
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2015-01-21

Utilizing Human Cognitive Abilities in

User Identification and CAPTCHA

Galib, Asadullah Al

Galib, A. A. (2015). Utilizing Human Cognitive Abilities in User Identification and CAPTCHA

(Master's thesis, University of Calgary, Calgary, Canada). Retrieved from

https://prism.ucalgary.ca. doi:10.11575/PRISM/28624

http://hdl.handle.net/11023/2015

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Utilizing Human Cognitive Abilities in User Identification and CAPTCHA

by

Asadullah Al Galib

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JANUARY, 2015

c© Asadullah Al Galib 2015

Abstract

Secure authentication is necessary for everyday applications, such as logging in to a personal

computer, making a financial transaction or boarding an aircraft. We present a novel ap-

proach to user authentication in which biometric data related to human cognitive processes,

in particular visual search, working memory and priming effect on automatic processing,

are captured and used to identify users. Our proposed system uses a carefully designed

Cognitive Task (CT) that is presented to the user as a game, in order to capture a “cogni-

tive signature” of the user. Our empirical results support the hypothesis that the captured

cognitive signatures can identify users across different platforms. Our system provides a

proof-of-concept for cognitive-based biometric authentication. We validate the robustness of

our system against impersonation attack by experienced users, and show that it is hard to

reproduce the cognitive signature by mimicking users’ gameplay.

Ensuring that the access to a system is performed only by a human rather than a com-

puter program or bot is another important security concern in online services. We propose

a new approach to Captcha which estimates human cognitive ability, in particular visual

search ability, to differentiate humans from computers. We refer to this Captcha as Movtcha

(Matching Objects by Visual Search To Tell Computers and Humans Apart). The design

of Movtcha takes into account the analysis of human behavior to minimize noise during cog-

nitive feature estimation. Our empirical results suggest that Movtcha can provide accuracy

and usability comparable to other established Captchas. We show that Movtcha is resistant

against random, automated, inference and static relay attacks. Our system is suitable for

large scale applications since image selection, challenge generation and response evaluation

are automated. Movtcha surpasses language and experience barriers by presenting both

challenge and response in clear form and therefore can be used by people all across the

world.

i

Acknowledgements

First and foremost, I would like to express my utmost gratitude to my supervisor, Dr.

Reihaneh Safavi-Naini for her continuous support and guidance throughout my MSc. study.

I am extremely grateful to her for all the constructive feedback and suggestions that helped

my learning process and achieve my research goals. Since the beginning of my graduate

study, I have been inspired by her enthusiasm and dedication towards research. I am very

fortunate to have her as my supervisor. Without her expertise and guidance this would not

have been possible.

I would also like to thank my examination committee members, Dr. Jeffrey Edwin Boyd

and Dr. Svetlana Yanushkevich for their valuable comments and feedback on this thesis.

Thanks to all the iCIS group members for their questions and comments during my project

presentations. Also thanks to Deb for administrative support.

I gratefully acknowledge the financial support that I have received from the Department of

Computer Science, University of Calgary, Natural Sciences and Engineering Research Council

of Canada (NSERC) and Telus Mobility Canada in the form of Teaching Assistantship,

Research Assistantship and scholarships.

This page would be incomplete without thanking my wife, Mehnaz Tarannum, who has

always been supportive and patient. I am thankful to have her by my side to face all the

challenges of life. I am also thankful to my parents for their encouragement and inspiration

at every steps of my life.

ii

Table of Contents

Abstract . i
Acknowledgements . ii
Table of Contents . iii
List of Tables . iv
List of Figures . v
List of Symbols . vi
1 INTRODUCTION . 1
1.1 User Authentication . 2
1.2 Captcha to tell Computers and Humans Apart 3
1.3 Human Cognitive Abilities . 4
1.4 Our Contributions . 4

1.4.1 User Identification using Human Cognitive Abilities 4
1.4.2 Captcha using Human Cognitive Abilities 6

1.5 Thesis Overview . 8
2 BACKGROUND AND RELATED WORK 9
2.1 Biometric Authentication Systems . 9

2.1.1 Behavioral Biometrics . 11
2.1.2 Physiological Biometrics . 12

2.2 Properties of Biometric System . 13
2.2.1 Physiological vs Behavioral . 13
2.2.2 Identification vs Verification . 14
2.2.3 Continuous vs Static Authentication 15
2.2.4 Resistance to Impersonation Attack 15

2.3 Captcha Systems . 16
2.3.1 Properties of a Captcha System . 16
2.3.2 Captcha Classification . 17

2.4 Cognitive Processes . 20
2.4.1 Individual Difference in Cognitive Abilities 20
2.4.2 Visual Search . 21
2.4.3 Self-terminating vs Exhaustive Search 21
2.4.4 Serial Visual Search . 22
2.4.5 Factors Affecting the Visual Search Process 22
2.4.6 Guided Search Theory . 24
2.4.7 Working Memory . 24
2.4.8 Priming Effect on Automatic Processing 26

2.5 Related Work . 27
2.5.1 Related Works in Behavioral Biometrics 28
2.5.2 Related Work in Image and Game Captcha 31
2.5.3 Related Work in Cognitive Systems 32

2.6 Statistical and Image Processing Tools . 35
2.6.1 Probability Density Function Estimator 35
2.6.2 Bandwidth Selection . 39

iii

2.6.3 Edge Detection Algorithm . 40
3 USER IDENTIFICATION USING HUMAN COGNITIVE ABILITIES . . . 42
3.1 System Design . 43

3.1.1 Design of the Cognitive Task . 43
3.1.2 The CT Constraints and Cognitive Processes 48
3.1.3 Cognitive Features Estimation . 51
3.1.4 User Classification Technique. 56

3.2 Security Model . 58
3.2.1 Error Metrics . 59
3.2.2 Impersonation Attacks . 59

3.3 Experiments And Results . 60
3.3.1 Experiment Setup . 60
3.3.2 Experimental Results and Analysis 62
3.3.3 Evidence of Cognitive Processes . 69
3.3.4 Usability of Authentication Systems 71

3.4 Discussion on User Identification System . 72
4 UTILIZING HUMAN COGNITIVE ABILITIES IN CAPTCHA 73
4.1 Movtcha Design and Execution . 74

4.1.1 The Cognitive Task as Movtcha . 74
4.1.2 Cognitive and Behavioral Feature Extraction 76
4.1.3 Telling Humans and Computers Apart 78

4.2 Movtcha Challenge generation . 80
4.2.1 Selecting Images to be Tailored . 80
4.2.2 Generation of Search Set . 81
4.2.3 Displaying an Instance . 84

4.3 Security Analysis . 84
4.3.1 Random Attacks . 85
4.3.2 Automated Attacks . 85
4.3.3 Position Inference Attack . 88
4.3.4 Static Relay Attacks . 89

4.4 Experiments And Results . 90
4.4.1 Experiment Setup . 90
4.4.2 Experimental Results and Analysis 92

4.5 Discussion on Movtcha . 96
5 CONCLUSIONS AND FUTURE WORK . 99
5.1 Thesis Summary . 99

5.1.1 A Novel Approach to User Authentication 99
5.1.2 A Novel Approach to Captcha System 100

5.2 Future Works . 101
5.2.1 User Authentication System . 101
5.2.2 Movtcha . 102

Bibliography . 103
A SYSTEM IMPLEMENTATION . 116
A.1 User Authentication System Implementation 116

A.1.1 Data Acquisition Module . 116

iv

A.1.2 User Identification Module . 118
A.1.3 Simulation Module . 121
A.1.4 Usability Module . 122

A.2 Movtcha System Implementation . 122
A.2.1 Data Acquisition Module . 122
A.2.2 Evaluation Module . 124

v

List of Tables

3.1 Comparison of verification time, enrollment time, test and enrollment (train+test)
session size for a particular user. 63

3.2 Ranking of features based on avg. EER. FAR and FRR at α = 0.5 (Experiment-
I) . 65

3.3 Comparison with other approaches. Mouse Dynamics System(MDS), Keystroke
Dyanmics System (KDS), CBS (Cognitive-based Biometric System), HBS
(Homogeneous physio-behavioral Biometric System) 67

4.1 Results from Experiment-I . 93
4.2 Results from Experiment-II . 94
4.3 Notations lookup . 98

A.1 User Authentication Constraints look-up table (brief descriptions). Refer to
Section 3.1.1 for details. 119

vi

List of Figures and Illustrations

2.1 Biometric System Architecture . 10
2.2 Captcha encountered while registering for a Gmail account 18
2.3 Challenges from (a) Assira Captcha [35], (b) Semage Captcha [97] 19
2.4 Guided Search: Find the equilateral triangle. 25
2.5 Baddeley’s model of working memory with two storage subsystem serving the

central executive co-ordinating system. 26
2.6 Sample shuffled virtual keyboard [50] . 30
2.7 Examples of grids for VPT. These grids are drawn by us as examples and are

not necessarily the ones used in [31] . 34

3.1 (a) User is presented with a challenge tile, tc, at the beginning of the 21st

instance. (b) User performs Aresp, i.e. drags and drops tc onto tr inside the
grid. On a correct match the loose tiles disappear showing the current game
status (at 21st instance). (c) User performs Arew, i.e. drags and drops gold
coin, gc, onto Ptc . Top guiding line color changes from green to red as the coin
touches the line. (d) User successfully deposits gc and gets the next challenge
tile. All 25 tiles are visible at this point. Notice that the 21 unmovable tiles in
b and d have not changed their positions. All the loose tiles have changed their
position (compare a and d). The target tile appears at its original position in
the image in (d). 45

3.2 (a) Random symbols from our system . 47
3.3 (a) An instance of our game, when Aresp is completed. The current status of

the game is visible. (b) Example grid from a Visual Pattern Test [31]. Notice
the similarity between the presentation of (a) and (b). 49

3.4 (a) Click error angle and click error distance (center to click point). (b) Drop
error angle and drop error distance (from the click point to the center of the
destination, red bordered tile). (c) Straightness measured as ratio of actual
distance to the distance moved. 54

3.5 Intra-session Evaluation: Avg. FAR and FRR at α = 0.5 with varying number
of instances. 63

3.6 Intra-session Evaluation: Avg. FAR and FRR at α = 0.5 with varying number
of users. 64

3.7 Correlation coefficients [-1,1] of pairs of features in a color-coded plot. . . . 66
3.8 Results from Impersonation attack. Most instances are accepted as “own”

rather than as the victims’ (attack-1, 2 and 3). 68
3.9 Box plot before noise removal (whiskers set to 3) showing outliers, (a) Tile

Pick Reaction Time (in ms) (b) Gold Pick Reaction Time (in second). 68

vii

3.10 Users randomly chosen from Experiment-II. (a) Average sub-sequence length
with a linear relationship between V ST s and search set sizes indicating differ-
ences in working memory capacity of different users. Different curves represent
varying number of violations from linear relationship. (b) Percentage of the
three cases when prime is triggered (Section 3.4). Users are influenced in
different ways. 70

3.11 Matrix representation of n test sessions matched against n templates. Thresh-
old set at ≈ 0.5 marked by red line. The horizontal bar shows the number of
instances and corresponding color codes. 70

4.1 Best viewed in soft copy. (a) An instance of Movtcha where user has collected
6 stars and made 2 mistakes. The grid size is |θ| = 49, search set size is

|θsub| = 6, and the position of target tile inside the search set is |θPtrsub | = 4. (b)
Edges of IP using Canny edge detection algorithm. (c) Contour plot of IP . . 76

4.2 A skipped search, triggered by C2, for an instance. Missed target tile is
highlighted. Bounded boxes are not in scale. 78

4.3 Success Probability varying with 4A
V ST #instances (5-9). Dotted line repre-

sents 0.6% attacker’s success probability. 88
4.4 (Experiment-III, 1st HIT)(a) Shows the maximum MTArew of successful users

out of all the instances they played (b) Shows V ST when |θsub| = 1. If we
restrict MTArew and V ST (|θsub| = 1) to 1.4s and 2.5s respectively as a con-
straint, we can upper bound the computational time of an attacker by 3.9s
due to condition(2). In other words, the attacker needs to successfully com-
plete a visual search task within 3.9s which involves separating objects from
background, locating dynamic tc, identifying search set size, and dragging-
dropping tc onto tr. Successful users from Experiment-I and II provides even
smaller bounds of 2.1s and 2.8s respectively. Most importantly, this con-
straint/bound can be set without interfering much with user’s Movtcha solv-
ing activity. On the other hand, limiting computational time of attacker for
traditional Captcha scheme essentially limits the solving time of that Captcha. 96

viii

List of Abbreviations and Nomenclature

Symbol Definition

U of C University of Calgary

CAPTCHA
Completely Automated Public Turing Test

to tell Computers and Humans Apart

LOO LSCV Leave-One-Out Least Square Cross-Validation

PDF Probability Density Function

MISE Mean Integrated Square Error

ISE Integrated Square Error

CT Cognitive Task

VPT Visual Pattern Test

VST Visual Search Time

EOP Effectiveness Of Priming

P&S Pause and Search

RT Reaction Time

DPT Drop and Pick Reaction Time

FAR False Acceptance Rate

FRR False Rejection Rate

EER Equal Error Rate

FA False Accept

FA False Reject

TP True Positive

TN True Negative

MDS Mouse Dynamics System

HBS Homogeneous Biometric System

KDS Keystroke Dynamics System

ix

CBS Cognitive based Biometric System

IR Image Recognition Captcha

CR Character Recognition Captcha

HTML Hypertext Markup Language

JS JavaScript

AJAX Asynchronous JavaScript + XML

PHP Hypertext Preprocessor

x

Chapter 1

INTRODUCTION

Authentication is the process by which a system verifies the identity of an individual who

wants to access it. Importance of secure authentication as the entry point to systems cannot

be overestimated. Securing digital information is not only a way of keeping the intruders

away. In fact, in the business world fraudulent authentication might result into unrecoverable

loss of intellectual property or critical information, loss of revenue and loss of customers.

Another important concern of the digital age is related to restricting access to systems

to humans only. CAPTCHA (Completely Automated Public Turing Test to Tell Computers

and Humans Apart) is a form of security test that restrict access to a website or other forms

of digital resources to humans only. In other words, Captcha ensures that the access to

a system is being performed by a human rather than an automated computer program or

bot. Captcha is implemented to prevent automated account registration, automated online

voting, dictionary attacks in password system and others.

Thesis Statement. We propose to use human cognitive abilities to differentiate among

humans as well as differentiate humans from computers. In addition to meeting general

system requirements, we show that both our systems surpass the security and usability

aspects of their corresponding existing works.

Section 1.1 and Section 1.2 give short overviews on the current user authentication and

Captcha systems, and their limitations. Section 1.3 provides a discussion on human cognitive

abilities. We provide discussion on our proposed systems in the contribution Section (Section

1.4).

1

1.1 User Authentication

Traditional methods of authentication use “what we know”, “what we have” and “what we

are”. In other words, the methods include: (1) knowledge that are supposed to be kept secret

by individuals e.g. passwords and pass phrases, (2) physical possessions such as key, smart

cards, passports, (3) characteristics of the human body such as fingerprint, iris and retina.

More recent approaches to authentication use behavioral appearances or characteristics of

individuals such as voice, walking gait, typing pattern and mouse dynamics. These modes of

authentication can be used in combination. For example, an ATM card is a possession that

requires knowledge (PIN) in order to carry out a transaction, a login system might require a

combination of knowledge (password) and behavioral biometrics (keyboard typing pattern),

a passport is a possession with a face picture and signature biometrics.

The most widely used form of authentication in today’s computer systems is the use

of alphanumeric PINs or passwords, since it does not require any special input hardware.

However, these systems are vulnerable to forgotten secrets and guessing attacks [117, 14].

On the other hand, biometric systems [30] are immune to lost or theft. Nevertheless, the

operation of these biometric systems requires the use of special hardware such as scanner,

camera or microphone in order to collect the necessary biometric data. Among the behavioral

based biometric systems keystroke and mouse dynamics biometrics are the exceptions, since

any traditional computing system comes with a mouse and a keyboard.

One of the main drawbacks of keystroke and mouse dynamics system is that they require

long enrollment and verification time. Therefore, most mouse dynamics systems [2, 118, 71,

79] proposed to date are used for continuous authentication rather than verifying the user

at the beginning of a session. In addition, identification rather than verification of users in

a mouse dynamic system is considered a more difficult task and exhibits higher error rates

[13, 80].

2

1.2 Captcha to tell Computers and Humans Apart

Captcha [101] exploits the difference in the ability of humans and computers in performing a

task to tell the two apart. The task is designed such that it cannot be solved by computers

using the state-of-the-art computing technologies but can easily be solved by human users.

The most commonly encountered Captchas rely on distorted alphanumeric string. The

advent of image-based Captcha offered an alternative approach with promising usability

and security. However, eventually schemes based on image recognition such as [35, 29] were

compromised. Captchas exploiting semantic relationships between images [97, 24] or between

images and words [36], usually claim high security and usability but fail to auto generate

the challenge (secret) database, resulting in scalability issues.

Another challenge while designing Captchas which is less explored, is the issue of Captcha

being language, culture or experience dependent. Text or Audio based Captchas are entirely

language dependent. Some image-based Captchas [97, 119] though language independent,

rely heavily on user’s past experience or exposure to certain things (Section 2.5.2). One way

to remove these dependencies is to present both the challenge and response in clear form

and use behavioral or cognitive features to differentiate human from machine. We define

clear form as a scenario where the response is not concealed by the challenge somehow, e.g.

through distortion. For example, imagine Gmail’s text-based Captcha being provided in

clear text. This means that both the challenge and response are available to the users as

well as the computers. Clear form allows both human and machine respond to the challenge

with ease. However, such scenario clearly violates the current pre-requisite for security of

Captcha systems [101]. Another important security challenge in Captcha is preventing relay

attack where the attacker (the bot) relays or sends the Captcha challenge to a human user

who in turn solves the Captcha [99].

3

1.3 Human Cognitive Abilities

Cognition refers to higher level brain functions (or mental processes) such as perception,

learning, problem solving and producing language [41, 91]. An individual’s capacity in

carrying out any cognitive task (a task requiring a mental process such as perception, thinking

and reasoning [91]) is referred to as the cognitive ability of that individual. For example, a

visual search task requires finding out a target object among other distractors. The visual

search ability is generally measured by the search time. A working memory allows individual

to hold information in mind and manipulate or process it. Therefore, one way of measuring

the capacity of a working memory is by estimating the information processing speed. To

estimate such abilities, the corresponding mental processes must be invoked first. This

requires careful design of the experiments. We provide a detail discussion on cognitive

processes in Section 2.4.

1.4 Our Contributions

Here, we discuss our research contributions in a user identification and a Captcha system.

1.4.1 User Identification using Human Cognitive Abilities

We present an authentication system that collects and utilizes biometric data that are in-

trinsic to human cognitive abilities. Similar to a scanner capturing the impression left by

the ridges of a finger, our system is able to capture the “cognitive signature” generated by

the user during a cognitive task. Our approach differs from behavioral biometrics which do

not necessarily invoke any particular mental processes.

Francis Galton was the first to start the investigation of individual differences among

people based on their cognitive abilities [42]. He studied a variety of cognitive abilities and

in each case focused on measuring the ability and noting the variations among different

individuals. Recent research on individual differences are focused on two distinct categories

4

[41] (a) individual differences in the capacity to execute a cognitive task (b) individual

differences in the manner in which one approaches a cognitive task. The main motivation

behind our work emerges from the study of individual differences in the capacity to execute

cognitive tasks.

In our work, we present the user with a cognitive task (CT), which is executed by the

user using a pointing device (mouse or touchpad). The raw data collected during execution

of the CT, allow us to estimate features related to visual search ability, working memory

and priming effect on automatic processing. Features derived from these cognitive processes

in combination with other basic stimulus-response features are used to build unique profiles

for individual users. The CT is presented to the user in the form of an interactive visual

search game. The game starts by presenting the user with 25 different objects arranged in a

5×5 grid. The task of the user is to find a particular target object among other distracting

objects. The user has to drag and drop the target object onto the matching object inside the

grid. This act is equivalent to a correct visual search task by the user. On a correct search

task (or correct match), the user is rewarded with an incentive, a gold coin. The user is then

instructed to deposit this gold coin at a particular place (bank). On a correct deposit, the

user is presented with another target object and a similar interaction follows. The estimated

features derived from these interactions are used to construct an authentication scheme

with accuracy comparable to other established biometric approaches. A typical behavioral

biometric system such as those based on mouse dynamics, measure behavioral traits that are

inadvertent. Systems designed to estimate cognitive features such as ours, can be augmented

to use behavioral features related to mouse dynamics to improve authentication accuracy.

Our system provides a proof-of-concept for cognitive based biometric authentication.

Attempts were made to ensure that the game is intuitive and interesting. The accuracies

obtained in our system are comparable to other state-of-the-art behavioral biometric systems

[44, 2, 118, 38]. To evaluate security of our system we considered an impersonation attack

5

where the attacker attempts to “mimic” a target user. We developed a web-based program

which can simulate a user performing the authentication task, using the data collected from

his data acquisition period. We then allowed the attackers to train themselves using the

simulation and then attempt to mimic or impersonate the user

1.4.2 Captcha using Human Cognitive Abilities

Our Captcha, called Movtcha is presented to the user as a Cognitive Task (CT). It estimates

cognitive ability of a human, in particular visual search ability. We consider visual searches

that are serial [105] where each item is inspected in turn in a search set to determine if it

is a target or not. For example, consider searching through a list of 100 unsorted names

until the desired one is found (or the search self-terminates). The unsorted list aids in

sequential search unlike a sorted list where users could have skipped some names. In a serial

self-terminating search, if it takes a constant amount of time to inspect each item in turn

until the desired one is found then the visual search time is found to have a positive linear

relationship with the position of the target item inside the search set [73, 64].

We design a game-like Cognitive Task (CT) that takes advantage of this observation.

The cardinal notion is to conceal the size of the list or search set containing target item from

the bot but keep it visible or comprehensible to a human user. For example, consider Bob

and a machine. Both are presented with a list of 10 unsorted names and challenged to find

“Alice” which appears at the 9th position. Bob somehow acquires the knowledge which says

“Alice” does not appear in the first 5 entries. As a result Bob searches from the 6th position

and continues until he finds “Alice” at the 9th position. If it takes 1 second to inspect each

name in the list, Bob will spend 4 seconds to find “Alice”. On the other hand, the machine

being deprived of the knowledge searches from the 1st position until it finds “Alice” at the

9th position. The machine searches faster than Bob and both the challenge (“Alice”) and

response (“Alice”) are in clear form but it fails to mimic the search time of Bob without the

knowledge. That is, although the bot can add delays and increase its search time, it does

6

not know how much delay needs to be introduced. Movtcha has a similar design principle

where the knowledge is conveyed only to a human user through guided search.

Movtcha consists of a carefully tailored image and a challenge tile. An image is first

divided into θ items (cells) by superimposing a grid like structure. A subset of cells θsub ⊆ θ

is modified (the knowledge) such that, (1) a bot is not able to differentiate them from other

cells and (2) the modification process creates random artifacts, conveying no meaning in

current context to the human user [105]. A target tile tr is then selected randomly from

the search set, θsub, and an exact copy of tr is presented to the user as the challenge tile tc.

Dragging and dropping tc (challenge) onto tr (response) inside θsub is equivalent to a correct

visual search task. A human easily distinguishes and recognizes these exotic tiles via parallel

search, θsub, and then performs serial search only on them i.e. on θsub, to find tr. Therefore,

his search time will vary according to |θPtrsub | i.e. the number of exotic tiles that need to be

inspected before encountering tr. On the other hand, a bot is not able to figure out the

knowledge i.e. θsub. Therefore, it will not be able to mimic the search time of a human user.

We do not consider the actual visual search time. In fact, we look for trends. If the

search time grows linearly (roughly, possibly with a few outliers) with |θPtrsub |, then the system

authenticates the user as a human. Our contributions in a nutshell, (1) Movtcha estimates

a cognitive feature to make authentication decision. Our design takes into account human

behavioral analysis to eliminate noises during feature estimation. (2) It bypasses traditional

pre-requisite for the security of Captcha by presenting both the challenge and response in

clear form. This makes it language and experience independent. (3) It is resistant against

random, automated and static relay attacks. (4) Movtcha is an automated system.

A Captcha based only on recognizing the exotic tiles out of the image might seem ad-

equate at the first glance. However, such a Captcha does not (1) present challenge and

response in clear form, (2) resist static relay attacks, (3) introduce the concept of using

human behavioral and cognitive feature analysis to differentiate the two.

