Non-linear finite element analysis of face-shell bedded hollow concrete masonry subject to concentrated loads

dc.contributor.advisorShrive, Nigel G.
dc.contributor.authorSayed-Ahmed, Ezzel Din Yazeed
dc.date.accessioned2005-07-29T23:11:25Z
dc.date.available2005-07-29T23:11:25Z
dc.date.issued1994
dc.descriptionBibliography: p. 311-318.en
dc.description.abstractFailure of face-shell bedded hollow masonry is completely different from that of solid masonry. Despite that fact, most codes of practice use the same design rules for both types of masonry. In order to develop new design rules for hollow masonry, numerical analyses based on a suitable model can be used to avoid an expensive and time consuming experimental programme. In this study, a non-linear finite element model is developed for face-shell bedded hollow masonry. Geometric and material non-linearities as well as progressive cracking are considered in the model. The behaviour of face-shell bedded hollow masonry is discussed in detail together with the merits and shortcomings of previous numerical models available for this kind of masonry. The current code provisions available for design against concentrated loads acting on hollow masonry are also introduced. The derivation of the proposed non-linear elasto-plastic finite element model is introduced. The material responses of both concrete blocks and mortar joints are modelled by the theory of plasticity using forms of yield surfaces written in terms of the stress invariants. Associated flow and isotropic hardening are used to define the plastic strain and the expansion of these surfaces. Cracking is modelled in two ways: the discrete cracking approach using interface elements to model web cracking and the smeared cracking approach to model in-plane face-shell/mortar joint cracking. The model behaviour is verified by comparing results to known experimental behaviour. First, numerical results are verified against the experimental behaviour of 3-block high hollow prisms. Then, results from simulated tests of seven-course high wallettes subject to concentrated loads are used for further verification. In the latter case, the substructuring technique is introduced to reduce the computational requirements of the finite element analyses. The behaviour and failure of hollow masonry are also discussed in detail from the first application of the load to final failure. The model is then used to analyze larger size walls which are subject to concentrated loads: the effects ofloading plate size and wall dimensions on the behaviour of the wall are discussed.
dc.format.extentxxv, 338 leaves : ill. ; 30 cm.en
dc.identifier.citationSayed-Ahmed, E. D. (1994). Non-linear finite element analysis of face-shell bedded hollow concrete masonry subject to concentrated loads (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/15548en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/15548
dc.identifier.isbn0612031241en
dc.identifier.lccTA 681 S28 1994en
dc.identifier.urihttp://hdl.handle.net/1880/30521
dc.language.isoeng
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subject.lccTA 681 S28 1994en
dc.subject.lcshConcrete masonry - Materials - Testing
dc.subject.lcshMaterials - Fatigue
dc.subject.lcshStrains and stresses
dc.subject.lcshFinite element method
dc.titleNon-linear finite element analysis of face-shell bedded hollow concrete masonry subject to concentrated loads
dc.typedoctoral thesis
thesis.degree.disciplineCivil Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameDoctor of Philosophy (PhD)
ucalgary.item.requestcopytrue
ucalgary.thesis.notesoffsiteen
ucalgary.thesis.uarcreleaseyen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_Sayed_Ahmed_1995.pdf
Size:
147.98 MB
Format:
Adobe Portable Document Format
Description:
Thesis
Collections