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Abstract 

Nearly all of what is known of the patterns of latest Cretaceous and early Paleogene 

mammalian evolution (from approximately 69 to 57 million years ago) is documented 

in stratigraphic sequences from the Western Interior of North America. Throughout 

much of the latest Cretaceous and early Paleogene this region was tectonically active, 

with the emergence of the Rocky Mountains and Western Interior foreland basin. 

Several major marine transgressions also occurred during this interval and, at times, 

the Western Interior epicontinental seaway bisected the continent. Moreover, the latest 

Cretaceous and early Paleogene is marked by episodes of rapid climatic warming and 

cooling, and intensive volcanism. That mammals were affected by these changes is 

without question; however, the extent to which these factors helped shape the 

evolutionary patterns of this group is less obvious. To better comprehend the 

evolutionary dynamics between mammals and their environments across this interval, 

this dissertation focuses on the paleobiogeography of latest Cretaceous through the 

early Paleogene mammals from the Western Interior of North America. A number of 

statistical analyses (e.g., ordination, clustering, linear regression) were employed to 

assess mammalian faunal provinciality within North America during this interval, 

differences in the relative abundances of fossil mammals during the latest Cretaceous 

assemblages, and, finally, the latitudinal diversity gradient in latest Cretaceous and 

early Paleogene mammals. Notable discoveries include the absence of faunal 

provinciality and little variation in mammalian taxonomic richness across latitude, but 

considerable differences in the relative abundance of mammals within assemblages 

from the latest Cretaceous, with eutherians more diverse and abundant in some of the 
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northerly assemblages. These findings suggest that the paleogeographic and climatic 

changes that characterized the latest Cretaceous and early Paleogene resulted in 

intricate biogeographic patterns among mammals from this interval. These studies 

additionally emphasize the importance of quantitatively assessing these patterns to 

understand the interactions between mammals and their environments.  
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1  General Introduction, Paleogeography and Climatic Setting, and Chapters and 

Objectives 

 

1.1 General Introduction 

Continental strata of the latest Cretaceous and early Paleogene of North 

America (from approximately 69 to 57 million years ago [mya]) document the densest 

and most complete record of late Mesozoic and early Cenozoic mammalian evolution 

in the world (Cifelli et al., 2004; Lofgren et al., 2004). Current evidence, based largely 

on this North American record, points to this interval of time as one of the most 

important in the evolutionary history of mammals. More specifically, following the 

catastrophic mass extinction events that marked the Cretaceous/Paleogene (K/Pg) 

boundary (approximately 65.6 mya) (see Renne et al., 2013), many lineages of 

mammals underwent a remarkable evolutionary radiation (see e.g., Alroy, 1999; 

Novacek, 1999; Rose and Archibald, 2006; Rose, 2006). 

 Through the same interval of time, North America underwent remarkable 

geophysical and climatic changes. Beginning in the Middle Jurassic and continuing to 

the early Eocene (from roughly 170 to 45 mya), the North American Cordilleran 

orogenic fold-thrust belt (i.e., the emerging Rocky Mountains) and the Western Interior 

foreland basin were tectonically active, and underwent episodes of convergence, 

subduction, rifting, faulting, uplift, erosion, volcanism, and subsidence (Miall et al., 

2008). In addition, eustatic sea levels were fluctuating and at multiple times during the 

Late Cretaceous and early Paleogene the Western Interior foreland basin was inundated 

with marine waters (Kauffman, 1984, 1977). Climate fluctuations through this interval 
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further compounded events, with generally warm temperatures during the latest 

Cretaceous and Paleocene, followed by even warmer temperatures at the 

Paleocene/Eocene boundary and into the early Eocene (e.g., Zachos et al., 2001). 

That mammals were affected by these environment changes is without question; 

however, the extent to which these factors helped shaped the diversity and evolutionary 

patterns of this group is less obvious. On that account, and because these mammals 

lived during a crucial interval during the Earth’s history, the paleobiogeography of 

mammals from the latest Cretaceous and early Paleogene of the Western Interior of 

North America is the focus of this dissertation. To begin to this discussion, I review the 

paleogeography and climate of North America during the Late Cretaceous and early 

Paleogene. 

 

1.2 Paleogeography and Climatic Setting of North America during the latest 

Cretaceous and early Paleogene 

1.2.1 Latest Cretaceous and early Paleogene Paleogeography of North America 

The North American Cordilleran orogenic fold-thrust belt and Western Interior 

foreland basin evolved together for over 100 million years, from the Middle Jurassic to 

the early Eocene (DeCelles, 2004; Miall et al., 2008). The earliest development of these 

geologic features is conventionally associated with the rapid sea-floor spreading in the 

North Atlantic Ocean. This spreading initiated the westward drift of the North 

American continent relative to Europe and, consequently, the subduction of several 

Pacific oceanic plates beneath the western margin of the North American continental 

plate (Miall et al., 2008; Ricketts, 2008). The asymmetrical Western Interior foreland 
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basin developed to the east of the Cordillera orogenic fold-thrust belt and west of the 

North American craton, and tapers to the east. 

In the Canadian portion of the Cordillera, the change from regional extension to 

contraction was coupled with the collision of a series of terranes that drifted into the 

Cordilleran subduction zone throughout the Middle Jurassic and early Eocene. The 

accretion of these successive terranes to the North American plate, rather than their 

subduction beneath it, resulted in major crustal deformation and, ultimately, the 

expansion of the western margin in Canada by several hundred kilometers (i.e., much 

of British Columbia is comprised of these terranes) (Ricketts, 2008). As older terranes 

were displaced eastward with the successive arrival of each new terrane, a new cycle of 

fold-thrust belt tectonism, uplift, erosion and clastic wedge generation was initiated 

(Miall et al., 2008). 

The American Cordillera was largely not influenced by the accretion of these 

offshore terranes (Ingersoll, 2008); instead, changes in the angle of the subducting 

Pacific plate resulted in episodes of deformation and volcanism (Miall et al., 2008). 

Additionally, the latest Cretaceous to early Eocene Laramide Orogeny, likely driven by 

the shallow subduction of the Farallon Plate beneath the western margin of North 

America (Bird, 1988), fractured and partitioned the foreland basin into a mosaic of 

smaller basins and uplifts (Decelles, 2004; Miall et al., 2008; Lawton, 2008). Laramide-

style tectonism largely did not occur in Canada although regional fold-thrust tectonism 

did continue in this area until the early Eocene, as noted earlier (Hildenbrand, 2009). 
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1.2.2 Marine Transgressions and Epicontinental Seaways 

 During the uplift of the North American Cordillera, several major marine 

transgressions occurred in the Western Interior Basin. Towards the end of the Early 

Cretaceous, most of the Western Interior Basin was occupied by easterly flowing 

fluvial and estuarine systems (Miall et al., 2008). However, following a brief sea level 

fall, a major transgression occurred in the early Late Cretaceous and marine waters 

from the ancestral Gulf of Mexico in the south and the ancient Arctic Ocean in the 

north inundated the foreland basin, giving rise to the Western Interior Seaway. At its 

maximum coverage, this seaway extended roughly 4800 kilometers in length and to a 

maximum width of 1600 kilometers (Kauffman, 1984). The presence of the Western 

Interior Seaway is generally thought to have led to more humid and equable climates in 

the Late Cretaceous (Valdes et al., 1996) and is also suggested to have acted as a 

geographic barrier to terrestrial organisms (e.g., Sampson et al., 2010).  

Pulses of the Laramide orogeny coupled with the fall of eustatic sea levels 

eventually led to the rapid regression of the Western Interior Seaway beginning in the 

latest Cretaceous (Miall et al., 2008). Here in western Canada, the Bearpaw and Pierre 

formations represent the last vestiges of this receding seaway, with the shorelines 

quickly migrating south towards the Gulf of Mexico (Lillegraven and Ostresh, 1990). 

As this seaway regressed, Archibald (1996; in Archibald and Fastovsky, 2004) 

contends that this would have led to habitat fragmentation and contemporaneous 

reduction in mammalian (and, notably, dinosaurian) diversity that culminated at the 

K/Pg boundary extinction event. 

Finally, the last major marine transgression, and the last known epicontinental 
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seaway in North America, occurred briefly from the early Paleocene to the middle 

Paleocene (Hartman and Hunter, 1998). The Cannonball Seaway, unlike its 

predecessor, extended from the southernmost parts of Canada to the Gulf of Mexico 

(Lund et al., 2002). And, while notably smaller in geographic scale when compared to 

the Western Interior Seaway, the Cannonball Seaway is also thought to have led to 

more temperate conditions and similarly acted as a barrier.  

 

1.2.3 Latest Cretaceous and early Paleogene Climate of North America 

Oxygen isotope records from benthic foraminifera indicate a general long-term 

trend of global warming extending from the latest Cretaceous through the early 

Paleogene. This was followed by an interval of cooler, more temperate conditions 

during the late Paleocene, and then a gradual rise in temperature to a climatic optimum 

in the early Eocene, interrupted briefly by an abrupt warming event at the 

Paleocene/Eocene boundary (i.e., the Paleocene/Eocene Thermal Maximum [PETM]) 

(Zachos et al., 2001)  

Climate trends from the continental record are no less profound. The warm 

global climates in the latest Cretaceous and early Paleogene are generally corroborated 

by fossil floral composition and leaf margin data (e.g., Wolfe and Upchurch, 1987; 

Johnson and Ellis, 2002), although a slight cooling is reported immediately preceding 

the K/Pg boundary (Wilf, 2003). Fossil flora from early Paleogene sediments at mid-

latitudes in the Western Interior Basin are indicative of warm climates, with estimates 

of mean annual temperature typically exceeding 15°C (Hickey, 1980; Wing et al., 

1991; Wilf, 2000) and, based on an exceptionally preserved assemblage from Castle 
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Rock in Colorado, even thought to reach as high as 22°C (Johnson and Ellis, 2002). 

Mean annual temperatures during the late Paleocene cooled to as low as 10°C but 

approached 20°C at the end of the epoch, and reached as high as 23°C at the PETM and 

again at the climatic optimum of the early Eocene (Wilf, 2000). Non-mammalian faunal 

data add further support for these trends (Markwick, 1998). 

 

1.3 Chapters and Objectives 

This dissertation is comprised of three quantitative studies on the 

paleobiogeography of latest Cretaceous and early Paleogene mammals, each with the 

aim of improving the understanding of mammalian evolution across the dramatic 

geologic and climatic events that marked this interval. The first study within this 

dissertation (Chapter Two) examines mammalian faunal provinciality within North 

America during the latest Cretaceous and earliest Paleocene. A number of previous 

studies (e.g., Sloan, 1969; Anthony and Maas, 1990; Weil, 1999; Donohue et al., 2013) 

have suggested that the northern and southern parts of the Western Interior of North 

America represented distinct biogeographic provinces during parts of the Late 

Cretaceous and early Paleogene. I developed a newly constructed dataset documenting 

mammalian taxonomic richness and occurrences, and employed non-hierarchical 

cluster analyses, non-metric multidimensional scaling, minimum spanning trees, and 

simple chi-squared analyses to assess claims of provinciality. This research represents 

the first comprehensive study of mammalian faunal provinciality immediately before 

and after the dramatic events that characterized the Cretaceous/Paleogene boundary.  
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Recognizing some of the limitations with occurrence data (see e.g., Nicholls and 

Russell, 1990), Chapter Three assesses the relative abundances of fossil mammals and 

focuses on latest Cretaceous assemblages from across North America. A standardized 

resampling approach was employed to generate assemblage-specific abundance 

estimates for each mammal, based on the faunal composition from the well-studied 

Type Lance local fauna from the Lance Formation of northeastern Wyoming (e.g., 

Clemens, 1964, 1966, 1973). Using these estimates, the faunal similarity between latest 

Cretaceous assemblages was quantitatively assessed and genera that were unusually 

abundant or rare compared to the Type Lance local fauna were identified. A discussion 

on the timing and patterns of the evolutionary radiation of certain mammalian groups 

near the K/Pg boundary is also provided. 

In Chapter Four, I examine the latitudinal diversity gradient within latest 

Cretaceous and early Paleogene mammals from North America. The modern latitudinal 

diversity gradient (i.e., the increase in taxonomic richness from the poles to the equator) 

is often suggested to have been in place through most of the last 544 million years (see 

e.g., Crame, 2001; Hillebrand, 2004; Leighton, 2005); yet, several recent studies have 

demonstrated that the taxonomic richness of certain groups was higher in temperate 

paleolatitudes than in more tropical paleolatitudes (e.g., Eocene insects [Archibald et 

al., 2010] and Mesozoic non-avian dinosaurs [Mannion et al., 2012]). Expanding on the 

dataset presented in Chapter One and applying regression analyses, the latitudinal 

diversity gradient within latest Cretaceous and early Paleogene mammalian 

assemblages from North America is reconstructed. In addition, several of the 

mechanisms that have previously been proposed to determine patterns of latitudinal 
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diversity, including differential sampling and climate, are also assessed and reviewed in 

this study. 

The final chapter (Chapter Five) provides a summary of the central findings 

within this research, and presents some of the broader implications and areas for further 

research. 
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2  Faunal Provinciality within Latest Cretaceous and Earliest Paleocene 

Mammalian Assemblages from the Western Interior of North America 

 

2.1 Abstract 

Although the presence of mammalian provinciality within North America during the 

latest Cretaceous and earliest Paleocene (from approximately 69 to 64 million years 

ago) is commonly cited, few quantitative analyses have actually centered on 

mammalian occurrences from this interval. In fact, the vast majority of these studies 

have inferred that the geographic distributions of mammals during the latest Cretaceous 

and Paleocene were likely similar to those during the Late Cretaceous (i.e., Campanian 

[from roughly 83 to 72 million years ago]), an interval in which faunal provinciality is 

better established. However, there are no reasons to suspect that the distribution of 

these animals remained the same across these intervals, particularly with the dramatic 

events that characterize the Cretaceous/Paleogene boundary, including the impact of a 

large bolide, intensive volcanism, and changes in the global sea level. In this study, I 

assembled information on the occurrences of over 100 latest Cretaceous and earliest 

Paleocene mammalian genera from 30 localities across North America. To identify 

mammalian provinciality, non-hierarchical cluster analyses, non-metric 

multidimensional scaling, and minimum spanning trees were employed. A 

biogeographic province was also explicitly defined as containing at least 25% endemic 

taxa and suggestions of the presence of faunal barriers near a paleolatitude 50° N were 

assessed. Despite the disparity among the approaches, the findings provide little 

quantitative support for mammalian provinciality during the latest Cretaceous or 
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earliest Paleocene. The vast majority of the recovered clusters are weakly supported 

and the geographic position of these clusters is inconsistent with previous suggestions 

of provinciality. Taxa endemic to localities north or south of the proposed barrier 

comprise a comparatively small proportion of the dataset and the pattern of occurrences 

cannot be differentiated from gradual change across a latitudinal range. These results 

suggest that latest Cretaceous and earliest Paleocene mammalian faunas were markedly 

different than those from stratigraphically older time intervals and undergoing 

remarkable changes. 
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2.2 Introduction 

The latest Cretaceous and earliest Paleogene of North America (from 

approximately 69 to 64 million years ago [mya]) documents the densest and most 

intensely sampled record of late Mesozoic and early Cenozoic mammalian evolution in 

the world (Cifelli et al., 2004; Lofgren et al., 2004). Current evidence, based largely on 

this North American record, points to this interval of time as one of the most important 

in the evolutionary history of mammals. In particular, following the catastrophic mass 

extinction events that marked the Cretaceous/Paleogene (K/Pg) boundary 

(approximately 65.6 mya) (Renne et al., 2013; Sprain et al., 2014), many lineages of 

mammals underwent remarkable adaptive radiations (Alroy, 1999; Novacek, 1999; 

Archibald and Deutschman, 2001; Rose and Archibald, 2006; Rose, 2006).  

In western Canada, latest Cretaceous and early Paleogene mammals were first 

described by Simpson (1927). Since that time, numerous localities yielding fossil 

mammals have been discovered in the region, ranging in age from the Aquilan to latest 

Tiffanian (Woodburne, 2004 and references therein) (the terms “Aquilan” and 

“Tiffanian” refer to North American Land Mammal Ages [NALMAs] that are 

approximately equivalent to the middle Upper Cretaceous and early late Paleocene; see 

discussion below). Intriguingly, while many taxa recovered from these assemblages 

occur in the U. S., many others are new and apparently confined to more northerly 

latitudes. These taxa include the plesiadapiform primate Saxonella (Fox, 1991) and the 

adapisoricid insectivoran Adapisorex (Fox, Scott, and Rankin, in prep.), two mammals 

otherwise known only from northern Europe, and the stylinodontid taeniodont 

Schowalteria (Fox and Naylor, 2003), the enigmatic eutherian Horolodectes (Scott et 
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al., 2006), the epoicotheriid pholidotan Melaniella (Fox, 1984) and the last surviving 

non-mammalian synapsid Chronoperates (Fox et al., 1992), taxa known from nowhere 

else.  

Based on these observations, some researchers (e.g., Sloan, 1969, 1987; 

Lillegraven, 1969; Anthony and Maas, 1990; Rowe et al., 1992; Weil, 1999; 

Williamson and Weil, 2008; Donohue et al., 2013) have suggested that the northern 

part of the Western Interior of North America represented a distinct biogeographic 

province during parts of the Late Cretaceous and early Paleogene, separate from that in 

the south. Weil (1999), in her study on the biogeographic distribution of Late 

Cretaceous and earliest Paleocene North American mammals (from approximately 85 

to 64 mya), and one of the few quantitative studies on the subject, reported that distinct 

biogeographic provinces, characterized by northern and southern provinces, were 

present during parts of the Late Cretaceous and during the earliest Paleocene. Similarly, 

Donohue et al. (2013) noted faunal provinciality in the latest Cretaceous, and Anthony 

and Maas (1990) recognized faunal distinctions in the middle and late earliest 

Paleocene, but also in parts of the early late Paleocene. Although widely accepted, 

these views are not universal. Lillegraven and McKenna (1986), Williamson (1996), 

and Hunter and Archibald (2002) argue that there is little differentiation between 

northern and southern faunas during the Late Cretaceous and earliest Paleocene, and 

maintain that the composition of these North American faunas was relatively 

homogeneous. 

The possibility that distinct faunal provinces were present during parts of the 

Late Cretaceous and early Paleogene has notable implications for the patterns of 
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mammalian evolution in North America. Changes in the number of biogeographic 

provinces, for instance, can have considerable effects on taxonomic diversity, with the 

establishment of more provinces generally leading to increases in richness (Valentine, 

1970; Valentine et al. 1978; Jablonski et al., 1985; Gaston, 2000). Moreover, different 

macroevolutionary processes would likely be operating in separate provinces (Jablonski 

et al., 1985; Flessa and Thomas, 1985; Jackson and D’Croz, 1997; Sampson and 

Loewen, 2010; Sampson, 2013), leading to the suggestion that properly identifying 

faunal provinces in the past would permit a more accurate understanding of the 

evolutionary history of mammals.  

Within this study, I quantitatively analyze the biogeographic distribution of 

latest Cretaceous and earliest Paleocene North American mammals. To test previous 

hypotheses of mammalian biogeographic provinciality in North America, I compiled 

information on latest Cretaceous and earliest Paleocene mammalian fossil occurrences 

in a newly constructed dataset. By utilizing clustering and ordination methods, and 

simple chi-squared analyses with biogeographic provinces quantitatively defined, I 

examine the possibility that the northern and southern parts of the Western Interior of 

North America represented unique faunal regions during the latest Cretaceous and 

earliest Paleocene. 

 

2.3 Methods and Materials 

2.3.1 Stratigraphic framework 

The age and correlation of late Mesozoic and early Cenozoic mammal 

assemblages in North America is principally based on the system of North American 
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Land Mammal Ages (NALMAs) and their subdivisions (Lillegraven and McKenna, 

1986; Archibald et al., 1987; Cifelli et al., 2004; Lofgren et al., 2004). Most NALMAs 

are biochronological units and “recognize distinct intervals of time based on the 

evolution of fossil mammals” (Woodburne, 2004b, p. 15). For example, the Puercan 

NALMA is conventionally described as the interval between the first appearance of the 

arctocyonid condylarth Protungulatum and the first appearance of the periptychid 

condylarth Periptychus carinidens (Lofgren et al., 2004). The Late Cretaceous of North 

America is divided into four Land Mammal Ages: from oldest to youngest, these are 

the Aquilan, Judithian, “Edmontonian”, and Lancian (Cifelli et al., 2004). Within the 

Paleocene, the first epoch in the Paleogene, four NALMAs are also recognized: the 

Puercan, Torrejonian, Tiffanian, and Clarkforkian, with each further divided into 

subzones (e.g., the Puercan is divided into three subzones: Pu1, Pu2, and Pu3) (Lofgren 

et al., 2004). I examined the Lancian and the three subzones of the Puercan, comprising 

roughly the last two million years of the Cretaceous and first million years of the 

Paleocene epoch (e.g., Cifelli et al., 2004; Wilson et al., 2010; Sprain et al. 2014; 

Wilson, 2014). 

The Lancian/Puercan NALMA boundary has conventionally been correlated 

with the Cretaceous/Paleogene boundary (Archibald et al. 1987); however, several 

authors (Archibald and Lofgren 1990; Lofgren et al. 2004; Archibald et al., 2011; 

Kelly, 2014) have recently suggested that the Puercan should be extended into the latest 

Cretaceous. These authors have generally based this extension on the first appearance 

of Protungulatum (or, more precisely, P. donnae [see Archibald et al., 2011]), marking 

the advent of a dramatic shift in mammalian assemblages in North America. As noted 



  

   22 

by Lofgren et al. (2004), there are no conceptual reasons why the two boundaries must 

coincide and, following the opinion of these authors, I recognize that the Puercan 

straddles the K/Pg boundary. As a result, assemblages that are considered to document 

a “transitional” latest Cretaceous mammalian fauna (i.e., Long Fall horizon, Spigot-

Bottle, and Lane’s Little Jaw Site) are compared with earliest Puercan (Pu1) 

assemblages. 

In addition to this distinction, the age assignments of several important latest 

Cretaceous and earliest Paleocene localities have also been somewhat contentious. The 

Rav W-1 horizon of southwestern Saskatchewan, for instance, has more conventionally 

been assigned to the latest Puercan (Pu3) (see e.g., Lofgren et al., 2004) but Fox and 

Scott (2011) provide a different opinion. In their recent assessment of the age of the 

Rav W-1 locality, Fox and Scott (2011) noted that the specimens initially identified as 

the index taxon Taeniolabis sp. by Johnston and Fox (1984) are more appropriately 

assigned to Catopsalis sp., cf. C. waddleae, and can no longer be thought of as 

evidence of a latest Puercan age for the Rav W-1 horizon. In addition, these authors 

recognized that the Rav W-1 horizon occurred within magnetostratigraphic chron 29R 

(Lerbekmo, 1985) and, importantly, that most North American assemblages occurring 

within this magnetostratigraphic chron are assigned to the earliest Puercan (Pu1). 

Despite these findings, the composition of the fauna recovered from the site is more 

similar to middle Puercan (Pu2) faunas from the Western Interior of North America 

than with earliest Puercan faunas. Under these considerations, Fox and Scott (2011) 

suggest that the Pu1 and Pu2 interval zones are coeval and that the Rav W-1, as well as 

the Hiatt local fauna from the Ludlow Member of the Fort Union Formation of 
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Montana (Hunter et al., 1997; Hunter and Archibald, 2002) and PITA Flats local fauna 

from the Ludlow Member of the Fort Union Formation of North Dakota (Hunter 1999; 

Hunter and Hartman, 2003), occur within this interval of overlap. Although I agree with 

Fox and Scott (2011) and recognize that there are limitations in the biochronologic 

scheme outlined by Lofgren et al. (2004), rather than establishing a new provincial age 

that is intermediate in age between the early and middle Puercan, I compare the Rav W-

1 and Hiatt local faunas with Pu2 faunas. 

Additionally, although the Gas Tank local fauna from North Horn Formation of 

central Utah has been included within the present analyses, several issues with the 

assigned age for this fauna should be addressed. Robison (1986) tentatively referred the 

local fauna to the middle Puercan (Pu2) based on its stratigraphic position below the 

likely late Puercan (Pu3) Wagonroad local fauna; however, Robison (1986) also 

assigned a fragmentary incisor from Ferron Mountain locality of the Gas Tank local 

fauna to cf. Taeniolabis taoensis. If confirmed, the presence of this taxon would 

suggest a late Puercan age for, at least, the Ferron locality and possibly the entire local 

fauna. In addition, Williamson (1996; also see Eberle, 1996) recognized that only one 

of the five ungulates identified from the local fauna are restricted to Pu2, and Archibald 

et al. (1987) and Lofgren et al. (2004) noted that the sites that comprise the local fauna 

(i.e., Gas Tank Hill, Dairy Creek, Jason Spring, Ferron Mountain, Blue Lake, and Flat 

Sage) are relatively geographically separated from each other and that it is possible that 

the three sites represent different stratigraphic intervals or depositional settings. Similar 

to my assessment of the Rav W-1 and Hiatt local faunas, although I acknowledge these 
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various issues, the Gas Tank local fauna is compared with middle Puercan 

assemblages; the Wagonroad local fauna is compared with latest Puercan assemblages. 

 

2.3.2 Data 

 To test previous hypotheses of North American mammalian biogeographic 

provinciality during the Late Cretaceous and early Paleogene, information on North 

American mammalian fossil occurrences was integrated into a newly developed 

dataset. A total of 30 Lancian and Puercan local faunas were included in the resulting 

dataset, with information on the presence/absence of 101 mammalian genera. Generic-

level data are studied here since confident taxonomic identification of many latest 

Cretaceous and early Paleocene mammalian species is difficult, owing to dental 

similarities shared between species (e.g., condylarths); only local faunas containing 

eight or more genera were analyzed here. Published literature was the principal 

resource for retrieving the appropriate data; however, unpublished literature that was 

deemed especially critical (e.g., unpublished doctoral dissertations) was also used, as 

well as information that might be garnered from personal observations during visits to 

select institutional collections (e.g., University of California Museum of Paleontology, 

University of Alberta Laboratory for Vertebrate Paleontology). To ensure that all 

geographically and temporally significant specimens and assemblages are accurately 

recorded, the constructed dataset was compared with the locality and taxonomic lists 

gathered by Janis et al. (1998, 2008) and Kielan-Jaworowska et al. (2004), as well as 

those compiled within the Paleobiology Database using the Fossilworks Gateway 

[http://www.fossilworks.org].  
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2.3.3 Assemblages 

 Twelve Lancian assemblages were analyzed, including: the Scollard local fauna 

from the Scollard Formation of Kneehill County, southcentral Alberta (Lillegraven, 

1969; Lillegraven and McKenna, 1986; Fox, 1989, 1994, 1997; Fox and Naylor, 2003), 

Gryde local fauna from the Frenchman Formation of Val Marie Rural Municipality, 

southwestern Saskatchewan (Storer, 1991), Hell Creek Montana (including Tuma, Just 

Past Celeste, Hauso 1, and Flat Creek) from the Hell Creek Formation of Garfield and 

McCone counties, Montana (Archibald, 1982, Lillegraven and McKenna, 1986; 

Johansen, 1996; Wilson, 2005, 2014; Donohue et al. 2013; pers. obs.), Claw Butte 

Anthills local fauna from the Hell Creek Formation of Carter County, southeastern 

Montana (Hunter and Archibald, 2002), Hell Creek North Dakota (including Marmath, 

and Pretty, Sunset, and Mud buttes) from the Hell Creek Formation of Slope and 

Bowman counties, North Dakota (Hunter and Archibald, 2002), Hell Creek South 

Dakota (including the Joe Painter and Eureka quarries) from the Hell Creek Formation 

of Harding County, South Dakota (Wilson, 1983), Red Owl Quarry from the Fox Hills 

Formation of Meade County, South Dakota (Wilson, 1983, 1987), the Type Lance local 

fauna (including General Lance locality) from the Lance Formation of Niobrara 

County, eastern Wyoming (Clemens, 1964, 1966, 1973; Krause, 1992; Case et al., 

2005; Wilson and Riedel, 2010), Hewett’s Foresight local fauna from the Lance 

Formation of Park County, northwestern Wyoming (Webb, 2001), Black Butte Station 

local fauna from the Lance Formation of Sweetwater County, southwestern Wyoming 

(Breithaupt, 1982; Donohue et al. 2010), and Pawnee local fauna (including Dog Pond 

Area, Natural Fort, and Ingrid’s Jaw localities, and excluding the geologically older 
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Ken’s Site) from the ?Laramie Formation of Weld County, northeastern Colorado 

(Carpenter, 1979; Diem, 1999; Wilson et al., 2010) (Table 2.1). 

 Seven earliest Puercan (Pu1) assemblages were examined (Table 2.2). These 

include: the Long Fall horizon from the Ravenscrag Formation of Reno Rural 

Municipality, southwestern Saskatchewan (Johnston and Fox 1984; Fox, 1989, 1997), 

Hell’s Hollow local fauna of the Tullock Member of the Fort Union Formation of 

Garfield and McCone counties, northeastern Montana (Archibald, 1981, 1982), Lane’s 

Little Jaw Site local fauna from the Hell Creek Formation of Powder River County, 

southeastern Montana (Kelly, 2014), Spigot-Bottle local fauna from the Hell Creek 

Formation of Carter County, southeastern Montana (Hunter and Archibald, 2002; 

Zhang 2009; Archibald et al. 2011), Mantua Lentil local fauna of the Polecat Bench 

Formation of Park County, northeastern Wyoming (Jepsen, 1930, 1940, Van Valen, 

1978), Ferris Formation Pu1 local fauna from the Ferris Formation of Carbon County, 

southcentral Wyoming (Eberle and Lillegraven, 1998a, 1998b; Lillegraven and Eberle, 

1999), and Littleton local fauna from the Denver Formation of Arapahoe County, 

central Colorado (Middleton, 1982, 1983; Eberle and Lillegraven, 1998b; Middleton 

and Dewar, 2004). 

 The analyses included seven middle Puercan (Pu2) assemblages: the Rav W-1 

horizon from the Ravenscrag Formation of Reno Rural Municipality, southwestern 

Saskatchewan (Johnston and Fox 1984; Fox, 1989, 1997), Hiatt local fauna from the 

Ludlow Member of the Fort Union Formation of Dawson County, southeastern 

Montana (Hunter et al., 1997), Ferris Formation Pu2 local fauna from the Ferris 

Formation of Carbon County, southcentral Wyoming (Eberle and Lillegraven, 1998a, 
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1998b; Eberle, 1999; Lillegraven and Eberle, 1999), Gas Tank local fauna of the North 

Horn Formation of Emery and Sanpete counties, central Utah (Gazin, 1938, 1939, 

1941; Spieker 1960; Van Valen, 1978; Robison, 1986; Cifelli et al., 1995, 1999; 

Lofgren et al., 2005, 2012), and East Flank Kimbeto Wash, West Flank Kimbeto Wash, 

and Betonnie Tsosie Wash from the Nacimiento Formation of San Juan County, 

northwestern New Mexico (Lucas and Williamson, 1993; Williamson, 1996; 

Williamson et al., 2011; Lucas, 2011; Williamson and Brusatte, 2013) (Table 2.3). 

Five latest Puercan (Pu3) assemblages were examined: the Croc Pot local fauna 

from the Ravenscrag Formation of southwestern Alberta (Fox, 1990, 1997), Garbani 

and Purgatory Hill local faunas (including the Garbani Channel deposits and Purgatory 

Hill locality) from the Tullock Member of the Fort Union Formation of Garfield 

County, northwestern Montana (Van Valen and Sloan, 1965; Clemens, 1974; 2002, 

2013; 2015; Novacek and Clemens, 1977; Van Valen, 1978; Archibald et al., 1983; 

Simmons, 1987; Weil, 1998), Ferris Formation Pu3 local fauna from the Ferris 

Formation of Carbon County, southcentral Wyoming (Eberle and Lillegraven, 1998a, 

1998b; Lillegraven and Eberle, 1999), Wagonroad local fauna of the North Horn 

Formation of Emery and Sanpete counties, central Utah (Gazin, 1941; Tomida and 

Butler, 1980; Robison, 1986; Cifelli et al., 1995, 1999; Williamson, 1996), De-na-zin 

Wash local fauna from the Arroyo Chijuillita Member of the Nacimiento Formation of 

San Juan County, New Mexico (Williamson, 1996; Williamson and Brusatte, 2013) 

(Table 2.4). 
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2.3.4 Taxonomic issues 

Attempts have been made to incorporate the most recent taxonomic opinions of 

the mammalian genera within the dataset, including the taxonomic revisions presented 

by Davis (2007) and Williamson et al. (2012) in their studies on latest Cretaceous 

metatherians, and those reported by Williamson and Carr (2007) on early Paleocene 

oxyclaenid condylarths. Unsurprisingly, however, a number of subjective taxonomic 

decisions were also required. These opinions are not intended to reflect any 

authoritative views but are informed choices. For instance, Reynolds (1936) initially 

identified and described Puercolestes simpsoni based on material recovered from the 

Betonnie-Tsosie Wash from the Nacimiento Formation of New Mexico. Clemens 

(1973) later suggested that Reynolds’ species is more appropriately assigned to 

Cimolestes. Subsequently, Williamson et al. (2011) described new material from 

Betonnie-Tsosie Wash and from the newly discovered Willow Wash local fauna, also 

from the Nacimiento Formation of New Mexico, and recognized Puercolestes as a 

distinct and valid taxon. For the purposes of this study, Fox (1989, 1997) assigned 

specimens from the Rav W-1 horizon to “Cimolestes sp., cf. C. simpsoni” and Clemens 

(2002) similarly identified specimens from the Garbani Channel local fauna as 

“Cimolestes sp., cf. C. simpsoni”. Although I follow Williamson et al. (2011) in 

recognizing Puercolestes as a valid taxon, given the limited geographic range of 

specimens confidently assigned to this genus, specimens referred to “Cimolestes sp., cf. 

C. simpsoni” from the localities outside of the San Juan Basin of New Mexico are 

referred to Cimolestes. 



  

   29 

Aside from adopting these revisions, all tentative taxonomic assignments, 

including references with “cf.” or “?”, are also discarded within the dataset and the 

taxon is simply assigned to the designated genus. Similar approaches are used by Weil 

(1999), Hunter and Archibald (2002), and Donohue et al. (2013), with Weil (1999) 

suggesting that this technique increases similarity among faunas and, hence, is more 

conservative for these types of biogeographic analyses. 

 

2.3.5 Statistical Methods 

To quantitatively test the validity of mammalian biogeographic provinciality 

within different time intervals (i.e., NALMAs and their subdivisions), several 

complementary analytical approaches were examined. The first of these approaches 

followed the non-hierarchical clustering methods outlined by Vavrek (2010), in his 

unpublished doctoral dissertation on patterns of species diversity through time. This 

non-hierarchical, non-Euclidean relational clustering method is based on an iterative 

process, with random initialization points and a branch-and-bound heuristic search, and 

can use non-Euclidean distances based on relational data (e.g., Jaccard’s, Sørenson) as 

the measure of similarity between assemblages. Simpson’s Index (Simpson, 1943, 

1960) is often suggested to be less sensitive to differences in sampling intensity and this 

index is used for the clustering analysis and all other pairwise comparisons (see below). 

Within this clustering approach, the mean pairwise distance among the assemblages 

within a cluster is used as the measure of the within-cluster dissimilarity (i.e., the lower 

the within-cluster dissimilarity the more likely the assemblages form a true cluster). It 

should be noted that the “best” number of clusters is not known a priori; rather, the 
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number of clusters being tested must be specified by the researcher in advance. Under 

these considerations, the number of clusters was limited to two to assess previous 

claims of a north-south division within latest Cretaceous and earliest Paleocene 

mammalian faunas. To assess the robustness of the recovered clusters, the assemblages 

within each cluster were resampled 1000 times to measure the mean within-cluster 

pairwise distance of randomly sampled clusters and generate standard deviations (Table 

2.5). 

For the second approach, non-metric multidimensional scaling (NMDS), an 

ordination method commonly employed to visualize multivariate data in community 

ecology (e.g., Gotelli and Ellison, 2013), is used. NMDS is an iterative approach that 

attempts to best fit a set of data points within a predetermined number of dimensions to 

a given matrix of distances (Minchin, 1987). NMDS shares a number of similarities 

with other frequently used ordination methods, such as Principal Component Analysis 

or Principal Coordinates Analysis; however, unlike these other methods, NMDS does 

not assume a Euclidean structure to the data, an approach that can emphasize absences 

between samples (Shi, 1993; Magurran, 2004). This difference is particularly important 

for studies that attempt to analyze incomplete samples (i.e., occurrence data), as the 

absence of a taxon within a sample may represent a true absence or simply the lack of 

sampling. In particular, Euclidean distance measures can lead to erroneous results when 

a large number of taxa are absent from two samples, and the lack of a taxon between 

samples is equally informative as the presence of a taxon within the two samples.  

Minimum spanning trees (MSTs) join all the data points in a sample with the 

minimum number of connections. The approach begins with a single random data point 
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and connects to the next closest point that is not already incorporated within the tree; if 

two points are equally close, the approach will randomly select one. MSTs are used 

here with NMDS to visually display the relationships of the assemblages. 

Finally, to evaluate the presence of biogeographic provinces during the latest 

Cretaceous and earliest Paleocene, I employed simple chi-squared analyses. Before 

providing a full description of this method, a definition of a biogeographic province is 

required and a short discussion of this term is provided here. Following Dice (1943, p. 