7

1.5 Thesis Overview

We discuss background and related works on biometric systems, Captcha systems and cogni-

tive processes in Chapter 2. Chapter 3 provides detail discussion on our user authentication

system. Then we provide discussion on our novel approach to Captcha Systems in Chapter

4. Finally, we provide conclusion and future works in Chapter 5.

8

Chapter 2

BACKGROUND AND RELATED WORK

This chapter has four sections. Section 2.1 gives an overview on the current biometric

technologies. Section 2.2 provides a discussion on the properties of biometric systems. Then

we provide an overview on the current Captcha systems and their properties in Section 2.3.

In Section 2.4 we discuss about the cognitive processes that have been incorporated in our

systems. The design of our systems are guided by the factors that invoke and affect these

cognitive processes. As a result, we have referred back to Section 2.4 frequently from Chapter

3 and 4. Closely related works in behavioral biometrics, Captcha and cognitive processes are

provided in Section 2.5. Finally, Section 2.6 provides discussion on the statistical learning

algorithm and the image processing tools that we have used.

2.1 Biometric Authentication Systems

Biometric identification or verification refers to an automatic identification or verification

of individuals based on a feature vector(s) derived from the physiological and/or behavioral

characteristics of human [30]. Physiological biometric systems use what we are e.g. finger-

prints, iris pattern, facial features, whereas behavioral biometric systems use what we do

e.g. voice recognition, keyboard typing rhythm, mouse dynamics, walking gait, handwritten

signature. The operation of most biometric systems require the use of special hardware such

as scanner, camera or microphone in order to collect the necessary biometric data. Mouse

and keyboard dynamics are two exceptions since any traditional computing system comes

with a mouse and a keyboard.

Biometric system has two major phases: (1) Enrollment phase and (2) Matching Phase.

During the enrollment phase, biometric information regarding the user is captured and stored

9

Figure 2.1: Biometric System Architecture

in the system database. In subsequent usage, the biometric information is again captured

and compared with the existing information from the enrollment phase. The system then

signals either a match or a no-match. The enrollment phase can be subdivided into the

following stages: 1(a) An input sensor collects the necessary biometric data of the user.

1(b) A data module pre-processes the data and extracts the feature vectors to build the

user profile or template. 1(c) The template is then stored somewhere (system database,

card). On the other hand, the matching phase has the following stages: 2(a) An input sensor

captures the biometric data for subsequent authentication attempts by the user. 2(b) A data

module pre-processes the data and extracts the feature vectors. 2(c) A matcher compares

the authentication data with the enrollment data and signals a match or a no-match. Figure

2.1 shows the general architecture of such systems.

To evaluate the correctness and security of a biometric system, the most commonly used

metrics are the False Rejection Rate (FRR) and the False Acceptance Rate (FAR). The

FRR is the percentage of the authorized users that are rejected by the system. Whereas,

the FAR is the percentage of unauthorized users that are accepted by the system. A good

identification or verification system should have a low FAR and FRR.

Biometric systems can either verify or identify a user. Identification involves compar-

10

ing the acquired biometric information against templates corresponding to all users in the

database. Whereas, verification involves comparison with only those templates correspond-

ing to the claimed identity. From now onwards, we will use the generic term authentication

where we do not wish to distinguish between verification and identification.

2.1.1 Behavioral Biometrics

There are a variety of subdivisions within the behavioral biometrics domain. These systems

have their own characterisitics in terms of enrollment requirements, ease of deployment, and

authentication performance. Here, we provide short overviews on some recent behavioral

biometric systems.

Mouse Dynamics.

A mouse dynamics biometric system uses a pointing device (mouse, touchpad) movement

information such as speed, acceleration, trajectories, jitters to build a template of the user.

The information can be collected while the user is interacting within a confined environment

(e.g. playing a game) or when performing day-to-day task (e.g. browsing). This approach

is well suited for remote authentication approach, since no specialized hardware is required.

We provide a detail discussion on works related to mouse dynamics in Section 2.5.1.

Keystroke Dynamics.

A keystroke dynamics biometric system relies on the way the user types with a keyboard

or a keypad type device. Certain attributes such as the time between striking successive

keys, duration of key press are used to build templates of users. The user typing pattern

can be captured either in a text-dependent or text-independent mode. The text-dependent

mode requires the user to enter a fixed string (e.g. username, password, random string).

On the other hand, the text independent mode allows the user to enter any string as they

wish. Bergadano et al. [11] reported 0.01% FAR and 4% FRR on their keystroke based

identification and verification system.

11

Voice.

In a voice recognition system speech patterns are analyzed to authenticate a user. The user is

required to enunciate texts which can either be fixed or free. In a fixed-text mode the user is

required to enunciate a specific phrase. Whereas, in a free-text mode the user can enunciate

any phrase of his choice. The later approach requires model of each speaker making the

system computationally more expensive [80]. Voice recognition system can have a low EER

of 0.28% [26].

Gait.

Human gait is a person’s manner of walking. A person’s manner of walking can be determined

by his weight, limb length, footwear, and posture combined with harmonic motions [61].

There are different approaches to extracting the gait features such as sensor-based and

machine-vision based. For example sensor-based systems acquire dynamic data and use it

for authentication [80]. Current trend is to focus on dynamic aspects of walking rather than

the static features. Kale et. al [59] reported an accuracy of 90% on gait detection.

2.1.2 Physiological Biometrics

There are a number of physiological based biometric systems. All of these use some biological

attributes of human being. They require the use of special hardware such as scanner, camera

or microphone in order to collect the necessary biometric data. Below we provide overviews

of some of the established physiological based biometric systems.

Fingerprint.

A fingerprint is an impression or mark made on a surface by a person’s fingertip. The ridges,

valleys and loops give each fingerprint its own uniqueness. Fingerprints are one of the oldest

form of physiological biometric with a high matching accuracy of around 1% EER [22]. The

user template consists of feature values related to the position and orientation of certain

12

critical points known as minutiae points [83]. Today, fingerprint scanners have become quite

affordable and are even incorporated in laptops and mobile devices.

Iris.

The structures responsible for the patterns of the iris are largely completed by the eighth

month of gestation. The complex pattern of the iris can contain many distinctive features

such as arching ligaments, furrows, ridges, crypts, rings, corona, freckles, and a zigzag col-

larette [28]. Iris scanning can be done from several meters away. However, external factors

such as light, focus, resolution and contrast must be carefully balanced in order to extract a

good feature vector from the image. Iris recognition system can reach 91% correct verification

rate at a 0.1% FAR [77].

Face.

Face verification involves extracting facial characteristics such as nose shape, eye socket

position, and distance between different facial elements from an image of the user’s face and

matching it with the template stored in a database. Face recognition system is non-intrusive

and is suitable for covert recognition applications. However, it still faces challenges such as

illumination and facial expression variance effects [90]. Face recognition system can have

more than 90% accuracy [77]

2.2 Properties of Biometric System

2.2.1 Physiological vs Behavioral

Behavioral based authentication methods perform the identification task based on people’s

behavioral patterns. These systems are more acceptable to users and generally cost less

to implement. System using mouse and keyboard dynamics do not require any specialized

hardware at all. Most behavioral biometrics such as voice, mouse, keyboard can be deployed

for remote authentication system. However, behavioral characteristics can be difficult to

13

measure because of influences such as fatigue and illness.

On the other hand, physiological based biometric system verify a person’s identity by

his or her physiological characteristics. In general, such characteristics are more stable

than behavioral characteristics. However, these systems require specialized hardware and

generally cost more to implement.

Both physiological and behavioral characteristics are intrinsic to users and are mostly im-

mune to lost and theft. Current research in both the fields report high accuracy and usability

[60]. Each system has their own strengths and weaknesses. Therefore, we should match a

specific biometric to an application depending on the application’s operation mode. For

example, both fingerprint and iris-based techniques are more accurate then voice based tech-

nique. However, in a telebanking application, the voice-based technique can be integrated

seamlessly with the existing telephone system [78].

2.2.2 Identification vs Verification

There are two means of authentication: (1) Identification and (2) Verification . In positive

identification mode, the system recognizes an individual by searching the entire template

database for a match. That means the system conducts a one-to-many comparison to es-

tablish the user’s identity. On the other hand, verification is the process of verifying a

user-claimed identity by comparing the captured sample only with that user’s template.

That means the system conducts a one-to-one comparison to determine whether the claim

is true.

Therefore, an identification task is a much harder problem than verification since an

identification system must perform a large number of comparison [78]. However, from the

user’s point of view identification systems are more convenient [60].

14

2.2.3 Continuous vs Static Authentication

In static user authentication, a user logs in to the system by providing his identity. His

session remains valid until he logs off from the session. However, a continuous authentication

system monitors if the current user is the same as the user who performed the initial static

authentication. Physiological based biometrics provide static user authentication system.

For example, fingerprint and iris scans, require a short time to capture the biometric data

and make an authentication decision. On the other hand, most behavioral biometric system

require longer sessions to make an authentication decision, which makes them suitable for

continuous authentication. Therefore, more recent approaches to behavioral biometrics,

especially mouse and keystroke dynamics, are focused on designing system with shorter

verification time for static user authentication [80].

2.2.4 Resistance to Impersonation Attack

Perhaps biometrics’ most infamous liability is vulnerability to impersonation [13]. Imper-

sonation attack refers to the scenario where the biometric information of a legitimate owner

is somehow generated by an attacker, without the owner being present at the scenario.

For example lifting latent fingerprints from objects, observing and imitating typing pattern

or mouse dynamics and others. These type of impersonations require attackers capable of

surreptitiously observing the actual owner and reproducing the biometric information later.

Impersonating a biometric is difficult compare to impersonating an identity by using a stolen

password [13]. This is due to the intrinsic nature of physiological and behavioral characteris-

tics of human. Nevertheless, any biometrics, especially behavioral biometric systems should

be thoroughly evaluated against impersonation attacks. This is because in behavioral bio-

metrics generating biometric information is relatively easy even when the owner is absent.

For example typing on the keyboard or using the pointing device.

15

2.3 Captcha Systems

Captchas are used for differentiating humans and computers. We generally encounter Captchas

while registering for an email or social network account. Captchas can be used in applica-

tions to prevent the following: (1) outgoing spam, (2) automated account generation, (3)

brute force attack on passwords, (4) phishing attack, (5) blog and forum spam, (6) artificial

product ratings, (7) voting in online polls. On the other hand, one can utilize the Captcha

system in order to improve (1) tagging of images by learning tags from legitimate users who

solve image-based CAPTCHAs and (2) digitizing old books by using text from the books,

that a computer struggles to digitize, as text-based Captchas.

2.3.1 Properties of a Captcha System

We provide a set of properties for a typical Captcha system building off on the recommen-

dations of [102, 119] and scrutinizing the advantages and disadvantages of some existing

Captcha systems [35, 97, 69].

Scalability: Auto-generation of Database.

Any Captcha system should require the least amount of manual interventions. In other

words, the challenge selection, generation, and response evaluation must be fully automated

to meet the demand of a large scale system.

Security: Resistance Against Random, Automated, Relay Attacks.

The system should be resistant against three major types of attacks. (1) Random Guessing,

where the bot attempts to solve the challenge in a random fashion. (2) Automated attacks,

where the bot attempts to use clever algorithms to solve the challenge. (3) Relay attacks [69]

where the bot relays the challenge to a human attacker, who aids in solving the Captcha.

16

Usability: Language and Experience Independence

Any system requiring users to interact with computers must be made easy and intuitive.

This is also applicable to any Captcha systems [114]. In addition, a Captcha should be made

as independent as possible of the user’s language, culture, exposure to certain experience,

geographical location and educational background.

2.3.2 Captcha Classification

There are various forms of Captchas ranging from text-based to game-based Captchas. Here,

we group them into five major categories. For each form of Captcha, we first discuss how

they work. Then we discuss their advantages and drawbacks taking into consideration the

aforementioned properties. For related works refer to Section 2.5.2.

Text-based Captcha.

Text-based Captcha is the oldest and the most popular form of Captcha. A user is presented

with a distorted alphanumeric string. The task of the user is to type out the sequence

of characters. Figure 2.2 shows an example of a text based Captcha encountered while

registering for a Gmail account. One of the first implementations of a text-based Captcha

was developed in 1997 by AltaVista. They needed a way of preventing the automatic adding

of URLs to the website for indexing [6]. The security of a text-based Captch relies heavily

on the difficulty of the character segmentation task. Attacks on the text-based Captchas

typically involve optical character recognition tools [113, 116]. Attempts on making the text

Captcha more immune to attacks include the introduction of systematic noise and distortion

to the challenge to make the character segmentation task harder for a bot. However, heavy

distortion usually leads to poor usability. Therefore, while designing text-based Captchas

one has to be aware of the trade-off between security and usability.

17

Figure 2.2: Captcha encountered while registering for a Gmail account

Image based Captcha.

Image based Captchas consist of images or objects. The user is generally required to identify

or recognize some images from the others. For example in Asirra [35] users are required to

distinguish cats from dogs, Figure 2.3(a). Other image-based Captchas require establishing

the semantic relationships between images or objects. For example in Semage [97](Figure

2.3(b)), the user is required to find semantic similarity between images e.g. a real image of a

tiger and a cartoon tiger. Image-based Captcha can have either a static or a dynamic image.

For example, NuCaptcha [74] consists of distorted text moving on a dynamic background.

The advent of image-based Captcha offered an alternative approach to traditional text-based

Captcha with promising usability and security. However, eventually schemes based on image

recognition such as [29, 35] were compromised. Captchas exploiting semantic relationships

between images [24, 97] or between images and words [36], usually claim high usability but

fail to auto generate the challenge database.

Dynamic Captcha.

More recent approaches to Captcha involves interactive Captchas, where users interact with

static or dynamic images or objects by clicks, screen touches, or drag-drop actions. These

dynamic Captchas can be image recognition, classification or object matching tasks. For

example in Sketcha [82] user is required to rotate (using a pointing device) a selection of

3D objects until they are upright. In [3] users have to drag and drop semantically matching

18

Figure 2.3: Challenges from (a) Assira Captcha [35], (b) Semage Captcha [97]

objects such as a “horse” and a “saddle”. Due to the nature of the drag and drop actions or

clicks, some of these Captchas can be categorized as game Captcha. Game Captchas like [69]

with dynamic challenge objects are resistant to relay attacks [69]. This is mainly because

the position of the challenge object changes with time. Therefore, the position of the moving

object send by the human at time, t, mismatches with that of the current position of the

object at time t + k, where k is the time taken for the answer to reach the relay bot from

the human sender. However, generating challenge objects that are semantically related to

each other requires human interventions and results into scalability problem.

Audio-based Captcha.

An audio Captcha exploits the observation that a user can recognize familiar speech easily in

a noisy environment compared to a computer program. In fact, we need a signal-to-noise ratio

of approximately 1.5 dB to recognize and understand speech [92]. Whereas, automatic speech

recognition programs require a signal-to-noise ratio between 5 and 15 dB [110]. Therefore,

humans are able to comprehend speech easily in a noisy background whereas the bots find

it difficult. Vision-impaired users are more likely to benefit from audio Captchas. However,

audio Captchas are language dependent. Moreover, recent works suggest that they suffer

both security and usability problems [19, 20].

19

Linguistic Captcha.

Linguistic CAPTCHAs include challenges that are rendered in standard character encoding

schemes, such as ASCII. The text appears as normal, inline text on a web page. For exam-

ple “If yesterday was Saturday, what day is today?”. When presented in plain text, such

challenges could be solved by users with visual and/or hearing disabilities by using Braille

readers (where necessary). However, the major drawback of such Captchas is that their

challenge database is extremely difficult to auto-generate. Moreover, this type of Captcha is

language-dependent.

2.4 Cognitive Processes

In this section, we first provide a discussion on individual difference in cognitive abilities.

Later, we discuss certain cognitive or mental processes. The properties of these processes and

the factors influencing them have guided the design of both our systems (user identification

and Captcha) from the beginning.

2.4.1 Individual Difference in Cognitive Abilities

Francis Galton was the first to start the investigation of individual differences among people

based on their cognitive abilities [42]. He studied a variety of cognitive abilities and in each

case focused on measuring the ability and noting the variations among different individuals.

For example, he studied mental imagery [43] of a group of participants in both controlled

and non-controlled conditions. Respondents were asked to think of some definite scenario,

such as their breakfast-table that morning. The respondents were then asked whether the

image was dim or clear and whether all the objects in the image were well-defined and other

related questions. Galton found much variability in the capacity of mental imagery. Some

participants reported almost no imagery, while others experienced clear images.

Individual difference is meant to capture the intuition that different people can approach

20

the same cognitive task in different ways. Recent research on individual differences is focused

on two distinct categories [41] (a) individual differences in abilities (the capacity to execute

a cognitive task) (b) individual differences in style (the manner in which one approaches a

cognitive task). The main motivation behind our work emerges from the study of individual

differences in executing cognitive tasks.

2.4.2 Visual Search

Visual search is a type of perceptual task in which the operator searches through a visual

field for a target among other non-targets or distractors [105]. It is generally measured by the

search time. The search time depends on multiple factors [96]. These include the strategies

employed by a user in searching through the alternatives, the rate at which the user reads

or scans the alternatives and the time spent to select the correct alternative. We will refer

to the visual field consisting of the targets and distractors as the search set.

2.4.3 Self-terminating vs Exhaustive Search

There are two types of search strategies, exhaustive search and self-terminating search. In a

self-terminating search, the user stops the searching process as soon as he finds the alternative

he thinks is appropriate. This means that the search set must consist of the target item.

The presence of the target makes the search set a positive search set [96]. Once the target

item is found the user is not required to search anymore. For example, consider a search set

containing a permutation of English letters arranged in a column (structured visual field).

If the user is asked to find a specific letter, “L”, he will inspect each letter in turn until he

finds “L”, at which point his search terminates. The user thus performs a self-terminating

search on a positive search set.

On the contrary, in an exhaustive search, the search always extends throughout the entire

available search set [96, 91]. Consider, the above example where the user is asked to find

the number “9”. Assuming that the user has no prior knowledge on the content of the list

21

presented, he inspects each item in turn until he reaches the end of the list, at which point

the search terminates. Search sets which do not contain the target item are referred to as

negative search sets [96]. A user always performs an exhaustive search on a negative search

set.

2.4.4 Serial Visual Search

In a serial visual search each item is inspected in turn in a search set, to determine if it

is a target or not. For example, consider searching through a list of 100 unsorted names

until the desired one is found (or the search self-terminates). The unsorted list aids in

sequential search unlike a sorted list where users could have skipped some names. In a serial

self-terminating search, if it takes a constant amount of time to inspect each item in turn

until the desired one is found then the visual search time is found to have a positive linear

relationship with the position of the target item inside the search set [73, 64]. In other words,

the visual search time is observed to increase with the number of items or distractors that

need to be inspected before reaching the target.

If the visual search field is organized in a structured manner, people tend to search

from top to bottom and from left to right [105]. However, if the visual search field is not

coherently arranged, then search can be more random in structure [106, 89]. Visual search

field, therefore, play an important role in predicting search times in time-critical environment.

2.4.5 Factors Affecting the Visual Search Process

A serial visual search process can be influenced by several factors. Before discussing these

factors in details, we will introduce the following terms: top-down theory and bottom-

up theory from [91]. “Theories starting with processing of low-level features are termed

as bottom-up theories. Whereas, theories that are driven by high-level cognitive process,

existing knowledge or prior expectation are termed as top-down theories.”[91]. For example,

a top-down influence on the visual process is a search for a word in a sorted list. The user’s

22

prior knowledge on the arrangement of the words in the dictionary allows him to start his

search near or around the spelling of the target word. On the other hand, consider a scenario

where the target word is highlighted (using bold fonts). Such modification in the low-level

feature of the target word makes it easily distinguishable from other words. This is a bottom-

up influence on the visual search process. We now discuss the factors that influences serial

search in details. These factors are needed to be considered while designing any matching

game involving visual search (Section 3.1.1 and Section 4.1.1).

Conspicuity.

Recall that a search set consists of targets and non-targets (distractors). It is important

that targets are similar to non-targets in the visual field. In other words, if the target is

conspicuous, non-targets do not need to be inspected [112]. This affects the serial search

process. The conspicuity of the target invokes a bottom-up influence on the visual process.

The search for such targets are parallel, since all items are examined at once and the target

is easily recognized. In parallel search, the size of the search set does not influence the

corresponding visual search time. Therefore, the search set must contain targets and non-

targets of similar color (preferably a single color), size, brightness to invoke serial search.

Automaticity.

If the user is highly familiar with the target a top-down influence on the search process

might occur. For example the target is the user’s own name. Prior exposure to the target

or familiarity with the target, therefore, biases the serial visual search process.

Expectancies.

Another factor that prevents a strict serial search model has to do with the user expectation

of where the target might lie inside the search set. For example, the knowledge of a sorted

list allows the user to start the search near the spelling of the target word. In order, to avoid

such top-down influence, the target needs to be placed randomly inside the search set.

23

2.4.6 Guided Search Theory

Cave and Wolfe in 1990 proposed the guided search theory [23]. The guided search model

suggests that all searches involve two consecutive stages [23, 109]. The first is the parallel

stage where the user simultaneously activates a mental representation of all the potential

targets. In a subsequent serial search stage, the user performs inspection on each of the

activated items, according to the degree of activation. The user then chooses the true target

from the activated elements. For example, consider finding the odd pieces out of the image

shown in Figure 2.4. The parallel stage will activate all the triangles but will not activate

the squares. In other words, user’s attention will be shifted towards the triangles. This

activated set of triangles is now the search set. At the second stage, consider finding a single

target (e.g. an equilateral triangle). A serial search is now in process to find the equilateral

triangle in a search set of size 8 (triangles). In a guided search theory the parallel stage

guides the serial stage because the former chooses the items to be processed. That is the

user’s attention will be directed to the items with highest activation or priority.

The mental representation of all the potential targets is also known as the activation

map. An activation map is a representation of visual field in which the level of activation

at a location reflects the likelihood that the location contains a target. This likelihood can

be determined by bottom-up influences or top-down influences or both. For example, the

low-level feature (structure) difference between a triangle and a square might activate the

triangles. Similarly, prior exposures to shapes of squares and triangles might aid in activating

the triangles. Therefore, the guided search model can direct the user’s attention to certain

items in the visual field by top-down and bottom-up influences [91].

2.4.7 Working Memory

There are two different types of memory storage [105]. One is the long-term memory and

the other is the working memory. Long term memory involves the storage of information

24

Figure 2.4: Guided Search: Find the equilateral triangle.

after it is no longer active in working memory and then the subsequent extraction of the

information later. Working memory holds and manipulates information in mind over short

periods of time for a cognitive task such as learning or reasoning [5].

There is a personal limit to working memory, with each individual having a relatively fixed

capacity in terms of the amount of information that can be kept active and the duration it

can be kept active. This makes the working memory capacity vary between individuals [39].

The ability to reason and solve problems requires the use of information stored in working

memory. However, this information is vulnerable to interruption and decay. Due to this

volatility, faster processing and manipulation of this information is necessary for successful

completion of a task.

Baddley [5, 4] originally proposed a model of working memory consisting of four elements.

The first is a visuospatial (visual and spatial-sequential) sketchpad which briefly holds some

visual images. These images consists of encoded information coming from the visual sensory

register. Thus a police officer will use the visual-spatial sketchpad to retain information

regarding the license plate of a vehicle. Or this component can be used to hold information

25

Figure 2.5: Baddeley’s model of working memory with two storage subsystem serving the
central executive co-ordinating system.

regarding the sequential occurrences of events. The second is a phonological loop, which

holds speech or sounds for verbal comprehension and for acoustic rehearsal. The loop is kept

active or rehearsed by articulating words or sounds, either vocally or subvocally. For example,

when we are trying to remember a phone number we vocally or subvocally sound out the

number. The third is the central executive components that co-ordinates information from

the aforementioned two elements. Figure 2.5 provides a pictorial depiction of the working

memory model of Baddley [5, 4]. The central executive decides what information to process

further and how to process it.

Working memory can be measured through a number of different tasks. The type of

task determines the type of performance metric or score to be used as a measure of working

memory. Therefore, the metrics can range from simple binary ”yes/no” to complex ones.

2.4.8 Priming Effect on Automatic Processing

Automaticity of actions are processes or behaviors that occur efficiently without the need

for conscious guidance or monitoring [91]. There are two main categories of automaticity

[104], (1) Conscious automaticity, where a conscious act of will is required to start automatic

processing. For example, once the conscious decision is made to drive to home, the drive itself

is automatic. We do not remember much of the experience of shifting gears and steering when

26

we arrive at our destination. (2) Unconscious automaticity, where the automatic process

is triggered unconsciously by some external stimulus. It is the processing of information

that guides behavior, but without conscious awareness, and without interfering with other

conscious activity that may be going on at the same time [9]. Therefore, to study or quantify

such processes, a technique called priming can be used.

