
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2016

Distributed Gaussian Mixture Model

Summarization Using the MapReduce Framework

Esmaeilpour, Arina

Esmaeilpour, A. (2016). Distributed Gaussian Mixture Model Summarization Using the

MapReduce Framework (Master's thesis, University of Calgary, Calgary, Canada). Retrieved

from https://prism.ucalgary.ca. doi:10.11575/PRISM/25727

http://hdl.handle.net/11023/3053

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

Distributed Gaussian Mixture Model Summarization Using the MapReduce Framework

by

Arina Esmaeilpour

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

JUNE, 2016

© Arina Esmaeilpour 2016



Abstract

With an accelerating rate of data generation, sophisticated techniques are essential to meet scala-

bility requirements. One of the promising avenues for handling large datasets is distributed storage

and processing. Hadoop is a well-known framework for distributed storage and processing. Fur-

ther, data summarization is a useful concept for managing large datasets. Data summarization

techniques are intended to produce compact yet representative summaries for the entire dataset.

Consolidation of these tools can allow a distributed implementation of data summarization. In this

thesis, this goal is achieved by proposing and implementing a distributed Gaussian Mixture Model

Summarization using the MapReduce framework (MR-SGMM). The main purpose of the proposed

method is to summarize a dataset with a density-based clustering algorithm called DBSCAN al-

gorithm, and then summarize each discovered cluster using the SGMM approach in a distributed

manner. Testing the implementation with synthetic and real datasets is used to demonstrate its

validity and efficiency.
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Chapter 1

Introduction

1.1 Motivation and problem statement

Data analysis has become an essential element in decision-making for small businesses, large

corporations and government. The ever-growing rate of data generation provides an opportunity to

explore emerging patterns and uncover non-trivial correlations among many and diverse sources

of data.

These data sources include client information of financial institutions, commercial enterprises

and hospitals. Real-time systems, such as sensor networks and monitoring systems, constantly pro-

duce potentially valuable data. Data from weather stations, censuses and geographic information

systems can be analyzed to explore new information relationships that have never been accessible

before. Individual people constitute billions of sources of data generation by using e-mail services,

mobile applications, social networks, etc. Means are needed to store, process, analyze and mine

all of these massive sources of data [1].

The desire to exploit stored data to extract useful and previously unknown information has led

to the development of data mining techniques to analyze large amounts of data. However, the rates

of data production and collection have been growing much faster than our ability to process these

sources of information. Therefore, it is essential to develop better processing algorithms that rely

on distributed storage and computing systems [1].

Improving hardware performance by constructing larger servers and storage arrays may appear

to be a solution for handling voluminous data. This approach is generally referred to as ’scale-up’.

An important disadvantage of scale-up, however, is that processing time will ultimately be limited

by the time required for data transfer among different parts of the server (e.g. between storage

and processor). In addition, this seemingly simple solution can become prohibitively expensive for
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data processing beyond a certain scale [2].

An alternative approach to scale-up is ’scale-out’, wherein multiple servers perform the data

processing. Additional servers can be added to accommodate increasing needs for storage and

processing of larger volumes of input data. The cost of data processing in such a structure will

increase linearly with respect to input data size. In comparison with scale-up, scale-out is more

cost-effective and flexible for managing growing data sources [2].

Distributing data processing tasks in a scale-out architecture requires careful data partitioning,

reassembly and task scheduling across clustered machines, as well as logic to handle individual

node failure. Apache Hadoop is an open source framework for managing scale-out architecture

[2]. Hadoop operates on a network of commodity machines in one location, and is composed of a

Hadoop Distributed File System (HDFS) for storage, and MapReduce for processing. HDFS and

MapReduce work well together, with map and reduce functions performed on data stored in HDFS

nodes [2].

Another way to help deal with massive data is data summarization. Summarized data is easier

to handle, as it requires less storage space, and consequently takes less processing time to analyze.

Data summarization techniques allow use of a compact and viable representation of a dataset [3].

It is desirable to summarize data where original data is disposed and only key information is stored

on the hard drive for secondary applications. For example, one can use the summarized clustering

results for classification of new incoming data without recalling all data points. In addition, simple

tasks such as averaging can be performed on the summarized data without relying on recalling all

data points.

Clustering is a data mining technique that can be used to summarize data. After clustering, data

in the produced clusters can be summarized to reduce the required storage and processing time, as

preserving all cluster members is typically not feasible for large volumes of data. Several cluster

summarization techniques have been developed to meet requirements for different applications and

types of data [4, 5, 6].
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1.2 Contributions

As noted, the accelerating growth of data leads to an ever-increasing demand on data pro-

cessing systems. Even though data summarization is effective in reducing storage requirements

for large data sources, implementing data summarization techniques on large data sources can be

prohibitively computationally demanding. Therefore, developing data summarization techniques

within scale-out frameworks can be an important step toward a sustainable solution for growing

data processing requirements. Such a development can benefit from cost-effective, flexible and

scalable processing capabilities within scale-out architecture for clustering and summarizing large

data sources.

In this thesis, this goal is met by implementing a density-based clustering and a cluster sum-

marization technique using the MapReduce framework. Specifically, the work is focused on a

MapReduce-based implementation of clustering with a Density-Based Spatial Clustering of Ap-

plications with Noise (DBSCAN) algorithm [7], and Summarization based on Gaussian Mixture

Model (SGMM) [6]. Both of these techniques are advantageous in discovering and summarizing

arbitrary-shape clusters [6, 7]. DBSCAN is a density-based clustering algorithm, which finds clus-

ters based on the concept of connecting dense regions, and discovers arbitrary-shape clusters [7].

The cluster summarization step is done via SGMM, which finds dense regions in a cluster, repre-

sents each dense region with a point called an SGMM core point, and delineates features related

to the core point. Finally, the SGMM method is used to create a Gaussian Mixture Model (GMM),

which is a combination of a set of normal distributions over all SGMM core points of the cluster,

and can be used for a compact representation of the original data.

