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Abstract

The rapid development of DNA microarray technology enables researchers to measure

the expression levels of thousands of genes simultaneously and allows biologists easily gain

insight into the complex interaction in tumours on gene expression levels. Its application in

cancer studies has been shown great success in both diagnosis and elucidating the patholog-

ical mechanism. However, DNA microarray data usually contains thousands of genes and

most of them are proved to be uninformative and redundant. Meanwhile, small size of sam-

ples of microarray data undermines the diagnosis accuracy of statistical models. Thereby,

selecting highly discriminative genes from raw gene expression data can improve the per-

formance of cancer classification and cut down the cost of medical diagnosis. This M.Sc.

thesis proposes and investigates a new method of selecting highly discriminative genes for

cancer classification based on DNA microarray data. For two-group classification problem,

the Bhattacharyya distance is proposed to measure the dissimilarity in gene expression levels

between the two groups. For any particular gene, we calculate the Bhattacharrya distance

between the two groups based on the expression levels of that particular gene. We use the

calculated distances, one for each gene, as a criteria to rank all the genes. Finally, sup-

port vector machine is utilized to obtain the optimal subset of genes achieving the lowest

misclassification rate. Compared with the other two methods, SWKC (supervised weighted

kernel clustering) (Shim et al., 2009) and SVM-RFE (support vector machine with recursive

feature elimination) (Guyon et al., 2002), the proposed method is shown to be more effective

and sensitive to differentially expressed genes. In the simulation study, the proposed method

has much higher recovery rate than the other two methods. Comparisons among these three

gene selection methods are also made through two real DNA microarray datasets, the colon

dataset and the leukemia dataset, that are publicly available. Based on three classification

performance indexes, i.e. average number of genes selected, average number of classification

errors in test set and misclassification rate, the proposed method gets slightly better clas-



sification results than SVM-RFE for the colon dataset while at a much less computation

cost. It also achieves better classification results than the SWKC methods in both datasets.

Finally, we discuss that in future work improvement in performance could be achieved by

introducing kernel density estimators and replacing Bhattacharyya distance with Hellinger

distance as a feature selection criteria. Since kernel density estimation is free of distribution

assumptions, under which the classification results would be more robust than that obtained

by the Bhattacharyya distance under normal assumption.
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Chapter 1

INTRODUCTION TO DNA MICROARRAY DATA

This chapter gives some introductory knowledge and background about microarray data. In

Section 1.1, we first introduce what microarray data is and how it is obtained. In Section

1.2, two benchmark datasets are presented, i.e. the colon data and the leukemia data, which

will be analyzed and discussed throughout this thesis.

1.1 Introduction to DNA Microarray

Over the last decades, gene expression has been receiving increasing attention by scientists

due to the development and advances in DNA microarray technology. And the DNA mi-

croarray technology allows us to measure the expression levels of a large number of genes and

to genotype multiple regions of a genome simultaneously. Meanwhile, the gene expression

levels are believed to have a profound effect on how human body behaves. Therefore, DNA

microarray techniques that have been applied in genome-wide gene expression and genome

mutation analysis shed light for scientists on the understanding of pathophysiological mech-

anisms and help physicians in diagnoses, prognoses and choosing treatment plans (Musa et

al., 2006).

A DNA microarray, also commonly known as DNA chip or biochip, is a collection of

microscopic DNA spots attached to a solid surface. Each DNA spot contains picomoles

(10−12 moles) of a specific DNA sequence, known as probes (or reporters or oligos). These

can be a short section of a gene or other DNA element that are used to hybridize a cDNA or

cRNA sample called target under high-stringency conditions. Probe-target hybridization is

usually detected and quantified by detection of fluorophore-, silver-, or chemiluminescence-

labelled targets to determine relative abundance of nucleic acid sequences in the target.
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Among all the methods for massively parallel measurements of gene expression data, two

of them have become widely accepted and used. The first one is known as the spotted cDNA

microarray technology, which is pioneered at the Stanford University. This technology is

open to the public and is widely used for academic purpose. This technology involves robotic

spotting of aliquots of purified cDNA clones, polymerase chain reaction products from clones

or oligonucleotides onto glass slides that can contain thousands of arrayed elements (Shalon

et al., 1996). The second approach is known as oligonucleotide microarray which is a patented

commercial product developed by Affymetrix, Inc (www.affymetrix.com). It employs photo-

lithography, the technology used in the manufacturing of computer chips, for embedding

DNA probes on silicon chips.

The procedure for obtaining microarray data is as follows: RNA from experimental cells

is removed at different sequential time points and then is reversely transcribed in the presence

of fluorescent dye Cy5. A reference sample, such as one taken at time 0, is also reversely

transcribed but in the presence of Cy3 and is subsequently mixed with experimental samples

containing dye Cy5. Following hybridization of these samples to the DNA microarray, the

Cy5/Cy3 ratio of each spot is measured, with the ratio being expressed as a log odds ratio

in the base 2. The color red denotes over-expression of a gene relative to the control state,

green signifies under-expression, and black indicates no change in which case the log ratio

is 0 as the Cy5/Cy3 ratio is 1 (equal absolute expression during experimental and control

states).

Although the working philosophies of the two technologies are different, according to cur-

rent literatures, there is no significant difference between them in terms of their performance.

In this thesis, the gene expression data we used here was generated by Affymetrix.
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1.2 Description of the Datasets

In this section, we introduce two datasets that we will analyze in later chapters using the

proposed method. Both datasets consist of a matrix of gene expression vectors obtained

from DNA microarray of patients. And both datasets include thousands of variables but

with small sample sizes. The first one was obtained from normal versus cancerous colon

tissues. The second dataset was obtained from leukemia patients with two different types of

leukemia.

1.2.1 Colon cancer dataset

Colon tumor is a disease in which cancerous growths are found in the tissues of colon. This

colon cancer dataset was first presented in Alon et al. (1999). It contains 62 colon tissues

samples with 2000 genes: 40 colon cancer tissues (labelled as “negative”) and 22 normal tis-

sues (labelled as “positive”). The original data is available online at http://microarray.prince

ton.edu/oncology/affydata/index.html. After pre-processing, it is a (62 tissues) × (2000

genes) data matrix that is ready for use in R, along with a vector of class index for each

tissue.

With this dataset, the task here is to classify tissues as either cancerous or normal.

Alon et al. (1999) provided a method of unsupervised learning to do the analysis, that is

hierarchical clustering on 2000 genes. They indicated that most cancerous samples cluster

together and most normal samples cluster together. One year later, Ben-Dor et al. (2000)

presented the classification of colon cancer tissues and described how to select marker genes.

Since then, this dataset has been widely used and analyzed by an increasing number of

statisticians, which makes it one of the benchmark datasets in the area of gene expression

data analysis. The same is for the leukemia dataset that will be presented below.
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1.2.2 Leukemia dataset

Leukemias are primary disorders of bone marrow. They are malignant neoplasms of hematopoi-

etic stem cells. In general, leukemia can be mainly classified into four types: acute lym-

phoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphocytic leukemia

(CLL) and chronic myelogenous leukemia (CML). The acute leukemia data was first pub-

lished in Golub et al. (1999). In this dataset, the total number of genes tested is 7129 and

the number of patients tested is 72. Those 72 are all acute leukemia patients, either ALL or

AML. In more detail, this dataset contains two subsets: a training set and an independent

test set. In the training set, there are 38 acute leukemia patients among which 27 are ALL

patients and 11 are AML patients. The independent test set includes 34 acute leukemia

patients with 20 ALL and 14 AML.

The leukemia data we used here is slightly different from that presented and studied

in Golub et al. (1999). In Dettling (2004), this data has been pre-feature selected and

standardized through an logarithm (base 10) transformation. As a result, there were actually

3571 genes after data preprocessing that were analyzed in Dettling (2004). Following Dettling

(2004), the dataset used here consists of a data matrix for 3571 gene expression values on

72 individuals (3571 by 72) along with a vector of class index (72 by 1).

Note that a number of references have worked on this leukemia data after logrithm

transformation, centering and standardization in various ways and at different stages of

analysis.

The rest of this thesis is organized as follows. In Chapter 2, we provide a review of

various approaches available in literature for microarray data analysis and some related topics

to this thesis. In Chapter 3, we first propose to use Bhattacharyya distance to measure

the dissimilarity in gene expression levels between two different classes. Then we aim to

construct a classification model with minimum classification error. Finally we present the

other two available feature selection methods for comparison. In Chapter 4, with the use of
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Bhattacharyya distance on both the simulated data and the two benchmark real microarray

datasets, we construct SVM (support vector machine) classifiers to select significant marker

genes that discriminate between case group and control group. Based on the selected marker

genes, we compare the classification results with the other two feature selection methods,

SWKC (supervised weighted kernel clustering) and SVM-RFE (SVM with recursive feature

elimination). Chapter 5 is devoted to a summary and conclusion of the comparison among

the feature selection methods for both the simulated dataset and real datasets. Chapter 5

also presents a discussion on future work to generalize the proposed feature selection method

by introducing kernel density estimators.
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Chapter 2

REVIEW OF MICROARRAY DATA ANALYSIS

TECHNIQUES

In this chapter, we give a literature review of microarray data analysis techniques. Section

2.1 gives a brief introduction to microarray data analysis and its two types of problems.

