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Abstract 

In September 2009 the City of Calgary Council approved Plan It Calgary, which proposes 

policies that focus on the development of resilient neighborhoods through the intensification and 

diversification of urban activities around transit stations and routes. More intensive development 

and mixed land use encourage non-motorized trips and reinforce comfortable, safe and walkable 

streets. The development of high-density, mixed-use and transit- and pedestrian-oriented 

communities has the potential to generate trips with shorter destinations, which are expected to 

result in a higher share of active travel modes, such as biking and walking. Thus, there is a 

growing need to estimate the impact of land-use development scenarios and transportation 

policies on bicycle and pedestrian demand to predict future non-motorized trip volumes and 

adequately design the related infrastructure.   

This study calibrates multiple linear and Poisson regression models to estimate non-

motorized travel demand based on GIS, transportation data and road characteristics. The 

empirical models that have been developed in this research can be used to assess the impacts of 

urban design and built environments, such as developing high-density and mix-land-use areas, 

and building complete streets in the middle ring communities of the City of Calgary in 

influencing the demand for active travel modes. The developed models show the benefits of 

improved pedestrian infrastructure, such as improved network connectivity and increases in the 

length of pedestrian pathways, as well as the integration of transit and walking modes and transit 

and bicycle modes in encouraging more non-motorized travel demand. The method employed 

herein is a straightforward statistical analysis method, and the needed data are relatively easy to 

access.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

In recent years, the overreliance on motorized transport modes such as private cars has brought 

about various side effects such as air pollution, traffic congestion, auto-oriented lifestyles, and 

safety problems especially for non-motorized modes. Different strategies have been implemented 

to overcome these problems including enhanced pedestrian and bicycle friendly designs, land use 

planning, Travel Demand Management (TDM), Transportation System Management (TSM), and 

improved transit systems (Kim, 2005). 

Transportation planners and policy makers have become increasingly interested in 

improving non-motorized infrastructure and encouraging cycling and walking as active and eco-

friendly means of transportation. The intent is the provision of safer roads and promotion of 

healthier lifestyles through the shaping of urban forms and innovative transportation solutions 

that bring about shorter destinations and walkable, pedestrian friendly designs.  

In September 2009, the City of Calgary Council approved Plan It Calgary, which is an 

integrated Municipal Development Plan (MDP) and Calgary Transportation Plan (CTP). Plan It 

Calgary proposes policies that focus on the development of resilient neighborhoods through the 

intensification and diversification of urban activities around transit stations and routes. More 

intensive development and mixed land use encourage non-motorized trips and reinforce 

comfortable, safe and walkable streets (Plan It Calgary, 2009).  

In a recent effort to promote sustainable communities, the PlanYourPlace (PYP) project, 

sponsored by GEOIDE (Geomatics for Informed Decisions) and supported by the Neptis 

Foundation, adopts a user-centered design approach that brings together planning tools founded 
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on practical, academically sound principles that are designed to educate and stimulate interest in 

the development of future communities within the middle ring neighborhoods in the City of 

Calgary. The city’s “middle ring” is comprised of neighbourhoods that were developed between 

the 1950s and 1970s. The dominant pattern of each of these neighbourhoods consists of a warped 

grid and crescent blocks organised around a central school and recreation field(s). Commercial 

development within the neighbourhood unit typically takes the form of auto-oriented strip malls 

with a large grocery store as an anchor store and large surface parking lots. In general, the PYP 

project’s goal is to develop a process and guidelines that assist the City in transitioning these 

“middle ring” neighbourhoods into a sustainable future (Plan Your Place, 2011).  

In particular, the intent of the PlanYourPlace project is to help change existing lifestyle 

choices and allow communities to switch to options that promote sustainable living where 

compact, mixed-use, pedestrian-friendly street network, and design are integrated to support 

walking, cycling, and high-quality transit. This form of development is commonly referred to as 

TOD (Transit Oriented Development). 

In addition, the development of mixed-use communities and pedestrian friendly 

neighborhoods is expected to result in a higher share of active travel modes, such as biking and 

walking. Thus, there is a growing need to estimate the impact of development scenarios and 

transportation policies to properly estimate future non-motorized trip demand and to determine 

the important factors that can affect the frequency of walking and biking in Canadian cities and 

adequately design the related infrastructure. This is especially important for a highly auto-

oriented city like Calgary. The ability to predict the future non-motorized volumes also helps 

practitioners to conduct non-motorized safety studies and public health studies. 
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1.2. Research Objective 

The objectives of this study are twofold: 1) to examine the impact of important factors affecting 

the frequency of active modes; and 2) to estimate bicycle and pedestrian volumes at major 

intersections in the City of Calgary as affected by these elements. This research uses the sketch 

plan method and calibrates different regression models to estimate bicycle and pedestrian travel 

demand based on geographic information system (GIS), traffic data, and road characteristics. 

The outcomes from this study also identified the importance of land use characteristics, urban 

design, and transportation elements affecting non-motorized travel demand in the City of 

Calgary.  

The required data — bicycle and pedestrian counts, GIS, transportation, and 

socioeconomic data — for developing the regression models were obtained from different 

sources including the City of Calgary, Spatial and Numeric Data Services at the University of 

Calgary, Calgary transit, census data, and other sources. Using these data and with the aid of 

ArcGIS software, 108 explanatory variables were defined and examined for calibrating the 

regression models. 

Several regression models were developed to examine the relationships between non-

motorized trip volumes (dependent variables) and built environments, land-use characteristics, 

socio-economic variables, and transportation services (independent variables). In this research 

multiple linear and Poisson regressions were used for calibrating non-motorized modes 

prediction models. The regression models developed in this research also identified several 

contributing factors that can affect frequency of walking and biking in Calgary. These models 

indicated that improved pedestrian and bicycle infrastructure, such as improved pedestrian 
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network connectivity and pathway length, and improved transportation service integration, such 

as transit and bicycle integration, as well as safer routes for pedestrian and cyclists make a 

significant contribution to increasing non-motorized travel volumes. 

Moreover, the validation process conducted for a sample of 18 intersections in Calgary 

showed that the bicycle and pedestrian prediction values estimated using linear and Poisson 

regression models have adequate predictability. Additionally, the predictability for both linear 

and Poisson regression models are almost at the same level. 

The models developed in this research can be used to assess the qualitative impact of 

urban design, the built environment, non-motorized mode infrastructure and better integration of 

active travel modes with transit — all of which can influence the demand for active modes in the 

middle ring communities in the City of Calgary. Moreover, these models can be used to estimate 

present non-motorized travel demand at intersections where no count data are available. This 

method is a straightforward statistical analysis for practitioners and urban planners to estimate 

future pedestrian and cyclist volumes, assess their future travel needs and plan for adequate 

related facilities, such as walkways and bicycle infrastructure. 

1.3. Research Contributions and Findings 

According to the literature, non-motorized prediction models for most studies focus on American 

cities. Most of these models were developed to examine qualitatively the factors contributing to 

encouraging non-motorized trips. Therefore, these models do not have an acceptable goodness-

of-fit and thus are not capable of predicting future pedestrian volumes with reasonably high 

accuracy. Despite these efforts, there is still a lack of an applicable model for the estimation of 

pedestrian and bicycle volumes in Canadian cities, especially for a highly auto-oriented city, 
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such as Calgary.  

This study adopts a sketch plan approach to model pedestrian and cyclist volumes in 

Calgary. The developed regression models in this thesis made the following contributions to: 

i. Introducing the first bicycle regression model in Canada, and the first pedestrian 

regression model in Calgary: 

The developed cyclist regression models in this research are the first bicycle prediction models 

calibrated for a Canadian city. The developed pedestrian regression models are the first 

pedestrian prediction models calibrated for the City of Calgary. It is to be noted that these 

prediction models were calibrated for P.M. peak and thus reflect both commute and non-

commute trips.  

ii. Having the ability to predict future bicycle/pedestrian travel demand: 

The developed models have a relatively high goodness of fit, and all explanatory variables in 

these models are statistically significant. Therefore, these models can be used for the purpose of 

predicting bicycle and pedestrian travel demand. The developed model can also be used to 

examine the contributing land use and transportation elements that affect the frequency of 

walking and biking. 

iii. Considering the effect of road narrowing and traffic calming technique on bicycle travel 

demand: 

The variable “Lane”, which is defined as the total number of street lanes reaching the 

intersection, is introduced in this research for the first time. The negative sign of the estimated 

parameter in this variable in the bicycle prediction model indicates that the cyclists are more 

willing to bike in narrower streets, which is attributed to safety problems that cyclists have on 
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wide streets. This variable also highlights the important role that road narrowing plays as an 

efficient traffic calming technique as it forces motorists to reduce their speeds, thereby resulting 

in improved safety for cyclists and attracting more cyclists to use the infrastructure.  

iv. Introducing the variable “Street-Length” to consider the impact of connectivity on 

pedestrian travel demand: 

The variable Street-Length is another variable introduced in this research for the first time. This 

variable shows the centerline kilometers of streets in a specific buffer zone around the 

intersection and can be interpreted as connectivity. Increasing the number of streets with 

pedestrian sidewalks in a certain buffer area results in a denser street network in that area. This 

improves connectivity and is shown to increase pedestrian volumes.  

1.4. Thesis Organization  

The remaining chapters of the thesis are organized as follows. Chapter 2 presents a review of the 

literature on previous non-motorized estimation models. Chapter 3 consists of two sections. In 

the first section the data used in this research is described, including study area, pedestrian and 

bicycle count data, land-use variables, transportation services, and socio-economic 

characteristics. In the second section the conceptual framework and the methodology for 

developing the regression models are described. In Chapter 4 the results of the development of 

the linear and Poisson regression models for estimating active mode travel demand are 

presented. The over-dispersion test conducted to fulfill the Poisson distribution property that 

restricts the mean and variance to be equal is also described in this chapter. The model validation 

is also discussed at the end of Chapter 4. The final conclusions, research contributions, and 

recommendations for future work are included in Chapter 5.  
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CHAPTER 2. LITERATURE REVIEW 

Chapter 2 presents a review of the literature of different methods to estimate non-motorized trip 

volumes. This chapter focuses mainly on previous literature related to non-motorized prediction 

models which were developed using sketch plan method. 

2.1. Methods of Estimating Non-Motorized Travel Demand 

In recent years, planning for active travel modes has become one of the important parts of 

transportation engineering and urban planning. Practitioners and policy makers need to have 

accurate information on non-motorized trip volumes for conducting public health studies 

(Cervero and Duncan, 2003), bicycle and pedestrian safety studies (Qin and Ivan, 2001; 

Miranda-Moreno et al., 2010), and feasibility studies for active modes infrastructure 

improvements (Lewis and Kirk, 1997; Ercolano et al., 1997). Various methods have been 

proposed for counting pedestrians, both manually and automatically (Pulugurtha and Repake, 

2008; Schneider et al., 2009). However, to overcome the need of collecting data different kinds 

of methods have been proposed in order to predict non-motorized travel demand based on 

available data. 

The Guidebook on Methods to Estimate Non-Motorized Travel (FHWA, 1999) describes 

five different methods for estimating non-motorized trip volumes. These methods include: 

aggregate behaviour studies; discrete choice models; regional travel models; comparison studies; 

and sketch plan methods. A summary of these methods is presented in Table 2.1. In this table the 

column Accuracy indicates accuracy level for one method in comparison with the other 

mentioned methods and Sensitivity to Design Factors demonstrates the ability of the methods to 

assess the effects of design factors on demand. 
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Table  2.1. Categorization of Non-Motorized Trips Estimation Method  

Demand Estimation Method Level of Study Area Accuracy Sensitivity to Design 
Factors 

Aggregate Behavior Studies Area/Regional Level Very Low Very Low 

Discrete Choice Models Facility Level 
Area/Regional Level High High 

Regional Travel Model Facility Level 
Area/Regional Level Moderate Moderate 

Comparison Studies Facility Level Low Low 
Sketch Plan Method Facility Level Moderate Moderate 

Source: FHWA (1999) 

The next sections provide a description of the details of the five different types of non-

motorized trips estimation methods with special focus on the sketch plan methods. 