Unconscious automatic processes can be invoked in many cases by a technique called

priming. A prime is a stimulus or event that influences further processing of the same or

related stimulus or action. In priming, participants are presented with a first stimulus (the

prime), followed by a break [91]. After the break, which can range from milliseconds to

days, the participants are presented with a second stimulus/action (same or related) to see

whether the first stimulus affected the perception of the second. For example, Bargh et

al. [10] carried out an experiment where one group of participants were exposed to words

related to the concept of elderly, the participants who were primed with the elderly concept

was found walking relatively slower than the others while leaving the experiment. However,

when asked later, the participants responded with having no conscious awareness of the

concept of the elderly or of their reaction to it.

Priming stimulus can be presented in two broad ways [91], one where the user is aware

of the priming stimulus and the other where the stimulus is presented in a noisy background

such that it is not registered by conscious awareness. We use both kinds of priming in our

game design for user authentication (Section 3.1.2).

2.5 Related Work

We now provide a discussion on the related works in (1) behavioral biometrics, (2) im-

age+game Captchas and (3) cognitive systems. In each Sub-Sections, we discuss in details

the works that are closely related to ours.

27

2.5.1 Related Works in Behavioral Biometrics

There is a considerable amount of work on behavioral-based biometric authentication systems

(such as mouse dynamics [2, 118, 44, 15, 81, 71, 79], keyboard typing pattern[86, 40, 98],

and several others [111]). The underlying principal of these systems is centered on “what

an individual does”. Our work focuses on individual differences in cognitive abilities or

essentially “what an individual is capable of doing cognitively” and could potentially fall

under a new category of biometric. In this section, we discuss prior works done on behavioral

biometrics, in particular, mouse dynamic biometrics.

Mouse Dynamics.

Mouse dynamics biometric systems often use mouse movement characteristics as the basis of

authentication [2, 118, 71, 79]. They typically use speed, acceleration, angles, clicks statis-

tics and other mouse movement features. These systems provide continuous authentication

mechanism and allow free mouse movements. In [44, 15, 81] mouse movements are cap-

tured from a controlled environment (games and similar interfaces). However, none of these

systems attempt to capture cognitive factors.

Gamboa et al. [44] proposed a static authentication system using a web-based game.

They collected 10 hours of mouse interaction data from 50 users and reached an EER of

6.3% (with 20 strokes). Each stroke consists of a set of points between two mouse clicks.

The feature set consisted of spatial and temporal features related to the mouse dynamics.

For example, spatial features consisted of distances, (x, y) co-ordinates and others, whereas

the temporal features consisted of velocity and acceleration.

Ahmed et al. [2] used mouse dynamics in a continuous authentication system and re-

ported an EER of 2.47%. They passively collected mouse movement data while the users

performed regular task on a dedicated station. Then they extracted features related to mouse

dynamics such as movement speed, direction, traveled distance and others. They carried out

their experiments with 22 participants.

28

One of the drawbacks of using mouse dynamics features is that they are influenced by

environment variables. Jorgensen et al. [58] carried out a study in which they showed that

error rates for schemes, in particular, Ahmed et al. [2] and Gamboa et al. [44], increased

under controlled environments. On the other hand, Zheng et al. [118] showed that some

mouse dynamics exploiting directions, ratios and angles are relatively platform independent

and results in low EER of 1.3% [118].

Hamdy and Traore [50] on Mouse Dynamics + Cognitive Factors.

The work closest to ours, although it is a combination of mouse dynamics and cognitive

factors, is that of Hamdy and Traore [50]. The authors claim to combine visual search and

short-term memory features with mouse dynamics. Their system requires the user to search

for letters on a shuffled virtual keyboard (appearing on a computer screen). At the beginning,

the user is presented with a shuffled virtual keyboard and a target string of letters, Figure

2.6. The user looks at the first letter of the string and searches for that letter on the virtual

keyboard. The user clicks on it as soon as he finds the letter. According to the author

this task is equivalent to a visual search task. The user then continues searching the next

letter. It is debatable whether the exposure of the same shuffled virtual keyboard and the

string of letters to be searched throughout a session has correctly measured the visual search

time. Visual search time should be measured by a subtraction method [33]. The subtraction

method is an established technique in cognitive systems that involves subtracting the amount

of time information processing takes with the process from the time it takes without the

process. This implies that the user’s movement time while clicking the letters does not

represent a pure visual search time. In fact, the movement time is a combination of visual

search time and mouse movement time.

Moreover, their system is language dependent because they use English letters as the

target string. Consider, there are two users: User A from England and User B from Japan.

If the system generates a random string of English letters, User A will have an advantage

29

Figure 2.6: Sample shuffled virtual keyboard [50]

over User B in terms of familiarity with the letters. Now consider if the system replaces the

target string of letters and the keys of the virtual keyboard with random shapes. There is a

high chance that both the users are getting exposed to those random symbols for the first

time. In such case, the estimated features of visual search or short term memory will remain

uninfluenced.

Along with their cognitive features and other mouse dynamic features, they have reported

an EER of 2.11% (for verification) and an accuracy of 72% (for identification). Some of their

features related to mouse dynamics such as speed can be affected by platforms as evident from

Jorgensen et al. [58]. However, no such discussion was provided. Their system performance

in remote authentication scenario is also not discussed.

Authentication via Implicit Learning.

Other works such as [12, 32] use the concept of implicit learning, whereby the user is trained

on a secret, which can later be used during authentication but cannot be described explic-

itly by the user. Implicit learning such as learning to swim or learning to ride a bicycle

gathers knowledge which is not consciously accessible to the trained person. The authors

[12] use implicit learning to plant a password in the human brain that can later be detected

during authentication. The system essentially reduces the cognitive burden of remembering

30

a password and does not require any special hardware. However, it has a long enrollment

and verification time. Our system does not invoke any implicit learning, since the challenge

sequences are random, and therefore, is different from these approaches [12, 32]. There is no

learning effect on our system.

2.5.2 Related Work in Image and Game Captcha

There is a considerable amount of work on Captchas utilizing the scope of text, image,

audio, video or game, in systematically concealing some information, preferably only to be

revealed by a human user. The most common among these types today, is the CR (Character

Recognition) Captcha, where the user is required to input alphanumeric character in response

to a challenged distorted text. However, many of the proposed or deployed CR Captchas

have been broken with high success rate [115, 70]. Image-based Captchas are alternative

approach to CR promising better usability and security ratings [119, 97]. They require the

user to recognize or distinguish [119, 29] or establish semantic relationship among images

[97] or between images and words [36]. A security pre-requisite of all these Captchas is that

the response to the challenge must not be provided to the client machine. However, keeping

them in clear form allow both human and machine to respond to the challenge with ease.

Nevertheless, a machine should always fail to authenticate as a human.

In such cases, differentiation should heavily depend on analysis of cognitive and behavioral

features. May be the work closest to ours, which claims to consider human behavioral analysis

is the dynamic game Captcha owned by a startup company called “Are you a Human” [3].

Although lacking any scientific evidence or literature, the company claims to differentiate

human and machine based on behavioral data such as mouse events [3, 69]. Their system

challenges the user with a game, which involves objects floating around within a frame.

The task of the human user is to establish semantic relationship between the floating object

and the corresponding target, by a drag and drop action. Dynamic Captchas are generally

resistant to static relay attacks [69].

31

Clear form Captchas are supposed to be inherently language and culture independent,

because the response to a challenge is basically the challenge itself. Semage [97] claims to

surpass the boundaries of languages but fails to be culture independent. In Semage, user

is required to find semantic similarity between images e.g. a real image of a tiger and a

cartoon tiger. Though Semage has a very high fun-factor, it suffers from the inadequacy

of automatically generating the image database. Moreover, due to traditional and cultural

variations throughout the world, challenge images might look foreign to some people. It

might be easier for someone living in a colder region to figure out the relationship between

ice hockey gloves and skates, and at the same time confusing for someone living near the

equator. Image Recognition Captcha such as Cortcha [119] can automatically generate the

image database. However, it also requires prior knowledge on the relationship between the

decoy object and the inpainted image.

2.5.3 Related Work in Cognitive Systems

In this section we discuss the related work done on the aforementioned mental processes.

The first four Sub-Sections discuss works which were closely followed while designing our

systems. The last Sub-Section discusses works that provide evidence for individual difference

in cognitive processes.

Serial Search.

Neisser [73] carried out an experiment where users were instructed to find the absence of

letter Z in a list. The list contained 49, 6-character strings such as JZ TXVB, DQFJHZ,

Z XLSMT and one target 6-character string VXRLFH arranged in a column. 15 such lists

(with random target item position and random strings of letters) were given to each user. It

was observed that the visual search time has a positive linear relationship with the position

of the target item inside the list of 50 items. Such type of trend in structured self-terminating

visual search is also evident from the work of [64]. We utilize this relationship between visual

32

search time and search set size for authenticating user as human in Movtcha.

Guided Search.

Our design of Movtcha also utilizes the guided search theory as discussed in Section 2.4.6.

Wolfe and Cave [109, 23] presented a model for the human search behavior, known as the

Guided Search Model. Wolfe [109] measured the reaction time of the user as a function of

the search set size. The search set consisted of a vertical line (target) among other horizontal

lines (distractors). The participant has to respond with “yes” (target present) or “no” (target

absent). The response time suggested that the reaction time is independent of the search

set size. Therefore, all items inside the search set were processed for orientation in parallel.

Whereas, when the search set contained items of “T” and “L” with different orientation,

the search time is found to be increasing linearly with the set size. That means in a guided

search the first stage is the parallel search stage and the second stage is the serial search

stage. This trend is similar to other self-terminating serial search [73, 64].

Working Memory.

Although non-verbal working memory is often referred to by the more general term “visual-

spatial” memory, Sala et al. [31] suggested that the non-verbal working memory might be

comprised of distinct visual and spatio-sequential components. They used a Visual Pattern

Test (VPT) to measure pure short-term visual working memory (largely shorn of its spatial

component). In the VPT test users are presented with grids similar to Figure 2.7. Each

grid or matrix is presented to the user for three seconds and then removed. The user is

then asked to reproduce the pattern by marking squares in an empty grid of the same size.

A performance score is the number of filled squares that has been correctly recalled. The

complexity of the task is varied by varying the grid size and the number of filled cells.

33

Figure 2.7: Examples of grids for VPT. These grids are drawn by us as examples and are
not necessarily the ones used in [31]

Automatic Processing and Priming Effect.

As discussed in Section 2.4.8, unconscious automatic processing are studied using priming

stimulus. The effect of the priming stimulus can be estimated by noting the difference in

behavior caused before and after the priming stimulus. Bargh et al. [10] carried out an

experiment where one group of participants were exposed to words related to the concept of

elderly, and the other group was exposed to neutral words. For the elderly prime version,

the critical stimuli were worried, Florida, old, lonely, grey, selfishly, careful, sentimental and

others. In the neutral version, the elderly prime words, were replaced with words shorn of

elderly concepts such as thirsty, clean, private and others. A confederate of the experimenter

then surreptitiously recorded the time needed for the participants to walk down a particular

length of the corridor while leaving the experiment. It was observed that the participants

who were primed with the elderly concept were walking slower than the participants from

the neutral group. However, when asked later, the participants responded with having no

conscious awareness of the concept of the elderly or of their reaction to it.

34

Individual Difference in Cognitive Systems.

Horn [53] points out a set of cognitive abilities that might help in capturing individuals dif-

ferences. Individual differences in visual search task is also evident from the pioneering work

of Chiang and Atkinson [25]. They carried out a visual search experiment and on analyzing

the reaction time with the search set size found significant differences among the individuals.

Recent researches done on individual difference in serial search task includes [100, 95].

Individual differences in the processing speed in a choice reaction experiment is evident

from the work of Jensen [55]. An analysis between the reaction time with the logarithm of the

number of alternatives showed variances among the participants in a choice-reaction exper-

iment. Other works focusing on individual differences in working memory and information

processing includes literatures [54, 39]. Individual differences in automatic processing due to

priming are also evident from recent works [34, 37]. They have indicated that priming may

be sensitive enough to serve as a measure of individual differences in automatic processing.

2.6 Statistical and Image Processing Tools

In this section, we first discuss the statistical learning techniques that have been used in our

user identification system. Then we provide a discussion on the image processing tools that

we used in Movtcha.

2.6.1 Probability Density Function Estimator

A random variable, r.v., quantifies the outcome of a random process like tossing a coin,

throwing a dice. For example, the random variable X can take in 1 when a coin lands head

and take in 0 when the coin lands tail. There are two types of random variable, discrete and

continuous. Discrete variables takes in a countable list of outcomes whereas the continuous

variables can take in any values between an interval.

The probability distribution of a continuous-valued random variable X is conventionally

35

described in terms of its probability density function (pdf), f(x), where the probability

associated with X is given by the expression (2.1). Note that for continuous-valued variables

the probability at any exact point is equal to zero. Therefore, probability is found for an

interval, which is a particular area under the function f(x),

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx. (2.1)

Sometimes it is necessary to estimate the underlying population distribution, f(x) from a

sample of observations. We will assume that the observations are independent realizations of

X. In other words, the observations x1, .., xn is the set of randomly drawn values of X. There

are two way of estimating f(x), (1) parametric approach and (2) non-parametric approach.

Parametric Approach.

The parametric approach of density estimation is to assume that f(x) belongs to a parametric

family of distributions such as the normal or gamma family. For example, let us assume that

f(x) is a member of a normal distribution N(µ, σ2). This leads to the following estimator,

f̂(x),

f̂(x) =
1

σ̂
√

2π
e−(x−µ̂)

2/2σ̂2

(2.2)

where the parameters µ̂ = 1
n

∑n
i=1 xi and σ̂ = 1

n−1
∑n

i=1(xi − µ̂)2 are estimated from the

sample data. If the distributional assumption of the underlying population is correct to

some extent, this approach can yield suitable estimates.

However, such parametric approach imposes restrictions on the shapes of f(x). In the

above example f̂(x) is symmetrical and bell-shaped and therefore is not suitable for repre-

senting skewed densities or bimodal densities.

36

Non-parametric Approach.

A non-parametric approach to density estimation can be used to avoid making any assump-

tion on the distribution of the underlying population and to better understand the structure

of the data. The easiest non-parametric estimation of a probability distribution is the use

of histogram. It is simple but has disadvantage such as discontinuity, high sensitivity to bin

edges, and starting points [103].

A histogram is constructed selecting a left bound or starting point x0 and the bin width,

b. The “bin width” is sometimes referred to as the “binwidth” (one word). The bins are

usually formed by dividing the real line into equally sized intervals. The histogram is then a

step function, and the height is the proportion of samples contained in that bin divided by

the bin width. The histogram estimator f̂H(x) at a point x for a sample size of n can then

be given by expression (2.3),

f̂H(x; b) =
number of observations in a bin containing x

nb
. (2.3)

The choice of binwidth and the positioning of the bin edges has a substantial effect on the

shape and properties of f̂H(x; b). A smaller binwidth leads to a relatively rough or jagged

histogram, while a larger binwidth results in a smoother looking histogram. Even when the

binwidth is kept fixed, the choice of the bin edges might lead to different histogram shapes.

On the other hand, kernel density estimators are superior to histogram and are quite

intuitive [87, 103]. The sensitivity of the histogram to the placement of bins is a problem not

shared by kernel density estimators. Kernel density estimators smooth out the contribution

of each data point xi over a local vicinity of that point by replacing the point with a kernel

function. In case of a Gaussian kernel the probability is highest at point xi and then the

probability slowly attenuates symmetrically on both sides. The contribution of the point xi

to the estimate at the point x depends on the distance between xi and x. The extent of

contribution depends on the shape of the kernel function and the bandwidth selected for it.

37

For kernel estimators, the bandwidth, h, of the kernel is analogous to the binwidth, b, of the

histogram.

The probability can be estimated by a relative frequency at point x by expression (2.4),

f̂(x) =
number of observations in (x− h, x+ h)

2nh
. (2.4)

Expression (2.5) provides an alternative way to represent f̂(x),

f̂(x) =
1

n

n∑
i=1

w(x− xi, h) (2.5)

where x1, x2, . . . , xn are the observed values and weighting function w is defined as follows:

w(t, h) =

1
2h
for |t|<h,

0 otherwise.

The way to think about the above weighing function is to imagine a rectangle of height

1/2h and width 2h at each of the observed points. Therefore the estimate of the pdf at a

given point is 1/n times the sum of the heights of all the rectangles that cover the point.

If h is increased the resulting function is less jagged or smoother and vice versa. However,

using rectangular kernel as above, still might result in discontinuity similar to histogram. To

obtain a smoother function, one can sought to smoother kernel functions like Gaussian. We

therefore use a Gaussian weighting function,

w(t, h) =
1

h
√

2π
e−(t)

2/2h2 −∞<t<∞. (2.6)

The above weighting functions are all of the form of expression (2.7), where K is the kernel

function,

w(t, h) =
1

h
K

(
t

h

)
. (2.7)

38

This allows us to rewrite expression (2.5) with the kernel as,

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
. (2.8)

The kernel estimate is constructed by centering the kernel (e.g. Gaussian, rectangular,

Epanechnikov) at each observation. Therefore, the value of the kernel estimated at a point

x is simply the average of the n kernel ordinates at that point. The bandwidth, h, of the

chosen kernel function determines the smoothness of the resulting density function.

2.6.2 Bandwidth Selection

At this point, the estimation of f̂(x) narrows down to choosing (1) the kernel function and

(2) the bandwidth h. Given a bandwidth h and the density estimate f̂(x), we are interested

to know how closely it represents the true population density f(x). Therefore, we consider

the difference in area between this two functions. In other words, we take the integrated

squared error (ISE),

ISE(f̂(·;h)) =

∫ (
f̂(x)− f(x)2

)
dx =

∫
f̂(x)2dx− 2

∫
f̂(x)f(x)dx+

∫
f(x)2dx. (2.9)

If we have more than one possible datasets from the true density f(x), we can take into

account the expected value of the random quantity, using mean integrated squared error

(MISE),

MISE(f̂(·;h)) = E[ISE(f̂(·;h))] = E

∫ (
f̂(x)− f(x)2

)
dx. (2.10)

The goal here is to choose a value of h such that ISE(f̂(·;h)), expression (2.9), is mini-

mized. Notice that the first term of expression (2.9),
∫
f̂(x)2dx, can be calculated from the

data. The third term,
∫
f(x)2dx, can be ignored since it does not depend on the bandwidth

h. The second term in the expression (2.9), 2
∫
f̂(x)f(x)dx, depends on f(x) which is the

true density of the underlying population and is unknown. In order to solve this issue, we

39

resort to a leave-one-out LSCV. A LOO LSCV, leave-one-out least square cross-validation,

splits the observations into two parts. The m − 1 first observations are used for density

estimation and the remaining one is used for assessing the accuracy of this estimation. This

is repeated m times, each time leaving out a new observation. The mean of the resulting m

quantities is then obtained. The process is repeated until a bandwidth, h, is found which

minimizes the mean error (Expression 2.10).

2.6.3 Edge Detection Algorithm

Edges detection is the mechanism of detecting points in a digital image where the brightness

changes abruptly [88, 65]. Edge detection reduces the amount of data in an image while

preserving the skeleton of the image. Canny edge detector [21] is a popular edge detection

algorithm. The algorithm has four steps, (1) Smoothing, where the image is blurred to

remove noise that might result into false edges, (2) Finding gradient, where a gradient

operator is applied for obtaining the gradients’ intensities and directions, (3) Non-Maximum

suppression, where only local maxima are marked as edges, (4) Hysteresis thresholding,

where the potential edges are determined.

Smoothing.

To prevent noises from being mistakenly identified as edges, noises must be reduced. There-

fore the image is first smoothed by applying a Gaussian filter. This results into a slightly

blurred version of the original image.

Finding Gradient.

Gradients at each pixel in the smoothed image are determined by applying a Sobel-operator.

The operator uses two 3× 3 kernels which are convolved with the original image to approxi-

mate the gradient Gx and Gy in the x and y directions respectively. The gradient magnitudes

40

can then be determined as an Euclidean distance measure as shown in Expression 2.11,

|G| =
√
G2
x +G2

y. (2.11)

The gradient direction is found using Expression 2.12,

θ = arctan

(
|Gy|
|Gx|

)
. (2.12)

Non-Maximum suppression.

The purpose of this stage is to convert the “blurred” edges in the image of the gradient

magnitude to “sharp” edges. This is done by determining if the gradient magnitude is a

local maximum in the gradient direction. The gradient is quantized to one of the values

0◦, 45◦, 90◦, 135◦. For example, consider that the gradient at position (x, y) was θ. Now

θ′ is obtained after quantizing θ to one of the aforementioned angles. Considering the two

pixels, p1 and p2 in direction θ′ and θ′ + 180 from (x, y), if the edge magnitude at either p1

or p2 is greater than the magnitude of (x, y) then (x, y) is marked. Once this is done on the

whole image, the marked pixels are deleted.

Hysteresis Thresholding.

The resulting image from the non-maximum suppression phase is thresholded to obtain a

binary edge image. Hysteresis thresholding uses two threshold values. One is the upper

value tU and the other is the lower value tL. Any pixel with a value greater than the upper

threshold tU is assumed to be an edge pixel. In addition, any pixel with a value p and

adjacent to an edge pixel is also considered an edge pixel provided tL ≤ p ≤ tU .

41

Chapter 3

USER IDENTIFICATION USING HUMAN

COGNITIVE ABILITIES

We present a cognitive task (CT) to the user in the form of a game that will be performed

by the user by interacting with the computer, and using a mouse or a touchpad. The game

starts by presenting a set of 25 different objects arranged in a 5×5 grid to the user. The

task of the user is to find a particular target object in the set. The user has to drag and

drop the challenge object onto the matching target object in the set. This is equivalent to

performing a visual search task by the user. On performing a correct search task (or correct

match), the user is rewarded with a gold coin. The user is instructed to deposit the gold coin

in a “bank”. On a correct deposit, the user is presented with another challenge object and a

similar interaction follows. The collected data during the execution of the CT will be used to

extract cognitive features related to visual search ability, working memory and the effect of

priming on automatic processing of the user. Features derived from these cognitive processes

in combination with other basic stimulus-response features are used to build profiles for the

users that can later identify them. We use a statistical approach to identifying the users.

Our system can be divided into three major modules. They are as follows: (1) The

Interaction Module consists of the input device that is used in executing the cognitive task.

We use a mouse as the only input device to our system. However, there is no hard-and-fast

rule on the choice of the input device, as long as the device used is able to capture cognitive

features. (2) The Data Acquisition Module provides a cognitive task in the form of a web-

based game. We developed the game using the Paper.js framework [76], an open source vector

graphics scripting framework that runs on top of the HTML5 Canvas. The user interaction

data are recorded using JavaScript and submitted passively via AJAX requests to the web

42

server. (3) The User Identification Module preprocesses the captured data and compares

and matches the captured data with existing templates. It then provides an authentication

decision.

This chapter has four sections. The first section (Section 3.1) provides details on the

design of the game and how the game invokes certain mental processes. Section 3.2 provides

discussion on the security of the system. Experiments and results are provided in Section

3.3. Finally, in Section 3.4 we discuss the limitations of our system.

3.1 System Design

The cognitive task (CT) is central to our authentication system. We present the CT to the

user in the form of a web-based game. In this section, we provide a detail discussion on

the design of the game. Later, in subsection 3.1.2, we examine how the design of the game

invokes the mental processes.

3.1.1 Design of the Cognitive Task

Our game provides a simple challenge-response task. In each instance of the challenge-

response, the user is given a challenge, which is an object. The user responds by dragging the

challenge object onto the matching object inside the search set. The user then receives a gold

coin as a reward and deposits it in a bank. On a correct deposit, the user is challenged with

a new object and the game continues as before. Our goal was to invoke the aforementioned

mental processes within a minimal design space.

An image is first broken into a grid of 5×5 = 25 square cells. We refer to this partitioned

image as the search set θ, |θ |= 25. Each square is called a tile. The game starts by presenting

a random challenge tile tc at a location Ptc outside the partitioned image. The tile, tc, is a

copy of a tile tr ∈ θ. We have divided the user’s response into two actions. (1) The user

drags tc and drops it onto tr located at position Ptr within the search set, in which case tc

43

rests on tr and becomes unmovable. We refer to this action as Aresp. On an incorrect match,

tc automatically moves back to position Ptc signifying a mismatch and allowing the user to

retry. (2) On a correct placement of tc on tr, the user is rewarded with a gold coin, gc, which

appears exactly at Ptr (superimposed). The user is then instructed to deposit (drag and

drop) gc in a bank (a bounded box with the same dimensions as that of a tile) appearing

at Ptc . We refer to this action as Arew. On depositing the coin, the user is challenged with

the next tile, and the game continues as before. Therefore, one instance of this game is

comprised of the correct placement of the target tile, Aresp and correct deposit of the gold

coin, Arew (Figure 3.1).

