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Abstract:
A method is described for quickly detecting the
similarity between planar shapes. By normaliz-
ing the distance from the boundary to the geo-
metric center of an object, a 2D shape can be
represented as a 2π periodic function which is
invariant to both translation and scaling. In this
signature space, a rotation of the original shape
is a translation; thus, the similarity measurement
is the minimum value over the translation from 0
to 2π. Experimental results are included for the
comparison of a group of 24 shapes.
Introduction

The problem of characterizing the shape
of an object is key to pattern recognition.
Shape is not a single property, but a large fami-
ly of properties, and often many such proper-
ties are applied to a recognition task. Most
often, we use shape information to distinguish
one of a set of possible shapes (classification),
and it is this problem that will be addressed.
Most shape analysis and recognition methods
are based on regions, local properties of the
skeleton or the boundary (contour) of the ob-
ject [FU82].

Kupeev and Wolfson [KW94] give an al-
gorithm for the detection of similarity among a
certain class of planar shapes. These shapes are
represented by closed curves without self-inter-
sections. Such shapes could, for example, de-
scribe the outline of a 2D object or the contour
of the visible part of a 3D object. Our work
suggests the use of the same set of 2D contours
for recognition.

Traditionally, recognition methods can
be divided into three classes. The first class
uses global features of the shape, e.g. perimeter
and area. Statistical pattern recognition tech-

niques are used in this case for matching
[PARK94]. The second class uses local fea-
tures, generally in terms of line and curve seg-
ments defining the boundary. These features
are organized in a highly structured manner,
such as a sequence of strings with a grammar,
and matching is performed by parsing. This is
referred to as syntactic recognition [FU82].
The third type also uses local and relational
features which are organized in a graph
[KUPE94], where graph searching algorithms
are used for matching. The graph homomor-
phism algorithm is NP-complete, rendering it
intractable for large graphs.

A similarity measure is a number that in-
dicates how near two shapes are to being the
same. It should have a known maximum,
which indicates a perfect match, and minimum.
An ideal similarity measure would be scale,
translation, and rotation independent, and
would be computed by a digitally continuous
function; that is, a single pixel change in the
target shape should yield a small, consistent
change in the similarity measure.

Signature of a Contour
A planar shape has three basic parame-

ters: position, orientation and scale. Two other-
wise identical shapes can have different
parameters, and so these cannot be used for
recognition purposes; indeed, we wish to trans-
form the objects so that they are independent of
these three parameters.

A signature is a functional representation
of a contour, which may be generated in vari-
ous ways [GONZ92; HOLT93; OROU86;
TCHO92]. Here we will use the distance-ver-
sus-angle signature which plots the distance
from the geometric center to the boundary as a
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function of angle. Figure 1 illustrates this using
two simple shapes and their signatures. This
signature cannot always be described as a 1D
function, as seen in Figure 1a, in where one an-
gle θ may correspond with several different r
values. Therefore, a 2D function s(θ, r) repre-
sents the signature, where s can only be the val-
ue of 0 or 1. Hence, s(θ, r) can be considered as
a bi-level image.

The distance-versus-angle signature is
the result of a transformation from Cartesian to
the polar coordinate system. Using the geomet-
ric center of the shape as the origin guarantees
that such a transformation is invariant to trans-
lation. In addition, we normalize with respect
to the distance, so that the transformation is
also scale invariant. However, it is still depen-
dent on the orientation of the original shape.

Gonzalez and Woods [GONZ92] suggest
two ways to select the starting point for gener-
ating a signature invariant to rotation. One way
is to choose the point farthest from the cen-
troid. The other is to use the point on the prin-
cipal eigen-axis farthest from the centroid,
which requires more computation. In our case,
however, neither of above methods work well.
In general for either method, when two shapes
are not very similar the distance between their
signatures rarely reaches the minimum value,
even though they are created from either of the
above starting points. What is more, there is no
simple trick to finding such an extreme value.
Therefore, we need to rotate one of the shapes

from 0 to 2π in order to find the angle for
which the signature is a minimum. Fortunately,
a rotation in the Cartesian coordinate system is
a translation along theθ direction in the polar
coordinate system, so a rotation matrix need
not be computed. Since all signatures are the
2π periodic functions, the comparisons are
made within one period.

The distance-versus-angle signature is
also sensitive to the mirror operation (reflec-
tion) of a shape. This operation is not equiva-
lent to a any rotation. Kupeev and Wolfson
[KUPE94] did not examine such a situation al-
though their attribute graph is also sensitive to
it. There are two kinds of mirror operations,
horizontal and vertical. The vertical mirror op-
eration is equivalent to a horizontal one plus a
rotation ofπ. Therefore, we only need to con-
sider horizontal reflection. Obviously, the sig-
nature of a horizontally reflected shape is the
reflection of its original signature because re-
flection can be carried out by substitutingθ
with -θ (Figure 2). And so, the comparisons
have to go through one period of the reflected
signature as well. In fact, there is also a dis-
placement along theθ direction in addition to
changing the sign ofθ. Since the signature is a
periodic function and the entire period is con-
sidered, this displacement can be ignored.