2.1.1. Aggregate behavior studies 

According to the Guidebook on Methods to Estimate Non-Motorized Travel (FHWA, 1999) 

Aggregate behavior studies involve “the development of models to predict mode split or other 

travel behavior characteristics at an area level, such as for residents of census tracts or 

metropolitan areas”. In this method the prediction is based on socio-economic characteristics and 

other variables related to that area such as non-motorized infrastructure conditions and 

availability of other modes. Ashley and Banister (1989) and Nelson and Allen (1997) applied 

this method to predict the percentage of cyclist commuters in United Kingdom and United States 

areas, respectively.  

In recent years, this method has not been very popular and is thus rarely adopted for 

predicting non-motorized travel demand. One of the disadvantages of this method is the large 

spatial unit of analysis needed, which is usually as big as a census tract or transportation analysis 

zone (TAZ). Another disadvantage of this method is that it is mainly focused on commuter trips 

and does not consider other types of travel, such as recreational and shopping trips. Moreover, in 
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Aggregate Behavior Studies the accuracy and the sensitivity to design factors1 are very low, 

which can be considered as another shortcoming of this method. 

2.1.2. Discrete choice models 

The Guidebook on Methods to Estimate Non-Motorized Travel (FHWA, 1999) defines discrete 

choice models as follows: “A discrete choice model predicts a decision made by an individual 

(choice of mode, choice of route, etc.) as a function of any number of variables, including factors 

that describe a facility improvement or policy change”. This method is very accurate and very 

sensitive to design factors. The method has been used in some studies in order to develop models 

for predicting bicycle and pedestrian mode choice. Wilbur Smith Associates (1996) developed 

discrete choice models in order to predict the effect of non-motorized improvements on transit 

access mode. Recently, Hunt and Abraham (2007) developed a discrete choice model to estimate 

bicycle demand in the City of Calgary.  

Despite the advantages of discrete choice models, they require substantial effort for 

collecting the survey data and calibrating the discrete choice models. This method is thus costly 

and time consuming. In addition, it is not easy for practitioners as it needs individuals who are 

expert in discrete choice modeling techniques. 

2.1.3. Regional travel models 

According to the Guidebook on Methods to Estimate Non-Motorized Travel “regional travel 

models, commonly referred to as “four-step travel demand models”, use data on existing and 

future population, employment, and transportation network characteristics, in conjunction with 

1 Sensitivity to design factors shows the ability of method to assess the effects of design factors on demand. 
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data on existing travel patterns and models of human behavior, to predict future travel patterns” 

(FHWA, 1999). This method comprises four steps: 

• Trip generation 

• Trip distribution 

• Mode choice 

• Route Assignment 

The traditional four-step model is widely used to predict automobile and transit demand. 

The spatial unit of analysis developed for this method, which is mostly census tract or 

Transportation Analysis Zone, is more appropriate for automobile rather than bicycle and 

pedestrian use (Porter et al., 1999). However, in some studies, modified versions of this model 

were developed that were capable of taking pedestrian and bicycle demand into account (Purvis, 

2003). 

This method is very difficult to use by practitioners in comparison with other existing 

methods and requires extensive data. In addition, this method is mainly focused on commuter 

trips and do not consider other types of trips made for the sole purpose of recreation (FHWA, 

1999). 

2.1.4. Comparison studies 

Comparison studies are one of the simplest methods for estimating bicycle and pedestrian 

volumes. According to this method, “non-motorized travel demand on a facility is predicted by 

comparing it to usage and to surrounding population and land use characteristics of other similar 

facilities” (FHWA, 1999). However, a comparison study usually provides only a very rough 
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estimation of travel demand and, sometimes, it is very difficult to find facilities that are truly 

comparable (FHWA, 1999). Lewis and Kirk (1997), for example, estimated bicycle volumes on 

a proposed rail trail bikeway in a Massachusetts metropolitan area based on the bicycle counts 

from a similar bikeway in the Boston area. 

2.1.5. Sketch plan methods 

The sketch plan method is another technique for estimating bicycle and pedestrian volumes. 

According to the Guidebook on Methods to Estimate Non-Motorized Travel (FHWA, 1999), 

sketch plan methods were originally described as “methods [that] generally use bicycle and 

pedestrian counts and regression analysis to predict non-motorized trips volume as a function of 

adjacent land uses and indicators of transportation trip generation” (FHWA, 1999). This method 

has been used in many existing bicycle and pedestrian volume prediction models.  

The studies done by Pushkarev and Zupan (1971) and Behnam and Patal (1977) were 

among the first efforts using the sketch plan method to estimate pedestrian trip volumes. They 

proposed regression models for forecasting pedestrian volume in central business districts 

(CBDs) based on land-use characteristics. Pushkarev and Zupan (1971) used aerial photography 

to develop a linear regression model to relate pedestrian volumes per block to commercial 

spaces, distance to transit stops, and amount of sidewalk. Behnam and Patal (1977) also used 

linear regression to estimate pedestrian volume per hour in Milwaukee (Wisconsin) based on 

land-use characteristics. 

During the past few years researchers tried to relate non-motorized travel demand into 

different variables such as: built environment characteristics (Dill, 2009; Guo et al., 2007; 

Haynes and Andrzejewski, 2010; Jones et al., 2010); infrastructure design characteristics 
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(Lindsey et al., 2007; Reynolds et al., 2007); socio-economics (Schneider et al., 2010; Miranda-

Moreno and Fernandes, 2011); and weather and topography (Handy, 2005; Krizek, 2003; 

Cameron, 1976). One of the first attempts to study impact of neighborhood characteristics on 

travel demand was conducted by Levinson and Wynn (1963). This study demonstrated that high 

density neighborhoods have a lower frequency of private vehicle trips and higher frequency of 

the use of public transit and non-motorized trips in comparison with low density neighborhoods. 

In a recent study in Montreal, Canada, Miranda-Moreno and Fernandes (2011) used weather 

conditions and spatio-temporal patterns to calibrate a pedestrian prediction model. In this 

research linear and negative binomial regression were developed to predict aggregate 8-hour and 

disaggregate hourly pedestrian volumes. This study was one of the first attempts for developing 

pedestrian regression models in a Canadian city.  

Estimating bicycle/pedestrian travel demand and determining important factors affecting 

non-motorized trip volumes have various applications in different research areas such as 

feasibility studies for active modes infrastructure improvements, non-motorized safety studies, 

and public health studies. The following examples briefly review the past research related to 

these applications: 

• Ercolano et al. (1997) proposed a model to estimate pedestrian travel demand 

based on hourly vehicular volume, non-motorized mode share, and transit ridership in 

suburban areas. This model has been used to determine locations for pedestrian 

infrastructure improvements.  
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• Qin and Ivan (2001) developed a linear relationship between the natural log of 

weekly pedestrian counts, the built environment and road characteristics to estimate 

pedestrian volumes needed as input for pedestrian safety studies. 

• Cervero and Duncan (2003) determined the effect of urban landscapes on walking 

and biking in San Francisco Bay Area in order to find important variables that have 

significant impacts on public health.  

Some studies defined their independent variables, such as land-use characteristics, socio-

economic variables and transportation services, using different scales of buffer zones around the 

studied intersections. Multiple-scale analyses showed that the best models were developed when 

independent variables were chosen from different scales of buffer zones (Schneider et al., 2010; 

Liu and Griswold, 2009; Miranda-Moreno and Fernandes, 2011).   

Most of the studies on non-motorized prediction models have only focused on modeling 

pedestrian travel demand. Just a few of them tried to calibrate regression models to relate bicycle 

volumes into built environment characteristics. Haynes and Andrzejewski (2010) developed a 

linear regression model to estimate weekday afternoon peak hour bicycle travel demand in the 

City of Santa Monica. Their model showed that land use mix, PM bus frequency, and a bicycle 

network have a positive impact on bicycle volumes while having a young population under the 

age of 18 has a negative impact. Jones and Buckland (2010) used the sketch plan method to 

develop a linear regression model in order to estimate bicycle and pedestrian travel demand 

based on socio-demographic and physical factors in San Diego County, California. They also 

tried to use a natural logarithm of dependent variable to avoid predicting negative bicycle 

volumes. In another study, Griswold et al. (2011) tried to calibrate bicycle linear regression 

13 



 

models during weekdays and weekends based on different independent variables such as: socio-

economic, land-use, transportation system and intersection site characteristics in Alameda 

County, California. The models in this study showed that proximity to retail or a large university 

has a higher impact on bicycle volumes on weekdays than weekends. On the other hand the 

weekends models showed a lower impact for hilly terrain and a higher impact of bicycle 

facilities on bicycle trips in comparison with weekdays models.  

Since non-motorized travel demand consists of non-negative integer values and is 

considered as count data, it can be best modeled by Poisson and negative binomial regressions 

(Washington et al., 2003; Davidson and MacKinnon, 2003). Kim (2011) estimated pedestrian 

volume using Poisson regression. Miranda-Moreno and Fernandes (2011) and Cao et al. (2006) 

developed negative binomial regression models for predicting pedestrian travel demand. In 

another study, Hankey et al. (2012) developed negative binomial regression models to estimate 

12-hour bicycle and pedestrian count volumes. Table 2.2 shows a summary of the literature that 

adopted sketch plan methods.  
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Table  2.2. Features of Sketch Plan Method (source: Kim and Susilo, 2011) 
Researchers Level of study area Observation 

frequency 
Data requirements Estimation 

technique Pedestrian volume Land-use and socio-economic data 
Pushkarev 
and Zupan 
(1971) 

Block 
(Midtown Manhattan) 

Hourly Pedestrian counts 
(aerial photography) 

Square mile of office, retail, and restaurant space Linear 
regression 

Behnam and 
Patel (1977) 

Block 
(CBD of Milwaukee, 
WI) 

Hourly 
(extrapolated 
from 6-minute 
counts) 

Pedestrian counts 
(real counts) 

Commercial space, office space 
cultural and entertainment space, manufacturing 
space, residential space, parking space 
vacant space, storage and maintenance space 

Linear 
regression 

Davis et al. 
(1988) 

Crosswalk level 
(Washington, DC) 

5- to 10-minute 
time segments 
during peak 
hours 

Pedestrian counts (real 
counts) 

Vehicle traffic counts Relationship 
between 
vehicle and 
pedestrian 

Matlick 
(1997) 

Corridor-level  
(Seattle, WA) 

Daily Transportation mode 
share information 
(Census)/National 
Personal Travel Survey 
(NPTS) 

Housing types, density, persons per household unit, 
and hotels 
Retail, recreation, social facilities, schools, 
employment, and churches 

Linear 
regression 

Ercolano et 
al. (1997) 

City level 
(Plattsburgh, NY) 

Hourly (peak 
hour) 

Vehicles per hour from 
traffic counts and mode 
share from Census 

Vehicle traffic counts Computation 
using 
spreadsheets 

Targa and 
Clifton (2005) 

City level 
(Baltimore City, MD) 

One day Number of walk trips 
from NHTS 2001 

Car ownership in household, type of housing unit, 
household income, age, sex, driver status, educational 
status, attitudes/perceptions of pedestrians, household 
density, street connectivity, land-use diversity, 
proportion of commercial units 

Poisson 
regression 

Kim (2005) Metropolitan Level 
(six counties and one 
city in Baltimore 
Metropolitan region) 

One day Number of walk trips 
from NHTS 2001 

Age, driver status, education level, income, race, 
percentage of adult drivers in household, non-
residential density (tract level), road density within ¼ 
mile, mixed land use (tract level) 

Poisson 
regression 

Cao et al. 
(2006) 