Section 2.2 is devoted to the first type of problem, i.e. feature selection, while Section 2.3

concerns the second type of problem, i.e. molecular classification. Particularly, Section 2.2

presents an overview of various approaches that are currently available for feature selection in

classification of heterogeneous diseases. Section 2.3 reviews several methods of classification,

including the SVM and the SVM-RFE algorithms that will be studied in this thesis.

2.1 Introduction

The rapid development of microarray technology has given rise to a wealth of statistical

studies that aimed at detecting significantly differentially expressed genes. DNA microarray

data has been extensively studied. Currently, there already exist a variety of data analysis

methods for DNA microarray to deal with different research of interest. In general, the data

gathered from microarrays broadly prompts two types of questions: (1) those about variables

themselves, such as, which genes or subsets of genes are associated with a specific phenotype,

biological mechanism, or outcome; and (2) those regarding biological samples, such as, what

prediction can be made about a specific tissue (Olshen et al., 2002; Clarke et al., 2008). Most

statistical methods, including clustering, easily address the first question. Pattern classifiers,

such as SVMs and other machine learning systems, however, are much better for the second

question. It is vital for scientists to use the most appropriate analysis techniques in order
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to extract the maximum amount of information from the obtained samples. In this thesis,

we mainly focus on gene selection for cancer classification. Here, gene selection, or generally

speaking feature selection, belongs to the first type of questions, while classification falls into

the second type.

As a pre-processing step for machine learning, feature selection is a process of selecting a

subset of original features so that the feature space is optimally reduced according to a certain

evaluation criterion. Feature selection has been proven to be an effective way for removing

redundant and irrelevant features, increasing efficiency in learning tasks, improving learning

performance like predictive accuracy, and enhancing comprehensibility of learned results

(Dash and Liu, 1997; Kohavi and John, 1997). In statistics, feature selection, also known as

variable selection, is the process of selecting a subset of relevant variables for constructing

statistical models. Feature selection techniques are used under the central assumption that

the data contains many redundant or irrelevant features. Redundant features are those which

provide no more information than the currently selected features, and irrelevant features

provide no useful information in any context. Feature selection techniques are a subset of

the more general field of feature extraction. Feature extraction creates new features from

functions of the original features, whereas feature selection returns a subset of the features.

Feature selection techniques are often used in domains where there are many features and

comparatively few samples such as DNA microarray data. It is also useful as part of the

data analysis process since it shows which features are important for prediction and how

these features are related. In next section, we give a detailed review of feature selection

techniques.

2.2 Feature Selection

Due to the high-dimension nature of microarray data and their small sample sizes, microarray

data pose a great challenge to computational techniques. In order to tackle the difficulties in
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analyzing microarray data, the apparent need of feature selection techniques was realized by

researchers; see, e.g. Alon et al. (1999), Golub et al. (1999), Ross et al. (2000) and Ben-Dor

et al. (2000) among many others. This has led to a recent surge of dimension reduction

approaches presented in the areas of both bioinformatics and statistics. The literature on

dimension reduction has already abounded.

Compared to other dimension reduction approaches, such as those based on compression

(e.g. using information theory) or projection (e.g. principal component analysis), feature

selection does not change the original representation of features (also called variables), but

exclusively select a subset of them. Therefore, the original semantics of features have been

preserved by feature selection techniques (Saeys et al., 2007). According to the literature,

it is wildly believed that in most microarray gene expression data, only some relevant genes

play an important role in classification and the rest of genes are irrelevant to classification.

Thus, feature selection techniques are needed in order to find out those most important

ones among all the genes that have been measured. With microarray data, the selection

of important genes for classification of different phenotypes, such as cancer types, aims

at providing a better understanding of the underlying biological system and improving the

prediction performance of classifiers (Ramaswamy et al., 2001; Tibshirani et al., 2002; Guyon

et al., 2002; Liu et al., 2005).

The objectives of feature selection are manifold. Those involved in this thesis are to

improve prediction performance of classifier, to avoid over-fitting and to provide more com-

putationally effective models. For classification problems, feature selection techniques could

be classified into three types, i.e. filter methods, wrapper methods and embedded methods,

depending on how they combine the feature selection with the construction of classification

model.
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2.2.1 Filter methods

Filter methods assess the relevance of features by looking only at the intrinsic properties of

the data. In general, they perform feature selection in two steps. In the first step, based

on a scoring criteria, an index measuring the relevance of feature is calculated. In the

second step, the low-scoring features are excluded or features falling beyond some threshold

criterion are eliminated. Afterwards, the subset of remaining features is used as the input to

the classification algorithm. Scoring methods generally focus on measuring the differences

between distributions of features. The resulting score is intended to reflect the quality of

each feature in terms of its discriminative power. Many scoring criteria exist. For example,

similar to Fisher’s discriminant criterion, Pavlidis et al. (2001) used

V (i) =
(µ+(i)− µ−(i))2

σ2
+(i) + σ2

−(i)
, (2.1)

Where

µ+(i) : mean of ith feature of class (+)

µ−(i) : mean of ith feature of class (−)

σ+(i) : standard deviation of ith feature of class (+)

σ−(i) : standard deviation of ith feature of class (−).

Here V (i) is an index of the ith feature that is expressed in terms of the difference among em-

pirical means of the two distributions and is normalized by the sum of their variances. Other

popular filter methods, which are extensions of two-class methods, include SNR (signal-to-

noise ratio) (Dudoit et al., 2002; Golub et al., 1999), Wilcoxon rank-sum rest (Thomas et

al., 2001), Student’s t-statistics (Dudoit et al., 2002; Liu et al., 2002), and BW (ratio of

between-groups to within-groups sum of squares) (Dudoit et al., 2002).

A great advantage of filter methods is that they are independent of the classification

algorithm. As a result, the feature selection procedure only needs to be performed once, and

then it can be evaluated by different classifiers. Thereby they have a short computational
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running time, and they often perform well in combinations with more robust classification

methods such as the SVM. However, there are also some limitations associated with filter

methods. Since the search in the feature subset space is independent of the search in the

hypothesis space, filter methods ignore the interaction with the classifier. Another common

disadvantage of filter methods is that most proposed methods are univariate. This means

that each feature is considered individually and independently, which may lead to worse

classification performance when compared to other types of feature selection techniques due

to ignoring feature dependencies (Li et al., 2004; Statnikov et al., 2005). To overcome this

downside, a number of multivariate filter methods were proposed.

2.2.2 Wrapper methods

Whereas filter methods select a good feature subset separately from the classification model

selection step, wrapper methods search for the best feature subset in combination with

a fixed classification method. This means wrapper methods embed the model hypothesis

search within the feature subset search. Following this idea, a search procedure in the space

of all possible feature combinations is defined and various subsets of features are generated

and evaluated. However, as the number of all combinations is in exponential with the

number of features, heuristic optimization frameworks have been applied to search for the

best subset. These include: forward selection, backward elimination (Blum and Langley,

1997), hill climbing, beam search (Russel and Norvig, 1995), and randomized algorithms

such as genetic algorithms (Koza, 1995). In general, these methods explore the space of

all feature subsets (the search space) starting with no features, all features, or a random

selection of features. A search algorithm is then “wrapped” around the classification model.

Compared with filter methods, wrapper methods have the advantage of interacting be-

tween feature subset search and model selection and have the ability to take into account

feature dependency. A common drawback of wrapper methods is that they are very computa-

tionally intensive, due to the fact that many feature subsets need to be assessed. In addition,
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they have a higher risk of over-fitting than filter methods, which generates non-reproducible

gene subsets (Li et al., 2004).

Evaluating a feature subset in any wrapper method is done by internal validation meth-

ods, such as k -fold cross-validation or leave-one-out validation (Krus and Fuller, 1982). Since

in our proposed method, cross-validation is used in the process of choosing optimal param-

eters to construct classification model, we give below a brief introduction to the concept of

cross-validation.

Cross-validation is a model validation method for evaluating how the built statistical

model will perform when generalized to an independent data set. It is often used in settings

where the goal is to predict and/or estimate how accurately a predictive model will perform

in practice. Suppose we have a model with some unknown parameters and one part of a

dataset, the training set, is used to fit the model. The unknown model parameters are

optimized in the fitting process to make the model fit the training data as well as possible.

If we then take an independent sample of validation data from the same population as the

training data, it will generally turn out that the model does not fit the validation data as well

as it fits the training data. This phenomenon is called over-fitting and it is particularly likely

to happen when the size of the training data is small or when the number of parameters in

the model is large. Cross-validation is a way to predict the fit of a model to a hypothetical

validation set when an explicit validation set is not available and to limit the problem of

over-fitting.

One round of cross-validation involves partitioning a sample of data into two complemen-

tary subsets, performing the analysis on one subset (called the training set), and validating

the analysis on the other subset (called the validation set or testing set). To reduce vari-

ability, multiple rounds of cross-validation are performed using different partitions and the

validation results are averaged over the rounds. For example, in k-fold cross-validation, the

original sample is randomly partitioned into k equal size subsamples. Of the k subsamples,
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a single subsample is retained as the validation data for testing the model and the remaining

k − 1 subsamples are used as training data. The cross-validation process is then repeated k

times with each of the k subsamples used exactly once as the validation data. The k results

from the folds can then be averaged to produce a single estimation. The advantage of this

method over repeated random sub-sampling is that all observations are used for both train-

ing and validation and each observation is used exactly once for validation. Here k remains

an unfixed parameter (Geisser, 1993). When k = n, where n is the number of observations,

the k-fold cross-validation is exactly the leave-one-out cross-validation.

