsp(a) and slzpsp(a).

Proof. By Corollary 7.24, we need only to prove the theorem for case a=1 (mod n).
Put n = u2'+¢ where u is odd. For the proof that n is slzpsp(a), by Lemma 7.27,
we have 6 | n—¢ and then 3| n—e. Thus 3| (n—e¢)/2!. Hence by (3.13) we have
Y.((n—e€)/2")=Y1((n—€)/2%) = 0 (modn) and X,((n—e)/2)) =X ((n—€)/2") =2
(mod n). By 7.4 (ii) these two congruences show that n is slzpsp(a). Therefore n is
slpsp(a).

The proof that n is tpsp(a) is similar to the one used to prove Theorem 7.25.
We consider the cases n = £1 (mod 12), where (3/n) =1, and n = £5 (mod 12),
where (3/n) = —1.

The Theorems 7.25, 7.28 show that for any odd integer n, (n,6)=1, there always
exist at least 3 bases, a = 0, a = 1 and @ = n—1, in a complete residue system
mod n, for which n passes all the types of pseudoprime tests discussed above. These
three bases are the so called the trivial bases. Hence when we test the primality of
any odd integer n, these 3 bases may always be omitted.

How well do sltpsp(a) and slzpsp(a) work in primality testing? We looked at

all integers up to 2.5 x 10? and found only three composite integers which can pass
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an sltpsp(a) test for all three values a = 3, 4, 5. These three composite integers
are 79,398,901 = 6301-12601, 133,800,661 = 109-541-2269 and 579,606,301 =
109-541-9829. They all fail to pass the sltpsp(a) test with a = 6. In fact, we have
not found any composite number which is an sltpsp(a) for consecutive values of a
for @ = 3, 4, 5 and 6 so far. However, for the ltpsp(a) test, up to 2.5 x 10°, there
are 11 composites which are ltpsp(a) for ¢ = 3,4,5, some of them are even ltpsp(a)
for ¢ = 3,4,5,6,7,8, e.g. 140,384,161 = 6841-20521. Also we found that under

2.5 x 10° no composite integer can pass the slzpsp(a) test for a = 3,4, 5.
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§8. Mersenne numbers and Fermat numbers

In this section we will show that for Mersenne numbers and Fermat numbers,
their primality is equivalent to that they are ltpsp(a) for some fixed bases a. We also
relate other classical Lucas-Lehmer tests for Mersenne numbers and Fermat numbers
to our new tests by using X, and Y,. Hence we give a new proof from Thereom 5.1
for the classical result that the primality of Mersenne numbers and Fermat numbers
can be decided in polynomial time (see Corollary 8.2 and Corollary 8.4).

Suppose n is an integer of the form n = 2! — 1, ¢ > 2. If n is a prime, then it
is called a Mersenne prime. Clearly, if n is prime, then % is prime. Also we have
n =1 (mod 3), n =3 (mod 4), and n = —1 (mod 8).

To test the primality of n = 2¢ — 1, there are many positive integers a such that
for the Jacobi symbols € = ((a® — 4)/n) and 7 = ((a + 2)/n), we have ¢ = —1 and
T=-—1,eg a=4ora=10.

If @ = 4, then ¢®>—4 = 12. Since n = 1 (mod 3), and » = 3 (mod 4), we
have € = (12/n) = (3/n)(4/n) = (3/n) = —(n/3
n=—1 (mod 8), 7=((4 +2)/n)=(6/n)=(2/n

)=—(1/3)=—1. So e=~1. Since

)(3/n)=(+1)(=1)=—1. So T=—
If a = 10, then a® — 4 = 96. Since n (

have € = (96/n) = (16/n)(6/n) = (2/n)(3/n) = (+1)(—(n/3)) = —(1/3) = ~1. Also
= ((10+2)/n) = (12/n) = (4/n)(3/n) = (+1)(-

Thus if n = 2 —1, t > 2 and ¢ is odd, then we can take a = 4 or ¢ = 10 and

Ill

1 (mod 3), and n = —1 (mod 8), w
1) = —1. Hence e = 7 = —1.
it will be the case that (n,2(a? — 4)) = 1 and € = 7 = —1. There exist also other a

such that e = —1 and 7 = —1. With such an a the X, and Y, sequences can be used

to give criteria for primality of n. The Lucas sequences X, and Y, can also be used
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to give a quick proof of the Lucas - Lehmer test for primality of Mersenne numbers

2t —1.

Theorem 8.1. (Mersenne primes.) Suppose n = 2! — 1, ¢t > 2 and ¢ is odd,
(n,a(a® —4)) =1, €, = —1 and 7, = —1. Then each of the following conditions is

necessary and sufficient for primality of n.

(o) n is an ltpsp(a),
(?) X, (%) =27 =-2 (modn) and Y, ("T“‘) =0 (mod n),

(1) Xa ("—Z,i) =ar=—a (modn) and Y, (”—“2'—‘) =p=1 (mod n),

(i45) X, (55) =0 (mod n),
(iv) ra(n) = 5%,
Proof. Since e = -1, n—e=n—(~1) =n+1= 2! so n— ¢ is a power of 2.

Sufficiency. Suppose any one of (0) — (iv) holds. We will show that n is prime. If
(¢v) holds, then n is prime by Theorem 6.11. By Lemma 6.21, (i) implies (iv). By
(3.93), (3.92) and 7 = —1, (%) implies (¢2), and so (o) or (i) is also sufficient by
Theorem 8.17 (¢) and 8.17 (i¢7).

Necessity. Suppose n is prime. Then n is ltpsp(a). Hence (o), (7) and (é%) hold. By
(3.93) (¢) implies (¢i7) and by Lemma 6.21 (¢¢¢) implies (iv). Therefore (ii7) and (iv)

are also necessary.

Corollary 8.2. (Lucas [32] - Lehmer [28] Test). Fort > 2, t odd, n = 2t —1
is prime if and only if n | s;—; where s is defined by s; = 4, s34 = 57 — 2.
Proof. We shall use Theorem 8.1 with a=4. Since e=—1, (n—¢)/4=(n+1)/4=2'"2

By Theorem 8.1, n is prime if and only if n | X,;((n + 1)/4). Hence n is prime if and
only if n | X,(2'~2). Thus it suffices to show
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(8.2) sk = X4(2F1), for all k > 1.

(8.2) can be proved by induction on k. If k = 1, then 51 =4 = X4(1) = X4(2°) =
X4(2'~1). Suppose (8.2) holds for k. Then by (3.4) sp41 =s2—2=X3(2F!)-2=
Xa(2- 2% 1) = X (2%) = X, (2F+1-1). Hence (8.2) is proved.

Let n be an integer of the form n=2!+1, 4|t. Then n=2 (mod 3), n=1 (mod 8),
n = 2 (mod 5) and if n is a prime, then ¢ is a power of 2. Such primes are called
Fermat primes, and such numbers are called Fermat numbers.

For testing primality of a Fermat number n, there exist many positive integers
a such that for the Jacobi symbols € = ((a® — 4)/n) and 7 = ((a + 2)/n), we have
€e=+1and 7 = —1, e.g. we can take a =8 or a = 12.

If a =8, then a2 —4=60=4-3-5. Since n =2 (mod-3), n =1 (mod 8) and
n = 2 (mod 5), we have e= (60/n) = (3/n)(4/n)(5/n) = (3/n)(5/n) = (n/3)(n/5) =
(2/3)(2/5)=(-1)(-1)=1. Also since n=1 (mod 8) and a =8, 7= ((8+2)/n) =
(10/n) = (2/n)(5/n) = (+1)(5/n) = (+1)(=1) = =1. So 7 = —1.

If a=12 and ¢ is a power of 2, then n=2'+1=3,5 (mod 7). Both 3 and 5 are
nonresidues mod 7, so (7/n) = (n/7) = —1. Thus when a = 12, ¢ = ((122 —4)/n) =
(140/n) = (4/n)(5/n)(7/n) = —(5/n) = —(n/5) = —(2/5) = —(=1) = +1 and 7 =
((1242)/n)=(14/n)=(2/n)(7/n) = (+1)(—1)=—1. Hence e=+1 and r=—1.

Thus if n = 2t +1, t > 4 and ¢ is a power of 2, then we can take a = 8 or a = 12
and it will be the case that (n,2(a®? —4)) = 1 and € = 1, T = —1. There exist also
other a such that ¢ = 1 and 7 = —1. We will show that any such a can be used to

formulate a criterion for primality of n in terms of the sequences X,(n) and Y,(n).
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Theorem 8.3. (Fermat primes.) Suppose n = 2° + 1, ¢ > 4 and t is a power of
2, (n,(a®~4)) = 1, e = 1 and 7 = —1. Then each of the following conditions is
necessary and sufficient for primality of n.

(0) n is an ltpsp(a),

(2) X, (ﬁ;—‘) =2r=-2 (modn) and Y, (% =0 (mod n),

@) X (%)

(¢43) X 1'4;‘) =0 (mod n),

(iv) rq(n) = 255

ar = —a (modn) and Y, ("—'2*5) =p=-1 (mod n),

Proof. Since € = +1,n —e =n—1 = 2!, so n — € is a power of 2. Hence the same

proof as for Theorem 8.1 will establish the theorem here.

Corollary 8.4. (Lucas [32] - Lehmer [28] Test) For ¢ > 4, ¢ is a power of 2, we have

n = 2¢ + 1 is prime if and only if n|s,—; where s is defined by s; = 8, 541 = s2—2.

Proof. We shall use Theorem 8.3 with a=8. Since =1, (n—¢€)/4=(n—1)/4=2t"2
By Theorem 8.3, n is prime if and only if n | X,((n — 1)/4). Hence n is prime if and
only if n | X,(2:72). Thus it suffices to show

(8.4) sk = Xg(2%1), for all k> 1.

One can prove (8.4) by a similar induction procedure as in the proof of (8.2).
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§9. Prime powers

In this section we collect together results about p® as an elpsp(a), rpsp(a), apsp(a)
and tpsp(a). Some results in this section will be used in the later sections. Through-

out p denotes an odd prime.

Lemma 9.1. For any e>0 and all a such that (p,2d)=1, Y, (”el;@t) = 0 (mod p).

Proof. Certainly p—,(p) | p°—¢.(p)¢. Hence if k= (p°—,(p)¢)/ (p—€a(p)), then k will be
an integer and p®—e,(p)® =k-(p—e€,(p)). This implies (p®—e,(p)€)/2=k-(p—e.(p))/2.
Consequently by Lemma 6.17 and Lemma 4.10 (i) we have Y ((p® — €.(p)¢)/2) =
Yo(k-(p — €a(p))/2) = 0 (mod p).

Lemma 9.2. Suppose p is an odd prime and (p,d) = 1. Then for any j > 0,
() Xu()=a(modp) and (i) Ya(p!) = ealp) (mod p).
Proof. Suppose (p,d) = 1.

Case 1: €,(p)’ = +1. Then by Lemma 9.1, (i) holds by (3.20'), (ii) holds by (3.22').
Case 2: €,(p)’ = —1. Then by Lemma 9.1, (i) holds by (3.20), (ii) holds by (3.21').

Lemma 9.3. Let p be an odd prime and suppose (p,ad) = 1. The following are
equivalent:

(i) p®is an elpsp(a), (i) Xa(p?) =a (mod p?), (iii) Ya(p®) = €u(p)® (mod p°),
(iv) Xa(p®)? = a® (mod p°), (v) Ya(p%)? =1 (mod p°), (vi) Ya(p® £ 1) = 0 (mod p°).

Proof. If (i) holds, then (ii), (iii), (iv), (v) and (vi) hold by Theorem 6.24 with
n = pé. Conversely suppose (ii), (iii), (iv) or (v) holds. Then by (1.35) or (3.99)
with n =p°%, (X,(p®) + a)(Xa(p®) — @) = d(Ya(p®) + 1)(Ya(p®) — 1) = 0 (mod p°).
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It is obvious that (Y,(p®)+1, Ya(p®)—1) |2 and (X,(p°®) +a,X,(p°)—a) | 2a. Since
(p,ad) = 1 and p° is a prime power, we have Y,(p?) =+1 (mod p¢) and X,(p°) =
4n (modp®). But by Lemma 9.2, Y;(p®) = €,(p)® (modp) and X,(p®) = a(modp).
Hence (ii) and (iii) hold. Consequently (iv) and (v) hold. By Theorem 6.22, (i)
holds. Finally, suppose (vi) holds. Then by (3.96) with n = p°, (v) holds. Hence (i)
holds.

Lemma 9.4. Suppose (p,2d) = 1. Then
p° is an elpsp(a) & Y, (’#’—’)—) = 0 (mod p°).

Proof. = . Suppose (p,2d) = 1 and that p¢ is an elpsp(a). Since €,(p®) = €,(p)¢, from
the definition of elpsp(a) we have p¢ | Y, ((p®—€a(p))/2). Hence r,(p®) | (p°—ea(p)€) /2.
This implies (74(p%),p) = 1. But by Theorem 6.12, 7,(p®) | p*~(p — €4(p))/2. Since
(ra(p®),p) = 1, this implies r,(p®) | (» — €4(p))/2. Consequently by Lemma 6.4 we
have p°|Ya(p — €a(p))/2.

<. Suppose (p,2d) =1 and p® | Ya((p—€.(p))/2). Trivially p—e,(p) | p¢ — €. (p)°.
Hence (p—eq(p)) /2| (p°—€a(p)¢)/2. From the Division Theorem 4.11, we then have
Ya((p—€a(p))/2) | Ya((p°—¢€a(p)©)/2). Hence p°*|Ya(p°~ea(p)?)/2). Thus p* is elpsp(a).

Corollary 9.5. If (p,2d)=1 and p® is elpsp(a), then for all j > 0
Y, (‘-’-’iﬂﬂi) =0 (mod p®).

2

Proof. We have p — €,(p) |p’ — €.(p)?. Hence if we put k = (p/ — €.(p)?)/(p — €.(p)),
then k will be an integer and we will have p? — €,(p)? = k - (p — €,(p)). This implies
(P — €a()?)/2 =k - (p — €a(p)) /2. Consequently by Lemma 9.4 and Lemma 4.10 (i)
we have Ya((p? — €a(p)?)/2) = Ya(k-(p — €a(p))/2) = 0 (mod p*).
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Theorem 9.6. Suppose p is prime, (p,2ad) =1 and p° is elpsp(a). Then for all
k > 0 and all § > 0, we have

(i) Xa(p**) = Xa(p') (mod p*9) and (i) Ya(p**) = €a(p)*Ya(p?) (mod p°+).

Proof. Let € = €,(p). By (3.49.1) and (3.50.1) with ¢ replaced by p** and j by p7,

we have

(i) Xa(p"*)? - Xa(p)? = dYa(p? (p* +1)) - Ya(pP (p* — 1)), and

(iv) Yo(p'**)? —Ya(p')? = Ya(p (p* + 1)) - Ya(p? (* — 1))

By Lemma 9.4, p° | Y,((p — €)/2). Also since p — ¢ | p* — €* and ¢* = £1, we have

p—€|p* £ 1. Hence (p — €)/2|p* £ 1. Therefore by the Division Theorem 4.11
Yo (555 1% +1) o Y (B v - 1),
Since p¢| Y, ((p — €)/2), from the Law of Repetition 6.5 we get
P Ye (@ (0° + 1)) or P Yo (0 (0* - 1)).
By (iii) and (iv) this implies
Xa(pi+k)2 = Xa(pf)2 (mod pe+:i) and Y, (py'+k)2 =Y, (pi)2 (mod pe+j).
Since p**7 is a prime power and (p,a) = 1, Lemma 9.2 implies
Xa(p*¥) = £X,(p') (mod p**) and Y(p/**) = deo(p)*Ya(p') (mod po*).
Consequently by Lemma 9.2,
Xa(p**) = Xa(p) (mod p**) and Yo (p**) = €a(p)*Ya(p!) (mod p°+).

Corollary 9.7. Suppose (p,2ad) = 1 and p® is an elpsp(a). Then for all n > j and
all m > j, Xa(p") = Xa(p™) (mod p**9).

Proof. By Theorem 9.6, n > j and m > j, X,(p") = Xo(p?) = Xo(p™) (mod p*+9).
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Theorem 9.8. Suppose (p,2ad) = 1. Then the following are equivalent:
(i) p° is an elpsp(a), (i) Xa(p) = a (mod p°) , (iii) Ya(p) = €(p) (mod p°),

(iv) Xa(p)* = a® (mod p°) , (v) Ya(p)® =1 (mod p°) , (vi) Ya(p £ 1) = 0 (mod p°).

Proof. Suppose (p,2ad) =1 and (i) holds. Then (ii) holds by identity (3.85) (with
n=p) and Lemma 9.4. Also (iii) holds by identity (3.87) (with n=p and e=¢,(p))
and Lemma 9.4. Obviously (ii) = (iv) and (iii) = (v). (i) = (vi). So (i) = all the
others. Suppose (p,2ad)=1 and (ii), (iii), (iv) or (v) holds. By (3.99) with n=p and
e=¢(p), (Xa(p) +a)(Xa(p) — a) = d(Ya(p) + €&(p))(Ya(p) — €x(p)) = 0 (mod p°).
Clearly (Ys(p) + 1, Ya(p) — 1)|2 and (X,(p) + @, Xa(p) — a)|2a. Since (p,ad)=1 and
p° is a prime power, X,(p) = £a (mod p°) and Y,(p) = *e,(p) (mod p°). But by
Theorems 6.10 and 6.11, X,(p) = a (mod p) and Y,(p) = €,(p) (mod p).

Therefore (ii) and (iii) hold. Now by identities (3.85) and (3.87) with n = p, we have
Y, (L“f(ﬂ) Y, (’%@) = 0 (mod p°) and X, (3'—'"—‘2&@) Y, (21—52“11-’1) = 0 (mod p°).
But by Corollary 4.20 and Theorem 6.12 (p, Y, ((p+€.(p))/2)) =1. Alsosince (p,a)=1

we have (p, Xa((p+ea(p))/2)) =1 and Xa((prea(p))/2)? = Xu(pHea(p)) 2 = >242=
a? (mod p), by Theorem 6.24 (ii) and identity (3.90) with n=p and e=e¢,(p). Hence
(i) holds. Finally, suppose (vi) holds. Then by (3.96) with n = p, (v) holds. Hence
(i) holds.

Corollary 9.9. Suppose (p,2d) = 1. Then p° is an elpsp(a) if and only if
(Vk 2 0)[Xa(p*) = @ (mod p7)]

Proof. <=. Let k = e and apply Lemma 9.3 or let ¥ = 1 and use Theorem 9.8.

=> . Suppose p® is an elpsp(a). Put j = 0 in Theorem 9.6.
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Corollary 9.10. Suppose (p,2d)=1, ¢ < e and p° is an elpsp(a). Then p° is an
elpsp(a).

Proof. By Theorem 9.8 (ii), X4(p) = a (mod p¢) implies X,(p) = a (mod p°).
Lemma 9.11. If » < m and b = a (mod p™), then X;(p") = X,(p") (mod p™*").

Proof. Suppose n < m and b = a % jp™. By Theorem 4.50 (i) (ii), with k = jp™,

X5 (p") = Xaxjpm (p™) = Xa(p") £ jp™p"-Ya(p") (mod p*™).

Since n < m, we have m +n < 2m. Hence X;(p") = X.(p") (mod p™*™).

Lemma 9.12. If (p,2ad) = 1, p is elpsp(a) and b = X,(p), then b = a (mod p)

and p**! is elpsp(b).

Proof. Suppose 1 < i, p' is elpsp(a) and b = X,(p). By Theorem 9.8, X,(p) =
a(modp‘). Hence b = a (mod p’). By Lemma 9.11 with n = 1 and m = i, we have

Xi(p) = Xa(p) = b (mod p*+!). Consequently by Theorem 9.8, p'*! is an elpsp(b).

Theorem 9.13. If p° is an elpsp(a), p¢ is an elpsp(b) and a = b (mod p), then
a = b (mod p®).