Town level 
(six neighbourhoods 
in Austin, TX) 

30 days Number of pedestrians 
derived from a self-
administered survey 
mailed in 1995 

Major stores within walking distance, traffic volume, 
pedestrian connections, perception of stores, perception 
of walk advantage, perception of walk comfort, 
perception of traffic, miles to the nearest store, sex, 
age, worker status, presence of children, household 
income 

Negative 
Binomial 
regression 
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Table 2.2. Features of Sketch Plan Method (Continued) 
Researchers Level of study 

area 
Observation 
frequency 

Data requirements Estimation 
technique Pedestrian volume Land use and socio-economic data 

Shay et al. (1985) Town level 
(Southern Village 
in Chapel Hill, 
NC) 

One day  Number of walking 
trips from travel diary 

Sex, age, number of children, number of 
cars/household, number of licensed drivers per 
car, walking is enjoyable*, environmental 
protection is important*, value shops and 
services close by*, distance from home to 
activity centre 
*Scale based variables: 1 = strongly disagree to 
5 = strongly agree 

Negative 
binomial 
regression 

Pulugurtha and 
Repaka (2008) 

Intersection level 
(Charlotte, NC) 

12 hours 
(extrapolated from 
hourly volumes) 

Pedestrian counts 
(real counts) 

Household units, population, total employment, 
urban residential area, neighborhood business, 
mixed land use, transit stops, speed limit, 
vehicular volume: All variables above are 
captured within ¼, ½, and 1 mile buffers 

Linear 
regressions 

Baran et al. 
(2008) 

Town level (a 
New Urbanist 
community and 
conventional 
suburban 
neighbourhood) 

One day Number of walking 
trips from NHTS 2001: 
either leisure or 
utilitarian walk trips 

Age, gender, household size, vehicles per 
household and respondent’s occupational 
status, two space syntax variables (global 
integration, local integration, and control 
variable) 

Poisson 
regression and 
negative 
binomial 
regression 

Schneider et al. 
(2009) 

Intersection level 
(Alameda County, 
CA) 

Weekly  
(extrapolated from 2 
hour volumes with 
distinction of 
weekdays and 
Sundays) 

Pedestrian counts 
(real counts) 

Total population, total employment, 
proportion of housing units (either vacant or 
rented), number of housing units (either vacant 
or rented), number of commercial   properties,   
number   of   elementary/ middle/high schools 
and colleges, number of transit stations (bus, 
rail), sidewalk coverage, freeway presence, total 
street centreline distance, race (Caucasian),  car  
ownership,  income,  age  (categorical 
variable): All variables above are captured 
within both 1/10 and ¼ mile buffers 
Level of traffic, number of lanes, crosswalks, 
bicycle lanes, traffic signal, and curb radius 

Linear regression 
 

Source: Kim and Susilo (2011)
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2.1.6. Space syntax method 

The space syntax method can also be used to estimate non-motorized travel demand with the aid 

of regression models. In this model, street and pedestrian network characteristics that are 

considered independent variables include (Raford and Ragland, 2004): 

a) connectivity: number of street segments that are directly connected to a given intersection;  

b) mean depth: mean number of street segments between any node and any other node in the 

network;  

c) visibility: view shed area from any node in the network; 

d) relative asymmetry or integration: the required number of turns for traveling between two 

points in the network. 

Raford and Ragland (2004) applied the space syntax method to the development of a 

regression model to estimate pedestrian travel demand in Oakland, California. McCahill and 

Garrick (2008) also used this method in order to predict morning peak hour bicycle volume in 

Cambridge, MA. 

2.2. Summary 

The above literature shows that the focus of most studies is the development of pedestrian 

estimation models in areas in the United States. Thus, these models may not be used for 

Canadian cities since the socio-cultural composition, urban form and mobility patterns are 

different in these two countries. For instance, Pucher and Buehler (2006) indicated that transit 

and active modes have higher modal share in urban Canada. Table 2.3 shows the modal share of 

the work trip in Canada and in the United States (Pucher and Buehler, 2006). 
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Table  2.3. Modal Share of the Work Trip in Canada and USA, 2000/2001 
Transport Mode United States (%) Canada (%) 
Auto 87.9 80.7 
Transit 4.7 10.5 
Bicycle 0.4 1.2 
Walk 2.9 6.6 
Other 4.1 1 
Total 100 100 

                          Source: Pucher and Buehler (2006) 

In addition, most of the existing models do not have an acceptable goodness of fit, and 

some of the explanatory variables used in these models are not statistically significant. 

Therefore, most of the current pedestrian models are not capable of predicting pedestrian 

volumes with reasonably high accuracy. The application of these models is thus most often 

limited to identify the significant land-use variables affecting the frequency of walking (Hankey 

et al., 2012; Miranda-Moreno and Fernandes, 2011; Kim and Susilo, 2011; Jones et al., 2010). 
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CHAPTER 3. DESCRIPTION OF THE DATA AND METHODOLOGIES 

Chapter 3 comprises two sections. The first section describes the data used in this research. It 

also includes a description of study area, the dataset, and the data processing effort in generating 

explanatory variables using ArcGIS software. The second section discusses the methodology 

used for developing the linear and Poisson regression models. The over-dispersion test is 

explained at the end of this section. 

3.1. Data 

This section describes the study area which consists of 34 major intersections in the city of 

Calgary, Alberta. It also describes the database used which includes pedestrian and bike count 

data, GIS data on land use, transportation services, employment, and socioeconomic 

characteristics. 

3.1.1. Study Area 

The City of Calgary is located on the Bow River in the southern portion of the province of 

Alberta, Canada. According to the 2011 census, Calgary’s population was 1,096,833 making it 

the largest city in Alberta. Downtown Calgary is located in the centre of the City of Calgary and 

consists of five major neighborhoods: Eau Claire; the Downtown West End; the Downtown 

Commercial Core; Chinatown; and the Downtown East Village. Adjacent to, or directly radiating 

from the downtown, are the first of the inner-city communities, which, are also surrounded by 

relatively dense and established neighborhoods (The City of Calgary Land Use Planning and 

Policy, 2011). 

Calgary’s middle ring is comprised of approximately 80 neighborhoods that were 

developed between the 1950s and the 1970s. They now form a reasonably consistent band 
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around the inner city grid neighborhoods, with the exception of the eastern part of the city, where 

a broad industrial corridor and the Calgary International Airport interrupt the residential fabric. 

The present dominant pattern of these middle ring neighborhoods consists of warped grid and 

crescent blocks organized around central schools and recreation fields. These middle ring 

communities are mostly auto-oriented, which is in conflict with the sustainability plans of the 

City of Calgary. 

The public transportation system in Calgary, including buses and light rail, is provided by 

the City of Calgary’s Calgary Transit. The transit system operates with more than 900 buses and 

about 200 light rail vehicles (Calgary Transit, 2012). As an alternative to the more than 290 km 

of shared bikeways on streets, Calgary has a network of multi-use (bicycle, walking, 

rollerblading, etc.) paths that span more than 700 km (Calgary Pathways and Bikeways, 2012). 

3.1.2. Description of the Database 

The objective of this research is the development of regression models to relate non-motorized 

travel demand to environmental and land-use characteristics, socio-economic variables and 

transportation services. This study focuses on pedestrian and bike count data gathered at 34 

major intersections located in Calgary. These observed count data were correlated with several 

independent variables including: GIS, socio-economic and transportation data, as explained in 

this section.  

3.1.2.1. Pedestrian and bike count data 

Pedestrian and bicycle count data at 34 intersections located on major arterials were provided to 

this research by the City of Calgary. No intersection was selected from downtown area, since 

downtown urban form and land-use patterns are totally different from the rest of the city. The 
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observations were 6-hour counts in 15 minute time intervals completed during three time 

intervals in a day: the 7:00–9:00 AM peak hour, the 11:00–13:00 noon peak hour and the 16:00–

18:00 PM peak hour. Figure 3.1 shows the location of the 34 intersections in Calgary that were 

examined, and the descriptive statistics for pedestrian and bicycle counts are shown in Table 3.1. 

These counts were taken in different years from 2007 to 2012 and in different months of 

the year from April to November. Vehicle counts were intersection turning movements, bikes 

were counted travelling in the same direction as vehicles, and pedestrians were counted as they 

crossed the leg of the intersection. It is to be noted that one of the major limitations of this data is 

that pedestrians who crossed more than one leg of the intersection were counted multiple times. 

Moreover, pedestrians crossing the streets far from the intersections and right-turning pedestrians 

on the sidewalk were not counted because they did not cross the roadway. 
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Figure  3.1. Location of the 34 examined intersections in Calgary used for calibrating the non-

motorized regression models. 
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Table  3.1. Description of the Independent Variables 

 Variable Name Description Number of 
intersections Mean Std. Dev. 

Pe
de

st
ria

n 
C

ou
nt

s Ped_Ave_AM_Peak 
Average number of pedestrians 
crossing the intersection per an 
hour during AM peak  

34 55.3 63.5 

Ped_Ave_Noon_Peak 
Average number of pedestrians 
crossing the intersection per an 
hour during Noon peak  

34 53.3 61.1 

Ped_Ave_PM_Peak 
Average number of pedestrians 
crossing the intersection per an 
hour during PM peak  

34 72.3 73.9 

B
ik

e 
C

ou
nt

s 

Bike_Ave_AM_Peak 
Average number of bikes 
crossing the intersection per an 
hour during AM peak  

34 11.9 9.3 

Bike_Ave_Noon_Peak 
Average number of bikes 
crossing the intersection per an 
hour during Noon peak  

34 6.0 6.1 

Bike_Ave_PM_Peak 
Average number of bikes 
crossing the intersection per an 
hour during PM peak  

34 14.0 9.4 

 

3.1.2.2. Independent (Explanatory) Variables 

Twenty seven different independent variables were reviewed for developing the regression 

models. These explanatory variables belong to three different categories: socio-economic, 

population and employment characteristics, transportation characteristics and land use variables. 

These variables were extracted from various sources including GIS data, census data, Calgary 

Transit and City of Calgary websites. Descriptions of these variables are provided in Table 3.2.  
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Table  3.2. Description of the Land-Use, Transportation, and Demographic Variables 

Category Variable Name Description 

So
ci

o-
ec

on
om

ic
 

POP Total population 
JOB Total number of jobs 
POP_Under20 Total population under 18 years old 
POP_Over65 Total population over 65 years old 
POP_20_24 Total population between 20 years old and 24 years old 
Emp Total employees 
Inc Average family income 
Transit_Users Total number of transit users 

La
nd

 U
se

 

School Number of schools 
Community_Service Total number of community service locations 
Institutional Hectares of institutional space 
ParkRecreationEdu Hectares of park, recreation and educational space 
Residential_Low Hectares of low-density residential space 
Residential_Medium Hectares of medium-density residential space 
Residential_High Hectares of high-density residential space 
Dwell Total number of dwellings  
Commercial Hectares of commercial space 
Direct Control Hectares of direct control space 

Commercial_Direct Hectares of the sum of the commercial and direct control 
spaces 

Tr
an

sp
or

ta
tio

n 

Bus_Stop Number of bus stops 
Bus_Route Total kilometers of bus routes  
Bus_Frequency Total vehicle Km of transit routes 
Bikeway Total centerline kilometers of bikeways 
Pathway Total centerline kilometers of pathways 
Street-Length Total centerline kilometers of streets 
Lane Number of street lanes reaching the intersection 
Bikeway_Lane Number of bikeway lanes at the intersection 

 

The data were provided to this research in the format of shapefile, which is a popular 

geospatial vector data format for geographic information system (GIS) software. The explanatory 

variables were defined using these shapefiles with the aid of ArcGIS software. In the following 

sections, the explanatory variables are described in detail: 
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a) Socio-economic variables 

• Census data 

The census data on community level from 2006 to 2012 is available online on 

www.cityonline.calgary.ca website. Explanatory variables such as Number of 

Employees, Average Family Income, Number of Transit Users, Number of Dwelling 

Units, and Number of Young Population who are between 20 and 24 years of age are 

defined using this file (the City of Calgary, Census Data, 2006–2012). 