2.2.3 Embedded methods

Similar to wrapper methods, embedded methods are specific to a fixed learning algorithm.

They incorporate feature selection as part of the model building process. This means that

the search for an optimal subset of features is built into the construction of classifier and

it can be seen as a search in the combined space of feature subsets and hypotheses (Saeys

et al., 2007). In this sense, embedded methods include the interaction with classification

model selection and meanwhile they are far less computationally intensive than wrapper

methods. Some classical embedded methods include CART (classification and regression

tree) (Breiman et al., 1984), RLR (regularized logistic regression) (Hastie et al., 2001) and

SVM (Burges, 1998). Each of these methods handles features differently and consequently

leads to different classification accuracies.

Regularization or shrinkage methods (Hastie et al., 2001; Xing et al., 2001) provide an

alternative way for classification with high-dimensional but small sample size data. These

methods trim the space of features directly during classification and thus effectively eliminate

the non-informative features for classification. Regularization can be incorporated either

into the error criterion or directly into the model. Let w be the parameter vector defining a

classification model (e.g., the weights of a logistic regression model) and Error(w;D) be an

error function measuring the fit of a model to the data D (e.g., least-squares as likelihood-
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based error). Then a regularized error function is then defined as

ErrorReg(w;D) = Error(w;D) + λ ‖ w ‖, (2.2)

where λ > 0 is a regularization constant and ‖ · ‖ denotes either the L1 or L2 norm.

Intuitively, the regularization term penalizes the model for non-zero weights so that the

optimization of the new error function drives all unnecessary parameters to 0. Examples

of regularization methods includes LASSO (least absolute shrinkage and selection operator)

(Tibshirani, 1996), RF-RFE (random forest with RFE) (Uriarte et al., 2006) and RRF

(regularized random forest) (Deng et al., 2011).

Regularization effects can also be applied to SVMs, which is one of the most popular

classifier (Burges, 1998; Smola, 2002). SVM defines a linear decision boundary called hy-

perplane that separates subjects into two classes. The boundary maximizes the distance

(also called margin) between the two sample groups. The effect of margin optimization is

twofold: only a small subset of data points, called support vector, are important for the

separation; the dimensions unnecessary for separation are penalized. Both aspects help to

avoid over-fitting. As a result, SVM offers a robust classification framework that performs

very well for data with a moderately large number of features and relatively small sample

size (Hauskrecht et al., 2006). In Section 2.3, we will give a more detailed review of SVM

and an embedded method based on SVM known as SVM-RFE (Guyon et al., 2002).

The advantage of embedded methods is that they select high-quality feature subsets for

a particular classifier or a specific model. Supervised learning methods that incorporate

aspects of regularization, e.g. regularized logistic regression or SVMs, can build very good

prediction models even in presence of high-dimensional data. However, as applications and

extensions of RFE, some methods are relatively computationally expensive.

Since in this thesis we study the feature selection for cancer classification, in next section

we present a review of molecular classification as the other main part of analysing DNA

microarray data after feature selection stage being finished.
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2.3 Molecular Classification

2.3.1 Classification problems

In this thesis the classification problem under our consideration is limited to two classes.

Without loss of generality, we use (+) and (-) to denote the two classes. The input, as a

“pattern”, is a vector of p components, called variables or features, measured on each of n

subjects. The output is the observed class labels for all n subjects. We use F to denote the

p-dimensional feature space. In our situation, the features are expression levels of thousands

of different genes. Thus, a given dataset consist of n vectors of features {x1,x2, . . . ,xk, ...xn}

with corresponding known class labels {y1, y2, ...yk, ...yn}. Here yk ∈ {−1, 1} with yk = −1

indicating kth subject belongs to class(-) and yk = 1 class(+). The entry for the kth subject

is then {xk, yk}. We randomly select a certain proportion of all subjects to form the training

data set. The training data is used to construct a classifier, more specifically, to build a

scalar discriminant/decision function D(x) of an input pattern x. New patterns are classified

according to the sign of the decision function as

D(x) > 0⇒ x ∈ class(+)

D(x) < 0⇒ x ∈ class(−)

D(x) = 0 decision boundary.

Decision functions that are simply weighted sums of the training patterns plus a bias are

called linear discriminant functions (Duda, 1973; Guyon et al., 2002). In this case, the

decision function can be written as

D(x) = w · x + b, (2.3)

where w is the weight vector and b is a bias value. A data set is called linearly separable if

a linear discriminant function can separate it without error.
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2.3.2 Classification approaches

The advence of gene expression microarrays makes it possible to take a genomewide ap-

proach for disease prognosis, diagnosis, and prediction of therapeutic responsiveness (Wang

et al., 2008; Clarke et al., 2008). With machine learning algorithms applied in studying the

molecular signature, new subtypes of disease are identified and new insights into biological

mechanisms and diagnostic targets emerge (Olshen et al., 2002; Clarke et al., 2008). For

example, there are plenty of literature that have demonstrated that global gene expression

profiling of a certain kind of human diseases can provide molecular classifications that re-

veal distinctive disease subtypes not evident with traditional histopathological approaches

(Golub et al., 1999; Ramaswamy et al., 2001; Shedden et al., 2003; Wang et al., 2006).

Classification methods can be generally summarized into two branches: supervised learn-

ing and unsupervised learning. Here, we will focus on the supervised learning where the class

labels are known beforehand. While molecular classification falls neatly within supervised

learning, high dimension and small size of microarray samples facilitate new developments

in not only feature selection techniques but also classifier design (Wang et al., 2008). With

supervised learning methods for gene expression data, various classifiers with promising per-

formance have been constructed. These classifiers include kNN (k-nearest neighbor rule)

(Golub et al., 1999), LDA (Fisher Linear Discriminant Analysis), weighted gene voting

(Golub et al., 1999; Tibshirani et al., 2002), SVM (Ramaswamy et al., 2001), NBC (naive

Bayes classifier) (Liu et al., 2002), linear regression (Fort and Lambert-Lacroix, 2005), arti-

ficial neural networks (Wang et al., 2006), CART (Breiman et al., 1984) and random forest

(Breiman et al., 2001). Many comparative reviews and studies indicate that SVM-based

classifiers outperform other methods on most benchmark microarray data sets (Li et al.,

2004; Statnikov et al., 2005), but in general no one classifier uniformly outperforms others.
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2.3.3 Support vector machines (SVM)

In this section, we introduce some basic concepts of SVM (Cortes and Vapnik, 1995). In

machine learning, SVMs are supervised learning models with associated learning algorithms

that analyze data and recognize patterns and they are used for classification and regression

analysis. Based on a set of training samples, each marked as belonging to one of two

categories, an SVM training algorithm builds a model that assigns new samples into one

category or the other and this makes it a non-probabilistic binary linear classifier. An SVM

model is a representation of the samples, as points in space, mapped so that samples of

separate categories are divided by a clear gap as wide as possible. New samples are then

mapped into that same space and predicted to belong to a category according to which side

of the gap they fall on. In brief, SVM is a binary classification method that discriminates

a set of data points from another. It can be roughly sketched as follows: SVM constructs

a hyperplane as the decision surface that perfectly separates each class samples with a

maximum margin, where the margin is defined as the distance from the hyperplane to the

nearest sample. The concept of SVM for classification is illustrated in Figure 2.1.

Unfortunately, for real life data, it is often difficult to clearly discriminate between positive

and negative samples. SVM tackles this problem by mapping data points into a higher

dimension space, called feature space, instead of into the input space where we find the

training samples. The feature space is so named because we name each entry in the expression

vector as a feature. Furthermore, algorithms determining the hyperplane in the feature space

can be expressed exclusively in terms of vectors in the input space and dot products in the

feature space. Consequently, the SVM, by defining a kernel function that assumes the role

of the dot product in the feature space, can identify the hyperplane without ever having to

actually represent the feature space. However, Eisen et al. (1998) mentioned that the dot

product of two normalized vectors is the simplest way to measure the similarity in expression
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Figure 2.1: SVM for classification: linear separable case.

vectors between two samples, i.e.

K(X,Y) =
−→
X ·
−→
Y =

p∑
i=1

XiYi.

By raising the kernel function to a higher power, say df , i.e.
p∑
i=1

(XiYi + 1)df , one obtains a

hyperplane of higher degrees in the input space, and for each gene there now exist df -fold

interactions between microarray measurements (Xi1, Xi2, . . . , Xidf ) in this kernel’s feature

space. In case that a linear SVM is unable to create an effective separating hyperplane, we

can implement a soft margin that allows some training samples to be misclassified. This is

also a way to control the trade-off between false positives and false negatives.