Proof. Suppose 1<e, (p,a®?—4) = 1, p® is elpsp(a), p° is elpsp(b) and a=b (mod p).
We shall show by induction on ¢ that a = b (mod p') for every i, (i = 1,...,e).
i = 1 is given. Suppose a = b (mod p‘) where 1 < i <e. Theni+1 < e.
We show that o = b (mod p**!). By Lemma 9.11 with n = ¢ +1 and m = e,
Xp(@**1) = X,(p™!) (mod p=ti+!). Hence Xp(p**!) = X,(p™*!) (mod p**!). By
Corollary 9.10, p° is elpsp(a) implies p*+! is elpsp(a) and p® is elpsp(b) implies p+!
is elpsp(b). Therefore by Lemma 9.3 (ii) we have X,(p'*!) = a (mod p**!) and



97

Xo(p'*!) = b (mod p™*1). Hence b = X3(pt!) = X, (p**!) = a (mod pi+!). Thus

b = a(mod p*!). This proves the theorem for case i+1 and so the theorem is proved.
Lemma 9.14. If (n,2d)=1 and n is an elpsp(a), then (n,Y/ (”—"‘%’-‘0):1.

Proof. Suppose (n,2d) = 1 and n is an elpsp(a). Put k = (n—¢€,(n))/2. Then
(n,k)=1 and n|Y,(k). By Lemma 4.8, (n,X,(k)) =1. By Corollary 2.2, dY!(k) =
kXa(k) —aYa(k). Hence if p | n and p | Y](k), then we would have p | Y,(k) and
p|kXa(k), a contradiction.

Theorem 9.15. If (p,a®—4) = 1, then there exists a unique b mod p® such that p°

is elpsp(b) and b=a (mod p).

Proof. Suppose (p,a?—4) = 1. Put a; =a. Then p is elpsp(a1). By Lemma 9.12,
if ag = X, (p), then p? is elpsp(az) and ap = a; (modp?). If we put a3 = X,,(p),
then p® is elpsp(as) and a3 = a3 (mod p?). Continuing, if we i)ut ay = X4 (p), then
p* is elpsp(ay) and a4 = a3 (modp®). Etc. Finally if we put a. = X,__, (p), then p°
is elpsp(a.) and a. = a1 (mod p*~!). Thus if b= a,, then p° is elpsp(b). To show
b is unique mod p®, suppose there is another by, b; = b + kp’, (k,p) =1 and p° is

elpsp(b). Notice that €, = €;,, we denote them by € and then by Theorem 4.52 we

h e __ € € __ € . € . €€ .
- o (F55) =% (555) +iwi (555) (mod s

Since p® is elpsp(b) and elpsp(b;), we obtain

pe_ee

kp'Yy (

which implies p | k£ since p J Y] (f’e—‘z'ﬁ) This contradicts (k,p) = 1. Hence b is

) = 0 (mod p'*?),

unique. This completes the proof.
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Theorem 9.16. For any odd prime p, the number of incongruent bases a mod p®,

such that (p,a?—4) = 1 and p® is an elpsp(a), is p—2.

Proof. By Theorems 9.13 and 9.15, there is a 1-1 correspondence between the sets
D={a:0<a<p,a#2,a#p—2} and
D' = {b:0<b<p®, (p,b?—4) = 1 and p* is an elpsp(b)}.

This correspondence is given by the remainder function, f(b)=rem(b, a).

Corollary 9.17. Suppose p|a. Then p¢ is an elpsp(a) < p°|a.

Proof. Suppose p® is an elpsp(a). By Theorem 7.25 p® is an elpsp(0). Hence we can
apply Theorem 9.13, ¢ = 0 (mod p) = a = 0 (mod p°) = p¢|a.

Theorem 9.19. Let p be an odd prime and ¢, = ((a?—4)/p). Among 0,1, -+,p—1
there are ((p—1)/2)—1=(p—3)/2 a's such that ¢,=+1 and ((p+1)/2)-1=(p-1)/2 ds

such that ¢, =—1.

Proof. Let A={a : 0<a<p and pla®—4}. Then clearly |A| = p—2. By Theorem

6.12, Y, (p;éa) =0 (modp) holds for all a € A. Hence Y,((p—1)/2) = 0 and
Y.((p+1)/2) = 0 have in total p—2 solutions mod p.
For e,=1, Y, (?-’-i) =Y, (p“e") = 0 (modp) has at most (p—1)/2—1=(p—3)/2

2 2
solutions since Y;((p—1)/2) is a polynomial of degree (p—1)/2—1 in a.
Similarly in the case ¢, = —1, Y, (—?:-;——1-) =Y, (p —2-6“) = 0 (modp) can have at

most (p+1)/2 ~1 = (p —1)/2 solutions.
Since (p—3)/2+(p—1)/2=p—2, it follows that the number of the solutions for each

congruence reaches its maximum. This proves the theorem.
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Lemma 9.20. Suppose p is an odd prime and e > 1. Then for any € = +1, the
number of incongruent bases @ mod p¢, such that (n,d) =1, €,(p) = € and p° is an
elpsp(a), is (p—e)/2—1.

Proof. Put f(x)=Y,((p—€)/2). Then f'(a)=Y,((p—€)/2). Hence if n=p, then Lemma
9.14 states that (p, f'(a)) = 1. Therefore every solution of f(a) = 0 (mod p°) is
nonsingular in the sense of Definition 4.64. By Theorem 9.19, f(a) = 0 (mod p) has
exactly (p—e)/2—1 solutions a with ¢,(p) = €. Hence by Theorem 4.65 and Corollary
4.68, f(a) = 0 (mod p°) has exactly (p—e€)/2—1 solutions a with ¢,(p) = e.

Lemma 9.21. For any e>0 and all ¢ such that (p,2d)=1,
Y, ( a2 H) =0 (mod p°).

Proof. This follows from Corollary 6.8, 74(p°®) |p*~(p — €a(p))/2 and Lemma 6.4.

Theorem 9.22. Suppose n = p%, e > 2, (p,6)=1 and € = £1. If a = p—e¢, then

(n,ad)=1 and n is not an elpsp(a).

Proof. Suppose € = £1, n = p® where e > 2 and (p,6)=1. Put a = p—¢. Then
(n,d) =1 since d = —3 (mod p). Since Y,(3) = @2 — 1 = 0 (mod p), we have
74(p) = 3 and therefore 7,(p¢) = 3p*~. Since e > 2, we have p|rq(p). Suppose n
is an elpsp(a). Then Y;((n—eq.(n))/2) =0 (mod n). Put k = (n—¢,(n))/2. Then
Y,(k)=0 (modn). Therefore p|Y,(k). Hence r,(p) | k. But p|74(p), so this implies
p|k. Hence p|2k. Therefore p|p®—e,(n). Hence p|e,(n), a contradiction. Thus n is

not an elpsp(a). This proves the theorem.
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Theorem 9.23. Suppose n = p®, e > 2, (p,6)=1and ¢ = 1. If a = p — ¢, then
(n,ad)=1 and n is not a rpsp(a).

Proof. Suppose € = +1, n = p® where e > 2 and (p,6) =1. Let a = p—e¢. Then
(n,d) = 1 since d = —3 (mod p). Since Y,(3) = > —1 = 0 (mod p), we have
Ta(p) = 3 and therefore r4(p®) = 3p*~1. Since e > 2, we have p|r,(p). Suppose n
is a rpsp(a). Then Y;((n + €,(n))/2) = pa(n) (mod n). Hence Yo ((n + €,(n))/2)? =
1 (mod n). Put k = (n + €,(n))/2. Then Y (k)2 = 1 (mod n). Hence by (3.96)
Ya(k +1)Y,(k — 1) = 0 (mod n). Therefore p|Y,(k £ 1). Hence r4(p) |k £ 1. Since
p|7a(p), this implies p|k + 1. Hence p|2k £ 2. Therefore p|p® + €,(n) & 2. Hence

P|€a(n) % 2 and therefore p < 3, a contradiction. Thus 7 is not a rpsp(a).

Theorem 9.24. Suppose n = p°, e > 2, (p,6)=1 and ¢ = £1. If a = p — ¢, then
(n,ad) =1 and n is not an apsp(a).

Proof. The proof His similar to the previous one. Suppose e==*1, n=p* where e > 2
and (p,6) =1. Let a = p — €. Then again (n,d) =1 and p| r4(p). Suppose n is
an apsp(a). Then X,((n+¢€,(n))/2) = ar,(n) (modn). Hence X,((n+e,(n))/2)?=a?
(modn). Put k = (n + €x(n))/2. Then X,(k)? = a? (mod n). Hence by (1.35),
Y,(k)2 = 1 (mod n). Therefore by (3.28'), Y,(k + 1)Y,(k — 1) = 0 (mod n). There-
fore again p|Y,(k £ 1). Hence r,(p) | k & 1. Since p|r,(p), this implies p |k £ 1.
Hence again p|2k £ 2. Therefore p|€,(n) & 2 so that p < 3. A contradiction. Hence

n is not an apsp(a).

Theorem 9.25. For any prime p, if (p,2d) = 1, then

(@) Xo(5) =42 (modp?) and (i) Ya (B52) =0 (modp).
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Proof. Put € = €,(p). Then (p+1)(p—1)=p?—1=p—e¢|p?—1and p?—1|p?**—1.
Hence (%) (25%) = 271 and (p?—1)/4] (p* —1)/4. Therefore (p—e)/2| (p**— 1) /4.
By Lemma 6.17, p|Y,((p—¢)/2). Hence p|Ya((p?**—1)/4) by the Division Theorem
4.11. This proves (ii). Now (i) can be derived from (ii). To obtain (i), let £ =
(p**—1)/2. By identity (1.35) and (ii), X,(k)? = dY,(k)? + 4 = 4 (mod p?). Hence
2| (Xa(k) +2)(Xa(k) —2). By Lemma 4.8, (X, (k) + 2, X.(k) —2)|4. Consequently
Xa(k) = £2 (mod p?).

Lemma 9.26. If p is prime, (p,2d) =1, e=¢,(p), T=7,(p) and p=p,(p), then

X (P——W;CH) =X, (E—;—‘f—) 7 (mod p), Y, (Lﬂ;‘e“) = 0 (mod p),
2X. (L———e“;‘e“) =X, (%) ar (mod p), 2Y, (”——-—m;‘e“) = e X, (P—eg-‘:) p (mod p), -
Proof. By Lemma 4.36 with j = e, Lemma 9.1 and Theorems 7.11, 7.13 and 7.14.

Theorem 9.27. If p is prime and (p,2d) =1, then for all j
(i) Xa (B5%2) = 27, (p) (mod p), (i) Ya (2=522) =0 (mod p),

(iii) Xo (P58 = ary(p) (mod p), (iv) Ya (B252) = py(p)? (mod p).
Proof. By Lemma 9.26 and induction on j.

Corollary 9.28. Suppose p is an odd prime, e > 0 and (p,2d)=1. Then
(1) Xa(p®—e€a(p)?) =2 (mod p), (ii) Ya(p®—ea(p)°) = 0 (mod p),
(iii) X4 (p°+€q(p)) = a2 —2 (mod p), (iv) Ya(p°+€.(p)%) = ae,(p)® (mod p).

Proof. A straightforward calculation using Theorem 9.27 and identities (3.88), (3.89),
(3.90) and (3.91) with n = p®. Use also (a7°)2—2 = a®~2 and at°p® = a(7p)° = ac".
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Lemma 9.29. If n>1 and (n,2d)=1, then
n is ltpsp(a) & X, (ﬁ‘g@-) = 27,(n) (mod n?).

Proof. Suppose n > 1, n odd. Let ¢,=¢,(n), 7,=74(n). From (3.96),

(5 (25 +20) (2 (55%) -3) =00 (259

and (n, Xq((n—€,)/2)+27,) =1, we have n is ltpsp(a) if and only if X, (—1—1”"65 L ) =

27,(n) (mod n?) since (Xy((n—€q)/2) + 274, Xa((n—¢€,)/2) —27,) = 1.

Lemma 9.30. If ¢ = b (mod m) and m and n have the same set of prime divisors,

then €(n) = &(n), 7a(n) = 7(n) and pa(n) = ps(n).

Proof. Suppose n = pf*-.-pf* and m = pf* ... p{" . Since ¢ = b (mod m), we have
a = b (mod p;) for each p;. Hence

€a(n) =€a (PP« PR*) = €a(P1) - €a(Dr)%* =€1(P1)** - €6(Dk)* =€ (pT- - -PE*) = €5(n).

Thus we have €,(n) = €(n). Proofs of 74(n) = 7(n) and ps(n) = ps(n) are analogous.

Lemma 9.31. Suppose p is an odd prime, m=p"Q, n=p"*9Q, and g<h. Suppose

b = a(modm) and n is an elpsp(a). Then n is a tpsp(b) & n is a tpsp(a).

Proof. The hypotheses on m and n imply that n | m? and also that m and n
have the same set of prime divisors. Since b = a (mod m) the second implies that
€y(n) = €a(n) and 7(n) = 7,(n), by Lemma 9.30. We have also (n,a?—4) = 1 which
implies (n,b?—4) =1. Now b = a (mod m) also implies that there exists 7 such that
b = a + im. By Theorem 4.50 with n replaced by (n — €,(n))/2 and k replaced by

im, we have

Thus 7 is an elpsp(a) implies n|Y ((n — €,(n))/2). Hence from n|m? we have
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X, ("—"—;—(—"-)-) =X, (1’—“—;@) (mod 7).

Since €;(n) = €s(n) and 1,(n) = 74(n), we have n is a tpsp(b) iff n is a tpsp(a).

Lemma 9.32. Suppose n is odd and n > 1, n = pht9Q, m = p"Q where g < h.

Then n is a tpsp(a) for all bases b of the form b = im and b = im %1, (i = 0,1,2,...).
Proof. By Lemmas 9.31, 7.25 and 7.28. (n is an elpsp(0) and an elpsp(1).)

REMARK. Examples of n and m to which the corollary applies are: n=p? and m=p,

n=p% and m=p?, n=p* and m=p?, n=p% and m=p®, n=p% and m=yp3.
Theorem 9.33. Suppose n > 1, n is odd and (n,3) = 1. Then
n is squarefree & (Va)[(n,d) =1 and nis tpsp(a) = n is elpsp(a)].

Proof. Suppose n > 1 and (n,6) = 1. = . Suppose = is squarefree, (n,d) = 1 and n
is a tpsp(a). Then X,((n —€,(n))/2) = 27,(n) (mod n). Hence X,((n —¢€,(n))/2) =
+2 (mod n) so that by (3.96)

0= <X,, (%@) + 2) (Xa ("";“(")) —2> =dY, ("—"%@)2 (mod n).

Therefore n | Ya((n—€,(n))/2)?, since (n,d) = 1. So n|Y.((n—¢.(n))/2), since n is

squarefree.

<. Suppose n > 1 and (n,6) = 1. Suppose n is not squarefree. Write n = p"*+1Q
where 1 < h and (p,@) = 1. Let m = p*Q. Then p"*||m and n | m2. We will find b
such that n is a tpsp(b) and n is not an elpsp(b). Let a = +1 and put b = m+a. Then
b= +1 (mod m) but b # £1 (mod n) since p*|m. Also (n,3) =1 = (n,b+2) =1
and (n,b—2) = 1. Hence (n,b2—4) =1 (and (n,b) = 1). By Lemma 9.32, n is a

tpsp(b). But we will show n is not an elpsp(b). Since b—a = m, from Theorem 4.50
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with k = m we have X,(n) = X,(n) £ mnY,(n) (mod m?).

Since n | m?, Xp(n) = Xa(n) (mod n). Since a = %1 and (n,3) = 1, X,(n) =
+Xi(n) =1, by (3.13). Hence X;(n) = +1 (mod n). But b # %1 (mod n), since
p"||m. Hence X3(n) #b (mod n). Therefore n is not an elpsp(b) by Theorem 6.24.

Theorem 9.34. Suppose n > 1, n odd and (n,3) = 1. Then

n is a prime power => (Va)[(n,d) = 1 and = is an elpsp(a) = n is a tpsp(a)].

Proof. Suppose n>1 and (n,6)=1. Suppose n is a prime power, n=p°. By (3.96),
(Xa (2=50) + 27,(n)) (Xa (E=52) ~27,(n)) = d-Y, (Z52)* = 0 (mod p*),
which implies X, ((p*—€,(p)¢) /2) =427,(p)¢ (mod p9. But by Theorem 9.27 with j=e
Xa((p"—€a(p)®)/2) =27a(p®) (mod p). Hence Xu((p°—€a(p)®)/2) =274 (p®) (mod p°).

Theorem 9.35. If (p,d) = 1, p° is apsp(a) = p° is rpsp(a). If (p,ad) = 1, p° is
apsp(a) > p* is rpsp(a).

Proof. Let n = p°. By (3.97) (Xu((n + €)/2) + a7a(n))(Xa((n + €)/2) — aa(n)) =
d(Ya((n +€)/2) — 1). Hence X,((n + €)/2) = tara(n) (mod p°) & Ya((n +€)/2) =
+p.(n) (mod p¢). Therefore the result follows from 9.27 (iii), X,((n + €)/2) =
a7.(n) (mod p) and Y,((n + €)/2) = ps(n) (mod p), using Lemma 4.21.

Corollary 9.36. Let p be an odd prime. If (p, d) = 1 and p° is an elpsp(a) or
apsp(a), then p° is sltpsp(a). If (p, ad) = 1 and p* is an elpsp(a), apsp(a) or rpsp(a),
then p® is a sltpsp(a).

Proof. By Theorems 9.34, 9.35, 7.5, 7.23 and Corollary 7.17.1, we have

(n,2d) =1 = n is a ltpsp(a) & n is a rapsp(a).
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Lemma 9.37. Suppose p is prime and p > 3. If (p,d) = 1, then p® is rpsp(a) = p°

is tpsp(a). Also if p|a, then p° is a rpsp(a) < p° is a tpsp(a) « p/*/%|a.

Proof. Suppose p>3, (p,d) =1 and p® is a rpsp(a). By (3.99) with n= (p°+¢°)/2
we have

Xa((pe+€)/2)—at®) - X ((p°+€°) /2) +ar®) =d(Y,((p*+€°) /2)2~1) = 0 (mod p°).
The GCD of the two terms on the left divides 2a. So if (p,a) = 1, these terms are
coprime and hence Theorem 9.27 (iii) = p° is an apsp(a). Then by Corollary 9.36
p¢ is tpsp(a).
Suppose p | a and p° is a rpsp(a). Suppose p/||a where f > 1. Then r,(pf) = 2
and 7,(p/™) = 2p. Also Y,((p® + €°)/2) = pa(p)® (mod p°). Hence by (3.28') with
n = (p° + €°)/2, we have Y ((p® + €°)/2 — €%)- Yo ((p® + €°) /2 + €¢) = 0 (mod p°). In
other words Y, ((p® — €)/2)-Ya((p® + 3¢€)/2) = 0 (mod p°).
Since p|Ya((p® — €°)/2), 2| (p° — €°)/2. Hence p/|[Ya((p® — €°)/2) since ra(p/*?) = 2p.
Since 2| (p® +3¢¢) /2 and (p, (p°+3¢°)/2) = 1, we also have p/||Y,((p®+3¢%)/2). Hence
e < 2f. Therefore [e/2] < f. Now by (3.96)
(Xa((p*—€°)/2)—27(p)*) (Xa((p° —€°) /2) +27(p)*) =dYa((p® — €°)/2)* = 0 (mod p?).
Consequently p?/ divides the left side and hence p® divides the left side. We have
(Xa((p®—¢€°)/2)—274()¢, Xa((p°—€°) /2)+274(p)) = 1. Also by Theorem 9.27 (i) we
have p| X, ((p*—e®)/2)—27,(p)c. Hence p®| X ((p°—e°)/2)—274(p)®) so p° is a tpsp(a).
This proves the first statement.
For the second statement suppose p|a and p® is a tpsp(a). Assume 2<e and pf|a.
Then r,(p/) =2 and 7,(p/*') =2p. Since p° is a tpsp(a), by (3.96) with n= (p*—e) /2,
dYo((p*—€)/2) = (Xa((p°—€)/2)—27a(p)*) (Xa((p°*—€°) /2)+27a(p)°) = O (mod p°).
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Hence p°| Y, ((p°—€°)/2)2. Therefore pl*/21|Y,((p°—€°)/2). But since (p, (p°—€°)/2) =1,
Ya((p®—¢€°)/2) # 0 (mod p/*!). Hence [e/2] < f and s0 e < 2f. Since 7,(p) = 2
and 2| (p°® — €°)/2 + 2¢°, we have p/ | Y, ((p® — €°)/2 + 2¢°), i.e. p/|Ya((p® + 3¢°)/2).
Therefore p® | Y, ((p® + €)/2 — €) - Yo((p® + €°) /2 + €°). Consequently by (3.28') with
B = (5° + €) 2, we have | (Ya((5* +€)/2) — pa(p)?)-(Ya (" + €/2) + pa(p)"). By
Theorem 9.27 (iv) we know that p|Y,((p®+€°)/2)—pa(p)°. Since the two factors are
relatively prime it follows that p®|Y,((p®+¢€°)/2)—pa(p)¢. Therefore p® is a rpsp(a).