3), a biogeographic province can be defined as “a considerable and continuous 

geographic area … characterized by the occurrence of one or more ecological 

associations that differ, at least in proportional area covered, from the associations of 

adjacent provinces”. Other authors (Woodward, 1856; Coomans, 1962; Kaufman, 

1973; Briggs 1974; 1995; Rosenzweig, 1995; Briggs and Bowen, 2012), however, have 

favoured definitions that are more quantitative and that emphasized a certain threshold 

of endemism within an area, albeit with an astonishingly wide range of suggested 

values. Woodward (1856), Hedgpeth (1957), and Coomans (1962), for instance, 

recommend that at least 50% of taxa must be endemic for a distinct biogeographic 

province to be recognized, whereas Kaufman (1973) suggests a minimum of 25% of 

endemics, and Briggs (1974, 1995) and Briggs and Bowen (2012) reports that 10% of 

endemics is sufficient. Alternatively, because plants and animals are obviously 

influenced by their surroundings, Spalding et al. (2007) proposed that the recognition of 

a biogeographic province should not only include information on endemism and shared 

evolutionary history of the taxa, but also information on the abiotic factors that help to 

delimit the biogeographic distributions of these organisms. While such a definition is 
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intuitively appealing, it is difficult to obtain these types of data for extant ecosystems, 

let alone for fossil ecosystems. For simplicity and to quantitatively assess hypotheses 

on the presence or absence of biogeographic provinces, I follow the definition and 

threshold of endemism outlined by Kaufman (1973) (i.e., 25%).  

With a biogeographic province explicitly defined, I assessed Lehman’s (1987, 

1997) suggestion that a faunal barrier existed during the Lancian near a paleolatitude of 

50°N, as well as Weil’s (1999) report that a similar barrier occurred between 

paleolatitudes 48° and 51°N during the early Paleocene with chi-squared analyses. 

Under this approach, taxa that only occur within a single local fauna are removed (see 

discussion below) and each taxon that occurs in two or more local faunas is categorized 

as a northern endemic, southern endemic, or cosmopolitan genus. Northern endemic are 

restricted to latitudes north of the proposed faunal barrier, and southern endemic taxa 

are restricted to latitudes south of this barrier. Cosmopolitan mammalian genera occur 

in both of these regions. These groups are summarized for each time interval (Table 

2.6). I tested against a null hypothesis that biogeographic provinces contain a minimum 

of 25% of endemic taxa (i.e., 25% of mammalian genera are restricted to the north, 

25% of genera are restricted to the south, and the remaining 50% of the mammalian 

genera extend across the proposed barrier); the alternative hypothesis states that 

biogeographic provinces, as quantitatively defined here, are not recovered based on the 

distribution of these taxa (for a further explanation of this approach see Zar, 1999). 

Where the probability of the chi-square analysis is less than 0.05 (p value ≤ 0.05), the 

null hypothesis is rejected and no distinct biogeographic provinces are detected (i.e., 

distribution of mammals significantly differs from that expected). 
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All analyses were conducted in R version 3.0.2 (R Development Core Team, 

2015), with the clustering and ordination methods performed using the fossil package 

version 0.3.7 (Vavrek, 2011). 

 

2.4 Results 

2.4.1 Clustering Analyses 

 The results of the non-hierarchical clustering analysis reveal several interesting 

features of latest Cretaceous and earliest Paleocene mammalian biogeography. With 

regards to the Lancian faunas, the clustering analysis unites the Scollard, Gryde, 

Wounded Knee, Hell Creek Montana, and Black Butte Station local faunas within a 

distinct cluster, and suggests that the second cluster is comprised of the Claw Butte 

Anthills, Hell Creek North Dakota, Hell Creek South Dakota, Red Owl, Hewett’s 

Foresight, Type Lance, and Pawnee local faunas (Figure 2.5). Support for both clusters 

was rather weak, however, with the mean within-cluster distance of each well inside the 

standard deviation of the resampled clusters (Table 2.5). 

Among earliest Puercan local faunas, the first cluster contains the Hell’s 

Hollow, Mantua Lentil, Ferris Formation Pu1, and Littleton local faunas, with the 

second cluster comprised of the Spigot-Bottle and Lane’s Little Jaw Site local faunas 

(Figure 2.6). The within-cluster distance for the first of these clusters is within the 

range of the standard deviation, whereas that of the second cluster is outside, providing 

some support for the recognition of this latter grouping (Table 2.5). The middle 

Puercan Rav W-1, Hiatt, Ferris Formation Pu2, and the Gas Tank local faunas are 

suggested to form a cluster that is distinct from the cluster that contains the three New 
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Mexico local faunas (West Flank Kimbeto Wash, East Flank Kimbeto Wash, and 

Betonnie-Tsosie Wash) (Figure 2.7). In contrast to the earliest Puercan, the first of 

these clusters is better supported than the second (Table 2.5). Finally, within the latest 

Puercan, the Croc Pot and Garbani Channel deposits and Purgatory Hill local faunas are 

recognized as a cluster, and the second cluster is comprised of the Ferris Formation 

Pu3, Wagonroad, and De-na-zin Wash local faunas (Figure 2.8). The within-cluster 

distance of the first cluster is within the range of the standard deviation, whereas that of 

the second cluster is outside, similar to the results for the earliest Puercan (Table 2.5). 

 

2.4.2 Non-Metric Multidimensional Scaling and Minimum Spanning Trees 

 The results of the non-metric multidimensional scaling (NMDS) and Minimum 

Spanning Tree (MST) methods also present some interesting aspects of mammalian 

biogeography from these time intervals. The NMDS and MST analyses of the Lancian 

faunas are similar to the results recovered from the clustering analysis (Figures 2.9). In 

fact, the only difference between the two analyses is the placement of the Claw Butte 

Anthills local fauna of southeastern Montana (i.e., grouped with more southerly 

localities based on the clustering analysis or recovered with several of the more 

northerly localities based on the NMDS and MST results). These results provide some 

evidence for the presence of two biogeographic provinces during the Lancian; yet, with 

the placement of the Black Butte Station local fauna with those from western Canada 

and Montana, these provinces are not along a north-south transect (Figure 2.10).  

The remaining results of the NDMS and MST analyses, based on the occurrence 

of Puercan mammals, are somewhat less revealing. For instance, the earliest Puercan 
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Lane’s Little Jaw Site local fauna and Spigot-Bottle local fauna from the Hell Creek 

Formation of southeastern Montana are closely positioned and could represent a group; 

however, these two assemblages are within the latitudinal range of the other 

assemblages (Figure 2.11). Also, perhaps unsurprisingly, the three middle Puercan local 

faunas from the Nacimiento Formation of San Juan County, northwestern New Mexico 

(i.e., West Flank Kimbeto Wash, East Flank Kimbeto Wash, and Betonnie-Tsosie 

Wash) form a grouping that is separate from the larger grouping that contains the other 

local faunas (Figure 2.12). No distinct groups are recognized among the latest Puercan 

assemblages but, similar to the cluster analysis, the Croc Pot and Garbani Channel 

deposits and Purgatory Hill local faunas are closely positioned (Figure 2.13). 

 

2.4.3 Chi-Squared Analyses 

 The chi-squared analysis on the latitudinal ranges of Lancian mammalian 

genera reveals that the ranges of these mammals differs significantly from that expected 

if northern and southern biogeographic provinces were present (χ 2 value = 8.769, p-

value = 0.0125). In particular, only five taxa were restricted to assemblages north of 

paleolatitude 50°N and just a single taxon was restricted to assemblages south of this 

paleolatitude, with the remaining twenty genera known from this interval ranging 

across the proposed barrier (Table 2.6). Similar results are recovered for the distribution 

of mammalian genera from the earliest Puercan (χ2 value = 10.250, p-value = 0.0059) 

and middle Puercan (χ 2 value = 11.909, p-value = 0.0026), although the suggested 

barrier during these intervals was placed at paleolatitude 49.5°N. Interestingly, during 

the earliest Puercan, 11 genera are endemic to the northern region, whereas, zero genera 
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are restricted to assemblages south of the suggested barrier; 13 mammalian genera 

extend across paleolatitude 49.5°N (Table 2.6). Conversely, within the middle Puercan, 

just one taxon is restricted to assemblages north of paleolatitude 49.5°N and 15 genera 

are restricted to the southern region; 17 genera are cosmopolitan. 

In contrast to these other intervals, during the latest Puercan eight genera are 

restricted to the north and eight genera are restricted to the south, with the remaining 13 

taxa occurring within localities on both sides of the suggested barrier (Table 2.6). The 

distributions of mammals from this interval do not differ significantly from the 

expected and the presence of northern and southern biogeographic provinces cannot be 

rejected (χ 2 value = 0.310, p-value = 0.8563). 

 

2.5 Discussion 

2.5.1 Mammalian Faunal Provinciality 

The presence of mammalian provinciality within North America during the Late 

Cretaceous and early Paleogene has been a relatively common statement in the 

literature. Russell (1967) and Lillegraven (1969) were some of the first to cite the 

presence of provinciality, characterized by northern and southern biogeographic 

provinces, with both authors noting differences in the taxonomic composition between 

the latest Cretaceous Scollard local fauna from southcentral Alberta and the Type 

Lance local fauna from southcentral Wyoming. Sloan (1969; also see Sloan, 1987), 

reviewing the structure of Late Cretaceous and Paleocene mammalian faunas across 

North America, supported these earlier suggestions and additionally stated the presence 

of northern and southern provinces in the Paleocene, with the boundary between these 



  

   37 

provinces likely occurring in southern Wyoming. Fox (1990, 1997, 2005; Fox and 

Naylor, 2003) reported the presence of endemic mammals in the latest Cretaceous and 

Paleocene of western Canada and suggested that aspects influencing changes in 

mammalian evolution in the region were not exerted elsewhere in North America 

during this time. In one of the first quantitative analyses on the topic, Anthony and 

Maas (1990) reported the presence of mammalian faunal provinciality during the 

middle and late Puercan, and, similar to Sloan (1969, 1987), suggested the occurrence 

of a barrier in southern Wyoming separating the northern and southern biogeographic 

provinces.  

Although not explicitly addressing faunal provinciality, in their discussion of 

latest Cretaceous and earliest Paleocene mammals from the Ferris Formation of the 

Hanna Basin, southcentral Wyoming, Eberle and Lillegraven (1998b; also see Eberle, 

1996) noted closer similarities between assemblages from the Ferris Formation with 

those south of the Hanna Basin rather than more northern faunas. Based on a 

quantitative analysis, Weil (1999) suggested that mammalian faunal provinciality was 

established during the late Campanian and earliest Paleocene, with the separation 

between northern and southern provinces occurring in central Wyoming (i.e., between 

the “Mesaverde” Formation of Wyoming and Kaiparowits Formation of Utah during 

the late Campanian, and the Polecat Bench Formation of northeastern Wyoming and 

Ferris Formation of southcentral Wyoming during the Puercan). Within his 

comprehensive study of Late Cretaceous metatherians, Davis (2007) recognized the 

absence of pediomyids from more southerly assemblages and suggested that these 

faunal differences could indicate provinciality. More recently, Donohue et al. (2013) 
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examined provinciality and heterogeneity among latest Cretaceous multituberculate 

faunas from across North America, and concluded that variations among the 

composition of these faunas most closely correspond to differences in latitude. 

Provinciality has also been suggested within other Late Cretaceous and early 

Paleocene organisms recovered from terrestrial deposits of the Western Interior of 

North America. Nichols (1984, 1994; Nichols et al., 1990), for instance, noted the 

presence of distinctive floral provinces during parts of the Late Cretaceous and 

Paleocene on the basis of palynomorphs; Wolfe and Upchurch (1987) and Wheeler and 

Lehman (2005) also reported regional differences between plant macrofossils across the 

same interval. Differences among the latitudinal distributions of Late Cretaceous 

dinosaurs have also been noted by a number of authors (e.g., Russell, 1967; Lehman, 

1987, 1997, 2001). More recently, Sampson and colleagues, in a series of papers (e.g., 

Sampson and Loewen, 2010; Sampson et al., 2010; Sampson et al., 2013), have 

indicated that dinosaurian faunas from the late Campanian of Laramidia (i.e., the 

landmass west of the Late Cretaceous Western Interior epicontinental seaway) were 

divided into southern and northern biogeographic provinces, with distinctive patterns of 

dinosaurian evolution within these regions. Gates et al. (2010), examining the 

distributions of all terrestrial vertebrates across North America during the late 

Campanian, similarly reported differences in faunas from the northern and southern 

regions of Laramidia. 

Despite these findings, the establishment of Late Cretaceous and early 

Paleocene faunal provinciality has not been supported by all studies. For example, 

Lillegraven and McKenna (1986) and Eaton and Scott (2011), respectively, suggested 
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that the composition of late Campanian mammalian assemblages between southern 

Alberta and northern Wyoming, and between southern Alberta and southern Utah were 

relatively homogeneous (although more southerly late Campanian localities might still 

reveal some differences with these northerly faunas [see e.g., Flynn, 1986; Rowe et al., 

1992; Gates et al., 2010]). Williamson (1996) calculated heterogeneity indices for 

earliest Paleocene North American assemblages based on the composition of therian 

mammals and reported that a clear distinction between northern and southern faunas 

did not exist. Hunter and Archibald (2002), in one of the few quantitative studies to 

examine mammalian occurrences during the latest Cretaceous (i.e., Lancian), indicated 

that taxonomic differences among assemblages did not reveal provinciality but more 

strongly reflected differences in the geographic distances between assemblages. 

Moreover, some authors (e.g., Sullivan, 2003; Sullivan and Lucas, 2006) also contend 

that many of the observed taxonomic differences among Late Cretaceous vertebrate 

assemblages are in fact attributable to differences in stratigraphic age or small sample 

sizes. Vavrek and Larsson (2010), more recently, suggested that differences in 

sampling approaches could also have influenced previous studies and were unable to 

support multiple dinosaurian biogeographic provinces within the latest Cretaceous. 

 Within this study, several different analytical methods were applied, including 

non-hierarchical, non-Euclidean relational cluster analyses, non-metric 

multidimensional scaling (NMDS), minimum spanning trees (MSTs), and chi-squared 

analyses. The results provide little quantitative support for the presence of mammalian 

faunal provinciality within North America during the latest Cretaceous and earliest 

Paleocene. The strongest evidence for mammalian faunal provinciality is recovered 
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among Lancian assemblages. The cluster analysis reveals the presence of two large 

groupings: the first comprised of the Scollard, Gryde, Wounded Knee, Hell Creek 

Montana, and Black Butte Station local faunas and the second containing the Claw 

Butte Anthills, Hell Creek North Dakota, Hell Creek South Dakota, Red Owl, Hewett’s 

Foresight, Type Lance, and Pawnee local faunas (Figure 2.5). The NMDS and MST 

reveal similar groupings, with only the placement of the Claw Butte local fauna of 

southeastern Montana differing between the analyses (Figure 2.9).  

Although the recognition of these divergent groups does provide some evidence 

for the presence of mammalian faunal provinciality, the support for the clusters is rather 

weak (Table 2.5), and the assemblages included within these distinct groups and the 

spatial location of these groups is inconsistent with previous suggestions of 

provinciality. For instance, the inclusion of the Black Butte Station local fauna from 

southwestern Wyoming with assemblages from western Canada (Scollard, Gryde, and 

Wounded Knee) and several from Montana (Hell Creek of Montana and Claw Butte 

Anthills) indicates that these groupings do not correspond to northern and southern 

biogeographic provinces. Moreover, if the Black Butte Station local fauna is removed 

from the more northerly province, the boundary between the two regional groupings is 

not in northern Wyoming, as previously suggested in the literature (e.g., Sloan, 1969), 

but in southern Montana (Figure 2.5). 

In addition to these ambiguities, very few Lancian mammalian genera are 

restricted to northern or southern assemblages; rather, the latitudinal ranges of the vast 

majority of these mammals (i.e., 20 of 26 genera) extend across the proposed barrier at 

paleolatitude 50°N (Table 2.7; Figure 2.10). Based on these numbers and the threshold 
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of endemism (i.e., 25%) suggested by Kaufman (1973) to define a distinct 

biogeographic province, distinct northern and southern provinces are not supported by 

the chi-squared analysis. These findings are comparable to those presented by Hunter 

and Archibald (2002) but notably differ from those of Donohue et al. (2013). Within 

their study, Donohue et al. (2013) reported that the newly described multituberculate 

fauna from the Black Butte Station was statistically distinct from that of other 

assemblages and that differences among latest Cretaceous multituberculate faunas 

reflected latitudinal differences. It should be mentioned, however, that these authors 

included mammals that are endemic to a single assemblage within their clustering and 

ordination analyses (e.g., Parikimys). As noted by Nicholls and Russell (1990), taxa 

that are rare and restricted to a single assemblage can skew biogeographic analyses, as 

the absence of these taxa within other assemblages may be due to sampling rather than 

representing a real absence. Moreover, based on the present data, the true geographic 

distribution between latest Cretaceous assemblages is strongly correlated with 

composition of these faunas (Spearman’s rank correlation = 0.45; p-value < 0.001); 

hence, taxa are more likely to be shared between assemblages that are geographically 

closer. Therefore, for the purposes of this study, endemic mammals were classified as 

taxa that are restricted to latitudes north or south of the proposed barrier and, 

importantly, also co-occurred in at least two faunal assemblages.  

 With regards to the earliest and middle Puercan, the non-Euclidean relational 

clustering analyses, NMDS, and MST provide little support for the recognition of 

distinctive faunal groups. The clustering analysis of the earliest Puercan assemblages, 

for instance, separates Lane’s Little Jaw Site local fauna and Spigot-Bottle local fauna 
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from the Hell Creek Formation of southeastern Montana into one cluster and the Long 

Fall local fauna of southwestern Saskatchewan, Hell’s Hollow of northeastern 

Montana, the Mantua Lentil of northeastern Wyoming, the Ferris Formation Pu1 local 

fauna of southcentral Wyoming, and Littleton local fauna of central Colorado into 

another (Figure 2.6). Yet, the cluster containing Lane’s Little Jaw Site and Spigot-

Bottle is poorly supported (Table 2.5) and fully encompassed within the latitudinal 

range of the assemblages within the other cluster. Furthermore, the NMDS and MST of 

these earliest Puercan faunas indicate that no groupings are recognized (Figure 2.11).  

The clustering analysis additionally places the middle Puercan Rav W-1 local 

fauna of southwestern Saskatchewan, Hiatt local fauna of southeastern Montana, the 

Ferris Formation Pu2 local fauna of southcentral Wyoming, and the Gas Tank local 

fauna of Utah into the first cluster and the three assemblages from the Nacimiento 

Formation of northwestern New Mexico (i.e., West Flank Kimbeto Wash, East Flank 

Kimbeto Wash, and Betonnie-Tsosie Wash) into the second cluster (Figure 2.7). The 

NMDS and MST recovered similar groups (Figure 2.13). Here again, the recognition of 

these divergent groups provides some support for the presence of mammalian faunal 

provinciality; however, given the geographic proximity of the assemblages from New 

Mexico, the clustering of these localities is unsurprising. In addition, similar to the 

Lancian assemblages, the boundary between the two faunal groupings is not in northern 

Wyoming, as previously suggested in the literature, but near southern Utah and 

Colorado. 

Unlike the distribution of mammalian genera during the Lancian, a number of 

earliest and middle Puercan mammals are endemic to assemblages north or south of the 
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proposed barrier (Table 2.6; Figures 2.12 and 2.14). The number of endemics, however, 

differs considerably between the northern and southern regions, and between the two 

time intervals. More specifically, eleven earliest Puercan genera are endemic to the 

northern region, whereas zero genera are restricted to southern assemblages. In 

contrast, just one taxon is restricted to northern assemblages and fifteen genera are 

restricted to the southern region during the middle Puercan. Despite the increase in the 

number of endemics, the distributions of mammals during the earliest and middle 

Puercan are significantly different from the expected distributions and, based on the 

chi-squared analyses, distinct biogeographic provinces are not recognized from these 

intervals. 

With regards to the latest Puercan, the clustering analysis, NDMS, and MST 

recover similar groupings, with the Croc Pot local fauna of southeastern Saskatchewan 

and the Garbani Channel deposits and Purgatory Hill local faunas of northeastern 

Montana forming the first group and the local faunas from the latest Puercan 

assemblages of the Ferris Formation from southcentral Wyoming, Wagonroad of Utah, 

and the De-na-zin Wash of northwestern New Mexico forming the second group 

(Figure 2.8). Moreover, eight genera are restricted to the north and eight genera are 

restricted to the south, with the remaining thirteen taxa occurring in localities on both 

sides of the suggested barrier. In contrast to the other intervals, these distributions do 

not differ significantly from those expected and the presence of northern and southern 

biogeographic provinces cannot be rejected (Table 2.6). These findings provide 

evidence for the recognition of divergent faunas and distinct biogeographic provinces 

but, since only five latest Puercan assemblages are included in the analyses, it is 
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difficult to confidently state the establishment of mammalian faunal provinciality 

during this interval. 

 Although the general lack of support for the establishment of mammalian 

provinciality within North America during the latest Cretaceous and early Paleocene 

differs from the findings and suggestions of many previous authors (e.g., Weil, 1999; 

Donohue et al., 2013), the absence of provinciality should be considered unsurprising. 

This interval is characterized by a number of dramatic events, including the impact of a 

large bolide, intensive volcanism, and changes in the global sea level. These events, 

and their subsequent consequences (i.e., the Late Maastrichtian Event [see, e.g., Li and 

Keller 1998a, 1998b; Wilf et al., 2003, Tobin et al., 2012; Wilson, 2014]), could have 

perturbed these mammalian communities and impacted the biogeography of these 

animals. In fact, a number of studies have already suggested that communities from this 

interval were unstable (e.g., Wilson, 2005, 2013, 2014; Rose et al., 2011; Mitchell et al. 

2012; Clemens, 2013; Sprain et al., 2014; Wilson et al., 2014). For example, in their 

study on trophic networks among Late Cretaceous terrestrial communities, Mitchell et 

al. (2012) reported that latest Cretaceous (Maastrichtian) communities were less stable 

than those within the Late Cretaceous (Campanian), with a distinct decline in β-

diversity (i.e., taxonomic differences between assemblages) among some taxonomic 

groups across this interval. Wilson (2005, 2013, 2014) indicated that changes in 

mammalian evenness and richness occurred in the Hell Creek local faunas of Montana 

through the last 500 000 years of the latest Cretaceous. Puercan assemblages from 

Montana were also suggested by Wilson (2013, 2014) to be comprised of some latest 
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Cretaceous lineages that persisted through the boundary but largely dominated by a 

number of immigrants previously unknown from the area. 

Based on these reports, and the results presented here, instability within 

mammalian communities during the latest Cretaceous and early Paleogene, principally 

related to the stresses related to the K/Pg extinction event, could have driven changes in 

the geographic distributions of mammals from this interval. Moreover, it is doubtful 

that the faunal barriers that might have separated biogeographic provinces within the 

early parts of the Late Cretaceous (e.g., Sampson et al., 2010; Gates et al., 2012) 

persisted into the latest Cretaceous and early Paleocene. Hence, during the Late 

Cretaceous and early Paleogene mammalian faunal provinciality was likely not 

established. 

 

2.5.2 Provinciality and Biochronology 

Discussing mammalian faunal provinciality within North America during the 

Late Cretaceous and early Paleocene, Weil (1999) noted that the identification of 

separate biogeographic regions could reveal limitations in biochronological correlations 

between northern and southern faunas. For instance, Weil (1999) cautiously suggested 

that use of the “Judithian” North American Land Mammal Age should be restricted to 

assemblages that include mammals more typical of the “Mesaverde” Formation of 

Wyoming, with contemporaneous assemblages south of this formation (e.g., 

assemblages from the Kaiparowits Formation of Utah) likely requiring another term. 

Although grouping the three subzones of Puercan into a single analysis, Weil (1999) 

further indicated that issues assigning assemblages from either northern or southern 
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provinces to distinct Puercan subzones might further support the presence of 

mammalian provinciality during the earliest Paleocene.  

A number of authors have identified additional issues with the biochronologic 

succession and correlation of latest Cretaceous and earliest Paleocene mammalian 

assemblages in North America (e.g., Williamson, 1996; Fox and Scott, 2011; Archibald 

et al., 2011; Kelly, 2014; and see discussion above). Most of these objections have 

focused on the use of a single taxon to characterize a faunal zone, principally relating to 

the poor understanding on the rarity or commonness of the index taxon, and 

diachronous appearances of index taxa in different sedimentary basins. As noted 

earlier, although limitations in the biochronologic scheme outlined by Cifelli et al. 

(2004) and Lofgren et al. (2004) can be clearly recognized, based on the limited support 

for the presence of faunal provinciality during these intervals, biogeographic 

provinciality does not appear to be a principal concern for latest Cretaceous and earliest 

Paleocene biochronologic correlations. 

 

2.6 Conclusions 

The patterns of Late Cretaceous and early Paleogene mammalian evolution have 

become an important focus of study as a consequence of interest in the dramatic 

adaptive radiation that mammals underwent shortly after the catastrophic events near 

the K/Pg boundary (see e.g., Matthew, 1914, 1921; Simpson, 1937; Van Valen, 1978; 

Archibald, 1982; Lofgren, 1995; Foote et al., 1999; Alroy, 1999; Wible et al., 2009; 

Fox et al., 2010). The world’s richest discovered succession of mammals from this time 

interval, offering direct evidence of these patterns, is preserved in continental strata of 



  

   47 

North America (Cifelli et al., 2004; Lofgren et al., 2004). This study entailed an 

intensive investigation of the biogeographic distributions of Late Cretaceous and early 

Paleogene mammals from North America, with the aim of contributing to the 

understanding of mammalian diversity and evolution during this important time 

interval. 

Previous studies have indicated that the northern and southern regions of the 

Western Interior of North America represented distinct biogeographic provinces during 

parts of the Late Cretaceous and early Paleocene (e.g., Sloan, 1969, 1987; Anthony and 

Maas, 1990; Rowe et al. 1992; Weil, 1999; Donohue et al., 2013); however, based on 

non-Euclidean relational cluster analyses, non-metric multidimensional scaling, 

minimum spanning trees, and simple chi-squared analyses, my findings reveal that 

there is little quantitative support for mammalian provinciality during this interval. 

Although differing from many other authors, these results suggest that the catastrophic 

events that occurred across the latest Cretaceous and early Paleocene, including the 

impact of a large bolide, intensive volcanism, and changes in the global sea level, likely 

contributed to unstable mammalian communities and biogeographic distributions unlike 

those from the earlier parts of the Late Cretaceous. 
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Table 2.1.—Occurrences of mammalian genera within earliest Puercan (Pu1) local faunas from the Western Interior of North 

America. Presence  = 1; Absence = 0. Locality abbreviations are: SC = Scollard, WK = Wounded Knee, GR = Gryde, HCM = Hell 

Creek Montana, CB = Claw Butte, HCN = Hell Creek North Dakota, HCS = Hell Creek South Dakota, RO = Red Owl, TL = Type 

Lance, BBS = Black Butte Station, HF = Hewett’s Foresight, and PA = Pawnee 

 

Genera SCL WK GR HCM CB HCN HCS RO TL BBS HF PA 

Alostera 1 1 1 1 0 0 0 0 0 0 0 0 

Alphadon 1 0 0 1 1 1 1 1 1 1 1 0 

Batodon 1 0 1 1 1 0 0 0 1 0 0 0 

Bubodens 0 0 0 0 0 0 0 1 0 0 0 0 

Cimexomys 0 0 0 1 0 0 0 1 1 1 1 0 

Cimolestes 1 1 1 1 0 1 0 0 1 0 1 0 

Cimolodon 1 1 1 1 1 1 1 1 1 1 1 0 

Cimolomys 1 0 1 1 0 0 1 0 1 0 1 0 

Clemensodon 0 0 0 0 0 0 0 0 1 0 0 0 
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Didelphodon 1 1 1 1 0 1 1 1 1 0 1 0 

Essonodon 0 1 0 1 1 0 0 0 1 1 0 0 

Glasbius 0 1 0 1 1 0 0 0 1 0 1 0 

Gypsonictops 1 1 1 1 1 1 1 1 1 1 1 1 

Hatchertherium 0 0 0 0 0 0 0 0 1 0 0 0 

?Leptalestes 0 0 0 1 1 0 0 1 1 0 1 1 

Leptalestes 1 0 1 1 1 0 1 1 0 0 1 0 

Meniscoessus 0 1 0 0 1 1 1 1 1 0 1 1 

Mesodma 1 1 1 1 1 1 1 1 1 1 1 1 

Nanocuris 1 0 0 0 0 0 0 0 1 0 0 0 

?Neoplagiaulax 0 0 0 1 0 0 0 0 0 0 1 0 

Nortedelphys 1 1 1 1 0 0 1 0 1 0 1 1 

Paracimexomys 1 1 1 1 0 0 0 0 0 1 0 0 

Parectypodus 0 0 1 1 0 0 0 0 0 0 0 0 

Paressonodon 0 0 0 1 0 0 0 0 0 1 0 1 
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Parikimys 0 0 0 0 0 0 0 0 0 1 0 1 

Pediomys 0 1 0 1 1 0 0 0 0 0 0 0 

Protalphadon 0 0 0 1 1 0 0 1 1 0 1 1 

Protolambda 1 0 1 1 1 1 1 0 1 0 1 1 

Schowalteria 1 0 0 0 0 0 0 0 0 0 0 0 

Telacodon 0 0 0 0 0 0 0 0 1 0 0 0 

Turgidodon 1 0 1 1 1 0 0 0 1 0 1 0 
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Table 2.2.—Occurrences of mammalian genera within earliest Puercan (Pu1) local faunas from the Western Interior of North 

America. Presence  = 1; Absence = 0. Locality abbreviations are: LF = Long Fall horizon, HH = Hell’s Hollow, LLJS = Lane’s Little 

Jaw Site, ML = Mantua Lentil, FF1 = Ferris Formation Pu1, and LIT = Littleton. 

 

Genera LF HH LLJS SB ML FF1 LIT 

Albertatherium 0 0 0 1 0 0 0 

Acheronodon 0 1 0 0 0 0 0 

Alphadon 1 0 0 1 0 0 0 

Alticonus 0 0 0 0 0 0 1 

Ampliconus 0 0 0 0 0 0 1 

Auraia 0 0 0 0 0 0 1 

Baioconodon 1 1 1 0 1 1 1 

Batodon 0 0 0 1 0 0 0 

Catopsalis 1 1 0 0 1 0 1 

Carcinodon 0 0 0 0 0 0 1 
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Cimexomys 1 1 0 0 1 0 1 

Cimolestes 1 1 1 1 0 0 0 

Cimolodon 1 0 1 1 0 0 0 

Cimolomys 1 0 0 1 0 0 0 

Conacodon 0 0 0 0 0 0 1 

Didelphodon 0 0 1 1 0 0 0 

Earendil 0 0 0 0 1 0 0 

Eoconodon 0 0 0 0 1 1 0 

Glasbius 0 0 1 1 0 0 0 

Gypsonictops 1 0 0 1 0 0 0 

?Kimbetohia 0 0 0 0 0 0 1 

?Leptalestes 0 0 1 1 0 0 0 

Leptalestes 0 0 0 1 0 0 0 

Maiorana 0 0 0 0 1 1 0 

Meniscoessus 1 0 1 1 0 0 0 
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Mesodma 1 1 1 1 1 1 1 

Microcosmodon 0 1 0 0 0 0 0 

Mimatuta 1 1 0 0 1 1 0 

Nortedelphys 0 0 0 1 0 0 0 

Oxyacodon 0 0 0 0 1 0 1 

“Oxyclaenus” 0 0 0 0 0 0 1 

Oxyprimus 1 1 0 0 1 1 1 

Palaeoungulatum 0 0 1 0 0 0 0 

Paracimexomys 1 0 0 0 0 0 0 

Paranyctoides 0 0 0 1 0 0 0 

Pediomys 0 0 1 0 0 0 0 

Peradectes 0 1 0 0 0 1 1 

Procerberus 1 1 1 0 0 0 1 

Prodiacodon 0 1 0 0 0 0 0 

Protalphadon 0 0 0 1 0 0 0 
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Protolambda 0 0 1 1 0 0 0 

Protungulatum 1 1 0 1 0 1 0 

Stygimys 1 1 0 0 0 1 0 

Turgidodon 0 0 1 1 0 0 0 

Xyronomys 0 0 0 0 0 0 1 
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Table 2.3.—Occurrences of mammalian genera within middle Puercan (Pu2) local faunas from the Western Interior of North America. 

Presence  = 1; Absence = 0. Locality abbreviations are: RAV = Rav W-1 horizon, PITA = PITA Flats, GAT = Gas Tank, FF2 = Ferris 

Formation Pu2, WFK = West Flank Kimbeto Wash, EFK = West Flank Kimbeto Wash, and BTW = Betonnie-Tsosie Wash. 

 

Genera RAV PITA GAT FF2 WFK EFK BTW 

Alticonus 0 0 0 1 0 0 0 

Alveugna 0 0 0 1 0 0 0 

Ampliconus 0 0 0 1 0 0 0 

Anisonchus 1 0 1 0 0 0 0 

Baioconodon 1 1 0 1 0 0 0 

Betonnia 0 0 0 0 1 0 1 

Bomburodon 0 0 0 0 0 1 1 

Bubogonia 1 0 0 0 0 0 1 

Carcinodon 1 1 0 0 0 1 1 

“Carcinodon” 1 0 0 0 0 1 1 
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Catopsalis 1 0 0 1 0 0 0 

Chacopterygus 0 0 0 0 1 0 0 

Cimexomys 1 0 0 0 0 0 0 

Cimolestes 1 0 0 0 0 0 0 

Choeroclaenus 0 0 0 0 1 1 0 

Conacodon 0 0 1 1 1 1 1 

Desmatoclaenus 0 0 1 0 0 1 0 

Dissacus 0 0 0 0 0 1 0 

Ectoconus 0 0 1 1 1 1 1 

Ectypodus 1 0 0 1 0 0 0 

Eoconodon 1 1 0 1 1 1 1 

Escatepos 0 0 0 0 0 0 1 

Gillisonchus 0 0 0 0 1 1 1 

Haploconus 0 0 1 0 0 0 0 

Hemithlaeus 0 0 0 0 1 1 1 
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Kimbetohia 0 0 1 0 0 0 1 

Litalestes 1 0 1 0 0 0 0 

Litomylus 1 0 0 0 0 0 0 

Loxolophus 1 1 1 1 1 1 1 

Mesodma 1 0 0 1 0 0 0 

Microcosmodon 1 0 0 0 0 0 0 

Mimatuta 0 0 0 1 0 0 0 

Mithrandir 0 0 0 1 0 0 0 

Neoplagiaulax 1 1 0 0 0 0 0 

Onychodectes 0 1 0 0 1 0 0 

Oxyacodon 1 1 1 1 0 0 1 

“Oxyclaenus” 0 1 1 0 0 0 0 

Parectypodus 1 0 0 0 0 0 0 

Peradectes 0 0 0 0 1 0 1 

Periptychus 0 0 1 1 1 1 1 
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Platymastus 0 0 0 0 0 0 1 

Procerberus 1 0 0 0 0 0 0 

Prodiacodon 1 0 0 0 0 0 0 

Promioclaenus 0 0 1 1 0 0 0 

Protungulatum 0 0 0 1 0 0 0 

Ptilodus 1 0 1 1 0 0 0 

Puercolestes 0 0 0 0 1 0 1 

Purgatorius 1 0 0 0 0 0 0 

Ravenictis 1 0 0 0 0 0 0 

Robertschochia 0 0 0 0 0 1 0 

Stygimys 1 1 1 0 0 0 0 

Taeniolabis 0 0 1 0 0 0 0 

Tinuviel 0 1 0 0 0 0 0 

Tiznatzinia 0 0 0 0 0 0 1 

Wortmania 0 0 0 0 1 0 1 
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Xyronomys 1 0 0 0 0 0 0 
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Table 2.4.—Occurrences of mammalian genera within late Puercan (Pu3) local faunas from the Western Interior of North America. 

Presence  = 1; Absence = 0. Locality abbreviations are: CP = Croc Pot, GAR = Garbani Channels and Purgatory Hill, FF3 = Ferris 

Formation Pu3, WAG = Wagonroad, and DNZ = De-na-zin Wash. 