• Plan It Calgary & Calgary Metropolitan Plan Scenario 

This shapefile was provided to the research by the City of Calgary via Spatial and 

Numeric Data Services at the University of Calgary. This file contains the number of jobs 

and population for the year 2006 and the forecasted data for the years 2014, 2019, 2024, 

2029, 2034, 2039, and 2076. These data are provided on a Transportation Analysis Zone 

(TAZ) level. The explanatory variables including Population, Number of Jobs, Number 

of Seniors over 65, and Number of Young Population Under 20 are defined from this 

shapefile. 

b) Land use variables 

• Community Service 

This shapefile was obtained from the City of Calgary and was provided to this study via 

Spatial and Numeric Data Services at the University of Calgary. The file includes 

locations of different kinds of community services such as community centres, libraries, 

attractions, courts, hospitals, clinics, post-secondary schools, private schools, public 

schools, separate schools, visitor information, and social development centers in Calgary. 
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• School Location 

This shapefile consists of the location of all the schools, colleges, and universities in 

Calgary. The City of Calgary’s department of Transportation Planning provided this data.  

• Land Use 

This shapefile shows the footprint of different types of land uses in Calgary. Therefore 

land use variables including commercial space, residential space, direct control space, 

industrial space, major infrastructure, parks, educational space, and recreational space 

were defined from this file. The land use shapefiles for 2007 and 2011 were obtained 

from the City of Calgary and were provided to this study via Spatial and Numeric Data 

Services at the University of Calgary. Since there were no data available to show the type 

of the buildings and the number of floors, only the footprint of different land use areas 

were considered for developing the regression models. 

c) Transportation variables  

• Bus Stops 

This shapefile consists of the location of all bus stops in Calgary. The City of Calgary 

provided this research with the data.  

• Bus Routes 

This shapefile includes location of the bus routes in the year 2011. Using these files 

variables such as Bus_Route, and Bus_Frequency were defined. This file was also 

provided to this research by the Spatial and Numeric Data Services at the University of 

Calgary. 
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• Bikeways and Pathways 

These data are available online on www.cityonline.calgary.ca website in the shapefile 

format (the City of Calgary, Calgary Pathways and Bikeways, 2012). 

• Street Network 

This shapefile consists of the whole street network in Calgary. Spatial and Numeric Data 

Services at the University of Calgary provided this research with this data. Variable 

Street-Length was defined using these data and with the aid of ArcGIS software as 

explained in the next section. 

• Street Lane and Bikeway Lane 

These variables show the number of street lanes and the number of bikeway lanes 

reaching the intersection which were calculated using Google Maps satellite images. 

3.1.3. ArcGIS 10.1 Software 

In order to generate the explanatory variables all the shapefiles and intersections were imported 

into ArcGIS 10.1 software. Each intersection was geocoded and had unique X and Y 

coordinates. Four different buffer zones were defined around the intersections with radii of 0.1 

miles (161 m), 0.25 miles (402 m), 0.50 miles (805 m), and 0.75 miles (1207 m) in order to do 

multiple scale analysis and to generate the explanatory variables in different scales (Figure 3.2). 

Hence a total of 108 independent variables were considered in the development of the regression 

models. It is to be noted that since the created buffer zones were small, each of them only 

included one intersection that was the main route for cyclists and pedestrians to move in the 

buffers. 
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Figure  3.2. Schematic of the buffers around an intersection. 
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Table  3.3. Descriptive Statistics for Independent Variables 

Category Variable Name 
0.1 mile (161 m) 0.25 mile (402 m) 

Mean Std. Dev. Mean Std. Dev. 
So

ci
o-

ec
on

om
ic

 

POP 95.0 53.8 597.1 325.0 
JOB 56.1 50.4 332.3 275.1 
POP_Under20 17.7 7.0 113.0 42.7 
POP_Over65 11.7 6.0 74.2 36.4 
POP_20_24 9.0 6.6 56.6 39.4 
Emp 48.9 22.3 305.7 133.6 
Inc 55439.3 24175.1 58758.2 26041.9 
Transit_Users 10.6 5.9 66.3 34.9 

La
nd

 U
se

 

School 0.0 0.0 0.3 0.4 
Community_Service 0.1 0.3 0.2 0.4 
Institutional 72.2 285.0 9718.2 19090.5 
ParkRecreationEdu 10120.1 10829.6 64429.6 54251.4 
Residential_Low 30997.4 26676.4 248215.4 145326.8 
Residential_Medium 9665.4 11176.3 66347.0 59251.6 
Residential_High 25.5 146.6 1791.8 8189.1 
Dwell 41.0 26.9 259.0 161.6 
Commercial 22141.7 21398.2 63406.4 72121.5 
Direct Control 5305.6 11385.8 35117.2 60723.3 
Commercial_Direct 27447.3 22641.0 98523.7 89753.5 

Tr
an

sp
or

ta
tio

n 

Bus_Stop 3.1 1.5 6.0 3.1 
Bus_Route 2.3 1.5 5.9 4.1 
Bus_Frequency 14.4 9.1 37.1 25.3 
Bikeway 176.0 204.3 529.7 516.8 
Pathway 0.1 0.1 0.3 0.4 
Street-Length 1.7 0.5 8.2 1.3 

 Mean Std. Dev. 
Lane 1.0 1.3 
Bikeway_Lane 16.0 5.1 
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Table  3.4. Descriptive Statistics for Independent Variables (Continued) 

Category Variable Name 
0.5 mile (805 m) 0.75 mile (1207 m) 

Mean Std. Dev. Mean Std. Dev. 
So

ci
o-

ec
on

om
ic

 
POP 2376.2 1173.7 5193.8 2221.7 
JOB 1282.0 1084.0 3012.0 3305.2 
POP_Under20 450.3 159.6 1004.9 317.1 
POP_Over65 298.4 136.3 653.5 260.1 
POP_20_24 224.9 140.7 486.5 266.0 
Emp 1206.6 472.3 2662.0 987.9 
Inc 60395.9 24129.1 59123.4 18479.2 
Transit_Users 263.9 124.1 584.8 269.7 

La
nd

 U
se

 

School 1.6 1.2 2.9 1.6 
Community_Service 0.5 0.7 1.2 1.1 
Institutional 55424.5 118313.9 148651.8 302249.8 
ParkRecreationEdu 251408.7 136544.0 618283.7 281210.9 
Residential_Low 1081166.7 499161.4 2417122.1 886650.3 
Residential_Medium 243065.7 210435.3 487529.7 360701.1 
Residential_High 10874.8 55845.6 28091.5 124581.9 
Dwell 1024.0 550.4 2268.0 1102.8 
Commercial 132913.1 152988.4 253775.3 249885.3 
Direct Control 145564.9 216836.4 308012.2 388740.5 
Commercial_Direct 278478.0 262610.0 561787.5 450017.3 

Tr
an

sp
or

ta
tio

n 

Bus_Stop 14.9 6.6 32.1 13.5 
Bus_Route 15.2 9.6 34.5 22.5 
Bus_Frequency 92.7 55.0 215.1 132.8 
Bikeway 1551.2 1426.5 3176.5 2159.0 
Pathway 1.1 1.2 2.6 2.7 
Street-Length 30.3 3.1 66.3 6.1 

 Mean Std. Dev. 
Lane 1.0 1.3 
Bikeway_Lane 16.0 5.1 
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To generate required data in the buffer zones around the intersections census tract, transit, 

street network and land use data were intersected with the buffers and the data were compiled 

into excel tables. To generate some of the explanatory variables such as population, jobs, young 

population, senior population, and employment following formula was used: 

𝑃𝑖 = �
𝐴𝑗,𝑖

𝐴𝑗𝑗

× 𝑃𝑗  

where 𝑃𝑖 is the population inside buffer zone i, 𝑃𝑗 is the population of census block j, 𝐴𝑗,𝑖 is the 

area of census tract inside buffer zone i, and 𝐴𝑗 is the area of census block j.  

 The variable Average Family Income was generated in the buffer zones using following 

formula: 

𝐼𝑖 =
∑ �𝐼𝑗 × 𝐴𝑗,𝑖�𝑗

∑ 𝐴𝑗,𝑖𝑗
 

where 𝐼𝑖 is the average family income inside buffer zone i, 𝐼𝑗 is the average family income of 

census block j, and 𝐴𝑗,𝑖 is the area of census tract inside buffer zone i. 

The variable Bus-Frequency was defined as the Vehicle.Km of transit routes which is 

expressed as Km of bus routes in a buffer zone multiplied by bus headways over peak duration 

of 2 hours: 

Bus_Frequency = Km of Bus Routes * (Bus Headways / 2 hr.) 

 

The bicycle and pedestrian count data provided were from 2007 to 2012. Therefore, in 

order to develop regression models the counts should have been related to their corresponding 
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independent variables, which were in the same year as the count was. In some cases only the 

recent shapefiles (for the year 2011 or 2012) were available. All land use variables, except 

number of dwellings, and all transportation variables were collected in the year 2011 or 2012. 

Additionally, since the data were not available for previous years, the 2012 land use and 

transportation data were used for developing the pedestrian and bicycle regression models. This 

was justified by the fact that most recent development is taking place in the outskirts of the city 

with little development taking place around the intersections with observation counts. 

The data in the ‘Plan It Calgary & Calgary Metropolitan Plan Scenario’ shapefile were 

available for the years 2006 and 2014; these data were used to determine the population for the 

years in between by applying linear interpolation. 

The Census data were available for all the years from 2006 to 2012 thus the actual data 

were used in these years. 

After generating the explanatory variables in the buffer zones around the intersections, all  

the independent variables and dependent variables were imported into SPSS 20.0 software for 

statistical analysis. 

3.2. Description of the Regression Models 

In this thesis, the non-motorized trips were calibrated using multiple linear and Poisson 

regression models. This section describes these models, their assumption and the goodness of fit 

measures. Then the over-dispersion test is described to fulfill the Poisson distribution property 

that restricts the mean and variance to be equal. 
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3.2.1. Linear Regression Theory 

One of the applications of linear regression is developing predictive models based on an 

observed data set of X and Y values. These prediction models can be used to predict the value of 

Y if an additional value of X is given. In this study multiple linear regression models were 

calibrated to relate bicycle and pedestrian counts into built environment, transport, and 

demographic variables. 

Linear regression is used in order to find a linear relationship between a dependent 

variable Y and one or more explanatory variables.  

3.2.1.1. Simple linear regression 

Simple linear regression consists of one independent variable, and multiple linear regression 

includes two or more independent variables. Simple linear regression model is expressed as 

follows: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝜀𝑖 

where 𝑌𝑖 is the dependent variable, 𝑋1𝑖 is the independent variable, 𝛽0 and 𝛽1 are the constant 

terms, 𝜀𝑖 is the disturbance term, and i = 1, 2, 3, …, n corresponds to the observation. 

3.2.1.2. Multiple linear regression 

Multiple linear regression model is expressed in matrix notation and given by: 

𝒀𝑛×1 = 𝑿𝑛×𝑝𝜷𝑝×1 + 𝜺𝑛×1 

where n is the number of observations and p is the number of explanatory variables.  
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3.2.1.3. Linear regression goodness-of-fit measures 

There are different measurements for assessing linear regression model GOF, including R-

squared, adjusted R-squared (Davidson and MacKinnon, 2003). These measurements can be 

used in order to compare the results of the competing regression models in a single study, or to 

compare the regression models within several studies. 