Theorem 9.38. Suppose p is an odd prime, p > 3, e > 1 and (p,d) = 1. Then
(i) peisatpsp(a) & X, (”—_—%’-’l) = 27,(p) (mod p°) & pl*/? is an elpsp(a),
(ii) p®isan apsp(e) & X, ('#ﬂ) = at,(p) (mod p®) & p° is an elpsp(a),

(iii) p°®isarpsp(a) &Y, (Pi;@) = pa(p) (mod p°) = pl*/?l is an elpsp(a).

Proof. (i) = . Suppose p° is a tpsp(a), i.e. that X,((p® — €°)/2) = 27,(p)° (mod p°)

where € = €,(p). By (3.96) with n = (p° — €°) /2, € = €,(p) and T = 7,(p), we have
(Xa((p®—€°)/2) +27%) (Xa((p° —€) /2) —27°) = dYo((p°—€°) /2)%.

Hence p° | Yo((p® —€)/2)? = pl*/% | Yo((p* ~€)/2) = ra(pl/?) | (p°—€)/2 =

(ra(p!*/?1),p) = 1 = ra(p*/?) | (p—€)/2 = pI*/*! is elpsp(a) = pI*/? |Ya((p—€)/2) =

p°|Ya((p—¢€)/2)*. Then by (3.96) with n = (p—e€)/2, e=€q(p) and 7 = 7a(p),
(Xa((p—€)/2)+27)(Xa((p—e€)/2)—27) = dYa((p—€)/2)%

Now (X,((p—¢€)/2)+27, X.((p—€)/2)—27)|4. Also by Theorem 9.27 (i),

Xa((p—€)/2) = 274(p) (mod p). Hence Xu((p—€)/2) = 27a(p) (mod p°).

(i) <. Suppose X4((p — €)/2) = 27,(p) (mod p°) where € = ¢,(p). By (3.96) with

n = (p — €)/2 where € = €,(p) and with 7 = 7,(p), we have
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(Xa((p—€)/2)+27)(Xa((p—€)/2)—27) = dYa((p—€)/2)*.
Hence p°|Ya((p—€)/2)* = p*/?1 | Ya((p—€)/2) = ra(p"/?) | (p—€) /2 = (ra(p!*/?), p) =1
= 1a(p?) | (p—€)/2 = ra(/7) | (° —€)/2 = I | Yo((0° = ¢)/2) =
p°|Ya((p°—€°)/2). So by (3.96) with n = (p°~€°)/2, € = €a(p) and 7 = 74(p),
Xa((p°—€°)/2)+27°) (Xa((p° —€°) /2) — 27°) =dYa((p°— €°) /2)* = O(mod p°).
Since the GCD of X, ((p*—€®) /2H27 and X,((p*—€®)/2)-27 divides 4, also by Theorem
9.27 (i) Xa((p®—€°)/2) =27,(p)¢ (mod p), we then obtain X,((p®—€°)/2) = 27,(p)®

(mod p®), i.e. p® is a tpsp(a).

(ii) = . Suppose p° is an apsp(a). By Corollary 9.36 p° is an elpsp(a) and a tpsp(a).
Lemma 9.4 implies Y, ((p—e€)/2) = 0 (mod p°) where € = ¢,(p). Since p° is a tpsp(a),
by Theorem 9.27 (i) we have X,((p—¢)/2) = 27,(p) (mod p°¢). Hence by (3.80),

2X, ("’i‘ffzf@l) —aX, (’-’-’—2—(1”-)-) +edy, (1%(% = 427, (p) = 207.(p) (mod p°).

Dividing by 2 we have the result, X,((p+€4(p))/2) = a7(p) (mod p°).
(i) <=. Suppose Xo((p+€a(p))/2) = a7a(p) (mod p°). By (3.29') with n = (p—e€)/2,
(Xa((p+€)/2) — &)(Xa((p + €)/2) + a) = d(Ya((p + €)/2) — €)(Ya((p + €) /2) + ).
where € = €,(p). Hence Y,((p + €)/2) = +¢ (mod p¢). By (3.28') we have
Yo((p+€)/2 - €)-Ya((p+€)/2+ €) = (Ya((p +€)/2) + €)(Ya((p + €)/2) — €).
Hence p¢|Y,((p + €)/2+¢€)-Yo((p + €)/2—€). We consider two cases:
Case 1. (p,a)=1. Corollary 4.19 states that (Y ((p+¢)/2—¢),Yo((p+¢€)/2+¢€)) | a.
Since (p,a) =1 we have p®|Y,((p+¢€)/2—¢€) or p?| Ya((p+€)/2+¢€). In the first case
p°|Ya((p—€)/2) so that p® is an elpsp(a) and hence by Corollary 9.36 p¢ is an apsp(a).
In the second case p®|Y,((p+€)/2+€). Hence p®|Ya((p+3¢)/2) and then p®|Y,(p+3e).
Since (p,3) =1, this implies (r4(p),p) =1. By Lemma 6.13 (v), 4(p%) = r4(p) and
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hence 7,(p°®) | (p — €) /2. Therefore by Lemma 9.4, p° is an elpsp(a). Hence by Lemma
9.27, p° is an apsp(a).
Case 2. pla. We will show that p|a and X,((p + €4(p))/2) = £a (mod p°) = p°|a.
Suppose pflla where 1 < f and f < e. Let € = €,(p). Since pflla and f < e,
' | Xa((p + €)/2). Also pflla and Y.(2) = a = p/ | Ya(2) so that ro(pf) = 2 and
a(p/*?) = 2p. By Lemma 6.12, p|Y,((p—¢)/2). Hence p/|Y.((p—¢)/2). By (3.99),

(Xa((p+€)/2)+0)(Xa((p+¢€)/2) —a) =d(Ya((p+€)/2)+pa(p)) (Ya((p + €)/2) —pa(p))-
Now p*tf divides the left side. Also p|Y,((p + €)/2) —pa(p), by Theorem 9.27 (iv).
And (Yo((p+€)/2)404(p), Ya((p+€)/2)—pa(p)) = 1. Hence p**/|Y,((p+€)/2)—pa(p).
By (3.28') we obtain
Ya((p—€)/2)(Ya((p13€) /2) = (Ya((p+€) /2}4pa(p)) (Yo ((p+€) /2)—pa(p)) = 0 (mod p**/).
Thus p*/ | Yo((p—€)/2)(Ya((p +3€)/2). Since pf||Ya((p — €)/2), it follows that
P° | Ya((p + 3¢€)/2) and hence that p® | Y,(p+3¢). Therefore 74(p°) | p + 3e. Since
(p,3) = 1, we have (p,p+3€) = 1. But p|rs(p’*!). Hence 7,(p°) |p+ 3¢ = e < f.
This proves p¢ | a. Hence a = 0 (mod p¢). By Theorem 7.25, p® is an apsp(0). Hence
p° is an apsp(a).

(iii) = . Suppose p° is a rpsp(a). Then (p,d)=1. We consider two cases:
Case 1. (p,a) =1. Let e=¢€,(p). By Theorem 9.35, p° is an apsp(a) and hence p®
is an elpsp(a) and a tpsp(a). By Lemma 9.4, p° is an elpsp(a) = Y ((p—¢)/2) =
0 (mod p®). Since ;be is a tpsp(a), by Theorem 9.27 (i) we have X,((p—e.(p))/2) =
27,(p) (mod p®). Hence by (3.81) with n replaced by p we have

2Y, (l’%ﬂ) = a¥, (E-'%‘—(El) +eX, (1’—“-‘2&(21) = 0+ €,27.(p) = 2p4(p) (mod p°).
Dividing by 2 we have the result, Y;((p + €.(p))/2) = pa(p) (mod p°).
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Case 2. p|a. Let e=¢,(p). In this case by Lemma 9.37, since p° is a rpsp(a), p° is
a tpsp(a) and pl/?|a. By (3.96), with n = (p—¢)/2, and by Theorem 9.38 (i), we
have p°|Y,((p—¢)/2)2. Hence p/*/?1|Y,((p—¢)/2). Therefore p*|aY,((p—¢)/2) since
p!®/?1|a. By Theorem 9.38 (i), since p° is tpsp(a), X.((p—¢€)/2) = 27.(p) (mod p°).
Therefore by (3.81) with n replaced by p, again we have

2Y, (”’—‘;—@) = aY¥, (PL;@)+6X¢ (Pi;@-) = 04€,274(p) = 2pa(p) (mod p*).
Dividing by 2 we obtain the result, Y,((p + €.(p))/2) = pa(p) (mod p*).

(iii) <= . Suppose Y;((p + €.(p))/2) = pa(p) (mod p*). We will consider two cases:
Case 1. (p,a) = 1. Let e=¢,(p). By (3.99) with n replaced by (p-+e€)/2, we have

(Xa((p+e)/21+a)(Xa((pt+e)/2)-a) = d(Ya((p+e)/2HH1) (Ya((p+€)/2)-1) (mod p°).
Since (p,a) = 1, by Theorem 9.27 (i) this implies X, ((p+¢€)/2) = a7a(p) (modp®).
Hence by Theorem 9.38 (ii), p° is an apsp(a). Hence by Theorem 9.35 p° is an rpsp(a).
Case 2. p|a. We will show Y, ((p+e€.(p))/2) =+£1 (mod p°) = p° is tpsp(a).

(Also that pl¢/?]|a.) Since p|a, it will follow by Lemma 9.37 that p® is a rpsp(a).
Suppose p|a and Y, ((p+¢€)/2) = %1 (mod p°) where € = €,(p). Suppose p/||a where
1 < f. Again we have r,(pf) = 2 and r,(p/*!) = 2p. By (3.28') with n = (p + €)/2,

we have

Ya((p—€)/2)-Ya((p+3€)/2) = (Ya((p+€)/2) + 1) (Ya((p+€)/2) — 1) = 0 (mod p°).
Since pf||Y.((p—¢)/2) and pf||Yo((p+3¢€)/2), we have e < 2f and hence that /2 < f.
Now p/ | Yo ((p® — €)/2) = p* | Ya((p* — ee)/2)2. Also by (3.96) with n = (p® —¢€°)/2,

(Xa((p*—€%)/2)-27a(p)*) (X ((p°—€°) /2)+27a(p)°) = dYa((p"—€°)/2)* = 0 (mod p?).
Thus the product of the two factors on the left side is divisible by p®. Their GCD
divides 4 and p divides the first, by Theorem 9.27 (i). Hence
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9% | Xa((p®—€°)/2) —274(p)e. Thus p* is a tpsp(a). By Lemma 9.37, since p| a, we

have p° is a rpsp(a).

Remark. In Theorem 9.38 the hypothesis p > 3 is necessary since e.g. if p =3, e = 4
and a = 3, then (iii) fails to hold in the direction <= because 3* is not a rpsp(3).
However Y3((3 + €3(3))/2) = Y3((3 + (—1))/2) = Y3(1) =1 = p3(3) (mod 3%).
Theorem 9.39. If p is prime, (p,2d) = 1 and p® is an elpsp(a), then

(i) p®isatpsp(a) & (Vi>0) [Xa (l"—“%@i) = 27,(p)* (mod pe)]

(ii) p°is an apsp(a) < (Vi > 0) [Xa (w) = a7,(p)’ (mod pe)]

(i) pisarpsp(a) & (Vi20) [Ya (E25E) = p,(p)' (mod p7)] .

Proof. <« is trivial.

=>. By Theorem 9.38, Corollary 9.5 and induction on 7 using Lemma 4.36.
Corollary 9.40. If c<e and p° is a tpsp(a), then p° is a tpsp(a).

Lemma 9.41. Suppose k is odd and € = 1. Then
() 2Xa(p°k) = Xa(p® — €) Xa(k) (mod Ya(p® — €°)),
(i)  2Y,(p%k) = X, (p® — %)Y, (k) (mod Yi(p° — €9)).

Proof. By (4.32) and (4.35) with n = p®—¢® and r = ¢®k. Also for any odd k,
Xa(€k) = X,(k) and Y (e°k) = e¢Y, (k) by (1.46).

Theorem 9.43. If p is an odd prime, k is odd and (p,d) = 1, then
(i) Xa(p°k) = Xa(k) (mod p), (ii) Ya(p°k) = €a(p)°Ya(k) (mod p).

Proof. By Corollary 9.28 and Lemma 9.41 with € = ¢,(p).
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Corollary 9.44. If p and q are distinct odd primes, (p, a>~4) = 1 and (g, a?—4) =1,

then (i) aX.(p°¢f) = Xa(p®)Xa(gf) (mod pg),
(il) Ya(p°q) = Ya(p®)Ya(d’) (mod pg).

Proof. By Lemma 9.2 we have X, (p°) = a (mod p), X.(¢/) = a (mod g),

Ya(p°) = €a(p)® (mod p) and Ya(g) = €s(g)f (mod g). Hence by Theorem 9.42,
aXa(p°¢’) = Xa(p°) Xa(g) (mod p), Ya(p®¢f) = Ya(p®)Ya(g’) (mod p),
aXo(p°") = Xa(p°)Xa(g’) (mod q), Ya(p°¢f) = Ya(p®)Ya(g’) (mod g).
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§10. Quadratic residues and Lucas primitive roots

In this section, we will discuss some results about quadratic residues. These will
be used in next section. Also we will define a new concept, Lucas primitive roots
mod n, prove that each prime has a Lucas primitive root and that each odd integer
n has a Lucas primitive root. Recall the definition of the totient function which we
defined in §6. T,(n) is analogous to Euler’s ¢ function in that it has the properties:
(i) n|Ya(Ta(n)), (i) if r4(n) denotes the rank of n, then 74(n) | Tu(n).

Theorem 10.1. Let p be an odd prime and ¢, = ((¢2—4)/p). Among 0,1,--,p—1
there are ((p—1)/2)—1=(p—3)/2 a's such that ¢,=+1 and ((p+1)/2)-1=(p-1)/2 d's
such that ¢, =~—1.

Proof. This is proved in §9. (Theorem 9.19.)

Lemma 10.2. Suppose p is an odd prime. For any € = &1, if r | (p — €)/2, then
(10.2) Ya(r) =0 (mod p)

has exactly r — 1 solutions in a, each satisfying (p,a?—4)=1 and ¢,(p) = .

Proof. Suppose e==1. If r=1, then Y;(r) =1. Hence it is clear that (10.2) has no
solution. Suppose r>1 and r|(p—€)/2. Let the congruence (10.2) have k incongruent

solutions. Since the degree of Y,(r) is 7—1 and since the leading coefficient is 1 which

is prime to p, by Lagrange’s theorem k < r—1. Also we know by Theorem 10.1 that

(1) Y. (B55) =0 (mod p)

has exactly —";;-f-l solutions mod p. Since r| ‘?—-2_-5, by the Division Theorem 4.11,

we have
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@ Y (555) =Yalr) - H(a).

where H(a) is a polynomial in @ of degree {(p — €)/2) — r. Since congruence (10.2)
has k solutions, (1) and (2) imply H(a) =0 (mod p) has exactly ((p—e€)/2) —1—k
solutions. Hence ((p—¢€)/2) —1—k < ((p —€)/2) —r. This implies k > 7 — 1. Then
k <r—1and k > r—1 imply k = r — 1. That each solution a satisfies (p,a%?—4) = 1

and €,(p) = € follows from the GCD Theorem. This proves the lemma.

Definition 10.3. ¥,(r) = |[{a: 0 < a < n,(n,a?~4) =1 and r,(n) = r}|.
In particular, if n is a prime power, n = p¢, then for € = +1 we define

Pe(r) = [{e: 0<a<n,(n,a®—4) =1,e(p) = € and r4(n) = r}|.

Lemma 10.4. Suppose p is an odd prime, € = &1 and % is a positive integer. Then

if k|p;€, then S 95(r)=k—1.
rik

If k [ (p— €)/2, then the sum is 0.

Proof. By Lemma 6.4, 74(p) | k ¢ Y,(k) = 0 (mod p). Hence by the Division
Theorem 4.11 the above sum ¥, 9%5(7) counts the elements in the union of the sets

in the definition 10.3. Thus by Lemma 10.2

Zzb;(r) = {a:0<a<p,(p,a®—4)=1,¢,(p) = cand Y (k) = 0 (mod p)}H = k-1
rlk

We shall use next the Mobius function p. Recall that u(1) = 1, p?|n = p(n) =0

and if n is squarefree, n = pyps - - - pg, then p(n) = (—1)*. Recall also that p satisfies

Lemma 10.5. If 1 <k, then ) u(j) =0. For any &, Zu(j)? = ¢(k).
ilk ilk
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Theorem 10.6. (Williams [51)). If e==+1, 1<k and k|”-¥, then yg(k) =g (k).

Proof. We use 10.4, 10.5 and Mdbius Inversion. Since ¢|k and j|(k/1) if and only if
ik and il (6/3)

Ypk) =D v ()l =3 ¢5() | X #(J')) =22 Yul) =X X u()e;6)

i=k ilk ilk/i ilk jlk/i Jlk dlk/j

S0 (z: ¢;(i)) =2ut) (5 =1)=Tu): - Sut) = s9-0=009)
lk ik lk J kT

by Lemmas 10.4 and 10.5, since (k/j)|(p — €)/2. This proves the theorem.
Lemma 10.7. Suppose €= ((a2—4)/p) and 7| (p—€)/2. If Yo(r) = 0 (mod p), then
Y;(r) #0 (mod p).

Proof. This is Lemma 9.14.

Lemma 10.8. (i) If p > 3 is a prime, then there exists a such that (p,a(a®—4))=1
and r4(p) = (p+1)/2. If p > 5, there exists a such that (p,a(a®?—4)) =1 and
ra(p) = (p—1)/2.

(ii) If p is an odd prime, then there exists a such that (p,a?—4) =1 and r,(p) =
(p+1)/2. If p > 3, there exists a such that (p,a?—4)=1 and r,(p) = (p—1)/2.

Proof. Let k = (p—€)/2. 5<p = 1<k. Hence by Theorem 10.6, ¥5(k)=¢(k) > 0.
Here p = 3 and € = +1 is an exception since then ¢((p — €)/2) = #((3 —1)/2) =
#(2/2) = ¢(1) = 0, but the number of Lucas primitive roots a with €,(p) = ¢ is 0.
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Lemma 10.9. Suppose p | » and p is an odd prime. (i) If p > 5, then there exists
a such that (n,a(a2~4))=1 and r,(p) = (p+1)/2. If p > 5, there exists a such that
(n,a(a®—4))=1 and r,(p) = (p—1)/2.

(i) If p > 3, then there exists a such that (n,a®?—4)=1 and r,(p) = (p+1)/2. If
p > 5, then there exists a such that (n,a?—4)=1 and r,(p) = (p—1)/2.

Proof. Let n = mp® with (m,p) =1. For (i). By Lemma 10.8 (i), we can find a
such that r,(p) = (p £ 1)/2 and (p,a(a®?~4)) = 1. By the CRT, there exists b,
b= a (mod p) and b = 1 (mod m). Hence 73(p) = r.(p) = (p £ 1)/2. To show that
(n,b(b2—4)) =1, it is enough to show that if a prime ¢ |n, then (g,b(b?>—4)) = 1.
If ¢ = p, since b = a (mod p) and (p,a(a®?—4)) =1, it implies (q,b(b*>—4)) =1. If
g # p, then ¢ | m. Hence from b = 1 (mod m), we have b = 1 (mod ¢). Thus
b # +2 (mod g) and b # 0 (mod g) so that (g, b(b?—4)) = 1. The proof of (ii) is

same as the proof of (i).

Theorem 10.10. Suppose p is an odd prime. Let ¢ = +1. If 7|(p—e€)/2, then the
congruence Y,(r) = 0 (mod p®) has r — 1 incongruent solutions in ¢ mod p®, each

satisfying (p,a®—4)=1 and ¢,(p) = «.

Proof. Suppose € = %1 and r | (p — €)/2. Suppose Y;(r) = 0 (mod p). Then by
Lemma 10.7 we have p f Y/(r). Since Y,(r) = 0 (mod p) has r — 1 incongruent
solutions, by Theorem 4.65 and Corollary 4.68, it follows that Y,(r) = 0 (mod p®)

also has » — 1 incongruent solutions.
Lemma 10.11. Suppose n > 1 and (n,6)=1, then

(i)  there exists a such that (n,a?—4)=1 and €,(n) = 1.