 

Genera CP GAR FF3 WAG DNZ 

Anisonchus 1 1 0 1 0 

Baioconodon 1 1 1 0 0 

Besseocetor 0 0 0 1 0 

Bomburodon 0 0 0 0 1 

Bubogonia 0 1 0 0 1 

“Carcinodon” 1 1 1 0 1 

Catopsalis 1 1 0 0 0 

Choeroclaenus 0 0 0 0 1 

Cimexomys 1 1 0 0 0 

Cimolestes 1 1 0 0 0 
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Conacodon 0 0 1 1 1 

Desmatoclaenus 1 0 0 1 0 

Ectoconus 0 0 1 1 1 

Ectypodus 0 1 1 0 0 

Ellipsodon 0 0 0 1 0 

Eoconodon 0 1 0 0 1 

Eucosmodon 0 1 0 0 0 

Gillisonchus 0 0 0 0 1 

Haploconus 0 0 0 1 0 

Litomylus 0 1 0 0 0 

Loxolophus 1 1 1 1 1 

Mesodma 1 1 0 0 0 

Microcosmodon 0 1 0 0 0 

Mithrandir 0 0 1 0 0 

Neoplagiaulax 0 1 0 0 0 
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Onychodectes 0 0 0 1 1 

Oxyacodon 0 1 1 0 1 

Oxycleanus 0 0 1 1 0 

Oxyprimus 1 0 0 0 0 

Pandemonium 0 1 0 0 0 

Parectypodus 1 1 0 0 0 

Peradectes 0 1 1 0 1 

Periptychus 0 0 0 1 1 

Procerberus 1 1 0 0 0 

Prochetodon 1 0 0 0 0 

Prodiacodon 1 1 0 0 0 

Promioclaenus 0 0 1 0 1 

Protoselene 0 0 1 0 0 

Protungulatum 0 0 1 0 0 

Ptilodus 0 1 1 0 0 
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Puercolestes 0 0 0 0 1 

Purgatorius 0 1 0 0 0 

Stygimys 1 1 0 0 0 

Taeniolabis 1 1 1 1 0 

Tiznatzinia 0 0 0 0 1 

Wortmania 0 1 0 0 1 

Xyronomys 1 1 0 0 0 
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Table 2.5.—Observed and resampled average within- and between-cluster pairwise 

distance of two clusters based on latest Cretaceous and early Paleocene mammalian 

assemblages from North America, using non-hierarchical, non-Euclidean relational 

clustering analyses and a two cluster arrangement. Note that ‘Cluster 1’ refers to the 

more northerly (i.e., mean latitude) of the two generated cluster and ‘Cluster 2’ to the 

more southerly cluster (see Figures 2.5-2.8). SD = Standard deviation of resampled 

clusters.  
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Faunal Zone  Within-cluster distance Between-

cluster 

distance 

  Cluster 1 

(“northern”) 

Cluster 2 

(“southern”)  

Lancian Observed 0.250 0.215 0.339 

 Resampled 0.286 0.286  

 SD 0.077 0.053  

     

Early Puercan Observed 0.406 0.308 0.748 

 Resampled 0.564 0.569  

 SD  0.057 0.215  

     

Middle Puercan Observed 0.531 0.310 0.679 

 Resampled 0.584 0.583  

 SD 0.044 0.077  

     

Late Puercan Observed 0.176 0.567 0.691 

 Resampled 0.601 0.603  

 SD 0.179 0.079  
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Table 2.6.—Observed and expected number of northern endemics, southern endemics, 

and cosmopolitan taxa within latest Cretaceous and earliest Paleocene of North 

America. Northern endemics are mammalian genera known from more than one local 

fauna and that are restricted to latitudes north of the proposed faunal barrier (i.e., 

paleolatitude 50°N [Lehman, 1987] during the Lancian, and between paleolatitudes 48° 

and 51°N during the early Paleocene [Weil, 1999]); whereas, southern endemics are 

also known from at least two local faunas but restricted to latitudes south of this barrier. 

Cosmopolitan mammalian genera known are not restricted to one of these regions. The 

expected values are based on the threshold of endemism outlined by Kaufman (1973), 

with 25% of the mammalian genera restricted to northern assemblages, 25% of genera 

are restricted to the south, and the remaining 50% of the mammalian genera extending 

across the proposed barrier. Where the probability of the chi-square analysis is less than 

0.05 (p value ≤ 0.05), the distribution of mammals significantly differs from that 

expected (i.e., no distinct biogeographic provinces). 
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Faunal Zone  Latitudinal Range 

  Northern  Southern  Cosmopolitan 

Lancian Observed 5 1 20 

 Expected 6.5 6.5 13 

p-value = 0.0125 χ 2  8.769   

     

Early Puercan Observed 11 0 13 

 Expected 6 6 12 

p-value = 0.0059 χ 2  10.250   

     

Middle Puercan Observed 1 15 17 

 Expected 8.25 8.25 16.5 

p-value = 0.0026 χ 2  11.909   

     

Late Puercan Observed 8 8 13 

 Expected 7.25 7.25 14.5 

p-value = 0.8563 χ 2  0.310   
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Figure 2.1.—Outline map of the Western Interior of North America with location of 

Lancian mammalian local faunas, with respective sources of faunal data are: Scollard 

(Lillegraven, 1969; Lillegraven and McKenna, 1986; Fox, 1989, 1994, 1997; Fox and 

Naylor, 2003), Wounded Knee (Fox, 1989, 1997), Gryde (Storer, 1991), Hell Creek 

Montana (Archibald, 1982; Lillegraven and McKenna, 1986; Johansen, 1996; Wilson, 

2005, 2014; Donohue et al. 2013; pers. obs.), Claw Butte Anthills (Hunter and 

Archibald, 2002), Hell Creek North Dakota (Hunter and Archibald, 2002), Hell Creek 

South Dakota (Wilson, 1983), Red Owl (Wilson, 1983, 1987), Type Lance (Clemens, 

1964, 1966, 1973; Krause, 1992; Case et al., 2005; Wilson and Riedel, 2010), Hewett’s 

Foresight (Webb, 2001), Black Butte Station (Breithaupt, 1982; Donohue et al. 2012), 

and (12) Pawnee (Carpenter, 1979; Diem, 1999; Wilson et al., 2010).  
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Figure 2.2.—Outline map of the Western Interior of North America with location of 

early Puercan (Pu1) mammalian local faunas, with respective sources of faunal data 

are: Long Fall (Johnston and Fox, 1984; Fox, 1988, 1990a, 1997; Fox and 

Youzwyshyn, 1994), Hell’s Hollow (Archibald, 1981, 1982), Spigot-Bottle (Hunter and 

Archibald, 2002; Zhang 2009; Archibald et al. 2011), Lane’s Little Jaw Site (Kelly, 

2014), Mantua Lentil (Jepsen, 1930, 1940, Van Valen, 1978), Ferris Formation (Pu1 

level) (Eberle and Lillegraven, 1998a, 1998b; Lillegraven and Eberle, 1999), and 

Littleton (Middleton, 1983; Eberle and Lillegraven, 1998b; Middleton and Dewar, 

2004).  
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Figure 2.3.—Outline map of the Western Interior of North America with location of 

middle Puercan (Pu2) mammalian local faunas, with respective sources of faunal data 

are: Rav W-1 (Johnston and Fox 1984; Fox, 1989, 1997), (20) Hiatt (Hunter et al., 

1997), Ferris Formation (Pu2 level) (Eberle and Lillegraven, 1998a, 1998b; Eberle, 

1999; Lillegraven and Eberle, 1999), Gas Tank (Spieker 1960; Van Valen, 1978; 

Robison, 1986; Eberle, 1996; Lofgren et al., 2005, 2012), West Flank Kimbeto Wash 

and  East Flank Kimbeto Wash (Williamson, 1996; Williamson and Brusatte, 2013), 

and Betonnie-Tsosie Wash (Williamson, 1996; Williamson and Brusatte, 2013).  
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Figure 2.4.—Outline map of the Western Interior of North America with location of 

late Puercan (Pu3) mammalian local faunas, with respective sources of faunal data are: 

Croc Pot (Fox, 1990; 1997), Garbani Channel deposits and Purgatory Hill (Van Valen 

and Sloan, 1965; Clemens, 1974; 2002, 2013; 2015; Novacek, 1977 and Clemens, 

1977; Van Valen, 1978; Archibald et al., 1983; Simons, 1987; Weil, 1998), Ferris 

Formation (Pu3 level) (Eberle and Lillegraven, 1998a, 1998b; Lillegraven and Eberle, 

1999), Wagonroad (Gazin, 1941; Tomida and Butler, 1980; Robison, 1986; Cifelli et 

al., 1995; Williamson, 1996), and De-na-zin Wash (Williamson, 1996; Williamson and 

Brusatte, 2013). 
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Figure 2.5.—Non-hierarchical, non-Euclidean clustering analysis of Lancian local 

faunas from across North America, with two cluster arrangement. The first cluster 

(black convex hull) is comprised of the Scollard, Gryde, Wounded Knee, Hell Creek 

Montana, and Black Butte Station local faunas; whereas, the second cluster (red convex 

hull) contains the Claw Butte Anthills, Hell Creek North Dakota, Hell Creek South 

Dakota, Red Owl, Hewett’s Foresight, Type Lance, and Pawnee local faunas. 
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Figure 2.6.—Non-hierarchical, non-Euclidean clustering analysis of early Puercan 

(Pu1) local faunas from across North America, with two cluster arrangement. The first 

cluster (black convex hull) is comprised of the Long Fall, Hell’s Hollow, Mantua 

Lentil, Ferris Formation Pu1, and Littleton local faunas; whereas, the second cluster 

(red convex hull) contains the Spigot-Bottle and Lane’s Little Jaw Site local faunas. 
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Figure 2.7.—Non-hierarchical, non-euclidean clustering analysis of middle Puercan 

(Pu2) local faunas from across North America, with two cluster arrangement. The first 

cluster (black convex hull) is comprised of the Rav W-1, Hiatt, Ferris Formation Pu2, 

and the Gas Tank local faunas; whereas, the second cluster (red convex hull) contains 

the West Flank Kimbeto Wash, East Flank Kimbeto Wash, and Betonnie-Tsosie Wash 

local faunas. 
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Figure 2.8.—Non-hierarchical, non-Euclidean clustering analysis of late Puercan (Pu3) 

local faunas from across North America, with two cluster arrangement The first cluster 

(black convex hull) is comprised of the Croc Pot and Garbani Chanel deposits and 

Purgatory Hill local faunas; whereas, the second cluster (red convex hull) contains the 

Ferris Formation Pu3, Wagonroad, and De-na-zin Wash local faunas. 
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Figure 2.9.—Plot of the relative positions of the Lancian local faunas from across 

North America based on a non-metric multidimensional scaling, with a minimum 

spanning tree overlain. Note that two groupings are recovered, the first containing the 

Scollard, Gryde, Wounded Knee, Hell Creek of Montana, Claw Butte Anthills, and 

Black Butte Station local faunas, and the other grouping with Hell Creek of North 

Dakota, Hell Creek of South Dakota, Red Owl, Hewett’s Foresight, Type Lance, and 

Pawnee local faunas. Aside from the placement of Claw Butte Anthills, these groupings 

are supported by the non-hierarchical clustering analysis, with red and black labels of 

the local faunas representing the two clusters.  
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Figure 2.10.—Latitudinal ranges of Lancian mammalian genera across North America, 

based on their occurrences in local faunas and excluding taxa endemic to a single 

fauna. The faunal barrier proposed by Lehman (1987) at paleolatitude 50° N is 

indicated by the transparent red line. Red and black dots represent the occurrences of 

genera in the first and second clusters, respectively, recovered from the non-

hierarchical cluster analysis. 
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Figure 2.11.—Plot of the relative positions of the early Puercan (Pu1) local faunas from 

across North America based on a non-metric multidimensional scaling, with a 

minimum spanning tree overlain. No distinct groupings are obtained, although, similar 

to the non-hierarchical clustering analysis, the Spigot-Bottle and Lane’s Little Jaw Site 

local faunas (red labeled local faunas) are closely positioned relatively to the other local 

faunas (black labeled local faunas). 
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Figure 2.12.—Latitudinal ranges of early Puercan (Pu1) mammalian genera across 

North America, based on their occurrences in local faunas and excluding taxa endemic 

to a single fauna. Weil (1999) proposed the existence of faunal barrier between 

paleolatitudes 48 and 51°N, and this barrier is indicated by the partially transparent red 

line. Note that Weil (1999) suggested that the faunal barrier was between the Mantua 

Lentil of the Polecat Bench Formation of northern Wyoming and assemblages within 

the Ferris Formation of central Wyoming. Here, based on recalculate paleolatitude 

Mantua Lentil occurs at paleolatitude 50.5°N. Rather than altering the suggested 

barrier, this assemblage is presented within the barrier but analyzed with northerly 

assemblages. Red and black dots represent the occurrences of genera in the first and 

second clusters, respectively, recovered from the non-hierarchical cluster analysis. 
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Figure 2.13.—Plot of the relative positions of the middle Puercan (Pu2) local faunas 

from across North America based on a non-metric multidimensional scaling, with a 

minimum spanning tree overlain. Similar to the non-hierarchical clustering analysis, the 

three local faunas from New Mexico (i.e., West Flank of Kimbeto Wash, East Flank of 

Kimbeto Wash, and Betonnie-Tsosie Wash) form a grouping (black labeled local 

faunas), but the remaining local faunas (red labeled local faunas) do not group together. 
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Figure 2.14.—Latitudinal ranges of middle Puercan (Pu2) mammalian genera across 

North America, based on their occurrences in local faunas and excluding taxa endemic 

to a single fauna. Weil (1999) proposed the existence of faunal barrier between 

paleolatitudes 48 and 51°N, and this barrier is indicated by the partially transparent red 

line. Red and black dots represent the occurrences of genera in the first and second 

clusters, respectively, recovered from the non-hierarchical cluster analysis. 
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Figure 2.15.—Plot of the relative positions of the late Puercan (Pu3) local faunas from 

across North America based on a non-metric multidimensional scaling, with a 

minimum spanning tree overlain. No distinct groupings are obtained. 
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Figure 2.16.—Latitudinal ranges of late Puercan (Pu3) mammalian genera across North 

America, based on their occurrences in local faunas and excluding taxa endemic to a 

single fauna. Weil (1999) proposed the existence of faunal barrier between 

paleolatitudes 48 and 51°N, and this barrier is indicated by the partially transparent red 

line. Red and black dots represent the occurrences of genera in the first and second 

clusters, respectively, recovered from the non-hierarchical cluster analysis. 
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3  Compositional Differences and Similarities among Latest Cretaceous 

Mammalian Assemblages from the Western Interior of North America 

 

3.1 Abstract 

There is little question that many mammals, along with a great number and diversity of 

other animals and plants, became extinct at or near the Cretaceous/Paleogene boundary 

(approximately 65.6 million years ago) and that shortly after the dramatic events that 

marked the boundary, eutherian mammals underwent a remarkable taxonomic and 

morphological diversification. However, comprehensive studies directly relating the 

timing and patterns of the expansion of eutherians remain few, with recent findings 

suggesting faunal changes within the latest Cretaceous. To assess these changes, 

information on the relative abundances of mammals from eleven latest Cretaceous 

assemblages from the Western Interior of North America was compiled, and 

heterogeneity indices and a series of resampling analyses were used to generate 

assemblage-specific abundance estimates of each taxon based on the faunal 

composition of the Type Lance local fauna of Wyoming. Using these estimates, the 

faunal similarity among these assemblages was quantitatively assessed and genera that 

were unusually abundant or rare compared to the Type Lance were identified. The 

results suggest that the structure of latest Cretaceous mammalian assemblages across 

the Western Interior of North America was not homogeneous. A number of eutherians 

(e.g., Cimolestes, Gypsonictops) are more abundant in the northern assemblages 

relative to the faunal composition of the Type Lance and other more southerly sites, 

whereas some multituberculates (e.g., Meniscoessus) and marsupials (e.g., Pediomys) 
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are unusually rare in the northern assemblages. Although discriminating regional 

geographic patterns from temporal or local ecological effects remains difficult, the 

faunal composition of the more northerly assemblages suggests that eutherians were 

undergoing a radiation in the northern part of the Western Interior of North America 

during the latest Cretaceous and that the region may have been the source for 

mammalian immigrants into more southern localities during the earliest Paleocene.  
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3.2. Introduction 

Although interest in episodes of elevated extinction and their associated causes 

has a long history (e.g., Cuvier, 1825), this attraction has been considerably heightened 

over the past 25 years with the widespread acceptance that at least five times in the 

Earth’s history, near synchronous, often rapid, global extinctions of many diverse 

organisms have occurred (Raup and Sepkoski, 1982). The effects of these extinction 

events on many organisms (and higher-level groups) have seemed relatively 

straightforward. For example, no trilobites have been recovered in sediments above the 

Permian/Triassic boundary (Erwin, 2006) and, perhaps most famously, not a single 

non-avian dinosaur has been discovered in rocks younger than the Cretaceous (e.g., 

Archibald, 1996; Fastovsky and Weishampel, 2005; but see Fassett et al., 2011 for a 

different opinion). For many other organisms, however, the effects of these events were 

not as devastating (or terminal) and, in many cases, provided ecological and 

evolutionary opportunities previously beyond their reach. 

Of the previous studies that have closely examined mass extinctions, the vast 

majority have assumed that episodes of prolific diversification would ensue shortly 

afterwards as survivors radiate into newly vacated ecological niches (i.e., an adaptive 

radiation) (e.g., Simpson, 1944; Van Valen, 1978). Logistic models derived from 

ecological studies (e.g., Sepkoski, 1984), coupled with the dynamics of diversification 

into open ecological niches (e.g., Valentine, 1980), provided the appropriate theoretical 

support for these assumptions. But, while these general trends have been recognized in 

most extinction intervals, detailed empirical studies of individual events (e.g., Sahney 

and Benton, 2008; Wilson, 2014), and statistical modeling using trophic networks (e.g., 
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Solé et al., 2002; Mitchell et al., 2012) demonstrate that the timing and patterns of these 

radiations are remarkably variable. These studies suggest that a better understanding of 

the dynamics of individual events and for individual clades is needed. 

The evolutionary radiation of mammals near the Cretaceous/Paleogene 

boundary (K/Pg boundary) (approximately 65.6 million years ago) (Renne et al., 2013; 

Sprain et al., 2014) has long been seen as an example of an ecological release (i.e., the 

expansion of habitat or use of resources by populations into areas of lower species 

diversity with reduced interspecific competition [Gillespie, 2009]), with early 

Paleogene eutherians occupying numerous ecological roles after the extinction of the 

incumbent latest Cretaceous non-avian dinosaurs, and many primitive marsupials and 

rodent-like multituberculates (e.g., Van Valen and Sloan, 1977; Van Valen, 1978; 

Archibald, 1983). Yet, comprehensive studies directly relating the timing and patterns 

of the expansion of eutherians to this proposed ecological release remain few. In fact, 

Wilson and colleagues, in a series of recent papers focused on Lancian and Puercan 

local faunas from the Hell Creek Formation of southeastern Wyoming (the terms 

Lancian and Puercan refer to North American Land Mammal Ages [NALMAs] that are 

approximately equivalent to the uppermost Cretaceous and lowermost Paleogene; see 

discussion below) (Wilson, 2005; 2013; 2014; Wilson et al. 2012; Sprain et al. 2014), 

have reported that latest Cretaceous mammalian communities were somewhat unstable, 

with notable changes in mammalian species richness and evenness approximately 500 

000 years prior to the K/Pg boundary.  

In addition to these findings, Lillegraven (1969) previously noted the greater 

taxonomic richness and relative abundance of latest Cretaceous eutherian mammals 
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within the Scollard local fauna of southcentral Alberta relative to their abundance in the 

Type Lance local fauna of southeastern Wyoming. Based on these observations, some 

researchers (e.g., Sloan, 1969, 1987; Lillegraven and McKenna, 1986; Anthony and 

Maas, 1990; Rowe et al. 1992; Weil, 1999; Donohue et al., 2013) have suggested that 

the northern part of the Western Interior of North America represented a distinct 

biogeographic province during parts of the Late Cretaceous and early Paleocene, 

separate from that in the south. Although Williamson (1996) and Hunter and Archibald 

(2002) contend that there is little differentiation between northern and southern faunas 

during the latest Cretaceous and maintain that the composition of these North American 

faunas was relatively homogeneous, the possibility that the northern part of the Western 

Interior of North America represents a distinct faunal province during parts of the Late 

Cretaceous and early Paleogene has broad implications for the patterns of mammalian 

evolution in North America. 

Given these uncertainties, I quantitatively analyzed the relative abundances of 

latest Cretaceous mammals within assemblages across the Western Interior of North 

America, with particular focus on eutherian mammals. To accomplish this task, 

information on the occurrence and relative abundance of mammals from eleven 

localities from the latest Cretaceous, ranging from southcentral Alberta to southeastern 

Wyoming, were compiled. Heterogeneity indices were used to first assess mammalian 

generic richness and evenness among these assemblages, and resampling with 

replacement was employed to identify genera that are more or less abundant than 

expected based on their occurrence and abundance within the well-studied Type Lance 

local fauna from the Lance Formation of northeastern Wyoming (Clemens, 1964, 1966, 
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1973; Krause, 1992; Case et al., 2005; Wilson and Riedel, 2010). These findings 

provide new insights into the timing and patterns of the evolutionary radiation of 

mammals near the K/Pg boundary. 

 

3.3 Materials and Methods 

3.3.1 Biochronology and Latest Cretacecous “Transitional” Assemblages  

Continental strata of the Late Cretaceous and early Paleogene of North America 

are temporally divided on the basis of fossil mammals into North American Land 

Mammal Ages (NALMAs) (Woodburne, 1987, 2004). NALMAs are not 

geochronological ages (see NACSN, 2005) but recent advances in magnetostratigraphy 

and isotope stratigraphy (e.g., Secord et al., 2006) have allowed a more precise 

correlation of continental strata to the geomagnetic polarity time scale. Mammalian-

based biochronology continues to provide the finest chronologic resolution possible for 

non-marine sections of the Late Cretaceous and early Paleogene of North America. 

Four Land Mammal Ages are recognized in the Late Cretaceous: from oldest to 

youngest, these are the Aquilan, Judithian, “Edmontonian”, and Lancian (Cifelli et al., 

2004). Within the Paleocene, four NALMAs are also recognized: the Puercan, 

Torrejonian, Tiffanian, and Clarkforkian, with each further divided into zones (e.g., the 

Puercan is further divided into three zones: Pu1, Pu2, and Pu3) (Lofgren et al., 2004). 

The Lancian/Puercan boundary has more conventionally been correlated with the 

Cretaceous/Paleogene boundary (e.g., Archibald et al. 1988), yet some authors (e.g., 

Archibald and Lofgren, 1990; Cifelli et al., 2004; Lofgren et al., 2004; Kelly, 2014) 

have suggested that the Puercan could be extended into the latest Cretaceous, based on 
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the appearance of mammals thought to be restricted to the Puercan within latest 

Cretaceous assemblages. Although this study is centered on latest Cretaceous 

assemblages, regardless of their assignment to either the Lancian or Puercan, to clarify 

some confusion with “transitional” assemblages a discussion on latest Cretaceous 

mammalian assemblages is useful here. 

Based on highly fossiliferous localities from the Tullock member of the Fort 

Union Formation and Hell Creek Formation in the Bug Creek valley and adjacent areas 

in northeastern Montana (Sloan and Van Valen, 1965; Van Valen and Sloan, 1965), and 

two localities from the Frenchmen and Ravenscrag formations of the Cypress Hills 

region of southwestern Saskatchewan (Johnston 1980; Johnston and Fox 1984; Fox, 

1989, 1997), a Bugcreekian NALMA, intermediate between Lancian and Puercan, was 

formally proposed by Archibald (1987) and Sloan (1987). Assemblages from these sites 

contain fossil remains of dinosaurs and typical Lancian mammals, along with mammals 

thought to be restricted to the Paleocene. These discoveries led to the suggestion that 

the Bug Creek and Canadian assemblages were latest Cretaceous in age and presented 

direct evidence of the replacement of archaic Cretaceous mammals by more 

progressive Paleocene mammals, particularly eutherian mammals (e.g., Fox, 1997). For 

these reasons, these assemblages were cited as evidence that faunal turnover rates 

during the K/Pg boundary were gradual and not compatible with catastrophic events 

(e.g., Archibald and Clemens, 1982; Archibald, 1996). 

However, purportedly “transitional” Bug Creek assemblages from northeastern 

Montana were later discovered to occur in Paleocene channel-fill deposits (Lofgren, 

1995), with latest Cretaceous dinosaur and mammal remains reworked (i.e., deposited, 
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exhumed, and subsequently reburied) from the underlying Hell Creek Formation and 

mixed with Paleocene fossils from the Tullock Member of the Fort Union Formation 

(Swisher et al., 1993). The amount of reworked specimens from samples of some of 

these Bug Creek assemblages has been conservatively estimated to range from 10% to 

15% of the total collected number of specimens (Fiorillo, 1998). Following these 

discoveries, the concept of a Bugcreekian NALMA was abandoned and, for the 

purposes of studying the patterns of mammalian evolution in the Western Interior, Bug 

Creek assemblages can only be cautiously considered. 

In contrast to the Bug Creek assemblages, a latest Cretaceous age for the Long 

Fall horizon, Medicine Hat Brick and Tile (MHBT) Quarry (Johnston and Fox, 1984; 

Fox, 1989) and Frenchman-1 (Fr-1) assemblage (Johnston 1980) from southern 

Saskatchewan appears to be supported by lithostratigraphic, biostratigraphic, and, at 

least for the Fr-1 assemblage, palynological evidence. Although quarrying operations 

have destroyed the locality since its initial discovery (but see Fox and Scott, 2011), the 

Long Fall horizon occurred at the base of the Ravenscrag Formation at the MHBT 

Quarry and originally laid 3 meters stratigraphically below beds containing the early 

Puercan (Pu1/ Pu2) Rav W-1 horizon (Johnston and Fox, 1984; and see Fox and Scott, 

2011 for a discussion on the age assignment of the Rav W-1 horizon). Lerbekmo 

(1985) contended that both fossil-bearing horizons at the Quarry were parts of the same 

Paleocene point bar deposits and, according to this interpretation, that the "typical" 

Cretaceous fossils at Long Fall had been eroded out of underlying stratigraphic beds 

and redeposited into Paleocene sediments, similar to the Bug Creek localities. 

However, as shown by Johnston and Fox (1984) and Fox (1997), a disconformity was 
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present between the two fossil beds at the quarry, and the upper and lower beds are 

unlikely to have been parts of the same depositional system.  

The Fr-1 site is suggested to occur in the Frenchman Formation, although the 

Ferris Coal Seam, the regional marker for both the contact between the Frenchman 

Formation and overlying Ravenscrag Formation, and the K/Pg boundary, is absent in 

the vicinity (Johnston, 1980; Fox 1989, 1990, 1997). Post-depositional erosion (i.e., 

reworking) of the site is contested by the presence of articulated remains of non-avian 

dinosaurs from what is suggested to be the same horizon several hundreds of meters to 

the east of the site, and the relatively high abundance of typical Lancian mammals 

(Johnston, 1980; Fox 1989, 1990, 1997). More substantially, however, palynomorphs 

have been recovered from the site and, based on palynozones of the Western Interior of 

North America (Nichols and Sweet, 1993; Nichols, 2002, 2009), suggest an uppermost 

Cretaceous age (Fox et al., 1995; Fox, 1997). Despite support for a latest Cretaceous 

age for the Long Fall and Fr-1 assemblages, both local faunas are frequently and often 

explicitly excluded from studies on patterns of mammalian evolution across the K/Pg 

boundary (e.g., Hunter and Archibald, 2002). 

In addition to these assemblages, Archibald et al. (2011; also see Hunter and 

Archibald, 2002 and Zhang, 2009) recently provided a preliminary list of the 

mammalian taxa from the Spigot-Bottle local fauna of the Hell Creek Formation of 

southeastern Montana and reported the presence of a previously unknown species of 

Protungulatum, P. coombsi, from the site. The first appearance of the genus 

Protungulatum is usually regarded as the beginning of the Puercan; however, because 

the assemblage occurs within sediments deposited during the latest Cretaceous 
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magnetostratigraphic chron 30N (Hicks et al., 2002; Renne et al., 2013), Archibald et 

al. (2011) assigned the assemblage to the Lancian. These authors suggested that the 

Lancian/Puercan boundary could remain correlated with the Cretaceous/Paleogene 

boundary, with the onset of the Puercan restricted to the first appearance of 

Protungulatum donnae rather than the genus more generally.  

Kelly (2014) also recently provided identifications and descriptions of 

mammals from Lane’s Little Jaw Site from the Hell Creek Formation of southeastern 

Montana. Similar to these other “transitional” assemblages, Lane’s Little Jaw Site 

contains both typical Lancian mammals and several eutherian mammals thought to be 

restricted to the Puercan, including the cimolestan Procerberus and “arctocyonid” 

condylarth Baioconodon. However, aside from these mammalian fossils, non-avian 

dinosaurs are also present in the assemblage, and the assemblage does not appear to 

represent a mixture of Paleocene and latest Cretaceous sediments (Kelly, 2014). Kelly 

(2014) suggests that the Lancian/Puercan boundary might be time transgressive and, 

despite being recovered in latest Cretaceous rocks, tentatively assigned Lane’s Little 

Jaw Site Quarry to the Puercan. 

Commenting on the “transitional” assemblages from western Canada, Cifelli et 

al. (2004) suggested that these assemblages might be latest Cretaceous in age and that 

the beginning of the Puercan could be diachronous across the Western Interior of North 

America. With the discovery of a number of mammals more typical of the Puercan in 

the latest Cretaceous Spigot-Bottle local fauna and Lane’s Little Jaw Site, including 

Protungulatum, a number of other archaic “ungulates”, and some cimolestans, an 

increasing amount of evidence supports this claim and it seems likely that the Puercan 
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does extend into the latest Cretaceous, at least in some regions. A better understanding 

of latest Cretaceous and earliest Paleocene mammalian biochronology is clearly 

needed, and revisions to the current definitions seem likely but any amendments are 

beyond the scope of this research. For the purposes of this study, an assignment to 

either the Lancian or Puercan is not essential; instead, as stated previously, this research 

centered on local faunas recovered from latest Cretaceous sediments. 

Aside from these nomenclatural issues with the Lancian/Puercan boundary, it is 

also important to note that the beginning of the Lancian is poorly constrained, 

principally owing to the sparseness of “Edmontonian” mammalian fossils and the lack 

of index taxa from this biozone. As a result, the duration of the Lancian is uncertain but 

is estimated to be approximately 3 million years (Cifelli et al., 2004; Wilson et al., 

2010). Based on a newly updated and refined chronostratigraphic framework for the 

Hell Creek Formation of Montana (see Wilson, 2014), all local faunas assigned to the 

Lancian within the region are thought to have been recovered from rocks that range in 

age from roughly 67.5 to 65.6 million years old (also see Wilson, 2005; Wilson et al. 

2010; Holroyd et al., 2014; Sprain et al. 2014).  

 

3.3.2 Assemblages 

The analyses focus on the occurrence and relative abundances of mammalian 

genera from eleven North American latest Cretaceous assemblages, ranging from 

southcentral Alberta to southeastern Wyoming (Figure 3.1). Local faunas that are 

conventionally assigned to the Lancian include the Scollard local fauna from the 

Scollard Formation of southcentral Alberta (Lillegraven, 1969; Lillegraven and 
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McKenna, 1986; Fox, 1989, 1994, 1997; Fox and Naylor, 2003), Wounded Knee (Fox, 

1989, 1997) and Gryde (Storer, 1991) local faunas from the Frenchman Formation of 

southwestern Saskatchewan, Hell Creek local fauna (including Tuma, Just Past Celeste, 

Hauso 1, and Flat Creek) (Archibald, 1982; Lillegraven and McKenna, 1986; Johansen, 

1996; Wilson, 2005, 2014) and Muddy Tork local fauna (Hunter et al. 1997; Hunter, 

1999; Hunter and Archibald, 2002) from the Hell Creek Formation of eastern Montana, 

Hell Creek North Dakota local fauna (including Marmath, and Pretty, Sunset, and Mud 

buttes) from the Hell Creek Formation of southwestern North Dakota (Hunter and 

Pearson, 1996; Hunter and Archibald, 2002), the Type Lance local fauna from the 

Lance Formation of eastern Wyoming (Clemens, 1964, 1966, 1973; Krause, 1992; Case 

et al., 2005; Wilson and Riedel, 2010), and Hewett’s Foresight local fauna from the 

Lance Formation of northwestern Wyoming (Webb, 2001) (Figure 3.1). Possible 

Puercan assemblages from the latest Cretaceous include the Long Fall horizon from the 

Ravenscrag Formation of southwestern Saskatchewan (Johnston and Fox 1984; Fox, 

1989, Fox, 1997, 2005), and the Spigot Bottle local fauna (Hunter and Archibald, 2002; 

Zhang 2009; Archibald et al. 2011) and the recently described Lane’s Little Jaw Site 

local fauna (Kelly, 2014), both discovered in sediments of the Hell Creek Formation in 

southeastern Montana. 

Conspicuously excluded from this analysis are local faunas from which 

abundance data were not available and those with small sample sizes (i.e., fewer than 

40 specimens), such as the faunas from the Fr-1 site of southwestern Saskatchewan (see 

discussion above) (Johnston, 1980; Fox, 1989, 1990, 1997) and the Prince Creek 

Formation of the North Slopes of Alaska (Clemens and Nelms, 1993; Clemens, 2003). I 
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also removed assemblages in which only some of the taxonomic groups have been 

formally described, including the Red Owl locality from the Fox Hills Formation of 

South Dakota (Wilson, 1983), Alamo Wash local fauna from the Kirtland Formation of 

northwestern New Mexico (Flynn, 1986; Williamson and Weil, 2008), and Black Butte 

Station local fauna from the Lance Formation of southwestern Wyoming (Donohue et 

al. 2012).  

 

3.3.3 Number of Identified Specimens 

The number of identified specimens (NISPs) for higher-level mammalian 

groups are summarized in Table 3.1; NISPs are also separately provided for 

multituberculates, metatherians, and eutherian genera in Tables 3.2, 3.3, and 3.4, 

respectively. Although genus-level data are examined in this study, rather than species-

level occurrence, the taxonomy and specimen counts are somewhat similar to those 

presented by Hunter and Archibald (2002) in their study of latest Cretaceous 

mammalian fauna from North America but with several notable differences. In 

particular, I included several recently identified taxa, such as the taeniodont eutherian 

Schowalteria from the Scollard local fauna (Fox and Naylor, 2003) and the cimolomyid 

multituberculate Paressonodon from the Hell Creek local faunas of Garfield County 

(see Wilson, 2014). Recent taxonomic revisions are also included in this analysis (e.g., 

Case et al. 2005; Davis, 2007), including the recognition of Nortedelphys jasoni (see 

Williamson et al., 2012). I used the list of the mammals from the Spigot-Bottle local 

fauna of southeastern Montana more recently provided by Archibald et al. (2011; also 

see Zhang 2009), and included information on Lane’s Little Jaw Site (Kelly et al. 2014) 
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and Hewett’s Foresight local fauna as presented in the unpublished dissertation of 

Webb (2001); notably, Donohue et al. (2012) (mistakenly referring to the assemblage 

as “Hewitt’s Foresight One local fauna”) also included information on the mammalian 

fauna from this assemblage, yet omitted specimens unassigned to species (e.g., 

Mesodma sp.).  

 

3.3.4.Recalibrated Number of Identified Specimens 

As reported by Holroyd et al. (2013; in prep.), studies that use NISP counts 

commonly assume that the specimen being counted, whether the count is performed at 

the level of the family, genus, species, or any other taxonomic grouping, is identified 

with a high degree of probability once the specimen is collected and accessioned in the 

collections of an institution. However, knowledge of most extinct organisms is 

incomplete and not all taxa are as readily identifiable as others. Holroyd et al. (2013; in 

prep.) recognized this problem as taxonomic detection bias or, more plainly, the bias 

resulting from an inability to detect the presence of a fossil taxon at an appropriate 

taxonomic level. The effects of this bias are particularly apparent when specimens 

within a sample are only identifiable to taxonomic levels above that of the species.  

To account for the influence of taxonomic detection bias, I generated taxon-

specific detection probabilities for each of the mammalian genera present in the latest 

Cretaceous assemblages (Table 3.5). Using these probabilities in combination with the 

NISPs counts, I calculated recalibrated number of identifiable specimen counts 

(rNISPs) with the equation provided by Holroyd et al. (2013; in prep.): 

rNISP!! = !NISP! ! 1+ ! 1−
nIDE!
nE!
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where, for each taxon (i) the detection probability represents the number of identifiable 

elements (nIDEi) divided by the total number of elements in the dentition (nEi), and the 

complementary percentage subtracted from one (Table 3.5). These recalibrated counts 

estimate the number of specimens that exist in the sample but which are unidentified. 

The recalibrated number of identified specimens (rNISPs) for the eleven latest 

Cretaceous assemblages are summarized in Table 3.6 and rNISPs are provided for 

multituberculates, metatherians, and eutherians in Tables 3.7, 3.8, and 3.9, respectively. 

These numbers were employed for the statistical analyses described below. 

 

3.3.5 Heterogeneity indices 

Heterogeneity indices are simple, descriptive statistical summaries that reflect 

the manner in which abundance is distributed among the different taxa within a sample 

(Magurran, 2004). Heterogeneity indices often differ in whether taxonomic richness 

(i.e., the absolute number of taxa, at a specific taxonomic level, in a given sample) or 

evenness (i.e., the relative abundances of taxa within a given sample) is emphasized, 

and if rare or dominant taxa are more heavily underscored (Whittaker, 1972; Magurran, 

2004). To compare the community structure among the eleven assemblages, I 

calculated two heterogeneity indices, the Simpson’s and Equitability indices, and their 

95% confidence intervals using PAST version 3.06 (Paleontological Statistics Software 

Package [Hammer et al. 2001]). 

Simpson’s index of diversity (Simpson, 1949) is calculated as 1− ! = Σ!!!, 

where pi is the relative abundance of genus i within the faunal assemblage, and values 

of this index ranges from 0 to 1, with 0 indicating that all taxa are equally abundant 
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within a fauna and 1 designating a fauna that is dominated by a single taxon. Simpson’s 

index focuses on the abundances of the most common taxon and is most effective at 

measuring heterogeneity among small samples. The Equitability index (Lloyd and 

Ghelardi, 1964) is derived from Shannon’s index and calculated as ! = !!!!!"!!
!"! ! ! =

1,2,… ,! , with pi as the proportion of genus i within the fauna and S as the total 

number of genera within the fauna. Similar to Simpson’s index, the Equitability index 

ranges from 0 to 1, with 0 indicating a fauna that is comprised of a single taxon and 

1specifying a fauna with numerous taxa. This index centers on the relationship among 

the relative abundances of the taxa included in the sample, emphasizing species 

richness over evenness and lessening the influence of the most and least abundant taxa. 