We provide a detailed discussion on the design of the game in the following paragraphs.

The game is a simple object matching game. On a correct match, the user gets an incentive

or gold and then deposits the gold in a bank.

From Conceptual Modeling to Implementation.

In order to guarantee the invocation of the mental processes, in particular visual search, work-

ing memory, and priming effect on unconscious automatic processing, certain constraints have

been placed throughout the game. We refer to these constraints as UAC1, UAC2 . . . , UACn.

To differentiate these constraints from the ones used in Movtcha in Chapter 4, we add the

prefix “UA”, which stands for “User Authentication”. Refer to Appendix A Table A.1 for a

quick look-up of constraints and their usage.

UAC1: At the beginning of each instance, a copy of a randomly chosen original tile

tr ∈ θ appears at Ptc as the challenge tile tc. Challenge tiles cannot be repeated. Therefore,

each of the 25 partitioned portions (original tiles) of the image must appear only once as

the challenge tile. This constraint ensures the following: (1) The presented search set is

always a positive search set and invokes self-terminating search. Refer to Section 2.4.3 for

a discussion. (2) The user is not exposed to the same challenge tile, tc, more than once.

If tc is repeated more than once, the user might recall the target tile’s location, Ptr . The

44

Figure 3.1: (a) User is presented with a challenge tile, tc, at the beginning of the 21st

instance. (b) User performs Aresp, i.e. drags and drops tc onto tr inside the grid. On a
correct match the loose tiles disappear showing the current game status (at 21st instance).
(c) User performs Arew, i.e. drags and drops gold coin, gc, onto Ptc . Top guiding line color
changes from green to red as the coin touches the line. (d) User successfully deposits gc
and gets the next challenge tile. All 25 tiles are visible at this point. Notice that the 21
unmovable tiles in b and d have not changed their positions. All the loose tiles have changed
their position (compare a and d). The target tile appears at its original position in the image
in (d).

45

recall process will then contaminate the visual search process. In other words, a top-down

influence is likely to occur on the search process in such cases. Refer to Section 2.4.5 for

factors affecting the search process.

UAC2: On completing the action Aresp, tc becomes unmovable. At this point all the loose

tiles (tiles that have not appeared in the challenge phase till now) disappear from the grid

leaving only the unmovable ones. This provides the user a chance of knowing the current

status of the game. The user can observe the tiles that have been placed correctly since

now and the remaining empty square cells on the grid. Refer to Figure 3.1 and 3.3. This is

similar to the Visual Pattern Test (VPT) of Sala et al. [31] where the grid consisted of some

empty cells and filled cells.

UAC3: At the beginning of Aresp all loose tiles in the grid are shuffled. They randomly

change their positions on the grid except for the target tile tr and the unmovable ones. All 25

tiles are visible during Aresp. Therefore the actual positions of the loose tiles remain unknown

to the user until they appear as the challenge tile. Refer to Figure 3.1. This constraint

ensures that users are not exposed to the target location Ptr prior to the challenge. The

visual process will be affected by a top-down influence, if the user already knew the target

location, Ptr .

UAC4: Two straight lines from Ptr to Ptc appears during the Arew action. During this

action if the gold coin touches any one of the straight lines, their color changes from green

to red, without hampering the current movement (Figure 3.1). The color change acts as an

obtrusive priming stimulus (Section 2.4.8) for the user. Refer to Section 3.1.2 for a discussion

on how this constraint invokes unconscious automatic processing.

UAC5: The tiles consist of random-shaped black symbols on a white background. All

tiles have the same color intensity and brightness and appears degraded (opacity 0.8 on a

scale of 0-1) throughout the game. The symbols being of random shapes do not necessarily

represent or convey any meaning to the user. The symbols are hand-drawn using a paint

46

Figure 3.2: (a) Random symbols from our system

program [75]. When we drew the shapes we attempted not to make any symbol more

conspicuous than the others. Our shapes do not have any “criss-cross” lines and are drawn

mostly with a continuous stroke (Figure 3.2).

UAC6: We allow some tolerance on the placement of the tile and the gold. This means

that the user does not need pin-point accuracy when dropping tc at Ptr or when depositing gc

at Ptc . A drop is considered a match if tc or gc cover 60% area of the underlying tile tr or bank

respectively. And on releasing they automatically get superimposed over their destinations.

However, there are exceptions, on K random instances the tolerance is decreased significantly

during Arew only, requiring 90% overlapping area. K = k1 . . . k5 are chosen randomly but

consecutively from instance intervals {i1 . . . i5}, {i6 . . . i10}, . . . , {i21 . . . i25}. The decrease

of tolerance acts as an unobtrusive priming stimulus in a noisy background (Section 2.4.8).

We have provided more discussion on constraint UAC6 in Section 3.1.2.

UAC7: Each time there is a mismatch or the drop does not meet the tolerance threshold

of UAC6, tc or gc automatically moves back to Ptc or Ptr respectively. The user is then

allowed to re-try. However, as soon as the user hovers over tc, the grid is again shuffled

according to constraint UAC3.

47

3.1.2 The CT Constraints and Cognitive Processes

Here, we summarize the importance of the aforementioned constraints and how they relate

to the mental processes.

Revisiting Visual Search Ability.

Our game (CT) has been designed to invoke only self-terminating searches. As soon as the

user finds the target tile, further searches are not required. Due to constraint UAC1, we refer

to our search set as a (+ve) search set, meaning that the target must appear inside the search

set so that a match can occur. On the other hand, a (-ve) search set does not consist of the

target object but only non-targets (distractors), thus invoking exhaustive search. Refer to

Section 2.4.3 for a discussion on the difference between these two types of search. Constraint

UAC3 and UAC5 invokes serial search and reduces the conspicuity of the target respectively.

In other words, UAC3 attempts to eliminate any top-down influences and UAC5 attempts

to eliminate any bottom-up influences on the visual search process. Recall, that if a target

is too conspicuous they may easily be found, without the need for inspecting other non-

targets [108, 96, 105]. If the grid was not shuffled at each instance according to UAC3 and

UAC7, the user could have remembered certain target positions beforehand. This top-down

influence could have contaminated the visual search processes. Section 2.4.5 discusses the

factors affecting visual search process.

Revisiting Working Memory and Information Processing Speed.

Due to Constraint UAC2, the user can observe the current game status. The user can observe

the empty grid cells and the already placed tiles. He can hold this information in his working

memory for a short interval of time while he completes action Arew. If the information is

not lost, he will be able to decrease the size of the search set |θ| for the next challenge. For

example, for the 11th instance of the game he will be able to shrink |θ| to 15, thus skipping

over the already placed 10 tiles. Recall that according to Constraint UAC3, after the user

48

Figure 3.3: (a) An instance of our game, when Aresp is completed. The current status of
the game is visible. (b) Example grid from a Visual Pattern Test [31]. Notice the similarity
between the presentation of (a) and (b).

completes Arew, all 25 tiles are visible. Therefore, if the user fails to hold the information

(status of the game) in his working memory, his |θ| must be lower bounded by 15. In such

case, the time elapsed on placing the target tile correctly is relatively longer. Therefore, it

is necessary to investigate the working memory capacity in terms of information processing

speed for each individual user.

Our design approach for measuring working memory capacity is very similar to the Visual

Pattern Test (VPT) (Figure 3.3) of Sala et al. [31] (Section 2.5.3). In the VPT, users were

presented with a grid consisting of some empty cells and filled cells for a few seconds. The

users were then asked to reproduce the pattern by marking squares in an empty grid of the

same size. The users received scores based on the number of filled squares that have been

correctly recalled. VPT measures the pure visual working memory and excludes the spatial-

sequential component. Recall, that according to Baddley’s original working memory model

[5, 4], the visual-spatial component was considered to be a single component. We followed

Sala et al. design of VPT closely, in order to estimate the pure visual working memory

capacity from our game. For a discussion on Baddley’s model [5, 4], refer to Section 2.4.7.

Discussion on VPT of Sala et al. [31] can be found in Section 2.5.3.

The type of task determines the type of performance metric or score to be used as a

49

measure of working memory capacity. We measure the capacity of working memory in

our game using information processing speed. Information processing speed is generally

measured with the aid of the reaction time in a choice-reaction experiment [1, 52, 39]. At

the ith instance of the game, if information about the status of the game is not lost from the

working memory then the user is left with 25 − i + 1 alternatives for the search operation.

Therefore according to Hick-Hymen law [1, 52],

RT = a+
1

b
Hi, (3.1)

where,

RT = Total Reaction Time,

Hi = Information content at the ith instance,

a = Simple reaction time (Hi = 0),

b = Information processing speed in bits/s.

The amount of information at the ith instance that is present in the search set θ, |θ| =

25− i+ 1, can be expressed as,

Hi =

|θ|∑
k=1

Pk

(
log2

[
1

Pk

])
(3.2)

where Pk is the probability of the kth alternative at the ith instance in the search set of

25 − i + 1 alternatives. Due to constraints UAC3, UAC7 all these alternatives are equally

probable. We provide experimental evidence on working memory capacity in Section 3.3.3.

Revisiting Automatic Processing and Priming Effect.

During Arew, two straight lines are drawn from Ptc to Ptr to guide the movement of the

gold coin (Figure 3.1). Constraint UAC4 provides the priming effect necessary to invoke the

automatic processing. We assume that the change of color provides an obtrusive priming

stimulus. Subsequently, on receiving the prime, the user might have some effect on the

50

straightness (unconscious automatic processing) of his movement (conscious processing) for

the following game instances. We measure the effectiveness of the prime, EOPC4, as the

ratio of the length of the line not overlapped by the gold coin to the length of the guiding

line. We then measure the resulting straightness as the ratio of the distances moved to the

actual distance of Ptc to Ptr .

On the other hand, constraint UAC6 provides an unobtrusive priming stimulus in a noisy

background, unlike UAC4. That means the user is not aware of the priming stimulus. The

gold moves back to Ptr if it does not satisfy the tolerance threshold (Refer to Constraint

UAC6). And the change in tolerance threshold of 30% (from 60% to 90%) is trivial enough

to go unnoticed by the user. After receiving this prime the user will have some effect on the

way the gold coin and tiles are dropped on the bank and grid respectively for the following

instances. We measure the effectiveness of this priming as the ratio of two overlapping areas,

EOPC6. The primes are considered effective on a particular user if the EOP s are very close

to 1. On the other hand, the effectiveness of the prime decreases as EOP s tend to 0. We

provide experimental evidence of priming effect on automatic processing in Section 3.3.3.

3.1.3 Cognitive Features Estimation

Raw Data.

The interaction data during the task execution is collected for each user. The raw data

consist of the pointing device’s absolute position (x and y co-ordinates), event types (click,

drag, release) and the time when these events occur. We explore these raw data in order to

estimate features related to cognitive abilities. During an instance of the game the following

raw data are collected. Raw data are only collected for an instance and not for an incorrect

visual search task.

OnClickEvent : The xce and yce co-ordinates of the click event e and the corresponding

timestamp tce given that e has been triggered on either the tiles or the gold.

OnReleaseEvent : The xre and yre co-ordinates of the release event e and the corresponding

51

timestamp tre given that e has been triggered on either the tiles or the gold.

OnDragEvent : The horizontal co-ordinate xde, de = 1 . . . n and the vertical co-ordinates

yde, de = 1 . . . n of the pointing device sampled at 100 ms intervals given that the drag

event e occurs on either the tiles or the gold.

Deriving Cognitive Features.

We estimate features that capture cognitive abilities from the aforementioned raw data. We

also discuss other important features that are based on the user’s response to certain stimulus

during the execution of an instance.

Drop and Pick Reaction Time, DPT (f1, f2). At the end of the Aresp action, the user

picks up the gold coin, gc, appearing at Ptr . The time elapsed between the stimulus (gc)

appearing and the user picking it up (response) is referred to as the tgDPT (f1). On the

contrary, at the end of the Arew action i.e. after depositing the gold coin at Ptc , the user

picks up the challenge tile, tc from location Ptc . The time elapsed between the appearance

of the stimulus (tc) and the user picking it up (response) is referred to as the ttDPT (f2).

At the first glance, DPT might seem similar to traditional pause-and-click, but there is a

fundamental difference between the two. Traditional pause-and-click are highly dependent

on what the user is currently reading or exploring [118]. However, DPT is the result of

a controlled stimulus and therefore, is not content-specific. ttDPT is also part of the visual

search process where user first performs search and then picks up the tile.

Visual Search Time, VST & ratio(f3, f4). V ST is the time required for the user to

visually search and detect the target tile inside the grid. V ST is calculated by the subtraction

method [33]. The subtraction method involves subtracting the amount of time information

processing takes with the process (time elapsed during action Aresp, denoted as Atresp and

ttDPT) from the time it takes without the process (time elapsed during the action, Arew,

denoted as Atrew),

V ST = (Atresp + ttDPT) − Atrew. (3.3)

52

It is important to consider ttDPT in the above equation, since a tc is exposed as soon as

a gc is deposited. So the minuend of equation (3.3) refers to the time elapsed between the

exposure of tc and its correct placement inside the grid. The time elapsed during Arew is

simply the movement time and does not involve user’s thinking or search time. Therefore, we

are able to distill out the plain visual search time for each instance. Moreover, note that the

subtraction method allows V ST to self-adjust to user’s specific environment by remaining

immune to differing mouse speed or acceleration. We also consider the ratio of Atresp to (Atresp

+ ttDPT), (f4) to capture the phenomena where user can either “search while dragging” or

“search and then drag”.

Information Processing Speed, IPS (f5.) Recall, that at any instance if information (game

status) is not lost from the user’s working memory then at the ith instance the user is left

with 25 - i +1 number of alternatives for the search operation,

IPS =
Hi

V ST
. (3.4)

The information content Hi at the last instance of the game, when the number of alterna-

tives is 1, is log2(1) = 0. Therefore, V ST at that point is equal to Atrew in an ideal condition.

This implies that the action Aresp is equivalent to the action Arew at the last instance of the

game. Apparently, it is also observable from the game that placing tc provided |θ| = 1 is

similar to depositing gc and requires no active processing.

Pause and Search, P&S (f6, f7). While dragging the target tile we noticed that the user

sometimes pause and search for the target inside the grid. If user remains at the same pixel

for more than α = 0.1 seconds while dragging the tile or gold we refer to it as a pause. We

measure the ratio of tile paused time to Atresp during Aresp (f6), and the ratio of gold paused

time to Atrew, (f7) during Arew.

Effectiveness Of Priming, EOP (f8−20). Recall that constraint UAC6 provides the prim-

ing effect necessary to invoke an automatic processing. We measure the effectiveness of this

53

Figure 3.4: (a) Click error angle and click error distance (center to click point). (b) Drop
error angle and drop error distance (from the click point to the center of the destination, red
bordered tile). (c) Straightness measured as ratio of actual distance to the distance moved.

priming through EOPC6,

EOPC6 =
Area overlapped between src and dest

Area of source or destination
, (3.5)

Area overlapped = g
(
tdimc , tdimr , f

(
∠Et

(xce, yce)
, 4Et

xce, yce , xre, yre

))
, (3.6)

f
(
∠Et

(xce, yce)
, 4Et

xce, yce , xre, yre

)
= tcenterX, centerYc , (3.7)

where,

∠Et
(xce, yce)

= The Click Error Angle made from the click point to the (+ve) x-axis with center

of the tile being the vertex, at the start of Aresp;

4Et
xce, yce = The Click Error Distance is the distance of the click point to the center of tc at

the start of Aresp;

xdim = Dimensions of the object x;

f(·) = A function returning the co-ordinates of the center of the object;

g(·) = A function returning the area overlapped.

EOP g
C6 (f8) refers to the effectiveness of priming while depositing gc (source) in the

bank (destination). EOP t
C6 (f9) refers to the effectiveness of priming while placing the tc

54

(source) on matching tile tr (destination). EOP g
C6 is calculated in a similar fashion as above.

We consider related features that might capture the effectiveness of priming as well. We

consider the Drop Error Distance for tile, 4Et
xre, yre (f10) and gold, 4Eg

xre, yre (f11), defined as

the distance from the drop point to the center of their destination. We measure Click Error

Distance (defined earlier) for tile 4Et
xce, yce (f12) and gold 4Eg

xce, yce (f13). We also consider the

Drop Error Angle for tile/gold ∠
Et/g
(xre, yre)

(f14, f15) which is the angle made from the drop

point to the (+ve) x-axis with the center of the destination being the vertex and Click Error

Angle (defined earlier) for tile/gold ∠
Et/g
(xce, yce)

(f16, f17). On the other hand we measure the

effectiveness of priming due to C4 as the ratio of two distances,

EOPC4 =
distance moved w/o overlapping the lines

distance from Ptc to Ptr
. (3.8)

EOPL1
C4 (f18) refers to the effectiveness of priming on the top guiding line and EOPL2

C4

(f19) refers to similar measure on the bottom guiding line. The resulting straightness (f20)

of the movement is measured as the ratio of the distance from Ptc to Ptr to the distance

moved,

Straightness(f20) =
distance from Ptc to Ptr
distance moved, D

, (3.9)

D =
n−1∑
i=1

√
δx2i + δy2i , (3.10)

where during OnDragEvent,

δx2i = xi − xi+1,

δy2i = yi − yi+1.

Refer to Figure 3.4 for the angles and straightness features. Note that the angles (mea-

sured in degree) and the ratios (with no units) self-adjust to users’ specific environment

[118].

55

3.1.4 User Classification Technique.

In this Section, we provide details on the classification technique used to classify the users.

We use a statistical approach of classifying the users. We model each of the features as

random variables F1, F2, . . . , Fn and assume class-conditional independence between them.

At the ith instance of the game a row of feature values F i = (f1,i, f2,i, . . . , fn,i) are generated.

Therefore, for a sequence of k instances denoted by F = (F 1, . . . , F k), the interaction

information can be denoted using a matrix of size k × n,

f1,1 .. fn,1

f1,2 .. fn,2

..

..

f1,k .. fn,k

During the learning stage the probability density functions of the features are estimated

using a non-parametric approach. In the classification stage a posterior probability function

estimates the probability of a classification being correct.

Learning.

The learning phase consists of the estimation of the probability density function for each

of the feature vectors. A parametric approach of estimating a density f involves assuming

that f belongs to a parametric family of distributions such as the normal or the gamma

family. The unknown parameters are then estimated e.g. by maximum likelihood estimation

[85]. We resort to using non-parametric approach, in particular, the kernel density estimator

[103] to avoid making any assumption on the distribution of the underlying population and

to better understand the structure of the data. The easiest non-parametric estimation of

a probability distribution is the use of histogram. It is simple but has disadvantages such

as discontinuity and high sensitivity to bin edges. Kernel density estimators are superior to

histogram and are quite intuitive [103, 120]. For a discussion on density estimation, refer to

56

Section 2.6.

We estimate the unknown density function fj(x) of the jth feature vector, represented by

a random variable Fj, based on its m samples (or training data) x1, .., xm. Assuming that

the observations are independent realizations of Fj, equation (3.11) represents the estimation

of the density function, f̂j(x), using a kernel density estimator, for univariate case,

f̂j(x) =
1

mh

m∑
i=1

K

(
x− xi
h

)
. (3.11)

At this point, the estimation of fj(x) narrows down to (1) choosing a kernel function K (2)

and selecting an appropriate bandwidth selection algorithm to determine h. Although the

choice of kernel functions is not of particular importance for an experiment [103], according

to some empirical results, we decided on using Gaussian kernel among others (Epanechnikov,

quartic and rectangular kernels) as the kernel function K. The kernel estimate is constructed

by centering the Gaussian kernel at each observation. Therefore, the value of the kernel

estimated at a point xi is simply the average of the m normal kernel ordinates at that

point. Therefore, the width of the chosen kernel function determines the smoothness of the

resulting density function. Oversmoothing can happen as a result of larger width whereas

undersmoothing can happen due to smaller width. Therefore, selecting the appropriate

width h is a crucial task while estimating the density function.

The performance of the kernel density estimator depends on how closely the estimated

f̂j(x) resembles the true fj(x) of the jth feature. This performance can be measured in terms

of the MISE(Mean Integrated Square Error), which globally measures the distance between

f̂j(·;h) and fj(x),

MISE(f̂j(·;h)) = E[ISE(f̂j(.;h))] = E

∫
f̂j(x)

2
dx− 2E

∫
f̂j (x) fj (x) dx+

∫
fj(x)2 dx .

(3.12)

We use least square cross validation (LSCV) [84, 16] which is a simple data-driven bandwidth

selector and whose main motivation comes from equation (3.12). The first two terms of the

right hand side of equation (3.12) is unknown and depends on h. In order to solve this issue,

57

we resort to a leave-one-out LSCV. A LOO LSCV splits the observations of a feature vector

into two parts. The m−1 first observations are used for density estimation and the remaining

one is used for assessing the accuracy of this estimation. This is repeated m times, each time

leaving out a new observation. The mean of the resulting m quantities is then obtained. The

process is repeated until a h is found which minimizes the mean error. Though there exists

several other bandwidth selection algorithm [57], we chose LSCV since it is simple and in-

tuitive. Moreover, it is data-driven and attempts to minimize MISE(f̂j(·;h)) asymptotically

to some extent. The learning stage, therefore, involves constructing the density functions

for each feature using Gaussian kernel as the kernel function K with bandwidth h selected

using LOO LSCV.

Classifying.

We assume class-conditional independence between the features, modeled as random vari-

ables F1, F2, . . . , Fn, for a user uw, w ∈ {1, . . . , m} and for the ith instance Pr (F i|uw) =∏n
j=1 Pr(fj,i|uw). Although the class-conditional independence between features is not true

in general, the assumption works well in many complex real life system. The posterior

probability of a user uw given an instance,

Pr
(
uw|F i

)
=

Pr (uw)
∏n

j=1 Pr(fj,i|uw)

Pr(f1,i, . . . , fn,i)
. (3.13)

We then classify a test sample according to the largest posterior probability. We accept a

sequence of instances as genuine if the number of accepted instances exceeds some decision

threshold α. The value of threshold α is set in such a way so that the false acceptance rate

is close to the false rejection rate.

3.2 Security Model

We discuss the security of our system against impersonation attacks. Resistance to imperson-

ation attack is an important aspect of any biometric system. Description of impersonation

58

attack in general is provided in Section 2.2.4. In this section, we also provide details on the

way we measure the error rates of our system.

3.2.1 Error Metrics

The security of a biometric system is generally measured with False Acceptance Rate and

False Rejection Rate [60]. The system should not accept an imposter (FA) and at the same

time should not reject a true user (FR). Therefore, both these metrics should remain close to

zero. We evaluate our system performance using user u’s self test sessions and other non-self

test sessions from n − 1 users. A positive test session of length l instances is considered

misclassified for a user u, if the classifier outputs a score below the threshold α. This is

referred to as a False Rejection. On the other hand, a negative test session is considered

classified if the classifier’s output score is above the threshold α. This is referred to as a False

Acceptance. We calculate the FAR as the ratio between FA and TN, where FA is the number

of false acceptance and TN is the number of test sessions belonging to the n−1 other users.

The FRR is calculated as the ratio between FR and TP where FR is the number of false

rejection and TP is the number of test sessions belonging to the user u. And subsequently

at the end, error rates for all the n users are averaged to get the average FAR and FRR of

the entire experiment.

3.2.2 Impersonation Attacks

To reduce FAR, any biometric-based technology must be resistant against attackers capable

of reproducing the target user’s input. In our system, the attacker has to imitate the victim’s

intrinsic cognitive abilities, which even if carefully estimated and used, must be very hard if

not impossible. Using a CT like ours, capable of capturing a multitude of cognitive features

makes it even harder for the adversary to mimic the real user. We build a web-based program

using HTML5 and JS capable of simulating any user’s game playing activity once fed with

data collected during the data acquisition period. We then select trained users or attackers

59

and instruct them to observe and imitate other users’ simulations. We provide the results

of the impersonation attack in Section 3.3, Experiment-III.

3.3 Experiments And Results

We formulated two questions. (1) Is it possible to verify a user based solely on the derived

cognitive features with high accuracy under (a) controlled condition and under (b) non-

controlled condition? (2) How effective are impersonation attacks against our system? In

Section 3.3.3 we also provide experimental evidence on working memory capacity and priming

effect on automatic processing.