(i) n # O implies that there exists a such that (n,a®—4)=1 and ¢,(n) = ~1.
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Proof. For the proof (i). Suppose pj,...,pr are all prime divisors of n. Since
(n,6)=1, p; >3 for all 1 < ¢ < k. Hence by Theorem 10.1, we can find a; for each i
such that €, (p;) = 1. Applying the CRT, we can find a such that (n,a%?—4)=1 and
€a(p;) = €q,(p;) for each i. Therefore €,(n) = 1.

For the proof (ii). Suppose p;,...,px are all prime divisors of n. Since n # O, there
is a ¢ such that p{’|[n» and e; is odd. By Theorem 10.1, we can find a; such that
€;(pi) = —1 and for all j # ¢ find a; such that €;;(p;) = 1. Using the CRT we can
find a such that (n,a?—4)=1 and €,(p;) = €,,(p;) for all i. Hence we have ¢,(n) = —1.

Lemma 10.12. If n>3 and ns#0, then there exist a, b such that
1<a,b<n,(n,ab(a®—4)(b*>—4)) =1 and p,=—ps.
If n > 3 and n#0, then exist a, b such that

1< a,b< n,(n,ab(a®—4)(b2—4))=1and 7, = —7,.
Proof. This is directly from the theory of quadratic residues.

Lemma 10.13. If n > 1, (n,6) =1 and n # O, then there exist a,b such that
1<a,b<n, (n,a(a®—4))=1, (n,b(b?—4))=1, €, = € and p, = —ps.
Proof. Since n# 0, by Lemma 10.12, there exist 1 < a,b<n such that (n, a(a®4))=1,
(n,b(b>—4))=1 and p,=1, pp=—1. Put
A={a:1<a<n,(n,a(a®—4)) =1 and p,=1}
B={b:1<b<n,(n,b(b2—4)) =1 and py=—1}.
If foralla € A, allb € B,e, ;é €, then either
(i) VacAVbeB(e, =1& e =-1) or (ii) Va€AVbeB(e,=-1& ¢ =1).
Let C=AUB={1<c<n:(n,c(c2—4)) = 1}. Since e=p-1, case (i) implies p.=e¢,

for all c€ C, and case (ii) implies p. = —¢, for all ¢ € C. Since n # O, 7, is not
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constantly 1 and also 7. is not constantly —1. It shows neither (i) nor (ii) holds. So

the lemma follows.

Lemma 10.14. Suppose n = uv, v # O, (u,v) =1, then there exist 1 < a,b < n
such that (n, ab(a®—4) (b —4)) =1, ps(n) = —ps(n), €2(n) = €(n) and a = b (mod v).

Proof. Applying Lemma 10.13 with n = u, we can find 1 < a,a; < u, such that
(u, aay(a®—4)(al—4)) =1, pa(x) = —p,, (u) and €,(u) = €, (). By the CRT we can
make (n,aa;(a®—4)(a?—4)) =1. Then using the CRT we can find 1 < b < n such
that b = a; (mod ») and b =a (mod v). Hence (n,b(b?—4))=1 and

Pa(n) = pa()Pa(v) = (=pa; (1)) Pa(v) = —ps(w)ps(v) = —ps(n),

€a(n) = €;(u)€a(v) = €, (u)ea(v) = e(uw)ep(v) = €(n).

This completes the proof.

Now we give the definition of Lucas primitive root mod » and then prove the

existence of Lucas primitive roots for each odd integer n > 1.

Definition 10.15. a is a Lucas primitive root mod n if r,(n) =T,(n). In the case
that n is a prime power, n = p®, a is a Lucas primitive root+ for p® if (p,a%—4)=1,
() = 1, 74(p%) = p*7H(p — €a(p))/2 = p*~1(p — 1)/2, and a is a Lucas primitive
root— for p® if (p, a2—4) =1, €,(p) = —1 and r,(p®) = p*~(p—€a(p))/2 = p*~1 (p+1)/2.
Examples: 0 is a Lucas primitive root— for 3. 3 is a Lucas primitive root— for 3¢.

0 is a Lucas primitive root+ for 5. £1 are Lucas primitive roots— for 5.

5 is a Lucas primitive root+ for 5¢. £1 are Lucas primitive roots+ for 7.
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Lemma 10.16. Suppose p is an odd prime and e > 1. Then for all a such that
(b, a?—)=1,

(i)  —ais a Lucas primitive root for p* < a is a Lucas primitive root for p°.

(i) aisa Lucas primitive root for p* => a is a Lucas primitive root for p.

(iii) If 5 < p, then 0 is not a Lucas primitive root for p.

(iv) If 5 < p, then p is not a Lucas primitive root for p?.

(v) If7<p,then 1 and —1 are not Lucas primitive roots for p.

Proof. (i) holds since €_q(p) = €a(p), (VK)[Y_a(k) = £Y,(k)] and r_a(p®) = 74 (p°).

For others use Lemma, 6.7.

Theorem 10.17. Every odd prime has a Lucas primitive root. If p > 3, then p has
Lucas primitive roots of both + and — type. If ¢ = %1, then there exists an integer
a such that (p,a®—4) =1, €,(p) = € and 7,(p) = Z=. Further, for each ¢ = %1,

the number of a which satisfy €,(p) = € and are Lucas primitive roots mod p, is
é((p — €)/2).

Proof. This follows from Theorem 10.6.

Lemma 10.18. Suppose p is an odd prime, p > 3, (p,a>~4) = 1,1 < cand (p,s)=1.

Then 7a(p°) = 5 & 1a(p°t!) = ps or Takpe (p°t1) = ps.

Proof. => . Suppose 74(p°) = s. Note that by Lemma 6.3, a £ p° = a (mod p°)
implies 74.45¢ (p°) =74(p°) =s. Since 7,(p°) =s implies p°|Y,(s), we consider 2 cases:
Case 1: p°||Ya(s). In this case, since r4(p°) = s, we have p°||Ya(ro(p%)). Hence by

Lemma 6.6 with e = c and f = 1 we have r,(p°*!) = p-r,(p°). Hence r4(p°+!) = ps.
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Case 2: p°*1|Y,(s). By Theorem 4.50 with k = p° and n = s, we have
dYo4pe(5) = £p°sXa(s) + (d F ap®)Ya(s) (mod p®).
Since p**t1|Y,(s) and ¢+ 1 < 2c, this implies
dYo1pe(s) = £p°sX,(s) (mod p°*?).
Since p is odd, Lemma 4.8 implies p | Y;(s) = (p,X.(s)) = 1. By assumption
(p,s) =1. Thus (p,sXa(s)) =1. Hence p°||Yaupe(s). Therefore p°||Vauipe(ra(p°)) and
P°||Yaspe (Taspe (p°)). Consequently by Lemma 6.6 with e replaced by a £ p°, e = ¢
and f = 1, we have
Tatpe (P°) = P Taspe (5°) = p-7a(p%) = ps,
which completes the proof in the = direction. Next we consider the converse.
<. Suppose 74(p°*) =ps or Taupe(pt!) =ps. Since (p,d) =1, Lemma 6.7.1 (with
e = 0) applies to both cases and tells us that 74(p®) =s or reupe (p°) = s. By Lemma

6.3 the second equality implies r,(p°) = s. Hence we have r,(p°) = s.

Corollary 10.19. Suppose p is an odd prime, p > 3 and (p,a?—4)=1. Then

a is a Lucas primitive root for p < a or a & p is a Lucas primitive root for p2.
Proof. Put ¢ =1 and s = (p—e¢)/2 in Lemma 10.18.

REMARK. a and azp can both be Lucas primitive roots for p?. For example if p = 23
and a = 4, then both a and a=p are Lucas primitive roots for p2. €,(p) = +1. Also if

p =23 and a = 3, then a and a=p are both Lucas primitive roots for p%. ¢,(p) = ~1.

p =23 and a = 12 is an example of p and a where a is a Lucas primitive root for p
but not a Lucas primitive root for p?. (In this example €,(p) = +1.) Another such

example is p = 23 and a = 15. (In this example €,(p) = —1.)
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Theorem 10.20. Suppose p is an odd prime and p > 3. Then the following are
equivalent:

(i) @ is a Lucas primitive root for p?,

(if) e is a Lucas primitive root for p® for some e > 2,

(i) e is a Lucas primitive root for p° for all e > 2.

Proof. Obviously (i) = (ii) and (iii) = (i). Hence we need to show (ii) = (iii). This
will be done by showing (ii) = (i) and (i) => (iii). First we show (i) = (iii).

To see that (i) = (iii) we use Lemma 6.7 with s = (p — €)/2. (i) implies r,(p?) =
ps = p(p — €)/2. Hence by Lemma 10.18 and the Law of Repetition 6.5, r,(p®*!) =
pes =p*(p—e€)/2foralle > 0.

To see that (ii) = (i), suppose a is a Lucas primitive root for p° and ¢ > 2. Then
(%) = p°~Y(p —€)/2. Hence p? [ Y,((p —¢€)/2) for if p? | Yo((p — €)/2), then by the
Law of Repetition, 6.5, p° | Y,(p°"2(p — €)/2, contradicting r,(p°) = p*~}(p — €)/2.
Hence p? [ Y,((p — €)/2). Therefore we must have 7,(p?) = ps for some s such that
s | (p—e€)/2. By Lemma 6.7 7,(p°) = p°~1s and s = r4(p). But 7,(p°) = p*(p—¢)/2.
Consequently s = (p — €)/2 and therefore we have 74(p?) = p(p — €)/2 which proves

a is a Lucas primitive root for p2.

Theorem 10.21. Suppose p is an odd prime and e and f are integers such that
2 < e < f. Then a is a Lucas primitive root for p® if and only if a is a Lucas primitive

root for p/.

Proof. => . By Theorem 10.20. <=. Suppose a is a Lucas primitive root for p/ and
2 < e < f. Then ro(pf) = p/~1(p—¢)/2. Again it is easy to see that p? JY,((p—¢)/2.

Hence 74(p?) = ps for some s such that s|(p — €)/2. Then by Lemma 6.7, s = r,(p)
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and r,(pf) = p/~'s. Thus s = (p — €)/2 so that r,(p?) = p(p—¢)/2. Hence a is a

Lucas primitive root for p2. By Theorem 10.20, a is a Lucas primitive root for p°®.

Theorem 10.22. Suppose p¢ is a power of an odd prime and p > 5. Then there

exist Lucas primitive roots a for p® of both positive and negative type and 0 < a < p.

Proof. By Theorem 10.17, since p > 3, p has a Lucas primitive root a. Hence by
Corollary 10.19, @ or a % p is a Lucas primitive root for p?. If a is not a Lucas
primitive root for p?, then by Lemma 10.16, —a is also not one, so —a + p is a Lucas

primitive root for p? and 0 < —a +p < p.

Theorem 10.23. For each odd integer 7, (1,3)=1, Ja[l < a < n, r4(n) = Ta(n)].

Proof. Put n = p$! . -- pf*. By Theorem 10.22, for each ¢ (1 < ¢ < k), we can choose
ai, 1 < a; < p; such that (p;,a?—4)=1, and rq,(pf) = pF '+ (pi—€:) /2

By the CRT we can find b such that 1 < b < n and for each i, a; = b (mod pf’).
Then for each i, ry(pf) = 74, (p%) = ¥+ (p; — &) /2. Therefore

rp(n) = [ro(P5?), - -+, 7o (03*)] = [m—_;‘bg‘m—)l’f’-l,' " p—k:‘;MPi"—l] = Ty(n).

This establishes the theorem.

If n is a prime power, n = p°, we have following new results. We will generalize

Lemma 10.4 and Theorem 10.6. (see Theorems 10.30 and 10.34 below.)

Lemma 10.24. If p is an odd prime, € = £1 and k|(p — €)/2, then

Y (r) = k-1

rik
If k fp*~1(p — €)/2, then the sum is 0.
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Proof. By Lemma 6.4 r,(p) |k & Y,(k) = 0 (mod p°). By the Division Theorem
4.11, the sum 3, %5, (r) counts the number of elements in a union of the sets in

Definition 10.3. Thus by Lemma 10.4

z";zb;e(r) = |{a:0<a <p% (p,a®—4)=1,€,(p) =€ and Y, (k) = 0 (mod p°)}| =k—1

as k|(p—e)/2. If k [ p°1(p—€)/2, then the sum is 0 by Corollary 6.15.1.

Lemma 10.25. Suppose p is an odd prime, e = £1,1 <4, 1 < cand s|(p—¢€)/2.

Then ¢;c+;(p'.8) — p:'-l ;,c+1(p3).

Proof. Suppose p is an odd prime, € = 1,1 < ¢, 1 < c and s|(p — €)/2. Using
Lemma 6.7.1 with e replaced by i, we see that if (p,d) =1 and €,(p) = ¢, then
ra(p°H) = p's iff ro(p°*!) = ps. Also there are p*~! times as many such a in the

interval 0 < a < p°*¥ as a in the interval 0 < a < p°*!.
Lemma 10.26. If p is an odd prime, e=+1, 1<s and s|(p—¢)/2, then 9. (s) = ¢(s).
Proof. We will use Lemma 10.24 and the method of proof of Theorem 10.6,

Pe(s)= 2 U5 (D)1= Y 95X p() =X X v5()ul)= 3 3 u(i)v.(3)

i=s ils ls/i ils jla/i ils ils/i
=S HO)(S v @) =T k)G = D=2 k0)7 ~ T i) = 9(5)=0=4(s)

Lemma 10.27. Suppose p is an odd prime, 2 <e,1<i<e, 1< s and (p,s)=1.
Then for any b there exist a and j such that b = a + jp°~, (j,p)=1 and 7,(p®) = s
iff 73,(p?) = p's. Furthermore for each b, the values of @ mod p°® and j mod p’ are

unique. j ranges over p* — p*~! values.
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Proof. Suppose p is an odd prime, 2 <e,1<i<e, 1< s and (p,s)=1.
=>. Suppose b=a+jp*, (j,p) =1 and r4(p°) = s. Then 7,(p) = s by Lemma
6.13 (ii). Also p®|Yy(s). By Corollary 6.14.1, r,(p®) = 5, 1 < s and (p,s) =1
imply (p,a®?—4)=1. Since a = b (mod p), we have r,(p) = r,(p). Hence r4(p) = s.
Applying Theorem 4.50 with k = jp*~* and n = s, we get

(a® — 4)Ys(s) = jp*~*sXa(s) + (a® — 4 — ajp*~*)Ya(s) (mod p*e-?).
Since i<e, e—i+1 < 2(e—i). Also since 1<, e—i+1<e. Hence p*~*+!|Y,(s). This
implies (a2—4)Yy(s) = jp*~isX,(s) (mod p°~i+1).
Since p is odd, p|Y,(s) implies (p, X,(s))=1. Hence (p, X.(s)) =1, (p, (a®—4))js)=1
and e—¢ < e—i+1. Therefore p°~*||Y;(s). By the Law of Repetition 6.5, applied
i times, we obtain p?||Y;(p's). Hence by Lemma 6.13 (iv) r(p) = s and p®||Ys(p's)
imply r(p®) = p's.
<=. Suppose r,(p¢) = p's. By Corollary 6.14.1,1 < s and (p, s) =1 imply (p, >4)=1.
Since 74(p®) = p's and 1 < i <e. Lemma 6.7.1 implies that r,(p°~**1) = ps and
m(p®™f) = s. Thus p*~* | Yi(s). Also rp(p®~) = s implies r4(p) = s by Lemma
6.13 (ii). Hence s | (p—€(p))/2, by Corollary 6.12.1. Therefore by Lemma 9.4,
p=* is an elpsp(b). Since (p,b*—4) =1, by Theorem 9.14 there exists a unique a
mod p° such that a = b (mod p) and p° is elpsp(a). Then a = b (mod p) implies
Ta(p) = 1(p) = s and €,(p) = &(p). By Corollary 9.10 since e — i < e, p°~* is
elpsp(a).- Since p*~* is elpsp(a), p*~* is elpsp(b) and a = b (mod p), Theorem 9.13
implies @ = b (mod p*f). Consequently there exists j such that b = a + jp*—.
Since p° is an elpsp(a), we have p®|Y,((p®—e€€)/2). Hence (r,(p®),p) =1. Therefore

since 74(p) = s, we have r,(p°"**!) = s by Lemma 6.13 (v). But r(p*~**!) = ps.
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Hence a # b (mod p*~**!). Therefore (j,p) = 1. To see that j is unique mod 7',
suppose b = a + kp*~*. Then we have a+kp*~* = a+jp*~(modp®) = kp— =
Jjp*~i(modp®) = k= j(modp’). This proves the lemma.

Corollary 10.28. Suppose p is an odd prime, (p,4>—4)=1,2 < e, € = +1 and
s|(p—e€)/2. Then there exist a and j such that (j,p)=1, b = a+jp*~! and r,(p®) = s
iff 74(p?) = ps. Further, for each b, a is unique mod p° and j is unique mod p. j

ranges over p — 1 values mod p.

Proof. Put ¢ = 1 in Lemma 10.27.

Lemma 10.29. If p is an odd prime, e = £1, 1 < s and s|(p — €)/2, then for any
c22, pe(Ps) = ¢(ps) = (p — 1)¢(s).

Proof. s|(p — €)/2 implies (p,s) =1. Hence by Corollary 10.28, every b, for which
3(p°) = ps, has a unique representation in the form b = a+jp°~!, where 1 <j <p
and 7,(p°) = s. Thus ¥5.(ps) = ¢(ps) = (p — 1)¥;(s). Therefore by Lemma 10.26,
Vpe(s) = ¢(s), we have 7. (ps) = é(ps) = (p— 1)¢(s).

Theorem 10.30. Suppose p is an odd prime. If e =*1,e>2,0<i<e, 1 <s
and s|(p — €)/2, then Ve (p's) = @(p's).

Proof. Suppose p is an odd prime, e=+1,e>2,0<i<e, 1 <sand s|(p—¢)/2.
We will consider 3 cases for 7. The case ¢ = 0 is Lemma 10.26. The case ¢ = 1 is

Lemma 10.29. Suppose i >2. In this case we may calculate ;. (p's) by Lemma 10.25

with ¢ = e — ¢ and Lemma 10.29 withc=e—i+ 1,

5 (P8) = Ypemina(p's) = P eina (p5) = P71 (p — 1)6(5) = $(p's).
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Corollary 10.31. Suppose p is an odd prime, p > 3 and € = +1. Then the number

of Lucas primitive roots @ mod p° of type ¢ is ¢(p*~*(p — €)/2).

Proof. Put 7 = e — 1 in Theorem 10.30.

n
Lemma 10.32. If p is an odd prime, (p,s)=1and 1 < n, then Y ¢(p’s) = p"¢(s).
j=0
Proof. Induction on n.

p"¢(s) + p"(p — 1)¢(s) = [p" + p"(p — 1)] ¢(5) = p™*'¢(s).

Lemma 10.33. For any positive integer s, Y_¢(r) =s. Hence Y ¢(r) =s—1.

rls rjs,r>1
Proof. Well known.
Theorem 10.34. Suppose p is an odd prime, € = %1, k = p’s where 0 < i < e and

s|(p— €)/2. Then Sy ) = s — o

rlk
Proof. Write each r = p/t where 0 < j < i, 1 <t and t|s. Then by Lemmas 10.30,
10.32 and 10.33 we have

PRAGERY Zwi(pft > Z¢(p’t)— Y Pe)=p" > ¢(t)=p'(s—1).

rlk, t]s,t>1 j=0 t|s,t>1 j=0 tjs,t>1 tlst>1

The theorem is proved.

Corollary 10.35. Suppose p is an odd prime, ¢ = +1, k = p's where 0 < i < e
and s | (p — €)/2. Then the congruence Yi(k) = 0 (mod p°) has exactly p's — p'

incongruent solutions @ mod p°. Each solution a satisfies (p,a?—4)=1 and ¢,(p) =e.

Proof. If ¢ = 0, this is by Lemma 10.24. If ¢ > 1, then this is by Theorem 10.34.

The following two theorems may be used to give a constructive proof of Lemma

10.26 and Corollary 10.35.
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Theorem 10.36. Suppose p is an odd prime, 1 < ¢ < e and (p,s) =1. Then for
any a Ta(p°) =5 & 3b[rs(p°) = s and b = a (mod p°)].

Here b is unique mod p°.

Proof. By Lemma, 6.13, Theorems 9.13, 9.14 and Corollary 9.10.