The distributed data clustering and summarization approach in this thesis involves the following

elements:

• data partitioning

• local clustering based in DBSCAN
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• cluster merging and data re-assembly

• data summarization with SGMM

• data regeneration based on GMM

These elements are implemented in a MapReduce framework to ensure scalability for handling

large datasets. The implementation is tested on synthetic and real datasets, and its output and effi-

ciency is compared to a non-distributed approach for validation. In addition, a core point reduction

approach is proposed and implemented for more efficient and yet accurate data summarization

and regeneration. Note that MapReduce-based implementation of DBSCAN algorithm has been

studied in [8, 9, 10] that are relying on different partitioning strategies. In this thesis, a grid-based

partitioning approach is used for an implementation of DBSCAN algorithm that is compatible with

GMM summarization, which are both completely developed in the MapReduce framework.

1.3 Thesis structure

The thesis is organized as follows. In chapter 2, a literature survey is presented on data summa-

rization techniques, including clustering approaches and methods of cluster summarization. Clus-

tering approaches implemented using the MapReduce framework are also reviewed. In chapter 3,

the technical methods underpinning this thesis are described. This includes the Hadoop framework,

DBSCAN clustering algorithm and SGMM algorithm for cluster summarization. In chapter 4, the

general structure of the proposed new MapReduce-based SGMM (MR-SGMM) and its constitu-

tive steps are explained in detail. Experimental methods and results to assess MR-SGMM are

described in chapter 5. Chapter 6 includes a conclusion and discussion of possible future work.
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Chapter 2

Literature Survey

Nowadays massive amounts of data are being generated by activities such as web surfing, using

social networks and e-mail services, shopping and online bank services. In addition to increase in

amounts of generated data, also the rate of increase is drastically high. The management and use

of the accumulated large volume of data requires not only large storage devices but also substantial

processing, analysis and retrieval methods. A way to mitigate these problems is to summarize the

data, reducing storage, processing and retrieval needs.

Data summarization techniques are intended to produce summaries which are compact yet

representative of the entire dataset. Clustering can be used as a summarization technique. For

large volumes of data, preservation of all cluster members is not feasible, so each produced cluster

can be summarized as well. Cluster summarization aims to represent a cluster with fewer instances,

while preserving the original shape and distribution of the cluster.

Summarization approaches are costly, requiring substantial processing time and memory to

create a summary for large amounts of data. In this case, distributing data and computation across

a cluster of machines can be beneficial. The MapReduce framework provides a means to imple-

ment a model for automatically distributing and parallelizing processes in a cluster of commodity

machines.

In this chapter, section 2.1 gives a survey of the literature on specific data summarization tech-

niques, including sampling, histograms, micro-clustering and clustering. These summarization

techniques can be applied to large quantities of data [3]. In section 2.2, cluster summarization

methods are reviewed. Finally, clustering approaches implemented using the MapReduce frame-

work are presented in section 2.3.
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2.1 Data summarization techniques

Data summarization aims to compactly represent large-volume data. The resulting size reduc-

tion simplifies the requirements for data storage, retrieval and analysis. Reducing the size of data

must facilitate approximate yet informative results in data analysis, complying with requirements

in terms of time, space and cost [3].

With the increasing rate of global data generation, data summarization can be applicable to a

variety of data sources in different fields and applications. For example, research in astronomy,

the earth sciences and medical informatics rely on large sources of data. Data summarization

techniques could be employed to categorize data or extract crucial medical information in a more

time-efficient manner. Social networks and the World Wide Web are other examples of big data

sources. Summarization could play an important role in network and web analysis. Further, mining

large amounts of data for analysis of purchasing patterns, stock trends or client reviews could be an

indispensable aid for business and marketing. Another potential application of data summarization

is query processing in sensor networks [3].

Various data summarization techniques have been implemented to address these applications.

Some of the well-known techniques are reviewed in the following subsections, including sampling,

histograms and micro-clustering. The final technique presented is a clustering approach for data

summarization, covering the groundwork pertinent to the remainder of the thesis.

2.1.1 Sampling

Sampling can be defined as the process of selecting a representative part of a population for the

purpose of determining parameters or characteristics of the whole population. Therefore, sampling,

as a summarization method, can reduce data size and processing time by considering only a portion

of a dataset (samples), but which is still informative. This approach can be useful in a variety of

applications, such as data management, approximate query answering, statistic estimation and data

stream processing.
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There are two main groups of sampling techniques, probability-based and non-probability-

based [3]. All techniques are based on a few key elements:

• Sample: A sample is representative subset of a population that retains the charac-

teristics of the population.

• Population: A large dataset that can be represented by samples.

• Frame: A subset of the population that sampling is applied to.

• Aim of sampling: The main goal of sampling is generalizing a conclusion inferred

from studying samples to the population.

• Sampling error: Sampling error, or statistical error, characterizes the difference

between the sample which is observed and the population that is not observed.

• Sampling bias: Sampling is biased when the probability of selecting individual data

points form a dataset is not uniform, resulting in a non-random sampling.

There are four common steps in taking a sample of a dataset: 1] define the population (of size

N) to be sampled, 2] determine the sample size (n), 3] control for bias and error, and 4] select the

sample [3].

In sections 2.1.1.1 and 2.1.1.2, some well-known sampling methods are described within the

two main categories of probabilistic (unbiased) and non-probabilistic (biased) sampling.

2.1.1.1 Probabilistic sampling

Sampling algorithms having equal probability for all data points to be selected are called prob-

abilistic or unbiased sampling.

1. Simple random sampling is one of the basic sampling techniques, in which all

points of the dataset have equal probability for being chosen as a sample in the
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dataset. There are two ways of performing simple random sampling, with replace-

ment and without replacement. In the former, a data point after being selected can

be re-selected with the same probability in the next round. In the latter, a data point

will be removed from the dataset after being selected, and so cannot be selected

again. Random sampling is an easy technique, not requiring substantial informa-

tion about the dataset in advance. However, access to the population is needed [11].

2. Systematic sampling uses the sample size n and dataset size N to calculate an

interval K = N/n. A random point is selected as a starting point. This starting

point is the first sample, Kth data point from starting point is the second sample,

the Kth data point from the second sample is the third sample, and so on. Despite

the simple sample selection used in this method, sampling is more accurate than

random sampling. However, all data items in the dataset do not have an equal

probability of being selected. The probability of being selected depends on the

starting point and the interval. Also, patterns in data can be hidden by inappropriate

interval selection. Systematic sampling can be a good choice for datasets without

any pattern in the data [11].