We devise three separate experiments to answer the above questions. We obtained ap-

proval from the Research Ethics Board of our Institution. The 1st experiment was carried

out in a controlled environment with 18 graduate students. The 2nd experiment consisted

of 130 Turkers from Amazon Mechanical Turk. And the 3rd one was carried out with 15

Turkers. Once the participants agreed to the online consent information to proceed, a short

video showed how the game is played for a few instances. Then participants were instructed

to play the game. In all the experiments, interaction data were recorded using JavaScript

and submitted passively via AJAX requests to the web server. We had a repository of 25

partitioned images. We randomly picked a set of distinct images for each user in a session.

Users were never exposed to the same image more than once.

3.3.1 Experiment Setup

We now provide overviews on the experimental setup for the three experiments.

Experiment-I: Goals and Setup

The goals of the 1st experiment were to figure out (1) Accuracy and efficiency (in terms of

enrollment and verification time) of our system when users are trained in a non-distracting

environment using a single platform, (2) perform an analysis on the derived features, (3)

60

evaluate the performance of the system when user tried to authenticate over a period of

time. Each user in a session is required to play the game 7 times, every time with a

new random partitioned image, resulting into a dataset of at least 25×7 = 175 instances.

Afterwards, they completed the exit survey. All of them used a PC with 2.10 GHz Intel i3,

4GB RAM and an wireless optical USB mouse. They used Google Chrome on a screen of

resolution 1366× 768 (96 DPI) in Windows 7 SP1 OS.

Experiment-II: Goals and Setup

The goal of this experiment was to evaluate the system with random users from different parts

of the world who train themselves under their own supervision and remotely authenticate

later. We created 4 HITs altogether, the 1st HIT was created with 130 assignments to have

130 unique users. Users must have ≥ 98% HIT approval rate and ≥ 5000 HITs approved to

qualify for our HIT. Each assignment was worth $0.7. We refer to each HIT as a session. The

users were directed to the website hosting the game. After watching the video, they were

required to play 7 games and then complete an exit survey. On completing the assignment,

users were asked to copy-paste a code (generated on our website) back to Amazon. The 2nd,

3rd and the 4th HITs were created for the inter-session experiments (Section 3.3.2).

Experiment-III: Goals and Setup (Impersonation Attack)

Impersonation attack demands trained users capable of mimicking a user’s game playing

activities. Therefore, participants were selected based on how fast they completed the pre-

vious sessions. We selected 15 Turkers from the 2nd pool. Each assignment was worth $0.5.

We built a simulation program using HTML5 and JS which when fed with user’s raw data,

could simulate accurately the game playing activities (similar to a recorded video). Each

participants were required to watch and mimic the simulations of 3 users or victims. We

considered a strong attack scenario. We (1) selected victims who had less cognitive capabil-

ities compared to the attackers (i.e. the victims had relatively higher visual search times),

(2) displayed a clock while the simulation was playing, (3) provided the same image or grid

61

in the attack phase, (4) declared a bonus of $0.5 if the Turkers can mimic accurately and

(5) allowed to repeat the attacks as many times as desired. All participants were given

instructions to observe when and how tiles and gold are picked, dragged and dropped.

3.3.2 Experimental Results and Analysis

In this section, we provide the experimental results and analysis for all the three experiments.

Experiment-I: Results and Analysis

Intra-Session Evaluation. As the name implies, here we consider the training and test data

from the same session. The dataset was divided into two parts. The first part consisting of

5 games (g1, . . ., g5) each of ≥ 25 instances, is used for training purpose and the last two

games g6, g7 are separately used for testing purpose. The average EER is 0% suggesting

that all users have consistent game playing activities in a continuous session (Figure 3.11).

Figure 3.5 shows the variations in FAR and FRR, at threshold α ≈ 0.5, as the number of

instances are varied. Less number of instances e.g. 16 would have significantly decreased the

verification time with an EER of 0%. The verification time is generally referred to the time

taken to collect the verifiable biometric data and the time taken to complete the classification

task [60]. It took an average of 115.8 seconds to complete one game (25 instances) and an

average of around 63.2 seconds to complete part of the game (16 instances). Note that these

time intervals considered the time elapsed during the whole game. Slight user distractions

that might occur even in a controlled environment are also taken into account. The time

elapsed during Aresp and Arew actions only (shorn of distractions) are relatively less, around

71 seconds for 25 instances. Nevertheless, these intervals are comparable to several recently

proposed authentication techniques (Table 3.1). A comparison of our error rates with other

established system is provided in Table 3.3. Our classification time does not have any

particular impact on the verification time. The verification time in a system like ours, is

highly dependent on the cognitive abilities of the participants and other design factors. Refer

62

Figure 3.5: Intra-session Evaluation: Avg. FAR and FRR at α = 0.5 with varying number
of instances.

[Ours] [50] [44] [12]
Verification Time(Approx.) 71s, 2.5min 39s 25s 5-6min

Test Session Size 25 instances 25 characters 25 strokes 540 items
Enrollment Time(Approx.) 10min, 20min 6.5min 6.7min 30-40min

Enrollment Session Size ≥175 instances 250 characters 400 strokes 3780 items

Table 3.1: Comparison of verification time, enrollment time, test and enrollment (train+test)
session size for a particular user.

to Section 3.3.4 for a discussion.

Feature Analysis. We use data from Experiment-I for analyzing the features. Figure 3.7

shows the Pearson correlation coefficients of pairs of features in a color-coded plot. There are

a few highly correlated features. According to our observation these correlated pairs slightly

improve the classification accuracy, similar to [48] without adding any significant burden to

the training time. Therefore, all the 20 features are used in the later experiments. On the

other hand, the plot provides us with some interesting information. Notice that features

f8 and f11 are negatively correlated whereas f9 and f10 are positively correlated. f10 and

f11 are the difference in distance from the tile and gold release co-ordinate to the center

of their destinations respectively. Intuitively, the smaller these distances are, the greater

the overlapped areas (f8, f9) should be and vice versa. This is true for the gold but not

for the challenge tile. The reason is that users mostly pick up the tile by clicking on the

63

Figure 3.6: Intra-session Evaluation: Avg. FAR and FRR at α = 0.5 with varying number
of users.

peripheral region, such that the mouse pointer does not block the symbol on the tile. This

allows the user to drag and search at the same time. Whereas when picking up the gold

such view is not necessary. On the other hand, we considered the strength of each of the

features in identifying the users. Each feature was in turn used for learning and classifying.

We found that 11 features related to drop and pick reaction times, visual search and ratios,

and priming (guiding lines and angles) are in the top 11 based on Avg. EER. Refer to Table

3.2 for details.

Inter-session Evaluation. The participants were invited to play on three other occasions,

each separated by 1-day, 2-days and 3-days intervals respectively. We consider these intervals

to be congruous with real account login intervals. The training data came from the original

data acquisition session (g1, . . ., g5). At each occasion the participants were required to

complete one game using any machines (except cellular devices) and browsers at their most

suitable time. At α = 0.5, FAR remained 0% through all sessions with FRR being 0%, 5.6%

and 5.6% on the 1, 2 and 3-days sessions respectively. Statistics of the sessions include

Chrome (66.7%), Safari (27.7%), Mozilla (5.6%), others on a range of OS Win (55.6%), Mac

(38.8%), Linux (5.6%). Mouse type statistics from exit survey include wireless or wired

mouse (83.3%) and the rest laptop touchpad (user claimed). Whereas, only mouse was used

in the training phase.

64

Feature EER [%] FAR [%] FRR [%]
RatioPauseTile TileMoveTime (f6) 55.56 11.76 88.89
PrimedBottomGuidlingLine(f19) 66.67 17.65 88.89
RatioTileMoveTime ImpureVST (f4) 66.67 23.53 83.33
GoldClickErrorAngle (f17) 66.67 5.882 100
GoldPickReactionTime (f1) 72.22 11.76 83.33
PrimedTopGuidingLine (f18) 72.22 23.53 88.89
PureVisualSearchTime (f3) 72.22 5.882 88.89
GoldDropErrorDistance (f11) 72.22 0 100
TileDropErrorAngle (f14) 72.22 29.41 88.89
Straightness (f20) 72.22 0 94.44
TileClickErrorDistance (f12) 72.22 0 94.44
RatioPauseGold GoldMoveTime (f7) 77.8 17.65 88.89
TilePickReactionTime (f2) 77.8 17.65 94.44
GoldDropErrorAngle (f15) 77.8 5.882 100
GoldAreaOverlapped (f8) 82.35 17.65 94.44
TileClickErrorAngle (f16) 82.35 5.882 100
InformationProcessingSpeed (f5) 82.35 17.65 88.89
TileDropErrorDistance (f10) 82.35 17.65 94.44
TileAreaOverlapped (f9) 82.35 17.65 94.44
GoldClickErrorDistance (f13) 82.35 0 94.44

Table 3.2: Ranking of features based on avg. EER. FAR and FRR at α = 0.5 (Experiment-I)

Experiment-II: Results and Analysis

Intra-Session Evaluation. Similar to Experiment-I, g1, . . ., g5, were used for training and

g6, g7 for testing purpose. We noticed abnormal V ST s in the dataset for a few cases. On

closer scrutiny and observing the simulations for such cases we noticed very large Drop and

Pick Reaction Time, ttDPT and tgDPT (Figure 3.9). This depicts that users are more likely to

get distracted at the end of the actions (Aresp, Arew) rather than while performing them. We

detect these extreme outliers using interquartile range for each user u, with the upper fence

UF = fQ3
u + (3 × f IQRu), fu ∈ {ttDPTu , t

g
DPTu

} and replacing them with UF . Noise removal

was done separately for the training and test dataset. Figure 3.5 shows the avg. error rates

for varying number of instances. Our classifier reaches an FAR of 2.3% and FRR of 11.6%

with ≥ 25 instances. It took an average of 95.3 seconds to complete one game (25 instances)

and an average of around 58.7 seconds to complete part of the game (16 instances). The

65

Figure 3.7: Correlation coefficients [-1,1] of pairs of features in a color-coded plot.

time intervals consider the time elapsed during actions Aresp and Arew only. The actual time

to complete an overall game cannot be measured properly here, since the intervals can be

highly influenced by distractions. The average time it took to complete one assignment of

the HIT is 24.3 minutes. This included (1) reading instructions, (2) watching video, (3)

completing games, (4) completing the survey and finally (5) submitting the generated code

back to Amazon. We make a plausible assumption that it takes 4/5 of 24.3 minutes to play

all 7 games and 1/5 to complete the other listed 4 tasks. Then the Turkers took on an

average 2.5 minutes to complete one game. This is again comparable to other established

authentication systems (Table 3.1). Mouse type statistics from the exit survey included

wireless/wired mouse (61.3%), laptop touchpad (38.7%) (user claimed). Figure 3.6 shows

how the FAR and FRR stabilizes after training data size reaches 60 users. This suggests

that the error rates are uncorrelated with the sample size (number of users) and will remain

mostly uninfluenced by it.

Inter-Session Evaluation. We created another 3 HITs, each separated by 1, 2 and 3-days

intervals respectively. We invited all the previous users through emails. We made sure users

completing the 4th HIT had already participated in the previous 3 HITs. Each assignment

66

Works FAR FRR Session Size Type Notes
[2] 2.46% 2.46% 2000 Mouse Actions MDS Free mouse movement
[44] 6.3% 6.3% 20 Strokes MDS Confined within a task
[118] 1.3% 1.3% 20 Mouse clicks MDS Free mouse movement
[50] 2.11% 2.11% 25 Text Characters HBS Confined within a task
[40] 0.01% 4% 683 Characters KDS Fixed-text input
[98] Accuracy 93.3% - 99.5 % 200 Characters KDS Free-text input

[Ours] 0%, 2.3% 0%, 11.6% 25 Instances CBS Confined within a task

Table 3.3: Comparison with other approaches. Mouse Dynamics System(MDS), Keystroke
Dyanmics System (KDS), CBS (Cognitive-based Biometric System), HBS (Homogeneous
physio-behavioral Biometric System)

was worth $0.2. We received 49, 37 and 37 valid submissions until the HIT expired. The

assignment required completing only one game. As before the classifier used the initial

acquired data g1, . . ., g5 for learning. The FAR were 2.08%, 0%, 0%, and FRR 8.16%,

8.11%, 5.45% with α = 0.5 on the 1-day, 2-days, 3-days sessions respectively. This suggests

that even after small periods of inactivity and using the original training data, the classifier

can still distinguish the users.

Experiment-III: Results and Analysis

A successful attack would require reproducing the cognitive features of a victim. Figure 3.8

depicts the maximum number of instances (out of all attempts) that have been correctly

classified to the corresponding victims. A maximum of≥ 3 instances were correctly mimicked

by user 3, 10 and 13. None of the attackers would have successfully authenticated with our

experimentally set threshold of α = 0.5. In fact, user 4, 8, 9, 12 and 15 were identified as

“themselves” in one of the games (attacks). A successful attack in this case would require

mimicking almost all 20 cognitive features, which is a very hard task. Moreover, the challenge

tiles appeared randomly, and the grid was shuffled at each instance according to constraint

UAC3. So the sequence of challenges in the simulation and actual attack differed, making it

harder to recall the corresponding V ST s and other reaction times.

67

Figure 3.8: Results from Impersonation attack. Most instances are accepted as “own” rather
than as the victims’ (attack-1, 2 and 3).

Figure 3.9: Box plot before noise removal (whiskers set to 3) showing outliers, (a) Tile Pick
Reaction Time (in ms) (b) Gold Pick Reaction Time (in second).

68

3.3.3 Evidence of Cognitive Processes

We analyze our data and provide evidence for working memory and priming effect on auto-

matic processing. Recall that after a successful match, the user can observe the game status,

(UAC2). If this information is not lost from the working memory, then |θ| must decrease

with each instance, resulting in a sequence of descending Visual Search Time, V ST . Con-

sidering information storage is likely to occur near the end of the game, since it is easiest

to recall the last remaining empty cell, we find the length of sub-sequence l = n − k + 1 of

n instances such that V STk>V STk+1> . . . >V STn for |θ|k>|θ|k+1> . . . >|θ|n = 1. Since the

user might store partial information as well, we allow some tolerance such that v number

of violations (sign changes) can happen in the sequence. Figure 3.10(a) shows the average

sub-sequence length l (for 5 games) when v is varied from 0-3. We can observe the variations

in working memory capacities among a group of users.

On the other hand, after triggering a prime, a user might (1) receive it and get influenced

(invocation of automatic processing) or (2) receive it but not get influenced (no invocation

of automatic processing) or (3) not receive it at all e.g. a cautious user dropping a gold

with overlapping area ≥ 90%. We now give a detail discussion. Considering that the prime

has been triggered at the ith instance, the following likely explain the three cases at the

i + 1th instance, for Constraint UAC6. (1) EOP i
C6<EOP

i+1
C6 and gc got misplaced at the

ith instance. In other words, user drops gc with relatively higher pin-point accuracy at the

i + 1th instance. (2) EOP i
C6 ≥ EOP i+1

C6 and gc got misplaced at the ith instance. That is

user received the prime but did not get influenced. (3) gc never got misplaced at the ith

instance. Figure 3.10(b) shows the average percentage for each of these cases (for 5 games)

when primes are triggered. Notice that due to slight inaccuracies in placement, all users

received at least some primes. Around 30% of the users never missed getting influenced

(without conscious awareness) by the prime whenever they received it.

69

Figure 3.10: Users randomly chosen from Experiment-II. (a) Average sub-sequence length
with a linear relationship between V ST s and search set sizes indicating differences in working
memory capacity of different users. Different curves represent varying number of violations
from linear relationship. (b) Percentage of the three cases when prime is triggered (Section
3.4). Users are influenced in different ways.

Figure 3.11: Matrix representation of n test sessions matched against n templates. Threshold
set at ≈ 0.5 marked by red line. The horizontal bar shows the number of instances and
corresponding color codes.

70

3.3.4 Usability of Authentication Systems

The usability challenges here can be broadly divided into two categories (1) designing a CT

that is enjoyable to execute, but has strictly defined constraints needed to invoke cognitive

processes, (2) decreasing the verification time during user authentication. Biometric system

requires building profiles for users during the enrollment phase. Systems like ours, requiring

the user to interact within a confined environment, such as playing a game, must therefore

be engaging enough to retain the interest and the attention of the user. The average SUS

score is around 71. These scores are within the user-friendly industrial software ratings [63].

This suggests that the majority of the users found the game entertaining.

One of the main concern of static behavioral biometric system is the verification time.

Recall, that the verification time is the amount of time it takes to collect the necessary

biometric data and the time it takes to make an authentication decision [60]. The amount

of time it takes to collect the necessary biometric data is of a greater concern. Unlike,

other established systems, our identification process considers each instance of the game and

attempts to classify that instance to a user. This means if the system can classify certain

percentage of the instances to the legitimate user, the system can authenticate the user

with some confidence. Therefore, for example, instead of 25 instances, the system can build

up enough confidence on the authentication task based on only 16 instances. This would

significantly decrease the log in time.

The verification time in our system is also dependent on the movement time of the tiles

and gold. The closer the challenge tile is to the grid the smaller is the movement time during

Aresp and Arew actions. Verification time is also dependent on the size of the grid and the

tiles. This again translates to smaller distance leading to smaller movement time. However,

such adjustments should not drastically degrade the performance of the system.

71

3.4 Discussion on User Identification System

Our system provides a proof-of-concept for cognitive only biometric authentication. Our em-

pirical results showed that the system is robust against impersonation attacks. Widespread

popularity and availability of games on computers and smart phones [45, 93] suggests that a

well-designed CT (game) can provide a promising approach to user authentication. In this

section, we discuss the applications and limitations of our system. Chapter 5 provides a

detail discussion on the attainable future goals and open problems.

Our cognitive based authentication system assumes that the user plays consistently and

use his cognitive abilities appropriately. This is arguably a desirable property and careless

treatment of security should be punished by denying access. Our proposed system, like other

biometric systems cannot authenticate a user if his biometric data is damaged (e.g. a severe

burn to one’s finger). In cognitive based systems the damage may be long term and caused

by cognitive and mental disorders, or short term when under the influence of substance. To

provide user access in such cases depending on the type of the damage and the organizational

policy, a different type of authentication system such as a password system, should be used

as backup. Cognitive abilities can change slowly over time due to age and experience. In

such cases, an adaptive enrollment mechanism is necessary to capture and represent the most

current features of the user. Our system can be used as a stand-alone system, or can be used

in a multi-factor authentication system. Since well selected cognitive features cannot easily

be mimicked the authentication system will be secure.

72

Chapter 4

UTILIZING HUMAN COGNITIVE ABILITIES IN

CAPTCHA

Movtcha is a clear form game Captcha that considers the linear relationship between vi-

sual search time and search set size to differentiate humans from computers. The design of

Movtcha also takes into account human behavioral analysis to eliminate noise during search

time estimation. At each instance of Movtcha the user performs a visual search task by

dragging and dropping the challenge tile onto the target tile inside the grid. A series of

visual search time collected for a particular number of instances are then used to differen-

tiate humans from computers. If the search time grows linearly (roughly, possibly with a

few outliers) with the search set sizes, then the system authenticates the user as a human.

Unlike other Captcha systems, Movtcha is presented in clear form. This makes it language

and experience independent. It is resistant against random, automated and static relay at-

tacks. In Movtcha, challenge generation and response evaluation are automated. Therefore,

Movtcha can be used in large scale application.

Movtcha consists of three major modules. They are as follows: (1) The Generation

Module generates the Movtcha challenges, which are basically the processed images. (2)

The Data Acquisition Module provides Movtcha in the form of a web-based game. The

user uses a mouse to solve the Movtcha. The interaction data is recorded using JavaScript

and submitted passively via AJAX requests to the web server. (3) The Evaluation Module

differentiates a human from a computer based on the acquired data and an accuracy metric.

This chapter has four sections. Section 4.1 and Section 4.2 provide details on the design

of the Movtcha game and how it invokes certain mental or cognitive processes. Section 4.3

provides discussion on the robustness of Movtcha against different attacks. Experiments and

73

results are provided in Section 4.4.

4.1 Movtcha Design and Execution

The design of Movtcha follows that of Neisser serial search model [73] and Wolfe guided

search theory [109]. Movtcha provides a structured visual field, with the aid of a grid, and

makes it feasible for the human user to perform search only on the highly activated tiles,

θsub, of the image. The parallel stage helps the user in recognizing the highly activated/exotic

tiles in the grid. Once that stage is over, the user searches serially to find the target. It is

also necessary to ensure that the design of Movtcha generates robust estimation of the visual

search time. This section provides details on (1) the design of Movtcha, (2) manipulation of

the image to be presented in Movtcha, (3) the extraction of cognitive and behavioral features

and (4) the authentication mechanism.

4.1.1 The Cognitive Task as Movtcha

An image of size x × y pixels, (width × height), is first broken into a grid, g, containing θ

pieces of square tiles of size k × k indexed as c1, c2, . . . , c|θ| from left to right and then top

to bottom, |θ| = x×y
k2

. The random set of tiles that is systematically modified, to look exotic

to a human user is referred to as the search set θsub. The game starts with the user being

challenged with a tile tc at position Ptc . The objective of the user is to drag and drop tc onto

the corresponding target tile, tr, inside g. We call this search action or response Aresp. On

a correct visual search task, the user is rewarded with a star, sr, superimposed on tr. The

user then performs action Arew, where he drags and drops the rewarded star sr, back to Ptc .

One instance of the game is thus completed. The user is required to play certain number of

instances in a Movtcha and each time the image, the number of exotic tiles |θsub|, and the

position of the target tile is varied. We refer to the location of the target tile inside the grid

as Ptr . And we refer to the number of exotic tiles that need to be examined on reaching the

74

target tile as |θPtrsub |. Refer to Figure 4.1.

Constraints & Helpers. The game must invoke serial self-terminating visual search of

a user after the parallel stage. In order to guarantee (1) its invocation (C1, C2 & H2)

(2) its correct measurement with the aid of behavioral analysis (C2, C3, C4 & C5) and

(3) facilitate the visual search process (H1 & H2), certain constraints & helpers have been

placed throughout Movtcha.

C1. At the beginning of each instance, as the user hovers over a bounded region Ptc , the tile

holder and grid/image appear. The tile holder moves randomly within Rtc and the challenge

tile is visible only when hovered or dragged. This ensures no prior exposure of the challenge

tile or search set which can bias the search time [105]. This constraint also ensures that user

drags while searching. In addition when dragged, the tile position is adjusted relative to the

click point of the mouse such that the mouse pointer does not obstruct the view of the tile.

In other words, the mouse pointer appears at the lowest right corner of the tile (Figure 4.2).

This also facilitates the drag and search process.

C2. Consider the pixel co-ordinate system. As the tile is dragged, if the y-coordinate of

the drag event, eyd is in between the minimum and maximum y-coordinate of the jth row

in the grid, g, then that row is highlighted by two red lines. If eyd during Aresp crosses the

maximum y-coordinate of target tile tr, then tr is highlighted signifying a failed search. The

user is then presented with a new instance. This constraint ensures that user does not skip

over and misses tr while performing serial search from top to bottom and from left to right.

Therefore, visual search time, V ST collected from a skipped search is avoided similar to [73].

Refer to Figure 4.2.

C3. If the time taken in Aresp crosses some experimentally set threshold λ (Section 4.4.2),

the user immediately receives a new instance. This discards abnormal V ST caused due to

loss of attention by the user and encourages user not to get distracted while completing an

instance.

75

Figure 4.1: Best viewed in soft copy. (a) An instance of Movtcha where user has collected
6 stars and made 2 mistakes. The grid size is |θ| = 49, search set size is |θsub| = 6, and the

position of target tile inside the search set is |θPtrsub | = 4. (b) Edges of IP using Canny edge
detection algorithm. (c) Contour plot of IP .

C4. Arew action demands smooth movement of star, sr, since no cognitive thinking in

particular, visual search, is required to execute Arew. Larger amount of pauses during the

movement of sr signifies that the user was distracted. If the amount of pauses crosses some

experimentally set threshold ζ (Section 4.4.2) during dragging sr, then it moves back to tr

inside g.

C5. On dropping tc anywhere other than on tr inside g, the challenge tile tc moves back to

Ptc signifying a mismatch. The user immediately receives another new instance.

H1. We allow some tolerance on the placement of the tile/star. This means that the user

does not need pin-point accuracy when dropping the tile/star.

H2. A grid is drawn on the image for establishing finer distinguishability among the tiles

and forming a structured visual field. This helps in invoking serial search. It also aids in

resisting automated memory attacks (Section 4.3.2).