Theorem 10.37. Suppose p is an odd prime, 1<e, 0<k<e and (p,s)=1. Then
for allb, 3a,j (b= a+jp°* and Y, (p*s) = 0 (mod p°)) & Y;(p*r) =0 (mod p°).

Proof. =>. Suppose Y,(p*'s) = 0 (mod p°)) and b = a+jp**. Since k—1 < e,
we have (p,a®—4) =1. Hence (r4(p),p) =1. Let w =r4(p). Then (w,p) =1 and
w|s. Since a = b (mod p), we also have (p,b2—4) = 1. Hence 74(p) = 5(p).
Let j = j'p* where 0 < t and (p,j')=1. Put i=k —¢. Then b=a+jp* and
7°| Yo(p*'w). Suppose t <k. Then 1 < i < e since k < e. Therefore by Corollary
10.28 ry(p®) = p'w. Then p°® | Yj(p'w). Hence p°® | Yy(p's). Suppose k < t. Then
b=a+j'p'pe — k=a+jp**** = a = b (mod p°). So by (4.1) Y3(p*~1s) = Yy (p*~1s)
(mod p®). Hence p®|Y3(p*~!s), which implies p®|Y;(p"s).

<. Suppose Y;(pFs) = 0 (mod p°). Since k < e, (p,b°—4)=1. Hence (r4(p),p)=1.
Thus 74(p) |s. Let w = 73(p). Then w|s. Since k < e—1, 13(p®) |p*s and 73 (p®) | p*~ 1w
imply 75(p°) | p*w. Let i be such that r,(p®) = p'w. Then we have 1<i< k< e.
Hence 1 < i<e. So by Corollary 10.28, 3a,j' such that (j',p) =1, a = b+jp*,
To(p) =w and 7,(p°) | p~'w. Let j = j’p*~*. Then a=b+jp**. Alsoi~1< k-1,
w|s and p®| Y, (p'~'w) = p¢|Ya(p*~'s). Hence we have Y (p*~'s) = 0 (mod p°) and

b=a+jp°*k.
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§11. Lucas Carmichael numbers

In this section we will show that properties of Lucas sequences are very closely
connected with factorization. Recall that an odd composite integer n is called an
(ordinary) Carmichael number if for all a, (a,n)=1, a®~! = 1 (mod n). Carmichael
numbers sometimes are also called absolute pseudoprimes. In this section, we will
define various types of Lucas Carmichael number, analogous to ordinary Carmichael
numbers. We will show some kind Lucas Carmichael numbers n satisfy classical
Lucas pseudoprime tests like X,(n) = a (mod n), for all possible bases a, even if n
is composite. We will also show that if n is an odd composite integer, then n is not
an absolute Lucas pseudoprime, not an absolute a-pseudoprime, not an absolute 7-
pseudoprime and that if n # O, then n is not an absolute t-pseudoprime. Hence if n
is composite, then n is not an absolute Fuler Lucas pseudoprime, is not an absolute
strong Lucas pseudoprime and is not an absolute extra strong Lucas pseudoprime.

First we give some definitions.

Definition 11.1. An odd integer n is a two sided Lucas Carmichael if n is square-
free and for all p|n, (p —1)/2|{n £ 1 and (p+1)/2|n £ 1 hold for some choice of

signs .

Definition 11.2. An odd integer n is a strong two stded Lucas Carmichael if n is

squarefree and for all p[n, p—1|n £+ 1 and p+ 1|n £ 1 for some choice of signs =+.

Definition 11.3. An odd integer n is a one sided Lucas Carmichael + if n is

squarefree and (p—1)/2|n—1and (p+1)/2|n—1forall p|n.
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Definition 11.4. An odd integer n is a one sided Lucas Carmichael — if n is
squarefree and (p —~1)/2 | n+1 and (p+1)/2 | n + 1 for all p | n. Equivalently if
(P*—1)/4|n+1forallp|n.

Definition 11.5. An odd integer n is a strong one sided Lucas Carmichael + if n

is squarefree and (p? —1)/2 | n—1 for all p | n.

Definition 11.6. An odd integer n is a strong one sided Lucas Carmichael — if n

is squarefree and (p? —1)/2 | n+1 for all p | n.

Definition 11.7. An odd integer n is a super one stded Lucas Carmichael + if n

is squarefree and (p%2 — 1) | n — 1 for all p|n.

Definition 11.8. An odd integer n is a super one sided Lucas Carmichael — if n

is squarefree and (p? — 1)|n + 1 for all p|n.

It can be seen that for a fixed sign, + or —, super one sided = strong one sided
=> one sided; strong two sided => two sided. But one sided and strong two sided are
independent. It is clear that every prime is a strong two sided Lucas Carmicheal,
and hence is a two sided Lucas Carmicheal. However we are more interested in
composite ones. One sided Lucas Carmichael numbers are rare, as can be seen from
the following list (with types of one sided indicated + or — and if without sign + and
—, then two sided). The numbers in the following list which are > 63,278, 892, 599
were found by R.G.E. Pinch [41].
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3, (astrong + and a strong —), 1,930,499 = 89-109-199 —,

5—, 7,056,721 = 7-47-89-241, (strong)
35 —, 7,110,179 = 37-41-43-109 —,
3,059 =7-19-23, 15,857,855 = 5-13-17-113-127 —,
6479 =11.19.31 —, 17,966,519 = 23-67-89-131,
84,419=29.41.71 —, 35,626,501 = 19-59-61. 521,

63,278,892,599 = 13 - 47- 137 239 - 3163 —,

79,397,009,999 = 23 - 29 - 41 - 43 - 251 - 269 —, (super —),

28,295, 303,263,921 = 29 - 31 - 67 - 271 - 331 - 5237 +,

443,372,888, 629, 441 =17-31-41-43-89- 97-167-331 +, (super +),
582,920,080, 863,121 = 41- 53 - 79 - 103- 239 - 271- 509 + (strong +),
894,221,105, 778,001 = 17-23-29- 31 - 79- 89 - 181 - 1999 +

2,013, 745, 337,604,001 = 17 - 37- 41 - 131 - 251 - 571 - 4159 +,

39,671,149, 333, 495, 681 = 17-37-41-71.79-97-113-131-191 +, (super +).

If n is a strong one sided Lucas Carmichael +, then n is an ordinary Carmichael

number. The converse holds only very rarely.

Lemma 11.9. Every odd prime is a strong two sided Lucas Carmichael. However

3 and 5 are the only primes which are one sided Lucas Carmichaels.

Proof. Any prime p is a strong Lucas Carmichael since (p+1)|p+1 and (p—1)|p—1.
However it is easy to see that only 3 or 5 can meet the condition (p? —1)/4|p—1

or the condition (p2 —1)/4|p+ 1.
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Since we normally suppose (n,2ad) =1 which implies (n,3) =1, 3 should probably
be excluded from the set of Lucas Carmichaels. Another reason to exclude 3 is the

following.

Lemma 11.10. If n is a Lucas Carmichael and n > 3, then (n,3)=1.

Proof. Suppose n > 3. If 3 | n, then 3p | n for some p > 3. If p =1 (mod 3), then
3| (p~1)/2. Hence (p—1)/2 fn+1. If p= —1 (mod 3), then 3|(p + 1)/2. Hence
(p+1)/2 fn+1. Thus n is not a Lucas Carmichael.

Lemma 11.11. Suppose 1 < n and (n,6)=1. Then n is a Lucas Carmichael if and

only if n is squarefree and for all a, such that (n,a®?—4)=1, if p|n, then

(11.11) 71—"-;“—(”) |n£1.

Proof. Certainly every Lucas Carmichael satisfies (11.11). To show the converse,
suppose p | n. Then p > 3. By Theorem 10.1, there exists a such that ¢,(p) = —1
and also there exists b such that €,(p) = 1. These two together show that n is a

Lucas Carmichael.

Condition (11.11) is similar to the divisibility conditions that for all a such that
ma-n=1, ) E2@pn_c@w), @) p-alln—ab).

Condition (ii) was considered by Williams [50]. (His results about it are difficult
to compare to ours because he considered a fixed discriminant D, D = A% — 4B.)
Conditions (i) and (ii) are very strong. Either one will imply that n is prime provided
n is squarefree. Clearly (ii) implies (i). Later we will prove (Theorem 11.24) that
if n|Ya(n — €,(n)) for all a such that (n,a>—4) =1, then n is prime. From this we

can show that if n is squarefree and (i) holds for all @ such that (n,d)=1, then n is
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prime. Here is the proof: Assume Theorem 11.24 and suppose n is squarefree. Let
p|n. Then pll’;(a'i.;-@) for all a, (n,a®—4) =1. Hence (i) and the Division Theorem
together imply p|Y;(n—e,(n)) for all such a. Since p is arbitrary and n is squarefree,
it follows that n|Y;(n—e,(n)) for all a, (n,a?—4)=1. Thus by Theorem 11.24, n is

prime.

Theorem 11.12. The only Lucas Carmichael with exactly two prime factors is
n = 35. If n # 35, n is composite and n is Lucas Carmichael, then n has at least

three prime factors.

Proof. Suppose n = pgq, where p and ¢ are odd primes. By Lemma 11.10 we can
suppose 3<p<gq. Then 5<p and 7<gq. We will show p=5 and ¢=7, and hence
n=239.

Case 1. ¢ = p+2. In this case n = pg = p(p+2) = 1(1 +2) = 3 (mod p—1). Hence
n—1=2(modp—1)and n+1=4 (mod p—1). Hence (p — 1)/2 cannot divide
n—1 unless (p —1)/2=2in whichcase p=5and ¢=7. If (p —1)/2 | n + 1, then
p—-1)/2|4=>(p—-1)/2=1,20rd=>p=3, p=borp=9=>¢q=T.

Case 2. ¢ > p+ 2. In this case we can suppose p + 4 < q. We claim that

i (5 fn—1 and % fn+1) or (% fn—1 and % fn+1).

First we shall show that

(i) ¢g-1jfn#£1 and (¢5) q+1 fnkl.

The proof of (ii) isthat n =pg=p-1=p (mod g — 1), which impliesn+1=p+1
(mod g—1),and we have p:1 <p+1<p+3<¢g-1. Theproof_of(ii)isthat
n=pqg=p-(-1) = —p (mod q + 1), which impliesn+1=—-p+t1l=—(pF1)
(mod g+1),and we have p+1<p+1<p+3<qg+1.
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Now we can prove (i). Suppose (i) does not hold, i.e. suppose q; ! |n+1and
1
4t | n & 1. Then there are 4 possible cases:
2 -1 +1 ~1 +1
Case1. 2 [n—1 andq2 [n—1. Ca.<3e2.q2 fn+1 and 1 | n+ 1.
ol | l
Case 3. q2 In—1 and q;1|n+1. Case 4. q21|n+1 and q;1|n—1.

Since ((g+1)/2,(¢g—1)/2)=1and 4|g+1 or 4]g—1, cases 1 and 2 are impossible by
(i) and (iii). Case 3 is also impossible since (¢ +1)/2 — (g—1)/2 = 1 implies one of
(¢+1)/2 or (¢ —1)/2 is odd. Suppose (g —1)/2 is odd. Then since n — 1 is even, if
(g—1)/2|n ~1, then ¢ — 1|n — 1, contradicting (ii). Similarly if (g + 1)/2 is odd,
then since n — 1 is even, if (g +1)/2|n — 1, then ¢+ 1|n — 1, contradicting (iii). A
similar argument shows case 4 is also impossible.

Theorem 11.13. Suppose 1 < n and (n,6) =1. Then n is a Lucas Carmichael if

and only if n satisfies any one of

Q) (Va)[(n,a2—4)=1 = Y,(n +1)Yy(n — 1) = 0 (mod )},
(ii) (Va)[(n,a®~4)=1 = Y,(n)? =1 (mod n)],

(iii) (Va)[(n,a®—4)=1 = X,(n)? = a2 (mod n)].

(V)  (Ya)[Xa(n)? = ® (mod )]

Proof. Let d = a® ~ 4. From (1.35) X,(n)? — a®> = d(Y,(n)? — 1) and (3.28)
Y,(n —1)Y,(n+1) = Y,(n)2 — 1, we have (i), (ii) and (iii) are equivalent. Obviously
(iv) = (iii). To prove the theorem we show that n is a Lucas Carmichael = (iv) and
(i) = n is a Lucas Carmichael.

Suppose n is a Lucas Carmichael. Then n is squarefree, put n = p;---p;. Let
an arbitrary integer a be given and consider an arbitrary prime p dividing n. If

(n,d)=1, then by (11.11) p— €,(p)/2|n £ 1. Thus from the Division Theorem 4.11,
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Y, (1%) |Ya(n & 1). Hence Theorem 6.12 implies that p | Y,(n % 1). Therefore
p|Ya(n — 1)Yq(n + 1). Using (1.35) and (3.28) we obtain p| X4(n)?2 — a?. If p|d,
then by (3.28) we also have that p| X,(n)% — a?. Since n is squarefree and a, p are
arbitrary, it follows that (iv) holds.

Suppose (i) holds. Then n is squarefree by the Squarefree Lemma 6.23. Suppose
p|n. Since 3 < p, by Lemma 10.8, we can find a such that (n,a?—4) =1 and
Ta(p) = (p—1)/2. Also we can find b such that (n,b>—4)=1 and r(p) = (p+1)/2.
Hence by (i), p|Ya(n — 1)Ya(n + 1) and p|Ys(n — 1)Y,(n + 1). Thus p|Ye(n £ 1).
Then (p—1)/2 = r4(p) |[n+ 1 and (p+ 1)/2 = rp(p) | n £ 1. Hence n is a Lucas

Carmichael.

Theorem 11.14. Suppose 1 < n and (n,6)=1. Each of the following conditions is

equivalent to n being a strong two sided Lucas Carmichael:

@) (Va)[(n,a(a®—4)=1= X,(n) = a (mod n)],
(ii) (Va)[(n,a?—4)=1 = X,(n) = a (mod n)],
(iii) (Va)[Xe(n) = a (mod n)).

Proof. Obviously we have (iii) = (ii) = (i). First we show that n is a strong two
sided Lucas Carmichael = (iii). Then we show (i) = n is a strong two sided Lucas
Carmichael.

Suppose n > 1, (n,6) =1 and n is a strong two sided Lucas Carmichael. By
definition then n is squarefree, n = pypo- - -px. Also p—1|n+1 and p+1|n+£1 for all
p|n. Let an arbitrary integer a be given and consider an arbitrary prime p dividing
n. Since p—1|n£1 and p+1|n £ 1, p—e;(p)|n £ 1. Hence (p—eq(p))/2|(n £ 1)/2.
Therefore by the Division Theorem 4.11, we have Y;((p—e€.(p))/2)|Ya((n £1)/2). I
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(p,d)=1, then by Theorem 6.12 p|Y,((n—e,(p))/2), and hence that p|Y,((n£1)/2).
Therefore if (p,d)=1, p|d-Y;((n — 1)/2)Ya((n + 1)/2). Identity (3.20°) states that

(iv) Xa(n) —a=dY, (n;—l)n(n-z-l) =0 (mod p).

Hence if (p,d) =1, then p | X,(n) —a holds. But this same identity (iv) implies

P| Xa(n)—a holds also when p}d. Thus p| X,(n)—a holds whether (p,d)=1 or not.
Thus for all ¢, X,(n) =a (mod p). Since p was arbitrary and n is squarefree, the
congruence X4(n)=a (mod n) holds for all a. Hence (iii) holds.

To prove that (i) implies n is a strong two sided Lucas Carmichael, suppose (i)
holds. Then n is squarefree by the Squarefree Lemma. Let\ p|n. Then p>3. If p=5,
then p—1 = 4|n £ 1 holds. Next we show that if p=5, then p+1|n 1 and that if
p>5, then p—1|n+1 and p+1|n 1. By Lemma 10.8, we can find a and b such
that (n,a(a®—4)) =1, (n,b(6?—4) =1 and r.(p) =251, rs(p) =2L. Then by (3.20")
and (iv) we have

(a® —4)Y, (n_—l) Y, (n_-i—l) =0(modp) and

2 2
(b® — 4)Y,; (n_z_l)}’i, (n-2i-1) = 0 (mod p).

)
ra(p) | ZEL. Alsop|Y, (l‘—;l) Y; (fél) , and hence r;(p) | 2. Therefore 25 =r1,4(p) | 2

Since (p,a®—4) =1 and (p,b>—4) =1, we have p | Y, (—”—2‘—1) Y, (-’-*ﬂ) , and hence

and 1“2*—1 =7y(p) | 13:—1 Since p is arbitrary, it shows that n is a strong two sided Lucas

Carmichael. Hence (i) holds.

Theorem 11.15. If 1 <n and (n,6)=1, then the following conditions are equivalent.
(i) n is a one sided Lucas Carmichael +, i.e. p|n = (p£1)/2|n—1,

(i) (Va)[(n,d)=1 = Y,(n—1) = 0 (mod n)],

(iii) (Va)[(n,ad)=1 = Yi(n—1) = 0 (mod n)}.
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Proof. (i) = (ii). Suppose (i). Then n is squarefree by definition. Suppose (n,d)=1.
Let p|n. Then (p,d)=1. Hence p|Y,((p — €.(p))/2). By (i), (p £1)/2|n — 1, then
(p — €a(p))/2|n — 1. Thus the Division Theorem and p|Y,((p — €,(p))/2) together
imply p|Ya(n — 1). Since p is arbitrary and n is squarefree, n|Y;(n — 1). Therefore
(ii) holds. (ii) = (iii) is trivial.
(iii) = (i). Suppose (iii) holds. Then 7 is squarefree by the Squarefree Lemma 6.23.
Let p|n. Then 3 < p. By Lemma 10.8, we can find b such that r4(p) = (p + 1)/2
and (n,b(b>—4)) = 1. Hence n|Ys(n—1). Then p|Yi(n —1). So by Lemma 6.3
(p+1)/2 = ry(p) |n — 1. Again let p|n. We will show (p—1)/2|n—1. If p = 5,
this is true since (5 — 1)/2 =2|n — 1. If 5 < p, then the condition of Lemma 10.8 is
satisfied. Hence by same argument we can show (p — 1)/2|n — 1.

Thus for any prime p|n we have shown that (p £1)/2|n—1. So n is a one sided
Lucas Carmichael +. (i) holds.

Theorem 11.16. If 1 <n and (n,6) =1, then the following conditions are equivalent.

(i) n is a one sided Lucas Carmichael —,ie. p|n = (p£1)/2|n+1,
(ii) (Va)[(n,d)=1 = Yi(n+1) = 0 (mod n)],
(iii) (Va)[(n,ad)=1 = Yi(n+1) = 0(mod n)].

Proof. Similar to the proof of Theorem 11.15, replacing n — 1 by n + 1.

Theorem 11.17. Suppose 1<n and (n,6)=1. Then the following conditions are
equivalent.

(i) n is a strong one sided Lucas Carmichael +, i.e. p|n = (p?>—1)/2|n -1,
(ii) (Va)[(n,d)=1 = Y,((n—1)/2) = 0 (mod n)],

(iii) (Va)[(n,d)=1 = X.,(n—1) = 2 (mod n) and Y;(n ~ 1) = 0 (mod n)],
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(iv)  (Va)[(n,d)=1= Xu(n+1)=a®—2 (mod n) and Y4(n + 1)=a (mod n)],
(v) (Va)[(n,d)=1 = Xq(n) = a(mod n)and Yy(n) = 1 (mod n)].

Proof. Similar to the proof of Theorem 6.24 with € = 1 we can show that (ii) - (v)
are equivalent. Hence we need only show (i) & (ii).

(i) = (ii). Suppose (i) holds. Let p|n. For all a, we have p|Y,((p—¢)/2) and (p—e)/2]
(p—1)(p+1)/4 = (*—1)/4 imply p| Yu((*~1)/4). Then by () (*—1)/4] (n—1)/2
and hence Y,((p%—1)/4)|Ya((n—1)/2). Thus p|Ya((n—1)/2). Since p is arbitrary
and n is squarefree, n|Y,((n—1)/2) for all a.

(ii) = (i). Suppose (ii) holds. By Squarefree Lemma 6.23, n is squarefree. Let p|n,
then p > 3. By Lemma 10.8, we can find a; and a; such that r,,(p) = (p+1)/2,
ra,(p) = (p—1)/2 and (n, (a3—4)(a—4))=1. Then (ii) implies p| Y, ((n—1)/2) and
p|Yey((n—1)/2). Hence (p-+1)/2=re,(5) | (n—1)/2 and (p—1)/2=ry(p) | (n—1)/2.
It follows (p®?—~1)/4](n—1)/2. Note that p is arbitrary and so (i) holds.