There are mainly two types of SVM in practice for classification, namely L1-SVM and

L2-SVM. Given a data set D = {(xi, yi) : i = 1, . . . , n}, where sample xi has binary class

label yi such that yi ∈ {−1, 1}. The SVM with L1-norm of the slack variables, named as
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L1-SVM, is the solution to the following constrained minimization:

min
w,ξ1,...,ξn

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}
subject to yi(wi · Φ(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, . . . , n,

(2.4)

where ξi denotes the slack variables and C is a regularization parameter adjusting the training

errors and controlling over-fitting.

The dual form of above minimization is to solve the following quadratic optimization

problem:

max
α1,...,αn

{
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)

}
subject to 0 ≤ αi ≤ C and

n∑
i=1

αiyi = 0, i = 1, . . . , n,

(2.5)

where {αi}ni=1 are the Lagrange multipliers and K(xi,xj) is the inner product of Φ(xi) and

Φ(xj) with Φ(·) a nonlinear function that projects the input pattern into a linearly separable

feature space. Function Φ is also viewed as a feature mapping function which maps the input

space to the higher dimensional feature space. In practice, K(xi,xj) is calculated through a

kernel function instead. Some popular kernel functions are available in Table 2.1.

Table 2.1: Some commonly used kernel functions in SVM

Name Formula Parameters

Linear K(u,v) = uTv (none)

Radial Basis Function K(u,v) = exp {−γ|u− v|2} γ

Sigmoid K(u,v) = tanh
{
γuTv + c0

}
γ, c0

Polynomial K(u,v) = γ(uTv + c0)
d γ, c0, d

L2-SVM uses the L2-norm of slack variables ξi in the objective function. In another word,
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L2-SVM is formulated as

min
w,ξ1,...,ξn

{
1

2
‖w‖2 +

C

2

n∑
i=1

ξ2i

}
subject to yi(wi · Φ(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, . . . , n.

(2.6)

By introducing Lagrange multipliers {αi}ni=1, one can obtain its dual form

max
α1,...,αn

{
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj

[
K(xi,xj) +

1

C

]}

subject to 0 ≤ αi ≤ C and
n∑
i=1

αiyi = 0, i = 1, . . . , n.

(2.7)

Given a new test sample x to be classified, with either type of SVM, its label can be

predicted according to the decision function

D(x) = sign

(
n∑
i=1

αiyiK(xi,x) + b

)
, (2.8)

where b is a bias value.

2.3.4 SVM with recursive feature elimination (SVM-RFE)

RFE is an instance when backward feature elimination is used to remove features based on

a criterion related to decision/discrimination function by an iterative procedure (Kohavi,

2000). SVM-RFE, an embedded feature selection technique, uses the weight magnitude as

the ranking criterion. The SVM-RFE algorithm proposed by Guyon et al. (2002) returns

a ranking of the features in a classification problem by training a SVM with a linear kernel

and removing the features with smallest rankings. This ranking criterion is the w values

of the decision hyperplane given by the SVM. Soon SVM-RFE, as an application of SVM,

became a de facto standard in the field of molecular classification (Saeys et al, 2007).

SVM is re-trained at each step to eliminate redundant features and yield better feature

subsets. It has four steps as follows.

1. Train an SVM with the training set;

19



2. Order features using the weights of the decision hyperplane given by the resulting

SVM;

3. Eliminate features with the smallest weights;

4. Repeat the steps 1-3 with the training set restricted to the remaining features.

The detailed algorithm is given below.

Input:

training samples X0 = [x1,x2, . . . ,xn]T

class labels y = [y1, y2, . . . , yn]T

Initialize:

subset of surviving features s = [1, 2, . . . , p]

ranked feature list r = [ ] ( Set empty space for vector r.)

Repeat until s = [ ] ( The algorithm stop when vector s becomes an empty set.)

{

Restrict training samples to good feature indices: X = X0 (:, s)

Train the classifier to obtain the Lagrange multipliers α: α = SVM-train(X,y)

Compute:

weight vector of dimension d =length(s): w =
∑
k

αkykxk

ranking criteria: ci = (wi)
2, i = 1, . . . , d

Find the feature with smallest ranking criterion: f = argmin(c)

Update ranked feature list: r = [s(f), r] ( At this stage, we obtain the updated

ranked feature list by adding the feature s(f) to the old ranked feature list which was

generated in the last iteration. )

Eliminate the feature with smallest ranking criterion: s = s(1 : f − 1, f + 1 : d)

}

Output: ranked feature list r
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Chapter 3

METHODOLOGIES

The proposed method in this thesis follows a similar framework to that of filter method in

feature selection for two-category classification problems. Particularly, it selects informative

genes according to their discriminative power but without considering any knowledge of the

classifier adopted. With use of DNA microarray data, we propose a new approach for marker

gene selection in cancer classification with improved classification accuracy. In Section 3.1,

we introduce the proposed method B/SVM of this thesis. Section 3.2 presents another

feature selection method SWKC proposed by Shim et al. (2009). The SWKC together with

the SVM-RFE method presented in Section 2.3.4 are used to compare with the proposed

method in terms of classification performance. The comparison results will be presented in

Chapter 4.

3.1 Bhattacharyya Distance with SVM Classifier (B/SVM)

3.1.1 Introduction

The DNA microarray technology allows us to measure the expression levels of thousands

of genes simultaneously, providing great chance for cancer diagnosis and prognosis. In this

thesis we study gene expression levels to determine the marker genes which are relevant to

a given cancer. The number of genes often exceeds tens of thousands, whereas the number

of subjects available is often no more than a hundred. Therefore, gene selection is not only

needed but also important for classification. A good subset of discriminative genes can im-

prove prediction accuracy of classifiers and save computational cost with reduced dimension

of data. So far, the most popularly used gene selection methods are based on gene ranking.

T-statistics, SNR, the Fisher’s criterion, information gain and statistics, probability of se-
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lection, RFE in its various forms are commonly used criteria for gene ranking. Considering

the fact that many cancers or classification problems are controlled by only a small number

of genes, it is valuable to find these informative genes.

In this chapter, we propose a new method for gene selection and tissue classification based

on SVM. In order to accelerate the gene selection process, we firstly calculate, for each gene,

the Bhattacharyya distance between two classes. Afterwards, we rank the genes according

to their corresponding Bhattacharyya distances. Then we evaluate certain subsets, starting

with the top-ranked gene with largest Bhattacharyya distance and progressively adding the

next one on the list until all genes are included. At last, we choose, by forward selection

method, the final gene subset based on the subsets’ individual classification ability with

SVMs. In order to improve the performance of SVM with the final gene subset, parameter

optimization of SVM is conducted. Then the SVM is trained using the parameter optimized

with the final optimal gene subset and is used to predict the testing data.

3.1.2 Bhattacharyya distance

In statistics, the Bhattacharyya distance is often used to determine the similarity of two

probability distributions, discrete or continuous. In classification, it measures the separabil-

ity of classes and is considered to be more robust and reliable than the Mahalanobis distance,

as the latter is a special case of the former when the standard deviations of the two classes

are the same. In cases when two classes have similar means but different standard devia-

tions, the Mahalanobis distance would be close to zero whereas the Bhattacharyya distance

would grow depending on the difference between the two standard deviations. The Bhat-

tacharyya distance is closely related to the Bhattacharyya coefficient which is a measure

of the amount of overlap between two statistical samples or populations (Bhattacharyya,

1943). This coefficient can be used to measure the relative closeness of two samples under

consideration.

For discrete probability distributions p and q over the same domain X, the Bhattacharyya
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Distance is defined as

DB(p, q) = − ln (BC(p, q)) , (3.1)

where BC(p, q) =
∑

x∈X

√
p(x)q(x) is the Bhattacharyya coefficient. When p and q are

continuous density functions, the Bhattacharyya coefficient is defined as

BC(p, q) =

∫ √
p(x)q(x) dx. (3.2)

In either case, 0 ≤ BC ≤ 1 and 0 ≤ DB ≤ ∞. Particularly when the two populations p and

q are normal, the Bhattacharyya distance can be calculated by extracting the means and

variances of the two separate distributions or classes; specifically,

DB(p, q) =
1

4
ln

[
1

4

(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2

)]
+

1

4

[
(µp − µq)2

σ2
p + σ2

q

]
, (3.3)

where µp and σ2
p are the mean and variance of p and µq and σ2

q are those of q.

Note that the Bhattacharyya distance does not obey the triangle inequality. However,

there is a relationship

DH(p, q) =
√

2 ·
√

1−BC(p, q) (3.4)

between the Bhattacharyya distance and the Hellinger distance which does obey the triangle

inequality, where DH(p, q) is the Hellinger distance between p and q defined as DH(p, q) =

{
∫

[
√
p(x) −

√
q(x)]2dx}1/2 for continuous case and DH(p, q) = {

∑k
i=1(
√
pi −

√
qi)

2}1/2 for

discrete case.