3. Stratified sampling divides the population into L non-overlapping areas called

strata, with a sample selected from each stratum. If the sample selection method

is random sampling, this method will be called stratified random sampling. The

sample size for each stratum is calculated in different ways. Optimal allocation is

a way to compute sample size proportional to the stratum size, aiming to maximize

precision while minimizing cost. Another approach is Neyman allocation, which

aims to maximize precision with a given fixed sample size, and computes sample

size based on the stratum size and its standard deviation. In this method, dividing

the population into proper strata can be difficult, but its accuracy and population

coverage are better than those of simple random sampling [11].
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4. Clustering sampling groups the population into clusters, which should be mutually

exclusive and collectively exhaustive. Then, some clusters are selected using ran-

dom sampling, and the cluster is considered as a sample. Two types of clustering

sampling exist, single-stage and multi-stage. In single-stage clustering sampling,

all members of selected clusters are considered as a sample. Multi-stage clustering

sampling selects data points by random sampling from chosen clusters. The goal

of clustering sampling is to reduce cost with respect to an increase in sampling ef-

ficiency. Low cost is a particular advantage of this method, but high sampling error

is a disadvantage. When clusters are significantly different, cluster sampling is not

a good choice because of the high sampling error [3].

2.1.1.2 Non-probabilistic sampling

Sampling algorithms for which data points have different probabilities of being selected are

considered to be biased or non-probabilistic sampling. Some approaches related to non-probabilistic

sampling are accidental sampling [12], quota sampling [13], purposive sampling [11], and snow-

ball sampling [14]. A main disadvantage of non-probabilistic sampling methods is that it may not

be easy or even possible to know or prove that a sample is representative of the population.

Accidental sampling [12], also known as convenience or opportunity sampling, selects data

items from that part of the population that is more available or close to hand. In this method, a

chosen sample may not be a good representative for the population.

In quota sampling [13], the dataset is divided into mutually exclusive groups, and samples

that satisfy a determined proportion are selected from each group. Quota sampling is the non-

probabilistic version of stratified sampling. Quota sampling is appropriate for cases in which

processing time is more important than accuracy, the budget is limited or the sampling frame is

unknown.

9



Purposive sampling [11] chooses samples from a particular population. In [15], purposive

sampling is applied in social networks for the purpose of recruitment.

In snowball sampling, a data item or a group of data items are first sampled, and they in turn

provide further data items to be sampled. Snowball sampling is useful in social network data

mining, such as described in [14].

Advantages and disadvantages of sampling — Sampling methods are fast and cheap. How-

ever, proper sample selection to reduce sampling error can be difficult. There can be bias in the

sampling. Selected samples may not adequately represent the population. As a result of sampling,

patterns in the population may be obscured in the sample.

2.1.2 Histograms

A histogram is a graphical representation of a data distribution, shown as a set of (attribute

value, frequency) pairs. A histogram can be considered to be a data reduction or summarization

method, since it represents a large volume of data in a compact way. For nominal attributes, a

vertical bar is shown for each value of data, with the height of the bar indicating the frequency of

data points with that value. If the attribute is numerical, the data can be divided into disjoint ranges

(buckets), with frequencies of data in each of the ranges represented [3]. Some of the more widely

used histogram types are described below.

Equi-sum or equal-width histograms divide the range between the maximum and minimum

attribute values into N intervals (buckets), with equal width. The width of the intervals is equal to

(maximum - minimum)/N. Equal-width histograms are not suitable for skewed data [16].

In Equal-depth (frequency) histograms, also known as Equi-height, the range between attribute

values is divided into N intervals, such that each interval has approximately equal frequency. Since

the computation of interval boundaries can be expensive, this method is not suitable for commercial

systems. However, it is a good choice for range queries with low-skew data distribution [16, 17].

A V-optimal histogram categorizes the frequencies of attribute values into a set of buckets in
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such a way that the cumulative weighted variance of the buckets is minimized. In other words,

this approach computes the cumulative variance for all possible histograms for a given number of

buckets, and selects the histogram with the least cumulative variance among them [18].

The V-Optimal-End-Biased approach [18] groups some of the highest frequencies, some of the

lowest frequencies, and the remaining frequencies between them into three individual buckets. V-

optimal gives a histogram that represents the original data better and with fewer errors, compared

to Equal-width and Equal-depth. However, updating a V-optimal histogram can be more difficult

than these other two methods, as sometimes rebuilding of the entire histogram is required.

For a MaxDiff histogram, after data sorting a bucket boundary is selected between two adjacent

values, such that the difference between adjacent values is a maximum. A MaxDiff histogram aims

to avoid grouping attribute values with vastly different frequency values into a bucket [19].

A Spline-based histogram [20] categorizes attribute values into continuous buckets, with vary-

ing bucket width. A data distribution divided among buckets is presented as a spline function

instead of as a flat value, because the data distribution is not uniform.

All the above histogram methods are considered to be one-dimensional summarization tech-

niques. There are also multi-dimensional histograms, some of which assume that all attributes

are independent, maintaining a one-dimensional histogram for each dimension [21]. Others parti-

tion the data space into d-dimensional buckets, such as GENHIST [22]. An example of applying

histograms for fast approximate query answering can be found in [23].

Advantages and disadvantages of histograms — Histograms can be useful in information re-

trieval systems for fast query processing. They provide a summary of data which represents the

distribution and skewness of data, from which a database system can estimate the size of query

results. However, using a histogram can lead to erroneous and inaccurate estimation because of

information loss; inappropriate decisions can result from inaccurate estimations.

11



2.1.3 Micro-clustering

Micro-clustering is a clustering technique that can be used to summarize real-time data streams.

Real-time data streams that are generated via sensor networks or mobile devices are of indefinite

length, and therefore have to be processed as they are collected. Given that storage of such data can

be intractable, it is advantageous to be able to summarize and store a compact representation of data

streams. Clustering data streams can be very challenging, since only one scan is possible for data

processing, and the data evolves over time. Many studies have relied on one-pass clustering for an

entire (available) data stream; for example see [24]. Therefore, the processing cannot be applied

to user-defined time windows and evolution in a data stream, such as a change in the number of

features, which can be difficult to handle.

Below, some of the micro-clustering algorithms are briefly introduced. These methods rely on

at least two main phases, known as online and offline. The online phase is dedicated to collec-

tion of summary statistics on the data, and the offline phase is used to process the collected data,

based on a clustering algorithm. Early investigation of two-phase micro-clustering demonstrated

its advantages, where time windows can be user-defined and evolutionary data features can be

dealt with efficiently [25]. An initial disadvantage of this approach was limited accuracy, which

has been resolved in later developmental work.