4.1.2 Cognitive and Behavioral Feature Extraction

We refer to any features collected during the execution of a cognitive task as cognitive

features. On the other hand, behaviors do not necessarily invoke any particular cognitive

process. Features collected through observation of human behavior, such as in behavioral

76

biometrics (while browsing, typing), are referred to as behavioral features. Such distinction

can also be found in [50].

Visual Search Time Estimation, VST. The time required for the user to visually search,

detect and match tc onto tr, is referred to as the visual search time V ST . The V ST is a cogni-

tive feature, calculated by the subtraction method [33]. The subtraction method involves sub-

tracting the amount of time information processing takes with the process (MTAresp + ttRT)

from the time it takes without the process (MTArew),

V ST = (MTAresp + ttRT) − MTArew , (4.1)

where:

MTAresp = time elapsed during Aresp,

MTArew = time elapsed during Arew,

ttRT = (reaction) time elapsed between the appearance of the stimulus (tc) and the user

picking it up (responding).

The minuend of equation (4.1) refers to the time elapsed between the exposure of the

target tile and its correct placement inside the grid. The time elapsed during action Arew is

simply the movement time and does not involve user’s thinking or search time. Therefore,

we are able to distill out the plain V ST .

Pause Time, PT. This feature is required to enforce constraint C4. C4 enforces almost

smooth movement during Arew and in turn provides better estimation of V ST , when using

the subtraction method. While dragging tc we noticed that users sometime pause and search

for the target tr. If user remains at the same pixel for more than α = 0.1 seconds we refer to

it as a pause. We assume that 0.1 seconds is a short time for a human, who may or may not

move the mouse at all during this period. We measure the number of pauses and derive the

total paused time, PTAresp . Since Aresp action happens during a cognitive task execution,

PTAresp is a cognitive feature. On the other hand, the Arew action does not involve any

77

Figure 4.2: A skipped search, triggered by C2, for an instance. Missed target tile is high-
lighted. Bounded boxes are not in scale.

cognitive process in particular, visual search or unconscious automatic processing, and this

makes it a behavioral feature. PTArew should be zero in an ideal condition. In practice, if

PTArew crosses some experimentally set threshold ζ then constraint C4 is enforced. More

specifically, PTArew is measured while sr is dragged from Ptr until it reaches Ptc . User pausing

while locating and dropping sr inside Ptc bounding box, is not taken under consideration.

of pauses =
n∑
i=1

pi where pi =

 1 if ti > α

0 otherwise

PTArew is required to enforce constraint C4. C4 reduces noise (distraction) and enforces

smooth movement during Arew and in turn provides better estimation of V ST , when using

the subtraction method.

4.1.3 Telling Humans and Computers Apart

We use an accuracy matrix4A
V ST in order to differentiate between a human and a bot. Let shi

and smi represents the two series of observations (V ST) at instances 〈i = 1, 2, . . . , n〉 from

human user and bot respectively. The two series are first arranged according to decreasing

order of |θPtrsub |. A series of plus points sh+i and sm+
i are then obtained from shi and smi . A

78

plus point p is awarded to an element se at index ie of the sorted sequence s, if se is greater

than p elements with indices less than ie. An accuracy matrix 4A
V ST is then obtained using

Algorithm 1.

4A
V ST is calculated as the ratio of the summation of the plus points s+ and the summation

of a strictly decreasing series. If the plus points follows a strictly decreasing trend then the

resulting accuracy matrix 4A
V ST = 1 and vice versa. A human or a machine is then

authenticated based on two conditions (1) the 4A
V ST must cross some certain threshold α.

(2) V ST −MTArew must be least when the search set size |θsub| = 1 (Claim 4.1). In other

words, the visual search time is expected to be the least when the search set size is 1.

Accept =

true if 4A

V ST ≥ α ∧ condition(2)

false otherwise,

Claim 4.1 If the visual search effort is represented as ρ, then ρ = 0 and V ST −MTArew is

least only when the search set size |θsub| = 1.

Justification. We assume that Movtcha can be modeled as a choice reaction experiment

[1] where user choose tr from θsub. Given that the choices are equally probable, Hi can

represent the amount of information content or visual search effort needed at the ith instance.

According to Hick Hymen law [1], V ST = MTArew + Hi
IPS

where IPS is the information

processing speed in bits/s. Assuming IPS to be constant for any particular user, when

|θsub| = 1, Hi = log2(1) = 0, so V ST −MTArew = 0. On other hand when |θsub|>1 then

Hi>0 , implying V ST −MTArew>0.

According to guided search theory, when the search set size is 1, the exotic tile should

be recognized in the parallel search stage. The need for a serial search in the second phase

is therefore not required [109, 23].

We provide an example, here, to show how plus points PP and 4A
V ST are calculated for

6 instances for a human user and a bot. The bot makes random guesses on the position of

the target tile Ptr inside θsub and generates V ST . The V ST s, sh = 〈3.8, 3.3, 1.7, 3.4, 1.4, 0.3〉

79

and sm = 〈2, 3, 3.5, 4.5, 4, 1〉 are first arranged according to decreasing order of |θPtrsub | =

〈33, 26, 15, 12, 5, 1〉. PP sh+ = 〈5, 3, 2, 2, 1, 0〉 and PP sm+ = 〈1, 1, 1, 2, 1, 0〉 are then used

to figure out 4A
V ST . 4A

V ST = 0.867 for human and 4A
V ST = 0.4 for bot. Experimentally the

value of the authentication threshold α is set. In this scenario, setting α to some values less

than 0.867 allows some tolerance with few observations being out of place for a human user.

Increasing such tolerance increases the success probability of the bot. Figure 4.3 shows how

the success probability varies with the amount of tolerance ∧ condition(2) in 4A
V ST .

Algorithm 1 Calculate 4A
V ST

1: Input: Search set size |θPtrsub |, and a sequence of visual search time, s
2: Output: Accuracy metric, 4A

V ST

3: Initialize 4A
V ST = 0, s+ = 0

4: Obtain sequence of observations s
5: Sort s according to |θPtrsub |
6: for k = 1 to n do
7: for j = k to n− 1 do
8: if sk > sj+1 then
9: s+k = s+k + 1
10: end if
11: end for
12: end for
13: Calculate 4A

V ST =
∑n
i=1 s

+
i

n(n−1)/2

4.2 Movtcha Challenge generation

Movtcha consists of the following stages: (1) Selecting the appropriate images to be tailored,

(2) Generating the search set and displaying the challenge and (3) Telling computers and

humans apart (as discussed in Section 4.1.3).

4.2.1 Selecting Images to be Tailored

The goal is to have some portion of the image look exotic to a human e.g. consider the

rectangular half of a book being modified to a cone. This modification needs to be done in

80

such a way s.t. (1) a guided search is invoked in human user and (2) the machine is not able

to figure out the exotic tiles. We use images containing pencil or pen sketches or drawings.

All images in our setting are first converted to grayscale. Uncontrolled colors generally

hinders serial search and can make some tiles more conspicuous or obscure than others [105].

Refer to Section 2.4.5 for a discussion on the factors affecting visual search. Sketches have

traversing edges, or pencil strokes, which can be easily mimicked or modified by new random

strokes. We refer to an edge or object that flows across a tile as a traversing edge or object

of that tile. The images are first cropped to suitable sizes x× y and divided into a grid. For

most tiles or cells c1, c2, . . . , c|θ|, if the number of traversing edges is outside some certain

interval [EV
min, EV

max], the image is discarded. This image selection process guarantees that

most of the tiles contains at least EV
min = 2 traversing edges so that any of them can be

modified to form some random shapes. Moreover, the process limits the number of traversing

edges to EV
max = k/3 set based on researchers’ aesthetic judgment. So that once modified

the newly created strokes do not overwhelm a (k× k)-sized exotic tile. Any image surviving

such constraints is then referred to as the candidate image IC .

4.2.2 Generation of Search Set

At each instance of Movtcha, an IC is selected to be tailored to generate θsub. For each

instance, we randomly choose a search set size from an interval [LL,UL]. This interval is

determined by the parameter AmountOfSeperation, AOS, which ensures that search sets

differ by some random amounts at each instance. Larger offsets ensure sparser estimated

V ST , and results into higher 4A
V ST by eliminating outliers (Section 4.4). We then randomly

select a subset of tiles θsub ∈ θ. We refer to the boundary of each tile ti in θsub as bti . We

find the continuity points b
{P}
ti of the traversing edges at the boundary bti by applying Canny

edge detection algorithm [21]. If a pair of tiles {tx, ty} ∈ θsub share the same boundary bti ,

i ∈ {x, y}, then they also share the same edge continuity points b
{P}
ti , i ∈ {x, y}. Once

the edge continuity points are found, some of the traversing edges in each tile are almost

81

Algorithm 2 Tailoring IC ’s for a Movtcha

1: Input: #instances, search set size |θ|, candidate images IC ’s
2: Output: Processed images IP ’s
3: Initialize AOS = b |θ|

#instances
c

4: for i = 1 to #instances do
5: Consider the candidate image I iC
6: if i 6= 1 then
7: UL = i× AOS, LL = UL− AOS + 1
8: else
9: LL = UL = 1
10: end if
11: Choose size of θisub randomly from [LL,UL]
12: Choose 〈t1, t2, . . . , t|θisub|〉 = θisub randomly from θi

13: for k = 1 to |θisub| do

14: Obtain the edge continuation points in t
{P}
k .

15: Modify tk until some edges disappear.
16: Connect disappeared edges in t

{P}
k using Bézier curves.

17: Randomly change the intensities on all tiles
18: Place a grid structure over the image.
19: Add random noises.
20: end for
21: Challenge tile tc = SelectChallengeT ile (LL, i, θisub) Algorithm 3.
22: end for

82

dissolved by minimizing the intensity gradient difference. We then draw strokes connecting

those points of disappeared edges randomly. These strokes are approximation curves drawn

across {pix, piy}, with varying number of control points randomly set in the vicinity of the

center of exotic tile ti. As a result each time a stroke is drawn, a random shape is formed.

A stroke might also end abruptly midway without connecting the points. The grayscale

intensities of all the tiles θ = {c1, c2, . . . , c|θ|} are then randomly changed. And finally a

grid like structure is drawn on the image IC . The image is presented to the user after it

is scaled with a nonlinear bicubic interpolation and by adding some random noise. At this

stage, the candidate image IC is referred to as the processed image IP . Algorithm 2 and 3

provides overview on the search set generation process.

More specifically, we refer to the boundary of each tile ti (to be made exotic) as bti . We

find the continuity points b
{P}
ti of the traversing edges at the boundary bti by applying Canny.

The gray values of ti is changed to be within [α, β], until the number of traversing edges fall

below b
|{P}|/2
ti . α is set to the min and β to max gray value of ti. At each step j, (α++,

β- -) any pixel value >β and <α is set randomly to (α, α + δ] and [β − δ, β) respectively

until b
|{P}|
ti decreases to b

|{P}|/2
ti . δ is set such that the following holds with some tolerance,

b
|{P}|j−1

ti >b
|{P}|j
ti . We initially set δ to 20 and increment it if b

|{P}|j−1

ti ≯ b
|{P}|j
ti . For each pair

of edge points {px, py} that have now disappeared due to decreasing the intensity gradient

difference (in a random fashion), we draw new traversing edges with a r-pixel width stroke.

That is a random stroke of r-pixel width is drawn 〈s1, s2, s3, . . . , sr〉, si = Rand(si, si + ζ
r
].

s1 = minGrayIntensity(IC) and ζ is set as the difference between s1 and the local (3 × 3)

max gray value of b
{pe}
ti , e ∈ {x, y}. r is varied from 4-6. minGrayIntensity(IC) refers to the

minimum gray value of the candidate iamge IC and not the processed image. Each stroke is

varied in intensity along its length to give it a sense of natural expression of pencil sketch.

We set a small probability at each pixel that the stroke will stop here before joining a pair

of continuity points. In other words, a stroke can end abruptly somewhere inside the exotic

83

tile without joining the edge points. Due to the randomness at each step of the search set

generation process, we argue that the modifications done are irreversible in Section 4.3.2.

4.2.3 Displaying an Instance

If there are n instances in a Movtcha, n processed images {I1P , I2P , . . . , InP} are formed

from n candidate images, with {θ1sub, θ2sub, . . . , θnsub} as their corresponding search sets,

where |θ1sub|<|θ2sub|< . . . <|θnsub|. From each of these search sets the corresponding tc are

selected s.t. |θ1, Ptrsub |<|θ
2, Ptr
sub |< . . . <|θ

n, Ptr
sub |. A random permutation π : [n] → [n] is se-

lected and applied to the processed images 〈Iπ(1)P , I
π(2)
P , . . . , I

π(n)
P 〉 and the challenge tiles

〈tcπ(1) , tcπ(2) , . . . , tcπ(n) 〉. At the ith instance of Movtcha, a processed image I
π(i)
P and target

tile tcπ(i) is selected and displayed to the user.

Algorithm 3 SelectChallengeT ile (LL, i, θisub)

1: Input: LL, i, θisub
2: Output: challenge tile tei
3: if i = 1 then
4: Set index ei to LL
5: Select tei from θisub
6: Return challenge tile tei
7: else
8: Choose ei from (ei−1, |θisub|]
9: Return challenge tile tei
10: end if

4.3 Security Analysis

We consider and analyze the success probability of an attacker in (1) Random Guessing

Attack, (2) Automated Attack, (3) Position Inference Attack and (4) Static Relay attack.

Section 4.4 provides a discussion on the experiments done on Relay attacks. Our security

analysis assumes that it is hard for the attacker to access the implementation code which

can be encrypted and obfuscated. Further discussion falls outside the scope of this thesis.

84

4.3.1 Random Attacks

An attacker (bot) is always able to perform a random guessing attack on Movtcha. It is

able to drag and drop tc onto tr randomly. In other words, the attacker is able to come

up with a random strategy whereby it selects one of the location in the grid and perform

Aresp. We consider that the attacker is able to know the outcome of an instance, similar to a

human user. Since the grid size is θ, the success probability of the attacker making a correct

placement at a particular instance is 1
θ

and since Movtcha is of n instances the probability

becomes 1
θn

. Moreover, since at each of these instances the search set size will be varied, a

successful attacker must therefore vary the search time accordingly, to mimic a human user.

Since there are n instances there should be n! ways of varying the search time. The success

probability thus becomes 1
θn×n! without tolerance. A grid size of θ = 48, and where n = 8

instances, results in 8.8× 10−17%.

4.3.2 Automated Attacks

We consider that an automated attacker uses a framework f specially designed to attack

our system. It can (1) Separate out the background and the foreground objects and identify

moving challenge tile and grid tiles centroids in negligible time. (2) Perform Aresp and Arew

action at a desired speed while imitating human user’s mouse dynamics (such as addition

of jitters). At each instance, the attacker matches the tiles using f and generates V ST by

guessing the concealed |θPtrsub |. In such scenario for n instances there should be n! ways of

varying the V ST . The probability for a successful attack thus becomes 1
n!

. Movtcha involving

8 instances results in 0.0025% success rate, much smaller than the target probabilities for

a real world CAPTCHA system security of 0.6% [119]. However, in real settings, we allow

some tolerance on the V ST trend and subsequently on4A
V ST to accept trends with possibly a

few outliers and meeting condition(2) (Section 4.1.3). This tolerance increases the attacker’s

success probability. However, condition(2) aids in rejecting trends where V ST is not the

85

least when search set size is 1. This slightly decreases the attacker’s success probability.

Figure 4.3 shows a simulation of how the success probability varies with 4A
V ST for varying

number of instances. On the other hand, condition(2) upper bounds the distance between

a machine and a human in relay attack (Section 4.4.2, Experiment-IV). In practice, f needs

some processing time (such as separating the background and foreground objects). This and

other similar processing time can also be upper bounded based on condition(2) (Figure 4.4).

Movtcha inherently meets the guidelines for designing robust Captchas as discussed in

[119]. The current challenge is always independent of the past challenges. Since object

type (exotic tiles) are randomly generated, object recognition or classification is apparently

a hard problem and will not work on Movtcha. Ideally, the same tile could have produced

infinitely many random shapes, as it is processed each time. However, due to memory

attack (discussed below), Movtcha presents unique image at each instance, again making

the challenges independent of each other. The attacker is then left to exploit the low level

cues in order to identify the exotic tiles. We discuss in details the possible attacks and the

associated empirical results.

Attack using low-level cues. The exotic tiles in θsub might differ in grayscale intensity

from its neighboring tiles due to the modifications applied. Considering there is no grid like

structure, the attacker can therefore, use off-the-shelf edge detection algorithm such as Canny

[21] to figure out the boundaries of the exotic tiles. A simple approach of hindering such

naive attack is to introduce false tiles boundaries by randomly changing the tile intensities

across the grid.

With the grid structure in position such gradient-based methods detect the whole grid

(Figure 4.1). So we sought to a customized boundary detection approach. The image is

first smoothed by a 5×5 Gaussian filter in order to reduce noise. We consider squares

for each location, along the tile boundaries. The squares are then divided into halves at

0◦, 45◦, 90◦, 135◦. The goal is to have a large enough square so that any pair of halves covers

86

portions of the neighboring tiles pixels (grid pixels being symmetric on both halves). The

difference in the gray-scale intensity between the two halves of the square is then estimated

by calculating 4(h1, h2) = 1
2

∑#bins
n=1

(h1n−h2n)2
h1n+h2n

, where h1 and h2 represents the gray-scale

intensity histogram of the two halves respectively. Gradient direction and magnitude of a

location are set as the direction with the maximum grayscale intensity and the maximum

intensity respectively. We then apply non-maximum suppression and threshold the resulting

image incrementally until the candidate tile set size, |CT | converges to |θsub|, at which point

if CT = θsub, the attack would be considered effective. Any cti ∈ CT has a boundary edge

weight of wi>pi/2 (pi is the shared perimeter of cti with other tiles). Attacks on 100 IC ’s

with |θsub| = 10, |θ| = 48 resulted into
(
|CT∩θsub|
|θsub|

)
= 0.039(average). On the other hand, edge

densities on opposite side of the boundaries remain almost similar due to the false traversing

edges constructed randomly among the edge continuation points. Any local artifacts at

the tile boundaries, that would have been exploited by an edge traversing algorithm, are

concealed by the grid structure (3-pixel width). Besides, finding out the edge continuation

points at the processing stage, using Canny minimized the distance between actual edges

in the image and edges found. Figure 4.1 shows contour plots of IP s where intensity depth

varies across θ providing no useful information to an attacker. On the other hand adding

random noise before the image is presented prevents the attacker from exploiting any noise

patterns.

Attack using memory. We define memory as an accumulation of low level features from

more than one instance. However, since unique images are used for each instance (due to

Claim 4.2) the current challenge is always independent of the past challenges, resulting into

absolutely no accumulation of memory. We now look into another attempt of acquiring

such memory using a Context-Based Image Retrieval (CBIR) system SC , s.t. SC retrieves

the original image IC from IP . However, the amount of irreversible distortion added to the

processed image IP by the grid g and cut-and-scale essentially thwart a CBIR system like

87

Figure 4.3: Success Probability varying with 4A
V ST #instances (5-9). Dotted line represents

0.6% attacker’s success probability.

[46] in retrieving the original IC (as tested on 100 IP ’s).

Claim 4.2 A memory attacker can estimate |θPtrsub | from at least the 2nd instance onward

when processed images, IP ’s are generated from the same candidate image, IC.

Justification. For i = 1 instance the memory attacker cannot accumulate any memory,

which implies |θ1| = |θ1sub| for an attacker. For i = 2, a subset of tiles θ2sub is chosen out of

θ2 resulting into either (1) θ1sub ∩ θ2sub = ∅, (2) θ1sub ∩ θ2sub 6= ∅, (3) θ1sub ⊆ θ2sub if θ1sub<θ
2
sub (4)

θ2sub ⊆ θ1sub if θ2sub<θ
1
sub . We assume that the attacker is capable of figuring out the tiles that

remain almost unchanged in both the instances i.e. (1) θ2 \ (θ1sub∪ θ2sub), (2) θ2 \ (θ1sub∪ θ2sub),

(3) θ2 \ θ2sub, (4) θ2 \ θ1sub. Notice that the attacker is able to figure out exactly θ2sub in case

(3). And since these cases are equally probable, it can be concluded that a memory attacker

can estimate |θPtrsub | from at least the 2nd instance onward, when using the same image.

4.3.3 Position Inference Attack

Consider an attacker who infers the visual search time, V ST , based on the location, Ptr , of

the target tile, tr, inside the grid. The success probability of such attacker is 1/n!, without

any tolerance. We will now describe an inference attack in the best case scenario (for the

88

attacker). Consider a grid with rows = r1, r2, . . . , rn and columns = c1, c2, . . . , cn. We

refer to our challenge tile selector as S. Recall, that a challenge tile, tc, is basically a copy of

the target tile, tr inside the grid or image. We assume that S selects n challenge tiles such

that tci is a copy of a target tile, tri from row ri, i = 1 . . . n. Therefore, a set of instances

is formed with search set sizes, |θPtr1sub | <|θ
Ptr2
sub | . . . <|θ

Ptrn
sub | and presented to the user in

that order. At this point, if the position inference attacker infers the V ST according to

the location of the target tile, the resulting V ST series, V ST Ptr1 <V ST Ptr2 . . . <V ST Ptrn ,

would result in an intra-accuracy, 4A
V ST = 1. However, the probability that the challenge

tile selector S, selects tri from row ri is 1/(n− i+ 1). For example, the probability that the

inference attacker chooses a target tile from the first row when search set size is 1 is 1/n

where n is the number of total rows. That means for n instances the success probability of

an inference attack (in the best case) is 1/n!, without considering tolerance.

4.3.4 Static Relay Attacks

We consider attacks, where the bot takes snapshots of instances, send it to a human solver

and subsequently uses the responses to solve Movtcha. We assume that the relay bot does

not collude with any other automated bot. In a relay attack, the bot needs to consider three

time intervals: (1) The communication delay between the bot and human solver’s machine,

(2) the time taken by the human to solve the challenge, (3) the time needed for the bot to

solve the actual Captcha. Similarly, in our case, the bot needs to consider four time intervals

for each instance, (1) The communication delay between the bot and the human solver’s

machine 4c
t , (2) the time taken by the human solver to perform the visual search task and

provide Ptr and |θPtrsub |. (3) the time taken for the bot to match the tile. (4) the time taken

to move the star back to Ptc .

Captchas with dynamic challenge objects are generally resistant against relay attacks

[69] because the object co-ordinate sent by the human solver, Ctc , at time t mismatches with

that of Ptc of the moving object at t+ k, k>0. The probability that Ctc = Ptc at t+ k can

89

be given as the ratio of the object area and the bounding box area where it randomly moves.

In our setting, there is roughly 1/5 chance that the bot correctly picks up tc. We carried

out an experiment simulating a relay attack scenario to prove our hypothesis that Movtcha

is resistant to static relay attack. We carried out a small scale experiment (Section 4.4,

Experiment-IV) with 10 users from the 2nd pool (Experiment-II) to examine our hypothesis.

Each assignment was worth $0.3.

4.4 Experiments And Results

We carried out four experiments to evaluate Movtcha in terms of (1) Design and presenta-

tion, (2) Accuracy and Usability (With varying number of instances) and (3) Accuracy and

Usability (Solving a Movtcha once for the first time), (4) Resistance against Relay Attacks.

The first experiment was carried out in a controlled condition to ascertain some parameters

and design of Movtcha. While the second and third were carried out in a non-controlled

condition, mimicking a real life Captcha solving scenario. Participants who agreed to the

consent information were allowed to proceed and play.

4.4.1 Experiment Setup

Experiment I: Design & Presentation.

The goals of the first experiment were to figure out (1) how the intra-accuracy, 4A
V ST varies

with the size of the grid and (2) the parameters λ for C3 and ζ for C4. C3 and C4

were therefore not set in this experiment. The goals required users to solve Movtcha in

a controlled condition i.e. in a non-distracting environment using a single platform. The

experiment consisted of a pool of 10 graduate students. All of them used a PC with 2.10

GHz Intel i3, 4GB RAM and an wireless optical USB mouse. They used Google Chrome on

a screen of resolution 1366 × 768 (96 PPI) in Windows 7 SP1 OS.

A short video showed how the game is played at the beginning. Participants received no

90

further instructions. Each participants were required to solve 9 Movtchas 〈M1, M2, . . . , M9〉

each comprising of a fixed number of instances (#instances = 8). The 9 Movtchas were

divided into three groups. The group G1 consisted of images divided into 5 × 5 = 25

(Row×Column) tiles each of size 60×60 pixels. Similarly, G2 and G3 consisted of the same

size tiles with images divided into 6× 6 = 36 and 8× 6 = 48 tiles. tc moved randomly inside

the bounding box at 0.1 pixels/frame @60FPS i.e. 6 pixels/s.