Theorem 11.18. Let 1<n and (n,6)=1. The following conditions are equivalent.
(i) n is a strong one sided Lucas Carmichael —, i.e. p|n = (p?—1)/2|n+1,
(ii) (Va)[(n,d)=1 = Yi((n+1)/2) = 0 (mod n)],

(iii) (Va)[(n,d)=1 = Xu(n+1) = 2 (mod n) and Yo(n +1) = 0 (mod n)],
(iv) (Va)[(n,d)=1 = Xu(n — 1)=a®—2 (mod n) and Y,(n — 1)=—a (mod n)],
(v) (Va)[(n,d)=1 = X,(n) = a(mod n) and Y,(n) = -1 (mod n)].

Proof. Similar to the above with 1 replaced by —1.

Theorem 11.19. Suppose 1 < n and (n, 6) =1. Then n is a super one sided Lucas
Carmichael + if and only if 4|n — 1 and
(11.19) (Va)[(n,d)=1 = Y((n—1)/4) = 0 (mod n)].
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Proof. =>. Suppose n is a super one sided Lucas Carmichael +. Let p|n. Then by
definition p? — 1|n ~ 1. Since p? — 1 is divisible by 4, we have 4|n — 1. Also by the
Division Theorem, p|Ya((p — €)/2) implies p| Y, ((p? — 1)/4). Then p|Y,((n — 1)/4).
Since p is arbitrary and n is squarefree, n|Y,((n — 1)/4).

<. Suppose (11.19) holds. Then it follows that Y;((n—1)/2) = 0 (mod n) for
all a; thus n is squarefree. Let p|n. As above, by Lemma 10.8, we can find a,
and @ such that (n,(a?—4)(a3—4)) =1 and r,,(p) = (p—1)/2, r4,(p) = (p+1)/2.
Hence (11.19) implies p | Y5, ((n—1)/4) and p | Y,,((n—1)/4). It is equivalent to
(7—1)/2= 72y (5) | (n—1)/4) a0 (p+1)/2=7,,(p) | (m—1)/4. Hence (p*~1)/4] (n~1)/4.

This is true for all p|n. Thus n is a super one sided Lucas Carmichael +.

Theorem 11.20. Suppose 1 < n and (n,6)=1. Then n is a super one sided Lucas
Carmichael — if and only if 4|n + 1 and
(11.20) (Va)[(n,d)=1 = Y,((n+1)/4) = 0(mod n)].

Proof. Similar to the proof of Theorem 11.19. Replace n — 1 by n + 1.

Theorem 11.21. Suppose 1 < n and (n,6) =1. Then n is prime if and only if

following three conditions hold simultaneously

(i) (Ja)[(n,a(a?—4))=1 and Y,(n) = +1 (mod n)],
(ii) (3b)[(n, b(b2~4))=1 and Y;(n) = —1 (mod n)],
(iii) (VO)[(n,c(c2—4))=1 = Y.(n) = £1 (mod n)].

Proof. =>. Suppose n is prime. Then n > 3. By Theorem 10.1, there are (n — 3)/2
a's such that €;(n) = 1, and there are (n — 1)/2 b's such that €,(n) = —1. Then by
Theorem 6.11, (i) (ii) and (iii) are all hold.

<=. Suppose (i) (ii) and (iii) hold. By the Squarefree Lemma, 6.23, (iii) implies n is
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squarefree. If n is composite, put n = u-v, (v,v)=1, u>3 and v>3. Let ¢ and b
satisfy (i) and (ii) respectively. By the CRT we can find ¢ such that ¢ = a (mod u)
and ¢ = b (mod v). From (n,a2—4)=1 and (n,b>—4) =1, we have (u,c®—4) =1
and (v,c?—4) =1 and so (n,c?—4) = 1. The Congruence Rule (4.1) implies that
Y.(n) =Ya(n) (mod u) and Y, (n) =Y3(n) (mod v). Hence Yo(n) =1% —1 (mod u)
and Y;(n) =—1%#1 (mod v). Then Y,(n) #1 (mod n) and Y,(n) % —1 (mod n)

which contradicts (iii). Thus n is prime.

Theorem 11.22. Suppose 1 < n and (n,6)=1. Then = is prime if and only if
(11.22) (Va)[(n,a(a®—4))=1 = Y,(n) = €(n) (mod n)].

Proof. =>. This is Theorem 6.11.

<=. n is squarefree by Lemma 6.23. From Lemma 10.8, we can find @ and b such that
(n,a®—4)=1, (n,a®—4)=1, €,(n)=1 and €,(n) = —1. Then (11.22) will imply that
all conditions (i), (ii) and (iii) in Theorem 11.21 hold. Hence n is prime by 11.21.

Theorem 11.23. Suppose n > 1 and (n,6) = 1. Then n is prime if and only if

following conditions hold simultaneously

(i) Ja[(n,a(a?—4))=1 and Y,(n — 1) =0 (mod n)),
(i) 30[(n, b(62~4)) =1 and Y(n + 1) = 0 (mod n)],
(iii) Ve[(n,c(c?—4))=1 = Y.(n=%1) =0 (mod n)).

Proof. =>. Suppose n is prime. Then n > 3. By Theorem 10.1, there are (n — 3)/2
a's such that €,(n) = 1, and there are (n — 1)/2 V's such that €;(n) = —1. Then by
Theorem 6.12, (i) (ii) and (iii) are all hold.

<=. Suppose (i) (ii) and (iii) hold. By Lemma 6.23, (iii) implies n is squarefree. If n

is composite, put n = u-v, (v,v)=1, v > 3 and v > 3. Let @ and b satisfy (i) and (ii)
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respectively. By the CRT we can find csuch that ¢ = ¢ (mod v) andc¢= b (mod v).
Then from (n,a(a®—4)) =1 and (n,b(b*—4)) = 1, we have (u,c(c*—4)) =1 and
(v,c(c?—4)) =1 and hence (n,c(c?—4)) = 1. The Congruence Rule (4.1) implies
that Y.(n — 1) = Y,(n — 1) (mod u) and Yy(n + 1) = Yi(n + 1) (mod v). And the
GCD Theorem implies (Yy(n — 1),Y.(n + 1)) = Y.(2) = ¢. Hence (n,c) =1 implies
Y.(n+1) # 0 (mod u) and Y(n — 1) # 0 (mod v). Then Y (n + 1) 3 0 (mod n)

and Y,(n — 1) # 0 (mod n) which contradicts (iii). Consequently n is prime.
Theorem 11.24. Suppose 1 < n and (n,6)=1. Then n is prime if and only if
(11.24) (Va)[(n,a(a®—4))=1 = Yy(n — €,(n)) =0 (mod n)].

Proof. =. This is Theorem 6.12.

<. By Lemma 6.23, n is squarefree. From Lemma 10.11, we can find @ and b such
that (n,a?—4)=1, (n,a?—4)=1, ¢,(n) = 1 and €,(n) = —1. Then (11.24) will imply
all conditions (i), (ii) and (iii) in Theorem 11.23 hold. Hence n is prime by 11.23.

Theorem 11.25. Suppose 1 < n and (n,6)=1. Then n is prime if and only if
(11.25) (Va)[(n,a(a®—4))=1 = nis an elpsp(a)].

Theorem 11.26. Suppose 1 < n and (n,6)=1. Then n is prime if and only if
(11.26) (Va)[(n,a(a®—4))=1 = n is a slpsp(a)].

Theorem 11.27. Suppose 1 < n and (n,6)=1. Then n is prime if and only if
(11.27) (Va)[(n,a(a®—4))=1 = n is a slzpsp(a)].

Theorem 11.28. Suppose 1 < n and (n,6)=1. Then n is prime if and only if
(11.27) (Va)[(n,a(a®—4))=1 = n is a rpsp(a)].

Proof. =. This follows from Theorem 7.13.
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<=. Suppose (11.28) holds. Let p |n. By Lemma 6.23, n is squarefree. Hence
(p,n/p)=1. By Lemma 10.14 we can find 1 < a,b < n, (n, ab(a®~4)(b?>~4)) =1 such
that @ = b (mod n/p) and p,(n) = —ps(n), €,(n) = €(n). Denote them €. From the
hypothesis on n,

n+4e€

Y, (n + E) = pg(n) (mod n), hence Y, ( ) = pa(n) (mod n/p),

2 2
Y, (n ;_ 6) = pp(n) (mod n), hence Y; (n -2*- 6) = pp(n) (mod n/p).

Then —po(n) = pa(n) =Y. (32) = % (%) = po(n) (mod n/p).

It follows 2py(n) = 0 (mod n/p). Then we must have n/p =1 and so n is prime.

Theorem 11.29. Suppose 1 < n and (n,6)=1. Then = is prime if and only if
(11.29) (Va)[(n,a(a®?—4))=1 == n is an apsp(a)].

Proof. =>. This follows from Theorem 7.14.

<. Suppose (11.29) holds. Let p | n. By Lemma 6.23, n is squarefree. Hence
(p,n/p) =1. By Lemma 10.14 we can choose 1 < a,b < n such that (n,ab(a®—
4)(®—-4)) =1, a = b (modn/p), pa(n) = —ps(n) and €,(n) = e(n) = e. Hence

Ta(n) = —73(n). The hypothesis on n implies

X (B—;——E) = ar,(n) (mod n), so X, (n ; €) = a7,(n) (mod n/p),
X (n -2*- e) = bnp(n) (mod n), so X, (n -2'- e) = bn(n) (mod n/p).

Since @ = b (mod n/p),

)25 (25 k) st )

It follows that —a7,(n) = ars(n) (mod n/p) and hence 2a7,(n) = 0 (modn/p).

—aT,(n) = —b7,(n) = bn(n) = X, (

Since (n,a)=1, we must have n/p = 1 so that n = p and n is prime.
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The condition (11.28) or (11.29) with rpsp(a) or apsp(a) replaced by tpsp(a) is not
sufficient for primality of n. We have a slightly weaker version. To prove it we first

need a lemma.

Lemma 11.30. Suppose 1<n, (n,6)=1 and (Va)[(n,a(a®4))=1 = n is a tpsp(a)].

Then n is cube-free.

Proof. Suppose there exists an odd prime p such that p? | n. By Lemma 6.22, we
can choose a such that (n,a(a®—4)) =1 and p|r,(p?). Hence p? [ Y,((n£1)/2).
However by the assumption, for this a, we have
Xo((n—e,)/2) =27, (mod n) = X,((n—e,)/2) =27, (mod p?) = X ((n—e,)/2)?=4
(mod p®) = dY.((n—e,)/2)2=0 (mod p%) = Y,((n—¢,)/2) =0 (mod p?).

This is a contradiction. Hence p® J n. The lemma follows.

Theorem 11.31. Let 1<n, (n,6)=1 and n#0. Then 7 is prime if and only if
(11.31) (Va)[(n,a(a®—4))=1 = n is a tpsp(a)].

Proof. =. This follows from Theorem 7.11.

<=. Suppose (11.31) holds. If n is composite, from Lemma 11.30 and n # 0O, n is
not a prime power. Let n = m.p® with e odd and (m,p) =1. By Lemma 10.14
we can choose 1 < a,b < n such that (n,ab(a®—-4)(b2—4)) =1, a = b (mod p°),

and p,(n) =—pp(n), €2(n) = &(n) = €. Hence 7,(n) = —7,(n). The hypothesis on n

implies Xa (n ; e) =27, (mod n), so X, (n ; 6) = 27, (mod p°),

i -2— 6) = 27, (mod p°®).

Hence 27, =271 = Xp((n—e€)/2) = Xo((n—e)/2) = 27, (mod p°).

X (n ; 6) =27, (mod n), so X, (

It follows 27, =0 (mod p®). So p®|2. This contradiction shows that = is a prime.
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The assumption of n # O in Theorem 11.31 cannot be removed. This can be

seen from the following lemma.

Lemma 11.32. Suppose n = p? with p > 3. Then

(11.32) (Va)[(n,a®—4)=1 = n is atpsp(a)].

Proof. For any given a with (n,a?—4)=1, since n = p? = O, ¢,(n) = 7,(n) = 1. From
Theorem 6.12, p|Y,((p—e€a(p))/2), then p|Yy((p? — 1)/4) by the Division Theorem.
Hence p?|Y,((p? — 1)/4)2. By the Double Angle Formula (3.4), we have

2

(*) Xa (%@> =X, ("’22“ 1) =dy, (”24“ 1)2+2EO+2=2Ta(p2) (mod p?).

Since n = p?, congruence (*) shows that n is a tpsp(a). Since a is arbitrary, the

lemma follows.

The Corollary 7.23 shows that
nis alpsp(a) © nis alpsp(n—a), nis an elpsp(a) & n is an elpsp(n—a),
nis atpsp(a) & nis atpsp(n—a), nisarpsp(a) & nisarpsp(n—a),
n is an apsp(a) € n is an apsp(n—a), n is a slpsp(a) <> n is a slpsp(n—a),
n is a slzpsp(a) < n is a slzpsp(n—a).
Also for any odd integer n, 0, 1, n—1 are trivial bases of all types of pseudoprimes we
discussed so far. Hence applying Theorems 11.22, 11.24, 11.25, 11.26, 11.27, 11.28,

11.29 and 11.31, we have following theorem
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Theorem 11.33. Suppose n > 1 and (n,6)=1. Each of the following statements is
equivalent to primality of n:

(i) Va[3<a<(n—1)/2and (n,a(a®?—4))=1 = Y,(n) =€ (mod n)],

(ii) Ve[3<a<(n—1)/2and (n,a(a®—4))=1 = nisalpsp(a)],

(iii) Ve[3<a< (n—1)/2and (n,a(a®?—4))=1 = nis an elpsp(a)],

(iv) Vea[3<a<(n—1)/2and (n,a(a®?—4))=1 = nis a slpsp(a)],

(v) Va[3<a<(n—1)/2and (n,a(a®?—4))=1 = nis a slzpsp(a)},

(vi) Va[3<a<(n—1)/2and (n,a(a®—4))=1 = nisarpsp(a)},

(vii) Va[3<a<(n—1)/2and (n,a(a®~4))=1 = nis an apsp(a)],

(viii) n#DandVa[3<a< (n—1)/2and (n,a(a®?—4))=1 = nisatpsp(a)].

Some variants of statements in this theorem are known for general Lucas
sequences U, (P, Q) and V,(P, @), e.g. variants of (iii) and (iv). See Lieuwens [30],
Rotkiewicz [46] and Williams [51].
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§12. Formulas for the number of ordinary pseudoprime

bases

In this section we will discuss properties of ordinary pseudoprimes and give for-
mulas for the number of bases to which an odd integer n is a pseudoprime, Euler
pseudoprime and strong pseudoprime. Three of these formulas are known, ((12.9),
(12.10) and (12.11)), and three are new, ((12.12), (12.13) and (12.14)).

Recall the concept of order of @ mod n, which is the least positive integer ¢ such
that ¢! =1 (mod n). We shall denote it here by O,(n). Lots of properties are shared
by the rank, denoted here by r,(n) and the order O4(n). E.g. a* = 1 (mod n) if
and only if O,(n) | k, corresponds to the divisibility property of the rank, Lemma
6.4. Another one is k| p — 1 implies there are ¢(k) a’s such that O,(p) = k. This
is easy to prove from the theorem of the primitive element and we can generalize
this theorem mod p to mod p®. This is analogous to the property of the rank r,(p):
there are ¢(k) a’s such that r,(p) = k, provided k| (p — €4(p))/2 and k > 1, which
we proved in Section 10. Note that there is a small difference here. For order, this
property still holds even for k = 1.. If k| p — 1, then there are exactly k solutions
mod p of ¢* =1 (mod p).

We shall need some definitions.

Definition 12.1. An odd integer n > 1 is a pseudoprime to the base a, psp(a), if
a1 =1 (mod n). (Here we can add (n,a)=1, but it is implied.)
Definition 12.2. An odd integer n > 1 is a Euler pseudoprime to base a, epsp(a),

if (a,n)=1 and a*~V/2 = (a/n) (mod n), where (a/n) is a Jacobi symbol.
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Definition 12.3. A odd number n, n = u2*+1 and u odd, is a strong pseudoprime
to base a, spsp(a), if

(i) e®=1(modn) or (ii)a®® =—-1(modn) forsomer (0<r<1t).

Obviously epsp(a) => psp(a). Also it is known that spsp(a) = epsp(a) (Williams
[52]). We mention some other needed lemmas.
Lemma 12.4. If m has a primitive root and (a,m)=1, then the congruence
(12.4) =¥ = a (mod m)
has (k, #(m)) solutions = or no solutions, mod m.
Proof. Let g be a primitive root mod m. By the index argument, we can write z =g
and a=g¢’. Hence z¥=a (mod m) & ¢g*=¢’ (mod m) & ik=j (modp(m)). The
number of solutions of the last congruence is (k,#(m)), or 0 if (k,#(m)) does not
divide j. In particular, if a = 1, then j = 0. Hence (k,¢(m)) | j. In this case the

congruence (12.4) has exactly (k, #(m)) incongruent solutions.

Lemma 12.5. If p° divides n, then the number of solutions mod p® of

(12.5) " 1=1(modp?) is (n—1,p—1).

Proof. p® has a primitive root so Lemma 12.4 can be applied. Put ¥k = n — 1 and
m = p® in Lemma 12.4. Then it says there are (n—1, ¢(p®)) solutions to (12.5). Since
p°|n, we have (n—1,p)=1 so that (n —1,¢(p%)) = (n—1,p°(p—1)) = (n—1,p—1).

Lemma 12.6. Suppose (k,p) =1. If a* = 1 (mod p°), then O,(p°) | (k,p — 1).
Further, O,(p®) | (k, (p — 1)/2) if and only if (a/p) = 1.

Proof. From ¢* = 1 (mod p°) and o ®-D = %) = 1 (mod p¢), we have
Oa(p°) | (k,p** (p—1)) = (k, p—1). Here we can drop p** since (k,p)=1. If (a/p) = +1,
then a®~9/2 = 1 (mod p). This implies a® /2 = 1 (mod p°) by the identity
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aP~1—1=(@~D/241)@P-1)/2—1) and the fact p|a®~)/2~1. Hence 0,09 | (k, Z5L).
If (a/p) = —1, then a similar argument shows a~1/2 = —1 (mod p¢). Then

Ou(p®) £ (p—1)/2.

Theorem 12.7. Suppose (k,p) =1. Then the following two congruences have the
same set of solutions mod p¢,

(1) a* = 1 (mod p°) and

(2) a%?-1) = 1 (mod p®).

Proof. Let T be the set of solutions of (1) and S be the set of solutions of (2). Since

(k,p — 1) | k, we know each solution of (2) is a solution of (1). Hence S C T. Next

we show T' C S. If not, then there exists a such that
o* =1 (mod p°) and a®?) % 1 (mod p®).
This is equivalent to saying there exists a such that

(%) O.(p°) | k and (%) Ou(p%) fp—1.

By Euler’s Theorem we have O,(p®) | #(p°®) where ¢(p?) =p*~1(p~1). This together
with (%) implies p | O,(p®). Hence by (x) we have p | k, which contradicts the

assumption (p, k) =1. Therefore S = T'. The theorem is proved.

Theorem 12.8. For any (k,p)=1, there are (2k,p — 1) — (k,p — 1) solutions mod
p°® for a* = —1 (mod p°).

Proof. We use Theorem 12.7 and the identity a® — 1 = (a* — 1)(a* +1).



Let B(n) = [{a:0<a<n and n isan psp(a)}|,
E(n) = |[{a:0<a<n and n isan epsp(a)}|,
S(n) = |[{a:0<a<n and n isa spsp(a)}|.

147

Suppose n = p{* - - - p;*. Baillie and Wagstaff [2] give the following formula for B(n):

(129) B =1~ 1,5~ 1)

=1

About the same time, Monier [38] gave the following formula for E(n):

Suppose n = pi* -+ pif,and n =12t +1,r odd, p; = 2%+ 1, r;0dd (i = 1,---

Suppose further the p; have been ordered so that s; < sg < -+ < s;. Then

km—1
(12.10) E(n) = 6,]] ( o 1) ,
i=1
where &, has one of the values 2, 1/2 or 1 according to the rule
2 if 81 = t,
6n =14 1/2 if s; <t holds for some prime p; with ¢; odd,

1 otherwise,

Monier [38] also gave the following formula for S(n):

Suppose n =pf* -+ pi¥,and n =r2t + 1,7 odd, p; = 2% + 1, r;0dd (i = 1,---

Suppose further the p; have been ordered so that s; < 5o < -+ < sz. Then
k
(12.11) S(n) = (1 + ﬂ) H(T, 73).