The basic signature calculation can be
carried out in parallel, with each point on the
boundary being an independent result. In prac-
tice points would be grouped to provide suffi-
cient computation in each process to make up
for overhead. In addition, each translation of
the signature (IE rotation of the object) can
also be computed in parallel, giving a large po-
tential real time advantage.

Figure 1 - Two shapes (top) and their distance-

(a) (b)

VS-angle signatures (bottom).

(c) (d)
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Figure 2 - Reflection of the right shape
from Figure 1, and its signature.
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Distance between Signatures
As mentioned above, a signature is easier

to handle than its original shape, and the com-
parison of two shapes can be executed using
only the signatures. In our case, we compare
two shapes by measuring the difference of their
signatures, and to do this we first define the
area of a signature.

Since our shapes are closed curves with-
out holes, their signatures can only belong to
either of the following two cases: the signature
is a closed curve as, in Figure 4a, or the signa-
ture is an open curve, as in Figure 4b. The sig-
nature in Figure 3 is also a closed curve case.
Here the curve means a sequence of points
rather than a continuous line.

For the closed curve, we define the area
of the signature as the area of that closed re-
gion; for the unclosed curve, the area is the
area of the region between the curve and theθ
axis from 0 to 2π as Figure 4 shows.

If we know the sequence of the points,
we can then use an approach such as the chain
code area (from [PARK94]) to find the area. It
is first necessary to determine the sequence of
the points in the signature, because the distanc-
es between two consecutive points are not uni-
form as they are in the original. Since the
points in the original shape are connected, so

we can first use the chain code [FREE61;
PARK94] to find the sequence of points on the
original shape. Then, since there is a one to one
correspondence between a shape and its signa-
ture, we can obtain the same sequence of points
in a signature. There are also two directions of
point sequences, one giving a positive area and
one giving a negative area. To compare two
shapes, they must both be scanned in the same
direction, or we will be comparing one shape
with a reflection of the other. Now that we
know the sequence of the points in signature,
and since the signature is also a bilevel image
s(θ, r), we can fill that area with a known value,
say S = 1.

Next, we can define thedistance between
two signatures. The distance is the area after
performing an XOR operation on the two sig-
nature areas. We can say the distance is the
number of points which only belong to one of
the signature’s area (see Figure 5). Finally, the
distance between two shapes is the minimum
the distance between one signature and the oth-
er signature which shifts from 0 to 2π.

Algorithm
From the above discussion, we can see

that the algorithm should include four parts: in-
put image, create signature, fill the area, and
perform XOR operation. The original signature
s(θ, r) is in the range of [0,2π) x [0,1]. Since
s(θ, r) will be treated as a image, we should ex-
pand its original range to a proper size. There-
fore we need two valuesQ andR (scaled size)
to expandθ and r respectively. Then the size of
the signature changes to 2π Q*R. We also need
another constantN, the total number of times
we shift a signature in one period:N should be
called thesampling density. So the value 2π /N

r

Figure 3 - A form of closed curve signature,
rotated so that is has been cut.

Figure 4 - Closed curve area (left) and unclosed
 curve area (right).

Figure 5 - XOR of the two signatures in
Figure 4.
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is the step for each shifting. The algorithm pro-
ceeds as follows:

• Input 2 shapes (contours)

• For each shape

[1] Find the centroid and the starting
point for the chain code

[2] Use the chain code to find the se-
quence of the points

[3] Create the signature and fill the
area Si(θ,r)

• Find the minimum value d = mini(di), where
di= min(S1(θ,r) XOR S2(θ+2πi/N, r), S1(-θ,
r) XOR S2(θ+2πi/N, r)

• Output d and related signatures (optional).

Suppose the input shapes are within the
image of size m x n; then the number of points
on the contour is less than mn. Step 2.(a) and
2.(b) require O(nm) time units. The computa-
tion steps for step 2.(c) are O(nmQR). Step 3
needs 2N times of XOR operations. Each oper-
ation costs O(QR) time. Therefore the com-
plexity of the algorithm is polynomial, unlike
the structure recognition or relational graph
methods which use NP-complete algorithms.