The Equitability index can provide biased results with small sample sizes due to its 

dependence on species richness (Whittaker, 1972; Magurran, 2004).  

 

3.3.6 Resampling with replacement 

Resampling with replacement is a widely used non-parametric statistical 

method that provides estimates on the precision of a sample parameter (e.g., mean, 

median, variance) based on the repeated subsampling of the available data (Efron, 

1979; Efron and Tibshirani, 1993; Simon 1997; Lunneborg, 2000; Good, 2005). The 

approach involves few assumptions, other than random sampling, and is less abstract 

than many conventional statistical methods (e.g., Simon and Bruce 1991; Simon, 1997; 

Lunneborg, 2000). In addition, although missing data and low count sizes can limit the 

interpretations, resampling with replacement has previously been shown to provide 
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results comparable to those of more rigorous statistics (e.g., Simon and Bruce 1991; 

Mooney and Duval, 1993; Simon, 1997; Verhagen, 2007). 

Here, following the methods of Holroyd and Hutchison (2002) and Strömberg 

(2009), I utilized resampling with replacement to help identify genera within latest 

Cretaceous assemblages that are more or less abundant than anticipated based on their 

presence and diversity from the Type Lance local fauna. This assemblage of fossils was 

chosen as the reference sample because of the large number of specimens recovered 

from the geographically closely spaced localities that comprise the local fauna and the 

high diversity of mammals. To begin the resampling procedure, I generated subsamples 

based on the taxa within the reference sample that were equal in size to the number of 

specimens recovered from each of the remaining ten latest Cretaceous assemblages. 

This procedure was repeated 1000 times to construct assemblage-specific abundance 

estimates of each taxon and to create standard 95% confidence intervals of the mean 

abundance. A taxon was considered more or less abundant, relative to its presence and 

abundance within the Type Lance local fauna, if the number of specimens recovered 

from the assemblage was either higher or lower than the upper or lower bounds of the 

confidence interval, respectively. 

The analysis was performed using the statistical program R version 3.0.2 (R 

Development Core Team, 2015) (see Appendix 1). 
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3.4 Results 

3.4.1 Conventional and Recalibrated Number of Identified Specimens 

 Owing to the differential detection probabilities of the mammals from the latest 

Cretaceous local faunas, disparities between the conventional number of identifiable 

specimen counts (Tables 3.1-3.4) and recalibrated counts (Table 3.6-3.9) are evident. In 

fact, as no genus within the study possesses a dentition in which each isolated element 

can be identified, all rNISP counts are larger than their corresponding NISP counts. 

Some of these differences are comparatively negligible (e.g., the abundance of the 

taeniodont Schowalteria within the Scollard local fauna, NISP = 1 and rNISP = 1.1) but 

many others are quite substantial (e.g., the abundance of Alphadon within the Hewett’s 

Foresight local fauna, NISP = 481 versus rNISP = 808.1).  

Aside from these differences, it is also notable that the detection probabilities 

are not randomly distributed. The detection probabilities among multituberculate and 

eutherian genera, in particular, are generally higher than those possessed by 

metatherian genera (Table 3.5). As a result, for any counts that do not incorporate this 

heterogeneity (i.e., NISPs), the relative abundance of metatherian genera will be 

depressed in comparison to these other mammalian genera (also see Holroyd et al. 

2013). 

 

3.4.2 Heterogeneity indices 

Although slight differences exist between the two heterogeneity indices, a 

similar pattern is evident among the eleven latest Cretaceous mammalian faunas 

(Figures 3.2 and 3.3). Both indices indicate that the Long Fall horizon of southwestern 
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Saskatchewan and Lane’s Little Jaw Site Quarry of southeastern Montana are among 

the most taxonomically rich and heterogeneous faunas from the latest Cretaceous of 

North America, with the Hell Creek local fauna of eastern Montana equally rich based 

on the Simpson’s index (Figure 3.2) and only somewhat less even based on the 

Equitability index (Figure 3.3). According to both heterogeneity indices, the Type 

Lance local fauna of eastern Wyoming is slightly less diverse than these three local 

faunas. The Scollard local fauna of southcentral Alberta is slightly more diverse than 

the Type Lance local fauna based on the Simpson’s index, but considerably less diverse 

than the Type Lance local fauna based on the Equitability index.  

The Spigot-Bottle local fauna of southeastern Montana is similar in taxonomic 

evenness to the Scollard local fauna according to the Equitability index (Figure 3.3) but 

less taxonomically rich based on Simpson’s index (Figure 3.2). Both heterogeneity 

indices indicate that diversity in Hewett’s Foresight local fauna of northwestern 

Wyoming and the Gryde local fauna of southeastern Saskatchewan was comparatively 

low and, in fact, the Gryde local fauna ranks as the lowest among the eleven local 

faunas based on Equitability index. The 95% confidence intervals for the Muddy Tork 

local fauna of southeastern Montana and Hell Creek North Dakota local fauna from 

southeastern North Dakota are comparatively large, as a result of the small size of the 

samples, but both faunas are among the least diverse faunas. 

 

3.4.3 Resampling with replacement 

The resampling analyses reveal a number of differences between the Type 

Lance local fauna of northeastern Wyoming and the other latest Cretaceous 
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assemblages from North America. Perhaps most notably, eutherian mammals are 

generally more abundant in northern assemblages from western Canada than expected 

based on their relative abundance within the Type Lance (Tables 3.10 and 3.13). In 

particular, Cimolestes is considerably more abundant within the Scollard local fauna 

from southcentral Alberta, and within the Wounded Knee and Gryde local faunas of 

southwestern Saskatchewan. Gypsonictops is also somewhat more abundant than 

expected within the Scollard local fauna, and Batodon is slightly more plentiful in the 

Scollard and Gryde than at the Type Lance. The occurrence and abundance of several 

eutherians unknown (e.g., Mimatuta, Oxyprimus, Schowalteria) or comparatively 

uncommon elsewhere (e.g., Alostera) in some of these northerly assemblages, including 

the Scollard, Wounded Knee, and Long Fall local faunas, provides further support for 

these results.   

In addition to these findings, a number of marsupials are unusually rare in these 

northern assemblages (Table 3.12). In comparison to the Type Lance local fauna, 

Pediomys, Protolambda, ?Leptalestes, and Didelphodon are much less common in the 

Scollard local fauna and, as well as these taxa, Alphadon, Protalphadon, and 

Leptalestes are also rarer within the Gryde local fauna. Moreover, while the 

distributions beyond the confidence intervals are slight, a similar pattern is seen within 

the Wounded Knee local fauna and Long Fall horizon. In contrast to these rare 

marsupials, Nortedelphys is considerably more abundant within the Wounded Knee 

local fauna and, especially, the Gryde local fauna; Alphadon and Leptalestes are also 

notably more abundant in the Scollard local fauna. Although Mesodma is much more 

abundant in the Scollard and Gryde local faunas, most multituberculate genera are less 
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common in western Canada, with Meniscoessus, Cimolodon, and Cimolomys 

particularly rare within these assemblages (Table 3.7).  

The latest Cretaceous local faunas from Montana and North Dakota are also 

notably different from the Type Lance (Table 3.6). The well-studied Hell Creek local 

fauna from Garfield County of Montana contains several metatherians that are either 

considerably more abundant or much more rare than anticipated based on their 

abundance at the Type Lance local fauna (Table 3.8). Specifically, Alphadon, 

Protalphadon, Turgidodon, Leptalestes, and Glasbius are more common, whereas 

Pediomys, Protolambda, ?Leptalestes, and Didelphodon are substantially more rare. A 

similar pattern is also revealed by the multituberculates from the Hell Creek local 

fauna, with Essonodon, Meniscoessus, and, especially, Mesodma abundant, and 

Cimolomys and Cimolodon scarce (Table 3.7). Batodon and Alostera are the only 

eutherian mammals that are more abundant than expected based on their abundance 

within the Type Lance, and Cimolestes and, especially, Gypsonictops are more rare. 

 Within the Spigot-Bottle local fauna of southeastern Montana, Batodon is 

somewhat more abundant than anticipated, and the presence of Paranyctoides and 

Protungulatum are also notable differences; Gypsonictops is the only eutherian that is 

more rare (Table 3.9). Among the metatherians, Albertatherium, Nortedelphys, 

Leptalestes, Alphadon, and, especially, Pediomys are more common; Hatchertherium, 

Nanocuris, Protalphodon, and Glasbius are slightly less common and ?Leptalestes, 

Protolambda, and Didelphodon are considerably rarer. Many of the multituberculates 

within the assemblage are less common than expected, particularly Meniscoessus, 
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Cimolomys, and Cimolodon, but Mesodma is substantially and Essonodon somewhat 

more abundant. 

  Although the samples from the Muddy Tork and North Dakota local fauna are 

relatively small, based on the resampling analyses, most mammals are less common 

than expected. In fact, the only mammal identified from these local faunas that is 

considerably more abundant than anticipated based on its abundance from the Type 

Lance is the multituberculate Meniscoessus, although Protolambda and Didelphodon 

within the Muddy Tork local fauna and Batodon and Essonodon from the North Dakota 

local fauna are slightly more abundant. The recently described fauna from Lane’s Little 

Jaw Site is also comparatively small and many of the identified mammals are rarer than 

expected, including Gypsonictops, Pediomys, Protolambda, and Cimolomys. However, 

the presence and increased abundance of several eutherians (e.g., Baioconodon, 

Palaeoungulatum, and Procerberus) and Meniscoessus are also documented from 

Lane’s Little Jaw Site (Kelly, 2014) (Table 3.9). 

 The composition of mammals within the Hewett’s Foresight local fauna from 

the Lance Formation of Wyoming is markedly different from that within the Type 

Lance local fauna (Table 3.6). For instance, all three of the eutherians identified from 

the assemblage are less common than expected, with Gypsonictops and Cimolestes 

notably rare (Table 3.9). Most of the metatherians are also scarce, particularly 

Pediomys, Protolambda, ?Leptalestes, and Didelphodon; however, Alphadon and, to a 

much lesser extent, Leptalestes are more abundant (Table 3.8). Similarly, many of the 

multituberculates (e.g., Cimolomys, Meniscoessus, and Cimolodon) are less common, 

but Mesodma is considerably more abundant (Table 3.7) 
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3.5 Discussion 

3.5.1 Faunal composition of latest Cretaceous mammalian assemblages 

The present analyses reveal several interesting features of the composition of 

latest Cretaceous mammalian assemblages across North America. First, the findings 

indicate that the faunal structure of the eleven latest Cretaceous assemblages is not 

uniform. Rather, based on the results of both heterogeneity indices, the Long Fall 

horizon, Hell Creek of Montana, and Lane’s Little Jaw Site local faunas are more 

diverse than the other local faunas (Figures 3.2 and 3.3). Values for the Scollard, Type 

Lance, and several other local faunas, including those from the Spigot-Bottle and 

Wounded Knee assemblages, are slightly lower than those of the Long Fall horizon, 

Hell Creek of Montana, and Lane’s Little Jaw Site. In contrast to these faunas, the 

Gryde and Muddy Tork local faunas, as well as the Hell Creek local fauna of North 

Dakota are generally less diverse. 

In addition to detecting differences among these latest Cretaceous faunal 

assemblages, mammalian genera that contributed to the compositional heterogeneity 

among these faunas were identified, using resampling methods and the well-studied 

Type Lance local fauna as a reference sample. The results of these analyses principally 

suggest that some of the more northerly assemblages, including the Scollard and Long 

Fall horizon local faunas, contain a higher abundance of eutherians than expected based 

on their occurrence and relative abundance within the Type Lance local fauna (Table 

3.9). In particular, several archaic “ungulates”, including Protungulatum, Mimatuta and 

Baioconodon, and the leptictid Procerberus are more abundant within the Long Fall 

horizon. Within the Scollard local fauna, Gypsonictops and Batodon are somewhat 
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more abundant and Cimolestes is considerably more abundant, and the presence of 

Alostera and Schowalteria are also notable within the assemblage (Table 3.13). 

Cimolestes is also slightly more abundant than expected in the Wounded Knee and 

Gryde local faunas. Moreover, both multituberculate and metatherian mammals are less 

common within these more northerly localities (Tables 3.10-3.12). 

Aside from these more northern assemblages, eutherians are also comparatively 

more abundant within Lane’s Little Jaw Site, particularly given the small number of 

identified specimens recovered from the site (Table 3.12). Similar to the Long Fall 

horizon local fauna, the presence and abundance of Procerberus and several archaic 

“ungulates” is especially notable, with Baioconodon and the newly recognized 

Palaeoungulatum reported from the local fauna (Table 3.11). As previously noted, 

along with Long Fall horizon and Spigot Bottle, Lane’s Little Jaw Site has been 

suggested to represent an extension of the Puercan Land Mammal Age into the 

Cretaceous. Although eutherians are not noticeably more abundant within Spigot-

Bottle, these “transitional” assemblages are markedly different from the Type Lance. 

Differences between the Type Lance and assemblages from northern Wyoming 

and Montana are also present. A number of multituberculates and metatherians are 

substantially less abundant (e.g., Pediomys, Didelphodon, Cimolomys) or more 

abundant (e.g., Alphadon, Mesodma) within the Hell Creek local fauna (Tables 3.11 

and 3.12). Similarly, within the Hewett’s Foresight local fauna, many multituberculates 

and metatherians are considerably less common than anticipated (e.g., Pediomys, 

Cimolomys, Meniscoessus) but some are more abundant, particularly Alphadon and 
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Mesodma. At both of these sites, however, few eutherian mammals are more abundant 

relative to their abundance within the Type Lance local fauna (Table 3.13). 

In contrast to these findings, Archibald and Hunter (2002, p. 211), using 

correspondence analyses and a series of Mantel tests to examine community structure 

among latest Cretaceous mammalian faunas, reported that these faunas were 

“extremely similar in composition and do not vary greatly with distance”. Yet, aside 

from the obvious differences between statistical approaches, these authors evaluated 

species occurrences and Number of Identified Specimens (NISPs), rather than 

information on genera and recalibrated NISP counts. Moreover, because of the 

uncertainty with the age of the assemblage, Hunter and Archibald (2002) excluded the 

Long Fall horizon, one of the only “transitional” latest Cretaceous assemblages 

recognized at the time. With the identification of taxonomic detection biases (see 

discussion above) and the recovery of additional latest Cretaceous assemblages with 

mammals more typical of the Puercan (e.g., Spigot-Bottle, Lane’s Little Jaw Site), it 

seems reasonable to include these data here in comparisons among latest Cretaceous 

faunas. 

 

3.5.2 Mammalian faunal dynamics during the latest Cretaceous 

Taken together, these analyses demonstrate that the taxonomic richness and 

evenness among latest Cretaceous North American mammalian faunas were not 

homogeneous and that important changes in the composition of these faunal 

assemblages were well underway during this time. Lillegraven (1969), Johnston and 

Fox (1984), Fox (1989; 1997), Clemens (2002, 2010), and Wilson (2005; 2013; 2014; 
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Wilson et al. 2012) previously noted similar differences among latest Cretaceous 

assemblages. Wilson (2014; also see Sprain et al. 2014) recently suggested that changes 

in the taxonomic richness and evenness of latest Cretaceous mammalian faunas from 

northeastern Montana could have been the outcome of environmental disturbances and, 

more broadly, part of the press-pulse extinction scenario presented by Arens and West 

(2008; and see Bender et al. 1984 and Arens et al. 2014). The press-pulse scenario 

suggests that environmental stresses (i.e., the press disturbances) burden organisms that 

are struggling to adapt and, in close succession with instantaneous events (i.e., the pulse 

disturbances), can cause immediate mass extinctions. Within the Western Interior of 

North America, the Late Maastrichtian Event (i.e., a brief warming event thought to be 

closely associated with the Deccan flood basalt eruptions [see, e.g., Li and Keller 

1998a, 1998b; Keller, 2001; Wilf et al., 2003, Nordt et al., 2003; Tobin et al., 2012]) 

and the regression of the Western Interior epicontinental seaway would have 

contributed to faunal instability in latest Cretaceous faunal assemblages from Montana 

(Wilson, 2014; Sprain et al., 2014). These changes, in combination with the bolide 

impact at the Cretaceous/Paleogene boundary, (representing the pulse disturbance) 

ultimately resulted in the heightened levels of extinction. Following these destructive 

aspects of the extinction event, episodes of rapid taxonomic and morphological 

diversification of some surviving mammalian lineages and new immigrants to 

northeastern Montana occurred. 

The press disturbances identified by Wilson (2014) to be acting on mammals 

from northeastern Montana also likely influenced mammals elsewhere in North 

America during the latest Cretaceous and facilitated changes among other local 
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mammalian faunas. However, as revealed here, the effects of these events on 

assemblages outside of northeastern Montana appear to have been somewhat different. 

As noted by Arens et al. (2014), press disturbances that might be harmful or even 

deleterious for some organisms can be beneficial for others. Within the Scollard, Long 

Fall, Spigot-Bottle, and Lane’s Little Jaw Site local faunas, faunal instability caused by 

the climate change and the regression of the epicontinental seaway appears to have 

provided the opportunity for the expansion of eutherian mammals (Table 3.13). The 

possibility of temporal differences among these latest Cretaceous assemblages 

obviously complicates this scenario (e.g., latest Cretaceous Puercan assemblages could 

be stratigraphically younger than more conventionally labeled Lancian assemblages 

[see discussion above]); however, regardless of the biochronologic age assignments, 

changes within these faunas occurred during the latest Cretaceous, prior to the bolide 

impact and the demise of dinosaurs. These conclusions not only underscore the 

complexity among latest Cretaceous local mammalian faunas but also support 

suggestions of a more gradual, stepwise reduction in the number of groups during the 

latest Cretaceous mass extinction (e.g., Clemens et al., 1981; Archibald and Clemens, 

1982; Archibald et al., 2010; Wilson, 2005, 2014), rather than a single catastrophic 

event (e.g., Alvarez et al., 1980; Schulte et al., 2010). 

 

3.5.3 Biogeographic differences among faunal assemblages 

As noted earlier, Lillegraven (1969) previously reported the greater relative 

abundance and diversity of Paleocene-like eutherians in latest Cretaceous faunas at 

higher latitudes, in relation to approximately contemporaneous faunas further south. 
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This idea was further supported by several recent studies, including the description of a 

new taeniodont from the Scollard local fauna of southcentral Alberta that extended the 

stratigraphic range of this eutherian lineage from the middle Puercan of the San Juan 

Basin, New Mexico to the Lancian (Fox and Naylor 2003). The presence of eutherians 

in these northern assemblages led Sloan (1969) and Russell (1975) to contend that 

during the Late Cretaceous there was an invasion of North America by eutherian 

immigrants from Asia (see Beard, 1998 for a more thorough review). 

The role of immigration in latest Cretaceous and early Paleocene assemblages 

in northeastern Montana was examined in detail by Weil and Clemens (1998; also see 

Weil 1999, and Clemens 2002, 2010). In their analyses, the authors recognized three 

categories of mammals residing in the geographic study area: residents, aliens and 

unknowns (Weil and Clemens 1998; Clemens 2002). Clemens’ (2002) summary of 

these studies revealed that the Lancian mammalian faunas in northeastern Montana 

were composed of a great majority of resident taxa, species, or closely related sister 

species, which were present in one or more local faunas of the preceding North 

American interval. In comparison, the earliest Puercan local faunas were dominated by 

alien species, those whose ancestors did not precede them in the study area. Wilson 

(2014) similarly noted the influence of immigration during the earliest Paleocene in 

northeastern Montana. 

The three “transitional” assemblages included in this analysis, including the 

Long Fall horizon, Lane’s Small Jaw Site, and Spigot-Bottle, indicate that some 

mammals, especially eutherians, were already present and comparatively diverse in 

North America during the latest Cretaceous. The sudden appearance of these groups in 
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the earliest Paleocene of Montana suggests that these local mammalian faunas might 

have been the product of dispersal from these other regions after the K/Pg boundary. 

These findings provide some support to the ideas of Fox (1968, 2005), Weil (1999), 

Weil and Krause (2008), and Clemens (2010) that early Paleocene immigrants in North 

America were not derived from Late Cretaceous Asian mammals but were likely 

descendants from mammals that lived in currently unsampled environments in the 

Western Interior of North America prior to the K/Pg boundary. 

 

3.5.4 Ordinal Origins 

A number of recent studies on the evolution of mammals during the Late 

Cretaceous and Paleocene have focused on the timing of differentiation of the major 

inter- and intraordinal clades of eutherians (e.g., Alroy, 1999; Kumar and Hedges, 

1998; Springer et al., 2003; Meredith et al., 2011; dos Reis et al., 2012, 2014; O’Leary 

et al., 2013). From these studies, three competing models, mainly distinguished by the 

proposed timing of these radiation events in regards to the K/Pg boundary, have 

emerged: (1) explosive, (2) long fuse, and (3) short fuse models (see Archibald and 

Deutschman, 2001 for a review). The explosive model suggests that all interordinal 

origination and intraordinal divergence occurred within the earliest Paleogene (e.g., 

Alroy, 1999; Foote et al., 1999; Wible et al., 2007; O’Leary et al., 2013). The long fuse 

model postulates interordinal divergence early in the Late Cretaceous followed by 

intraordinal diversification in the earliest Paleogene (e.g., Springer et al., 2003; 

Meredith et al., 2011). The short fuse model contends that all interordinal and some 

intraordinal differentiation occurred in the early Cretaceous (Kumar and Hedges, 1998). 
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Although some studies show limited support for the short fuse model (e.g., Bininda-

Emonds et al., 2007), several compelling studies (e.g., Foote et al., 1999) have shown 

that such an early origination and diversification is unlikely, and the short fuse model is 

not discussed further here. 

 The fossil record, providing the only direct evidence of the occurrence of 

mammalian lineages in the past, has conventionally supported the explosive model 

(e.g., Alroy, 1999). The recent broad-scale phylogenetic analyses by Wible et al. (2007) 

and O’Leary et al. (2013) that incorporated morphological characters demonstrate that 

all fossil mammals recovered from Cretaceous sediments (some previously recognized 

as member of extant groups) fall outside of the living eutherian orders and further seem 

to corroborate this view. With the emergence of comprehensive molecular-based 

studies (e.g., Springer et al., 2003; Bininda-Emonds et al., 2007; Meredith et al. 2011), 

it has been argued that consensus currently favors the long fuse model. The recent 

recognition of several crown-group eutherians in the earliest Paleocene, including the 

oldest known members of Carnivora (Fox et al., 2010) and Primates (Fox and Scott, 

2011) in the western Canadian fossil record, also seems to suggests that some 

interordinal origination occurred in the Cretaceous.  

Although the relationships between many latest Cretaceous and early Paleogene 

eutherians and those living today are still controversial (e.g., Wible et al., 2007; Boyer 

et al., 2010), support for the presence and diversity of eutherian groups in the latest 

Cretaceous has implications for the evolutionary history of the group. It is increasingly 

clear, based on my present findings, that some eutherians, particularly “archaic” 

ungulates, were undergoing a radiation prior to the K/Pg boundary. In addition, the 
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diversity of eutherians before and after the boundary may have been more similar than 

the fossil record currently indicates.  

 

3.6 Conclusions 

The timing and patterns of latest Cretaceous and early Paleogene mammalian 

evolution have become an important focus of study as a consequence of recent interest 

in extinctions at the end of the Mesozoic (Archibald, 1996; Hunter and Archibald, 

2002; Wilson 2005, 2014). In the Western Interior of North America, the richest and 

most extensively studied succession of latest Cretaceous mammals in the world is 

preserved from Texas to northern Alaska (Cifelli et al., 2004). Yet, as documented here, 

a considerable number of differences are present among latest Cretaceous assemblages. 

Most notably, eutherian mammals are more diverse in some of the more northerly latest 

Cretaceous assemblages, including several “transitional” localities that are often 

recognized as containing evidence of the replacement of archaic mammals by more 

progressive (i.e., eutherian) mammals (e.g., Fox, 1989). 

These findings suggest that some eutherians, especially primitive ungulates, 

originated and underwent some diversification and expansion during the latest 

Cretaceous, prior to the demise of the non-avian dinosaurs and more primitive 

multituberculates and metatherians. Environmental changes (i.e., the Late 

Maasstrichtian Event and the regression of the Western Interior epicontinental seaway) 

could have facilitated these changes and provided the opportunity for the expansion of 

eutherian mammals within these assemblages. In addition, as revealed here, taxa from 

some of these latest Cretaceous “transitional” assemblages may have been the source 
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for mammalian immigrants into localities within the Hell Creek Formation of 

northeastern Montana during the earliest Paleocene (Clemens, 2002, 2010).  
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Table 3.1.—The number of identifiable specimens for higher-level mammalian groups among select latest Cretaceous local faunas 

from the Western Interior of North America. Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = 

Wounded Knee; GRD = Gryde; HCM= Hell Creek Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot 

Bottle; LLJS = Lane’s Little Jaw Site; HWF = Hewett’s Foresight; TPL = Type Lance. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND TPL HWF 

Multitubeculata 253 22 40 511 885 27 662 22 45 1049 74 

Metatheria 111 52 4 366 688 15 372 11 2 738 597 

Eutheria 289 26 28 149 154 0 140 19 3 480 480 

TOTAL 653 100 72 1026 1727 42 1174 52 50 2267 1151 
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Table 3.2.—The number of identifiable specimens for multitubericulate genera among select latest Cretaceous local faunas from the 

Western Interior of North America. Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = Wounded 

Knee; GRD = Gryde; HCM= Hell Creek Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot Bottle; 

LLJS = Lane’s Little Jaw Site; HWF = Hewett’s Foresight; TPL = Type Lance. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND TPL HWF 

Cimexomys 0 0 4 0 0 0 0 0 0 7 7 

Catopsalis 0 0 11 0 0 0 0 0 0 0 0 

Paracimexomys 9 2 0 1 27 0 0 0 0 0 0 

Essonodon 0 1 0 0 24 0 6 0 11 1 0 

Cimolomys 10 0 2 18 36 0 13 0 0 89 24 

Meniscoessus 0 2 1 2 175 24 87 8 29 186 11 

Paressondon 0 0 0 0 1 0 0 0 0 0 0 

Stygimys 0 0 11 0 0 0 0 0 0 0 0 

Clemensodon 0 0 0 0 0 0 0 0 0 3 0 
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Mesodma 168 14 8 482 477 3 529 6 2 313 407 

?Neoplagiaulax 0 0 0 0 15 0 0 0 0 0 2 

Parectypodus 0 0 0 4 2 0 0 0 0 0 0 

Cimolodon 66 3 3 4 128 0 27 8 3 450 29 
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Table 3.3. —The number of identifiable specimens for metatherian genera among select latest Cretaceous local faunas from the 

Western Interior of North America. Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = Wounded 

Knee; GRD = Gryde; HCM= Hell Creek Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot Bottle; 

LLJS = Lane’s Little Jaw Site; HWF = Hewett’s Foresight; TPL = Type Lance. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND TPL HWF 

Nortedelphys 1 0 0 0 0 0 10 0 0 3 0 

Hatcheritherium 0 0 0 0 0 0 0 0 0 1 0 

Nanocuris 1 0 0 1 0 0 0 0 0 1 0 

Albertatherium 0 0 0 0 0 0 4 0 0 0 0 

Alphadon 53 47 2 309 203 0 34 0 0 28 481 

Protalphadon 0 0 0 0 39 0 6 0 0 19 14 

Turgidodon 8 0 0 17 44 1 17 1 0 14 5 

Pediomys 9 3 2 30 57 2 161 1 0 152 45 

Protolambda 2 0 0 6 90 5 47 2 2 152 6 
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Leptalestes 0 0 0 0 51 0 40 2 0 130 16 

?Leptalestes 26 0 0 0 49 1 27 0 0 26 25 

Didelphodon 11 1 0 3 73 6 21 4 0 196 4 

Glasbius 0 1 0 0 82 0 5 1 0 16 1 
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Table 3.4.—The number of identifiable specimens for eutherian genera among select latest Cretaceous local faunas from the Western 

Interior of North America. Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = Wounded Knee; GRD = 

Gryde; HCM= Hell Creek Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot Bottle; LLJS = Lane’s 

Little Jaw Site; HWF = Hewett’s Foresight; TPL = Type Lance. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND TPL HWF 

Alostera 1 3 0 1 1 0 0 0 0 0 0 

Baioconodon 0 0 3 0 0 0 0 8 0 0 0 

Protungulatum 0 0 11 0 0 0 1 0 0 0 0 

Mimatuta 0 0 4 0 0 0 0 0 0 0 0 

Paleoungulatum 0 0 0 0 0 0 0 8 0 0 0 

Oxyprimus 0 0 1 0 0 0 0 0 0 0 0 

Gypsonictops 110 15 5 102 106 0 102 0 1 314 63 

Batodon 9 0 0 7 10 0 4 0 1 1 0 

Cimolestes 168 8 2 39 37 0 31 1 1 52 11 
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Procerberus 0 0 2 0 0 0 0 2 0 0 0 

Paranyctoides 0 0 0 0 0 0 2 0 0 0 0 

Schowalteria 1 0 0 0 0 0 0 0 0 0 0 
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Table 3.5.—Detection probabilities for mammalian genera from select latest Cretaceous local faunas across the Western Interior of 

North America. 

 

Higher-level 

taxonomic 

group 

Family Genus Identifiable 

tooth 

positions 

Identifiable 

teeth/Total 

number of 

teeth 

Detection 

probability 

“Recalibration 

factor” 

Multituberculata Incertae sedis Cimexomys I1.P4.M1-

2/p4.m1-2 

12/26 0.46153846 1.53846154 

  Catopsalis I1.P4.M1-

2/i1.p4.m1-

2 

16/26 0.61538462 1.38461538 

  Paracimexomys I1.P4.M1-

2/p4.m1-2 

12/26 0.46153846 1.53846154 

 Cimolomyidae Essonodon P4.M1- 10/26 0.38461538 1.61538462 
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2/m1-2 

  Cimolomys I1.P4.M1-

2/i1.p4.m1-

2 

16/26 0.61538462 1.38461538 

  Meniscoessus I1.P4.M1-

2/i1.p4.m1-

2 

16/26 0.61538462 1.38461538 

  Paressonodon M1-2 2/26 0.07692308 1.92307692 

 Eucosmodontidae Stygimys I1.P4.M1-

2/i1.p4.m1-

2 

16/24 0.66666667 1.33333333 

 ?Eucosmodontidae Clemensodon p4 2/24 0.08333333 1.91666667 

 Neoplagiaulacidae Mesodma P4.M1-

2/p4.m1-2 

12/26 0.46153846 1.53846154 

  ?Neoplagiaulax P4.M1- 12/26 0.46153846 1.53846154 
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2/p4.m1-2 

  Parectypodus P4.M1-

2/p4.m1-2 

12/26 0.46153846 1.53846154 

 Cimolodontiae Cimolodon I1.P4.M1-

2/i1.p4.m1-

2 

16/26 0.61538462 1.38461538 

Metatheria Incertae sedis Nortedelphys M1-4/m1-4 16/50 0.32 1.68 

  Hatcheritherium M1 2/50 0.04 1.96 

 Deltatheridiidae Nanocuris M2/m1-4 10/50 0.20 1.80 

 “Alphadontidae” Albertatherium M1-4/m1-4 16/50 0.32 1.68 

  Alphadon M1-4/m1-4 16/50 0.32 1.68 

  Protalphadon M1-4/m1-4 16/50 0.32 1.68 

  Turgidodon P3.M1-

4/p3.m1-4 

20/50 0.40 1.60 

 Pediomyidae Pediomys M1-4/m1-4 16/50 0.32 1.68 
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  Protolambda P3.M1-

4/p3.m1-4 

20/50 0.40 1.60 

  Leptalestes M1-4/m1-4 16/50 0.32 1.68 

  ?Leptalestes M1-4/m1-4 16/50 0.32 1.68 

 Stagodontidae Didelphodon C.P1-

3.M1-

4/c.p1-

3.m1-4 

32/50 0.64 1.36 

 Glasbiidae Glasbius M1-4/m1-4 16/50 0.32 1.68 

Eutheria Incertae sedis Alostera M1-2/m1 6/44 0.13636364 1.86363636 

 “Arctocyonidae” Baioconodon P3-4.M1-

3/p3-4.m1-

3 

20/44 0.45454545 1.54545454 

  Protungulatum P3-4.M1-

3/p3-4.m1-

20/44 0.45454545 1.54545454 
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3 

 Periptychidae Mimatuta P3-4.M1-

3/p3-4.m1-

3 

20/44 0.45454545 1.54545454 

  Paleoungulatum M2/p3-

4.m1-3 

12/44 0.27272727 1.72727273 

 ?Hyopsodontidae Oxyprimus P3-4.M1-

3/p3-4.m1-

3 

20/44 0.45454545 1.54545454 

 Gypsonictopsidae Gypsonictops P3-4.M1-

3/p3-4.m1-

3 

20/44 0.45454545 1.54545454 

 Cimolestidae Batodon P4.M1-

3/p3-4.m1-

3 

18/44 0.40909091 1.59090909 
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  Cimolestes P3-4.M1-

3/p3-4.m1-

3 

20/44 0.45454545 1.54545454 

  Procerberus P3-4.M1-

3/p3-4.m1-

3 

20/44 0.45454545 1.54545454 

 ?Nyctitheriidae Paranyctoides P4.M1-

3/p4.m1-3 

16/44 0.36363636 1.63636364 

 Stylinodontidae Schowalteria I2-3.C.P1-

4.M1-3/i2-

3.c.p1-

4.m1-3 

40/44 0.90909091 1.09090909 
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Table 3.6.—The recalibrated number of identifiable specimens for higher-level mammalian groups among select latest Cretaceous 

local faunas from the Western Interior of North America. Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; 

WKN = Wounded Knee; GRD = Gryde; HCM= Hell Creek Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT 

= Spigot Bottle; LLJS = Lane’s Little Jaw Site; HWF = Hewett’s Foresight; TPL = Type Lance. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND TPL HWF 

Multitubeculata 377.5 33.7 57.0 783.1 1363.3 44.9 1025.1 29.6 73.7 1558.6 731.9 

Metatheria 181.8 87.0 6.7 611.3 1119.4 22.7 613.2 16.7 3.2 1163.5 1000.5 

Eutheria 445.7 41.1 43.3 230.6 238.5 0 216.5 33.7 4.7 566.9 114.3 

TOTAL 1005.0 161.8 107.0 1625.0 2721.2 67.6 1854.8 80.0 81.6 3289.0 1846.7 
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Table 3.7.—The recalibrated number of identifiable specimens for multituberculate genera among select latest Cretaceous local faunas 

from the Western Interior of North America. Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = 

Wounded Knee; GRD = Gryde; HCM= Hell Creek Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot 

Bottle; LLJS = Lane’s Little Jaw Site; HWF = Hewett’s Foresight; TPL = Type Lance. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND TPL HWF 

Cimexomys 0 0 6.2 0 0 0 0 0 0 10.8 10.8 

Catopsalis 0 0 15.2 0 0 0 0 0 0 0 0 

Paracimexomys 13.8 3.1 0 1.5 41.5 0 0 0 0 0 0 

Essonodon 0 1.6 0 0 38.8 0 9.7 0 17.8 1.6 0 

Cimolomys 13.8 0 2.8 24.9 49.8 0 18.0 0 0 123.2 33.2 

Meniscoessus 0 3.4 1.7 3.4 294.0 40.3 146.2 13.4 48.7 312.5 18.5 

Paressondon 0 0 0 0 1.9 0 0 0 0 0 0 

Stygimys 0 0 14.7 0 0 0 0 0 0 0 0 

Clemensodon 0 0 0 0 0 0 0 0 0 5.8 0 
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Mesodma 258.5 21.5 12.3 741.5 733.8 4.6 813.8 9.2 3.1 481.5 626.2 

?Neoplagiaulax 0 0 0 0 23.1 0 0 0 0 0 3.1 

Parectypodus 0 0 0 6.2 3.1 0 0 0 0 0 0 

Cimolodon 91.3 4.2 4.2 5.5 177.2 0 37.4 11.1 4.2 623.1 40.2 
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Table 3.8.—The recalibrated number of identifiable specimens for metatherian genera among select latest Cretaceous local faunas 

from the Western Interior of North America. Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = 

Wounded Knee; GRD = Gryde; HCM= Hell Creek Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot 

Bottle; LLJS = Lane’s Little Jaw Site; HWF = Hewett’s Foresight; TPL = Type Lance. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND TPL HWF 

Nortedelphys 1.68 0 0 0 0 0 16.8 0 0 5.0 0 

Hatcheritherium 0 0 0 0 0 0 0 0 0 2.0 0 

Nanocuris 1.8 0 0 1.8 0 0 0 0 0 1.8 0 

Albertatherium 0 0 0 0 0 0 7.7 0 0 0 0 

Alphadon 89.0 79.0 3.4 519.1 341.0 0 57.1 0 0 47.0 808.1 

Protalphadon 0 0 0 0 65.5 0 10.1 0 0 31.9 23.5 

Turgidodon 12.4 0 0 26.3 68.0 1.5 26.3 1.5 0 21.6 7.7 

Pediomys 15.1 5.0 3.4 50.4 95.8 3.4 270.5 1.5 0 255.4 75.6 

Protolambda 3.2 0 0 9.6 144.0 8.0 75.2 3.1 3.2 243.2 9.6 
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Leptalestes 0 0 0 0 85.7 0 67.2 3.4 0 218.4 26.9 

?Leptalestes 43.7 0 0 0 82.3 1.7 45.4 0 0 43.7 42.0 

Didelphodon 15.0 1.4 0 4.1 99.3 8.2 28.6 5.4 0 266.6 5.4 

Glasbius 0 1.7 0 0 137.8 0 8.4 1.7 0 26.9 1.7 
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Table 3.9.—The recalibrated number of identifiable specimens for eutherian genera among select latest Cretaceous local faunas from 

the Western Interior of North America. Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = Wounded 

Knee; GRD = Gryde; HCM= Hell Creek Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot Bottle; 

LLJS = Lane’s Little Jaw Site; HWF = Hewett’s Foresight; TPL = Type Lance. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND TPL HWF 

Alostera 1.9 5.6 0 1.9 1.9 0 0 0 0 0 0 

Baioconodon 0 0 4.6 0 0 0 0 12.4 0 0 0 

Protungulatum 0 0 17.0 0 0 0 1.5 0 0 0 0 

Mimatuta 0 0 6.2 0 0 0 0 0 0 0 0 

Paleoungulatum 0 0 0 0 0 0 0 12.3 0 0 0 

Oxyprimus 0 0 1.5 0 0 0 0 0 0 0 0 

Gypsonictops 170.0 23.2 7.7 157.6 163.8 0 157.6 0 1.5 485.3 97.4 

Batodon 14.3 0 0 11.1 15.9 0 6.4 0 1.6 1.6 0 

Cimolestes 258.5 12.3 3.1 60.0 56.9 0 47.7 1.5 1.5 80 16.9 



  

   182 

Procerberus 0 0 3.2 0 0 0 0 3.4 0 0 0 

Paranyctoides 0 0 0 0 0 0 3.3 0 0 0 0 

Schowalteria 1.1 0 0 0 0 0 0 0 0 0 0 
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Table 3.10.—Differences in the relative abundance of higher-level groupings among select latest Cretaceous fauna local faunas from 

the Western Interior of North America, using resampling with replacement, and the presence and relative abundance of mammals from 

the Type Lance local fauna of Wyoming as the reference sample. Groups that are significantly more abundant than expected, 

represented by the number of specimens beyond the upper threshold of the confidence interval, are shown with positive values; 

whereas, groups that are significantly less abundant than expected, represented by the number of specimens beyond the lower 

threshold of the confidence interval, are shown with negative values. Recalibrated numbers of identified specimens were employed. 

Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = Wounded Knee; GRD = Gryde; HCM= Hell Creek 

Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot Bottle; LLJS = Lane’s Little Jaw Site; HWF = 

Hewett’s Foresight. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND HWF 

Multitubeculata -82.0 -29.1 17.2 30.0 73.8 18.6 163.7 2.3 40.5 -126.9 

Metatheria -149.4 47.2 -16.9 77.2 173.1 -1.0 -31.3 -3.1 -11.2 374.3 

Eutheria 258.2 11.1 26.3 -45.0 -222.4 -7.1 -97.3 18.8 -6.4 -190.3 
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Table 3.11.—Differences in the relative abundance of multituberculate genera among select latest Cretaceous fauna local faunas from 

the Western Interior of North America, using resampling with replacement, and the presence and relative abundance of 

multituberculates from the Type Lance local fauna of Wyoming as the reference sample. Genera that are significantly more abundant 

than expected, represented by the number of specimens beyond the upper threshold of the confidence interval, are shown with positive 

values; whereas, genera that are significantly less abundant than expected, represented by the number of specimens beyond the lower 

threshold of the confidence interval, are shown with negative values. Recalibrated numbers of identified specimens were employed. 

Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = Wounded Knee; GRD = Gryde; HCM= Hell Creek 

Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot Bottle; LLJS = Lane’s Little Jaw Site; HWF = 

Hewett’s Foresight. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND HWF 

Cimexomys -1.6 0 5.1 -3.3 -7.0 0 -4.0 0 0 2.7 

Catopsalis 0 0 15 0 0 0 0 0 0 0 

Paracimexomys 13.0 3.0 0 1.0 41.0 0 0 0 0 0 

Essonodon 0 0.7 0 -0.006 36.8 0 7.9 0 16.8 -0.1 
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Cimolomys -19.3 -3.6 0 -31.0 -48.6 -0.9 -46.1 -1.1 -1.2 -30.9 

Meniscoessus -87.6 -8.4 -5.7 -142.7 29.9 31.5 -21.3 3.3 37.9 -148.5 

Paressondon 0 0 0 0 1 0 0 0 0 0 

Stygimys 0 0 14 0 0 0 0 0 0 0 

Clemensodon -0.5 0 0 -1.4 -3.3 0 -1.7 0 0 -1.7 

Mesodma 102.7 0 0 493.7 328.1 -2.7 532.3 0 -5.1 345.8 

?Neoplagiaulax 0 0 0 0 23.0 0 0 0 0 3.0 

Parectypodus 0 0 0 6.0 3.0 0 0 0 0 0 

Cimolodon -89.0 -21.0 -11.3 -291.3 -330.0 -9.2 -302.4 0 -7.5 -298.4 
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Table 3.12.—Differences in the relative abundance of metatherian genera among select latest Cretaceous fauna local faunas from the 

Western Interior of North America, using resampling with replacement, and the presence and relative abundance of metatherians from 

the Type Lance local fauna of Wyoming as the reference sample. Genera that are significantly more abundant than expected, 

represented by the number of specimens beyond the upper threshold of the confidence interval, are shown with positive values; 

whereas, genera that are significantly less abundant than expected, represented by the number of specimens beyond the lower 

threshold of the confidence interval, are shown with negative values. Recalibrated numbers of identified specimens were employed. 

Localities abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = Wounded Knee; GRD = Gryde; HCM= Hell Creek 

Montana; MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot Bottle; LLJS = Lane’s Little Jaw Site; HWF = 

Hewett’s Foresight. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND HWF 

Nortedelphys 0 77.3 0 515.5 -3.3 0 12.1 0 0 -1.7 

Hatcheritherium 0 0 0 0 -0.5 0 -0.1 0 0 -0.1 

Nanocuris 0.2 0 0 0.002 -0.5 0 -0.04 0 0 -0.05 

Albertatherium 0 0 0 0 0 0 7 0 0 0 
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Alphadon 71.4 -0.8 0.5 -19.9 299.6 0 27.0 0 -0.1 778.2 

Protalphadon -6.8 -0.2 -0.002 -12.5 37.3 0 -4.8 0 0 2.8 

Turgidodon 3.7 -0.01 0 13.5 48.9 0 11.8 0 0 -2.7 

Pediomys -55.7 -3.9 -2.2 -67.6 -110.0 0 119.0 -2.5 -3.8 -60.2 

Protolambda -64.3 -8.4 -4.8 -103.8 -51.4 1.1 -55.1 -0.4 -0.5 -120.1 

Leptalestes -59.7 -7.5 -4.3 -100.9 -90.0 -2.4 -48.5 0 -3.0 -89.3 

?Leptalestes 27.0 -0.7 -0.2 -18.0 44.2 0 17.6 0 -0.1 14.9 

Didelphodon -59.4 -8.5 -5.3 -119.4 -115.3 0.4 -113.9 0 -4.0 -136.3 

Glasbius -5.5 0 0 -10.2 113.6 0 -4.0 0 0 -11.1 
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Table 3.13.—Differences in the relative abundance of eutherian genera among select latest Cretaceous fauna local faunas from the 

Western Interior of North America, using resampling with replacement, and the presence and relative abundance of eutherian from the 

Type Lance local fauna of Wyoming as the reference sample. Genera that are significantly more abundant than expected, represented 

by the number of specimens beyond the upper threshold of the confidence interval, are shown with positive values; whereas, genera 

that are significantly less abundant than expected, represented by the number of specimens beyond the lower threshold of the 

confidence interval, are shown with negative values. Recalibrated numbers of identified specimens were employed. Localities 

abbreviations are as follows: SCL = Scollard; LFL = Long Fall; WKN = Wounded Knee; GRD = Gryde; HCM= Hell Creek Montana; 

MDT = Muddy Tork; HCND = Hell Creek North Dakota; SBT = Spigot Bottle; LLJS = Lane’s Little Jaw Site; HWF = Hewett’s 

Foresight. 

 

 SCL WKN LFL GRD HCM MDT SBT LLJS HCND HWF 

Alostera 1.0 5.0 0 1.0 1.0 0 0 0 0 0 

Baioconodon 0 0 4.0 0 0 0 0 12.0 0 0 

Protungulatum 0 0 17.0 0 0 0 1.5 0 0 0 

Mimatuta 0 0 6.0 0 0 0 0 0 0 0 
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Paleoungulatum 0 0 0 0 0 0 0 12.0 0 0 

Oxyprimus 0 0 1.0 0 0 0 0 0 0 0 

Gypsonictops 13.5 0 -4.5 -72.7 -230.1 -6.8 -106.5 -8.0 -7.5 -164.6 

Batodon 13.2 0 0 10.0 13.8 0 4.9 0 0.8 -0.04 

Cimolestes 229.5 6.6 0 16.0 -6.9 -0.4 0 0 0 -24.7 

Procerberus 0 0 3.0 0 0 0 0 3.0 0 0 

Paranyctoides 0 0 0 0 0 0 3.0 0 0 0 

Schowalteria 1.0 0 0 0 0 0 0 0 0 0 

 

 



  

   190 

Figure 3.1.—Outline map of the Western Interior of North America with location of 

fossil assemblages yielding latest Cretaceous mammals. Comparative local faunas, with 

respective sources of faunal data are: (1) Scollard (Lillegraven, 1969; Lillegraven and 

McKenna, 1986; Fox, 1989, 1994, 1997; Fox and Naylor, 2003), (2) Gryde (Storer, 

1991), (3) Wounded Knee (Fox, 1989, 1997), (4) Long Fall horizon (Johnston and Fox 

1984; Fox, 1989; Fox, 1997), (5) Hell Creek of Montana (Archibald, 1982; Lillegraven 

and McKenna, 1986; Johansen, 1996; Wilson, 2005, 2014), (6) Lane’s Little Jaw Site 

(Kelly, 2014), (7) Muddy Tork (Hunter et al. 1997; Hunter, 1999; Hunter and 

Archibald, 2002), (8) Spigot Bottle (Hunter and Archibald, 2002; Zhang 2009; 

Archibald et al., 2011), (9) Hell Creek of North Dakota (Hunter and Pearson, 1996; 

Hunter and Archibald, 2002), (10) Type Lance (Clemens, 1964, 1966, 1973; Krause, 

1992; Case et al., 2005; Wilson and Riedel, 2010), and (11) Hewett’s Foresight (Webb, 

2001). 
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Figure 3.2.—Simpson’s Index and 95% confidence intervals for latest Cretaceous local 

mammalian faunas from the Western Interior of North America. Locality abbreviations 

are as follows: SC = Scollard; LF = Long Fall; WK = Wounded Knee; GR = Gryde; 

HC = Hell Creek Montana; MT = Muddy Tork; ND = Hell Creek North Dakota; SB = 

Spigot Bottle; LLJ = Lane’s Little Jaw Site; HF = Hewett’s Foresight; TL = Type 

Lance.  
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Figure 3.3. —Equitability Index and 95% confidence intervals for latest Cretaceous 

local mammalian faunas from the Western Interior of North America. Locality 

abbreviations are as follows: SC = Scollard; LF = Long Fall; WK = Wounded Knee; 

GR = Gryde; HC = Hell Creek Montana; MT = Muddy Tork; ND = Hell Creek North 

Dakota; SB = Spigot Bottle; LLJ = Lane’s Little Jaw Site; HF = Hewett’s Foresight; TL 

= Type Lance.  
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4  The Latitudinal Diversity Gradient within Latest Cretaceous and Paleocene 

Mammalian Assemblages from the Western Interior of North America 

 

4.1 Abstract 

The latitudinal diversity gradient (i.e., the increase in taxonomic richness from the 

poles to the equator) is one of the most widely recognized patterns in modern ecology. 

Although the establishment and maintenance of this phenomenon is poorly understood, 

the gradient is commonly suggested to have been in place through most of the last 544 

million years. Several recent studies, however, have demonstrated that certain 

taxonomic groups did not conform to this pattern during parts of the Mesozoic and 

early Cenozoic. Here, using least-squares regression analyses on a large dataset of latest 

Cretaceous and Paleocene mammalian assemblages from North America (from 

approximately 69 to 57 million years ago), I report that a latitudinal diversity gradient 

was not established during this interval, with no statistical differences in mammalian 

taxonomic richness across latitude during the latest Cretaceous and Paleocene. A linear 

modeling approach based on the number of assemblages within each geological 

formation and the site-occupancy of genera within these formations reveals a strong 

association between taxonomic richness and sampling intensity; yet, even after 

mediating for the variance in sampling intensity among formations, a latitudinal 

diversity gradient comparable to the present is still not recovered. Instability among 

North American mammalian communities near the Cretaceous/Paleogene boundary 

could have contributed to these patterns, but I suggest that a shallow temperature 
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gradient and more equable climates during this interval are more likely mechanisms 

that the absence of a latitudinal diversity gradient. 
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4.2 Introduction 

The geographic distribution of extant mammals across the globe is distinctively 

patterned. Mammalian body mass and geographic range size, for instance, has generally 

been demonstrated to increase from the equator towards the poles (e.g., Bergmann, 

1847; Rensch, 1938; Mayr, 1956; Rapoport, 1982; Stevens, 1989; Ribas and 

Schoereder, 2006). Perhaps the most striking of these patterns, however, is the 

latitudinal diversity gradient or, more plainly, the increase in taxonomic richness from 

the poles to the equator. This pattern has been recognized for over 200 years (von 

Humboldt, 1808; and see Hawkins, 2001), and across most mammalian lineages and 

most continents (e.g., Simpson, 1964; McCoy and Connor, 1980; Currie, 1991; 

Kaufman, 1995; Badgley and Fox, 2000; Lyons and Willig, 2002; Weir and Schluter, 

2007; and see Willig et al., 2003 for a more comprehensive review). Within North 

America, for instance, where a steep latitudinal diversity has been reported among 

mammals, species richness ranges from approximately 80 species across latitude 35°N 

to just 40 near latitude 60°N (Simpson, 1964; Badgley and Fox, 2000). 

While the presence of the latitudinal diversity gradient is well studied, the 

mechanisms that might have established and helped maintain this gradient are still 

somewhat unclear (Willig et al., 2003; Hillebrand, 2004; Mittelbach et al., 2007), and 

hypotheses and speculations about the causal factors of the latitudinal diversity gradient 

continue to increase (e.g., Platt, 1964; Willig et al., 2003; Mannion et al., 2014). Brown 

and Lomolino (1998) and Gaston (2000), for instance, have identified and distinguished 

over 25 suggested causes for the gradient. Prominent among the many hypotheses is the 

focus on climate (e.g., Willig et al., 2003; Erwin, 2009; Archibald et al., 2010), 
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geographic area (e.g., Terborgh, 1973; Rosenzweig, 1995; Blackburn and Gaston, 

1997; Mannion et al., 2012), and regional history (i.e., tropical communities are often 

less perturbed by broad-scale abiotic changes) (e.g., Willig al., 2003; Wiens and 

Donoghue, 2004; Mittelbach et al., 2007; Field et al., 2009). 

Although climate, geography, and regional histories are known to have changed 

considerably through the history of the Earth, the latitudinal diversity gradient is 

generally suggested to have persisted throughout much of the Phanerozoic (from 

approximately 544 million years ago to the present) (see e.g., Ricklefs, 1987; Crane and 

Lidgard, 1989; Crame, 2001; Hillebrand, 2004; Leighton, 2005; Jablonski et al., 2006; 

Mannion et al. 2014). Several recent studies, however, have challenged these ideas 

(e.g., Archibald et al., 2010; Mannion et al., 2012). Mannion et al. (2012) revealed that 

non-avian dinosaurian richness throughout much of the Mesozoic peaked within more 

temperate paleolatitudes. Moreover, Rose et al. (2011), in one of the few papers to 

quantitatively analyze the latitudinal diversity gradient in extinct mammals (but also 

see Fraser et al., 2014), reported that a latitudinal diversity gradient in middle 

Paleocene mammals from the Western Interior of North America (from approximately 

61.5 to 58 million years ago) was not present and that there were no differences in 

taxonomic richness across latitude. These findings not only suggest that the latitudinal 

diversity gradient in for certain groups was not established during the Mesozoic and 

parts of the early Cenozoic, but also help to identify the possible mechanisms that led to 

the modern gradient. 

In light of these recent articles, I assess the presence of the latitudinal diversity 

gradient in latest Cretaceous and Paleocene mammalian assemblages across the 
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Western Interior of North America (from approximately 69 to 57.5 million years ago). I 

use least-squares linear regressions to evaluate patterns of mammalian taxonomic 

richness among latest Cretaceous and Paleocene assemblages from North America. In 

addition, using a modeling approach based on counts of the number of assemblages 

among geological formations and site-occupancy of genera within these formations (see 

discussion below), I examine the influence of differential sampling on these patterns. 

The results of this study provide new insights on observed differences of richness 

among formations and the establishment of one of the most widely recognized patterns 

in biodiversity.  

 

4.3 Material and Methods 

4.3.1 Data 

To reconstruct latitudinal diversity gradients within the latest Cretaceous and 

early Paleogene from the Western Interior of North America, mammalian faunal 

composition and richness for assemblages within the latest Cretaceous Lancian North 

American Land Mammal Age and the three oldest Land Mammal Ages of the 

Paleocene (i.e., the Puercan, Torrejonian, and Tiffanian) were assembled (see Cifelli et 

al., 2004; Lofgren et al., 2004). The resulting dataset is comprised of 188 latest 

Cretaceous and Paleocene fossil assemblages, with information on nearly 500 genera, 

and roughly spanning from paleolatitudes 35 to 60°N (Figures 4.1-4.4; see Appendix 

2). Published literature was the principal resource for retrieving these data, with some 

data obtained from unpublished literature (e.g., dissertations) and the Paleobiology 

Database using the Fossilworks Gateway [http://www.fossilworks.org]. Paleolatitudes 
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were calculated using modern latitudes, the Apparent Polar Wander Path presented by 

Torsvik et al. (2012, table 3), and a customized R function (M. Vavrek, unpublished 

software). Within the dataset, tentative taxonomic assignments (e.g., “cf.”, “?”) were 

discarded and the taxon was assigned to the designated genus. Also, as taxonomic 

richness is the focus of this study, higher taxonomic assignments listed within a local 

fauna that does not contain a representative of the group at a lower taxonomic level are 

retained; for instance, the identification of Microcosmodontidae genus and species 

indeterminate from the early Puercan Long Fall horizon of southeastern Saskatchewan 

(see Fox, 1989, 1997) is maintained in the dataset as there is no other reference to a 

genus within the family from the local fauna. Conversely, higher taxonomic 

assignments are removed if a representative of the group is identified at a lower 

taxonomic level. Mammals that are not formally named but are suggested to represent a 

previously undescribed taxon (e.g., ?Purgatoriidae genus and species indeterminate A 

and ?Purgatoriidae genus and species indeterminate B from the earliest Torrejonian 

Farrand Channel and Horsethief Canyon local faunas of northeastern Montana 

[Clemens and Wilson, 2009]) are also retained in the dataset. 

 The taxonomic history of many of the mammals included within this study is 

remarkably muddled. Several groups have been the focus of recent, comprehensive 

taxonomic studies (e.g., latest Cretaceous metatherians [e.g., Davis, 2007]) and I 

included many of the suggested revisions from these studies here. However, although 

not intended to reflect any decisive opinions on the validity of certain taxa, a number of 

taxonomic decisions were made within this study. For example, Mckennatherium 

Simpson, 1935 is considered a valid taxon but Diacocherus Gingerich, 1983 is 
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recognized as a synonym of Adunator Russell, 1964 (see Secord, 2008); “Leptacodon” 

packi Jepsen, 1930 and “L.” munusculum Simpson, 1935 are considered distinct from 

other members of the genus (e.g., L. rosei Gingerich, 1987, L. tener Matthew and 

Granger, 1921) and are assigned to ?Leptacodon (see Scott, 2008; Manz and Bloch, in 

press); and Didymictis dellensis is recognized as a valid taxon (see Rankin, 2009). 

 

4.3.2 Statistical Methods 

Latitudinal richness gradients were first constructed as the slope of a linear 

regression of the taxonomic richness for each assemblage from a faunal zone on the 

paleolatitude of the assemblage. Following this, taxonomic richness values were 

calculated for each formation within each faunal interval. Once grouped, latitudinal 

richness gradients were evaluated as the slope of a linear regression of the taxonomic 

richness for each formation on the mean paleolatitude of the fossil assemblages within 

the formation. Notably, Rose et al. (2011) grouped assemblages into nine geographic 

regions (e.g., Northern Alberta [north of paleolatitude 59.5°N], Southern Alberta [south 

of paleolatitude 59.5°N]), based on quadrats that Simpson (1964) and Badgley and Fox 

(2000) assembled with data on extant mammals. However, given the major shifts in 

climate and paleogeography across the last 66 million years, it is unlikely that these 

regions maintain much resemblance to those in the past and are actually sampling 

different environments. Grouping assemblages within formations, although presenting 

its own issues (see Benton et al. [2011] for a discussion), is a more suitable approach as 

geological formations are generally defined on similar facies or sets of facies, and 

likely comprise a smaller number of habitats. 
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To determine whether the observed patterns are simply artifacts of differential 

sampling intensities, I used a similar modeling method to that outlined by Smith and 

McGowan (2007), Lloyd (2012) and Mannion et al. (2012). In this approach, both the 

number of assemblages within each formation and the site occupancy (i.e., the total 

number of observed and unique genus-assemblage pairs) within each formation were 

calculated and used as proxies for sampling. The natural logarithm of the taxonomic 

richness and the number of assemblages from each formation were assessed with linear 

regressions. The slopes of the linear regressions of the natural logarithm of the generic 

richness within each geological formation and natural logarithm of site-occupancy 

within each formation were also subsequently examined. Finally, the residuals of this 

latter regression were used to examine the correlation between variance in the number 

of assemblages and the number of genera within each formation on the mean 

paleolatitude of the assemblages within each formation. 

All analyses were performed in R version 3.0.2 (R Development Core Team, 

2015). 

 

4.4 Results 

 For all four faunal interval zones examined, spanning the latest Cretaceous and 

early Paleogene, the slopes of the regressions of mammalian taxonomic richness on the 

paleolatitude of each assemblage do not differ significantly from zero (Figures 4.5-4.8). 

Moreover, these regressions indicate that there is little correlation between richness and 

latitude, with the r2 values ranging from just 0.0002 to 0.087. Similarly, the slopes of 

the regression of taxonomic richness for each formation on the mean paleolatitude of 
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the fossil assemblages within the formation are not statistically different from zero for 

the four intervals (Figures 4.9-4.12). These regressions also provide little explanation 

for differences in richness. In fact, for the highest correlation, based on the Lancian 

assemblages, variation in paleolatitude explains only 35.5% of the variation in generic 

richness. 

 In contrast to these findings, most of the linear regressions of taxonomic 

richness and the number of assemblages within each formation show slightly higher 

correlations, with r2 values for the four faunal intervals ranging from 0.158 to 0.696 

(Figures 4.13-4.16). The correlations based on assemblages from the Lancian, Puercan 

and Tiffanian are also statistically significant. Generic richness is also significantly 

correlated with the site-occupancy of genera within each formation (Figures 4.17-4.20). 

More precisely, the r2 values for the four intervals are higher than 0.80 and all of the 

correlations are highly significant. In addition, the regressions of the residuals of the 

richness versus the site-occupancy within each formation analysis on paleolatitude 

show little correlation. This suggests that differences in the taxonomic richness among 

formations, even without the influence of differential sampling, are still not strongly 

linked with paleolatitude (Figures 4.21-4.24). 

 

4.5 Discussion 

The latitudinal diversity gradient is one of the most widely recognized 

ecological patterns (Platt, 1964; Brown and Lomolino, 1998; Gaston, 2000; Hawkins, 

2001; Willig et al., 2003; Hillebrand, 2004; Mittelbach et al., 2007). Although the 

establishment and maintenance of this phenomenon is poorly understood, the gradient 
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is commonly suggested to have been in place through most of the last 544 million years 

(see e.g., Ricklefs, 1987; Crane and Lidgard, 1989; Crame, 2001; Hillebrand, 2004; 

Leighton, 2005; Jablonski et al., 2006; Mannion et al. 2014). Several recent studies, 

however, have demonstrated that certain taxonomic groups did not conform to this 

pattern during parts of the Mesozoic and early Cenozoic. Mannion et al. (2012), for 

instance, showed that non-avian dinosaurian richness throughout the Mesozoic was 

higher in temperate latitudes than tropical latitudes. Studying diversity trends in Eocene 

insects from North America, Archibald et al. (2010) discovered that the richness among 

assemblages within more temperate latitudes during this interval was comparable to 

that from modern tropical latitudes. 

More importantly, for the purposes of this study, Rose et al. (2011) reported that 

a latitudinal diversity gradient in middle Paleocene mammals from the Western Interior 

of North America (from approximately 61.5 to 58 million years ago) was absent (i.e., 

no differences in taxonomic richness across latitude). Rose et al. (2011) assessed a 

number of possible reasons for this pattern, including sampling biases, homogeneity 

among faunas, topographic relief, and a reduced latitudinal temperature gradient during 

this interval. However, none of these causes were thought by these authors to 

sufficiently explain the lack of a latitudinal diversity gradient. Given these findings, 

Rose et al. (2011) suggested that climate and mammalian communities during the 

Paleocene were unstable, with some of the poorly understood archaic mammals from 

this interval (e.g., multituberculates, condylarths) potentially responding differently 

than extant mammals. Mannion et al. (2014) further suggested that, despite the 



  

   204 

latitudinal variation in temperature reported by Rose et al. (2011), low seasonality 

might have led to the absence of a diversity gradient. 

Similar to the results of Rose et al. (2011), my findings indicate that the modern 

latitudinal diversity gradient, at least among mammals, was not established within 

North America during the latest Cretaceous and early Paleogene; rather, a diversity 

gradient during this interval was not present, with no differences in mammalian 

taxonomic richness with latitude (Figures 4.5-4.12). Moreover, although a linear 

modeling approach was employed here rather than sample-standardizations, as with the 

study of Rose et al. (2011), correlation between the generic richness within each 

geological formation and the occurrence of taxa within each formation suggests that 

differences in diversity may reflect variability in sampling. In particular, a robust 

relationship was revealed between the taxonomic richness of mammals within each 

geological formation and site-occupancy (i.e., the number of observed and unique 

genus-assemblage pairs) within each formation (Figures 4.17-4.20). The residuals of 

the regression between generic richness within a formation and the site-occupancy of 

taxa within each formation reflect variance in richness that is not explained by 

sampling (Mannion et al., 2012, 2014). The linear correlations between these residuals 

and paleolatitude for the four intervals are not significant and the low values of the r2 

further indicate that few of the residual differences in richness, after accounting for 

differential sampling intensity among latest Cretaceous and earliest Paleogene 

assemblages, are strongly associated with paleolatitude (Figures 4.21-4.24); these 

findings provide added support to those of Rose et al. (2011). 
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Despite these results corroborating some of the findings of Rose et al. (2011), a 

close examination of the methods and conclusions of these authors provokes some 

concerns. Perhaps most importantly, Rose et al. (2011) examined oxygen isotope values 

among phenacodontid condylarths from Torrejonian and Tiffanian assemblages across 

North America and inferred, based on these data, that the temperature gradient during 

this interval was relatively steep and similar to the modern gradient. A close 

examination of the time intervals and geographic areas from which the sampled 

specimens used to construct the temperature gradient were recovered reveals several 

apprehensions. Specifically, the gradient presented by these authors is based on 

sampled specimens from the middle Torrejonian (To2) to the early middle Tiffanian 

(Ti3) (from approximately 62.5 to 59.5 million years ago). Oxygen isotope records 

from benthic foraminifera indicate that global temperatures varied across this interval 

of time, with cooling occurring during the middle Paleocene after a long-term warming 

trend (e.g., Zachos et al, 2001); fossil floral composition and leaf margin data (e.g., 

Wolfe and Upchurch, 1987; Wolfe, 1994), as well as non-mammalian faunal data 

(Markwick, 1998) further support these trends. These changes in the mean annual 

temperature through the Torrejonian and Tiffanian could influence differences among 

the oxygen isotope values obtained by Rose et al. (2011), with differences in the 

isotopic values encompassing variance in both time and geography (see Fricke and 

Wing, 2004 for similar concerns).  

In fact, by separately assessing the Torrejonian and early Tiffanian (Ti1) oxygen 

isotope oxygen values recorded by Rose et al. ([2011], supplementary material, table 

DR2), differences within the temperature gradient are apparent. The temperature 
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gradient from the Torrejonian samples recovers a relatively steep slope, similar to the 

gradient presented by these authors (Rose et al., 2011, fig. 3), although this is entirely 

contingent on a single value from the Crazy Mountains Basin of southern Montana 

(Figure 4.25). In contrast, the gradient recovered from the earliest Tiffanian values, 

based solely on specimens from Alberta and southern Montana, displays a nearly flat 

temperature slope (Figure 4.26); a simple two-sample unpaired t-test also shows that 

the mean isotope values between these two regions are not statistically different (t-

value = 1.174; p-value = 0.250). Based on these findings, it seems clear that without 

restricting comparisons of isotopic values to smaller time intervals and broader 

geographic ranges, it is not possible to reliably reconstruct a continental climate curve 

for the middle Paleocene from the existing distribution of data. 

In addition to these findings, Rose et al. (2011) noted that the recovery of a 

steep latitudinal temperature gradient differs from studies that examined the 

temperature gradient among Late Cretaceous and early Paleogene palynomorphs and 

floras (Wolfe and Upchurch, 1987; Johnson and Ellis, 2002; Sluijs et al., 2006), but 

were comparable to some studies that analyzed isotopes from this time interval (e.g., 

Fricke and Wing, 2004; Ufnar et al., 2004). Their interpretations of several of these 

studies, however, are somewhat peculiar. Fricke and Wing (2004), for instance, noted a 

“two-slope” temperature gradient over North America during the early Eocene, with the 

gradient between 30 and 50°N steeper than at present and the gradient from 50 to 80°N 

much shallower. The samples examined by Rose et al. (2011) span the two suggested 

temperature gradients of Fricke and Wing (2004), ranging from paleolatitudes 33.5 to 

61.5°N. Ufnar et al. (2004) examined oxygen isotope values of sphaerosiderites (minute 
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FeCO3 nodules that formed in ancient wetland soils) and siderite-bearing paleosols to 

reconstruct the paleohydrology of Late Cretaceous environments across North America. 

Temperature is incorporated as a parameter in their analyses but a steep temperature 

gradient is not mentioned and certainly never assessed. Hence, based on the literature, 

including the studies cited here and others (e.g., Greenwood and Wing, 1995; Amiot et 

al., 2004; Sluijs et al., 2009), the steep temperature gradient proposed by Rose et al. 

(2011) can only be considered with some caution or, at the very least, as an unusual and 

unique discovery. 

Given these concerns of the study by Rose et al. (2011), I consider the 

temperature gradient during the Late Cretaceous and early Paleogene to have been 

shallow and I suggest that a shallow temperature gradient was one of the principal 

mechanisms leading to the lack of a latitudinal diversity gradient among mammals from 

this interval. Mammalian faunal instability during the latest Cretaceous and early 

Paleogene has been demonstrated (e.g., Mitchell et al., 2012; Wilson, 2014; Chapter 

One of this dissertation) and, as proposed by Rose et al. (2011), also could have 

contributed to this pattern. Additionally, although assessments of seasonality within 

North America during the latest Cretaceous and early Paleogene are few (e.g., Wolfe 

and Upchurch, 1987; Valdes et al., 1996; Falcon-Lang, 2003), more equable climates 

during these intervals also could have resulted in the absence of a diversity gradient; 

notably, an increase in seasonality is reported during the Eocene (e.g., Eldrett et al., 

2009, 2014), and Archibald et al. (2010) and Mannion et al. (2012) have suggested that 

the modern latitudinal diversity gradient may have developed shortly after this time. 
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4.6 Conclusions 

The world’s richest discovered succession of mammals from the latest 

Cretaceous and early Paleocene is preserved in continental strata of the Western 

Interior of North America (Cifelli et al., 2004; Lofgren et al., 2004). The present study 

suggests that the modern latitudinal diversity gradient, one of the widely recognized 

patterns in ecology, was not established among these mammalian assemblages. Instead, 

the latitudinal diversity gradient during this time did not significantly differ from a flat 

gradient. Although a strong correlation between mammalian taxonomic richness and 

sampling intensity is present, differential sampling between formations does not 

significantly alter this recorded pattern.  

Notably, Rose et al. (2011) also reported the absence of a latitudinal diversity 

gradient within mammalian assemblages from the middle Paleocene; however, based 

on their examined oxygen isotope values, concluded that the temperature gradient 

during this middle Paleocene was steep. A close assessment of the specimen samples 

used to support these claims reveals some concerns. As a result, I do not accept the 

conclusions of Rose et al. (2010); instead, I propose that a weak latitudinal temperature 

gradient contributed to the absence of a diversity gradient. Faunal instability (e.g., 

Mitchell et al., 2012; Chapter one of this dissertation) and more equable climates 

(Wolfe and Upchurch, 1987; Falcon-Lang, 2003) could also have led to a flattened 

diversity gradient. 
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Figure 4.1.—Outline map of the Western Interior of North America with the location of 

the Lancian mammalian assemblages.  
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Figure 4.2.—Outline map of the Western Interior of North America with the location of 

the Puercan mammalian assemblages 
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Figure 4.3.—Outline map of the Western Interior of North America with the location of 

the Torrejonian mammalian assemblages. 
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Figure 4.4.—Outline map of the Western Interior of North America with the location of 

the Tiffanian mammalian assemblages 
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Figure 4.5.—Least squares linear regression for generic richness among Lancian 

assemblages from the Western Interior of North American and paleolatitude of 

assemblages. The slope of the regression is not statistically significant (t-value = 1.803, 

p-value = 0.080).  
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Figure 4.6.—Least squares linear regression for generic richness among Puercan 

assemblages from the Western Interior of North American and paleolatitude of 

assemblages. The slope of the regression is not statistically significant (t-value = -

0.093, p-value = 0.926). 
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Figure 4.7.—Least squares linear regression for generic richness among Torrejonian 

assemblages from the Western Interior of North American and paleolatitude of 

assemblages. The slope of the regression is not statistically significant (t-value = 0.893, 

p-value = 0.377). 
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Figure 4.8.—Least squares linear regression for generic richness among Tiffanian 

assemblages from the Western Interior of North American and paleolatitude of 

assemblages. The slope of the regression is not statistically significant (t-value = 1.904, 

p-value = 0.061). 
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Figure 4.9.—Least squares linear regression for generic richness within each geological 

formation from the Lancian of the Western Interior of North American and mean 

paleolatitude of the assemblages within the formation. The slope of the regression is not 

statistically significant (t-value = 1.965, p-value = 0.090). 
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Figure 4.10.—Least squares linear regression for generic richness within each 

geological formation from the Puercan of the Western Interior of North American and 

mean paleolatitude of the assemblages within the formation. The slope of the regression 

is not statistically significant (t-value = -0.124, p-value = 0.904). 
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Figure 4.11.—Least squares linear regression for generic richness within each 

geological formation from the Torrejonian of the Western Interior of North American 

and mean paleolatitude of the assemblages within the formation. The slope of the 

regression is not statistically significant (t-value = -0.020, p-value = 0.984). 
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Figure 4.12.—Least squares linear regression for generic richness within each 

geological formation from the Tiffanian of the Western Interior of North American and 

mean paleolatitude of the assemblages within the formation. The slope of the regression 

is not statistically significant (t-value = 1.549, p-value = 0.145). 
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Figure 4.13.—Least squares linear regression for the natural logarithm of the generic 

richness within each geological formation from the Lancian of the Western Interior of 

North American and natural logarithm of the number of assemblages within each 

formation. The slope of the regression is statistically significant (t-value = 2.460, p-

value = 0.043). 
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Figure 4.14.—Least squares linear regression for the natural logarithm of the generic 

richness within each geological formation from the Puercan of the Western Interior of 

North American and natural logarithm of the number of assemblages within each 

formation. The slope of the regression is statistically significant (t-value = 2.394, p-

value = 0.044).  
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Figure 4.15.—Least squares linear regression for the natural logarithm of the generic 

richness within each geological formation from the Torrejonian of the Western Interior 

of North American and natural logarithm of the number of assemblages within each 

formation. The slope of the regression is not statistically significant (t-value = 1.371, p-

value = 0.20).  
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Figure 4.16.—Least squares linear regression for the natural logarithm of the generic 

richness within each geological formation from the Tiffanian of the Western Interior of 

North American and natural logarithm of the number of assemblages within each 

formation. The slope of the regression is statistically significant (t-value = 5.455, p-

value < 0.001).  
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Figure 4.17.—Least squares linear regression of the natural logarithm of the generic 

richness within each geological formation from the Lancian of the Western Interior of 

North American and natural logarithm of the site-occupancy of genera within each 

formation. The slope of the regression is statistically significant (t-value = 7.406, p-

value < 0.001). 
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Figure 4.18.—Least squares linear regression of the natural logarithm of the generic 

richness within each geological formation from the Puercan of the Western Interior of 

North American and natural logarithm of the site-occupancy of genera within each 

formation. The slope of the regression is statistically significant (t-value = 9.333, p-

value < 0.001). 
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Figure 4.19.—Least squares linear regression of the natural logarithm of the generic 

richness within each geological formation from the Torrejonian of the Western Interior 

of North American and natural logarithm of the site-occupancy of genera within each 

formation. The slope of the regression is statistically significant (t-value = 8.088, p-

value < 0.001). 
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Figure 4.20.—Least squares linear regression of the natural logarithm of the generic 

richness within each geological formation from the Tiffanian of the Western Interior of 

North American and natural logarithm of the site-occupancy of genera within each 

formation. The slope of the regression is statistically significant (t-value = 24.851, p-

value < 0.001). 
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Figure 4.21.—Linear regression of residuals of regression of the natural logarithm of 

the generic richness within each geological formation from the Lancian of the Western 

Interior of North American versus natural logarithm of the site-occupancy of genera 

within each formation and the mean paleolatitude of the assemblages within the 

formation. The slope of the regression is not statistically significant (t-value = 1.738, p-

value = 0.126). 
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Figure 4.22.—Linear regression of residuals of regression of the natural logarithm of 

the generic richness within each geological formation from the Puercan of the Western 

Interior of North American versus natural logarithm of the site-occupancy of genera 

within each formation and the mean paleolatitude of the assemblages within the 

formation. The slope of the regression is not statistically significant (t-value = 1.164, p-

value = 0.278). 
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Figure 4.23.—Linear regression of residuals of regression of the natural logarithm of 

the generic richness within each geological formation from the Torrejonian of the 

Western Interior of North American versus natural logarithm of the site-occupancy of 

genera within each formation and the mean paleolatitude of the assemblages within the 

formation. The slope of the regression is not statistically significant (t-value = 0.647, p-

value = 0.532). 
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Figure 4.24.—Linear regression of residuals of regression of the natural logarithm of 

the generic richness within each geological formation from the Tiffanian of the Western 

Interior of North American versus natural logarithm of the site-occupancy of genera 

within each formation and the mean paleolatitude of the assemblages within the 

formation. The slope of the regression is not statistically significant (t-value = -0.096, 

p-value = 0.925). 
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Figure 4.25.—Least squares linear regression of oxygen isotope gradient from biogenic 

δ18O (Vienna Standard Mean Ocean Water) in middle Torrejonian (To2) mammals 

from the San Juan Basin of New Mexico and Crazy Mountain Basin of southern 

Montana. The slope of the regression is statistically significant (t-value = -3.552, p-

value = 0.001). Data obtained from Rose et al. (2011, supplementary material, table 

DR2). 
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Figure 4.26.—Least squares linear regression of oxygen isotope gradient from biogenic 

δ18O (Vienna Standard Mean Ocean Water) in earliest Tiffanian (Ti1) mammals from 

the Crazy Mountain Basin of southern Montana and Alberta Basin of central Alberta. 