CluStream [25] is a two-phase micro-clustering algorithm. The offline phase in CluStream

applies a K-means algorithm on the data collected during the online phase.

DenStream [4] is a density-based micro-clustering algorithm for data streams. Similar to CluS-

tream, DenStream has online and offline steps. This algorithm benefits from a slightly different

definition of density compared to DBSCAN, for which areas of points in the neighborhood are

weighted. This algorithm is able to find arbitrary-shape clusters and outliers.

In [26], another online-offline framework micro-clustering algorithm known as D-Stream is

proposed. D-Stream creates a grid for each data item in the online phase. In the offline phase, the

algorithm finds arbitrary-shape clusters based on the grid density.
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SDStream [27] is another two-phase algorithm, which performs density-based clustering on

data streams over sliding windows [28]. SDStream considers only the distribution characteristics

of the most recent data streams. This method finds arbitrary-shape clusters.

rDenStream [29] is an extension of DenStream, and has three phases. The first two phases are

the same as those of DenStream. The third phase, which is called retrospect, gives the outliers the

opportunity to be included in the clustering process by saving them in external temporary memory.

The clustering accuracy of rDenStream is better than that of DenStream, but processing time,

complexity and memory usage are higher.

C-DenStream [30] is a density-based clustering algorithm for data streams based on Den-

Stream, which includes domain information in the form of constraints. In this method, the static

semi-supervised learning paradigm is extended for streams.

OPClueStream [31] is a density-based clustering algorithm for data streams which discovers

clusters of arbitrary-shape and overlapping clusters. A tree topology is proposed in this method,

describing the density structure of data streams.

ClusTree [32] is a parameter-free approach that maintains stream summaries, and adapts itself

to different stream speeds.

Descriptions of further studies about micro-clustering algorithms in the literature can be found

in [33] and [34].

2.1.4 Clustering

Clustering, or cluster analysis, is the process of dividing a dataset into partitions or clusters.

This is done in such a way that all similar objects should be in a cluster, and dissimilar objects

should be in different clusters. Clustering by grouping similar objects together simplifies further

analysis and processing, such as data mining and summarization. Clustering has many appli-

cations. For example, it can be used to categorize customers into different groups with similar

characteristics, or it can be used as a pre-processing step for classification or anomaly-detection
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algorithms [1].

As described in subsections 2.1.4.1 through 2.1.4.4, respectively, clustering algorithms can be

classified into four groups: partition-based, hierarchical, grid-based and density-based.

2.1.4.1 Partition-based clustering approaches

The k-means algorithm is a partition-based clustering algorithm, and is centroid-based. The

procedure starts with k groups, such that each group contains one randomly selected point as a

center. Each new point is added to a group whose center is nearest to the point. The center of a

group is the arithmetic mean of points in the group. After adding a new point, the center of the

containing group changes. In other words, the mean of the group is adjusted to consider the new

point. The process of adding points to the nearest group continues until the center of the groups

does not change anymore [35].

The k-median algorithm is a variation of k-means, but uses the median of points in a group as

the centroid instead of the mean [36].

The k-modes algorithm is similar to k-means, while the data in k-means should have numeric

attributes, k-modes can cluster data with nominal (categorical) attributes [37].

The k-medoid algorithm is a variation of k-means, in which the center of a cluster is one of

the points in the cluster which is selected randomly. After each iteration, the center may change

to another point in the cluster, such that the total distance to all points in the cluster is minimized.

Medoids (the centers of clusters) are less influenced by outlying values in comparison with means,

but they are more difficult to compute [38].

Advantages and disadvantages — Among the advantages of partition-based clustering algo-

rithms is that they are the simplest and most basic version of clustering methods. These methods

are distance-based. Partitioning algorithms are iterative and they tend to progressively approach

a local optimum, since achieving global optimality in these algorithms is computationally expen-

sive. These methods find clusters of spherical shape, and they are effective for small to medium
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size datasets [1].

Regarding disadvantages, these algorithms are not effective for applications with arbitrary-

shape clusters and large datasets. It is necessary to know the number of clusters before clustering

in these algorithms, although this information may not always be available.

2.1.4.2 Hierarchical clustering approaches

A hierarchical clustering method groups data into a hierarchy or a tree of clusters. A hierarchi-

cal method can be agglomerative, with a bottom-up strategy, or divisive, with a top-down strategy

[1].

An agglomerative method starts with each object forming a single cluster. The algorithm com-

bines clusters into larger clusters step-by-step, until all objects have become a single cluster, or

certain termination conditions have been satisfied. AGNES (AGglomerative NESting) is an exam-

ple of an agglomerative clustering method [1].

Divisive methods start with all objects forming a single cluster. The algorithm iteratively di-

vides clusters into smaller ones, until each cluster contains only one object or certain termination

conditions have been fulfilled. DIANA (DIvisive ANAlysis) is an example divisive clustering

method. A termination condition for both algorithms can be the number of arbitrary clusters [1].

Chameleon [39] is a clustering algorithm that creates a graph to represent the dataset using

k-nearest neighbor. Nodes indicate data items, and weighted edges indicate similarities between

data items. Chameleon finds clusters by performing two steps. In the first step, the algorithm par-

titions the graph of the dataset into many smaller graphs (sub-clusters), using a graph-partitioning

algorithm. The second step is an agglomerative algorithm, which merges similar sub-clusters from

the first step to form final clusters.

Probabilistic hierarchical clustering methods use probabilistic models to define the distance

between clusters. These algorithms observe and analyze the dataset, attempting to estimate the

data generation mechanism to cluster the data [1].
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Advantages and disadvantages — A hierarchical representation of data items helps to charac-

terize relationships between data items, making it easier to find a proper cluster for a particular

point [1].

As a disadvantage, it can be difficult to find a proper measure for combining or dividing points

in the algorithm. Further, if an error exists in the merges or splits, there is no way to undo or correct

them [1].

2.1.4.3 Grid-based clustering approaches

These algorithms partition the data space into cells, to form a grid structure and use the cells to

cluster the data.