• R-squared (coefficient of determination) 

R-squared, coefficient of determination, is expressed as: 

𝑅2 =
(𝑆𝑆𝑇 − 𝑆𝑆𝐸)

𝑆𝑆𝑇
=
𝑆𝑆𝑅
𝑆𝑆𝑇

= 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇

 

𝑆𝑆𝐸 = ∑ �𝑌𝑖 − 𝑌�𝑖�
2𝑛

𝑖=1 ,  𝑆𝑆𝑅 = ∑ �𝑌�𝑖 − 𝑌��
2𝑛

𝑖=1 ,  𝑆𝑆𝑇 = ∑ (𝑌𝑖 − 𝑌�)2𝑛
𝑖=1  

where SSE is the Sum of Square Errors, SSR is the Regression Sum of Squares, and SST is the 

Total Sum of Squares. 𝑌𝑖 is the observed value, 𝑌�𝑖 is the predicted value, and 𝑌� is the mean of the 

observed data. 

The value of R-squared is between 1 and 0. R2 = 1 indicates that fitted model is able to 

explain all the variation in the dependent variable. And R2 = 0 indicates that the fitted model 

cannot define any linear relationship between dependent variable and explanatory variables. 

• Adjusted R-squared 

The adjusted R-squared is more appropriate for comparing models with different numbers of 

parameters. This measurement of GOF is obtained using following formula: 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑2 = 1 − �
𝑛 − 1
𝑛 − 𝑝

� �
𝑆𝑆𝐸
𝑆𝑆𝑇

� 

where n is the number of observations and p is the number of parameters. 𝑛 − 1 is the SSE 
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degree of freedom and 𝑛 − 𝑝 is the SST degree of freedom. 

• T-statistic test 

T-statistics is used to determine the statistically significant parameters entered in the regression 

model.  When the sample size is larger than 30 the t-statistic is normally distributed.  

T-statistic is required to check if the entered explanatory variables are statistically 

significant with a significant percent of α. According to this test, the null (H0) and alternative 

(HA) hypotheses are defined as follows: 

𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑘𝑖

𝑠𝑡. 𝑒𝑟𝑟𝑜𝑟
 

𝐻0: 𝑘𝑖 = 0 

 𝐻𝐴: 𝑘𝑖 ≠ 0 

where  𝑘𝑖 is the coefficient for independent variable 𝑋𝑖. If the t-statistic value is significant with a 

significant level of α, then the null hypotheses is rejected which means that the 𝑋𝑖 variable is 

statistically significant. 

3.2.1.4. Linear Regression Assumptions 

• Linearity 

Linearity assumption requires a linear relationship between dependent variable and explanatory 

variables. This can be checked by plotting model predicted values versus model residuals. The 

linearity assumption is satisfied when there is no curvilinear pattern in the plot. 
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• Uncorrelated disturbances 

Uncorrelated disturbances require the observations not to be dependent across time, space, and 

individuals.  For example, the correlation of disturbances across time can be checked by plotting 

disturbances versus time. When there is no trend in the plot the disturbances are not correlated. 

• Normally distributed disturbance 

This assumption needs the residuals to be normally distributed and to have the expected value of 

zero. 

• Exogenous independent variables 

This assumption requires explanatory variables to be exogenous, which means they should be 

defined by the factors that are outside the regression model. 

3.2.2. Poisson Regression Theory 

As bicycle and pedestrian volumes are count data in nature, they can be modeled using a Poisson 

regression model. In this model, the probability of intersection i having yi pedestrians or bicycles 

per specific period (where yi is a non-negative integer) is given by: 

𝑃(𝑦𝑖) =
exp (−𝜆𝑖)𝜆𝑖

𝑦𝑖

𝑦𝑖!
 

where 𝑃(𝑦𝑖) is probability of intersection i having yi pedestrians per specific period; and, 𝜆𝑖 is 

the Poisson parameter, which is equal to the expected number of pedestrians or bicycles per 

specific period. 

For estimating Poisson regression, the Poisson parameter needs to be calculated as a 

function of independent variables. The relationship between the Poisson parameter and the 

variables is usually determined using a log-linear model: 
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𝜆𝑖 = exp (𝛽𝑋𝑖) 

where 𝑋𝑖 is the vector of independent (explanatory) variables, and β is the vector of estimable 

parameters. Estimating this model would be much easier using the log of the likelihood (LL) 

function: 

𝐿𝐿(𝛽) = �[−𝑒𝑥𝑝(𝛽𝑋𝑖) + 𝑦𝑖𝛽𝑋𝑖 − ln (𝑦𝑖!)]
𝑛

𝑖=1

 

3.2.2.1. Poisson regression goodness-of-fit measures 

Two measures for evaluating the goodness of fit for the Poisson model are ρ2 and 

adjusted ρ2: 

𝜌2 = �1 −
𝐿𝐿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

𝐿𝐿𝑏𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙
� 

𝜌𝑎𝑑𝑗2 = �1 −
𝐿𝐿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 − 𝐾

𝐿𝐿𝑏𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙
� 

where 𝐿𝐿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 is the log-likelihood function of the estimated model, 𝐿𝐿𝑏𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙 is the 

log-likelihood function of the base (constant only) model, and K is the number of estimated 

parameters in the model.  

3.2.2.2. Assumption of Poisson Models and Over-Dispersion Test 

For properly modeling the count data using Poisson regression, the assumption of equality 

between the mean and the variance needs to be satisfied, i.e., E (yi) = Var (yi). Otherwise, the 

data are said to be over-dispersed if E (yi) < Var (yi) or under-dispersed if E (yi) > Var (yi). In 

cases where the mean does not equal the variance, it is more appropriate to model the count data 

using negative binomial regression. 
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Cameron and Trivedi (1990) provided an over-dispersion test. According to this test, the 

null (H0) and alternative (HA) hypotheses are defined as follows: 

𝐻0:𝑉𝑎𝑟 (𝑦𝑖) = 𝐸(𝑦𝑖) 

 𝐻𝐴:𝑉𝑎𝑟 (𝑦𝑖) = 𝐸(𝑦𝑖) + 𝛼𝑔�𝐸(𝑦𝑖)� 

where α  is the over-dispersion parameter, 𝐸(𝑦𝑖) is the predicted count, and 𝑔�𝐸(𝑦𝑖)� is a 

function of the predicted count and equals: 

𝑔�𝐸(𝑦𝑖)� = 𝐸(𝑦𝑖) 

      or 

𝑔�𝐸(𝑦𝑖)� = 𝐸(𝑦𝑖)2 

This test is conducted by estimating a simple linear regression, where variable Zi is regressed on 

Wi: 

𝑍𝑖 = 𝑏𝑊𝑖 

𝑍𝑖 =
�𝑦𝑖 − 𝐸(𝑦𝑖)�

2
− 𝑦𝑖

√2𝐸(𝑦𝑖)
 

𝑊𝑖 =
𝑔�𝐸(𝑦𝑖)�

√2
 

According to this test, H0 is rejected if parameter b in the regression model (𝑍𝑖 = 𝑏𝑊𝑖) is 

statistically significant in either case of 𝑔�𝐸(𝑦𝑖)� = 𝐸(𝑦𝑖) or 𝑔�𝐸(𝑦𝑖)� = 𝐸(𝑦𝑖)2. This means 

that the Poisson regression assumption is not satisfied, and the data would be modeled more 

appropriately using negative binomial regression.  
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CHAPTER 4. REGRESSION MODELS RESULTS AND VALIDATION 

In the first two sections of this chapter the results of the linear and Poisson regression models are 

presented. Then the results of the over-dispersion test are discussed. In section 4, the results of 

the linear regression models are compared versus the results of the Poisson regression models. 

Finally, in the last section the developed prediction models are validated using another set of 

count data. 

In this research, SPSS 20.0 was used to find the best multiple linear and Poisson 

regression models for predicting pedestrian and bicycle trip volumes. In the first step all the 

explanatory variables and count data were imported into the SPSS software. 

To calibrate the regression models different pedestrian and bicycle count data were 

reviewed selected from different time intervals throughout the day. These count data are as 

follows: 

• AM peak hour from 7:00 to 9:00. 

• Noon peak hour from 11:00 to 13:00. 

• PM peak hour from 16:00 to 18:00. 

• 8-hour count done throughout the day: Sum of the AM peak, noon peak, and PM peak 

counts. 

• Average number of counts during AM peak which is the average number of 

pedestrian/bicycle volumes per hour for the intervals 7:00 to 8:00 and 8:00 to 9:00. 

• Average number of counts during noon peak which is the average number of 

pedestrian/bicycle volumes per hour for the intervals 11:00 to 12:00 and 12:00 to 13:00. 
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• Average number of counts during PM peak which is the average number of 

pedestrian/bicycle volumes per hour for the intervals 16:00 to 17:00 and 17:00 to 18:00. 

Table 4.1 and 4.2 show different non-motorized count data and the corresponding 

descriptive statistics. 

 

Table  4.1. Pedestrian Count Data Descriptive Statistics 

Variable Name Description Number of 
intersections Mean Std. Dev. 

Ped_7_9_AM_Peak Number of pedestrians crossing 
the intersection during AM peak hour 34 110 128.9 

Ped_Ave_AM_Peak 
Average number of pedestrians 
crossing the intersection per an hour 
during AM peak  

34 55.3 63.5 

Ped_11_13_AM_Peak 
Number of pedestrians crossing 
the intersection during noon peak 
hour 

34 106.1 123.9 

Ped_Ave_Noon_Peak 
Average number of pedestrians 
crossing the intersection per an hour 
during noon peak  

34 53.3 61.1 

Ped_16_18_AM_Peak Number of pedestrians crossing 
the intersection during PM peak hour 34 144.1 147.8 

Ped_Ave_PM_Peak 
Average number of pedestrians 
crossing the intersection per an hour 
during PM peak  

34 72.3 73.9 

Ped_Daily 
Number of pedestrians crossing the 
intersection during 8 hours 
throughout the day 

34 260.3 260.0 
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Table  4.2. Bicycle Count Data Descriptive Statistics 

Variable Name Description Number of 
intersections Mean Std. Dev. 

Bike_7_9_AM_Peak 
Number of bicycles crossing 
the intersection during AM peak 
hour 

34 23.3 18.8 

Bike_Ave_AM_Peak 
Average number of bicycles 
crossing the intersection per an hour 
during AM peak  

34 11.9 9.4 

Bike_11_13_AM_Peak 
Number of bicycles crossing 
the intersection during noon peak 
hour 

34 11.4 12.2 

Bike_Ave_Noon_Peak 
Average number of bicycles 
crossing the intersection per an hour 
during Noon peak  

34 6.0 6.2 

Bike_16_18_AM_Peak 
Number of bicycles crossing 
the intersection during PM peak 
hour 

34 28.0 18.6 

Bike_Ave_PM_Peak 
Average number of bicycles 
crossing the intersection per an hour 
during PM peak  

34 14.3 9.4 

Bike_Daily 
Number of bicycles crossing the 
intersection during 8 hours 
throughout the day  

34 50.4 45.8 

 
Different linear regression models were developed and examined to identify the count 

data that can best be modeled using the available explanatory variables. According to the results 

in Tables A.1 to A.14 in Appendix A, the best regression models were developed when average 

number of pedestrians or bicycles during PM peak hour was selected as the dependent variable 

of the models. This may be explained by the fact that a significant share of walking and biking 

trips are usually conducted during PM peak and have recreational and shopping purposes. Most 

of these trips are done after the school or work hours, or on the way home from school or work. 

Therefore, it can be argued that PM counts can reflect better non-motorized trips such as 

shopping and recreational trips in addition to commute trips as compared to AM and noon 

counts. However AM and noon peak counts can still be used for estimating AM and noon 
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pedestrian volumes.in addition, since the results of the regression models are average pedestrian 

volumes during PM peak hours, they should be adjusted using the peak hour factors to have the 

maximum number of pedestrians or cyclists for designing purposes. 