3.1.3 B/SVM algorithm for marker genes selection

The B/SVM algorithm that we propose for marker genes selection is based on the Bhat-

tacharyya distance along with SVM. Within this algorithm, the Bhattacharyya distance is

used to obtain the ranking list of genes for classification, where genes with larger Bhat-

tacharyya distances are suggested to be more discriminative on the differentiation of two

categories than those with smaller ones. Then SVM is used to evaluate each subset of genes

in terms of classification performance. Eventually, we identify a subset of discriminative
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genes that provides the lowest classification error rate as marker genes that will be used

for the validation data. Denote pi and qi the distribution functions of the ith gene for the

two classes, say class(+) and class(-), i = 1, . . . , p. Then in general, the proposed B/SVM

algorithm includes the following four steps:

1. Compute the Bhattacharyya distance DB(pi, qi) given in (3.3) for the ith gene, i =

1, . . . , p;

2. Order genes according to the magnitude of their Bhattacharyya distances;

3. Evaluate subsets of important genes using SVM in terms of classification power,

starting with the gene(s) with the largest Bhattacharyya distance:

(a) Randomly divide the given data into training data and testing data;

(b) Use the training data to train the SVM with optimal hyperparameters selected

by 10-fold cross-validation criterion for any subset of important genes;

(c) Obtain the classification error rate of the trained SVM applied to the testing

data;

4. Repeat Step 3 progressively by adding the next important gene until all genes are

added once. We identify as marker genes the subset of important genes that provides the

lowest classification error rate for testing data.

The illustration chart of the proposed B/SVM method is given in Figure 3.1. In the first

step, we assume for simplicity that for any fixed gene, the expression levels of subjects in

the two classes are from two (possibly the same) normal distributions, i.e. we assume that

both pi and qi are normal distributions, i = 1, . . . , p. Based on the data, we can calculate

the sample mean and variance for both pi and qi. Then we plug in these sample means and

variances into (3.3) to get the estimated Bhattacharyya distance for each gene. In order to

evaluate and compare the effectiveness of this feature selection approach, the given dataset

is divided into two, training set and testing set. The training set is used to train the model

while the testing set is used as an independent validation set to evaluate the performance of
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the model through prediction results.

3.2 Supervised Weighted Kernel Clustering (SWKC)

3.2.1 Clustering

As one of the most widely used unsupervised learning method, clustering groups data compo-

nents, either data points or features, according to their similarity. Different from supervised

learning methods that rely heavily on class label information, clustering is unsupervised and

the information about the target classes is not used. Every data component is assigned to

one of the clusters; components falling into the same cluster are assigned the same value

in the new representation, that is, a new cluster label (Ben-Dor et al., 2000; Slonim et al.,

2000).

Clustering algorithms are frequently applied to DNA microarray data. Defining appro-

priate metrics to measure the similarity in an input space is a very important component of

clustering algorithms such as hierarchical and K-mean algorithms. Input vectors can be ei-

ther expression profiles across different genes for clustering subjects with similar microarray

data or expression profiles across different arrays for grouping genes with similar expression

patterns across different subjects. Thus, clustering methods rely on the similarity matrix

between data components. Similarity matrix can be built with use of one of the standard

distance metrics, such as Euclidean distance, Mahalanobis distance, Minkowski distance or

commonly used Pearson correlation, but more complex distances based on, for example,

functional similarity of genes (Speer et al., 2005), are also possible. With these metrics, the

hierarchical and K-mean algorithms can be implemented for clustering. Clusters are often

presented as dendrograms or color-coded representation of similarly expressed genes.
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Figure 3.1: Schematic illustration of the proposed B/SVM method.
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3.2.2 SWKC

The supervised weighted kernel clustering method, referred as SWKC, for marker gene se-

lection is proposed by Shim et al. (2009). Different from canonical clustering methods that

treat all the genes/variables equally important in clustering, SWKC deals with genes differ-

ently in clustering according to their relevance. Since genes playing a more important role

in clustering are referred as marker genes in classification, SWKC can be utilized for marker

genes selection. The detailed algorithm of SWKC is given as follows.

Consider an m-cluster dataset of n subjects {(xj,uj)}nj=1. The input xj = (xj1, . . . , xjp)
T

is a p × 1 column vector consisting of the expression levels of p genes measured on the jth

subject. The other input uj = (uj1, . . . , ujm) is a m× 1 column vector of hard membership

index with uji ∈ {0, 1} indicating whether the jth subject belongs to the ith cluster (uji = 1)

or not (uji = 0). The uj is of a more general form than yj (a scalar) used in previous chapters

to denote class index, and thus it is a generalization of notation from two-class to m-class

label index. Consider the objective function

L∗ =
m∑
i=1

n∑
j=1

p∑
k=1

ujiw
2
ikd

2(xjk, vik) (3.5)

subject to the constraint
p∑

k=1

wik = 1, i = 1, . . . ,m, where wik is a weight factor associated

with the kth gene in the ith cluster, vik is the kth gene expression level of the ith cluster

center, and d2(xjk, vik) is a squared distance between xjk and vik whose summation with

respect to k measures the dissimilarity between the jth subject and the ith cluster center.

The optimal weights {wik : i = 1, . . . ,m, k = 1, . . . , p} can be obtained by minimizing

the constrained objective function (3.5). Considering the fact that the number of genes p

in microarray data may exceed several thousands, this optimization may suffer from the

“curse of dimensionality” which was coined by Bellman R.E. in 1961, in another word, its

performance deteriorates as the number of genes increases. To overcome this, Shim et al.

(2009) proposed a more effective clustering scheme. Their idea is to cluster subjects in a
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high dimensional feature space by introducing feature mapping function, where the inner

product of these functions can be given as a specified form of kernel function. In Shim et

al. (2009), the most widely used Gaussian kernel is utilized which satisfies Mercer (1909)’s

conditions for kernels illustrated in Vapnik (1998). Then d2(xjk, vik) can be written using a

kernel function K as

d2(xjk, vik) = K(xjk, xjk)− 2K(xjk, vik) +K(vik, vik) (3.6)

To minimize the objective function L∗ given in (3.5) in terms of wik, we write the Lagrangian

function as

L =
m∑
i=1

n∑
j=1

p∑
k=1

ujiw
2
ikd

2(xjk, vik)−
m∑
i=1

ηi(

p∑
k=1

wik − 1), (3.7)

where ηi is the Lagrange multiplier. To obtain the wik, we differentiate the objective function

L with respect to wik and ηi, respectively, and set the equations to zero. As a result, the

optimal wik can be written in closed form as

wik =

 p∑
l=1

n∑
j=1

ujid
2(xjk, vik)

n∑
j=1

ujid2(xjl, vil)


−1

, i = 1, . . . ,m, k = 1, . . . , p. (3.8)

For a given ith cluster, we infer that genes attached to larger values of wik play more

important roles in clustering in the ith cluster. Therefore, genes attached to larger values

of {wik}mi=1 are considered more important and thus {
m∑
i=1

wik}pk=1 can be used as the feature

ranking or gene selection criterion (Shim et al., 2009).
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Chapter 4

SIMULATION STUDIES AND REAL DATA

APPLICATIONS

In this chapter, we illustrate how well B/SVM performs in marker gene selection through both

simulation studies and real data applications. Specifically, Section 4.1 presents the results

of simulation studies for both the proposed B/SVM and the well known SWKC/SVM and

SVM-RFE. In Section 4.2 we applied and compared the three methods for the two benchmark

datasets, i.e. the colon cancer dataset and leukemia dataset. Both simulation studies and

real data applications suggest that the proposed B/SVM performs competitively in the

sense that it produces relatively lower misclassification rate compared with SWKC/SVM

and SVM-RFE.

4.1 Simulation Studies

To evaluate how well the proposed B/SVM method perform in feature selection for classifi-

cation, a simulation study is carried out. As in Broberg (2002) and Koo et al. (2006), the

simulated data are generated from normal distributions assumed as the populations of gene

expression levels after log transformation.

4.1.1 Simulated data

The means and standard deviations of normal distributions for the simulated data are given

in Table 4.1. In this table, the first three rows, designated as the null cases, represent the

distributions of irrelevant genes. The last three rows in the table, designated as the sig-

nificant cases, represent the distributions of marker genes for the two groups of subjects.

When generating observations from either an irrelevant gene or a marker gene, the popula-
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tion distribution of the gene is randomly chosen from either the first three rows or the last

three rows depending on whether it’s an irrelevant gene or a marker gene. The numbers

of subjects, in another word the sample sizes, in the normal group and the case group are

chosen to be 47 and 25, respectively, as in Broberg (2002) and Koo et al. (2006). These

particularly chosen sample sizes are intended to match those of the real leukemia data intro-

duced in Chapter 1. In the simulation, we consider 1000 genes in total among which 1%, i.e.

10 genes, are assumed differentially expressed. As a result, the simulated data for a normal

subject consists of 1000 genes randomly selected from the null cases, while the simulated

data for a case subject contains 10 differentially expressed genes randomly selected from the

significant cases and the rest 990 genes are all from the null cases. Note that the data are gen-

erated gene by gene across all 72 subjects, rather than subject by subject with all 1000 genes.