The slope of the regression is not statistically significant (t-value = -1.174, p-value = 

0.250). Data obtained from Rose et al. (2011, supplementary material, table DR2). 
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5 Summary and Conclusions 

5.1 Dissertation Summary 

 The patterns of latest Cretaceous and early Paleogene mammalian evolution 

have become an important focus of study as a consequence of interest in the dramatic 

adaptive radiation that mammals underwent after the catastrophic events near the 

Cretaceous/Paleogene boundary (K/Pg boundary) (approximately 65.6 million years 

ago) (see e.g., Matthew, 1915; Van Valen, 1978; Archibald, 1982; Alroy, 1999; 

Springer et al., 2003; Wible et al., 2009; Fox and Scott, 2011). The world’s richest 

discovered succession of mammals from this time interval, offering direct evidence of 

these patterns, is preserved in continental strata of North America (Cifelli et al., 2004; 

Lofgren et al., 2004). Throughout much of the late Mesozoic and early Cenozoic, this 

region was tectonically active, with the emergence of the Cordilleran orogenic fold-

thrust belt and Western Interior foreland basin. Several major marine transgressions 

also occurred during this interval and resulted in the development of the Western 

Interior epicontinental seaway that bisected the continent during the Late Cretaceous 

(DeCelles, 2004; Miall et al 2008).  

The latest Cretaceous and Paleogene are further marked by episodes of rapid 

climatic warming and cooling (e.g., Zachos et al., 2001) and intensive volcanism (e.g., 

Courtillot et al., 1988; Keller et al., 2008). Mammals were undoubtedly affected by 

these disturbances (e.g., Archibald, 1982, 1996, in Archibald and Fastovsky, 2004; 

Clemens, 2002; Wilson, 2014), however, much remains uncertain about some basic 

issues, including patterns of mammalian richness and evenness across North America. 

To better comprehend the evolutionary dynamics of mammals across the Late 



  

   246 

Cretaceous and early Paleogene, I focused on the paleobiogeography of mammals from 

the Western Interior of North America. 

Chapter Two tested the hypothesis that the northern and southern parts of the 

Western Interior of North America represented distinct biogeographic provinces during 

parts of the Late Cretaceous and early Paleogene (e.g., Sloan, 1969; Lillegraven, 1969; 

Anthony and Maas, 1990; Rowe et al., 1992; Weil, 1999; Williamson and Weil, 2008; 

Donohue et al., 2013) and the implications of discrete evolutionary processes possibly 

operating in these different regions. To accomplish this task, information on latest 

Cretaceous and early Paleocene mammalian fossil occurrences were compiled in a 

newly constructed dataset. The presence of biogeographic provinces were assessed with 

non-hierarchical cluster analyses, non-metric multidimensional scaling, minimum 

spanning trees, and simple chi-squared analyses. The results of these analyses provided 

little quantitative support for the presence of mammalian faunal provinciality during 

this interval.  

The relative abundances of mammalian genera from the latest Cretaceous of 

North America were examined in Chapter Three. A standardized resampling approach 

was employed to generate assemblage-specific abundance estimates of each 

mammalian genus based on the faunal composition from the well-studied Type Lance 

local fauna from the Lance Formation of northeastern Wyoming (Clemens, 1964, 1966, 

1973; Krause, 1992). Using these estimates, the faunal similarity between these 

assemblages was quantitatively assessed and genera that were unusually abundant or 

rare compared to the Type Lance were identified. The results generally reveal that 

eutherians were more abundant in the northern assemblages relative to the faunal 
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composition of the Type Lance and other more southerly sites, whereas some 

multituberculates and marsupials are unusually rare in the northern assemblages. These 

findings reveal that some eutherians, especially primitive ungulates, originated and 

underwent some diversification and expansion during the latest Cretaceous, prior to the 

demise of the dinosaurs and more primitive multituberculates and metatherians. 

Environmental changes associated with the Late Maastrichtian Event and regression of 

the Western Interior epicontinental seaway (see Wilson, 2014) are suggested to have 

led to these changes and provided the opportunity for the expansion of eutherian 

mammals within these latest Cretaceous assemblages. 

Finally, in Chapter Four, the latitudinal diversity gradient within latest 

Cretaceous and early Paleogene mammals from North America was assessed. The 

modern latitudinal diversity gradient (i.e., the increase in taxonomic richness from the 

poles to the equator) is often suggested to have been in place through most of the 

Phanerozoic (see e.g., Ricklefs, 1987; Crane and Lidgard, 1989; Crame, 2001; 

Hillebrand, 2004; Leighton, 2005; Jablonski et al., 2006). Several recent studies, 

however, have shown that this pattern might not be as general as previously thought 

(e.g., Archibald et al., 2010; Rose et al., 2011; Mannion et al. 2012). Using least-

squares regression analyses, a latitudinal diversity gradient within latest Cretaceous and 

early Paleogene mammals is shown here to have been absent, with no statistical 

differences in taxonomic richness across latitude during this interval. A strong 

association between taxonomic richness and sampling intensity is revealed but, after 

mediating for the variance in sampling intensity among formations, a latitudinal 

diversity gradient comparable to the present is still not recovered. Unlike previous 
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studies (e.g., Rose et al., 2011), a shallow temperature gradient during the Late 

Cretaceous and early Paleogene, along with more equable climates throughout much of 

this interval, are suggested to have led to this pattern; instability within North American 

mammalian communities near the K/Pg boundary could also have resulted in the lack 

of a latitudinal gradient. 

Collectively, these studies suggest that the paleogeography and climatic changes 

that characterized the latest Cretaceous and early Paleogene of the Western Interior of 

North America resulted in complex biogeographic patterns among mammals from this 

interval, unlike those from earlier parts of the Late Cretaceous and those seen within 

modern times. These studies also underscore the value of critically assessing 

hypotheses concerning biogeographic patterns to better understand the interactions 

between mammals and their environments. The different approaches employed within 

these studies, including both conventional techniques (e.g., similarity indices) and more 

advanced ordination and clustering methods, further demonstrated the importance of 

quantitative analyses in these examinations. Although future attempts should be made 

to integrate information from outside the Western Interior of North America (see 

discussion below), the compilation of information on latest Cretaceous and early 

Paleogene mammalian fossil occurrences from the Western Interior of North America, 

including taxonomic, geographic, and stratigraphic data, forms a critical resource for 

other evolutionary analyses.  

 

5.2 Localities outside of the Western Interior of North America 

 Because the available record of Late Cretaceous and early Paleogene 
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mammalian faunas is geographically concentrated in deposits in the Western Interior of 

North America, the discussions in this dissertation have centered on the patterns of 

mammalian biogeography and evolution evinced from this region. Several discoveries 

of faunas outside of the Western Interior, however, offer new opportunities to 

reevaluate patterns of evolution among approximately contemporaneous mammalian 

faunas. Some of these faunas have been recovered in Virginia (Rose, 1999, 2010), 

Louisiana (Simpson, 1932), and South Carolina (Schoch 1998). 

 Perhaps the best known of these exceptions is the early Eocene Red Hot local 

fauna from the Gulf Coastal Plain of Mississippi (Beard, 2008; Beard and Dawson, 

2009). The Red Hot local fauna samples a remarkably different ecosystem than those 

present in the mid-latitude Western Interior Basin during this time interval. For 

example, the paleolatitude of the Bighorn Basin of northern Wyoming, a basin that has 

yielded the most diverse and abundant early Eocene mammalian fossils, was roughly 

near paleolatitude 47°N, whereas that of the Red Hot local fauna of Mississippi was 

approximately 32°N (Harrington, 2003). The climate of the Bighorn Basin during the 

early Eocene was characterized as warm, with the mean annual temperatures near 20°C 

and mean annual precipitation near 670-683 millimeters (Kraus and Riggins, 2007). 

The climate of the Gulf Coastal Plain, in comparison, was tropical, with the mean 

annual temperature estimated to be 26-27°C and mean annual precipitation exceeding 

500 centimeters (Wolfe and Dilcher, 2000). 

In the most recent report, Beard and Dawson (2009) recognize the fossil 

remains of 33 mammalian taxa from the Red Hot local fauna, including 20 previously 

unknown species, and one species previously only known from early Eocene deposits 



  

   250 

in northern Europe and another previously only reported from Mongolia and China. 

These findings, like those previously presented by Gingerich (2003) and Bowen et al. 

(2002), underscore the intercontinental dispersal patterns of mammals near the 

Paleocene/Eocene boundary. Additionally, if the nine taxa that are considered 

indeterminate at the species level are disregarded, 20 of the 24 species (or roughly 83 

percent) are endemics; based on these findings, Beard and Dawson (2009) suggest that 

substantial biogeographic provincialism was established in North America during the 

early Eocene. Similar to discoveries in the Bighorn Basin (Gingerich, 1989; Chester et 

al., 2010), Beard and Dawson (2009) also comment on the presence of several small-

bodied mammals, relative to their older, late Paleocene relatives. 

Middle Paleocene assemblages from the Goler Formation of the northern part of 

the Mojave Desert in southcentral California represent other important exceptions (e.g., 

McKenna, 1955, 1960; McKenna et al., 1987; Lofgren et al., 2002, 2008, 2014; 

Albright et al., 2009; Williamson and Lofgren, 2014). Although much remains to be 

studied, the assemblages from the Goler Formation were likely deposited in a near- 

coastal setting, with high seasonal precipitation (Torres and Gaines, 2011, 2013). 

Evidence based on detrital zircons recovered from fluvial deposits indicate that 

southern California was separated from the Western Interior during the early Paleogene 

(Ingersoll et al., 2013) and only four of the 20 species (just 20 percent) identified from 

the Goler assemblages can be confidently assigned to species known from basins in the 

Western Interior (Lofgren et al., 2014). Similar to the comments of Beard and Dawson 

(2009), Lofgren et al. (2014) and Williamson and Lofgren (2014) suggest that southern 

California likely represented a distinct biogeographic province during this time.  
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These few exceptions, documenting mammalian evolution in sometimes 

dramatically different ecosystems, permit detailed and thorough comparisons to 

contemporaneous localities in the Western Interior. These types of comparisons are 

fundamental to our understanding of the influence of paleogeography and climate in the 

evolutionary history of mammals. As noted by Lofgren et al. (2004), faunal data are 

needed throughout all latitudes of North America to more fully assess the shifting 

patterns. 
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Appendix 1.—R script employed to assess compositional similarities and 

differences among latest Cretaceous mammalian assemblages, using resampling 

with replacement and the Type Lance local fauna as the reference sample.  

 

########################################## 

#Read in the relative abundance matrix 

data<-read.csv(file.choose(),header=T,stringsAsFactors=T) 

 

#Organize data from assemblage and occurrence matrix, including rounding 

#recalibrated number of identified specimens (i.e., rNISP) to lower integer 

data2<-data[,c(2:ncol(data))] 

rownames(data2)<-data[,1] 

data<-floor(data2) 

total.occs<-sum(colSums(data)) 

tax.prop<-total.occs/nrow(data) 

tax.site<-floor(tax.prop/ncol(data)) # rounded, too!! 

 

stream<-stack(data)[,1] 

stream<-stream+1 

hist(log(stream)) 

 

#Create a list of the mammalian genera from the Type Lance local fauna that will be 

#subsampled 
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a<-8 # column with information mammalian occurrence and abundances from the Type 

#Lance local fauna 

genlist<-c() 

for(i in 1:nrow(data)){ 

 temp<-data[,a] 

 genlist<-c(genlist,rep(i,temp[i])) 

} 

 

#Subsample mammalian genera from the Type Lance based on the number of taxa 

#within the comparative local faunas 

#Note that using site.sampled[[5]], for instance, will retrieve all iterations for the local 

#fauna in the fifth column 

#Set to sample 1000 times 

no.samples<-1000 

site.sampled<-list() 

for(i in 1:ncol(data)){ 

 temp<-matrix(0,nrow=nrow(data),ncol=no.samples) 

 for(j in 1:no.samples){ 

   temp2<-table(sample(genlist,sum(data[,i]))) 

#use replace=T if you want to compare a small site to larger things 

   for(k in 1:length(temp2)){ 

     taxa.temp<-names(temp2[k]) 

     temp[as.numeric(taxa.temp),j]<-temp2[k] 
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   } 

 } 

 site.sampled[[i]]<-temp 

} 

 

#Calculate means and standard deviations for taxa and for each of the comparative 

#local faunas 

site.sd<-site.means<-matrix(ncol=ncol(data),nrow=nrow(data)) 

for(i in 1:length(site.sampled)){ 

 site.means[,i]<-rowMeans(site.sampled[[i]]) 

 site.sd[,i]<-apply(site.sampled[[i]],1,sd) 

} 

 

#Calculate the number of specimens that extend beyond the range of the null (2*SD) 

#from the rNISP data 

outside.con.ints<-matrix(0,nrow=nrow(data),ncol=ncol(data)) 

for(i in 1:nrow(data)){ 

 for(j in 1:ncol(data)){ 

   mean.temp<-site.means[i,j] 

   sd.temp<-site.sd[i,j] 

   data.temp<-data[i,j] 

   range.temp<-c(mean.temp-sd.temp,mean.temp+sd.temp) 

   if(data.temp<=range.temp[1]){ 
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     outside.con.ints[i,j]<-data.temp-range.temp[1] 

   }else if(data.temp>=range.temp[2]){ 

     outside.con.ints[i,j]<-data.temp-range.temp[2] 

   } 

 } 

} 

 

rownames(outside.con.ints)<-rownames(site.means)<-rownames(site.sd)<-

rownames(data) 

colnames(outside.con.ints)<-colnames(site.means)<-colnames(site.sd)<-colnames(data) 

 

#Write the csv files 

write.csv(outside.con.ints,file="outside.con.ints.csv") 

write.csv(site.means,file="site.means.csv") 

write.csv(site.sd,file="site.sd.csv") 
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APPENDIX 2.—Taxonomic, Stratigraphic, and Geographic Information of Latest Cretaceous and Early Paleogene 

Mammalian Assemblages from the Western Interior of North America. 

Table S4.1.—Occurrences of mammalian genera within Lancian local faunas from the Western Interior of North America. Presence 

(1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: PP = Pediomys Point (Clemens and Nelms, 

1993; Clemens, 1995, 2003), SC = Scollard (Lillegraven, 1969; Lillegraven and McKenna, 1986; Fox, 1989, 1994, 1997; Fox and 

Naylor, 2003; Case et al., 2005; Wilson and Riedel, 2010; Williamson et al., 2012), WK = Wounded Knee (Fox, 1989, 1997), GR = 

Gryde (Storer, 1991; Johanson, 1996a; Case et al., 2005; Williamson et al., 2012), CC = Chambery Coulee (Fox et al., 2007), LM = 

Little Missouri Badlands (PTRM V92067) (Hunter and Pearson, 1996; Hartman, 1999; Hunter and Archibald, 2002), PB = Pretty 

Butte (Hunter and Archibald, 2002), MM = Marmath (Hunter and Archibald, 2002), SB = Sunset Butte (Hunter and Pearson, 1996; 

Hunter and Archibald, 2002), MB = Mud Butte (Hunter and Archibald, 2002), PT3 = PTRM V89003 (Hunter and Archibald, 2002), 

PT4 = PTRM V89004 (Hunter and Archibald, 2002), SF = Stumpf (Hoganson et al., 1994; Murphy et al., 1995; Kielan-Jaworowska et 

al., 2004), MR = Miller Ranch (Hunter and Archibald, 2002), IR = Iron Lightning (Waage, 1968; Clemens et al., 1979; Kielan-

Jaworowska et al., 2004), RO = Red Owl (Wilson, 1987), JP = Joe Painter (Wilson, 1983), EU = Eureka (Wilson, 1983), BH = Black 

Horse (Wilson, 1965; Clemens, 1966; Archibald, 1982; Fox and Naylor, 1986; Kielan-Jaworowska et al., 2004), HD = Harding 

County (Wilson, 1965; Sloan and Russell, 1974; Archibald, 1982; Lillegraven, 1987; Kielan-Jaworowska et al., 2004; Case et al., 
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2005), HCM = Hell Creek Montana (Simpson, 1927a; Clemens, 1968; Archibald, 1982; Johanson, 1996a; Wood and Clemens, 2001; 

Kielan-Jaworowska et al., 2004; Wilson, 2005, 2014), MT = Muddy Tork (Hunter et al., 1997), PWD = Powderville (Bryson, 1952; 

Clemens et al., 1979), CB = Claw Butte (Hunter and Archibald, 2002), FL = Fallon County (Clemens et al., 1979; Archibald, 1982), 

TL = Type Lance (Clemens, 1964, 1966, 1973; Novacek and Clemens, 1977; Krause, 1992; Case et al., 2005; Wilson and Riedel, 

2010), GL = General Lance (Wilson and Riedel, 2010), GW = Greasewood Creek (Whitmore and Martin, 1986), MC = Mule Creek 

Junction (Whitmore, 1985), BBS = Black Butte Station (Clemens et al., 1979; Breithaupt, 1982; Donohue et al., 2013), DBH = 

Dumbbell Hill (Dyer, 1948; Clemens et al., 1979), HF = Hewett’s Foresight (Webb, 2001), FFL = Ferris Formation Lancian (Eberle 

and Lillegraven, 1998a, 1998b; Lillegraven and Eberle, 1999), PA = Pawnee (Carpenter, 1979; Diem, 1999; Wilson et al., 2010), DC 

= Dragon Canyon (Clemens, 1961; Cifelli and Muizon, 1998; Cifelli et al., 1999), AW = Alamo Wash (Lehman, 1981; Flynn 1986), 

and NM5 = New Mexico Museum of Natural History L-4005 (Williamson and Weil, 2008). 
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Genera PP SC WK GR CC LM PB MM SB MB PT3 PT4 SF MR IL RO JP EU BH 
Alostera 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Alphadon 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 
Batodon 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bubodens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Cimexomys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Cimolestes 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Cimolodon 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 
Cimolomys 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
Clemensodon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Didelphodon 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 
Essonodon 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Glasbius 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gypsonictops 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 
Hatchertherium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
?Leptalestes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Leptalestes 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
Meniscoessus 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 
Mesodma 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 1 0 
Nanocuris 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
?Neoplagiaulax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Nortedelphys 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Paracimexomys 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Parectypodus 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Paressonodon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Parikimys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pediomys 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Protalphadon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Protolambda 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 
Schowalteria 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Telacodon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Turgidodon 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S4.1 (continued).—Occurrences of mammalian genera within Lancian local faunas from the Western Interior of North America. 

Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: PP = Pediomys Point (Clemens and 

Nelms, 1993; Clemens, 1995, 2003), SC = Scollard (Lillegraven, 1969; Lillegraven and McKenna, 1986; Fox, 1989, 1994, 1997; Fox 

and Naylor, 2003; Case et al., 2005; Wilson and Riedel, 2010; Williamson et al., 2012), WK = Wounded Knee (Fox, 1989, 1997), GR 

= Gryde (Storer, 1991; Case et al., 2005; Williamson et al., 2012), CC = Chambery Coulee (Fox et al., 2007), LM = Little Missouri 

Badlands (PTRM V92067) (Hunter and Pearson, 1996; Hartman, 1999; Hunter and Archibald, 2002), PB = Pretty Butte (Hunter and 

Archibald, 2002), MM = Marmath (Hunter and Archibald, 2002), SB = Sunset Butte (Hunter and Pearson, 1996; Hunter and 

Archibald, 2002), MB = Mud Butte (Hunter and Archibald, 2002), PT3 = PTRM V89003 (Hunter and Archibald, 2002), PT4 = PTRM 

V89004 (Hunter and Archibald, 2002), SF = Stumpf (Hoganson et al., 1994; Murphy et al., 1995; Kielan-Jaworowska et al., 2004), 

MR = Miller Ranch (Hunter and Archibald, 2002), IR = Iron Lightning (Waage, 1968; Clemens et al., 1979; Kielan-Jaworowska et al., 

2004), RO = Red Owl (Wilson, 1987), JP = Joe Painter (Wilson, 1983), EU = Eureka (Wilson, 1983), BH = Black Horse (Wilson, 

1965; Clemens, 1966; Archibald, 1982; Fox and Naylor, 1986; Kielan-Jaworowska et al., 2004), HC = Harding County (Wilson, 

1965; Sloan and Russell, 1974; Archibald, 1982; Lillegraven, 1987; Kielan-Jaworowska et al., 2004; Case et al., 2005), HCM = Hell 

Creek Montana (Simpson, 1927a; Clemens, 1968; Archibald, 1982; Johanson, 1996a; Wood and Clemens, 2001; Kielan-Jaworowska 

et al., 2004; Wilson, 2005, 2014), MT = Muddy Tork (Hunter et al., 1997), PWD = Powderville (Bryson, 1952; Clemens et al., 1979), 
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CB = Claw Butte (Hunter and Archibald, 2002), FL = Fallon County (Clemens et al., 1979; Archibald, 1982), TL = Type Lance 

(Clemens, 1964, 1966, 1973; Krause, 1992; Case et al., 2005; Wilson and Riedel, 2010), GL = General Lance (Wilson and Riedel, 

2010), GW = Greasewood Creek (Whitmore and Martin, 1986), MC = Mule Creek Junction (Whitmore, 1985), BBS = Black Butte 

Station (Clemens et al., 1979; Breithaupt, 1982; Donohue et al., 2013), DBH = Dumbbell Hill (Dyer, 1948; Clemens et al., 1979), HF 

= Hewett’s Foresight (Webb, 2001), FFL = Ferris Formation Lancian (Eberle and Lillegraven, 1998a, 1998b; Lillegraven and Eberle, 

1999), PA = Pawnee (Carpenter, 1979; Diem, 1999; Wilson et al., 2010), DC = Dragon Canyon (Clemens, 1961; Cifelli and Muizon, 

1998; Cifelli et al., 1999), AW = Alamo Wash (Lehman, 1981; Flynn 1986), and NM5 = New Mexico Museum of Natural History L-

4005 (Williamson and Weil, 2008). 
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Genera HD HCM MT PWD CB FL TL GL GW MC BBS DBH HF FFL PA DC AW NM5 
Alostera 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Alphadon 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 
Batodon 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
Bubodens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cimexomys 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 
Cimolestes 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 
Cimolodon 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 
Cimolomys 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 
Clemensodon 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Didelphodon 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 
Essonodon 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 
Glasbius 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 
Gypsonictops 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 
Hatchertherium 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
?Leptalestes 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 
Leptalestes 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 
Meniscoessus 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 
Mesodma 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 0 
Nanocuris 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
?Neoplagiaulax 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Nortedelphys 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 
Paracimexomys 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 
Parectypodus 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Paressonodon 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 
Parikimys 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 
Pediomys 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Protalphadon 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 
Protolambda 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 
Schowalteria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Telacodon 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Turgidodon 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 
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Table S4.2.—Occurrences of mammalian genera within early Puercan (Pu1) local faunas from the Western Interior of North America. 

Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: FR = Frenchman-1 (Johnston 1980; 

Fox, 1988, 1990a, 1995, 1997), LF = Long Fall (Johnston and Fox, 1984; Fox, 1988, 1990a, 1997; Fox and Youzwyshyn, 1994), PC = 

Pine Cree (Russell, 1974; Van Valen, 1978; Johnston and Fox, 1984), FF = French Fry (Fox, 2002), HH = Hell’s Hollow (Archibald, 

1981, 1982; Archibald et al., 1983a, 1983b), MCK = McKeever (Archibald, 1982; Archibald et al., 1983a, 1983b), MCG = McGuire 

(Lofgren, 1995), FF1 = Ferris Fromation Pu1 (Eberle and Lillegraven, 1998a, 1998b; Eberle, 1999; Lillegraven and Eberle, 1999), ML 

= Mantua Lentil (Jepsen, 1930, 1940; Van Valen, 1978), LDY = Leidy (Van Valen, 1978), LTT = Littleton (Middleton, 1982, 1983; 

Williamson, 1996; Middleton and Dewar, 2004), NCL = Nicole's Mammal Jaw locality (DMNH locality 2557) (Eberle, 2003), DOX = 

Denver Oxyclaenodon (DMNH locality 299) (Eberle, 2003), SB = Spigot Bottle (Hunter and Archibald, 2002; Zhang, 2009; 

Archibald et al., 2011), LLJS = Lane’s Little Jaw Site (Kelly, 2014), and MM = Merle’s Mecca (Hunter and Hartman, 2003). 
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Genera FR LF PC FF HH MCK MCG FF1 ML LDY LTT NCL DOX SB LLJS MM 
Acheronodon 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Albertatherium 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Alphadon 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 
Alticonus 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Ampliconus 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Auraia 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Baioconodon 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 
Batodon 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 
Catopsalis 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 
Carcinodon 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cimexomys 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 
Cimolestes 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 
Cimolodon 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
Cimolomys 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Conacodon 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Didelphodon 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
Earendil 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Eoconodon 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
Glasbius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Gypsonictops 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
?Kimbetohia 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Leptalestes 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
?Leptalestes 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Maiorana 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
Meniscoessus 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
Mesodma 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
Microcosmodon 1 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 
Microcosmodontidae 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Mimatuta 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Nortedelphys 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 
Oxyacodon 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
“Oxyclaenus” 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 
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Oxyprimus 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Palaeoungulatum 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 
Paracimexomys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Paranyctoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pediomys 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Peradectes 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
Palaeoryctidae 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 
Periptychidae 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Procerberus 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Prodiacodon 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 
Protalphadon 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
Protolambda 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Protungulatum 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
Ragnarok 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 
Stygimys 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 
Turgidodon 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
Xyronomys 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
 

 

 

 

 

 

 



  

   273 

Table S4.3.—Occurrences of mammalian genera within middle Puercan (Pu2) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: RAV = Rav-W1 horizon 

(Johnston and Fox, 1984; Fox, 1988, 2005; Fox et al., 2010a; Fox and Scott, 2011), WNT = Wintering Hills (Rankin and Fox, 2007; 

Fox et al., 2014), PITA = PITA Flats (Hunter, 1999; Hunter and Hartman, 2003), GT = Gas Tank (Spieker, 1960; Van Valen, 1978; 

Robison, 1986; Eberle, 1996; Lofgren et al., 2005, 2012), CB = Corral Bluffs, Jimmy Camp Creek, and West Bijou Creek (Middleton 

,1982, 1983; Williamson, 1996, Eberle, 1999), FF2 = Ferris Formation Pu2 (Eberle and Lillegraven, 1998a, 1998b; Eberle, 1999; 

Lillegraven and Eberle, 1999), WFK = West Flank Kimbeto Wash (Williamson, 1996; Williamson and Brusatte, 2013), EFK = East 

Flank Kimbeto Wash (Lucas and Williamson, 1993; Williamson, 1996; Lucas, 2011; Williamson and Carr, 2012; Williamson and 

Brusatte, 2013), BTW = Betonnie Tsosie Wash (Reynolds, 1936; Williamson, 1996; Clemens and Williamson, 2005; Williamson and 

Carr, 2012; Williamson and Brusatte, 2013). 
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Genera RAV WNT PITA GT CB FF2 WFK EFK BTW 
Alticonus 0 0 0 0 0 1 0 0 0 
Alveugna 0 0 0 0 0 1 0 0 0 
Ampliconus 0 0 0 0 0 1 0 0 0 
Anisonchus 1 1 0 1 1 0 0 0 0 
Baioconodon 1 0 1 0 0 1 0 0 0 
Betonnia 0 0 0 0 0 0 1 0 1 
Bomburodon 0 0 0 0 0 0 0 1 1 
Bubogonia 1 0 0 0 0 0 0 0 1 
Carcinodon 1 1 1 0 0 0 0 1 1 
“Carcinodon” 1 0 0 0 0 0 0 1 1 
Catopsalis 1 0 0 0 0 1 0 0 0 
Chacopterygus 0 0 0 0 0 0 1 0 0 
Cimexomys 1 0 0 0 0 0 0 0 0 
Cimolestes 1 0 0 0 0 0 0 0 0 
Choeroclaenus 0 0 0 0 0 0 1 1 0 
Conacodon 0 0 0 1 1 1 1 1 1 
Desmatoclaenus 0 1 0 1 1 0 0 1 0 
Dissacus 0 0 0 0 0 0 0 1 0 
Ectoconus 0 0 0 1 1 1 1 1 1 
Ectypodus 1 1 0 0 0 1 0 0 0 
Eoconodon 1 0 1 0 0 1 1 1 1 
Escatepos 0 0 0 0 0 0 0 0 1 
Gillisonchus 0 0 0 0 0 0 1 1 1 
Haploconus 0 0 0 1 0 0 0 0 0 
Hemithlaeus 0 0 0 0 0 0 1 1 1 
Kimbetohia 0 0 0 1 0 0 0 0 1 
Litalestes 1 0 0 1 0 0 0 0 0 
Litomylus 1 0 0 0 0 0 0 0 0 
Loxolophus 1 1 1 1 1 1 1 1 1 
Mesodma 1 1 0 0 0 1 0 0 0 
Microcosmodon 1 0 0 0 0 0 0 0 0 
Mioclaenidae 0 0 0 0 1 0 0 0 0 
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Mimatuta 0 0 0 0 0 1 0 0 0 
Mithrandir 0 0 0 0 0 1 0 0 0 
Neoplagiaulax 1 0 1 0 0 0 0 0 0 
Neoplagiaulacidae 0 0 0 0 1 0 0 0 0 
Onychodectes 0 0 1 0 0 0 1 0 0 
Oxyacodon 1 0 1 1 0 1 0 0 1 
“Oxyclaenus” 0 1 1 1 1 0 0 0 0 
Palaeoryctidae 0 1 0 0 0 0 0 0 0 
Pandemonium 0 1 0 0 0 0 0 0 0 
Pantolestidae 0 1 0 0 0 0 0 0 0 
Parectypodus 1 1 0 0 0 0 0 0 0 
Peradectes 0 0 0 0 0 0 1 0 1 
Periptychus 0 0 0 1 1 1 1 1 1 
Platymastus 0 0 0 0 0 0 0 0 1 
Procerberus 1 0 0 0 0 0 0 0 0 
Prodiacodon 1 1 0 0 0 0 0 0 1 
Promioclaenus 0 0 0 1 0 1 0 0 0 
Protungulatum 0 0 0 0 0 1 0 0 0 
Ptilodus 1 0 0 1 0 1 0 0 0 
Ptilodontidae 0 1 0 0 0 0 0 0 0 
Puercolestes 0 0 0 0 0 0 1 0 1 
Purgatorius 1 1 0 0 0 0 0 0 0 
Ravenictis 1 0 0 0 0 0 0 0 0 
Robertschochia 0 0 0 0 0 0 0 1 0 
Stygimys 1 0 1 1 0 0 0 0 0 
Taeniolabis 0 0 0 1 0 0 0 0 0 
Tinuviel 0 0 1 0 0 0 0 0 0 
Tiznatzinia 0 0 0 0 0 0 0 0 1 
Wortmania 0 0 0 0 0 0 1 0 1 
Xyronomys 1 0 0 0 0 0 0 0 0 
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Table S4.4.—Occurrences of mammalian genera within late Puercan (Pu3) local faunas from the Western Interior of North America. 

Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: CP = Croc Pot (Fox, 1990a, 2005), 

GRB = Garbani Channel and Purgatory Hill (Van Valen and Sloan, 1965; Clemens, 1974, 2002, 2004, 2006, 2010, 2013, 2015; 

Novacek, 1977; Simmons, 1987; Van Valen, 1994; Weil, 1998), BT = Bechtold (Simmons, 1987), FF3 = Ferris Formation Pu3 

(Eberle and Lillegraven, 1998a, 1998b; Eberle, 1999; Lillegraven and Eberle, 1999), WGN = Wagonroad (Gazin, 1941; Tomida and 

Butler, 1980; Robison, 1986; Cifelli et al., 1995; Williamson, 1996; Eberle, 1999), DNZ = De-na-zin Wash (AMNH locality 2, upper 

fossil level) (Williamson, 1996; Williamson and Carr, 2012; Williamson and Brusatte, 2013), and WW = Willow Wash (Williamson 

and Weil, 2011; Williamson et al., 2011). 
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Genera CP GRB BCHT FF3 WGN DNZ WW 
Anisonchus 1 1 0 0 1 0 0 
Baioconodon 1 1 0 1 0 0 0 
Besseocetor 0 0 0 0 1 0 0 
Betonnia 0 0 0 0 0 0 1 
Bomburodon 0 0 0 0 0 1 0 
Bubogonia 0 1 0 0 0 1 0 
“Carcinodon” 1 1 0 1 0 1 0 
Catopsalis 1 1 0 0 0 0 0 
Chacomylus 0 0 0 0 0 0 1 
Choeroclaenus 0 0 0 0 0 1 0 
Cimexomys 1 1 0 0 0 0 0 
Cimolestes 1 1 0 0 0 0 0 
Conacodon 0 0 0 1 1 1 0 
Desmatoclaenus 1 0 0 0 1 0 0 
Ectoconus 0 0 0 1 1 1 0 
Ectypodus 0 1 0 1 0 0 0 
Ellipsodon 0 0 0 0 1 0 0 
Eoconodon 0 1 0 0 0 1 0 
Eucosmodon 0 1 0 0 0 0 0 
Gillisonchus 0 0 0 0 0 1 0 
Haploconus 0 0 0 0 1 0 0 
Litomylus 0 1 0 0 0 0 0 
Loxolophus 1 1 0 1 1 1 0 
Mesodma 1 1 0 0 0 0 0 
Microcosmodon 0 1 0 0 0 0 0 
Mithrandir 0 0 0 1 0 0 0 
Mixodectidae 0 0 0 0 1 0 0 
Neoplagiaulax 0 1 0 0 0 0 0 
Onychodectes 0 0 0 0 1 1 0 
Oxyacodon 0 1 0 1 0 1 0 
Oxyclaenus 0 0 0 1 1 0 0 
Oxyprimus 1 0 0 0 0 0 0 
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Pandemonium 0 1 0 0 0 0 0 
Parectypodus 1 1 0 0 0 0 0 
Peradectes 0 1 0 1 0 1 1 
Periptychus 0 0 0 0 1 1 0 
Procerberus 1 1 0 0 0 0 0 
Prochetodon 1 0 0 0 0 0 0 
Prodiacodon 1 1 0 0 0 0 0 
Promioclaenus 0 0 0 1 0 1 0 
Protoselene 0 0 0 1 0 0 0 
Protungulatum 0 0 0 1 0 0 0 
Ptilodus 0 1 0 1 0 0 0 
Ptilodontidae 0 0 0 0 1 0 0 
Puercolestes 0 0 0 0 0 1 1 
Purgatorius 0 1 0 0 0 0 0 
Stygimys 1 1 0 0 0 0 0 
Taeniolabis 1 1 1 1 1 0 0 
Tiznatzinia 0 0 0 0 0 1 0 
Wortmania 0 1 0 0 0 1 0 
Xyronomys 1 1 0 0 0 0 0 
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Table S4.5.—Occurrences of mammalian genera within late Torrejonian (To1) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: FC = Farrand Channel 

(Archibald 1982; Clemens and Wilson 2009), HF = Horsethief Canyon (Archibald 1982; Clemens and Wilson 2009), S65 = Simpson 

locality 65 (Simpson 1937b; Sloan 1987), S09 = Simpson locality 9 (Simpson 1937b; Sloan 1987), S78 = Simpson locality 78 

(Simpson 1937b; Sloan 1987), DRG = Dragon localities (Gazin 1938, 1939, 1941; MacIntyre, 1966; Tomida and Butler 1980; 

Tomida, 1981; Williamson 1996; Lucas et al., 1997), KTZ = Kutz Canyon (NMMNH L-2659 and 2660) (Williamson 1996), DNT = 

De-na-zin Wash (AMNH locality 3) (Williamson 1996), N692 = NMMNH L-692 (Williamson 1996), BTT = Betonnie Tsosie Wash 

('lowest Torrejonian') (Williamson 1996), DG = Dogie locality (LSUMG VL-108) (Standhardt 1986; Williamson 1996) , and TT = 

Tom's Top (LSUMG VL-111) (Standhardt 1986; Williamson 1996). 
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Genera FC HF S65 S09 S78 DRG KTZ DNT N692 BTT DG TT 
Acmeodon 0 0 0 0 0 1 0 0 0 0 0 0 
Anisonchus 1 1 0 0 0 1 0 0 1 0 0 0 
Aphronorus 0 0 0 0 0 1 0 0 0 0 0 0 
Baioconodon 0 0 0 0 0 0 0 0 0 0 1 0 
Bessoecetor 0 0 0 0 0 1 0 0 0 0 0 0 
Bomburodon 0 0 0 0 0 0 0 0 0 0 1 0 
Bryanictis 0 0 0 0 0 1 0 0 0 0 0 0 
Catopsalis 0 0 0 0 0 1 0 0 0 0 0 0 
Chriacus 1 1 0 0 1 1 0 0 0 0 0 0 
Cimolestidae  1 0 0 0 0 0 0 0 0 0 0 0 
Cimolodon 0 0 0 0 0 0 0 0 0 0 1 0 
Claenodon 0 0 0 1 0 0 0 0 0 0 0 0 
Conoryctella 0 0 0 0 0 1 0 0 0 0 0 0 
Desmatoclaenus 0 0 0 0 0 1 0 0 0 0 0 0 
Didelphidae  0 0 0 0 0 1 0 0 0 0 0 0 
Draconodus 0 0 0 0 0 1 0 0 0 0 0 0 
Dracontolestes 0 0 0 0 0 0 0 0 0 0 0 0 
Deuterogonodon 0 0 0 0 0 0 0 0 0 1 0 0 
Ellipsodon 0 0 0 0 0 1 0 0 0 0 0 0 
Eoconodon 1 1 0 0 0 0 0 0 0 0 1 0 
Eucosmodontidae  1 0 0 0 0 0 0 0 0 0 0 0 
Gelastops 0 0 0 0 0 0 0 0 0 0 1 0 
Goniacodon 0 0 0 0 0 1 0 0 0 0 0 0 
Haploconus 0 0 0 0 0 1 0 0 0 0 1 0 
Litaletes 1 0 0 0 0 1 0 0 0 0 0 0 
Loxolophus 0 0 0 0 0 1 0 0 0 0 0 0 
Mesodma 1 1 0 0 0 0 0 0 0 0 0 0 
Microcosmodon 0 1 0 0 0 0 0 0 0 0 0 0 
Mimotricentes 1 1 0 1 0 1 0 0 1 0 0 0 
Mioclaenus 0 0 0 0 0 0 1 0 1 1 0 0 
Mixodectes 0 0 0 0 0 0 0 0 0 0 0 1 
Mixodectidae  0 0 0 0 0 1 0 0 1 0 0 0 
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Myrmecoboides 0 0 0 0 0 0 0 0 0 0 0 0 
Neoplagiaulax 1 1 0 0 0 0 0 0 0 0 0 0 
Oxyclaenus 1 1 0 0 0 1 0 0 0 0 0 0 
Oxytomodon 0 1 0 0 0 1 0 0 0 0 0 0 
Palaechthon 0 0 0 0 0 1 0 0 1 0 0 1 
Pantolestidae 0 0 0 0 0 1 0 0 0 0 0 0 
Parectypodus 0 0 0 0 0 1 0 0 0 0 0 0 
Paromomys 1 1 0 0 0 1 0 0 1 0 0 0 
Peradectes 0 0 0 0 0 0 0 0 0 0 1 0 
Periptychus 0 0 0 0 0 1 1 1 1 1 1 0 
Prodiacodon 1 0 0 0 0 0 0 0 1 0 0 0 
Promioclaenus 1 0 0 0 0 1 0 0 1 0 0 0 
Prothryptacodon 1 0 0 0 0 0 0 0 0 0 0 0 
Protictis 0 0 0 0 0 1 1 0 0 0 1 1 
Protoselene 0 0 0 0 0 1 0 0 1 0 0 0 
Ptilodus 0 0 1 0 0 1 0 0 0 0 1 0 
?Purgatoriidae A 0 1 0 0 0 0 0 0 0 0 0 0 
?Purgatoriidae B 1 1 0 0 0 0 0 0 0 0 0 0 
Stygimys 0 0 0 0 0 0 0 0 0 0 0 1 
Stylinodontidae 0 0 0 0 0 1 0 0 0 0 0 0 
Tetraclaenodon 0 0 0 1 0 0 1 0 0 0 0 0 
Triisodon 0 0 0 0 0 0 1 0 0 0 0 0 
Triisodontidae 1 0 0 0 0 0 0 0 0 0 0 0 
Viridomys 0 0 0 0 0 0 0 0 0 0 1 0 
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Table S4.6.—Occurrences of mammalian genera within middle Torrejonian (To2) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: WHO = Who Nose? 

(Scott, 2003, 2010; Scott and Fox, 2005), EDW = Edworthy Park (Fox et al., 2010b), BSP = Bearspaw localities (Scott et al., 2013), 

BRW = Brown Ranch (Hunter 1999; Clemens and Wilson 2009), GDL = Gidley (Simpson 1937b; Rose 1981; Krause, 1987), SBL = 

Siberling (Simpson 1937b; Rose 1981), SW = Swain Quarry (Rigby, 1980; Johanson, 1996b), RB = Rock Bench Quarry (Jepsen 

1930, 1940; Rose 1981), KTZ = Kutz Canyon (AMNH Locality 'Sec. 3, T27N, R11W', KU locality 4) (Taylor, 1981; Williamson 

1996; Lucas et al., 1997; Silcox and Williamson, 2012), BGP = ‘Big Pocket’ (KU locality 13) (Williamson 1996), AMA = AMNH 

localities ‘1 or 2 miles west of Angel Peak’ (Williamson 1996), NM1482 = NMMNH L-1482 (Williamson 1996), GLL = Gallegos 

Canyon, AMNH Locality 1 (Lucas, 1984; Williamson 1996; Lucas et al., 1997; Williamson and Lucas, 1997), KMB8 = Head of 

Kimbeto Wash (AMNH locality 8 [in part], KU locality 9 ['Little Pocket']) (Williamson 1996), S44 = 44 Store localities low and high 

(AMNH locality 9 [in part?]) (Williamson 1996), ESC = Escavada Wash (AMNH locality 14 [in part, lower horizon]) (Williamson 

1996), T93 = Torrejon Wash (NMMNH L-2693 and 2714) (Williamson 1996), T09 = Torrejon Wash (NMMNH L-2709) (Williamson 

1996), T24 = East Branch of Torrejon Wash (NMMNH L-2724, AMNH locality 11 [in part?]) (Williamson 1996), T11 = East Branch 

of Torrejon Wash (AMNH locality 11 lower horizon) (Williamson 1996), MDC = Mesa de Cuba and Mesa Portales (AMNH localities 
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222, 226, 229, and 230) (Williamson 1996; Silcox and Williamson, 2012), and MDD = Middle Peak and Alligator Alley (TMM 

V40147) (Standhardt 1986; Williamson 1996). 
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Genera WHO EDW BSP BRW GDL SBL SW RB KTZ BGP AMA NM1482 
Acheronodon 1 0 0 0 0 0 0 0 0 0 0 0 
Acmeodon 0 0 0 0 0 0 1 0 0 1 1 0 
Alopocosmodon 0 0 1 0 0 0 0 0 0 0 0 0 
Anconodon 1 0 1 0 1 0 0 1 0 0 0 0 
Ankalagon 0 0 0 0 0 0 0 0 0 0 0 0 
Anisonchus 0 0 0 0 1 0 1 1 1 1 1 0 
Anisazia 0 0 0 0 0 0 0 0 0 0 0 0 
Aphronorus 1 0 1 0 0 1 0 1 0 0 0 0 
Arctocyon 1 0 1 0 0 0 1 0 0 0 1 1 
Baiotomeus 1 0 0 0 0 0 0 0 0 0 0 0 
Bessoecetor 1 0 1 0 0 1 1 0 0 0 0 0 
Boreocyon 1 0 0 0 0 0 0 0 0 0 0 0 
Bryanictis 0 0 1 0 1 1 0 1 0 1 0 0 
Catopsalis 0 0 0 0 0 0 0 1 0 0 0 0 
Chriacus 1 0 1 0 0 0 1 1 1 1 1 1 
Claenodon 0 0 0 0 1 0 0 1 0 0 0 0 
Conoryctella 0 0 0 1 0 0 0 0 1 1 0 0 
Conoryctes 0 0 0 0 0 1 0 1 0 0 1 0 
Coriphagus 0 0 0 0 0 1 0 1 1 1 0 0 
Deltatherium 0 0 0 0 0 0 0 0 1 1 1 1 
Deuterogonodon 0 0 0 0 0 0 0 0 1 1 1 0 
Didymictus 0 0 0 0 0 0 0 0 0 0 0 0 
Dissacus 0 0 0 1 0 1 1 1 0 0 0 0 
Ectypodus 1 0 0 0 0 1 1 0 0 0 0 0 
Edworthia 0 1 0 0 0 0 0 0 0 0 0 0 
Ellipsodon 0 0 0 0 0 1 0 0 0 1 0 0 
Elpidophorus 1 0 1 0 0 1 0 0 0 0 0 0 
Elphidotarsius 0 0 0 0 1 0 0 0 0 0 0 0 
Eucosmodon 0 0 0 0 0 1 0 1 0 0 0 0 
Eudaemonema 0 0 1 0 1 1 0 1 0 0 0 0 
Gelastops 1 0 0 0 1 1 1 1 0 0 0 0 
Goniacodon 0 0 1 0 0 0 1 1 1 1 1 1 
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Haplaletes 0 0 0 0 1 0 1 1 0 1 0 0 
Haploconus 0 0 0 0 0 0 1 0 1 1 1 0 
Huerfanodon 0 0 0 0 0 0 0 0 0 0 0 0 
Ignacius 1 0 1 0 0 0 0 1 0 0 0 0 
Intyrictis 0 0 0 0 0 0 1 0 0 0 0 1 
Jepsenella 0 0 0 0 1 0 1 1 0 0 0 0 
Krauseia 1 0 0 0 0 0 0 0 0 0 0 0 
Leptacodon 0 0 0 0 0 0 1 0 0 0 0 0 
?Leptacodon 1 0 0 0 0 0 0 1 0 0 0 0 
Limaconyssus 1 0 0 0 0 0 0 0 0 0 0 0 
Litaletes 0 0 0 0 1 0 1 1 0 0 0 0 
Litomylus 1 0 0 0 1 0 1 1 0 0 1 0 
Mckennatherium 1 0 0 0 1 0 1 1 0 0 0 0 
Metachriacus 0 0 0 0 0 1 0 0 0 0 0 0 
Mesodma 1 0 0 0 0 0 0 0 0 0 0 0 
Microclaenodon 0 0 0 0 0 0 0 1 1 1 0 0 
Mimetodon 1 0 0 0 1 0 0 1 0 0 0 0 
Mimotricentes 0 0 0 0 0 1 1 1 1 1 1 0 
Mioclaenus 0 0 0 0 0 0 0 0 1 1 1 0 
Mixodectes 0 0 0 0 0 0 1 0 1 1 1 1 
Myrmecoboides 0 0 0 0 0 0 1 1 0 0 0 0 
Navajovius 1 0 0 0 0 0 0 0 0 0 0 0 
Neoplagiaulax 1 0 0 0 0 0 1 0 0 0 0 0 
Palaechthon 0 0 0 0 0 1 1 0 1 1 0 0 
Palaeictops 0 0 0 0 0 0 0 1 0 0 0 0 
Palaeoryctes 0 0 0 0 0 0 1 0 0 1 0 0 
Palaeoryctidae 1 0 0 0 0 0 0 0 0 0 0 0 
Palenochtha 1 0 0 0 1 0 1 1 0 0 0 0 
Paleotomus 1 0 0 0 0 0 1 0 0 0 0 0 
Pantolambda 0 0 0 0 0 0 0 1 1 0 0 1 
Pararyctes 1 0 0 0 0 0 0 0 0 0 0 0 
Parectypodus 1 0 1 0 0 0 0 0 0 0 0 0 
Paromomys 0 0 0 0 1 1 1 1 0 0 0 0 
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Pentacodon 0 0 0 0 0 0 0 0 1 1 1 0 
Peradectes 0 0 0 0 0 0 0 0 0 1 0 1 
Periptychus 0 0 0 0 0 0 1 0 1 1 1 0 
Phenacodus 0 0 0 0 0 0 0 0 0 0 0 0 
Picrodus 1 0 0 0 1 1 1 1 0 0 0 0 
Plesiolestes 1 0 1 0 0 0 0 1 0 0 0 0 
Ptilodus 1 0 1 0 0 1 1 1 0 0 0 0 
Presbyteria 1 0 0 0 0 0 0 0 0 0 0 0 
Procerberus 1 0 0 0 0 0 0 0 0 0 0 0 
Prodiacodon 1 0 0 0 0 0 1 0 0 1 1 0 
Promioclaenus 1 0 1 0 1 0 1 1 1 1 1 0 
Pronothodectes 1 0 1 0 0 0 0 1 0 0 0 0 
Prothryptacodon 1 0 1 0 0 0 1 0 0 0 0 0 
Protogonodon 0 0 0 0 0 0 1 0 0 0 0 0 
Protoselene 0 0 0 0 0 0 0 0 1 1 1 1 
Protictis 1 0 0 0 1 1 1 1 1 1 1 0 
Psittacotherium 0 0 0 0 0 1 0 0 1 1 1 1 
Psydronyctia 1 0 0 0 0 0 0 0 0 0 0 0 
Simpsonictis 1 0 0 0 1 0 1 1 0 0 0 0 
Stygimys 1 0 1 0 0 0 0 1 0 0 0 0 
Swaindelphys 0 0 0 0 0 0 1 0 0 0 0 0 
Taeniodonta  0 0 0 0 0 0 0 0 0 0 0 0 
Tetraclaenodon 0 0 1 0 1 1 1 1 1 1 1 1 
Torrejonia 1 0 0 0 0 0 0 0 0 0 0 0 
Tricentes 0 0 0 0 1 0 0 1 0 0 0 0 
Triisodon 0 0 0 0 0 0 0 0 1 1 0 0 
Unuchinia 1 0 0 0 0 0 0 0 0 0 0 0 
Xanclomys 0 0 0 0 0 0 1 0 0 0 0 0 
Xyronomys 1 0 0 0 0 0 1 0 0 0 0 0 
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Table S4.6 (continued).—Occurrences of mammalian genera within middle Torrejonian (To2) local faunas from the Western Interior 

of North America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: WHO = Who 

Nose? (Scott, 2003, 2010; Scott and Fox, 2005), EDW = Edworthy Park (Fox et al., 2010b), BSP = Bearspaw localities (Scott et al., 

2013), BRW = Brown Ranch (Hunter 1999; Clemens and Wilson 2009), GDL = Gidley (Simpson 1937b; Rose 1981; Krause, 1987), 

SBL = Siberling (Simpson 1937b; Rose 1981), SW = Swain Quarry (Rigby, 1980; Johanson, 1996b), RB = Rock Bench Quarry 

(Jepsen 1930, 1940; Rose 1981), KTZ = Kutz Canyon (AMNH locality ‘Sec. 3, T27N, R11W’, KU locality 4) (Taylor, 1981; 

Williamson 1996; Lucas et al., 1997), BGP = ‘Big Pocket’ (KU locality 13) (Williamson 1996), AMA = AMNH localities ‘1 or 2 

miles west of Angel Peak’ (Williamson 1996; Meehan and Wilson, 2002), NM1482 = NMMNH L-1482 (Williamson 1996), GLL = 

Gallegos Canyon (AMNH locality 1) (Lucas, 1993; Williamson 1996; Lucas et al., 1997; Williamson and Lucas, 1997), KMB8 = 

Head of Kimbeto Wash (AMNH locality 8 [in part], KU locality 9 ['Little Pocket']) (Williamson 1996), S44 = 44 Store localities low 

and high (AMNH locality 9 [in part?]) (Williamson 1996), ESC = Escavada Wash (AMNH Locality 14 [in part, lower horizon]) 

(Williamson 1996), T93 = Torrejon Wash (NMMNH L-2693 and 2714) (Williamson 1996), T09 = Torrejon Wash (NMMNH L-2709) 

(Williamson 1996), T24 = East Branch of Torrejon Wash (NMMNH L-2724, AMNH locality 11 [in part?]) (Williamson 1996), T11 = 

East Branch of Torrejon Wash (AMNH locality 11 lower horizon) (Williamson 1996), MDC = Mesa de Cuba and Mesa Portales 
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(AMNH localities 222, 226, 229, and 230) (Williamson 1996), and MDD = Middle Peak and Alligator Alley (TMM V40147) 

(Standhardt 1986; Williamson 1996). 
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Genera GLL KMB8 S44 ESC T93 T09 T24 T11 MDC MDD 
Acheronodon 0 0 0 0 0 0 0 0 0 0 
Acmeodon 0 0 0 0 0 0 0 0 0 0 
Alopocosmodon 0 0 0 0 0 0 0 0 0 0 
Anconodon 0 0 0 0 0 0 0 0 0 0 
Ankalagon 0 1 0 0 0 0 0 0 0 0 
Anisonchus 1 1 1 0 0 1 0 1 1 0 
Anisazia 0 1 0 0 0 0 0 0 0 0 
Aphronorus 0 0 0 0 0 0 0 0 0 0 
Arctocyon 0 0 1 0 0 1 0 0 0 0 
Baiotomeus 0 0 0 0 0 0 0 0 0 0 
Bessoecetor 0 0 0 0 0 0 0 0 0 0 
Boreocyon 0 0 0 0 0 0 0 0 0 0 
Bryanictis 0 0 0 0 0 0 0 0 0 0 
Catopsalis 0 0 0 0 0 0 0 0 0 0 
Chriacus 1 1 0 0 0 0 0 0 1 0 
Claenodon 0 0 0 0 0 0 0 0 0 0 
Conoryctella 0 0 0 0 0 0 0 0 0 0 
Conoryctes 0 0 0 0 0 0 0 0 0 0 
Coriphagus 0 1 1 0 1 0 0 0 0 0 
Deltatherium 1 1 0 0 0 1 0 0 1 0 
Deuterogonodon 1 0 0 0 0 0 0 0 0 0 
Didymictus 0 0 0 0 0 0 0 0 0 0 
Dissacus 0 0 0 0 0 0 0 0 0 0 
Ectypodus 0 0 0 0 0 0 0 0 0 0 
Edworthia 0 0 0 0 0 0 0 0 0 0 
Ellipsodon 1 1 1 1 0 0 0 0 1 0 
Elpidophorus 0 0 0 0 0 0 0 0 0 0 
Elphidotarsius 0 0 0 0 0 0 0 0 0 0 
Eucosmodon 0 0 0 0 0 0 0 0 0 0 
Eudaemonema 0 0 0 0 0 0 0 0 0 0 
Gelastops 0 0 0 0 0 0 0 0 0 0 
Goniacodon 1 0 0 0 0 1 1 0 1 0 
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Haplaletes 0 0 0 0 0 0 0 0 1 0 
Haploconus 1 1 0 0 0 0 0 0 0 1 
Huerfanodon 0 1 0 0 0 0 0 0 0 0 
Ignacius 0 0 0 0 0 0 0 0 0 0 
Intyrictis 0 0 0 0 0 0 0 0 0 0 
Jepsenella 0 0 0 0 0 0 0 0 0 0 
Krauseia 0 0 0 0 0 0 0 0 0 0 
Leptacodon 0 0 0 0 0 0 0 0 0 0 
?Leptacodon 0 0 0 0 0 0 0 0 0 0 
Limaconyssus 0 0 0 0 0 0 0 0 0 0 
Litaletes 0 0 0 0 0 0 0 0 0 0 
Litomylus 0 0 0 0 0 0 0 0 0 0 
Mckennatherium 0 0 0 0 0 0 0 0 0 0 
Metachriacus 0 0 0 0 0 0 0 0 0 0 
Mesodma 0 0 0 0 0 0 0 0 0 0 
Microclaenodon 0 0 0 0 0 0 0 0 0 0 
Mimetodon 0 0 0 0 0 0 0 0 0 0 
Mimotricentes 1 1 0 0 0 0 0 0 1 1 
Mioclaenus 1 1 1 0 0 0 0 0 1 0 
Mixodectes 0 1 0 0 0 0 0 0 0 0 
Myrmecoboides 0 0 0 0 0 0 0 0 0 0 
Navajovius 0 0 0 0 0 0 0 0 0 0 
Neoplagiaulax 0 0 0 0 0 0 0 0 0 0 
Palaechthon 0 0 0 0 0 0 0 0 0 0 
Palaeictops 0 0 0 0 0 0 0 0 0 0 
Palaeoryctes 0 0 0 0 0 0 0 0 0 0 
Palaeoryctidae 0 0 0 0 0 0 0 0 0 0 
Palenochtha 0 0 0 0 0 0 0 0 0 0 
Paleotomus 0 0 0 0 0 0 0 0 0 0 
Pantolambda 1 1 1 1 0 0 0 0 0 0 
Pararyctes 0 0 0 0 0 0 0 0 0 0 
Parectypodus 0 0 0 0 0 0 0 0 0 0 
Paromomys 0 0 0 0 0 0 0 0 0 0 
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Pentacodon 0 0 0 0 0 0 0 0 1 0 
Peradectes 0 0 0 0 0 0 0 0 0 0 
Periptychus 1 1 1 1 1 0 1 0 1 1 
Phenacodus 0 0 0 0 0 0 0 0 0 0 
Picrodus 0 0 0 0 0 0 0 0 0 0 
Plesiolestes 0 1 0 0 0 0 0 0 0 0 
Ptilodus 0 0 0 0 0 0 0 0 0 0 
Presbyteria 0 0 0 0 0 0 0 0 0 0 
Procerberus 0 0 0 0 0 0 0 0 0 0 
Prodiacodon 0 0 0 0 0 0 0 0 0 0 
Promioclaenus 1 1 0 0 0 0 1 0 1 0 
Pronothodectes 0 0 0 0 0 0 0 0 0 0 
Prothryptacodon 0 0 0 0 0 0 0 0 0 0 
Protogonodon 0 0 0 0 0 0 0 0 0 0 
Protoselene 1 1 0 0 0 0 0 0 1 0 
Protictis 1 1 0 0 0 0 0 0 1 0 
Psittacotherium 1 1 0 1 0 0 0 0 0 1 
Psydronyctia 0 0 0 0 0 0 0 0 0 0 
Simpsonictis 0 0 0 0 0 0 0 0 0 0 
Stygimys 0 0 0 0 0 0 0 0 0 0 
Swaindelphys 0 0 0 0 0 0 0 0 0 0 
Taeniodonta 0 0 0 0 0 0 0 0 0 0 
Tetraclaenodon 1 1 1 0 0 1 1 0 1 1 
Torrejonia 0 0 0 0 0 0 0 0 0 0 
Tricentes 0 0 0 0 0 0 0 0 0 0 
Triisodon 1 1 0 1 1 1 1 0 0 0 
Unuchinia 0 0 0 0 0 0 0 0 0 0 
Xanclomys 0 0 0 0 0 0 0 0 0 0 
Xyronomys 0 0 0 0 0 0 0 0 0 0 
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Table S4.7.—Occurrences of mammalian genera within late Torrejonian (To3) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: CLG = Calgary 2E 

(Russell 1926, 1929, 1932, 1958; Russell 1967; Krause 1978; Fox 1990a), NRD = Nordic Ski (Krause 1978; Fox 1990a), LLHR = 

Lloyd and Hare (Hartman and Kihm, 1999), CDR = Cedar Mountain sites (Hartman, 1986), BRKT = The Breaks (To3 level) 

(Higgins, 2003), RSP = Rock Springs (To3) (UW localities V77009, V77010, V77012, V77014, V78055) (Winterfeld, 1982), ESCV 

= Escavada Wash (AMNH locality 14 [head of Escavada Wash]) (Williamson, 1996; Rose and Lucas, 2000), WT10 = West Branch of 

Torrejon Wash, (AMNH Locality 10 upper horizon) (Williamson, 1996; Williamson and Taylor, 2011), and ET10 = East Branch of 

Torrejon Wash, (AMMH Locality 10 upper horizon) (Williamson, 1996; Williamson and Taylor, 2011). 
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Genera CLG NRD MDC LLHR CDR BRKT RSP ESCV WT10 ET10 
Acmeodon 0 0 0 0 1 0 1 0 1 1 
Adunator 0 0 0 0 0 0 0 0 0 0 
Anconodon 1 1 0 0 1 1 0 0 0 0 
Anisonchus 0 0 0 0 1 1 1 1 1 1 
Ankalagon 0 0 0 0 0 0 0 0 0 1 
Aphronorus 0 1 0 0 1 1 1 0 0 0 
Arctocyon 0 0 0 0 0 0 0 1 1 1 
Avunculus 0 0 0 0 1 0 0 0 0 0 
Baiotomeus 1 0 1 0 0 1 0 0 0 0 
Bessoecetor 0 0 0 0 1 0 0 0 0 0 
Bryanictis 0 0 0 0 1 0 0 0 0 0 
Bubogonia 0 1 0 0 0 0 0 0 0 0 
Captosalis 1 1 0 0 0 1 0 0 0 0 
Coriphagus 0 0 0 0 1 0 0 0 0 1 
Chriacus 0 0 0 0 1 1 1 0 1 1 
Claenodon 1 0 0 0 1 1 0 0 0 0 
Colpoclaenus 0 0 0 0 0 0 0 1 1 1 
Conoryctes 0 0 0 0 0 0 0 1 1 1 
Dissacus 0 0 0 0 0 0 0 1 1 1 
Ectocion 0 0 0 0 0 1 0 0 0 0 
Ectypodus 0 0 0 0 1 0 0 0 0 0 
Eucosmodon 1 0 0 0 0 0 0 0 0 0 
Eudaemonema 0 1 0 0 1 1 0 0 0 0 
Escavadodon 0 0 0 0 0 0 0 1 0 0 
Gelastops 0 1 0 0 1 1 1 0 0 0 
Goniacodon 0 0 0 0 0 0 0 0 0 1 
Haplaletes 0 0 0 0 1 0 0 0 0 1 
Ignacius 0 1 0 0 0 0 0 0 0 0 
Intyrictis 0 0 0 0 0 0 0 0 1 1 
Jepsenella 0 0 0 0 1 0 0 0 0 0 
Krauseia 0 0 0 0 0 1 0 0 0 0 
Litaletes 0 0 0 0 1 1 0 0 0 0 
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Litocherus 0 0 0 0 1 1 0 0 0 0 
Litomylus 0 1 0 0 1 1 1 1 1 1 
Mckennatherium 0 0 0 0 1 0 1 0 0 1 
Mesodma 0 1 0 0 1 1 0 0 0 0 
Microclaenodon 0 0 0 0 0 0 0 0 0 1 
Mimetodon 0 1 0 0 1 0 0 0 0 0 
Mimotricentes 0 0 0 0 1 1 0 1 1 1 
Mioclaenus 0 0 0 0 0 0 0 1 1 1 
Mixodectes 0 0 0 0 0 0 0 1 1 1 
Navajovius 0 0 0 0 0 1 0 0 0 0 
Neoplagiaulax 1 1 0 0 1 1 0 0 0 0 
Palaechthon 0 0 0 0 1 1 0 0 0 1 
Palaeoryctes 0 0 0 0 0 0 1 0 0 1 
Paleotomus 0 0 0 0 0 1 0 0 0 0 
Palenochtha 0 0 0 0 1 1 0 0 0 0 
Pantolambda 0 0 0 1 0 0 0 1 1 1 
Parectypodus 0 1 0 0 0 1 0 0 0 0 
Paromomys 0 0 0 0 1 1 0 0 0 0 
Periptychus 0 0 0 0 0 1 0 1 1 1 
Peradectes 0 0 0 0 0 0 0 0 0 1 
Pentacodon 0 0 0 0 0 0 0 0 1 1 
Phenacodus 0 0 0 0 0 1 0 0 0 0 
Picrodus 0 0 1 0 1 0 0 0 0 0 
Plesiolestes 0 0 0 0 0 1 0 0 1 1 
Prodiacodon 0 1 0 0 1 1 0 0 1 1 
Promioclaenus 0 0 0 0 1 1 0 1 1 1 
Pronothodectes 1 0 1 0 1 0 1 0 0 0 
Prothryptacodon 0 0 0 0 1 0 0 0 0 1 
Protoselene 0 0 0 0 0 0 0 1 1 1 
Protictis 0 1 0 0 1 0 0 1 1 1 
Psittacotherium 0 0 0 0 0 0 0 0 1 1 
Ptilodus 1 1 0 0 1 1 1 0 0 0 
Swaindelphys 0 0 0 0 0 0 0 0 1 1 
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Tetraclaenodon 1 1 0 1 1 1 1 1 1 1 
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Table S4.8.—Occurrences of mammalian genera within earliest Tiffanian (Ti1) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: DSS = Diss (Fox 1983, 

1990a; Scott, 2008), CCH = Cochrane 1 and 2 (Simpson, 1927b; Russell, in Rutherford, 1927; Russell 1958; Russell 1967; Krause, 

1978; Gingerich, 1982; Youzwyshyn, 1988; Fox 1990a, 2011; Fox et al., 1992; Fox and Youzwyshyn, 1994; Scott et al., 2002, 2006; 

Scott and Fox, 2005; Scott, 2008), AAR = Aaron’s locality (Fox, 1990a; Scott and Fox, 2005; Scott, 2008, 2010b), BGT = Bangtail 

(Gingerich et al. 1983), DGL = Douglass (Krause and Gingerich 1983; Krause and Maas 1990; Scott and Krause, 2006), DND = 

Donald (McCullough et al., 2004; Bloch et al., 2006), GLN = Glennie (Hartman and Krause 1993), BNG = Bingo (Hartman and 

Krause, 1993; Silcox et al., 2001; Zack et al., 2005; Bloch et al., 2006), PLB = Plan B (St. Clair et al., 2008, 2010), GRY = Grayson 

Ridge (Secord 1998; Higgins 2003), HLF = Halfway Hill (Secord 1998; Higgins 2003), CCN = C-Con (Schiebout 1974; Rapp et al. 

1983; Schiebout et al. 1987), and BRK1 = The Breaks (Ti1 level) (Higgins, 2003). 
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Genera DSS CCH AAR BNG DGL DND GLN BNG PLB GRY HLF CCN BRK1 
Acheronodon 0 1 0 0 0 0 0 0 0 0 0 0 0 
Acmeodon 0 0 0 0 1 1 0 1 0 1 0 0 1 
Allocosmodon 0 0 0 0 1 0 0 0 0 0 0 0 0 
Anconodon 0 1 0 0 1 1 0 0 0 0 1 0 0 
Anisonchinae 0 1 0 0 0 0 0 0 0 0 0 0 0 
Aphronorus 0 1 0 1 0 1 0 1 1 0 0 0 1 
Arctocyon 0 1 0 0 1 0 0 0 0 1 1 0 0 
Baiotomeus 0 1 0 0 0 0 0 0 0 1 1 0 1 
Bessoecetor 0 1 0 0 1 1 0 0 0 0 0 0 0 
Bisonalveus 0 1 0 0 1 0 0 0 0 0 0 0 0 
Boreocyon 1 1 1 0 0 0 0 0 0 0 0 0 0 
Caenolambda 0 0 0 0 0 0 0 0 0 0 0 1 0 
Carpodaptes 0 1 0 0 0 0 0 0 0 0 0 0 0 
"Cervictis" 0 1 0 0 0 0 0 0 0 0 0 0 0 
Chriacus 0 1 0 0 1 1 0 0 0 0 0 0 1 
Colpoclaenus 0 0 0 0 1 0 0 0 0 0 0 0 0 
Coriphagus 0 0 0 0 0 0 0 0 0 0 0 0 1 
Creodonta 0 1 0 0 0 0 0 0 0 0 0 0 0 
Dissacus 0 1 0 0 1 0 0 0 0 1 0 0 0 
Ectocion 0 1 1 0 1 1 0 1 1 1 0 0 0 
Ectypodus 0 0 0 1 0 0 0 0 0 0 0 0 0 
Elphidotarsius 0 1 0 0 1 1 1 1 0 0 0 0 0 
Elpidophorus 0 1 0 0 1 0 0 0 0 0 0 0 0 
Eucosmodontidae  0 1 0 0 1 0 0 0 0 0 0 0 0 
Eudaemonema 0 1 0 0 0 0 0 0 0 0 0 0 0 
Fractinus 0 0 0 0 0 0 0 0 0 0 0 0 1 
Gelastops 0 0 0 0 0 0 0 0 0 0 1 0 1 
Gingerichia 0 1 0 0 1 0 1 1 0 0 0 0 0 
Goniacodon 0 0 0 0 0 0 0 1 1 0 0 0 0 
Haplaletes 0 0 0 0 0 0 0 0 0 0 1 0 0 
Horolodectes 0 1 0 0 0 0 0 0 0 0 0 0 0 
Ignacius 0 1 0 0 1 1 0 0 0 0 0 0 0 



  

   298 

"Insidioclaenus" 0 1 1 0 0 0 0 0 0 0 0 0 0 
Intyrictis 0 0 0 0 0 0 0 0 0 0 1 0 0 
Joffrelambda 0 1 0 0 0 0 0 0 0 0 0 0 0 
Krauseia 0 1 0 0 0 0 0 0 0 0 0 0 0 
?Leptacodon 0 1 0 1 1 0 0 0 0 0 0 0 0 
Limaconyssus 0 1 0 0 0 0 0 0 0 0 0 0 0 
Litocherus 0 1 1 0 0 0 0 0 0 0 0 0 0 
Litomylus 0 1 1 0 1 0 0 0 0 1 0 0 1 
Mesodma 0 1 0 0 1 0 0 0 0 0 0 0 0 
Microsyopidae 0 1 0 0 0 0 0 0 0 0 0 0 0 
Mimetodon 0 1 0 0 1 0 0 0 0 0 1 0 0 
Mimotonidae 0 1 0 0 0 0 0 0 0 0 0 0 0 
Mimotricentes 0 0 0 0 0 0 0 0 0 1 1 0 0 
Mioclaenus 0 0 0 0 0 0 0 0 0 1 0 0 0 
Myrmecoboides 0 1 0 1 1 0 0 0 0 0 0 0 0 
Nannodectes 0 1 0 1 1 1 0 0 0 0 0 0 1 
Neoplagiaulax 1 1 0 0 1 1 0 0 0 0 1 0 1 
Oxyprimus 0 1 0 0 0 0 0 0 0 0 0 0 0 
Palaechthon 0 0 0 1 0 0 0 0 0 0 1 0 1 
Palaeoryctes 0 1 0 0 0 0 0 0 0 0 0 0 0 
Palaeoryctidae 0 0 0 0 1 0 0 0 0 0 0 0 0 
Palenochtha 0 0 0 0 0 1 0 0 0 0 0 0 0 
Paleotomus 0 1 0 0 1 1 0 0 0 1 1 0 1 
Pantolambda 0 0 0 0 0 0 0 0 0 1 0 0 1 
Pararyctes 1 1 0 0 0 0 0 0 0 0 0 0 0 
Parectypodus 1 1 0 0 0 0 0 0 0 0 1 0 0 
Paromomys 0 0 0 0 0 0 0 0 0 1 0 0 0 
Paromomyidae 0 0 0 0 0 0 0 1 0 0 0 0 0 
Pentacosmodon 0 1 0 0 0 0 0 0 0 0 0 0 0 
Peradectes 0 1 0 0 1 1 0 0 0 0 0 0 0 
Periptychus 0 0 0 0 0 0 0 0 0 1 0 1 1 
Phenacodus 0 0 0 0 1 1 0 0 0 0 0 1 0 
Picrodus 0 1 0 1 1 1 0 0 0 0 0 0 0 
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Plesiadapis 0 1 0 0 1 0 0 0 0 0 0 0 1 
Plesiolestes 0 1 0 0 0 0 0 0 0 0 1 0 1 
Pristinictis 0 1 0 0 0 0 0 0 0 0 0 0 0 
Prochetodon 0 1 1 0 0 0 0 0 0 0 0 0 0 
Prodiacodon 0 1 0 0 1 0 0 0 0 0 0 0 0 
Promioclaenus 0 0 0 0 0 1 0 0 0 1 1 1 1 
Pronothodectes 0 1 0 0 0 0 0 0 0 0 0 0 0 
Protictis 0 1 0 0 1 0 0 0 0 0 0 0 0 
Protoselene 0 0 0 0 0 0 0 0 0 0 1 0 1 
Psydronyctia 0 1 0 0 0 0 0 0 0 0 0 0 0 
Ptilodus 0 1 0 0 1 1 0 0 0 1 1 1 1 
Raphictis 0 1 0 0 0 0 0 0 0 0 0 0 0 
Simpsonictis 0 0 0 0 1 0 0 0 0 0 0 0 0 
Tetraclaenodon 0 0 0 0 0 0 0 0 0 1 0 0 1 
Thryptacodon 0 1 1 0 1 1 0 0 0 0 1 0 0 
Titanoides 0 0 0 0 1 0 0 0 0 0 0 0 0 
Torrejonia 0 1 0 0 0 0 0 0 0 0 0 0 0 
Unuchinia 0 1 0 0 0 0 0 0 0 0 0 0 0 
"Xynolestes" 0 1 0 0 0 0 0 0 0 0 0 0 0 
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Table S4.9.—Occurrences of mammalian genera within late early Tiffanian (Ti2) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: WHT = White site, 7-up 