Therefore, further statistical analysis was conducted using average number of bicycle and 

pedestrian volumes during PM peak to find the best Linear and Poisson regression models with 

the highest possible adjusted R-squared and adjusted ρ-squared, respectively. 

4.1. Results of the Multiple Linear Regression Models 

In order to find the best bicycle and pedestrian linear regression models the following method 

was applied: 

a. Explanatory variables that had a high correlation with non-motorized volumes were selected. 

b. Among the selected variables, those variables that had a high correlation with each other were 

removed. 

c. Variables that were not statistically significant were removed from the model. 

d. Finally, the model with the best overall fit and highest adjusted coefficient of determination 

(R2
adjusted) was selected. 

Tables 4.3 and 4.4 show the coefficients for the calibrated linear regression models for 

estimating pedestrian and bicycle travel demand. The regression models were both statistically 

significant with a confidence level of 99.9%. The t-statistics of all parameters were statistically 

significant and had the proper sign.  

The adjusted R2 for the pedestrian and bicycle prediction models were 0.921 and 0.900, 

respectively, which shows that the models fit the data and could provide a good estimation of 

non-motorized travel demand.  
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4.1.1. Linear Regression Model for Pedestrians 

Table 4.3 shows the explanatory variables for calibration of the pedestrian linear regression 

model. The positive sign of the explanatory variables coefficients indicates that these variables 

had a positive effect on the pedestrian volumes at intersections. 

The number behind the variable indicates the buffer zone to which the variable belongs. 

For example, School_0.50 indicates the total number of schools in the buffer zone of 0.50 miles 

around the intersection. 

Table  4.3. Multiple Linear Regression Model for Pedestrians 
Dependent Variable = Ped_Ave_PM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -213.7520 41.421 -5.161 0.000 
Bus_Stop_0.10* 7.9988 3.351 2.387 0.025 
Commercial_0.25 2.5400 0.730 3.500 0.002 
Transit_User_0.50 0.1812 0.039 4.662 0.000 
BusFrequency_0.75 0.0910 0.330 2.711 0.005 
Street-Length_0.50 0.0040 0.001 2.957 0.007 
Pathway_0.25 25.5860 11.552 2.215 0.036 
School_0.50 15.4880 3.442 4.499 0.000 
Job_0.75 0.0074 0.002 4.758 0.012 

Overall Model 
R2 0.940 
R2

adj 0.921 
Sig. 0.000 

 * The number behind the variable indicates the buffer zone to which the 
 variable belongs. 

According to this model, better transportation services, such as higher bus frequency and 

more bus stops, can help attract higher pedestrian volumes at intersections since walking is a 

vital part of public transportation. The positive sign of variables such as commercial space, 

number of jobs and number of schools indicates that having high-density, mixed-use 
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communities can also increase pedestrian travel demand.  

Street-Length_0.50 shows the centerline kilometers of streets in a 0.5-mile buffer zone. 

This variable can be interpreted as connectivity. Increasing the number of streets with pedestrian 

sidewalks in a certain buffer area results in a denser street network in that area, which improves 

connectivity. Better connectivity in an area can increase pedestrian volumes.  

Moreover, the calibrated pedestrian model indicates that pedestrian facilities, such as 

separate pathways, can encourage people to walk more. This may be attributed to the fact that 

intensifying the pedestrian pathway network and building separate pedestrian pathways may 

result in improved pedestrian and cyclist safety, since these pathways are mostly located at a 

distance from streets and roads. This would result in a decrease in non-motorized exposure and, 

thus, increase the volume of the active travel modes.  

The pedestrian prediction model also shows that the frequency of walking is higher 

among transit users since walking is a vital part of public transportation. 

4.1.2. Linear Regression Model for Cyclists 
Table  4.4. Multiple Linear Regression Model for Cyclists 

Dependent Variable = Bike_Ave_PM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Institutional_0.50* 0.664 0.090 7.785 0.000 
Residential_Low_0.10 2.250 0.360 6.207 0.000 
Commercial_0.10 2.030 0.680 2.966 0.006 
Lane -0.504 0.158 -3.197 0.003 
Bus_Stop_0.25 1.218 0.359 3.396 0.002 

Overall Model 
R2 0.915 
R2

adj 0.900 
Sig. 0.000 

 * The number behind the variable indicates the buffer zone to which the 
 variable belongs. 
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The coefficients of the bicycle linear regression model are shown in Table 4.4. According 

to this table, land-use variables such as Institutional_0.50, Residential_Low_0.10, and 

Commercial_0.10 have positive signs and indicate the positive impact of high density and mixed 

land use on bicycle volumes. In this research different residential variables were used including 

low density, medium density, and high density residential. However, since the amount of high 

and medium density residential in Calgary is very low these variables are not included in the 

regression models. and it can be said that in this research the low density residential variable 

represents the general residential land use in Calgary. 

The variable Lane is defined as the total number of street lanes reaching the intersection 

in all directions. The negative impact of this variable may be attributed to safety problems that 

cyclists have on wide streets. According to the 2009 University of Calgary Commuter Cyclist 

Survey Report (Twaddle and Hall, 2009), the first barrier to the potential cyclist commuters was 

the lack of safe routes for cyclists. This report also mentioned that the three most requested on-

route improvements by current and potential cyclists were the provisions of “more bicycle lanes 

on city roads, more pathways and more direct cycle routes” (Twaddle and Hall, 2009). 

Therefore, considering both the bicycle prediction model and the 2009 University of Calgary 

Commuter Cyclist Survey Report, by allocating one lane of street lanes to cyclists, there will be 

an increase in bicycle trip volumes. These findings highlight the important role that road 

narrowing plays as an efficient traffic calming technique that forces motorists to reduce their 

speeds, thereby resulting in improved safety for cyclists and attracting more cyclists to use the 

infrastructure.  

Using a bicycle in combination with transit may be a reason for the positive impact of the 
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number of bus stops on bicycle demand. In Calgary, some bus routes are provided with bike 

racks (the City of Calgary, Calgary Pathways and Bikeways map, 2012). Cyclists are also able to 

use Calgary’s light rail transit (C-Train) on weekends and during non-peak weekday hours (the 

City of Calgary, Calgary Pathways and Bikeways map, 2012). Another reason for the positive 

impact of the number of bus stops on bicycle volumes may be a greater willingness of transit 

users to use bicycles. 

4.2. Results of the Poisson Regression Models 

For developing the Poisson regression model, independent variables were selected according to 

the following four steps: 

a. Variables with a low correlation (|ρ|<0.2) with the dependent variable were removed. 

b. Independent variables that had a high correlation (|ρ|<0.650) with each other were 

removed. 

c. Independent variables that were not statistically significant at a significance level of 

0.05 were removed from the model. 

d. Finally, the Poisson model with the highest adjusted ρ2 value was selected. 

Tables 4.5 and 4.6 show the coefficients and goodness of fit measures for the calibrated 

Poisson regression models for estimating pedestrian and bicycle travel demand. The adjusted ρ2 

value for the calibrated pedestrian and bicycle Poisson regression models were 0.790 and 0.321, 

respectively. Both models were statistically significant at a confidence level of 99.9%. 

4.2.1. Poisson Regression Model for Pedestrians 

All explanatory variables in the pedestrian Poisson regression model were positive and had a 

positive effect on pedestrian volumes. The variable Dwell_0.50 shows the number of dwelling 
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units in a 0.50-mile buffer zone and indicates that an increased number of dwelling units and, 

thus, denser population results in an increase in pedestrian travel demand.  

Other variables in this model have the same interpretations as those discussed for the 

pedestrian linear regression model. 

 

Table  4.5. Poisson Regression Model for Pedestrians 
Dependent Variable = Ped_Ave_PM_Peak 
Variable Name Coefficient Std. Error Sig. 
Bus_Stop_0.10* 0.0730 0.0220 0.001 
StreetLength_0.50 0.0771 0.0023 0.000 
BusFrequency_0.75 0.0017 0.0002 0.000 
Dwell_0.50 0.0003 0.0000 0.000 
Commercial_0.25 0.0498 0.0035 0.000 
School_0.50 0.2100 0.0175 0.000 
Pathway_0.25 0.2590 0.0708 0.000 

Overall Model 
LL(β) -203.128 
LL(0) -999.394 
ρ2 0.797 
ρ2

adj 0.790 
Sig. 0.000 

 * The number behind the variable indicates the buffer zone to 
 which the variable belongs. 
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4.2.2. Poisson Regression Models for Cyclists 

The explanatory variables in the bicycle Poisson regression model were exactly the same as 

those in the bicycle linear regression model and had the same interpretations. 

Table  4.6. Poisson Regression Model for Cyclists 
Dependent Variable = Bike_Ave_PM_Peak 
Variable Name Coefficient Std. Error Sig. 
Constant 1.5570 0.2518 0.000 
Commercial_0.10* 0.1560 0.0389 0.000 
Lane -0.0200 0.0104 0.055 
Residential_Low_0.10 0.1413 0.0258 0.000 
Bus_Stop_0.25 0.0590 0.0186 0.002 
Institutional_0.50 0.0341 0.0036 0.000 

Overall Model 
LL(b) -105.261 
LL(0) -162.312 
ρ2 0.351 
ρ2

adj 0.321 
Sig. 0.000 

 * The number behind the variable indicates the buffer zone to 
 which the variable belongs. 
 

4.3. Over-Dispersion Test 

The theoretical background of the over-dispersion test was explained in Chapter 4. This section 

discusses how the over-dispersion test was conducted for bicycle and pedestrian Poisson 

regression models. 

The over-dispersion test, as proposed by Cameron and Trivedi (1990), was conducted for 

the calibrated Poisson regression models. According to this test, both the pedestrian and bicycle 

Poisson regression models’ p-values for coefficient b were not statistically significant, at a 

confidence level of 95%, under different cases of 𝑔�𝐸(𝑦𝑖)� = 𝐸(𝑦𝑖) and 𝑔�𝐸(𝑦𝑖)� = 𝐸(𝑦𝑖)2. 
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This shows that the data did not have any over-dispersion and that the assumption of Poisson 

regression was satisfied in both prediction models. Therefore, there is no need to model the data 

using negative binomial regression model and the data can be modeled properly with the aid of 

Poisson regression model. 

Table 4.7 shows the results of the p-value for coefficient b in different cases, according to 

the over-dispersion test.  

Table  4.7. Over-Dispersion Test 

Poisson Regression Model 
g(E(yi)) = E(yi) g(E(yi)) = E(yi)2 

b p-value b p-value 
Pedestrian 0.023 0.236 0.000 0.814 

Bicycle -0.011 0.556 0.000 0.489 
 

4.4. Comparing the results of linear and Poisson regression models 

In this section the results of the linear regression models are compared with the results of the 

Poisson regression models.  

4.4.1. Pedestrian prediction models 

Figures 4.1 and 4.2 show observed values versus predicted values of pedestrian demand for 

linear and Poisson regression models, respectively. Points neighboring the 45 degree line 

indicate the lower error in perdicted values in comparison with the observed values. The Pearson 

correlations between observed and forecast pedestrian travel demand were 0.970 and 0.971 in 

linear and Poisson regression models respectively. The correlations values are very close to each 

other and both of them are very high. 
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Figure  4.1. Correlation between observed and predicted pedestrian counts for linear regression 

model.  

 

 
Figure  4.2. Correlation between observed and predicted pedestrian counts in Poisson regression 

model. 
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The linear and Poisson regression models residuals are demonstrated in Appendix B in 

Figures B.1 and B.2, respectively. Differences between observed and predicted values of 

pedestrian travel demand ranged between almost zero to 40 in linear regression model and zero 

to 50 in Poisson regression model. 

Presented graphs in this section indicate that none of the multiple linear and Poisson 

regression models for estimating pedestrian travel demand is better or worse than the other one. 

Both models can be used for forecasting pedestrian volumes in Calgary. 