Table 4.1: Normal distributions used to generate simulated data

Genes expression levels Mean 1 Standard deviation 1 Mean 2 Standard deviation 2

Null cases -8.0 0.2 -8.0 0.2

-10.0 0.4 -10.0 0.4

-12.0 1.0 -12.0 1.0

Significant cases -6.0 0.1 -6.1 0.1

-8.0 0.2 -8.5 0.2

-10.0 0.4 -11.0 0.7

4.1.2 Simulation results

The simulated data is randomly split into a training set of 67% and a testing set of 33% of the

whole dataset. Based on the training set, the Bhattacharyya distance is calculated for each

gene according to which all the genes are ranked in decreasing order. Then the SVM classifier
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is built based on the gene rankings and classification error rate is calculated for the testing

set. Here, the SVM is used as a method of marker gene selection. The simulation procedure

is repeated 50 times. In other words, 50 independent datasets are generated. For each gen-

erated dataset, we also randomly split it 50 times into the training set and testing set. Thus,

for each generated dataset the indexes are averaged over these 50 splittings. Afterwards,

we increase the number of simulations from 50 to 200. We compare our proposed B/SVM

method with the well known SWKC/SVM (Shim et al., 2009) and SVM-RFE (Guyon et al.,

2002). For comparison purpose, we mainly focus on the following indexes: average number

of genes selected, average number of true marker genes selected, average recovery rate, and

average misclassification rate of classification models based on the constructed classifier. Ta-

ble 4.2 presents the summarized results for the simulated data under 50 and 200 simulations.

Table 4.2: Comparison of the proposed B/SVM with SWKC and SVM-RFE using simulated
data

Simulations Indexes B/SVM SWKC/SVM SVM-RFE

50 Average number of genes selected 6.995 8.548 3.512

Average number of true marker genes selected 6.008 2.800 2.970

Average recovery rate (%) 95.744 83.884 94.057

Average misclassification rate (%) 1.055 7.308 1.960

200 Average number of genes selected 6.613 8.000 3.466

Average number of true marker genes selected 5.834 2.789 2.920

Average recovery rate (%) 96.561 83.946 94.235

Average misclassification rate (%) 1.090 7.703 2.034

In Table 4.2, “Average number of genes selected” denotes the averaged number of genes

selected out of 1000 over 50 generated datasets; “Average number of true marker genes

selected” denotes the averaged number of those, among all the selected genes, that are desig-
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nated as significant cases; “Average recovery rate” denotes the averaged ratio of the number

of true marker genes selected to the total number of genes selected; “Average misclassifica-

tion rate” denotes the averaged proportion of misclassified subjects calculated as the ratio

of the number of prediction errors to the size of testing set.

Take the results for 50 simulations as an example for the following discussion and similar

observations are true for the 200 simulations. Compared with SVM-RFE and SWKC/SVM,

the proposed B/SVM returns a relatively higher average recovery rate of 95.7%. This indi-

cates that B/SVM has higher power of detecting marker genes than the other two methods.

B/SVM also gives the lowest misclassification rate among the three methods. SVM-RFE

selects the smallest size, 3.512 on average, of gene subset among the three, at the price of

expensive computation time. B/SVM as a filter method takes much less computing time

than both SVM-RFE and SWKC/SVM. Specifically, in the simulation study, with 50 times

replications, B/SVM takes 31 mins 48 secs and SWKC/SVM takes 49 mins 52 secs while

SVM-RFE takes 13 hrs 29 mins 24 secs. Note that the smallest subset size doesn’t mean the

best since we know this simulation is designed with 10 truly differentially expressed genes.

SVM-RFE can only identify 2.97 of the 10 while B/SVM identify 6.008 on average. In this

sense, SWKC/SVM performs the worst, selecting the largest size of gene subset but identi-

fying the fewest true marker genes. These observations suggest that the proposed B/SVM

method outperforms both SWKC/SVM and SVM-RFE.

The numerical studies given in this thesis are conducted with the use of R programming.

The R package, e1071, has provisions for performing C-classification which corresponds to a

soft-margin classifier (C here is the same as that in (2.4)) using a Gaussian kernel or linear

kernel. In this simulation study, 10-fold cross-validation on each training set was used to

estimate the cost parameter C in SVM classifier.

32



4.2 Application to Benchmark Datasets

In this section, we analyze two real microarray datasets

(1) Colon cancer dataset

(2) Leukemia dataset

to evaluate the performance of our proposed B/SVM method. These two datasets are pub-

licly available and are described in Chapter 1. All the original observations in the two

datasets were transformed to the base 10 log scale. Table 4.3 displays the description of the

two benchmark microarray datasets.

Table 4.3: Description of the two benchmark microarray datasets

Dataset Sample Gene Class Publication

Colon cancer 62 2000 2 Alon et al. (1999)

Leukemia 72 3571 2 Golub et al. (1999)

Each dataset is randomly split into a training set and a testing set 50 times and the

results are the averages over the 50 repetitions. Since we don’t actually know which are the

true marker genes in the real datasets, average number of genes selected, average number of

errors in testing set and average misclassification rate for testing set are used for comparing

the proposed B/SVM with SWKC/SVM and SVM-RFE.

4.2.1 Colon cancer dataset

The Colon data contains 62 samples with 2000 genes (Alon et al., 1999). Among the 62

samples, 40 are tumor tissues and the rest 22 are normal ones.

Similar to the simulated data, we randomly select 20 samples (33%) of the total 62

samples to form an independent testing/validation set and the rest 42 samples (67%) form
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an training set. That is,

Colon data (62 samples) =


training set (42 samples)

testing set (20 samples).

The training set is used to train a classifier and the testing set is used to evaluate the

classification performance of trained classifier.

Table 4.4 gives the analysis results from all the three methods. It presents average num-

ber of the genes selected, average number of errors in testing set and average misclassification

rate. Note that the misclassification rate is simply the number of errors in testing set divided

by the size of testing set 20. From Table 4.4 we can see that the proposed B/SVM perform

best among the three in terms of either index. Comparatively, SWKC/SVM performs the

worst among the three methods in the sense that it uses the largest gene subset for clas-

sification that nevertheless results in the highest misclassification rate. This is consistent

with our observation about SWKC/SVM in the simulated data. From the result based on

B/SVM we can infer that on average, with the use of around 6 genes out of the total 2000,

the trained classifier will achieve classification accuracy over 90%.

Table 4.4: Analysis result of the colon cancer microarray data

Splittings Indexes B/SVM SWKC/SVM SVM-RFE

50 Average number of genes selected 6.36 15.42 7.62

Average number of errors in testing set 1.90 2.96 2.30

Average misclassification rate (%) 9.50 14.80 11.50

200 Average number of genes selected 6.365 15.575 8.270

Average number of errors in testing set 1.980 2.985 2.335

Average misclassification rate (%) 9.900 14.925 11.720
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4.2.2 Leukemia dataset

The leukemia dataset consists of 3571 genes and 72 samples (Golub et al., 1999). It is a gene

expression dataset with a binary response indicating type of leukemia: type 1 ALL (acute

lymphoblastic leukemia) and type 2 AML (acute myeloid leukemia). Among the 72 patients,

47 are ALL patients and 25 are AML patients. The classifier built for this dataset aims at

differentiating these two types of leukemia patients.

Here, we randomly select 24 samples (33%) of the total 72 samples to form an independent

testing/validation set used to evaluate the prediction accuracy. The rest 48 samples (67%)

form an training set. That is,

Leukemia data (72 samples) =


training set (48 samples)

testing set (24 samples).

Table 4.5 presents the analysis results from all the three methods. From Table 4.5 we

can see that the three methods are very competitive for this leukemia data in terms of mis-

classification rate or equivalently the number of errors in testing set, with SVM-RFE a little

bit better than B/SVM followed by SWKC/SVM. For this leukemia data, B/SVM selects

the smallest gene subset closely followed by SVM-RFE. For the leukemia data, SWKC/SVM

performs the worst among the three methods in the sense that it uses the largest gene subset

for classification that nevertheless results in the highest misclassification rate. From the

result based on B/SVM we can infer that on average the top 10 genes can provide enough

information for classification. More specifically, with use of the top 9 or 10 ranked genes

out of the total 3571, the trained classifier will achieve classification accuracy 96.917%; in

another word, there is only about one patient out of the total 24 in testing set that will be

misclassified.

As a summary for both datasets, Tables 4.4 and 4.5 show that B/SVM always selects a

relatively smaller gene subset for classification than SVM-RFE and SWKC/SVM. Especially,
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Table 4.5: Analysis result of the leukemia microarray data

Splittings Indexes B/SVM SWKC/SVM SVM-RFE

50 Average number of genes selected 9.54 13.48 9.68

Average number of errors in testing set 0.70 0.78 0.62

Average misclassification rate (%) 3.083 3.251 2.583

200 Average number of genes selected 10.510 14.790 10.415

Average number of errors in testing set 0.715 0.764 0.687

Average misclassification rate (%) 2.979 3.229 2.633

the performance of B/SVM for the colon dataset is outstanding. With the number of genes

increases, the advantage of computational efficiency in B/SVM is impressive.