Butte, Highway Blowout (Lofgren et al., 2004), SCA = Scarritt (Simpson 1936, 1937a, 1937b; Kristalka 1973; Rose 1981; Krause and 

Mass 1990), UM263 = University of Michigan locality 263 (Gingerich, 1976; Secord et al. 2006; Secord, 2008), SDD = Saddle (Gazin 

1956), and BRK2 = The Breaks (Ti2 level) (Higgins, 2003). 
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Genera WHT SCA UM263 SDD BRK2 
Anconodon 0 0 0 1 0 
Arctocyon 0 0 1 1 0 
Bessoecetor 0 1 0 0 0 
Bisonalveus 0 0 0 1 0 
Caenolambda 0 0 0 1 0 
Carpodaptes 0 1 0 0 0 
Chriacus 0 1 0 1 0 
Claenodon 0 1 0 0 0 
Colpoclaenus 0 0 0 1 0 
Desmatoclaenus 0 0 0 1 0 
Dissacus 0 1 0 0 0 
Ectocion 1 0 1 0 0 
Ectypodus 0 1 0 1 0 
Elpidophorus 0 1 0 0 0 
Haplaletes 0 0 0 1 0 
Ignacius 0 1 0 0 0 
Labidolemur 0 0 0 1 0 
Leptacodon 0 1 0 0 0 
Litocherus 0 1 0 1 0 
Litomylus 0 0 0 1 0 
Mentoclaenodon 0 0 0 1 0 
Mesodma 0 1 0 1 0 
Mimotricentes 0 0 0 1 0 
Mioclaenus 0 0 0 1 0 
Nannodectes 0 1 0 1 0 
Neoplagiaulax 0 1 0 0 0 
Pararyctes 0 1 0 1 0 
Paromomys 0 0 0 0 0 
Palaeosinopa 0 1 0 0 0 
Paleotomus 0 1 0 0 0 
Peradectes 0 0 0 1 0 
Phenacodus 1 0 1 1 0 
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Picrodus 0 0 0 1 0 
Plesiadapis 1 1 1 1 0 
Prodiacodon 0 0 0 1 0 
Promioclaenus 0 0 0 1 1 
Protictis 0 1 0 0 0 
Protoselene 0 0 0 1 0 
Ptilodus 0 1 1 1 0 
Simpsonictis 0 0 0 1 0 
Thyptacodon 0 1 0 1 0 
Titanoides 0 1 1 0 0 
Torrejonia 0 0 0 1 0 
Unuchinia 0 1 0 0 0 
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Table S4.10.—Occurrences of mammalian genera within early middle Tiffanian (Ti3) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: HND = Hand Hills West 

upper level (Fox 1990a; MacDonald 1996; Scott, 2005; Scott and Fox, 2005), Blindman River localities (including DW-1, DW-2, 

DW-3, and Mel's Place) (Fox 1984a, 1984b, 1984c, 1984d, 1990a, 1990b, 1990c, 1991, 2005; Scott, 2005, 2008, 2010a, 2010b; Scott 

and Fox, 2005; Scott et al., 2006; Boyer, Scott, and Fox, 2012), BRB = Burbank (Fox, 1990a; Scott, 2008), JFR = Joffre Bridge 

localities (including Erickson's Landing, Joffre Bridge Roadcuts, and Joffre Bridge Mammal Site No. 1) (Fox, 1990a, 2005; Scott and 

Fox, 2005; Scott, 2008), BRH = Birchwood (Webb, 1996; Fox, 2005; Scott and Fox, 2005; Scott, 2006, 2010a, 2010b; Scott et al., 

2006), PLP = Police Point (Krishtalka 1973; Krause 1978; Fox 1990a; Scott, 2005), BRS = Brisbane (Holtzman, 1978; Hartman and 

Kihm 1991, 1995; Kihm and Hartman 2004), WHT = White's River Basin Survey Site (Hartman and Kihm 1991), CDR = Cedar Point 

(Simons, 1960; West, 1971, 1973, 1976; Rose, 1975; Krishtalka 1976a, 1976b; Gingerich, 1976, 1980b, 1983; Van Valen 1978; Rose 

1981; Gingerich and Winkler 1985; Gunnell 1988; Thewissen 1990; Secord, 2008), Jepsen Quarry (Secord, 2008), CHP = Chappo 

Type locality (Dorr and Gingerich, 1980; Gunnell, 1994), LDG = Ledge Quarry (Gazin, 1956; Beard, 2000), BTT = Battle Mountain 

(Dorr, 1978), RYB = Ray’s Bonebed (Schiebout 1974; Standhardt 1986; Schiebout et al. 1987), OHC = Ohio Creek sites (Burger, 

2007), and BRK3 = The Breaks (Ti3 level) (Higgins, 2003). 
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Genera HND BLD BRB JFR BRH PLP BRS WHT CDR JPQ CHP LDG BTT RYB OHC BRK3 
"Adapisorella" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
"Adeloxenus" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Adunator 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
Aletodon 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 
Allocosmodon 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 
Anconodon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Aphanocyon 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Arctocyon 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 
Barylambda 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Bessoecetor 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 
Bisonalveus 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 
Boreocyon 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Caenolambda 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 
Carpocristes 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Carpodaptes 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 
Cedrocherus 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
"Cervictis" 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Chiromyoides 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
Chriacus 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 
Claenodon 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
Colpocleanus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Cyriacotherium 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Didymictis 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Dissacus 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 
Dorraletes 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
Ectocion 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 
Ectypodus 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 
Elphidotarsius 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Elpidophorus 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 
Eudaemonema 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Gelastops 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Haplaletes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
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Horolodectes 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Ignacius 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 
"Insidioclaenus" 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
"Joffrelambda" 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Labidolemur 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
Lambertocyon 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
?Leptacodon 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 
Leptacodon 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 
Leptonysson 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Limaconyssus 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Litocherus 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 
Litolestes 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 
Litomylus 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
Melaniella 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Mesodma 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 
Microcosmodon 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Micromomys 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Mimetodon 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
Mimotricentes 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 
Myrmecoboides 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Nannodectes 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
Navajovius 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
"Nayloria" 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Neoplagiaulax 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 
Niphredil 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Nyctitherium 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Pachyaena 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Palaechthon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Pantodonta 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Pararyctes 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 
Parectypodus 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 
Paromomys 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Palaeoryctes 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 
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Paleotomus 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 
Peradectes 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 
Periptychus 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Phenacodus 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 
Picrodus 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 
Picrodontidae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Plesiadapis 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 
Plesiolestes 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Presbyteria 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Prochetodon 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
Prodiacodon 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Promioclaenus 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
Pronothodectes 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 
Protictis 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 
Protoselene 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
"Psydronyctia" 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ptilodus 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 
Raphictis 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 
Saxonella 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Taeniodonta 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 
Thryptacodon 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 
Titanoides 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 
Titanoideidae 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Tricentes 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 
"Typhlodelphys" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Tytthaena 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
Unuchinia 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 
"Xynolestes" 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S4.11.—Occurrences of mammalian genera within late middle Tiffanian (Ti4) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: CR= Crestomere School 

(Fox, 1990a; Scott, 2006, 2008), SW = Swan Hills (Russell 1967; Krishtalka 1973; Krause 1978; Gingerich 1986; Stonley, 1988; Fox, 

2005; Scott, 2006), RC = Roche Percée (Krause, 1977, 1978; Rose and Krause, 1982; Fox, 1990a, 2005; Scott, 2006; Rankin, 2009, 

2014), WN = Wannagan Creek Quarry (Holtzman 1978; Erickson 1991, 1999), JD = Judson (Holtzman 1978; Kihm and Hartman 

2004), RV = Riverdale (Holtzman 1978), CS = Cross locality (Kihm, Krause, and Hartman, 2004), RD = Red Spring (Kihm, Hartman, 

and Krause, 1993; Kihm, Krause, and Hartman, 2004), WT = Witter (Kihm, Krause, and Hartman, 2004), OLV = Olive (Wolberg, 

1979), CRC = Circle (Wolberg, 1979), SB = Seaboard (Secord, 2008), FSH = Fossil Hollow (Secord, 2008), LGD = Long Draw 

(Secord, 2008), CRT = Croc Tooth (Secord, 2008), DV = Divide (Bloch et al., 2001, 2004; Secord, 2008), SND = Sand Draw (Secord, 

2008), UW = UWV77005 (Winterfeld, 1982), MS = Mason Pocket (Simpson, 1935a, 1935b, 1935c). 
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Genera CR SW RC WN JD RV CS RD WT OLV CRC SB FSH LG CRT DV SND UW MS 
Aaptoryctes 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 
Aatotomus 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Adunator 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 
Acmeodon 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Anacodon 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Apatemys 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Arctocyon 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 
Bessoecetor 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 
Bisonalveus 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
Bryanictis 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Caenolambda 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Carpodaptes 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 
Carpolestes 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Carpomegodon 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
Chiromyoides 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 
Chriacus 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Colpoclaenus 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Cyriacotherium 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 
Didymictis 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 
Dipsalodon 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Dissacus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Dorraletes 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Ectocion 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 
Ectoganus 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Ectypodus 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 
Elpidophorus 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
Entomolestes 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Eucosmodontidae  0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 
Gelastops 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Haplaletes 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Haplolambda 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
Hyopsodontidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
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Ignacius 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 
Labidolemur 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
Lambertocyon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 
Leptacodon 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 
Leptolambda 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
Leptonysson 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Limaconyssus 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Litocherus 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Litolestes 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 
Litomylus 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
Mesodma 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Microcosmodon 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Micromomys 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Microsyops 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Mimetodon 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 
Nannodectes 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 
Navajovius 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
Neoplagiaulax 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 
Nyctitherium 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Onchocherus 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pagonomous 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Palaeoryctes 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 
Palaeosinopa 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 
Paleotomus 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Pantodonta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Pararyctes 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Parectypodus 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Peradectes 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Phenacodaptes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Phenacodus 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 
Phenacolemur 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 
Picrodus 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Plagiomenidae 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
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Plesiadapis 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 
Prochetodon 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 
Prodiacodon 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 
Protentomodon 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Protictis 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Ptilodus 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 
Raphictis 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
Scenopagus 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 
Talpavus 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Thryptacodon 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 
Titanoides 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 
Tricentes 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Unuchinia 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Utemylus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Viverravus 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
Xenacodon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
"Xynolestes" 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Zanycteris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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Table S4.12.—Occurrences of mammalian genera within late middle Tiffanian (Ti5) local faunas from the Western Interior of North 

America. Presence (1) and Absence (0). Locality abbreviations, with respective sources of faunal data, are: ZLM = Zalmout Quarry 

(Secord, 2008), Y2K = Y2K Quarry (Secord, 2002, 2008; Secord et al., 2002; Bloch et al., 2004), PRN = Princeton Quarry (Rose 

1981; Bloch et al., 2004; Secord 2008), SCH = Schaff (Bloch et al., 2004; Secord, 2008), FRT = Fritz Quarry (Secord, 2008), JPV = 

Jepsen Valley (Secord, 2008), TTN = Titanoides locality (Gazin, 1956), RCK = Rock Springs (Ti5) (University of Wyoming localities 

V76008, V77059, V77060, V78052, V78053, and V78054) (Winterfeld 1982), DLL = Dell Creek Quarry (Dorr, 1952, 1958, 1977; 

Gingerich, 1980a; Gingerich and Winkler, 1985), UCM = University of Colorado Museum locality 92177 (Burger and Honey, 2008; 

Burger, 2013), JBB = Joe’s Bonebed (Schiebout, 1974; Standhardt, 1986; Schiebout et al., 1987), and BYF = Bayfield (Simpson, 

1935a, 1935b, 1935c). 
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Genera ZLM Y2K PRN SCH FRT JPV TTN RCK DLL UCM JBB 
Aaptoryctes 0 0 0 0 0 0 0 0 1 0 0 
Adunator 0 1 1 1 0 0 0 1 1 0 0 
Aletodon 0 0 0 0 0 0 0 1 0 0 0 
Apternodus 0 0 1 0 0 0 0 0 0 0 0 
Arctocyon 0 1 1 0 0 0 0 0 0 0 1 
Arctocyonides 0 0 0 0 0 0 0 0 0 1 0 
Arctodontomys 0 1 0 0 0 0 0 0 0 0 0 
Bessoecetor 0 0 0 0 0 0 0 1 0 0 0 
Carpodaptes 0 0 0 0 0 0 0 0 0 1 0 
Carpolestes 1 1 1 1 1 0 0 1 0 0 0 
Carpocristes 0 0 0 0 0 0 0 0 1 0 0 
Chiromyoides 0 0 0 0 0 0 0 1 1 1 1 
Claenodon 0 0 0 0 0 0 0 1 0 0 0 
Didelphidae 0 0 1 0 0 0 0 0 0 0 0 
Didymictis 0 0 1 0 0 0 0 0 1 0 0 
Dissacus 0 0 1 0 0 0 0 1 0 0 0 
Dorraletes 0 0 0 0 0 0 0 0 1 0 0 
Ectocion 1 1 1 0 0 0 1 1 0 1 0 
Ectoganus 0 0 0 0 0 0 0 0 0 0 0 
Ectypodus 0 1 1 0 0 0 0 0 1 1 1 
Haplaletes 0 0 0 0 0 0 0 0 0 1 1 
Haplomylus 0 0 0 0 0 0 0 0 0 1 0 
Ignacius 1 0 0 0 0 0 0 0 1 1 0 
Jepsenella 0 0 0 0 0 0 0 0 0 0 1 
Labidolemur 0 1 0 0 0 0 0 0 0 0 0 
Lambertocyon 0 0 0 0 0 0 0 1 0 0 1 
?Leptacodon 0 1 1 0 0 1 0 0 0 0 0 
Leptacodon 0 0 0 1 0 0 0 1 0 1 0 
Litocherus 0 0 0 0 0 0 1 0 0 0 0 
Litolestes 0 1 1 1 0 0 0 1 0 0 0 
Litomylus 0 0 0 0 0 0 0 1 0 1 0 
Microcosmodon 0 1 1 1 0 0 0 0 0 0 0 
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Micromomys 0 1 1 1 0 0 0 0 0 0 0 
Mimetodon 0 0 1 0 0 0 0 0 0 0 1 
Mingotherium 0 0 0 0 0 0 0 0 0 0 0 
Mioclaenus 0 0 0 0 0 0 1 0 0 0 0 
Mylanodon 0 1 0 0 0 0 0 0 0 0 0 
Nannodectes 0 0 0 0 0 0 0 1 0 1 1 
Navajovius 0 0 0 0 0 0 0 0 0 0 1 
Neoliotomus 0 0 1 0 0 0 0 0 0 0 0 
Neoplagiaulax 0 0 1 0 0 0 0 0 0 0 0 
Nyctitheriidae 0 0 1 0 0 0 0 0 0 0 0 
Paleictops 0 1 1 0 0 0 0 0 0 0 1 
Palaeoryctes 0 1 1 1 0 0 0 0 0 0 0 
Palaeosinopa 0 0 0 0 0 0 0 0 1 0 0 
Paleotomus 0 0 0 0 0 0 0 0 1 0 0 
Parectypodus 0 1 1 0 0 0 0 0 0 0 1 
Pentacosmodon 0 0 1 0 0 1 0 0 0 0 0 
Peradectes 0 0 1 0 0 0 0 1 0 0 0 
Phenacodaptes 0 0 1 1 0 0 0 1 0 1 0 
Phenacodus 1 0 1 0 0 0 1 0 0 1 1 
Phenacolemur 1 1 1 1 0 0 0 0 0 0 1 
Picrodus 0 0 0 0 0 0 0 1 0 0 0 
Plagioctenodon 0 1 0 0 0 0 0 0 0 0 0 
Plesiadapis 1 1 1 1 0 0 1 1 1 1 0 
Princetonia 0 1 1 1 0 0 0 0 0 0 0 
Prochetodon 0 1 1 1 0 0 0 0 0 0 0 
Prodiacodon 0 1 1 0 0 0 0 0 0 0 0 
Propalaeanodon 0 0 1 0 0 1 0 0 0 1 0 
Protictis 0 0 0 0 0 0 0 1 0 1 0 
Ptilodus 0 0 0 0 0 0 0 0 1 1 1 
Scenopagus 0 0 0 0 0 0 1 0 0 0 0 
Taeniodonta 0 0 0 0 0 0 0 0 0 0 1 
Thryptacodon 0 0 1 0 0 0 1 1 1 1 0 
Titanoides 0 0 0 0 0 0 1 0 0 0 0 
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Tricentes 0 0 0 0 0 0 0 0 0 0 1 
Unuchinia 0 0 1 1 0 0 0 0 0 0 0 
Utemylus 0 0 0 0 0 0 1 0 0 0 0 
Viverravus 0 1 1 1 0 0 0 0 0 0 0 
Wyonycteris 0 0 1 1 0 0 0 0 0 0 0 
Zanycteris 0 0 0 0 0 0 0 0 0 1 1 
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Table S4.13.—Stratigraphic and geographic information for Lancian mammalian 

assemblages from the Western Interior of North America.  

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Pediomys 
Point Alaska 

Prince 
Creek 70 -151.6 83.3 -119.1 

Scollard Alberta Scollard 51.8 -113 58.7 -93.8 
Wounded 
Knee Saskatchewan Frenchman 49.3 -108.4 55.3 -90.7 
Gryde Saskatchewan Frenchman 49.3 -108.4 55.3 -90.7 
Chambery 
Coulee Saskatchewan Frenchman 49.5 -108.8 55.5 -91.0 
Little 
Missouri 
Badlands 

Montana/North 
Dakota Hell Creek 47 -103.7 52.0 -87.2 

Pretty Butte  North Dakota Hell Creek 46.4 -104 51.5 -87.9 
Marmath  North Dakota Hell Creek 46.3 -103.9 51.4 -87.8 
Sunset Butte  North Dakota Hell Creek 46.1 -103.8 51.1 -87.8 
Mud Buttes  North Dakota Hell Creek 46 -103.8 51.1 -87.9 
PTRM 
V89003 North Dakota Hell Creek 46 -103.8 51.1 -87.9 
PTRM 
V89004 North Dakota Hell Creek 46 -103.8 51.1 -87.9 
Stumpf North Dakota Hell Creek 46.9 -101.5 51.3 -85.0 
Miller Ranch  North Dakota Hell Creek 46 -103.9 51.1 -88.0 
Iron 
Lightning South Dakota Fox Hills 45 -101.8 49.6 -86.4 
Red Owl  South Dakota Fox Hills 44.5 -102.3 49.3 -87.2 
Joe Painter South Dakota Hell Creek 45.5 -103.1 50.4 -87.5 
Eureka  South Dakota Hell Creek 45.5 -103.1 50.4 -87.5 
Black Horse South Dakota Hell Creek 45.7 -101.3 50.1 -85.5 
Harding 
County South Dakota Hell Creek 45.8 -103.8 50.9 -88.0 
Hell Creek 
Montana Montana Hell Creek 47.5 -106.4 53.1 -89.7 
Muddy Tork Montana Hell Creek 47.1 -104.8 52.3 -88.3 
Powderville Montana Hell Creek 45.4 -105.6 50.9 -90.1 
Claw Butte Montana Hell Creek 45.8 -104.9 51.1 -89.1 
Fallon 
County Montana Hell Creek 46.3 -104.3 51.5 -88.2 
Type Lance Wyoming Lance 43.2 -104.6 48.6 -90.2 
General 
Lance Wyoming Lance 43.2 -104.6 48.6 -90.2 
Greasewood 
Creek Wyoming Lance 43.3 -104.4 48.7 -90.0 
Mule Creek 
Junction Wyoming Lance 43.4 -104.2 48.7 -89.7 
Black Butte 
Station Wyoming Lance 41.6 -108.7 48.1 -95.3 
Dumbbell 
Hill Wyoming Lance 44.9 -108.9 51.3 -93.9 
Hewett's Wyoming Lance 44.2 -109 50.7 -94.3 
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Foresight 
Ferris 
Formation 
(Lancian) Wyoming Ferris 41.8 -106.6 47.8 -93.0 
Pawnee Colorado ?Laramie 40.8 -104.5 46.3 -91.3 
Dragon 
Canyon Utah North Horn 39 -111.3 46.3 -99.3 
Alamo Wash New Mexico Ojo Alamo 36.3 -108.2 43.0 -97.2 
NMMNH L-
4005 New Mexico Ojo Alamo 36.2 -108.9 43.0 -97.9 
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Table S4.14.—Stratigraphic and geographic for early Puercan (Pu1) mammalian 

assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Fr-1 Saskatchewan Ravenscrag 49.5 -109.1 55.3 -90.1 
Long Fall Saskatchewan Ravenscrag 49.5 -109.2 55.4 -90.2 
Pine Cree 
Park Saskatchewan Ravenscrag 49.6 -108.7 55.3 -89.6 
French Fry Saskatchewan Ravenscrag 49.3 -108.4 55.0 -89.5 

Hell's Hollow  Montana 

Tullock 
Member of 
Fort Union 47.6 -107 53.1 -89.2 

McKeever 
Ranch  Montana 

Tullock 
Member of 
Fort Union 47.6 -107 53.1 -89.2 

McGuire 
Creek Montana Hell Creek 47.7 -106.2 52.9 -88.3 
Ferris 
Formation 
(Pu1)  Wyoming Ferris 41.9 -106.9 47.7 -92.4 

Mantua Lentil Wyoming 

Polecat 
Bench/Fort 
Union 44.3 -109 50.5 -93.3 

Leidy Quarry Wyoming 

Polecat 
Bench/Fort 
Union 43.7 -108.7 49.9 -93.3 

Littleton  Colorado Denver 39.7 -104.7 45.1 -91.2 
Nicole's 
Mammal Jaw 
locality  Colorado Denver 39.6 -104.3 44.9 -90.9 
Denver 
Oxyclaenodon Colorado Denver 39.7 -105.1 45.2 -91.7 
Spigot Bottle Montana Hell Creek 45.9 -104.9 50.9 -88.1 
Lane’s Little 
Jaw Site Montana Hell Creek 45.7 -105 50.8 -88.3 
Merle's Mecca North Dakota Fort Union 46.4 -103.9 51.1 -86.8 
 

 

 

 

 

 

 



  

   318 

Table S4.15.—Stratigraphic and geographic information for middle Puercan (Pu2) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Rav.W1 Saskatchewan Ravenscrag 49.5 -109.2 55.4 -90.2 
Wintering 
Hills Alberta Scollard 51.2 -112.5 57.8 -92.4 
PITA Flats North Dakota Fort Union 47.1 -104.8 52.0 -87.3 
Gas Tank Utah North Horn 39 -111 46.0 -98.1 
Corral Bluffs, 
Jimmy Camp 
Creek, West 
Bijou Creek Colorado Denver 38.8 -104.8 44.3 -91.8 
Ferris 
Formation 
(Pu2) Wyoming Ferris 41.9 -106.9 47.7 -92.4 
West Flank 
Kimbeto 
Wash New Mexico Nacimiento 36.3 -108.2 42.8 -96.4 
East Flank 
Kimbeto 
Wash New Mexico Nacimiento 36.3 -108.2 42.8 -96.4 
Betonnie 
Tsosie Wash New Mexico Nacimiento 36.2 -107.8 42.6 -96.0 
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Table S4.16.—Stratigraphic and geographic information for late Puercan (Pu3) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Croc Pot Saskatchewan Ravenscrag 49.5 -109.2 55.4 -90.2 
Garbani 
Channel and 
Purgatory Hill Montana 

Tullock 
Member of 
Fort Union 47.6 -107 53.1 -89.2 

Bechtold Montana 
Ludlow 
Member 46.3 -104.5 51.2 -87.5 

Ferris 
Formation 
(Pu3) Colorado Ferris 41.9 -106.9 47.7 -92.4 
Wagonroad Utah North Horn 39 -111 46.0 -98.1 
De-na-zin 
Wash New Mexico Nacimiento 36.3 -108 42.7 -96.2 
Willow Wash New Mexico Nacimiento 36.3 -108.2 42.8 -96.4 
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Table S4.17.—Stratigraphic and geographic information for early Torrejonian (To1) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 

Farrand 
Channel Montana 

Tullock 
Member of 
Fort Union 47.5 -107 52.6 -88.3 

Horsethief 
Canyon Montana 

Tullock 
Member of 
Fort Union 47.2 -107.3 52.4 -88.8 

Simpson 65 Montana Lebo 46.2 -109.7 52.2 -91.9 
Simpson 9 Montana Lebo 46.2 -109.7 52.2 -91.9 
Simpson 78 Montana Lebo 46.2 -109.7 52.2 -91.9 
Dragon Utah North Horn 39.2 -111.3 46.1 -97.5 
Kutz Canyon 
(NMMNH L- 
2659 and 
2660) New Mexico Nacimiento 36.3 -108.2 42.5 -95.7 
De-na-zin 
Wash 
(AMNH 
locality 3) New Mexico Nacimiento 36.3 -108 42.5 -95.5 
Lowest 
Torrejonian of 
Kimbeto 
Wash 
(NMMNH L-
692)  New Mexico Nacimiento 36.3 -108.2 42.5 -95.7 
Betonnie 
Tsosie Wash 
('lowest 
Torrejonian') New Mexico Nacimiento 36.2 -107.8 42.3 -95.3 
Dogie Texas Tornillo 29.2 -103.2 34.5 -93.5 

Tom's Top  Texas Tornillo 20.3 -103.6 26.1 -97.0 
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Table S4.18.—Stratigraphic and geographic information for middle Torrejonian (To2) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Who Nose? Alberta Paskapoo 51 -114.1 57.7 -93.0 
Edworthy 
Park  Alberta Paskapoo 51.1 -114.2 57.9 -93.1 

Bearspaw  Alberta 
Porcupine 
Hills 51.1 -114.3 57.9 -93.2 

Brown Ranch  North Dakota Fort Union 46.4 -103.3 50.6 -85.3 
Gidley Montana Lebo 45.8 -109.8 51.8 -92.3 
Silberling Montana Lebo 45.8 -109.8 51.8 -92.3 
Swain  Wyoming Fort Union 41.3 -107.7 47.1 -92.7 

Rock Bench  Wyoming 

Polecat 
Bench/Fort 
Union 44.3 -109 50.2 -92.4 

Kutz Canyon 
(AMNH 
locality 'Sec. 
3, T27N, 
R11W', KU 
locality 4) New Mexico Nacimiento 33.6 -108 39.9 -96.7 
'Big Pocket' 
(KU locality 
13) New Mexico Nacimiento 33.6 -108 39.9 -96.7 
AMNH 
localities "1 
or 2 miles 
west of Angel 
Peak' New Mexico Nacimiento 33.6 -108 39.9 -96.7 
NMMNH L- 
1482 and 
2658 New Mexico Nacimiento 33.6 -108 39.9 -96.7 
Gallegos 
Canyon 
(AMNH 
locality 1) New Mexico Nacimiento 36.3 -108.2 42.5 -95.7 
Head of 
Kimbeto 
Wash 
(AMNH 
locality 8 [in 
part], KU 
locality 9 
['Little 
Pocket']) New Mexico Nacimiento 36.3 -108.2 42.5 -95.7 
44 Store 
localities low 
and high 
(AMNH 
locality 9?) New Mexico Nacimiento 36.3 -108.2 42.5 -95.7 
Escavada New Mexico Nacimiento 35.7 -107 41.6 -94.7 
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Wash 
(AMNH 
locality 14 [in 
part]) 
Torrejon 
Wash 
(NMMNH L- 
2693 and 
2714) New Mexico Nacimiento 36 -107.3 42.0 -94.9 
Torrejon 
Wash 
(NMMNH L-
2723) New Mexico Nacimiento 36 -107.3 42.0 -94.9 
Torrejon 
Wash 
(NMMNH L-
2709) New Mexico Nacimiento 36 -107.3 42.0 -94.9 
East Branch 
of Torrejon 
Wash 
(NMMNH L-
2724, AMNH 
locality 11 [in 
part]) New Mexico Nacimiento 36 -107.3 42.0 -94.9 
East Branch 
of Torrejon 
Wash 
(AMNH 
locality 11) New Mexico Nacimiento 36 -107.3 42.0 -94.9 
Mesa de Cuba 
and Mesa 
Portales New Mexico Nacimiento 35.7 -107 41.6 -94.7 
Middle Peak 
and Alligator 
Alley  Texas Tornillo 29.2 -103.2 34.5 -93.5 
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Table S4.19.—Stratigraphic and geographic information for late Torrejonian (To3) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Calgary 2E Alberta Paskapoo 51.0 -114.1 57.7 -93.0 
Nordic Ski  Alberta Paskapoo 51.0 -114.1 57.7 -93.0 

Lloyd and 
Hare North Dakota 

Tongue 
River 
Member of 
Fort Union 46.7 -101.8 50.3 -86.8 

Cedar 
Mountain 
Sites 

Montana/Wyo
ming Fort Union 43.9 -108.3 50.4 -83.6 

The Breaks 
(To3) Wyoming Hanna 41.8 -106.9 49.7 -91.9 
Rock Springs 
(To3) Wyoming Fort Union 41.7 -109 47.3 -91.6 
Escavada 
Wash 
(AMNH 
locality 14) New Mexico Nacimiento 35.7 -107 47.8 -93.8 
West Branch 
of Torrejon 
Wash 
(AMNH 
locality 10) New Mexico Nacimiento 36.0 -107.3 41.6 -94.7 
East Branch 
of Torrejon 
Wash 
(AMMH 
locality 10)  New Mexico Nacimiento 36.0 -107.3 42.0 -94.9 
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Table S4.20.—Stratigraphic and geographic information for earliest Tiffanian (Ti1) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Diss Alberta Coalspur 53 -116.8 59.5 -94.6 
Cochrane 1 
and 2 Alberta Paskapoo 51.2 -114.4 57.3 -93.6 
Aaron's 
locality Alberta Paskapoo 51.9 -113.3 57.6 -91.9 
Bangtail Montana Melville 45.8 -110.5 51.3 -93.3 
Douglass Montana Melville 45.8 -109.8 51.1 -92.6 
Donald Montana Melville 45.8 -109.8 51.1 -92.6 
Glennie Montana Melville 46.2 -109.9 51.5 -92.5 
Bingo Montana Melville 45.8 -109.8 51.1 -92.6 
Plan B Montana Melville 46 -110.3 51.4 -93.0 
Grayson 
Ridge Wyoming Hanna 41.8 -107 49.9 -92.3 
Halfway Hill Wyoming Hanna 41.8 -107 46.6 -92.0 
C-Con Texas Tornillo 29.2 -103.2 46.6 -92.0 
The Breaks 
(Ti1) Wyoming Hanna 41.8 -106.9 33.7 -93.8 
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Table S4.21.—Stratigraphic and geographic information for late early Tiffanian (Ti2) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
White Site, 7-
Up Butte, and 
Highway 
Blowout Montana 

Sentinel 
Butte 45.8 -104.4 49.6 -87.2 

Scarritt  Montana Melville 45.8 -109.8 51.1 -92.6 

UM locality 
263 Wyoming 

Polecat 
Bench/Fort 
Union 44.8 -108.7 49.9 -92.1 

Saddle  Wyoming Fort Union 42.3 -108.2 47.4 -93.0 
The Breaks 
(Ti2) Wyoming Hanna 41.8 -106.9 46.6 -91.9 
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Table S4.22.—Stratigraphic and geographic information for early middle Tiffanian 

(Ti3) mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Hand Hills 
West, upper 
level Alberta Paskapoo 51.5 -112.3 57.0 -91.2 
Blindman 
River Alberta Paskapoo 52.4 -113.8 58.2 -92.0 
Burbank Alberta Paskapoo 52.3 -113.8 58.1 -92.1 
Joffre Bridge Alberta Paskapoo 52.2 -113.6 57.9 -91.9 
Birchwood Alberta Paskapoo 53.2 -114.7 59.1 -92.2 
Police Point Saskatchewan Ravenscrag 49.7 -110.1 54.7 -90.3 

Brisbane North Dakota 

Tongue 
River 
Member of 
Fort Union  46.7 -101.8 49.7 -84.1 

White's River 
Basin Survey 
Site North Dakota 

Sentinel 
Butte 47.7 -103.4 51.1 -85.0 

Cedar Point  Wyoming 

Polecat 
Bench/Fort 
Union 44.7 -108.4 49.7 -91.8 

Jepsen Quarry Wyoming 

Polecat 
Bench/Fort 
Union 44.5 -108 49.4 -91.6 

Twin Creek Wyoming Evanston 41.8 -110.7 47.6 -95.8 
Chappo Type  Wyoming Fort Union 41.8 -110.7 47.6 -95.8 
Ledge Wyoming Fort Union 43.2 -108.2 48.3 -92.5 
Battle 
Mountain Wyoming Hoback 42.7 -110.1 48.3 -94.7 
Love  Wyoming Hoback 43.9 -110.8 49.6 -94.8 
Ray's 
Bonebed Texas Tornillo 29.2 -103.2 33.7 -93.8 
Ohio Creek  Colorado Ohio Creek 40.3 -108.3 45.6 -94.1 
The Break 
(Ti3) Wyoming Hanna 41.8 -106.9 46.6 -91.9 
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Table S4.23.—Stratigraphic and geographic information for late middle Tiffanian (Ti4) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 
Crestomere 
School Alberta Paskapoo 52.6 -114.1 58.4 -92.1 
Swan Hills  Alberta Paskapoo 54.8 -115.5 60.8 -91.6 
Roche Percée Saskatchewan Ravenscrag 49.1 -102.7 52.2 -83.4 

Wannagan 
Creek  North Dakota 

Tongue 
River 
Member of 
Fort Union  47 -103.7 50.5 -85.7 

Judson North Dakota 

Tongue 
River 
Member of 
Fort Union  46.9 -101.5 49.8 -83.7 

Riverdale North Dakota 
Sentinel 
Butte 47.5 -101.2 50.3 -83.0 

Cross locality  North Dakota 
Sentinel 
Butte 47.7 -103.4 51.1 -85.0 

Red Spring  North Dakota 
Sentinel 
Butte 47.2 -101.9 50.2 -83.9 

Witter 
Locality North Dakota 

Sentinel 
Butte 48.4 -103.5 51.7 -85.2 

Olive Montana 

Tongue 
River 
Member of 
Fort Union  45.4 -105.6 51.8 -84.6 

Circle Montana 

Tongue 
River 
Member of 
Fort Union  47.8 -106.1 49.6 -88.6 

Seaboard 
Well Wyoming 

Polecat 
Bench/Fort 
Union 44.3 -109 51.9 -87.6 

Fossil Hollow Wyoming 

Polecat 
Bench/Fort 
Union 44.3 -109 49.5 -92.7 

Long Draw 
Quarry Wyoming 

Polecat 
Bench/Fort 
Union 45.2 -109 49.5 -92.7 

Lower Sand 
Draw Wyoming 

Polecat 
Bench/Fort 
Union 44.5 -108 50.3 -92.2 

Croc Tooth  Wyoming 

Polecat 
Bench/Fort 
Union 44.7 -108.3 49.7 -91.7 

Divide  Wyoming 

Polecat 
Bench/Fort 
Union 44.7 -108.3 49.7 -91.7 

Sand Draw 
Anthill Wyoming 

Polecat 
Bench/Fort 44.5 -108 49.4 -91.6 
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Union 
Mason Pocket Colorado Animas 37.1 -107.6 46.9 -93.8 
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Table S4.24.—Stratigraphic and geographic information for early late Tiffanian (Ti5) 

mammalian assemblages from the Western Interior of North America. 

 

Locality Province/State Formation Lat. Long. Paleolat. Paleolong. 

Zalmout  Wyoming 

Polecat 
Bench/Fort 
Union 44.8 -108.8 49.9 -92.2 

Y2K  Wyoming 

Polecat 
Bench/Fort 
Union 44.3 -109 49.5 -92.7 

Princeton  Wyoming 

Polecat 
Bench/Fort 
Union 44.9 -108.9 50.0 -92.2 

Schaff  Wyoming 

Polecat 
Bench/Fort 
Union 44.9 -108.9 50.0 -92.2 

Brice Canyon Wyoming 

Polecat 
Bench/Fort 
Union 44.3 -109 49.5 -92.7 

Fritz  Wyoming 

Polecat 
Bench/Fort 
Union 44.9 -108.9 50.0 -92.2 

Jepsen Valley Wyoming 

Polecat 
Bench/Fort 
Union 44.9 -108.9 50.0 -92.2 

Middle Sand 
Draw Wyoming 

Polecat 
Bench/Fort 
Union 44.5 -108 48.3 -92.5 

Titanoides 
locality Wyoming Fort Union 43.2 -108.2 47.1 -94.1 
Rock Springs 
Uplift (Ti5) Wyoming Fort Union 41.7 -109 48.3 -94.7 
Dell Creek  Wyoming Hoback 42.7 -110.1 45.5 -94.0 
University of 
Colorado 
Museum 
locality 92177 Colorado Fort Union 40.3 -108.2 33.7 -93.8 
Joe's Bonebed Texas Tornillo 29.2 -103.2 49.9 -92.2 
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