Please use this identifier to cite or link to this item: http://hdl.handle.net/1880/51132
Title: Nitric oxide chemistry effects in hypersonic boundary layers
Authors: Arisman, Chris
Johansen, Craig
Issue Date: 2015
Publisher: AIAA Journal
Abstract: Simulations of gas seeding into a hypersonic boundary-layer flow were performed using OpenFOAM® to investigate and quantify errors associated with quantitative planar laser-induced fluorescence thermometry and velocimetry techniques. A modified version of the compressible rhoCentralFoam solver was used to simulate multicomponent chemically reactive flows. Simulations replicated conditions used in NASA Langley Research Center’s 31 in. Mach 10 facility with a wedge model oriented at various angles of attack with respect to the freestream flow in the test section. Adverse chemistry effects from the reaction of nitric oxide with molecular oxygen were investigated at various facility running conditions. Specifically, the effect of heat release on velocity and temperature profiles that would be obtained using the nonintrusive laser measurement techniques was assessed. The effect of any potential adverse chemistry reactions was found to be negligible.
URI: http://hdl.handle.net/1880/51132
Appears in Collections:Johansen, Craig

Files in This Item:
File Description SizeFormat 
Arisman_AIAA_NO Chemistry_Final_Reprint.pdfMain Article1.42 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.