4.4.2. Bicycle prediction models  

Figures 4.3 and 4.4 show observed values versus predicted values of bicycle demand for linear 

and Poisson regression models, respectively. Points neighboring the 45 degree line indicate the 

lower error in perdicted values in comparison with the observed values. The Pearson correlations 

between observed and forecast pedestrian travel demand were 0.844 and 0.857 in linear and 

Poisson regression models respectively. The correlations values are very close to each other and 

both of them are high. 
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Figure  4.3. Correlation between observed and predicted bicycle counts in linear regression 

model. 

 

 
Figure  4.4. Correlation between observed and predicted bicycle counts in Poisson regression 

model. 
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The linear and Poisson regression models residuals are demonstrated in Appendix B in 

Figures B.3 and B.4, respectively. Differences between observed and predicted values of 

pedestrian travel demand ranged between almost zero to 11 in both linear and Poisson regression 

models. 

Presented graphs in this section and in Appendix B indicate that none of the multiple 

linear and Poisson regression models for estimating bicycle travel demand is better or worse than 

the other one. As well, both models can be used for forecasting bicycle volumes in Calgary. 

4.5. Model Validation 

To validate prediction models developed in this research, a sample of 18 intersections was 

selected from Glamorgan community, a middle ring community in South West Calgary (Figure 

4.5). The explanatory variables that are needed for estimating bicycle and pedestrian travel 

demand were generated for these intersections using GIS maps and with the aid of ArcGIS 10.1 

software. The explanatory variables were then used in linear and Poisson regression models in 

order to predict bicycle and pedestrian volumes at the intersections. 
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Figure  4.5. Locations of sample intersections selected for model validation. 

 

Figure 4.6 to 4.9 demonstrate predicted values versus observed values for bicycle and 

pedestrian volumes using different prediction models. Points neighboring the 45 degree line 

indicate the lower error in perdicted values in comparison with the observed values. 
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Figure  4.6. Observed values VS predicted values using pedestrian linear regression. 

 

 
Figure  4.7. Observed values VS predicted values using pedestrian Poisson regression. 
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Figure  4.8. Predicted values VS observed values using bicycle linear regression. 

 
Figure  4.9. Predicted values VS observed values using bicycle Poisson regression. 
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The linear and Poisson regression models residuals for predicting pedestrian demand are 

demonstrated in Appendix C in Figures C.1 and C.2, respectively. Differences between observed 

and predicted values of pedestrian travel demand ranged between almost zero to 50 in linear 

regression model and zero to 30 in Poisson regression model. 

The linear and Poisson regression models residuals for predicting bicycle demand are 

demonstrated in Appendix C in Figures C.3 and C.4, respectively. Differences between observed 

and predicted values of pedestrian travel demand ranged between almost zero to 15 in linear 

regression model and zero to 17 in Poisson regression model. 

It can be seen that the majority of the predicted values are overestimated. This  may be 

due to most of the observed intersections for developing the regression models were selected 

from the arterial and collector roadway intersections in Calgary while the intersections used for 

validating the models were mostly considered as minor intersections. 

In addition to the figures discussed previously, two measures were used in order to 

determine the prediction accuracy: Pearson product-moment correlation coefficient and root 

mean square deviation. 

4.5.1. Pearson product-moment correlation coefficient 

This coefficient, rij, indicates the degree of linear association between two variables i and j, and 

ranges from +1, perfect positive correlation, to -1, perfect negative correlation. rij is given by: 

𝑟𝑖𝑗 =
𝑆𝑖𝑗
𝑆𝑖𝑆𝑗
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where 𝑆𝑖𝑗 is covariance between variables i and j. and 𝑆𝑖 and 𝑆𝑗 are the standard variations of 

variables i and j, respectively. This variable can show the predictability power of the developed 

models.  

Table 4.8 shows the values of Pearson correlation between observed and predicted values 

for linear and Poisson regression models. According to this table there are high positive 

correlations between observed and predicted values for different bicycle and pedestrian 

prediction models. 

Table  4.8. Pearson Correlations between Observed Values and Predicted Values 

Observed 
Values 

Bicycle Prediction Values Pedestrian Prediction Values 
Linear 

Regression 
Poisson 

Regression 
Linear 

Regression 
Poisson 

Regression 
Pedestrian NA* NA 0.634 0.633 

Bicycle 0.586 0.592  NA NA 
* Not Applicable 

 

4.5.2.Root mean square deviation 

The root mean square deviation (RMSD) or root mean square error (RMSE) is usually used to 

measure the differences between observed values and predicted values. The RMSD is a good 

accuracy measure to compare forecasting errors of different models for a particular variable. The 

RMSD ranges from zero to infinity. And the lower values indicate less variance in residuals. 

RMSD is expressed as: 

𝑅𝑀𝑆𝐷 = �∑(𝑦�𝑖 − 𝑦𝑖)2

𝑛
 

where 𝑦�𝑖 is the predicted value and 𝑦𝑖 is the actual value.  
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Table 4.9 shows the RMSE values for different prediction models for estimating bicycle 

and pedestrian volumes. 

Table  4.9. RMSE Values for Different Prediction Models 
Pedestrian Linear 

Model 
Bike Linear 

Model 
Pedestrian 

Poisson Model 
Bike Poisson 

Model 
19.182 7.8023 16.635 7.161 

 

According to this table bicycle linear and Poisson regression models have similar prediction 

accuracy. This table also indicates that the pedestrian Poisson regression model has slightly 

better prediction accuracy than pedestrian linear regression model. 

4.6. Summary 

In this chapter the results of the developed linear and Poisson regression models for predicting 

bicycle/pedestrian trip volumes were presented. 

According to the pedestrian models the following suggestions can be made in order to 

encourage more people to shift to walking mode: 

• Enhancing transportation services with higher bus frequency and more bus stops. As well 

as encouraging more people to use public transit services. 

• Developing high-density and mixed-use communities. 

• Improving street network connectivity. 

• Providing more extensive and safer pedestrian infrastructure such as separate pedestrian 

pathway network. 
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Considering the results from the bicycle regression models, the following 

recommendations can be implemented in order to encourage more people to use bicycles as 

their preferred travel mode: 

• Applying traffic calming policies in order to increase cyclists’ safety. 

• Allocating separate on street lanes for bike users. 

• Developing high-density and mixed-use communities. 

• Improving transit and bike integration. 
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CHAPTER 5. SUMMARY AND DISCUSSIONS 

This chapter presents the concluding comments of this thesis and suggests directions for future 

research. Overall conclusions and discussions are presented in section 5.1. Section 5.2 presents 

the author’s perspective on the contributions of the research to the non-motorized demand 

modeling problem. Section 5.3 discusses the limitations and shortcomings in the research. 

Finally, section 5.4 describes the recommendations for future works. 

5.1. Conclusions 

The aim of this study was the development of prediction models for estimating non-motorized 

travel demand in the City of Calgary, Canada. For each pedestrian and bicycle demand, two 

empirical models were developed — one multiple linear regression model and one Poisson 

regression model — in order to relate pedestrian/bicycle counts to land-use variables, socio-

economic characteristics and transportation services.  

The required data — bicycle and pedestrian counts, GIS, transportation, and 

socioeconomic data — for developing the regression models were obtained from different 

sources including the City of Calgary, Spatial and Numeric Data Services at the University of 

Calgary, Calgary transit, census data, etc. Using these data and with the aid of ArcGIS software 

108 explanatory variables were defined and reviewed for calibrating the regression models. 

The developed pedestrian and bicycle linear regression models had adjusted R2 values of 

0.921 and 0.900, respectively; and, the models were statistically significant at a significance 

level of 0.01. The Poisson regression models for estimating bicycle and pedestrian travel demand 

had adjusted ρ-squared values of 0.790 and 0.321, respectively; and, the models were 

statistically significant at a significance level of 0.01. Although these values were not very high 
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in comparison with the R-squared values, the results of the Poisson regression models were 

almost the same as the results of the linear regression models. This was shown by comparing the 

graphs demonstrated correlations between observed and predicted values for both linear and 

Poisson regression models, and also by examining the residual values for these models. The 

Pearson correlations between observed and forecast travel demand in linear and Poisson 

regression models were also close to each other. In addition, the over-dispersion test showed that 

the data can be modeled properly using Poisson regression model and there is no need to model 

them with aid of negative binomial regression model. 

Moreover, the validation process conducted for a sample of 18 intersections in Calgary 

showed that the bicycle and pedestrian prediction values estimated using linear and Poisson 

regression models have adequate predictability. Additionally, the predictabilities of both linear 

and Poisson regression models are almost in the same level. 

The models developed in this research can be used to assess the role of urban design and 

built environments, such as increases in population and employment density, mixed land use and 

building of complete streets in Calgary’s middle ring communities, on the demand for active 

travel modes. Moreover, the model can be used to estimate the qualitative impact of development 

scenarios and transportation policies on pedestrian and bicycle demand. The developed 

prediction models in this research indicate that improved pedestrian and bicycle infrastructure, 

such as improved pedestrian network connectivity and pathway length, improved transportation 

service integration, such as transit and bicycle integration, and safer routes for pedestrian and 

cyclists make a significant contribution to increasing non-motorized travel volumes. 

The calibrated empirical models may also be used to predict future non-motorized travel 
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demand for improving non-motorized infrastructure in different parts of the city or for 

conducting bicycle/pedestrian safety and public health studies. Moreover, these models can be 

used to estimate non-motorized travel demand at intersections with no available counts. The 

method in this research is a straight-forward statistical analysis for practitioners, and the needed 

data is relatively easy to access. 

5.2. Research Contributions 

According to the literature, in the field of non-motorized prediction models the focus of most 

studies is the development of pedestrian estimation models in areas in the United States. Most of 

these models do not have an acceptable goodness of fit, and some of the explanatory variables 

used in these models are not statistically significant. Therefore, most of the current pedestrian 

models are not capable of predicting future pedestrian volumes with reasonably high accuracy. 

The application of these models is most often limited to identifying the land-use and 

transportation element variables affecting the frequency of walking. Furthermore, despite these 

efforts, there is still a lack of an applicable model for the estimation of pedestrian and bicycle 

volumes in Canadian cities, especially for a highly auto-oriented city, such as Calgary.  

Thus, the developed regression models in this thesis made the following contributions: 

i. Introducing the first bicycle regression model in Canada, and first pedestrian regression 

model in Calgary: 

The developed cyclist regression models in this research are the first bicycle prediction 

models calibrated for a Canadian city. Additionally, the developed pedestrian regression models 

are the first pedestrian prediction models calibrated for the City of Calgary. 

v. Having the ability to predict future bicycle/pedestrian travel demand: 
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This study adopts a sketch plan approach to model pedestrian and cyclist volumes in 

Calgary. The developed models have a relatively high goodness of fit, and all explanatory 

variables in these models are statistically significant. Therefore, these models can be used for the 

purpose of predicting bicycle and pedestrian travel demand as well as determining the variables 

that affect the frequency of walking and biking. 

vi. Considering the effect of road narrowing and traffic calming technique on bicycle travel 

demand: 

The variable Lane, which is defined as the total number of street lanes reaching the 

intersection, is introduced in this research for the first time. The negative impact of this variable 

on the bicycle trip volumes indicates that the cyclists are more willing to bike in narrower streets, 

which is attributed to safety problems that cyclists have on wide streets. This variable also 

highlights the important role that road narrowing plays as an efficient traffic calming technique 

that forces motorists to reduce their speeds, thereby resulting in improved safety for cyclists and 

attracting more cyclists to use the infrastructure.  

vii. Introducing the variable “Street-Length” to consider the impact of connectivity on 

pedestrian travel demand: 

The variable Street-Length is another variable introduced in this research for the first 

time. This variable shows the centerline kilometers of streets in a specific buffer zone around the 

intersection and can be interpreted as connectivity. Increasing the number of streets with 

pedestrian sidewalks in a certain buffer area results in a denser street network in that area, which 

improves connectivity; and, better connectivity in an area can increase pedestrian volumes.  
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5.3. Limitations 

As is the case with any research, this research suffers from its limitations and shortcomings. The 

first limitation that can be named for this research is that the sample size of observed 

intersections is small since only 34 intersections used for the development of the regression 

models. With this small sample size of 34 intersections, some important variables that were not 

captured and were not included in the models, may have a significant relationship with non-

motorized trips. 