4.3 R Code for Numerical Studies

4.3.1 R code for simulation studies

Here only the B/SVM algorithm in simulation studies is presented below due to space limit.

s e t . seed (2014)
s ink (” sim BSVM. txt ” , append=TRUE)
cat (”The program s t a r t e d : ” , date ( ) , ”\n \n”)
f o r ( k in 1 :50 ){
#cat (” This i s the ” , k , ” th s imu la t i on ” , ”\n”)
id n =1:990
i d s =991:1000
index n=sample ( 1 : 3 , 9 9 0 , r e p l a c e=TRUE)
index s=sample ( 1 : 3 , 1 0 , r e p l a c e=TRUE)
n=72
p=1000
Xm=matrix (0 , n , p)
Xm[ , id n [ which ( index n ==1)]]

=matrix ( rnorm (72∗ l ength ( id n [ which ( index n ==1)]) ,−8.0 ,0 .2) , nrow=n)
Xm[ , id n [ which ( index n ==2)]]

=matrix ( rnorm (72∗ l ength ( id n [ which ( index n ==2)]) ,−10.0 ,0 .4) , nrow=n)
Xm[ , id n [ which ( index n ==3)]]

=matrix ( rnorm (72∗ l ength ( id n [ which ( index n ==3)]) ,−12.0 ,1 .0) , nrow=n)
Xm[ 1 : 4 7 , i d s [ which ( index s ==1)]]
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=matrix ( rnorm (47∗ l ength ( i d s [ which ( index s ==1)]) ,−6.0 ,0 .1) , nrow=47)
Xm[ 1 : 4 7 , i d s [ which ( index s ==2)]]

=matrix ( rnorm (47∗ l ength ( i d s [ which ( index s ==2)]) ,−8.0 ,0 .2) , nrow=47)
Xm[ 1 : 4 7 , i d s [ which ( index s ==3)]]

=matrix ( rnorm (47∗ l ength ( i d s [ which ( index s ==3)]) ,−10.0 ,0 .4) , nrow=47)
Xm[ 4 8 : 7 2 , i d s [ which ( index s ==1)]]

=matrix ( rnorm (25∗ l ength ( i d s [ which ( index s ==1)]) ,−6.1 ,1 .0) , nrow=25)
Xm[ 4 8 : 7 2 , i d s [ which ( index s ==2)]]

=matrix ( rnorm (25∗ l ength ( i d s [ which ( index s ==2)]) ,−8.5 ,0 .2) , nrow=25)
Xm[ 4 8 : 7 2 , i d s [ which ( index s ==3)]]

=matrix ( rnorm (25∗ l ength ( i d s [ which ( index s ==3)]) ,−11.0 ,0 .7) , nrow=25)
Xm <− as . data . frame (Xm)
l a b e l=c ( rep (0 , 47 ) , rep ( 1 , 2 5 ) )
f o r ( j in 1 : 50 ){
#cat (” This i s the ” , j , ” th s imu la t i on ” , ”\n”)
index <− 1 : nrow (Xm)
t e s t i n d e x <− sample ( index , trunc ( l ength ( index )/3 ) )
t e s t . x <− Xm[ te s t index , ]
t e s t . y <− l a b e l [ t e s t i n d e x ]
t r a i n . x <− Xm[− t e s t index , ]
t r a i n . y <− l a b e l [− t e s t i n d e x ]
t r a i n s e t <− cbind ( t r a i n . x , t r a i n . y )
trG1 <− t r a i n s e t [ which ( t r a i n . y==0) ,]
trG1 . x <− trG1 [ ,−1001]
trG1 . y <− trG1 [ , 1 0 0 1 ]
trG2 <− t r a i n s e t [ which ( t r a i n . y==1) ,]
trG2 . x <− trG2 [ ,−1001]
trG2 . y <− trG2 [ , 1 0 0 1 ]

################ BD
mu1=colMeans ( trG1 . x )
mu2=colMeans ( trG2 . x )
var1=apply ( trG1 . x , 2 , var )
var2=apply ( trG2 . x , 2 , var )
d<−c ( )
d<−1/4∗( l og (1/4∗ ( ( var1 / var2 )+( var2 / var1 )+2)))+1/4∗((mu1−mu2)ˆ2/( var1+var2 ) )
A=cbind (1 : 1000 , d)
rank=A[ order (A[ , 2 ] , d e c r ea s ing=TRUE) , 1 ]

############## SVM
l i b r a r y (” e1071 ”)
EN <− c ( )
EachSigN <− c ( )
TrueN <− c ( )
RecoverRate <− c ( )

m i s c l a s s=c ( rep ( 0 , 5 0 ) )
svm . model <− svm( t r a i n . x [ , rank [ 1 ] ] ,
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t r a i n . y , c a c h e s i z e =500 , s c a l e=F,
type=”C−c l a s s i f i c a t i o n ” , k e rne l=” l i n e a r ” , c r o s s =10)

svm . pred <− p r e d i c t (svm . model , t e s t . x [ , rank [ 1 ] ] )
e r r o r=length ( t e s t . y [ which ( t e s t . y!=svm . pred ) ] )
m i s c l a s s [1 ]= e r r o r
f o r ( i in 2 : 50 ){
svm . model <− svm( t r a i n . x [ , rank [ 1 : i ] ] ,

t r a i n . y , c a c h e s i z e =500 , s c a l e=F,
type=”C−c l a s s i f i c a t i o n ” , k e rne l=” l i n e a r ” , c r o s s =10)

svm . pred <− p r e d i c t (svm . model , t e s t . x [ , rank [ 1 : i ] ] )
e r r o r=length ( t e s t . y [ which ( t e s t . y!=svm . pred ) ] )
m i s c l a s s [ i ]= e r r o r
}
output=cbind ( c ( 1 : 5 0 ) , m i s c l a s s )
SigN=min( output [ which . min ( output [ , 2 ] ) , 1 ] )

EN[ j ]=min ( m i s c l a s s )
EachSigN [ j ]=SigN
TrueN [ j ]= length ( i n t e r s e c t ( rank [ 1 : SigN ] , c ( 9 9 1 : 1 0 0 0 ) ) )
RecoverRate [ j ]=TrueN [ j ] / SigN
pr in t ( c ( SigN ,EN[ j ] , TrueN [ j ] , RecoverRate [ j ] ) )
}
cat (”The program ended : ” , date ( ) , ”\n”)
s ink ( )

4.3.2 R code for real data applications

Here only the application of B/SVM to the colon cancer dataset is presented below due to

space limit. The application of B/SVM to the leukemia data is similar.

s e t . seed (2014)
s ink (” co lon SWBC. txt ” , append=TRUE)
cat (”The program s t a r t e d : ” , date ( ) , ”\n \n”)
opt ions ( d i g i t s =5)

############ Real data Colon
load (” co lon . rda ”)
Xm=as . data . frame ( l og ( co lon . x ) )
l a b e l=as . f a c t o r ( co lon . y )
f o r ( j in 1 : 50 ){
#cat (” This i s the ” , j , ” th s imu la t i on ” , ”\n”)
index <− 1 : nrow (Xm)
t e s t i n d e x <− sample ( index , trunc ( l ength ( index )/3 ) )
t e s t . x <− Xm[ te s t index , ]
t e s t . y <− l a b e l [ t e s t i n d e x ]
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t r a i n . x <− Xm[− t e s t index , ]
t r a i n . y <− l a b e l [− t e s t i n d e x ]
t r a i n s e t <− cbind ( t r a i n . x , t r a i n . y )
trG1 <− t r a i n s e t [ which ( t r a i n . y==0) ,]
trG1 . x <− trG1 [ ,−2001]
trG1 . y <− trG1 [ , 2 0 0 1 ]
trG2 <− t r a i n s e t [ which ( t r a i n . y==1) ,]
trG2 . x <− trG2 [ ,−2001]
trG2 . y <− trG2 [ , 2 0 0 1 ]

################ BD
mu1=colMeans ( trG1 . x )
mu2=colMeans ( trG2 . x )
var1=apply ( trG1 . x , 2 , var )
var2=apply ( trG2 . x , 2 , var )
d<−c ( )
d<−1/4∗( l og (1/4∗ ( ( var1 / var2 )+( var2 / var1 )+2)))+1/4∗((mu1−mu2)ˆ2/( var1+var2 ) )
A=cbind (1 : 2000 , d)
rank=A[ order (A[ , 2 ] , d e c r ea s ing=TRUE) , 1 ]

############## SVM
l i b r a r y (” e1071 ”)
EN=c ( )
EachSigN=c ( )

m i s c l a s s=c ( rep ( 0 , 5 0 ) )
svm . model <− best . tune (svm , t r a i n . x [ , rank [ 1 ] ] ,

t r a i n . y , c a c h e s i z e =500 , s c a l e=F,
type=”C−c l a s s i f i c a t i o n ” , k e rne l=” l i n e a r ” , c r o s s =10)

svm . pred <− p r e d i c t (svm . model , t e s t . x [ , rank [ 1 ] ] )
e r r o r=length ( t e s t . y [ which ( t e s t . y!=svm . pred ) ] )
m i s c l a s s [1 ]= e r r o r
f o r ( i in 2 : 50 ){
svm . model <− best . tune (svm , t r a i n . x [ , rank [ 1 : i ] ] ,

t r a i n . y , c a c h e s i z e =500 , s c a l e=F,
type=”C−c l a s s i f i c a t i o n ” , k e rne l=” l i n e a r ” , c r o s s =10)

svm . pred <− p r e d i c t (svm . model , t e s t . x [ , rank [ 1 : i ] ] )
e r r o r=length ( t e s t . y [ which ( t e s t . y!=svm . pred ) ] )
m i s c l a s s [ i ]= e r r o r
}
output=cbind ( c ( 1 : 5 0 ) , m i s c l a s s )
SigN=min( output [ which . min ( output [ , 2 ] ) , 1 ] )

EN[ j ]=min ( m i s c l a s s )
EachSigN [ j ]=SigN
pr in t ( c ( SigN ,EN[ j ] ) )
}
cat (”The program ended : ” , date ( ) , ”\n”)
s ink ( )
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Chapter 5

CONCLUSIONS AND DISCUSSIONS

5.1 Summary of Findings

Many DNA microarray data in practice are represented in form of extremely high dimensional

vectors or matrices which brings great challenges in both data mining and further processing.