STING (STatistical INformation Grid) [40] is a grid-based algorithm which partitions the spa-

tial area into rectangular cells, creating a hierarchical structure. Each cell in the grid has attribute-

independent parameters, such as the number of points in the cell, and attribute-dependent parame-

ters such as the mean and standard deviation of all values of the attribute in the cell. The algorithm

uses a top-down strategy in a hierarchy, calculating the likelihood that a cell is relevant to a spatial

data mining query to answer the query.

CLIQUE (CLustering In QUEst) [41] is an algorithm with three steps. In the first step, the

algorithm divides the spatial area into rectangular cells with no overlap; then it finds the cells with

the highest number of points. The second step creates clusters from dense units found in the first

step. The third step generates a minimal description for the clusters.

Advantages and disadvantages — These algorithms have a relatively fast processing time,

which does not depend on the size of data items but instead on the number of cells in each di-

mension. The clusters found by these algorithms can be of arbitrary-shape [1].

A major drawback of these algorithms is that creating an efficient grid can be difficult in prac-

tice, which can in turn make the algorithm inaccurate [1].
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2.1.4.4 Density-based clustering approaches

In density-based methods, clusters are created by connecting dense regions. These methods are

useful for finding arbitrary-shape clusters. DBSCAN [7], OPTICS [42] and DENCLUE [43] are

density-based methods.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [7] is a density-based

algorithm which finds core objects which are the center of dense regions, and connects the core

objects and their neighbors to form clusters.

OPTICS (Ordering Points To Identify the Clustering Structure) [42] is an algorithm that pro-

duces an ordering of the objects in a database, instead of dataset clustering. OPTICS is useful in

applications with differing local densities.

DENCLUE (DENsity-based CLUstEring) [43] is an algorithm based on a group of density

functions. In this algorithm, the influence of each object on its neighbors is modeled by a mathe-

matical influence function. The density function is the sum of the influence functions of all objects,

and is used to calculate the overall density of the data space. A cluster can be determined using

density attractors, which are the local maxima of the overall density function.

Advantages and disadvantages — Density-based clustering algorithms can be used to find

arbitrary-shape clusters without knowing the number of clusters beforehand. They also can fil-

ter out noise or outliers in the data.

The relatively slow running speed can be a major drawback for these algorithms.

2.2 Cluster summarization

For large quantities of data, preserving all instances of a cluster can require large quantities of

memory. This may be impractical. Therefore, representing a cluster using minimum storage space

can be useful. Cluster summarization techniques aim to represent a cluster without preserving all

cluster members. In spherical-shape clusters, a simple way to summarize a cluster is by specify-

ing a center and a radius, although this summarization method does not indicate how the data is
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distributed in the cluster. Summarization also can help to reduce the complexity of arbitrary-shape

clustering methods. However, the summarization of arbitrary-shape clusters can be a challenge

[6].

There are different approaches toward summarizing arbitrary shape clusters [4, 44, 5, 6].

Cao, et al. [4] propose an algorithm to discover arbitrary-shape clusters in an evolving data

stream. During the clustering process, the algorithm summarizes arbitrary-shape clusters by find-

ing core objects. The main drawback of this method is that the number of core objects can be too

large.

In [44], the authors propose a grid-based summarization of density-based clusters. They divide

the data space into uniform cells, and then define core cells to represent dense regions, edge cells

and the connectivity between cells. For summarizing a cluster, all cells are retained that have at

least one cluster member, along with their attributes and their connections. The attributes of the

cells are their location, value ranges for each dimension, the number of objects in the cell and the

status of the cell (core or edge). A drawback of this algorithm is that grid construction can be

time-consuming. Also, the algorithm preserves many grids, which tends to be inefficient in terms

of processing time and memory.

ABACUS [5] is a density-based clustering algorithm used for discovering arbitrary-shape clus-

ters. The algorithm first summarizes the dataset, to extract the backbone of the clusters, and then

identifies the final set of clusters. The summarization in this algorithm takes place by finding rep-

resentative points, and estimating a neighborhood radius around them. In most arbitrary-shape

clustering methods, two parameters are required a radius and a minimum number of neighbors.

An interesting aspect of this method is that the algorithm takes only the number of neighbors as

input, and estimates the radius from the dataset.

Bigdeli, et al. [6] propose the SGMM cluster summarization method. A set of core objects is

found which constitute the centers of dense regions with their features. The algorithm then gen-

erates a GMM using the core objects to represent the corresponding cluster. A Gaussian Mixture
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Model (GMM) is a combination of a set of normal distributions. This algorithm can summarize

data with a minimum information loss.

Among the cluster summarization techniques described above, the SGMM algorithm is an

accurate model as it preserves the original shape and the distribution of the data in the clusters.

Also, SGMM is able to regenerate original data using the produced GMMs [6].

2.3 Clustering approaches implemented in the MapReduce framework

2.3.1 Partition-based clustering approaches implemented in the MapReduce framework

A MapReduce-based k-means algorithm is a distributed version of k-means. The algorithm

uses an incremental approach, and consists of two main functions, map and reduce. Initially, the

centers of k clusters are selected randomly. The map function calculates the distance of each data

point to the cluster centers, and assigns each data point to the closest cluster. (A cluster for which

the distance from its center to the data point is a minimum is considered as the closest cluster).

After assigning a data point to a cluster, the center of the cluster changes. The reduce function

recalculates the centers of the clusters (the arithmetic mean of points in the cluster). After updating

the cluster centers, the algorithm is ready for the next iteration [45, 46].

A parallel k-means algorithm is a scalable algorithm, which not only can process high-volume

datasets, but also can reduce the implementation costs of processing large volumes of data [45,

46]. A potential drawback of this approach is its iterative strategy. Hadoop framework is more

compatible with and have a better fault tolerance for single-step algorithms [47].

2.3.2 Hierarchical clustering approaches implemented in the MapReduce framework

There is a variety of MapReduce-based implementations of hierarchical clustering methods

available, such as those in [48, 49, 50, 51, 52]. Two of them are described following.

The algorithm in [48] uses a divide-and-conquer approach. In its map function, the algorithm

divides the large dataset into smaller parts by selecting a random number as a partition number for
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each data item. Each reduce function gets a partition, and applies a sequential hierarchical cluster-

ing algorithm to the partition. A novel dendrogram alignment technique integrates the results for

each partition to a global model as a final step.

Despite preserving good clustering quality, this algorithm tends to have better scalability than

centralized solutions [48]. However, the authors did not prove that the result of their proposed

dendrogram alignment technique is correct [51].