Experimental Results
The above algorithm has been imple-

mented, and was tested using the same group
of 24 shapes as in [KUPE94]. There are 12
pairs of perceptually similar shapes in the data-
base (see Figure 6). For each shape all the 24
distances (including to itself) have been evalu-
ated. The experiment was conducted with dif-
ferent values ofN (sampling density). The
values used wereN=12,N=24, andN=32. Oth-
er parameters areQ=40 andR=255; the size of
the input images is less than 300 x 300. Table 1
gives the results ofN=24. Table 2 gives the re-
sults ofN=12, and Table 3 isN=32.

The values in Table 1 are distances be-
tween shapes: the smaller the value is, the clos-
er the two shapes are. It is a trivial observation
that a shape is closest to itself, having a dis-
tance of 0. Most values in the table seem rea-
sonable in the way that they indicate
similarities between objects.

For the different values ofN, we have
different distance values in the tables. For
N=12 (see Table 2), most of the values are also

Figure 6 - The 24 experimental patterns
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plausible, but the results seem too coarse. The
results of N=32 are very close to those for
N=24, indicating that usingN=24 is enough for
this group of shapes. The computational time
for calculating those 24 x 24 tables in the cases
of N=12,N=24 andN=32 are 493 seconds, 689
seconds (1.2 seconds each) and 841 seconds re-
spectively on an SGI Indigo2. The code has not
been optimized. The only time available for the
Kupeev and Wolfson scheme is 878 seconds
for the N=32 table on a Sun Sparc II, in which
one of the patterns is misclassified.

Summary
We have presented a simple algorithm

for the recognition of planar shapes. The algo-
rithm uses signatures for comparisons, the
measurement used is area. Since there is the
only one feature, matching process is fast, cer-
tainly faster than the scheme it was compared
against. While the application here was shapes
with no holes, holes themselves have a shape,
and signature matching can be extended to deal
with such objects. We are experimenting with
this at the moment.

It is also possible to combine our method
with other shape matching algorithms, which is
more robust and accurate than using only one
method. The specific application of the multi-
ple algorithm shape matching system is the
classification of respirogram curves (essential-
ly a simple data graph) for waste water treat-
ment applications[PARK97]. The fact that
signature matching can largely be parallelized
lends speed to the method is real applications.

References
[FU82]Fu, K. S. Syntactic Pattern Recognition

and Applications, Prentice-Hall, 1982.
[FREE61] Freeman, H and Shapira, R., On The

Encoding Of Arbitrary Geometric Configura-
tions, IEEE Transactions on Electronic Com-
puters, Vol. EC-10, 1961. Pp. 260-268.

[GONZ92] Gonzales, R. C., and Woods, R. E.,
Digital Image Processing, Addison Wesley,
1992.

[HOLT93] Holt, R. J. and Netravali, A. N., Us-
ing Line Correspondences In Invariant Signa-
tures For Curve Recognition, Image and Vision
Computing, Vol. 11, No. 7, Sept. 1993. Pp.
440-446.

[KUPE94] Kupeev, K. Y. and Wolfson, H. J., On
Shape Similarity, ICPR, October, 1994. Pp.
227-231.

[OROU86] O’Rourke, J., The Signature Of A
Plane Curve, SIAM J. Comput, Vol. 15, No. 1,
Feb 1986. Pp. 34-51]

[PARK94] Parker, J. R., Practical Computer Vi-
sion Using C, John Wiley & Sons, 1994.

[PARK97] Parker, J. R. , Histogram Methods
For Scientific Curve Classification, SPIE Vi-
sion Geometry VI, San Diego, July 28-29,
1997.

[TCHO92] Tchoukanov, I., Safee-Rad, R.,
Smith, K., and Benhabib, B., The Angle Of
Sight Signature For Two Dimensional Shape
Analysis Of Manufactured Objects, Pattern
Recognition, Vol. 25, No. 11, 1992. Pp. 1289-
1305.

Table 2: N = 12

       5star1 5star2 6star1 6star2     a1
5star1  00000   1955   9083   9559  15356
5star2  08853      0   9188  10370  15647
6star1  10085   9188      0   6086  14855
6star2  10431   9726   5864      0  14291
    a1  15356  15733  14209  14775      0

Table 1: N = 24

       5star1 5star2 6star1 6star2     a1
5star1      0   1955   9083   9559  15028
5star2   1359      0   9188   9326  15191
6star1   8953   9026      0   4608  14299
6star2  10067   9726   5864      0  14265
    a1  15028  15191  14209  14265      0

Table 3: N = 32

      5star1 5star2 6star1 6star2     a1
5star1      0   2723   8993   9503  14596
5star2   1781      0   9188   9326  14617
6star1   8869   9188      0   4608  13971
6star2   9559   9108   3292      0  14265
    a1  14596  14617  13971  14185      0

Tables 1-3: Portions of the complete distance tables for N=24,12, and 32.
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