We give some different formulas for B(n), E(n) and S(n).

Theorem 12.12. Suppose n = p$' - - pi*. Then

(12.12) Bin)= 3 ﬁ(f—;—lg—;—l-)

€=%1i=1

k).



148

Proof. We have ((n~1)/2, (pi~1)/2) =(n~1,p—1)/2 and the ¢; =1 range over exactly
2k values. Hence ¥4 IT5 4 [(n — 1,0 — 1) /2] = Teca1(1/29) T (- 1,9, — 1) =
(2%) - (1/2%) ey (n — 1,p; — 1) = [T5.,(n — 1,p; — 1). The formula is equivalent to
that of 12.9.

In the next formula the ¢; will range over same set, ¢; = £1,--+, ¢ = +1.

Theorem 12.13. Suppose n = pi*--- pf*. Then

(12.19) E(ln) = q;iulflll[(nz-‘-‘ll’%) _ (11-2— e,-) (nz-; 11, p;z— 11)
-(5) (%0 () () ()

— & €; — l4€ — l4¢
where € = €f' -+ €, p = 1< and y; = 5,

Proof. Let O,(p®) denote the order of @ mod p¢. Also for1 < i <k, € = %1 and
€; = 1, define

Aile,e) = (n;‘l,piz;:l)_(l-éeg) (nz—“l,piz-l)_(lge) (n;l,ps'z:il)
1—¢)(1—€)\ -1 p—1
+(( 21( ))(2’;;2 )

The sum over the k-tuples (€, - -, &) represents a consideration of all possible cases

(a/n) = € and (a/p;) = €;. We divide these cases into 4 groups and consider them
separately for each fixed pf*.

Case (i). (a/n) =1and (a/p;) =1. Let € = (a/n) and ¢; = (a/p;). Then p =1
and p; = 1. Thus
(1) Ao ) =Ai1,1) = (252, 850).

Suppose a*~1/2 = (a/n) = 1 (mod n). Since ((n—1)/2,p;) =1 and (a/p;) = 1,

by Lemma, 12.6, for all these bases a, we have O,4(p*)| (l‘-g-l, 2'-2:-1-) = Ai(e, €).
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Thus A;(¢, €;) counts the number of bases mod pf* such that n is an epsp(a), (a/n)=1
and (a/p;) = 1.

Case (ii). (a/n) =1 and (a/p;) = —1. Let € = (a/n) and ¢ = (a/p;). Then
p#=1and g; =0. Thus
@ Adea) = AL, —1) = (3, p - 1) — (552, 55).
Suppose a*~V/2 = (a/n) = 1 (mod n). Then a*V/2 = (a/n) = 1 (mod pf). By
Lemma 12.6, we have O,(pf*) | (”T‘l,p,- - 1) and O,(p{) ("" ) Now
("—;l, p; — 1)—-(1‘—;—1, 2'-‘—1) is the number of bases mod p§* such that O, ()| (";1 Pi— 1)
and O,(p§) [ ("—’1 2'—) Hence A;(e,€;) = ( =L, pi — 1) (""1 ?-'—) counts the
number of bases mod p§* such that = is an epsp(a), (a/n) =1 and (a/p;) = —1.
Case (iii) (a/n) = —1 and (a/p;) = 1. Let € = (a/n) and ¢ = (a/p;). Then
¢ =0and yu; =1. Thus
3)  Aile,&) = Ai(-1,1) = (n—1,251) — (251, 25L).
If a»Y/2=(g/n) = —1 (mod n), then a*~ 1)/2—'—1 (mod p§¥). Hence O,{pf) |n—1
and O,(p§*) [ (n — 1)/2. Then using Lemma 12.6, O,(p{) | (n — 1, (p; — 1)/2) and
0u(p5) ¥ ((n —1)/2, (p: — 1)/2). Hence Ai(e,&;)=(n — 1,25%) — (251, 251} counts
the number of bases mod p}’ such that » is an epsp(a), (a¢/n)=—1 and (a/p;)=1.
Case (iv) (a/n) = —1 and (a/p;) = —1. Let € = (a/n) and ¢; = (a/p;). Then
p=0and y; =0. Thus
(4) Ai(e, &) = Ai(-1,-1)=(n-1,pi—1)— (n—l 2‘—) (52, i — 1) + (—;1,2';—)
If a»~V/2=(a/n)=-1 (mod n), then a*~1/2=—1 (mod p§’). Hence O, (pf)|n~1
and O,(pf’) Y 252. Since (a/p§') = —1, from Lemma 12.6, O,(p{*) | (n — 1,p; — 1),
Ou(p*) X ((n — 1), (pi — 1)/2) and Oa(pf¥) f((n —1)/2,(pi — 1)). As we know
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(n—1,pi—1)—((n~1), (p;—1)/2) is the number of incongruent bases mod p§* such that
Ou(pi*) | (-1, pi—1) and Oa(pf’) f (n—1, (pi—1)/2. Also (n—1,p—1)—((n—1)/2,pi—1)
is the number of incongruent bases mod pf* such that O,(p*) | (r—1,p;—1) and
Ou(pi*) f ((n —1)/2,p; — 1). Thus it would appear that
(n—-1,pi—1)—((n—1)/2,p; —1) — (n — 1, (p; — 1)/2) would count the number of
bases mod p* such that Ou(p{’) | (n — 1,p; — 1), Oa(¥5*) f ((n — 1), (p;i — 1)/2) and
O.(pf*) f((n —1)/2,(p; — 1)). However, since

((n—=1,(p: —1)/2),((n = 1)/2,p: = 1)) = ((n = 1)/2, (s — 1)/2),
when we subtract (251,p; — 1) and (n — 1, 252), we subtract (%51, 251) twice. Thus
this must be added in again. Therefore by (4) A:(e,¢;) counts the number of bases
mod p{* such that n is an epsp(a), (a/n) = —1 and (a/p;) = —1.

Since for each p§* A;(e, €;) always counts the number of bases a mod p* such that
n is an epsp(a), by the CRT, the product []; A;(e,¢;) counts the number of bases a
corresponding to a fixed k-tuple (e;,---,€;) such that n is an epsp(a). Hence the
sum over all k-tuples, 3., [T; Ai(¢, €;), gives the number of bases @ mod n such
that n is an epsp(a). This completes the proof.

Our formula E(n) looks like much more complicated than that of Monier’s. How-
ever, when one uses Monier’s formula (12.10) to count E(n) he has to express n in
the form n = r2¢ + 1 and each prime factor p; of n in the form p; = r;2% + 1, and
then decide the complicated coefficient 8,,; while in using our formula (12.13), these

are all omitted. Hence we think our formula is easier to use.
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Theorem 12.14. Suppose n = pf'--- pi* is odd, and n = 42! + 1 where u odd.

‘Then the number of incongruent bases a such that n is a spsp(a) is given by

(12.14) S(n) = ﬁ (ﬁ—z}-l-,p.- _ 1) + if{ [(%;_Tl,p; - 1) - ("; L 1)] .

i=1 g=1i=1

Proof. By Lemma 12.7, the first term in S(n) counts the bases a such that
T =1 (mod n). By Lemma 12.8, the second term in S(n) counts the bases a
such that for some 5,1 < s <t and ¢ = —1 (mod ). Thus the sum of these two
terms, S(n), is the number of incongruent bases such that n is a strong pseudoprime.
This completes the proof.

Again, by the same reason as the above, we think that our formula (12.14) has

its advantage to use.
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§13. Formulas for the number of Lucas pseudoprime bases

In this section we will give formulas which count the number of incongruent bases
a mod n to which n is Ipsp(a), or elpsp(a), or slpsp(a). These three formulas (13.7),
(13.8) and (13.9) appear to be new.

Lemma 13.1. Suppose n = pf'---pi* is odd and (n,d) = 1. Let ¢ = (d/n) and
€;=(d/p;). Then n is elpsp(a) if and only if for all i (1<i<k),
ra(PF)[((n — €)/2, (pi — €)/2).

Proof. <. Suppose that for all p{*|n, we have 7,(p{*) | ((n — €)/2, (p; — €;)/2). Then
7a(p§') | (n — €) /2. Hence Yo((n — €)/2) = 0 (mod pf). Since for i # j, (pf,p7) =1,
this implies Y;((n — €)/2) = 0 (mod n), we have that n is an elpsp(a).

=>. Suppose p{*|n and Y,((n—¢€)/2) =0 (mod n). Then Y,((n—¢)/2) =0 (mod pf.
Hence 7,(pf*) | (n—¢€) /2. From Theorem 6.15 we have 7,(p{*) | T, (pf") where T, (p{) =
p5 " (pi—e;) /2. Hence 4 (pf*) | (n—€)/2,p5 " (pi~e:) /2) = ((n—€) /2, (pi—e€:) /2). The

last equality holds since (p;,n—e)=1. This proves the lemma.
Lemma 13.2. Suppose n = pf' ---pi* is odd and (n,d) = 1. Let € = (d/n) and
€;=(d/p;). Then n is Ipsp(a) if and only if for all 7z (1<i<k),

ra(05) | (n — €, (i ~ €)/2).

Proof. Recall that Ipsp(a) means Y;(n—€) =0 (mod n). Then use an argument

similar to that of the proof for 13.1.
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Theorem 13.3. Suppose € = *1 and & | (p — €)/2. Then there are exactly k — 1

incongruent solutions @ mod p® of Y, (k) = 0 (mod p®) with ¢, = e.

Proof. This is Theorem 10.10.

Lemma 13.4. Suppose e=+1, p=¢(mod4) and k|(p—e¢)/4. Then
Xa(k)=0 (mod p°) has k incongruent solutions with (n,d)=1 and €,(p) = e.

Proof. Suppose k| (p—e¢)/4. Then 2k|(p—e)/2 and k|(p—¢)/2. By Theorem 13.3,
() Yo(2k) = 0 (mod p°)

has 2k — 1 incongruent solutions and

(%) Ya.(k) = 0 (mod p°)

has k—1 incongruent solutions. It remains to count the number of solutions of

(% % %) Xa(k) = 0 (mod p®).

By (3.5), we know that the set of solutions to () is the union of the sets of solutions
to (#+) and (* * ¥). By Lemma 4.8, (X,(k),Ya(k)) | 2. Thus the sets of solutions
for Y, (k) = 0 (mod p°) and X,(k) = 0 (mod p®) are disjoint. Hence the number of
solutions mod p® for the congruence (% * %) is 2k — 1 — (k — 1) = k. It is easy to see

that for all these solutions a, ¢, = €. This proves the lemma.

Theorem 13.5. Suppose (k,p) =1. Then the following two congruences have the
same set of solutions mod p°:

(1) Yi(k) = 0(modp®) and (2) Ya((k, P—"—-‘;-(E)-)) = 0 (mod p®).

Proof. Let T be the set of solutions to (1) and S be the set of solutions to (2). Since
(k, (p — €a(p))/2) | k, the Division Theorem tells us that each solution of (2) is a

solution of (1). Hence S C T. Next we show T C S. If T € S, then there exists
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an a such that Y,(k) = 0 (mod p¢) and Y, ((k, E'L;@)) # 0 (mod p®). This is
equivalent to saying that there exists an a such that

(*) Ta (pe) I k and (**) T (pe) X pb— ;a (P) )

By Theorem 6.15, we have 74(p®) | Ta(p®) where Ty (p®) = p*~1-(p — €4(p))/2. This
together with (+*) implies p | 7,(p®). Hence p |k which contradicts the assumption
(p, k)=1. Therefore S = T. The theorem is proved.

Theorem 13.6. Suppose € = *1 and (k,p)=1. Then there are exactly

(2k, B5%) —(k, 25=) solutions @ mod p° for X,(k) = 0 (mod p°) with €,(p) = e.

Proof. Consider those a with €,(p) = € and X,(k) = 0 (nod p¢). From (3.5) we
have Y,(2k) = Y,(k)X,(k) = 0 (mod p¢). By Theorem 13.5 and Theorem 13.3,
Y,(2k) = 0 (mod p°) has ((2k,(p — €)/2) — 1 incongruent solutions mod p® and
Ya(k) = 0 (mod p°) has ((k,(p — €)/2) — 1 incongruent solutions mod p°®. Since
(Ya(k), Xa(k)) | 2, it follows that the sets of solutions for Y, (k) = 0 (mod p°®) and
Xa(k) = 0 (mod p¢) are disjoint. Hence the number of solutions mod p® for the
latter congruence equals ((2k, (p — €)/2) — ((k, (p — €)/2).- This proves the theorem.

REMARK. Theorem 13.6 is the generalization of Lemma 13.4.

Let L(n) = |{e:0<a<n,(n,a®—4)=1andnisalpsp(a)}|,
EL(n) = |{a:0<a<n,(n,a®—4)=1and n is an elpsp(a)}|,

SL(n) = |{a:0<a<n,(na®—4)=1and nis a slpsp(a)}|.
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Theorem 13.7. Suppose n = p{' - - pi* is odd. Then

(13.7) ELm) = Y 1 [(”;”’—"2-'-5-) -1].

€=%1i=1

where € = €' - - - €5*.

Proof.  For a given k-tuple (€; - - - €), where ¢; € {—1,1}, consider those a such
that n is elpsp(a), for each prime power p;* where the Jacobi symbol (d/p;) = ¢;
and therefore (d/n) = e. Let s be the number of those bases a, i.e. the number of
solutions of Y ((n — €)/2) = 0 (mod n). By the CRT, then s = s; - 85 - 5, where
s; is the number of solutions of Y, ((n—¢€)/2) = 0 (mod p{), (¢ =1,---,k).

Since ((n—¢€)/2,p;) =1, we may apply Theorem 13.5 to obtain s; = (25¢, Biz5) — 1,
Hence by the CRT s = [T, [((n — €)/2, (p; — €)/2) — 1]. The sum over all possible
k-tuples, that is 3,4, s, [(-’%5, 2'5—‘*) - 1] , then gives the total number of bases

a such that n is an elpsp(a).

Using a similar idea one can give a formula for the number of bases a to which n

is a Lucas pseudoprime in the sense of Rotkiewicz [46], Ipsp(a).

Theorem 13.8. Suppose n = p§'--- pi* and n is odd. Then the number of incon-

gruent bases @ mod n to which n is a Lucas pseudoprime is given by

(13.8) Lin)= ¥ ﬁ[(n—e,p"z'e‘) —1].

€=%1i=1

where € = €} - - - €;*.

Next we give a formula for the number of bases a to.which n is a strong Lucas

pseudoprime, slpsp(a).
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Theorem 13.9. Suppose n = pf*.--pi* and n = u2t+w where u is odd, w = +1
and 2 < t. Then the number of bases to which n is a strong Lucas pseudoprime,

slpsp(a), is given by  SL(n) =

o525

€ =:!:1,e——w i=1
L r—c pi—« n—¢€ pi—¢&
) ]+E2,Hl[(2s-1’ 2 )"( 2 " 2 )]}

z e 2

e=tle=w li=1
where € = €f' - - - €;F.
Proof. We consider 3 possible types of bases:
Type (i). The bases a such that (d/p;) = ¢; and (d/n) = € = —w. Then (n—¢)/2is
odd. It follows from Theorem 7.5 that n is a slpsp(a) if and only if n is an elpsp(a).
Hence by Theorem 13.7, for case € = —‘w, the number of bases is

oz e

=t e=—wi=1

Type (ii). The bases a such that (d/p;) = €;, (d/n) = € = w and n | Ya(%5=). Since
((n—e)/2%,p;) =1 for each i, we may apply Theorem 13.5. The sum over all possible

k-tuples which satisfy € = w gives the number of all such bases,

o _pflere-l

Type (iii).  The bases a such that (d/p;) = €, (d/n) = ¢ = w and for some

2<s<t, n—e

(%) Xa( 5 ) =0 (mod n).

Since ((n—¢€)/2°,p;) =1 for each 2 < s <t and each 1 < ¢ < k, we may apply
Theorem 13.6 to see that the number of solutions of congruence (%) for each s is

e, [(2=5, B5s) — (5, 2iz<i)). Then summing from s = 2 to s = ¢ and taking the
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sum over all possible k-tuples such that € = w, we find that the number of bases in
this case is

@) > iﬁ [(1;:—16’pi ; e;) _ (n; e,ps ; Ei)] .

éi=%l,e=ws=2i=1

Hence the total number of bases such that n is a strong Lucas pseudoprime is the
sum of these 3 sums: (1), (2) and (3), i.e. the formula given in the statement of the

theorem. This completes the proof.
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§14. Estimates of the number of bases for Euler Lucas

pseudoprimes

Recall that EL(n) is the number of bases a, 0 < a < 7, such that (n,a?—4)=1 and
n is an elpsp(a). Suppose n > 1 and n is odd. If n is prime, then EL(n) = n—2 and
so EL(n)/(n — 2) = 1. In this section we will give upper bounds for EL(n)/(n — 2).
We will show that if n is an odd composite integer, then EL(n)/(n — 2) < 1/2 and
if n is not a Lucas Carmichael, then FL(n)/(n — 2) < 1/3. Also we will show that
if n satisfies some further conditions, such as

(i) n is not squarefree and (n,6)=1,
or (ii) = is squarefree and n has a special prime divisor p such that p—1 fn+1,
p—1fn—-1,p+1fn+landp+1 fn—1,

or (iii) n is a product of two primes,

then FEL(n)/(n—2)<1/4.

Theorem 14.1. Suppose p is an odd prime and e > 1. Then FL(p*) =p — 2.

Proof. This was proved in Section 9 (Theorem 9.16).

Lemma 14.2. Suppose m; > 2 and k£ > 2. Then H{F:l(m,- ~-1)< (Hf-;l m,-) - 2.
Proof. Induction on k. Consider the first case k = 2.
H?=1(m,' — 1) = (m1 - 1)(m2 - 1) =mme—mi—mo+1

<mmo—2—24+1<mme—2= (H,?:lmi)—?.

Suppose the lemma holds for k¥ > 2. Consider the case &k + 1.
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I (i — 1) = (mig = 1) Iy (i — 1) < (magy — 1) (T, ma) — 2)
= Mg ITeg mi — 2mpg — T ma + 2 < TIEH my — 2(mpn — 1) < (Hfe o1 m,) 2.

Hence the inequality holds for k£ + 1. The lemma is proved.

Lemma 14.3. Suppose n > 1, n is odd and n=[]%, p¥. Then
EL(n) < (n—2)/(p7~" - pg™),
Hence if n is not squarefree, then EL(n)<(n — 2)/p; for some i.

Proof. Case k = 1. By Theorem 14.1, we have
EL(n) = EL(p°) =p—~2= (p° - 2p*") /p*"' < (p° — 2)[p*"".
Case k > 2. For each ¢, (1 <t < k), we have, for the GCD,
e;—1

n—€ p;— € pi+1 pi—1  pif —p§ pif—1
—_— ) < <—=1= = <
( 2 _’ 2 ) 1 2 1 2 2 2pet—1 -— 2p€,—1

Since k > 2 and p; > 2, we can apply Lemma 14.2, with m; = p{*, to get

(55279 -1 < 1= - Tel?

i=1 3—1 Ht"‘l 2 :e.—l
:—1( — 1) (Hz—l pz ) 2 — n—2
2k e1—1 .p’eck—l 2k er—1 p]?_l - 2kp§1-—1 v pzk-—l .

Therefore using the formula for £ L(n) that we derived in Theorem 13.7 and observing

that it is a sum over 2* terms, we get

k
n—e€ p; —¢€ k n—2 n—2

EL)= Y ( ,——-—)—1]<2 L o2

e1=i1,--~,ek=5:1i=Hl 2 2 2kpft. . ppkT T pp e ppt

This proves the lemma.

Lemma 14.4. Let a,b and ¢ be positive integers. Then the following hold.
i) (a,b)=1 = (a,¢)+(b,c)<c+1.

i) (e,d)=1,cfa,cfb = (a,c)+(bc)<c/2+2.

(iii) (a,b)=1, c fa, (a,¢)>1 = (a,b)=1, c }a, c fb.
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Proof. Since (a,c)|c, 4 [c= (a,c)A and 1 < A < ¢]. Since (b,¢)]c,
3B [c = (b,c)B and 1 < B < ¢]. Also (a,b) =1 implies ((a,c), (b,c)) =1. Hence
(b,¢)|c and c¢=(a,c)A = (b,c)|A. Then (b,c) < A. Now for the proof of (i),
1<A<c= (A-1)A<(A-1)c=> A’—A<Ac—c=> c+A?’< Act+A = c/A+A<c+1.
This proves (i) since (a,c) + (b,¢) = ¢/A + (b,c) < c/A + A.