The proposed algorithm in [49] has two main phases in the context of clustering users of inter-

net web logs. The first phase is a feature-selection step, which improves the efficiency of hierarchi-

cal clustering by reducing the dimension of data. This step is performed with 17 MapReduce tasks.

The second phase is a hierarchical clustering with batch updating, using a bottom-up strategy. It

considers each user as a cluster, and then merges pairs of user groups until the desired termination

condition is satisfied.

Using batch updating to merge the user groups reduces the computational time and the cost of

communication with distributed nodes [49].

2.3.3 Density-based clustering approaches implemented in the MapReduce framework

In the area of implementing density-based clustering methods with MapReduce, many algo-

rithms have been developed.

Cludoop [53] is a distributed density-based algorithm that creates a grid for the space of a data

partition. It performs a cell-based clustering method, finding cell-clusters using the map function,

and merging the cell-clusters in the reduce function.

Ma, et al. [54] propose a method called MRG-DBSCAN, which has two steps. The first step

assigns each point of the database into a grid, calculates the center point of each grid, and removes

noise points in a MapReduce framework. The second step is a MapReduce-based DBSCAN, which

receives center points from the previous step as input (instead of all points).

In [55], a new density-based clustering algorithm (DBCURE) and its MapReduced-based par-

20



allelization (DBCURE-MR) are proposed.

MR-DBSCAN [8] consists of four stages. Stage 1 is a partitioning algorithm, which divides

each dimension into intervals, and creates a grid for spatial data. This stage is adjusted from

the grid file [56]. Stage 2 performs a local DBSCAN algorithm on each partition, which is a

modified version of PDBSCAN [57]. This stage generates a merge candidate set (MC set) in each

partition. The MC set consists of points that belong to one cluster but which are scattered in

different partitions. Stage 1 and stage 2 are implemented with the MapReduce framework. Stage 3

determines which clusters should be merged, based on the MC sets. Stage 4 has two steps. In the

first step, a mapping is constructed between local and global cluster labels, where local (global)

clusters refer to clusters in each partition (the entire data space). In the second step, the local labels

are changed to global ones, producing the final global clusters.

The speed-up and scale-up results of this algorithm are adequate, but data replication and com-

putation in joint areas between partitions can be a challenge [8].

The algorithm in [9] performs the distributed DBSCAN in four steps. First, the dataset is

partitioned for distribution among nodes. A partitioning algorithm is proposed called Partition

with Reduced Boundary Points (PRBP), which minimizes the number of points in boundary (joint)

regions. In the second step, map and reduce functions are applied. The map function clusters the

points in each partition, and sends the boundary points to the reduce function. The reduce function

finds all the clusters in different partitions that should be merged into one cluster. The third step

generates a merge list, identifying a common label for all clusters to be merged. The fourth and

final step relabels all the data points with their final cluster label, using the merge list from the

previous step.

The PRBP algorithm considers the distribution of the data points, and minimizes the number

of data points in partition boundaries. This reduces the execution time. The PRBP algorithm in [9]

is not implemented with the MapReduce framework, so the execution time can be high for large

amounts of data. As well, the steps to find merge lists and relabel data points are not implemented
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with the MapReduce framework.

The proposed algorithm in [10] consists of three stages. In the first stage, a MapReduce-

based data partitioning technique is used, which the authors term cost-based partitioning (CBP).

This technique partitions the dataset based on the computation cost, which can be estimated using

statistics of the data distribution, and the storage cost required for a query (such as disk-access

time). The second stage is local clustering, in which DBSCAN is applied to each partition, gen-

erating points in intersecting partitions that are required for the next step. The third step creates a

mapping between local and global cluster labels, and then relabels all local cluster labels to global

ones. All stages in this algorithm are implemented in the MapReduce framework.

The procedures of this algorithm are parallelized, making it efficient and scalable for skewed

large data. However, this algorithm works only with R-tree indexing and datasets of low dimen-

sionality.

For the method proposed in this thesis, DBSCAN [7] is selected for data clustering, and the

SGMM [6] method is used for data summarization. These techniques are compatible and well

placed to handle arbitrary-shape clusters. SGMM finds a good representative of clusters; it also

has the ability to regenerate clusters from cluster representations. A disadvantage of SGMM is

that it is not scalable for large data applications. The proposed approach in this thesis is based

on MapReduce framework. This approach scales the process of clustering and summarization

across a cluster of commodity machines, enabling processing of large amounts of data. Therefore,

MR-SGMM is a solution for scalability problem of SGMM.
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Chapter 3

Technical Constituents

In this chapter, technical constituents required for implementing Distributed Gaussian Mixture

Model Summarization using the MapReduce framework (MR-SGMM) is presented, including the

Hadoop framework for processing large datasets (section 3.1), the DBSCAN algorithm for cluster-

ing data (section 3.2) and the SGMM algorithm, which summarizes and represents data in a cluster

(section 3.3).

3.1 Hadoop

In this thesis, Hadoop framework is selected to handle distributed storage and processing required

for DBSCAN clustering and GMM summarization. Other parallel processing frameworks such as

MPI can be considered for implementing elements that have been used in this thesis. There are

limited studies on comparing these frameworks [58]. Given that the nature of such comparisons

can be algorithm and architecture-dependent, it is difficult to draw general conclusions. In terms

of performance, given the flexibility in MPI, it is expected that MPI can outperform Hadoop-based

implementations. However, data management and dealing with failure is an important advantage

in Hadoop that motivated its industrial applications. Another important aspect of Hadoop frame-

work is relative simplicity in gradual parallelization. This feature is important where flexibility is

required to handle different types of data or where the user has limited prior knowledge about the

input data.

Hadoop is an open source framework for storing and processing large amounts of data across a

cluster of commodity machines. Hadoop scales well, by increasing the number of machines in the

cluster, and is designed to be able to handle failures in the cluster [2].

Hadoop has two main components, Hadoop Distributed File System (HDFS) for distributed
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storage, and MapReduce for distributed processing. Hadoop is able to perform map and reduce

functions (computations) on a piece of data where it resides, with no need for data transmission

between machines in the Hadoop cluster. This feature minimizes the associated network traffic

and maximizes performance . Without need for user (programmer) intervention, Hadoop handles

the partitioning of data, scheduling of tasks for constituent machines, communication between

machines and machine failures [2].