Experiment II: Accuracy & Efficiency (With varying number of instances).

The goal of this experiment was to determine (1) how the intra-accuracy, 4A
V ST , and inter-

accuracy, 4A
M , varied with the number of instances and (2) the efficiency or completion time

of a Movtcha. Inter-accuracy is the ratio of number of solved Movtchas to the number of

Movtcha challenges.

A HIT was created with 50 available assignments to have 50 unique users. Users must

have ≥ 98% HIT approval rate and ≥ 5000 HITs approved to qualify for our HIT. They were

required to complete 15 Movtchas with (1) fixed image size, 8× 6, (2) fixed parameters ζ, λ

determined from Experiment-I. They can make a maximum of 3 mistakes happening due to

C2 − C5 while solving a Movtcha. Three separate internal assignments were used to vary

the number of instances from 6-8. For each internal assignment, they were required to solve

5 Movtchas. Therefore, as a whole they were required to complete (5 × 3) = 15 Movtchas.

On submitting our generated code back to Amazon they were paid $0.7.

Experiment III: Accuracy & Efficiency (Solving a Movtcha once for the first

time).

The goal of this experiment was to observe how random users perform when solving only one

Movtcha. Two HITs were created on two separate occasions. The first HIT was created with

70 assignments to have 70 unique users. The second HIT was created with 100 assignments

to have 100 unique users. We made sure that users from the first pool did not submit any

assignments in the second HIT. We also made sure that none of the users from Experiment-

91

II participated in these HITs. Users must have ≥ 98% HIT approval rate and ≥ 1000

HITs approved to qualify for our HITs. The users were directed to the website hosting

Movtcha. After watching the video, they were required to solve one Movtcha and collect

8 stars (complete 8 instances successfully) and in the process can make a maximum of 3

mistakes. The first HIT presented a 8 × 6 Movtcha (60-pixel tile size) and the second HIT

presented a 7 × 7 Movtcha (70-pixel tile size). Movtchas from the second HIT, therefore

required more space and demanded more mouse movements from users. There was one

demo instance at the beginning which was not considered in accuracy calculation. They

were then required to copy-paste a code (generated on our website) back to Amazon to get

paid $0.15. Since we were interested to observe users’ performance when they are solving

Movtcha for the first time, we did not allow them to repeat.

4.4.2 Experimental Results and Analysis

Experiment I: Results and Analysis.

It is observable from Table 1 that the average 4A
V ST , increased with increasing grid size.

AmountOfSeperation increased with grid size, resulting into V ST with increasing standard

deviation. Noises fail to affect the 4A
V ST , when V ST s are sparser. Similar results can be

observed in Neisser [73] where sparser target positions Ptr results into V ST with larger

offsets. Therefore, in order to have larger 4A
V ST , Experiment-II and III were carried out

using images with 8 × 6 tiles. G3 has the highest 4A
V ST and a relatively longer completion

time, TCom. TCom decreases with decreasing |θ| as expected. Ec is the average error rate per

click and refers to the ratio of number of times user missed picking up or dropped midway tc

or sr during Aresp or Arew to the total number of actual (Aresp +Arew) actions in a Movtcha.

The observed Ec suggested that users felt comfortable with the moving speed of the tile. Id

refers to the ratio of number of instances discarded (due to C2, C3, & C5) to the total

number of instances. The average IC2
d was relatively higher in G1, an implication that as the

users get familiar with Movtcha, they tend not to skip targets during search. The average

92

IC5
d remained as low as 0.03 suggesting comfortable visual search task performance in the

current visual field.

Fixing Parameters. In an ideal condition PTArew is supposed to be zero, since dragging the

star, Arew action, does not involve any cognitive process. As can be observed from Table 1,

the average PTArew is <100 ms, implying an almost smooth non-distracted movement during

Arew. We set ζ = 0.2s of C4 to possible extreme outliers using interquartile range PTQ3

Arew
+

(3×PT IQRArew
), to allow some tolerance in non-controlled condition. The ratio of V ST to |θPtrsub |

is the true inspection time, IPT , for each exotic tile. The average inspection time of all the

participants throughout the 3 sessions was ≈ 113 ms. The parameter λ of C3 is similarly set

to extreme outliers values for non-controlled conditions s.t. λ = (|θ| ∗ IPT ′) +MT ′rew where

IPT ′ = IPTQ3 + (3× IPT IQR) ≈ 0.3s and MT ′rew = MTQ3
rew + (3×MT IQRrew) ≈ 2.0s for all

instances with varying |θPtrsub |. Therefore, λ provided comfortable time span while searching

at any instance and only triggered C3 when the user is distracted (or “lazy” searching) for

a relatively long time e.g. ≈ 15 seconds for G3.

Table 4.1: Results from Experiment-I
4A
V ST IC2

d TCom(Std) Ec PTArew
G1 56.8(6.7) 0.13 19.2(1.3) 0.07 82.1
G2 75.5(3.0) 0.05 23.5(2.2) 0.06 43.2
G3 84.2(1.9) 0.06 26.4(2.8) 0.03 65.7

Experiment II: Results and Analysis.

Results. It can be observed that the average 4A
V ST in all three cases is around 80%.

However, considering the success probability of a bot is tuned to a particular value, the

allowable decrease in 4A
V ST is larger for increasing number of instances (Figure 4.3). This

resulted into higher 4A
M for increasing number of instances. The 4A

V ST drops quickly with a

fixed tolerance for less number of instances. In other words, Movtcha can tolerate more noises

in the plus points series as the number of instances increase. The average Id is higher relative

to Experiment-I. Activation of C4 led to relatively higher click error, Ec. It implies that the

93

constraints proved to be useful in discarding abnormal V ST and MTArew that might have

resulted from distractions. When 4A
V ST is set at ≥ 82.14%, limiting bot success to 0.85% for

#instance = 8, the inter-accuracy 4A
M is around 82% (Gmail’s Captcha accuracy rate 83%

[119]). Mouse type statistics from exit survey include wireless/wired mouse (72%), laptop

touchpad (28%). Recall, V ST is calculated using subtraction method [33] which allows V ST

to self adjust for the user’s specific environment.

Table 4.2: Results from Experiment-II
inst 4A

V ST (Std) TCom(Std) IC2
d

6 80.5(4.9) 22.84(6.14) 0.21
7 81.0(4.5) 27.62(6.72) 0.07
8 84.9(6.1) 32.53(7.5) 0.09

Experiment III: Results and Analysis.

The average intra-accuracy,4A
V ST , is 78.2% (std 6.03%). When4A

V ST is set at ≥ 75, limiting

the success probability of bot to 2.38% the inter-accuracy is 4A
M = 78.9%. The average time

to complete Tcom, is 38.04s (std 8.63s). We highlight that these results are reported from

unique users solving just one Movtcha for the first time. The average time required to

complete each assignment was 5.4 minutes.

For the 2nd HIT we collected 72 valid submissions until the HIT expired. The average

intra-accuracy, 4A
V ST , is 76.77% (std 8.89%). When 4A

V ST is set at ≥ 71.43, limiting the

success probability of bot to 3.52% the inter-accuracy is 4A
M ≈ 80.6%. The average time to

complete Tcom, is longer compared to the 1st HIT. This is expected since we increased the

grid size by a factor of 1.4 relative to the 1st HIT. This resulted into longer mouse movement

time during Aresp and Arew actions. These results are reported from unique users solving

just one Movtcha for the first time. The average time required to complete each assignment

was 9.3 minutes. These results suggest that Movtcha is independent of language, culture

and experience. It can be easily used by naive users with high success rate.

The accuracy difference between Experiment-II and Experiment-III shows that users

94

tend to perform well once they get accustomed to the system. Nevertheless, the accuracies

obtained from Experiment-III are encouraging, provided that the users are solving Movtcha

for the first time.

Experiment IV: Relay Attack Results.

Captchas with dynamic challenge objects are generally resistant against relay attacks because

the object co-ordinate sent by the human solver, Ctc , at time t mismatches with that of Ptc

of the moving object at t+ k, k>0 [69]. The probability that Ctc = Ptc at t+ k can be given

as the ratio of the object area and the bounding box area where it randomly moves. In our

setting, there is roughly 1/5 chance that the bot correctly picks up tc. Such chance should

produce relatively higher Ec and Id in relay attacks. The users selected had relatively better

visual search skill and less error rates. We considered a strong relay attack scenario where

4t
c = 0. Therefore, the task of the human solver is to respond with |θPtrsub | and Ctc . To setup

the experiment, snapshots (s1, s2, . . . sn) at time (τ1, τ2, . . . , τn) of the HTML5 canvas were

taken along with the co-ordinates of tc for 3 Movtchas. During the experiment, users were

provided the snapshots one by one along with a beeping sound (audio stimulus) for a ready

alert. As soon as si is presented with the stimulus the users performed search and clicked on

tr and then Ctc consecutively. If Ptc 6= Ctc then user is presented with the same si and were

required to provide only a new Ctc . There was a significant increase in error rate per click

resulting into longer V ST and C3 activations. None of them were able to authenticate in

the 3 Movtchas, with a maximum of 3 mistakes. In a real setting, where 4c
t 6= 0, constraint

C3 puts an upper bound on the distance between the relay bot and human solver.

Simulating Movtcha Solving Activities.

We wanted to observe users’ search behavior when they solve Movtcha. We developed a

web-based program using HTML5 and JS capable of simulating any user’s Movtcha solving

activity once fed with data collected during the previous solving attempts. We observed the

simulations of randomly picked users. The simulations suggest that the users perform “drag

95

Figure 4.4: (Experiment-III, 1st HIT)(a) Shows the maximum MTArew of successful users out
of all the instances they played (b) Shows V ST when |θsub| = 1. If we restrict MTArew and
V ST (|θsub| = 1) to 1.4s and 2.5s respectively as a constraint, we can upper bound the com-
putational time of an attacker by 3.9s due to condition(2). In other words, the attacker needs
to successfully complete a visual search task within 3.9s which involves separating objects
from background, locating dynamic tc, identifying search set size, and dragging-dropping tc
onto tr. Successful users from Experiment-I and II provides even smaller bounds of 2.1s and
2.8s respectively. Most importantly, this constraint/bound can be set without interfering
much with user’s Movtcha solving activity. On the other hand, limiting computational time
of attacker for traditional Captcha scheme essentially limits the solving time of that Captcha.

and search” actions while solving Movtcha. The constraints we discussed in Section 4.1.1

encourages them to search serially. We also observed phenomenon when user recognizes (by

parallel search) the exotic tile almost immediately when search set size is 1.

4.5 Discussion on Movtcha

We have provided a new approach to Captcha by estimating a cognitive feature. Human be-

havioral analysis was used to eliminate noise in the feature estimation process. Our empirical

results suggest comparable accuracy, efficiency and usability to existing Captcha systems.

We discussed how image selection, challenge generation and response evaluation are au-

tomatically done by our system. Movtcha maintains real world security while presenting

clear answers to challenges. This attribute makes Movtcha language, culture and experience

independent.

The average SUS score for all the experiments are within the user-friendly industrial

96

software ratings [63]. SUS ratings were relatively higher in Experiment-I compared to

Experiment-II. Considering Experiment-II, 60% of the participants agreed that the game

was fun to play and 82% felt it was easy and intuitive. This demonstrates that Movtcha is

a user-friendly system.

Due to the modification done on Movtcha, some images might look unpleasant to the

user. This might happen to any image-based Captcha which undergo modifications. For

example in Cortcha portions of the image is cut off from the actual image. A solution in

such cases, would be to focus on images with objects only and not include humans or pet

animals.

97

Table 4.3: Notations lookup
Symbols-I Description

Aresp The action where challenge tile is dragged onto the target tile
Arew The action where the star is dragged back to Ptc
Ec The average error rate per click. Refer to Experiment-I (Results)

[EV
min, EV

max] Upper and lower limit on the number of traversing edges
g The grid/image

G1, G2, & G3 These are the three sessions in Experiment-I
Id The ratio of the #instances discarded to the total #instances
IC Candidate Image
IP Processed image generated from a candidate image IC
IPT Inspection time of each tile

MTArew The movement time (dragging time) of the star (Arew action)
Ptc Latest position of the challenge tile

PTArew Total paused time during Arew
sr The rewarded star for a successful match
tc Challenge tile
tr Target tile inside the grid
ttRT Time elapsed between the appearance of the tile and the user picking it up.
V ST Visual Search time

Symbols-II Description
α Intra-accuracy must cross this threshold for user to get recognized as human
4A
M The ratio of number of solved Movtchas to the number of Movtcha challenges

4A
V ST Intra-accuracy metric used for differentiating human from machine
ζ Constraint C4 : Threshold limiting the amount of pauses during Arew
θ Set containing all the tiles
θsub Search set containing only exotic tiles
λ Constraint C3 : Threshold limiting the time elapsed during Aresp action

Constraints Tiny Description
C2 Triggers when missed/skipped over the target tile while searching
C3 Triggers on lazy or distracted search. Determining parameter: λ
C4 Triggers on too much pauses while dragging star. Determining parameter ζ
C5 Triggers when challenge tile is dropped anywhere other than its destination

98

Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Thesis Summary

This thesis presents new approaches to user authentication systems and Captcha systems.

We use human cognitive abilities, in particular visual search ability, working memory and

priming effect on unconscious automatic processing to design and develop a user identification

system. Our system is able to estimate the “cognitive signature” generated by the user. We

use a mouse as the input device to our system. This means our system, in addition to

capturing the cognitive features, can be used to collect other mouse dynamic features.

Our second proposed system, Movtcha, uses the guided search theory to distinguish a

human from a computer. Using cognitive feature in a Captcha system eliminates the need

of providing the challenge in a “cipher form”. In other words, we provide a clear form

Captcha, where the challenge and the response are exact copies of each other. Therefore,

users irrespective of their language, experience, and culture can solve Movtcha.

In the following Sub-Sections, we discuss our contributions.

5.1.1 A Novel Approach to User Authentication

Authentication is one of the most important entities of any digital system. Although, the

most widely used form of authentication in today’s computer systems is password, it has the

downside of being stolen, lost or forgotten. Biometric systems liberate the users from the

cognitive burden of memorizing secrets or passwords. Biometric systems are also immune to

lost or theft. However, behavioral biometrics like mouse or keyboard is rarely used for static

authentication. This is mainly due to their large enrollment and verification time.

We present an authentication system which collects and uses human cognitive features

99

to identify the users. Our work focuses on individual difference in cognitive abilities or

essentially “what an individual is capable of doing cognitively” and could potentially fall

under a new category of biometric. We designed and implemented a web-based game which

can invoke the required mental processes. Our system reaches an FAR of 0-2.3% and an FRR

of 0-11.6%) comparable to other state-of-the-art behavioral biometric systems. We carried

out impersonation attacks against our system. Our empirical results suggest that cognitive

features are difficult to reproduce.

5.1.2 A Novel Approach to Captcha System

Captchas are necessary to safeguard systems from the intrusion of automated computer

programs. Although text-based Captchas are the most popular form of Captchas, many of

the proposed or deployed ones were broken with high success rate. Some image-based and

game-based Captchas utilizing semantic relationship between images or objects are consid-

ered more secure and usable. However, they cannot auto-generate the challenge database.

Movtcha is presented to the user as a game. It estimates the visual search time of the

user and uses it to distinguish a human from a computer. Movtcha takes into account human

behavioral analysis to eliminate noise during feature estimation process. The use of cognitive

and behavioral features allows Movtcha to present its challenge and response both in clear

form. All existing Captcha systems would fail if the response to a challenge is provided to

the user. In other words, “clear form” is a scenario where the challenge and response are

exact copies of each other and both are available to the client and client’s machine [69]. Clear

form Captchas are language, culture and experience independent. It can be used by people

all across the world. We evaluated our system against random, automated, inference and

static relay attacks. In addition, to being resistance to the aforementioned attacks, Movtcha

can auto-generate the challenge database and auto-evaluate the users’ responses. Therefore,

it can be deployed in large-scale applications.

100

5.2 Future Works

In this section, we provide the future attainable goals for both the systems. We also discuss

some open problems.

5.2.1 User Authentication System

Individual difference in cognitive abilities is not only confined within our three aforemen-

tioned cognitive processes. It also includes several others, such as visualization (mentally

manipulating forms to visualize how they would look), verbal comprehension (understanding

words, sentences) [53]. Multiple cognitive abilities can be utilized in developing an authenti-

cation scheme. This would allow more cognitive features to be estimated and thus enhance

the overall performance of the system. For instance, a simple modification in our game by

occasionally including negative search set, where the target tile is not present, would invoke

exhaustive visual search.

We have manually drawn the search sets that are presented to the user in the enrollment

and verification phase. Our future work will involve automating this search set generation

stage. A good source of randomness is needed to draw such shapes without any criss-cross

and ultimately forming the desired shapes (Chapter 3, Figure 3.2).

One can estimate various features related to mouse dynamics from our system such as

distances, horizontal velocity, vertical velocity, tangential velocity, tangential acceleration,

tangential jerk, angular velocity, drag and drop, point and click and others. In future work,

we will incorporate some of these mouse dynamics such as angles and ratios which are

considered environment-independent. It will be interesting to find out how the performance

of the system varies with and without the mouse dynamic features.

101

5.2.2 Movtcha

Our future goal will focus on increasing the accuracy and usability of Movtcha. One way to

enhance the accuracy of the system is by including mouse dynamics and mouse events for

differentiating humans from machines. This is an open area and demands further scrutiny.

Including additional features for making an authentication decision can reduce the number

of instances that needs be played. This would significantly reduce Movtcha solving time.

However, such reduction should not increase the attacker’s success probability. In future, we

are also going to provide a mathematical relationship between the intra-accuracy 4A
V ST and

success probability of the attacker with tolerance.

It is worthwhile to find appropriate images that invoke guided search in the user. Recall,

that guided search consists of two consecutive stages, a parallel and a serial search stage. A

relationship between the amount of activations of the exotic tiles and its effect on parallel

search can be established experimentally. Finding an alternative way of invoking guided

search is also an open problem.

102

Bibliography

[1] Adams, J. A. Human factors engineering. Macmillan Publishing Co, Inc, 1989.

[2] Ahmed, A., and Traore, I. A new biometric technology based on mouse dynamics.

Dependable and Secure Computing, IEEE Transactions on 4, 3 (July 2007), 165–179.

[3] Are you a human. http://www.areyouahuman.com/. Last accessed on 23/09/2014.

[4] Baddeley, A. D. Human memory: Theory and practice. Psychology Press., 1997.

[5] Baddeley, A. D. Working memory. Science, 255(5044), 556-559, 1992.

[6] Baird, H. S., & Popat, K. Human interactive proofs and document image analysis.

In Document Analysis Systems V (pp. 507-518). Springer Berlin Heidelberg, 2002.

[7] Ballard, L., Lopresti, D., and Monrose, F. Forgery quality and its implications

for behavioral biometric security. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on 37, 5 (2007), 1107–1118.

[8] Ballard, L., Monrose, F., and Lopresti, D. Biometric authentication revisited:

Understanding the impact of wolves in sheep?s clothing. In 15th Annual USENIX

Security Symposium (2006), pp. 29–41.

[9] Bargh, J. A. Conditional automaticity: Varieties of automatic influence in social

perception and cognition. Unintended thought 3 (1989), 51–69.

[10] Bargh, J. A., Chen, M., and Burrows, L. Automaticity of social behavior: Direct

effects of trait construct and stereotype activation on action. Journal of personality and

social psychology 71, 2 (1996), 230.

103

[11] Bergadano, F., Gunetti, D., & Picardi, C. User authentication through

keystroke dynamics. ACM Transactions on Information and System Security (TIS-

SEC), 5(4), 367-397, 2002.

[12] Bojinov, H., Sanchez, D., Reber, P., Boneh, D., and Lincoln, P. Neuro-

science meets cryptography: designing crypto primitives secure against rubber hose

attacks. In Proceedings of the 21st USENIX Security Symposium (2012).

[13] Bolle, R. Guide to biometrics. Springer, 2004.

[14] Bonneau, J. The science of guessing: Analyzing an anonymized corpus of 70 mil-

lion passwords. In Proceedings of the 2012 IEEE Symposium on Security and Privacy

(Washington, DC, USA, 2012), SP ’12, IEEE Computer Society, pp. 538–552.

[15] Bours, P., and Fullu, C. J. A login system using mouse dynamics. In Intelli-

gent Information Hiding and Multimedia Signal Processing, 2009. IIH-MSP’09. Fifth

International Conference on (2009), IEEE, pp. 1072–1077.

[16] Bowman, A. W. An alternative method of cross-validation for the smoothing of

density estimates. Biometrika 71, 2 (1984), 353–360.

[17] Brooke, J.: Sus-a quick and dirty usability scale. Usability evaluation in industry 189,

194 (1996)

[18] Bromme, A. A classification of biometric signatures. In Proceedings of the 2003

International Conference on Multimedia and Expo - Volume 3 (ICME ’03) - Volume 03

(Washington, DC, USA, 2003), ICME ’03, IEEE Computer Society, pp. 17–20.

[19] Bursztein, E., & Bethard, S. Decaptcha: breaking 75% of eBay audio

CAPTCHAs. In Proceedings of the 3rd USENIX conference on Offensive technologies

(p. 8). USENIX Association, 2009.

104

[20] Bursztein, E., Beauxis, R., Paskov, H., Perito, D., Fabry, C., & Mitchell,

J. The failure of noise-based non-continuous audio captchas. In Security and Privacy

(SP), 2011 IEEE Symposium on (pp. 19-31). IEEE, 2011

[21] Canny, J. A computational approach to edge detection. Pattern Analysis and Machine

Intelligence, IEEE Transactions on,, (6), 679-698, 1986.

[22] Cappelli, R., Ferrara, M., Franco, A., & Maltoni, D. Fingerprint verification

competition 2006. Biometric Technology Today, 15(7), 7-9, 2007.

[23] Cave, K. R., & Wolfe, J. M. Modeling the role of parallel processing in visual

search. Cognitive psychology, 22(2), 225-271, 1990.

[24] Chew, M., Tygar, J.D. Image recognition captchas. Springer (2004)

[25] Chiang, A., and Atkinson, R. C. Individual differences and interrelationships

among a select set of cognitive skills. Memory & Cognition 4, 6 (1976), 661–672.

[26] Colombi, J. M., Ruck, D. W., Anderson, T. R., Rogers, S. K., & Oxley,

M. Cohort selection and word grammar effects for speaker recognition. In Acoustics,

Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE

International Conference, on (Vol. 1, pp. 85-88), IEEE, 1996.

[27] Craik, F. I., and Salthouse, T. A. The handbook of aging and cognition. Psy-

chology Press, 2011.

[28] Daugman, J. How iris recognition works. Circuits and Systems for Video Technology,

IEEE Transactions on, 14(1), 21-30, 2004.

[29] Datta, R., Li, J., & Wang, J. Z. IMAGINATION: a robust image-based

CAPTCHA generation system. In Proceedings of the 13th annual ACM international

conference on Multimedia (pp. 331-334). ACM, 2005.

105

[30] Delac, K., & Grgic, M. A survey of biometric recognition methods. In Electronics

in Marine, 2004. Proceedings Elmar 2004. 46th International Symposium (pp. 184-193),

IEEE, 2004, June.

[31] Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. Pat-

tern span: a tool for unwelding visuospatial memory. Neuropsychologia, 37(10), 1189-

1199, 1999.

[32] Denning, T., Bowers, K., van Dijk, M., and Juels, A. Exploring implicit

memory for painless password recovery. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (2011), ACM, pp. 2615–2618.

[33] Donders, F. Over de snelheid van psychische processen. onderzoekingen gedaan in

het physiologisch laboratorium der utrechtsche hoogeschool 1868; 30: 412–431. 1868–

1869, tweede reeks, ii: 92–120. reprinted as donders, franciscus c.(1969). on the speed

of mental processes. Acta Psychologica

[34] Dovidio, J. F., and Gaertner, S. L. Stereotyping, prejudice, and discrimination:

Spontaneous and deliberative processes. Paper presented at the meeting of the Society

of Experimental Social Psychology, Washington, DC (1995, October).

[35] Elson, J., Douceur, J.R., Howell, J., Saul, J. Asirra: a captcha that exploits

interest-aligned manual image categorization. ACM Conference on Computer and Com-

munications Security. pp. 366–374 (2007)

[36] Esp-pix. http://server251.theory.cs.cmu.edu/cgi-bin/esp-pix/esp-pix

[37] Fazio, R. H., Jackson, J. R., Dunton, B. C., and Williams, C. J. Variability in

automatic activation as an unobtrusive measure of racial attitudes: a bona fide pipeline?