High dimensionality not only increases the learning cost but also deteriorates the learning

performance, known as the “curse of dimensionality”. Therefore, dimension reduction has

attracted great attentions in pattern recognition, machine learning and their applications

such as microarray data analysis.

Under this framework, this thesis focuses on dimension reduction, more specifically, fea-

ture selection in DNA microarray data analysis. We proposes a new gene selection method

for classification based on SVMs. In the proposed method, we first rank all the genes ac-

cording to the magnitude of their Bhattacharyya distances between the two specified classes.

Then the optimal gene subset is selected as the one which achieves the lowest misclassifi-

cation rate in the constructed SVMs following a forward selection algorithm. Afterwards,

the 10-fold cross-validation is applied to find the optimal parameters for SVM with the final

optimal gene subset. As a result, the classification model is trained and built. Finally, the

classification model is evaluated by its prediction performance for the testing set.

As described in Chapter 4, we compare the performance of our proposed B/SVM method

with that of SVM-RFE and SWKC/SVM. SVM-RFE, a widely used and well developed

method proposed by Guyon et al. (2002), is proved to be an effective embedded feature

selection method. The idea of SWKC/SVM is introduced by Shim et al. (2009). As a

filter feature selection method, it sets the ranking rule by a weight vector obtained from

clustering approach with a distance measurement defined by using Gaussian kernel function.
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The simulation results of these three methods suggest that the proposed B/SVM method

outperforms the other two in terms of average misclassification rate (1.055%) and average

recovery rate (95.744%). This means that B/SVM appears to be more effective and has more

power in finding marker genes, compared with SVM-RFE and SWKC/SVM. B/SVM results

in relatively high recovery rate with use of only a very small gene subset selected. The much

smaller computational burden is another outstanding advantage of the proposed B/SVM.

With B/SVM, 6.995 genes on average are selected out of the total 1000 as marker genes.

The dimension of the original data is dramatically reduced. The analysis results of the colon

cancer data and the leukemia data also indicate that the B/SVM algorithm can effectively

reduce the dimension of data and select a small informative gene subset for classification

with low misclassification rates.

As explained in Chapter 2, filter method refers to selecting informative genes according

to their discriminative power without considering any knowledge of the classifier adopted,

while wrapper method selects the discriminative features dependently on the classifier used.

The filter method possesses the advantages of fast computability and capability of dealing

with large datasets, but lacks the ability of finding optimal feature subset. Wrapper method

can be expected to have good performance, but it is difficult to be scaled to large datasets

because of the expensive computation cost. Embedded method can be treated as a special

case of wrapper method when feature selection space is exactly the same as the hypothesis

space of a classifier. The proposed B/SVM, classified as a filter method, has the drawbacks

shared by all filter methods. In another word, B/SVM treats features independently, with

the dependency and interaction among features ignored, and fails to take into account the

interaction with classifier.
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5.2 Future Work

Our study in Chapters 4 and 5 shows that the proposed B/SVM algorithm is very promising

in marker gene selection and cancer classification. For the proposed B/SVM itself, improve-

ments could be obtained in our future work. Firstly, we can extend the B/SVM algorithm

to the more general multi-class classification. The problem we address in this thesis is a

two-class classification problem. However, as a classifier SVM can be used for multi-class

classification. Secondly, other classifiers besides SVM can be used to obtain potentially more

reliable and more precise classification models for cancer classification. Various classifiers

are available in practice and here we use SVM to select the optimal feature subset simply

for the convenience that the comparison of B/SVM with the other two SVM-based methods

SVM-RFE and SWKC/SVM is reasonable. Last but not the least, we can relax the normal

assumption imposed on the distributions of gene expression levels by applying nonparamet-

ric kernel density estimations. When calculate the Bhattacharyya distance, we assume the

gene expression levels for the two classes are normally distributed which in reality is not the

case. In what follows, we attempt to explore some further modifications and adjustments of

B/SVM to construct an upgraded feature selection algorithm which is free of distribution

assumption.

As shown in Section 3.1.2, there is a relationship between the Bhattacharyya coefficient

and the Hellinger distance which obeys the triangle inequality. For continuous probability

distributions p and q, this relationship is given by

DH(p, q) =
√

2 ·
√

1−BC(p, q). (5.1)

where DH(p, q) = {
∫

[
√
p(x)−

√
q(x)]2dx}1/2 is the Hellinger distance between p and q, and

BC(p, q) =
∫ √

p(x)q(x) dx is the Bhattacharyya coefficient. According to this relationship,

a new algorithm for feature selection may be constructed for DNA microarray data. In this

algorithm, nonparametric approach will be used to estimate the probability density function

of each gene for the two groups. That is to say, we can obtain the estimated p and q for each
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gene by applying nonparametric, such as kernel, estimation. Afterwards, Hellinger distance

can be easily calculated based on the estimated p and q. Then we use the Hellinger distance

as the ranking criterion to rank all genes. Finally, the SVM is implemented to determine

the optimal gene subset that will be identified as marker genes.

Nonparametric approach imposes non or much slaker assumptions on the underlying

true distribution function than parametric approach, and thus is more robust against model

assumption. Kernel density estimation (KDE) is a nonparametric estimation of density

function based on a random sample when the density function is known to be continuous. It is

a fundamental function smoothing technique based on which inferences about the population

can be made, with use of a finite sample. Because the expression level of any particular gene

is a continuous random variable, it is appropriate to use kernel estimation to estimate the

distribution function of gene expression levels.

Let X1, X2, . . . , Xn denote an independent and identically distributed sample drawn from

a population with unknown density function f . Then the kernel density estimator f̂n of f is

given by

f̂n(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (5.2)

where K is a continuous kernel function and h is the bandwidth such that h > 0 and h→ 0

as n → ∞. Some commonly used kernel functions are listed below in Table 5.2. From

definition (5.2) one can see that kernel estimation produces a smoothed estimate of density

functions. The smoothness can be tuned via the bandwidth parameter h. Thus, in order

to give a kernel estimator, both kernel function and bandwidth need to be selected. With

appropriately chosen bandwidth, important features of kernel estimator can be guaranteed.

The kernel function K usually satisfies K ≥ 0, K(u) = K(−u) and
∫∞
−∞K(u)du = 1. While

the kernel function K is a nonnegative real valued weight function determining how each

data point contributes to the kernel density estimator, according to the literature all kernels

are asymptotically equivalent and different choices of kernel will not affect the large sample
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properties of the estimate (Prakasa, 1983).

Table 5.1: Some commonly used kernel functions in KDE

Name Function Form

Uniform K(u) = 1
2
I{|u|≤1}

Triangular K(u) = (1− |u|)I{|u|≤1}

Epanechnikov K(u) = 3
4
(1− u2)I{|u|≤1}

Quartic (Biweight) K(u) = 15
16

(1− u2)2I{|u|≤1}

Triweight K(u) = 35
32

(1− u2)3I{|u|≤1}

Tricube K(u) = 70
81

(1− |u|3)3I{|u|≤1}

Gaussian K(u) = 1√
2π
e−

u2

2

Cosine K(u) = π
4

cos
(
π
2
u
)
I{|u|≤1}

We redo the simulation studies for B/SVM method as in Section 4.1 with use of kernel

density estimations. In DNA microarray data we have relatively small sample size, and thus

the kernel K need to be carefully chosen. We used the Gaussian kernel for all kernel esti-

mations. Here, we select the bandwidth that minimizes the mean squared error (MSE) of

a kernel estimator for estimating the probability density function, that is to say we set the

bandwidth h = n−1/5 . As in Section 4.1, we follow the same way splitting data into training

set and testing set, and use the same 10-fold cross-validation in classification step. Unfor-

tunately, the results for B/SVM show that the classification of independent validation set is

not as good as expected and the recovery rate is not as high as that achieved by B/SVM

under normal assumption. The main reason for the un-preference of kernel smoothed non-

parametric B/SVM over the parametric B/SVM in Section 4.1 is simply that the simulated

samples are from normal populations and the parametric B/SVM in Section 4.1 utilized this

extra information while the nonparametric B/SVM here doesn’t. This extra information

about the populations will for sure increase the efficiency and accuracy of any classifier.

44



Some other reasons for the un-preference may include

• In the training set, the balance of samples from two classes may be a problem.

We randomly select 2/3 of the simulated data as training set. With small

sample size of simulated data, the training set is even smaller and it may

contain only very few data from one class which makes the resulted kernel

estimation very unreliable.

• Due to the small sample size, bandwidth is not appropriately chosen. We

arbitrarily set the bandwidth as n−1/5. It may be more appropriate to use

data-driven bandwidths for different genes rather than a uniform one for all

genes.

As discussed above, a more reliable and generalized B/SVM method can be obtained

by addressing those problems. Improvements can be achieved in future research to increase

classification reliability and decrease misclassification rate.
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