HDFS [2] is a file system which can store large amounts of data by distributing it across a

cluster of machines, using a master-slave architecture. The master is called the NameNode and the

slaves are called the DataNode. Some key features of HDFS are:

• HDFS stores data in blocks with a default size of 64 MB.

• HDFS is more efficient in reading large files than small files, making its throughput

better than its latency. Its ability to read dataset elements in parallel can provide a

high throughput.

• For workloads of write-once read-many type, using HDFS is optimum.

• Storage blocks in each node are managed by an operation called DataNode running

on the node. All the DataNodes are synchronized by an operation called NameNode

running on a separate node.

• The HDFS strategy for handling failure is to replicate each storage block on mul-

tiple nodes (typically three). If a DataNode notifies NameNode that a replication

count is less than three (because of a failure), NameNode schedules another repli-

cation within the cluster [2, 59].

MapReduce is a programming framework which includes map and reduce functions. Map and

reduce functions should be written by user (programmer). The map function receives data in the

form of key/value pairs, and derives a set of intermediate key/value pairs. The reduce function
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Figure 3.1: Schematic description of MapReduce operation.

groups all the intermediate values having the same intermediate key. A MapReduce program is

scalable over hundreds or thousands of machines in a cluster, without need for involving the user

in parallelization details [2]. Fig. 3.1 shows MapReduces structure and operation.

MapReduce first splits the input data into 16 to 64 MB partitions. As shown in Fig. 3.1,

there is one master node and many worker (slave) nodes. The master node assigns a map task

or a reduce task to an idle worker. It also monitors the health of the system. When a failure

happens, the master waits, and retries to perform the task for a pre-determined number of times, if

unsuccessful, it relaunches the task on another node. A worker node that is assigned a map task

produces key/value pairs, which are written to a local disk. A partitioning function partitions the

pairs on the local disk, and sends the locations to the master node. The master node assigns a

worker node to reduce task and notifies the reduce worker of the intermediate pairs locations. The

reduce worker reads all the pairs, sorting them based on the intermediate key, and sends all the keys
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and their corresponding values to the user’s reduce function. As shown in Fig. 3.1, the final output

is stored in R output files (one for each of the R reduce tasks). The master node for MapReduce is

called the JobTracker and the slave nodes are called the TaskTracker [60, 61].

3.2 DBSCAN clustering algorithm

DBSCAN [7] is a well-known density-based clustering algorithm that finds and connects dense

regions to form clusters. Points in sparse regions between clusters are referred to as outliers or

noise. DBSCAN is able to find arbitrary-shape clusters and, it handles noise and outlier very well.

There are six key definitions associated with DBSCAN [7].

Definition 1. Eps-neighborhood of a point: As shown in Fig. 3.2, point q is in the Eps-neighborhood

of point p if the distance between points p and q is less than or equal to Eps.

Definition 2. Core point: Point p is a core point if it has at least some minimum number of points

(MinPts) in its Eps neighborhood.

Definition 3. Directly density-reachable: Point q is directly density-reachable from point p if p is

a core point and q is in the Eps-neighborhood of p.

Eps 
p MinPts = 3 

q 

Figure 3.2: Eps-neighborhood of point p. Point p is a core point. Point q is directly density-reach-
able from point p.

Definition 4. Density-reachable: As shown in Fig. 3.3, point pn is density-reachable from point

p0 if there is a chain of points p0, ..., pn such that pi+1 is directly density-reachable from pi.
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p 
q 

Figure 3.3: Density-reachability. Point q is density-reachable from point p.

Definition 5. Density-connected: As shown in Fig. 3.4, point q is density-connected to point p if

there is a point o such that both, p and q are density-reachable from o.

o q 
p 

Figure 3.4: Density-connectivity. Point p and point q are density-connected.

Definition 6. Cluster: C is a cluster under the following circumstances: 1) if point p belongs to

cluster C and point q is density-reachable from p, q also belongs to cluster C; 2) if both p and q

belong to cluster C, p is density-connected to q.

The DBSCAN algorithm starts with an arbitrary point p in a dataset, and determines all points

in the Eps-neighborhood of p. If point p is a core point, the algorithm finds all points that are

density-reachable from p. This process continues until all density-connected points from p have

been found.
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3.3 Summarization based on Gaussian Mixture Model (SGMM)

The goal of summarizing a cluster is to represent the cluster in a compact manner, and in

such a way that the original specifications of the cluster are preserved. SGMM [6] is an approach

to summarize arbitrary-shape clusters using GMMs. SGMM is able to summarize a cluster with a

minimum number of points and with minimum information loss, but without retention of all cluster

members. SGMM preserves the original shape and the distribution of clusters, and has the ability

to regenerate the cluster using core points and their features.

SGMM’s three steps are shown in Fig. 3.5; the steps are described in detail in the subsections

following.

< 𝜇𝑖 , Σ𝑖 , 𝑛 > 

< 𝜇𝑖 , Σ𝑖 , 𝑛 > 

< 𝜇𝑖 , Σ𝑖 , 𝑛 > 

< 𝜇𝑖 , Σ𝑖 , 𝑛 > 

< 𝜇𝑖 , Σ𝑖 , 𝑛 > < 𝜇𝑖 , Σ𝑖 , 𝑛 > 

< 𝜇𝑖 , Σ𝑖 , 𝑛 > 

Original Cluster Core Object Detection Feature Extraction GMM Representation 

Figure 3.5: The three steps of the SGMM approach

3.3.1 Finding core points

In this step, given a considered radius, a set of neighbors for all points in a cluster are found.

This is required to identify core points.

Definition 7. Neighbor of a point: Consider r as a radius for point p. Point q is a neighbor of p if

the distance between p and q is smaller than r.

The set of neighbors for point p consists of all neighbors of p within radius r, per definition 7.

(The distance measure used in this approach is Euclidean distance.) After finding the set of neigh-

bors for each point, the points are sorted based on the number of neighbors. The point with the
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maximum number of neighbors is deemed a core point.

Definition 8. Core point: A core point is a point which has the maximum number of neighbors

compared to its neighbors. Two core points should not be neighbors.