Journal of personality and social psychology 69, 6 (1995), 1013.

106

[38] Frank, M., Biedert, R., Ma, E., Martinovic, I., & Song, D. Touchalytics: On

the applicability of touchscreen input as a behavioral biometric for continuous authen-

tication. Information Forensics and Security, IEEE Transactions on, 8(1), 136-148.

[39] Fry, A. F., and Hale, S. Relationships among processing speed, working memory,

and fluid intelligence in children. Biological psychology 54, 1 (2000), 1–34.

[40] Gaines, R. S., Lisowski, W., Press, S. J., and Shapiro, N. Authentication by

keystroke timing: Some preliminary results. Tech. rep., DTIC Document, 1980.

[41] Galotti, K. M. Cognitive Psychology In and Out of the Laboratory. SAGE Publica-

tions, Inc, 2013.

[42] Galton, F. Inquiries into Human Faculty and Its Development. Kessinger Publishing,

LLC, 2010.

[43] Galton, Francis. I. Statistics of mental Imagery. Mind 19 (1880): 301-318.

[44] Gamboa, H., and Fred, A. A behavioral biometric system based on human-

computer interaction. Proc. SPIE 5404 (2004), 381–392.

[45] Gee, J. P. What video games have to teach us about learning and literacy. Computers

in Entertainment (CIE) 1, 1 (2003), 20–20.

[46] Google search by image. http://images.google.com/imghp?hl=en. Last accessed on

23/09/2014.

[47] Gossweiler, R., Kamvar, M., & Baluja, S. What’s up CAPTCHA?: a

CAPTCHA based on image orientation. In Proceedings of the 18th international con-

ference on World wide web (pp. 841-850). ACM, 2009.

[48] Guyon, I., & Elisseeff, A. An introduction to variable and feature selection. The

Journal of Machine Learning Research, 3, 1157-1182, 2003.

107

[49] Hall, P., and Marron, J. S. Extent to which least-squares cross-validation min-

imises integrated square error in nonparametric density estimation. Probability Theory

and Related Fields 74, 4 (1987), 567–581.

[50] Hamdy, O., and Traoré, I. Homogeneous physio-behavioral visual and mouse-based

biometric. ACM Transactions on Computer-Human Interaction (TOCHI) 18, 3 (2011),

12.

[51] Haxby, J. V., Ungerleider, L. G., Horwitz, B., Rapoport, S. I., & Grady,

C. L. Hemispheric differences in neural systems for face working memory: A PETrCBF

study. Human Brain Mapping, 3(2), 68-82, 1995.

[52] Hick, W. E. On the rate of gain of information. Quarterly Journal of Experimental

Psychology 4, 1 (1952), 11–26.

[53] Horn, J. L. Cognitive diversity: A framework of learning. WH Freeman/Times

Books/Henry Holt & Co, 1989.

[54] Jarrold, C., and Towse, J. N. Individual differences in working memory. Neuro-

science 139, 1 (2006), 39–50.

[55] Jensen, A. R. Individual differences in the Hick paradigm. Ablex Publishing, 1987.

[56] Jensen, A. R. Why is reaction time correlated with psychometric g? Current Direc-

tions in Psychological Science (1993).

[57] Jones, M. C., Marron, J. S., and Sheather, S. J. A brief survey of bandwidth

selection for density estimation. Journal of the American Statistical Association 91, 433

(1996), 401–407.

[58] Jorgensen, Z., and Yu, T. On mouse dynamics as a behavioral biometric for au-

thentication. In Proceedings of the 6th ACM Symposium on Information, Computer and

108

Communications Security (New York, NY, USA, 2011), ASIACCS ’11, ACM, pp. 476–

482.

[59] Kale, A., Sundaresan, A., Rajagopalan, A. N., Cuntoor, N. P., Roy-

Chowdhury, A. K., Kruger, V., & Chellappa, R. Identification of humans

using gait. Image Processing, IEEE Transactions on, 13(9), 1163-1173, 2004.

[60] Kung, S. Y., Mak, M.-W., and Lin, S.-H. Biometric authentication: a machine

learning approach. Prentice Hall Professional Technical Reference, 2005.

[61] Lee, L., & Grimson, W. E. L. Gait analysis for recognition and classification. In

Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International

Conference on (pp. 148-155). IEEE, May 2002.

[62] Leiserson, C. E., Rivest, R. L., Stein, C., and Cormen, T. H. Introduction to

algorithms. MIT press, 2001.

[63] Lewis, J.R., Sauro, J. The factor structure of the system usability scale. Human

Centered Design, pp. 94–103. Springer (2009)

[64] Liu, Y. Interactions between memory scanning and visual scanning in process moni-

toring. Ann Arbor 1001, 48109–2117 (1995)

[65] McAndrew, A. An introduction to digital image processing with matlab. An in-

troduction to digital image processing with matlab notes for scm2511 image processing.

school of computer science and Mathematics, Victoria university of technology, 1-264,

2004.

[66] McCarney, R., Warner, J., Iliffe, S., van Haselen, R., Griffin, M., &

Fisher, P. The Hawthorne Effect: a randomised, controlled trial. BMC medical

research methodology, 7(1), 30. (2007).

109

[67] Mechanical turk. https://www.mturk.com/mturk/welcome. Last accessed on

19/11/2014

[68] Miller, L. T., and Vernon, P. A. Intelligence, reaction time, and working memory

in 4-to 6-year-old children. Intelligence 22, 2 (1996), 155–190.

[69] Mohamed, M., Sachdeva, N., Georgescu, M., Gao, S., Saxena, N., Zhang,

C., Kumaraguru, P., van Oorschot, P.C., Chen, W.B. A three-way investiga-

tion of a game-captcha: automated attacks, relay attacks and usability. Proceedings of

the 9th ACM symposium on Information, computer and communications security. pp.

195–206. ACM (2014)

[70] Moy, G., Jones, N., Harkless, C., and Potter, R. Distortion estimation tech-

niques in solving visual captchas. In Computer Vision and Pattern Recognition, 2004.

CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2,

pages II–23. IEEE, 2004.

[71] Nakkabi, Y., Traoré, I., and Ahmed, A. A. E. Improving mouse dynamics

biometric performance using variance reduction via extractors with separate features.

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on

40, 6 (2010), 1345–1353.

[72] Neisser, U., and Lazar, R. Searching for novel targets. Perceptual and Motor Skills

19, 2 (1964), 427–432.

[73] Neisser, U. Decision-time without reaction-time: Experiments in visual scanning.

The American Journal of Psychology pp. 376–385 (1963)

[74] Nucaptcha: Adaptive captcha authentication. http://www.nucaptcha.com/. Last ac-

cessed on 11/06/2014.

110

[75] Paint: http://windows.microsoft.com/en-ca/windows7/products/features/paint. Last

accessed on 11/12/2014.

[76] PaperJS: http://paperjs.org/ Last accessed on 11/13/2014.

[77] Phillips, P. J., Scruggs, W. T., OToole, A. J., Flynn, P. J., Bowyer,

K. W., Schott, C. L., & Sharpe, M. User authentication through keystroke

dynamics. FRVT 2006 and ICE 2006 large-scale results. National Institute of Standards

and Technology, NISTIR, 7408, 2007.

[78] Prabhakar, S., Pankanti, S., & Jain, A. K. Biometric recognition: Security and

privacy concerns. IEEE Security & Privacy, 1(2), 33-42, 2003.

[79] Pusara, M., and Brodley, C. E. User re-authentication via mouse movements. In

Proceedings of the 2004 ACM workshop on Visualization and data mining for computer

security (2004), ACM, pp. 1–8.

[80] Revett, K. Behavioral biometrics: a remote access approach. John Wiley & Sons,

2008.

[81] Revett, K., Jahankhani, H., de Magalhães, S. T., and Santos, H. M. A

survey of user authentication based on mouse dynamics. In Global E-Security. Springer,

2008, pp. 210–219.

[82] Ross, S. A., Halderman, J. A., & Finkelstein, A. Sketcha: a CAPTCHA based

on Line Drawings of 3D Models. In Proceedings of the 19th international conference on

World wide web (pp. 821-830). ACM, 2010.

[83] Ross, A., & Jain, A. Information fusion in biometrics. Pattern recognition letters,

24(13), 2115-2125, 2003.

[84] Rudemo, M. Empirical choice of histograms and kernel density estimators. Scandina-

vian Journal of Statistics (1982), 65–78.

111

[85] Scholz, F. Maximum likelihood estimation. Encyclopedia of Statistical Sciences

(1985).

[86] Shanmugapriya, D., and Padmavathi, G. A survey of biometric keystroke dynam-

ics: Approaches, security and challenges. arXiv preprint arXiv:0910.0817 (2009).

[87] Sheskin, D. J. Parametric and nonparametric statistical procedures. Boca Raton:

CRC., 2000.

[88] Sonka, M., Hlavac, V., & Boyle, R. Image processing, analysis, and machine

vision. Cengage Learning., 2014

[89] Stager, P., & Angus, R. Locating crash sites in simulated air-to-ground visual

search. Human Factors: The Journal of the Human Factors and Ergonomics Society

(1978), 20(4), 453-466.

[90] Starovoitov, V. V., Samal, D. I., & Briliuk, D. V. Three approaches for face

recognition. In The 6-th International Conference on Pattern Recognition and Image

Analysis, Velikiy Novgorod, Russia (pp. 707-711), October, 2002.

[91] Sternberg, R. J. Cognitive Psychology. Cengage Learning, 2011.

[92] Stuart, A., & Phillips, D. P. Word recognition in continuous and interrupted

broadband noise by young normal-hearing, older normal-hearing, and presbyacusic lis-

teners. Ear and hearing, 17(6), 478-489, 1996.

[93] Tapscott, D. Grown up digital: How the net generation is changing your world HC.

McGraw-Hill, 2008.

Perception & Psychophysics 66, 6 (2004), 953–962.

[94] Thorpe, S., Fize, D., Marlot, C., et al. Speed of processing in the human visual

system. Nature 381(6582), 520–522 (1996)

112

[95] Townsend, J. T., and Fifić, M. Parallel versus serial processing and individual

differences in high-speed search in human memory. Perception & Psychophysics 66.6

(2004): 953-962

[96] Van Zandt, T., Townsend, J.T. Self-terminating versus exhaustive processes in

rapid visual and memory search: An evaluative review. Perception & Psychophysics

53(5), 563–580 (1993)

[97] Vikram, S., Fan, Y., Gu, G. Semage: a new image-based two-factor captcha.

Proceedings of the 27th Annual Computer Security Applications Conference. pp. 237–

246. ACM (2011)

[98] Villani, M., Tappert, C., Ngo, G., Simone, J., Fort, H. S., and Cha, S.-H.

Keystroke biometric recognition studies on long-text input under ideal and application-

oriented conditions. In Computer Vision and Pattern Recognition Workshop, 2006.

CVPRW’06. Conference on (2006), IEEE, pp. 39–39.

[99] Virtual sweatshop. http://krebsonsecurity.com/2012/01/virtual-sweatshops-defeat-bot-

or-not-tests/. Last accessed on 23/09/2014.

[100] Vogel, E. K., and Machizawa, M. G. Neural activity predicts individual differ-

ences in visual working memory capacity. Nature 428, 6984 (2004), 748–751.

[101] Von Ahn, L., Blum, M., Hopper, N.J., Langford, J. Captcha: Using hard

ai problems for security. Advances in CryptologyEUROCRYPT 2003, pp. 294–311.

Springer (2003)

[102] Von Ahn, L., Blum, M., & Langford, J. (2004). Telling humans and computers

apart automatically. Communications of the ACM, 47(2), 56-60, 2004.

[103] Wand, M. P., and Jones, M. C. Kernel smoothing, vol. 60. Crc Press, 1994.

113

[104] Wheatley, T., & Wegner, D. M. Psychology of automaticity in action. In N. J.

Smelser & P. B Baltes (Eds.), International encyclopedia of the social and behavioral

sciences. New York: Elsevier Science, 2001.

[105] Wickens, C. D., Lee, J. D., Liu, Y., and Gordon-Becker, S. Introduction to

Human Factors Engineering (2nd Edition). Pearson, 2003.

[106] Wickens, C. D. Engineering psychology and human performance . HarperCollins

Publishers, 1992.

[107] Wilson, J. T. L. Visual short-term memory. Development in the assessment and

rehabilitation of brain-damaged patients. Krager-Verlag, 1993.

[108] Wilson, S. G., and Chou, K. L. Separation of low-level and high-level factors in

complex tasks: Visual search. Psychological Review 102, 2 (1995), 356–378.

[109] Wolfe, J. M. Guided search 2.0 a revised model of visual search. Psychonomic

bulletin & review, 1(2), 202-238, 1994.

[110] Woudenberg, E., Soong, F. K., & West, J. E. Acoustic echo cancellation for

hands-free ASR applications in noise. In Proc. of the Workshop on Acoustic Echo and

Noise Control (pp. 160-163), 1999

[111] Yampolskiy, R. V., and Govindaraju, V. Behavioural biometrics: a survey and

classification. International Journal of Biometrics 1, 1 (2008), 81–113.

[112] Yantis, S. Stimulus-driven attentional capture. Current Directions in Psychological

Science, 156-161, 1993

[113] Yan, J., & El Ahmad, A. S. Breaking visual captchas with naive pattern recogni-

tion algorithms. In Computer Security Applications Conference, 2007. ACSAC. Twenty-

Third Annual (pp. 279-291). IEEE, 2007.

114

[114] Yan, J., & El Ahmad, A. S. Usability of CAPTCHAs or usability issues in

CAPTCHA design. In Proceedings of the 4th symposium on Usable privacy and se-

curity (pp. 44-52). ACM, 2008.

[115] Yan, J., & El Ahmad, A. S. A low-cost attack on a microsoft captcha. In

Proceedings of the 15th ACM conference on Computer and communications security,

pages 543–554. ACM, 2008

[116] Yan, J., & El Ahmad, A. S. Captcha robustness: A security engineering perspec-

tive. Computer, 44(2), 0054-60, 2011.

[117] Zhang, Y., Monrose, F., and Reiter, M. K. The security of modern password

expiration: An algorithmic framework and empirical analysis. In Proceedings of the 17th

ACM Conference on Computer and Communications Security (New York, NY, USA,

2010), CCS ’10, ACM, pp. 176–186.

[118] Zheng, N., Paloski, A., and Wang, H. An efficient user verification system

via mouse movements. In Proceedings of the 18th ACM Conference on Computer and

Communications Security (New York, NY, USA, 2011), CCS ’11, ACM, pp. 139–150.

[119] Zhu, B.B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K. Attacks

and design of image recognition captchas. Proceedings of the 17th ACM conference on

Computer and communications security. pp. 187–200. ACM (2010)

[120] Zucchini, W., Berzel, A., and Nenadic, O. Applied smoothing techniques,

2003.

115

Appendix A

SYSTEM IMPLEMENTATION

A.1 User Authentication System Implementation

As discussed in the beginning of Chapter 3, our system consists of three major modules: (1)

The Interaction Module consists of the input device (mouse or laptop touchpad) that is used

in executing the cognitive task. (2) The Data Acquisition Module presents the cognitive

task in the form of a web-based game. (3) The User Identification Module pre-processes the

captured data and provides an authentication decision. We also have three other periph-

ery modules: (4) Simulation Module which trains attackers for impersonation attacks, (5)

Usability Module which calculates the usability score and other statistics of the users and

(6) Correctness Check Module for users to verify the correctness of the users’ submissions.

In the following subsections we discuss the programming languages, frameworks, databases

used in our system. We then provide the pseudo-code of some of the major functions.

A.1.1 Data Acquisition Module

This module provides the cognitive task in the form of a web-based game. The search set

or the image that is presented to the user is hand-drawn using a Paint program [75]. We

use the Paper.js framework [76], an open source vector graphics scripting framework that

runs on top of the HTML5 Canvas, to develop the logics of the game. The user interaction

data are recorded using JavaScript and submitted passively via AJAX requests to the web

server. Specifically, we record data during certain mouse events. The data are then kept in

individual text files (at the server side) each corresponding to a user.

Raw Data Collection:

on c l i c k event t r i g g e r e d :

116

i f (event == c l i c k on t i l e)

r ecord t i l e c l i c k time

record c l i c k co−o rd in a t e s

end

i f (event == c l i c k on gold)

record gold c l i c k time

record c l i c k co−o rd in a t e s

end

end

s e t I n t e r v a l (recordDragEvent , 100ms) :

recordDragEvent :

i f (event == drag on t i l e)

r ecord drag event co−o rd in a t e s

end

i f (event == drag on gold)

record drag event co−o rd in a t e s

end

end

on r e l e a s e event t r i g g e r e d :

i f (event == t i l e r e l e a s e)

record t i l e r e l e a s e time

record r e l e a s e co−o rd in a t e s

end

i f (event == gold r e l e a s e)

record gold r e l e a s e time

117

r ecord r e l e a s e co−o rd in a t e s

end

end

Raw Data Submission:

i f (instanceCompleted)

$. a jax

type : POST

data : data

end

end

JavaScript functions are used to enforce some of the constraints discussed in Section

3.1.1. Table A.1 provides a brief overview of the constraints, UAC1, UAC2, . . . , UAC7.

A.1.2 User Identification Module

Once the data are collected from the data acquisition module, it needs to be preprocessed.

Preprocessing involves ordering the incoming data packets and removing noise from some

features (Section 3.3.2). Note that training and test data are preprocessed separately. We

then derive the cognitive features using programs written in C Sharp.

Ordering Packets

Due to network delay, the data packets might not arrive sequentially. Recall, that an instance

is composed of the Aresp and Arew actions. The Aresp action involves the correct matching

of the challenge tile and the target tile and the Arew action involves depositing the gold coin

in the bank. We highlight here that network delays do not affect the content of the packets.

This is because we use JavaScript to collect local machine timestamps for the raw mouse

events. Once these raw data for an action are accumulated, they are sent over the network to

118

Constraints Usage and Importance
UAC1 Always presents a (+ve) search set
UAC2 Allows user to observe current game status.
UAC3 Hides actual position of loose tiles until they

appear as tc and aids in invoking serial
search. Without this constraint users could
have remembered certain target positions be-
forehand. This would have biased the visual
search process

UAC4 Provides prime while dragging coin to trig-
ger automatic processing. Guiding line color
changes from green to red

UAC5 Reduces conspicuity of a target among dis-
tractors. Aids in invoking serial search

UAC6 Provides prime while dropping coin to trigger
unconscious automatic processing.

UAC7 Without this constraint user could have re-
membered certain target positions before-
hand. This would have biased the visual
search process.

Table A.1: User Authentication Constraints look-up table (brief descriptions). Refer to
Section 3.1.1 for details.

119

our server. We can then face two circumstances: (1) packets might arrive disordered or (2)

packets might go missing. We wrote a program which go through these packets or data for

each user and alerts us when ordering is necessary or when packets are missing. If packet for

an action e.g. Aresp is missing then the corresponding Arew is not taken into consideration.

Packet missing is a rare phenomenon in our case.

Data Organization

We developed a program which can organize the data into training and test set, accord-

ing to user-defined parameters. The program also derives a few features such as pauses,

straightness. Once these features related to the drag events are calculated the drag events

are discarded. This is done to reduce the bulkiness of the files. The resulting organized file

have a fixed number of columns for each user.

NumberOfPauses:

f o r i = 1 : l ength (dragEventXY) − 1

i f (dragEventXY (i) == dragEventXY (i + 1))

NumberOfPauses ++;

end

end

RemoveAllDragEventCoordinates () ;

Feature Estimation and User Identification

The data are then fed into programs which remove noise (where necessary) and derive the

rest of the cognitive features (Section 3.1.3). The training and test feature vectors are

then kept into two separate files. For each feature vector we construct the probability

distribution function using a Gaussian kernel. We determine the bandwidth using a leave-

one-out least square cross validation technique. Our program can take other kernels (such as

rectangular, epanechnikov) into consideration. The test data points are then used instance-

120

wise to calculate the probability of the instance belonging to a particular user.

Repeat f o r each user :

FeatureVector = Est imateFeatures () ;

f o r i = 1 : l ength (FeatureVector) ,

ConstructAndStorePDF () ;

end

Repeat f o r each user :

f o r an in s t ance

C a l c u l a t e P o s t e r i o r P r o b a b i l i t y

C la s s i f y In s tanceToMaxPos te r i o rProbab i l i ty

end

Ca l cu la t eEr ro rMet r i c s () ;

A.1.3 Simulation Module

We developed a web-based program using Paper.js, HTML5 and JS which can simulate a

user’s game playing activities. Recall, that in the data acquisition period, users’ data are

recorded. During an impersonation attack we select some of those users’ data and feed them

into the simulation program. The attackers are then trained on these simulations. The

program takes into consideration the movement co-ordinates, timestamps, click and release

points of mouse, pick and release co-ordinates of tiles/golds, and other minute details while

making the simulation. It even shows the changes in color of the guiding lines as the gold is

dragged. Therefore, it is very accurate and seems like a recorded video.

121

A.1.4 Usability Module

As discussed in Section 3.3.4, we provided an exit survey consisting of the SUS. We developed

a C Sharp program to automatically calculate the SUS score. To calculate the SUS score

[17], we first sum the score contributions from each item. Each item’s score contribution is

converted from a 1-5 to 0-4 scale. For items 1, 3, 5, 7, and 9 the score contribution is the

scale position minus 1. For items 2, 4, 6, 8 and 10, the contribution is 5 minus the scale

position. We then multiply the sum of the scores by 2.5 to obtain the overall value of SUS.

SUS scores have a range of 0 to 100.

A.2 Movtcha System Implementation

As discussed earlier in Chapter 4, Movtcha consists of three major modules: (1) The Gen-

eration Module generates the Movtcha challenges, which are basically the processed images.

(2) The Data Acquisition Module provides Movtcha in the form of a web-based game. The

user uses a mouse to solve the Movtcha. The interaction data is recorded using JavaScript

and submitted passively via AJAX requests to the web server. (3) The Evaluation Module

differentiates a human from a computer based on the acquired data and an accuracy metric.

We had two separate periphery modules similar to the user identification system. (4) The

Usability Module that calculates SUS. (5) The Simulation Module which can simulate any

user’s Movtcha solving activities. As discussed earlier in Section 4.4.2 the purpose of this

module was to observe the search strategy of the user. (6) Correctness Check Module is used

to verify the correctness of the users’ Movtcha solutions. We only provide discussion on the

Data Acquisition Module, Evaluation Module.

A.2.1 Data Acquisition Module

The Data Acquisition Module is responsible for presenting the Movtcha challenges. Similar

to the user authentication system, we have used the Paper.js framework on top of HTML5

122

canvas to develop the logics of the game. All the constraints discussed in Section 4.1.1 are

implemented in our system. Recall, that the challenge tile moved randomly inside a bounding

region (Figure 4.2). To create animations in Paper.js, we use the onFrame handler. When

this function is defined, it is called up to 60 times a second by Paper.js [76]. The view is

redrawn automatically after the onFrame function has been executed. The user interaction

data are recorded using JS and submitted passively via AJAX requests to the web server.

The data are then kept in individual text files (at the server side) each corresponding to a

user. The raw data consisted of mouse events as discussed in Appendix A.1.1. The visual

search time, V ST , is calculated at the end of each instance, i.e. when the star is deposited.

The V ST is sent along with the other raw data.

Movtcha demands almost a smooth movement during the Arew actions for reasons dis-

cussed in Section 4.1.1. If the user crosses a certain threshold of 200 ms, the star, sr, moves

back to the target tile, Ptr .

Smooth Star Movement during Arew:

s e t I n t e r v a l (func t i on (){CheckPause (pauseEvent)} , 2 0 0) ;

f unc t i on CheckPause (pauseEvent)

i f (pauseEvent . po int == pastPauseEvent . po int && starP icked == true)

numberOfPauses = numberOfPauses + 1 ;

i f (numberOfPauses > 1)

PauseConstra intAct ivate () ;

end

end

pastPauseEvent = pauseEvent ;

end

123

A.2.2 Evaluation Module

When the user solves all the required instances of a Movtcha, the back-end server reads the

user’s file and executes Algorithm 1, Chapter 4. If the resulting accuracy metric, 4A
V ST ,

crosses the system threshold, the user is authenticated as a human. The algorithm is im-

plemented in a PHP file, therefore, the results are immediately available, when required.

Moreover, since the algorithm sorts the data according to the search set size, disordered

packets did not affect the accuracy calculation.

124