The second limitation is in the method used for counting pedestrians at the intersections. 

In pedestrian count data, pedestrians who crossed more than one leg of the intersection were 

counted multiple times. Moreover, pedestrians crossing the streets far from the intersections and 

right-turning pedestrians on the sidewalk were not counted because they did not cross the 

roadway. 

The pedestrian and bicycle count data provided to this research were taken in different 

years from 2007 to 2012. This requires that the corresponding explanatory variables to be in the 

same year as the intersection counts are. However, some of the explanatory variables such as 

land use, pathways and bikeways, and number of schools are just available for the year 2012. 

This was justified by the fact that most recent urban development is taking place in the outskirts 

of the city with little development taking place around the intersections with observation counts. 

Land use variables including commercial space, residential space, direct control space, 

industrial space, major infrastructure, parks, educational space, and recreational space are only 

the footprint of different types of land uses in Calgary. Since there were no data available about 

the building type and the number of floors for each building, these variables only indicate a 
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rough estimation of different land use spaces in Calgary. 

5.4. Future Works 

The following future research can be considered imminent to the presented work and are 

suggested as: 

• The number of observed intersections used for the development of the regression models 

should be extended to include more intersections in the City of Calgary.  

• Due to the lack of data, some explanatory variables, such as: the number of private cars 

owned by families; weather conditions; sidewalk coverage; existence of bicycle racks; and the 

existence of vehicle parking and the number of different land use parcels (except number of 

dwelling units) were not examined in this research in the development of the regression models. 

These variables may be considered for calibrating the regression models in future work. 

• New bicycle/pedestrian prediction models may be developed for downtown Calgary, as the 

downtown street network, land use, and travel patterns are completely different from the other 

parts of the city. 

• The models developed in this research were calibrated for the City of Calgary. Different 

non-motorized prediction models can be developed for other Canadian cities or other countries. 

• In this research a sample of 18 intersections were used for conducting model validation, in 

the future a larger sample may be used for validating the developed non-motorized prediction 

models.  

• Using the developed models in this research, the estimated non-motorized travel demand 

may be predicted under different land use and transportation scenarios and the results may be 
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simulated using micro-simulation software. Using this means the predicted traffic behaviour will 

be visually represented through animation to enable politicians and stakeholders to fully perceive 

the impacts and consequences of different proposed scenarios. 

• For collecting non-motorized count data more accurately, smart phone applications can be 

used to collect information on non-motorized trips in a given buffer zone. This will alleviate the 

limitations of the data collection effort and avoid doubly counting the pedestrian and bike 

volume. It will also take into consideration the non-motorized trips activity in a larger buffer 

zone rather than only on major intersections.  
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APPENDIX A. PEDESTRIAN LINEAR REGRESSION MODELS 

Tables A.1 to A.7 show pedestrian linear regression models developed using stepwise 

method: 

Table  A.1. Linear Regression Model for Morning Pedestrian Volumes 
Dependent Variable = Ped_7_9_AM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -83.8650 32.630 -2.570 0.015 
Commercial_0.50 0.0004 0.000 4.329 0.000 
School_0.50 51.6180 11.600 4.450 0.000 
Km_BusRoute_0.25 0.0090 0.004 2.604 0.014 

Overall Model 
R2 0.633 
R2

adj 0.596 
Sig. 0.000 

 
 
 

Table  A.2. Linear Regression Model for Average AM Peak Pedestrian Volumes 
Dependent Variable = Ped_Ave_AM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -41.5670 16.311 -2.548 0.016 
Commercial_0.50 0.0002 0.000 4.329 0.000 
School_0.50 25.7960 5.798 4.449 0.000 
Km_BusRoute_0.25 0.0050 0.002 2.597 0.014 

Overall Model 
R2 0.633 
R2

adj 0.596 
Sig. 0.000 
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Table  A.3. Linear Regression Model for Noon Pedestrian Volumes 
Dependent Variable = Ped_11_13_Noon_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -83.6670 35.130 -2.382 0.024 
Commercial_0.1 0.0030 0.001 4.627 0.000 
Transit_Users_0.75 0.1360 0.054 2.496 0.018 
School_0.50 24.3610 11.282 2.159 0.039 

Overall Model 
R2 0.633 
R2

adj 0.596 
Sig. 0.000 

 
 
 
 
 

Table  A.4. Linear Regression Model for Average Noon Peak Pedestrian Volumes 
Dependent Variable = Ped_Ave_Noon_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -41.7990 17.569 -2.379 0.024 
Commercial_0.1 0.0020 0.000 4.624 0.000 
Transit_Users_0.75 0.0680 0.027 2.503 0.018 
School_0.50 12.2330 5.642 2.168 0.038 

Overall Model 
R2 0.633 
R2

adj 0.597 
Sig. 0.000 
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Table  A.5. Linear Regression Model for Evening Pedestrian Volumes 
Dependent Variable = Ped_16_18_PM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -164.9260 27.598 -5.976 0.000 
JOB_0.75 0.0120 0.004 3.164 0.004 
Commercial_0.1 0.0020 0.000 5.852 0.000 
Transit_Users_0.75 0.1430 0.047 3.064 0.005 
BusFrequency_0.75 0.0003 0.000 3.836 0.001 
POP_P65_0.75 0.1170 0.045 2.619 0.014 

Overall Model 
R2 0.916 
R2

adj 0.901 
Sig. 0.000 

 
 
 
 

Table  A.6. Linear Regression Model for Average PM Peak Pedestrian Volumes 
Dependent Variable = Ped_Ave_PM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -82.1450 13.781 -5.961 0.000 
JOB_0.75 0.0060 0.002 3.162 0.004 
Commercial_0.1 0.0010 0.000 5.850 0.000 
Transit_Users_0.75 0.0710 0.023 3.064 0.005 
BusFrequency_0.75 0.0001 0.000 3.850 0.001 
POP_P65_0.75 0.0590 0.022 2.623 0.014 

Overall Model 
R2 0.916 
R2

adj 0.902 
Sig. 0.000 
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Table  A.7. Linear Regression Model for Daily Pedestrian Volumes 
Dependent Variable = Ped_Daily 
Variable Name Coefficient Std. Error t Sig. 
(Constant) -160.3560 64.279 -2.495 0.018 
Km_BusRoute_0.75 0.0050 0.001 4.150 0.000 
School_0.50 85.0970 22.732 3.744 0.001 
Commercial_0.50 0.0010 0.000 4.359 0.000 

Overall Model 
R2 0.653 
R2

adj 0.619 
Sig. 0.000 

 
 
 
 
Tables A.8 to A.14 show bicycle linear regression models developed using the stepwise method: 

 
 

Table  A.8. Linear Regression Model for Morning Bicycle Volumes 
Dependent Variable = Bike_7_9_AM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant 8.4210 5.014 1.679 0.103 
Institutional_0.50 0.0001 0.000 3.338 0.002 
POP_20_24_0.1 1.1770 0.423 2.781 0.009 

Overall Model 
R2 0.342 
R2

adj 0.299 
Sig. 0.002 
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Table  A.9. Linear Regression Model for Average AM Peak Bicycle Volumes 
Dependent Variable = Bike_Ave_AM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant 4.5490 2.526 1.801 0.081 
Institutional_0.50 3.80E-05 0.000 3.265 0.003 
POP_20_24_0.1 0.5870 0.213 2.753 0.010 

Overall Model 
R2 0.334 
R2

adj 0.291 
Sig. 0.002 

  
 
 
 

Table  A.10. Linear Regression Model for Noon Bicycle Volumes 
Dependent Variable = Bike_11_13_Noon_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -32.5060 4.728 -5.957 0.000 
Institutional_0.75 3.99E-05 0.000 9.538 0.000 
POP_20_24_0.1 0.6100 0.148 3.520 0.002 
Bus_Stop_0.25 1.1820 0.381 3.645 0.001 
Residential_Low_0.25 3.10E-05 0.000 1.858 0.074 
Commercial_0.1 3.06E-04 0.000 3.294 0.003 
Residential_Low_0.1 2.21E-04 0.000     
BusFrequency_0.75 1.91E-05 0.000 2.715 0.011 

Overall Model 
R2 0.856 
R2

adj 0.817 
Sig. 0.000 
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Table  A.11. Linear Regression Model for Average Noon Peak Bicycle Volumes 
Dependent Variable = Bike_Ave_Noon_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -11.6100 2.114 -5.492 0.000 
Institutional_0.75 0.0000 0.000 9.119 0.000 
POP_20_24_0.1 0.2790 0.083 3.355 0.002 
Bus_Stop_0.25 0.7570 0.207 3.665 0.001 
Residential_Low_0.1 0.0002 0.000 5.352 0.000 
Commercial_0.1 0.0001 0.000 2.998 0.006 

Overall Model 
R2 0.805 
R2

adj 0.771 
Sig. 0.000 

 
 
 

 
 

Table  A.12. Linear Regression Model for Evening Bicycle Volumes 
Dependent Variable = Bike_16_18_PM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Constant -17.0950 7.384 -2.315 0.028 
Institutional_0.50 0.0001 0.000 7.244 0.000 
Bus_Stop_0.25 2.3260 0.749 3.104 0.004 
Residential_Low_0.1 0.0010 0.000 4.860 0.000 
Commercial_0.1 0.0003 0.000 2.218 0.035 
Residential_High_0.25 0.0010 0.000 2.179 0.038 

Overall Model 
R2 0.715 
R2

adj 0.664 
Sig. 0.000 
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Table  A.13. Linear Regression Model for Average PM Peak Bicycle Volumes 
Dependent Variable = Bike_Ave_PM_Peak 
Variable Name Coefficient Std. Error t Sig. 
Institutional_0.50 0.0001 0.000 6.581 0.000 
Residential_High_0.25 0.0003 0.000 2.453 0.020 
Bus_Stop_0.25 1.1100 0.192 5.768 0.000 
Residential_Low_0.1 0.0001 0.000 4.928 0.000 

Overall Model 
R2 0.897 
R2

adj 0.883 
Sig. 0.000 

 
 
 
 
 
 
 

Table  A.14. Linear Regression Model for Daily Bicycle Volumes 
Dependent Variable = Bike_Daily 
Variable Name Coefficient Std. Error t Sig. 
Institutional_0.50 0.0003 0.000 5.883 0.000 
Residential_Low_0.1 0.0010 0.000 4.884 0.000 
Bus_Stop_0.25 6.6750 1.747 3.821 0.001 
Lane -1.9370 0.821 -2.359 0.025 

Overall Model 
R2 0.814 
R2

adj 0.789 
Sig. 0.000 
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APPENDIX B. RESIDUAL ANALYSIS FOR PREDICTION MODELS 

 
Figure  B.1. Residual analysis for pedestrian linear regression model. 

 

 
Figure  B.2. Residual analysis for pedestrian Poisson regression model. 
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Figure  B.3. Residual analysis for bicycle linear regression model. 

 

 
Figure  B.4. Residual analysis for bicycle Poisson regression model.  
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APPENDIX C. RESIDUAL ANALYSIS FOR VALIDATING PREDICTION MODELS 

 
Figure  C.1. Residual analysis for pedestrian linear regression model. 

 
Figure  C.2. Residual analysis for pedestrian Poisson regression model. 
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Figure  C.3. Residual analysis for bicycle linear regression model. 

 
Figure  C.4. Residual analysis for bicycle Poisson regression model. 
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