For the proof of (ii), suppose further ¢ fa and ¢ Jb. Then c fa = (a,c)<c,
so c=(a,c)A<cA = 1<A = 2<A. Hence (a,c)=c/A<c/2.
Similarly we can show (b,c) < ¢/2. If (a,¢) < 2, then (a,c) + (b,c) < 2+¢/2.
Suppose (a,c) > 2. Then 24 < (a,c)A=c=2A < c. Since ¢ fa,2 < A. Hence
2<Aand24<c= (A-2)2A< (A-2)c = 2A%2—4A < Ac-2c
= 2c+2A2 < cA+4A = c+ A’ < cA/2+2A = c[A+A<Lc/2+2.
Since (b,c) < A, (a,¢) + (b,c) =c/A+ (b,c) <c/[A+ A< 0/2 + 2. This proves (ii).
For the proof of (iii), if ¢ | b, then (a,b) =1 = (a,c) =1. But (a,¢) >1. So c }b.
This shows (ii). '

Throughout the remainder of this section we will use the following definitions to

simplify the notation.

Definition 14.5. Suppose n = pips---prisodd, p==*1,6d=+land 1<:<k.

n— ,'—5
H(&”)]’l’:") = ( 9 u,pT) -1

Definition 14.6. Suppose n = p1ps-+-pg, nisodd, y =41 and 1 <! <k. Then

M o)=Y fl[(n—'r;-'-ez,p;;es)_l]’

€1=%1,. =%1i=1

Definition 14.7. Suppose n = p1ps--+pr, nisodd and 1 <! < k. Then
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S(l,n) = M(+1,l,n) + M(-1,1,n).
Let A(p)=(p—1)/2 and B(p)=(p+1)/2. Then for all n, A(p) and B(p) satisfy

(14.8) ("jl,i’-gi)—1g,4(p)—1 and (";:1,”—;—1)-153@)-1.

Suppose n = pyps - - pr is odd and k > 1. Then the following propositions hold.

(1) FEL(n)=M(1,k,n), (2) M(Q,1,p)=p—-2,

3) M(-1,1,p)=0, (4) S(,p)=p-2,

(8) M(7,1,n) = Teymstqmi Tiey H(ei, ver: €1, 00, 1),

(6) A(p)—1< (p—1)/2and B(p)-1< (p—-1)/2, (7) Alp)+B(p)—2<p—2.

8 p—1j}fn+l,p—1)fn—-1,p—1)fn+landp+1 }Jn—1,then we can
define A(p) = (p — 1)/4 and B(p) = (p + 1)/4 and (14.8) will still hold.

(9) If (p—-1)/2 fn—1and (p—1)/2 fn+1, or if (p+1)/2 fn—1 and (p+1)/2 J n+1,
then we can define A(p) and B(p) in such a way that (14.8) holds and also
A(p)+B(p)—2 < 2(p—2)/3 holds.

Proof. Proposition (1) is Theorem 13.7. Proposition (2) is Theorem 14.1 with e=1.
Proposition (3) holds since ((p — €)/2, (p + €)/2) = 1. Proposition (4) follows from
Definition 14.7 and (2) and (3). Proposition (5) follows from Definitions 14.5 and
14.6. Propositions (6), (7) and (8) are trivial. For the proof of (9), we consider
two cases. First we suppose that (p—1)/2 fn—1and (p—~1)/2 Jn+ 1. Then
((n—1)/2,(p—1)/2) < (p—1)/6 and ((n+1)/2,(p—1)/2) < (p—1)/6. Hence we have
(n£1)/2,(p—1)/2)—1 < (p—7)/6. In this case we can define A(p) = (p—1)/6 and
B(p) = (p+1)/2. Then clearly (14.8) holds. Secondly suppose (p+1)/2 J/n—1 and
(p+1)/2 [ ntl. Then ((n-1)/2, (pH)/2) < (pH)/6 and ((n+1)/2, (p+1)/2) < (p41)/6.
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Hence ((n%1)/2, (p+1)/2)—1 < (p—5)/6. In this case we can define A(p) = (p—1)/2
and B(p) = (p+1)/6. Again (14.8) holds. But in either case, we always have
A(p) + B(p)—2 < 2(p — 2)/3. This completes the proof of (9).
Lemma 14.9. M(7’ 1’ n) = H(l’ Y, P, n) + H(_la %P1, n)

n—q€ pp—€6
Proof. M(v,1,n) = 3 [( 7 3 ) - 1]

=%l
_ [(n;’)’,ﬁ; 1)_1]_*_[("';‘7,2%"_1)_1] = H(1,7,p1,n)+H(~1,—,p1,7n).

If A(p) and B(p) satisfy (14.8), then for p = %1 the following inequalities hold.

(14.10) H(1,p,pin) < A(:)—1,  H(-1,p,p;n) < B(p;) — 1.
(14'11) H(]-’,J"pi, n’) + H(l’ —H,Pi,n) S (pi - 3)/21

(14111) H(—'la K5 Diy n) + H(—'l) —H, Pi, n) < (pi - 1)/2»

Proof. The first two inequalities are equivalent to (14.8). For the proof of (14.11),

since ((n—p)/2, (n+p)/2)=1, we can apply Lemma 14.4 (i) to get

H(l,/",Pi,n)-l-H(l,—u,p,-,n)=(—-é-ﬁ,pz )_1+( nte p-l ) .

_(n—u px-—l) (n+u pi—l) < Pi=1 3
’(2’2+2’222+12‘2‘

The proof of (14.11') is similar to the proof of (14.11).

Lemma 14.13. Suppose n = p; - - - p; is odd, squarefree and A(p), B(p) are arbitrary
functions satisfying (14.8). Then for v = %1, 0 <! < k and 2 < k, we have

M(7al + lan) S (A(pl+1) - I)M(71 l? n) + (B(pl+1) - l)M(—77 l,n)

Proof. Using (5) and inequalities (14.10) we have
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141
M(’)’,l-i-l,?’l) = Z HH(ei’7€1"’€I€I+lapi1n)

1=kl =%1 i=1

!
= >, H(,vye:--a,pm,n) [] H(e, ver - €1, pi, n) (e =1)
@ =%1;4==%1 i=1

i
+ Y H(-l,—ve---a,pu,n) [[ H(e:,—ver €, pi,n)  (ewa = ~1)

€1=%1,ee =1 i=1
!
< Y (Alw)-1) ]I H(e,ver - &, pi,n)
e1==%1;¢==%1 i=1

+ Z (B(PH- )—I)ILIH(E” —")’61"'51,p£,n)

€1 =:i:1,°“,€1=ﬂ:1 =1

1
= (Alpwm)—-1) >, [[H(e,ve - a,pi,n)
g==%l;==%1i=1

1
+(B(p1+1)—1) E HH(eia_')’el"'elspi’n)
e=kl;e=%1i=1

= (A(pH-l) - l)M(’Ya l) n) + (B(pH-I) - I)M(—’)’, l1n)

This proves the lemma.

Lemma 14.14. Suppose n = p;---p; is odd. Then S(1,n) <p; —2.
Proof. By Lemma 14.9 and inequalities (14.11) and (14.11"), we have

S(l,n) = M(1,1,n) + M(-1,1,n)
=[H(1,1,p1,n)+H(-L,-1,p1,n) | + [ H(, -1, p1,n)+H(-1,1,p1,n) ]
=[H(1,1,p,n)+H(,-1,p1,n) 1+ [ H(1,1,p1,n)+H(-1,-1,p;,7n) ]
<S@E-3)2+(p1—1)/2=p -2

Lemma 14.15. Suppose n is odd, n = p;---px and 1 <! < k. Suppose also A(p)
and B(p) satisfy (14.8). Then

S(+1,n) < S(l,n) (A(p1+1) + B(pr41) — 2).
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Proof. By Definition 14.7 and Lemma 14.13,
S(l+1,n)=MQ1,l1+1,n)+M(-1,l+1,n)

< (Alpr41) -1)M (1,1, n) +(B(pry1) 1) M(-1,1,n)

+(A(Pi+1)—1)M (1,1, n)+(B(p141) = 1) M (1,1, n)

=(A(pr1) -1 [ M(L L, n)+ M(, L, n) |4+ (B(pi1) —1) [ M(1,1,n)+ M (-1, 1,n) ]

=(A(pr+1) —1)S(, ) + (B(pr41) —-1)S (L, n) = S, n)(A(pr+1) + B(pr41) — 2).

This proves the lemma.

Lemma 14.16. Suppose n odd, n = p;---p; (primes in any order) and 1 <! < k.

Then S(l,n) < pip2---pr.
Proof. By induction on . If I = 1, then the lemma holds by Lemma 14.14,
S(1,n) < p1 — 2 < p;. The induction step follows from Lemma 14.15 and (7),

Sl+1,n) <S{,n)(pr1—2) < S, n)pwa < P+ Prya-

This proves the lemma.

Lemma 14.17. Suppose n is odd and n = p; - - - px (primes in any order) and 2 < k.
Then '

BL(r) < (25 1) S(k—1,n).

Proof. By (1), (6) and Lemma 14.13,

EL(n) = M(1,k,n) < (A(px)—1)M(1,k — 1,n) + (B(pr) —1)M(-1,k — 1,n)
< (B 1) M,k =1,m)+ (2 1) M(=1,k—1,n)
- (1.?’“_2‘_1) ML,k = 1,m) + M(~1,E—1,n)] = (2 1) S(k —1,n).

This completes the proof of the lemma.
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Lemma 14.18. Suppose n = p;---pg, 2 < k, n is odd and n has a special prime
divisor p;|n such that p;—1 fn+1,p;—1 fn—1,p;+1 fn+landp;+1 fn—1.

then EL(n) < (”T"3> S(k—1,n).

Proof. Without loss of generality we can assume that p; is a such special prime
divisor. Then by (8), (14.8) still holds for A(px) = (pr—1)/4 and B(pi) = (pr+1)/4.
Hence by (1) and Lemma 14.13

EL(n)=M(1,k,n)<(A(px)-1)M(1,k —1,n) + (B(px) - 1)M(~1,k — 1,n)
< (p’“;"r’) M@Q,k—1,n)+ (p"4—3) M(-1,k—1,n)

<(BF 3) (M1, k= 1,7) + M(=Lk = 1,n)) = (2 3) S(k—1,n).

The lemma is proved.

Recall the definition that » is a Lucas Carmichael means that for all primes p, if
p|n, then (p—1)/2|n+1and (p+1)/2|n+1. Hence that n is not a Lucas Carmichael
means there exists p such that p|n and either (p—1)/2 fn—1 and (p—1)/2 [fn+1,
or (p+1)/2 fn—1and (p+1)/2 Jn+ 1. We now prove the following lemma.

Lemma 14.19. Suppose n = p;po- - -pi is odd, squarefree, 3 < k and n is not Lucas

Carmichael. Then

EL(n) < 2= 2”; ~Ph-2

Proof. Suppose n = pips-«-pr where 3 < k. Without loss of generality we can
suppose px—1 = p is the prime divisor such that
either (p—1)/2 fn—1and (p—1)/2 fn+1
or (p+1)/2)fn—1and (p+1)/2 fn+1.

Since 3 < k and so 1 < k—2, we can apply Lemma 14.15, with | = k-2, to get
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S(k - 1’ n) < [A(pk—l) + B(pk—l) - 2]S(k - 2, n)'
Hence by (9) we can suppose A(pi-1) + B(Pk-1)—2 < 2(pr—1 — 2)/3. Therefore
ﬂk—LMggQ%%jiﬂk—zm.

Using Lemma 14.17, since 3 < k we have

EL@)<(“;‘)sw-1m)g(”;4)2@“§”msw-aﬂ&
Then by Lemma 14.16, it follows that

~1\ 2(pra—2 —2  p—2p,..-
EL(n) < (pk2 ) (pk‘—31 )Pl' <o < (&cp%__) P1 Pra= p13 pk-2.

This proves the lemma.

Lemma 14.20. Suppose n = p; -+ pk, 2 < k, n is odd and squarefree. Then

EL(n) < n _plé“pk—l.

Proof. By Lemmas 14.16 and 14.17 with l = k — 1, we have

-1 —1 e D1 D
EL(n)S (pkz )S(k—l,n)((pkz )P1P2°'°pk_1= p12 Dk 1'

This proves the lemma.

Lemma 14.21. Suppose n = pyps - px, 2 < k and n has a special prime divisor p;,
1<i<k,suchthatp;—1 fn+1,p;—1fn—1,p;+1 fn+landp;—1 fn—1.
Then

n —3p1P2- - Pr—1

EL
(n) < 1
Proof. Without loss of generality we can assume that p; is the special prime divisor

of n. Since 2 < k we can use Lemma 14.16 with ! = k — 1 and Lemma 14.18 to get

EL(TL) S (pk;'3) S(k fd 1,n) < (pk4-3) DPipP2° - Pr-1= n—3p1112“.pk_1.

This proves the lemma.
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Lemma 14.22. Suppose p and ¢ are odd primes and p < q. Then

(i) g¢-1/fpg—-1; (i) ¢+1fpg-1;

(iii) ¢+1 fpg+1; (iv) g—1|pg+1 <= p+2=g.

Proof. (). pg—1=p@g—-1)+p—1=p—-1%#0(modgqg—1).
(ii). pg—1=p(g+1)—p—1=-p—1=—(p+1)Z0 (modq+1).
(). pg+l=plg+1l)—p+1=—p+1=—(p—1)#0(mod g+1).
(iv), pg+1=pg—1)+p+1=p+1(modqg—1). Hence

pg+1=0(modg—-1) <= p+l=qgq-1<=p+2=q.

Lemma 14.23. Suppose p, q are odd primes and p + 2 = ¢q. Then
EL(pq)/(pq —2) < 1/4.

Proof. Suppose g =p+2. Hencep+1=qg—1land p+3=q+1.
pg—1_ pp+2)—1_p*+2p—1 (p+1)?

Since 21 = ) 5 _1_ 12 =" -1,
o (B24241) o (A1)
Since :oqz—l=zo(p+22)—1=1r>2+2192—3+2=(19-1)(1r»+3)+1
b (B0 (B89 (1 02
Since Pq+1=p(p+2)+1=p2+2p—3+4=(p_1)(p+3)+2,
2 2 2 2
we have (q;1p21)<2 d(qu’H’IL';i)=(Pq;‘1 q-;l)<2
Therefore
s = [(250) - (2 250 -
+ [ 5) [ ) -
+ () )
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(52 - (o 459

< (1-1D(I-1)+1-1D1-1)+2-1)2- 1)+(31;i -~ )(9-:—1 — 1)

—1.9-3_pa—q-3p+7 pg—2
2 2 4 4

= 0+0+1+72

The last inequality holds since 9 < ¢ + 3p. This completes the proof.

Theorem 14.24. Suppose n = p1ps-- P, 2 < k and n has a special prime divisor

plnsuch that p—1 fn+1,p—1fn—1,p+1 fn+landp+1 fn~1. Then

EL(n)
n—2

< 1
1
Proof. This is by Lemma 14.21, EL(n) < (n — 3p;++ -pg—1)/4 < (n — 2) /4.

Theorem 14.25. Suppose n = pq and p, ¢ are distinct odd primes. Then
EL 1
™ 1

n—2 4
Proof. Suppose n = pg and p < ¢q. Consider two cases. Case 1. ¢ = p+ 2. The
theorem then follows from Lemma 14.23. Case 2. ¢ # p+ 2. Then ¢ > p+ 2. Then
by Lemma 14.22 g is a special prime divisor of n,i.e. g—~1 fn+1,9—1 fn—1,
g+1 fn+1land ¢g+1 Jn—1. Hence by Theorem 14.24, EL(n)/(n — 2) < 1/4.

This completes the proof.

Theorem 14.26. If n > 1, n is odd and = is not squarefree, then

EL(n) < 1

n—-2 — 3

Proof. Suppose n is odd and not squarefree. Then there exists an odd prime p such
that p? | n. Hence by Lemma 14.3, we have EL(n) < (n —2)/p < (n —2)/3 so that
EL(n)/(n —2) < 1/3. This proves the theorem.
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Theorem 14.27. If n > 1, (n,6)=1 and n is not squarefree, then

EL(n) < 1
n—2

— 5 .

Proof. Suppose (n,6)=1 and n is not squarefree. Then there exists an odd prime p,
p > 5 such that p?|n. Hence by Lemma 14.3, we have EL(n) < (n—2)/p < (n—2)/5
so that EL(n)/(n — 2) < 1/5. This proves the theorem.

Theorem 14.28. If n > 1, n is odd, composite and n is not Lucas Carmichael, then

EL(n) < 1

(14.28) - 5

Proof. By Theorem 14.26, (14.28) holds for the case n is not squarefree. Hence
we can suppose n is squarefree. If n is a product of two primes, then (14.28) holds
by Theorem 14.25. And (14.28) also holds for the case that n has at least 3 prime

divisors. This is from Lemma 14.19. This proves the theorem for all cases.

Theorem 14.29. Suppose n > 1, n is odd and composite. Then
EL 1
m 1

n—2 2
Proof. If n is not squarefree, then by Theorem 14.26 EL(n)/(n—2) <1/3. Hence
EL(n)/(n—2) <1/2. If n is squarefree, say n = p;---pi, then 2 < k so by Lemma,
14.20 EL(n) < (n—p;: * -pi1)/2<(n—2) /2. Hence EL(n)/(n—2)<1/2. The theorem

is proved.

The number n = 1,930,499 with EL(n)/(n — 2) ~ 0.2645 shows that the hy-
potheses in Theorems 14.24 and 14.25 are necessary. Thé example
n = 582,920, 080, 863, 121 (strong Lucas Carmichael +) with EL(n)/(n—2) = 0.4289

shows that 1/4 or even 1/3 is not an upper bound of EL(n)/(n —2) for all composite



170

integers n. Also the number n = 39203 = 197:199 with EL(n)/(n—2) ~ 0.245 shows

that only a small improvement is possible in Theorem 14.25.

From Corollary 7.23, we know that for any odd integer n > 1, n is elpsp(a) if

and only if n is elpsp(n — a). Hence a consequence of Theorem 14.29 is

Theorem 14.30. Suppose n > 1, (n,6) =1 and ¢ = +1 and is such that 4|n —i.
Then 7 is prime if and only if

Va[3<a<(n—1i)/4and (n,a®—4)=1 = niselpsp(a)].
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Conclusion

In this thesis we have studied properties of Diophantine equations and Lucas

sequences, especially the sequences of solutions of the Pell equation
2?2 — (a® — 4)y? = 4.

By studying these sequences, we believe we have obtained some interesting results.
Some of these results may have applications to the study of prime numbers, to
primality testing and to Diophantine representation of r.e. sets such as the set of
primes, also to exponential Diophantine representation of r.e. sets.

This whole subject is a very rich one. Below we list some unsolved problems and

some conjectures which we think are worth further study.

(1) In §11 we defined some types of Lucas Carmichaels. (Definitions 11.1 - 11.8.5
A natural problem is: for each type of Lucas Carmichael, are there infinitely many
of them?

Since all odd primes are two sided strong Lucas Carmichaels, the question, for
example for the two sided strong Lucas Carmichael, should be: are there infinitely
many composite ones? Methods of Alford, Granville and Pomerance [1] probably

extended to include these kinds of numbers.

(2) Is the following statement true?
Va[n is an elpsp(a) = nis atpsp(a)] = n is a prime power.
we don’t know but we believe it to be true. In Theorem 9.34 we proved the converse.

See also Theorem 9.33 where squarefree has been characterized in this way.

(3) Is the following statement equivalent to the primality of n?

Va[nis a tpsp(a) <& nis an elpsp(a)].
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(4) Does it hold that n is an slzpsp(a) implies n is a tpsp(a) and hence implies n

is a sltpsp(a)? We don’t know it now but we believe it to be true.

(6) Let SLT(n) denote the number of incongruent bases a mod n to which n is a
sltpsp(a). We conjecture the following inequality holds if » > 25 and n is an odd
composite number:

n—2

SLT(n) < 5

(6) Let SLX(n) denote the number of incongruent bases a mod n to which n is a
slzpsp(a). We conjecture the following inequality holds if n > 25 and n is an odd
composite number:

SLX(n) < 2 = 2
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