Each core point will be removed from the sorted list and added to the list of core points. All

neighbors of the found core point are also removed from the sorted list. The process of finding the

point with the maximum number of neighbors and removing the point and its neighbors will be

continued on the remaining points in the sorted list, until all points have been removed. In this way,

all the core points located in dense regions will be found. Each core point represents its neighbors

so all of the core points together cover the whole cluster.

3.3.2 Feature extraction

After finding core points, all points in the cluster except for core points will be removed. Core

points by themselves cannot represent a cluster, and they need some information related to their

neighbors which have been removed. A core point requires a set of features that represent the

distribution information around it.

Definition 9. Core point feature: Each core point is determined by a triple (ci, Σi, wi), where ci is

the core point; Σi is the covariance matrix of the core point and all its neighbors; wi is the weight

of core point, wi = n/CS, in which n is the number of neighbors of core point and CS is cluster

size.

A core point with its features represents a region containing the core point and its neighbors.

3.3.3 GMM representation of clusters

When all core points and their features have been found for a cluster, the cluster can be indi-

cated by a GMM.

Definition 10. Gaussian Mixture Model: A GMM is a combination of a set of normal distributions,

each of which indicates the distribution around a core point. A GMM G : f →R with n components
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is defined as:

g(x) =
n

∑
i=1

wiNµiΣi(x), (3.1)

where

NµiΣi(x) =
1√

(2π)d|Σi|
e−

1
2 (x−µi)Σ

−1
i (x−µi)

T
(3.2)

In the above formula, µi is the center of the ith GMM component, which is set to the coordi-

nation of the ith SGMM core point in the cluster. Σi is set to the covariance of the ith SGMM core

point and its neighbors. The weight of each component wi is set to the weight of the ith SGMM

core point. The weight of each core point indicates the relative contribution of the core point and

its neighbors in the cluster representation.
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Chapter 4

Distributed Gaussian Mixture Model Summarization using the

MapReduce framework

Clustering algorithms group a dataset based on input parameters. For a given dataset, according to

nature of data and requirements of an application, different types of clustering algorithms can be

applied. Each type of clustering algorithm has advantages and disadvantages.

This thesis is focused on arbitrary-shape clusters and clustering methods, as described in sec-

tion 2.1.4. In arbitrary-shape clustering methods, knowing the number of clusters ahead of time

is not necessary, and these methods are able to find clusters of any shape. Density-based cluster-

ing methods and grid-based clustering methods can find arbitrary-shape clusters [1]. Grid-based

clustering methods connect dense regions using a grid structure but it can be difficult to create and

manage a grid structure. DBSCAN [7], described in section 3.2, is the most popular and most-used

density-based method, which finds clusters based on the idea of connecting dense regions.

After clustering, each cluster can be summarized further. SGMM [6] is an approach which

summarizes arbitrary-shape clusters. Described in section 3.3, this approach is based on the idea

of connecting dense regions, and assumes that each cluster consists of a set of dense regions.

SGMM represents a cluster using the centers of the dense regions and their related statistical in-

formation. SGMM is able to summarize clusters in a way such that cluster features such as shape

and distribution of the clusters are preserved.

In this chapter, the structure and phases of MR-SGMM are presented. The main purpose of

the proposed method is to summarize a dataset with DBSCAN clustering algorithm, and then

summarize each discovered cluster using the SGMM approach in a distributed manner.

The phases of the proposed method are shown in Fig. 4.1. First, the data set is partitioned and

distributed to different machines. Then, process is performed on each machine locally. Finally, the
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results of all machines are merged.

Input 

dataset 
Partitioning 

Local 

Processing 
Merge 

Results 

Figure 4.1: General phases of MR-SGMM

Detailed explanations of each phase are presented in sections 4.1 through 4.3, respectively. In

addition, in section 4.4, a core point reduction strategy is described that will be used to improve

experimental results.

4.1 Partitioning

By default, the generic Hadoop framework partitions (splits) input data into 64 MB blocks.

In the approach presented in this thesis, we cannot rely on the default partitioning strategy of

Hadoop, since the spatial position of each point in the space is important. If members of a cluster

were assigned to different partitions, the clustering algorithm performed locally in each partition

would not be able to see all members of the cluster. This means that the points would be clustered

incorrectly.

To overcome this problem, the partitioning algorithm should consider the position of each

point in the data space, and split the input data in such a way that each partition contains points

which are spatially close. In this way, one cluster is either contained in one partition or spread

across neighboring partitions. There should be a joint area between adjacent partitions, allowing

retrieval of any cluster which is spread across adjacent partitions. The points in the joint areas

between adjacent partitions should be copied to all adjacent partitions; these are referred to as

boundary (border) points [9]. There are different partitioning strategies available [8, 9, 10], which
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are explained following.

In [8], the partitioning algorithm is adjusted from grid file [56]. The dataset is partitioned using

the grid by dividing the data domain in each dimension into m portions, each of which is called

a mini-bucket. Based on the number of points in each mini-bucket, a sequence of mini-buckets is

selected as a partition. The algorithm employs two strategies.

The first scenario assumes that the size of each partition could fit in the available memory

of a single computer node. Using a MapReduce-based algorithm, the number of points in each

dimension and the size of the entire dataset can be determined and by using the number of nodes,

the average size of each partition can be calculated and the size of a partition can be set to an

approximation of the average.

In the second scenario, the size of each partition could be larger than the available memory size

of each node. In this case, the size of partitions is set approximately equal to the maximum size of

data that a single computer can handle.

This method uses an ESP (even-split partitioning) rule, which assumes that the running time of

a clustering task depends on the number of input points. The use of a grid structure in this algorithm

is interesting. The authors claim that their partitioning method is load-balanced. However, He, et

al. [10] argue that in case of sequential DBSCAN algorithm, the ESP rule will be incorrect since

the running time of the clustering algorithm is not proportional to the number of input points.

Another problem of this method is that undertaking data replication and computation in joint areas

between partitions can be a computational challenge.

The partitioning algorithm called Partition with Reduced Boundary Points (PRBP) was devel-

oped by Dai, et al [9]. In this algorithm, for each dimension the data space is first divided into slices

of equal width, and the slice with the smallest number of points is determined. The slices with the

minimum number of points are deemed to be the boundary regions, which are the joint regions

between adjacent partitions. This algorithm decreases the load on the systems machines by mini-

mizing the number of boundary points. The generic PRBP algorithm considers the distribution of
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the data points, but since it is not implemented with a MapReduce framework, the execution time

can be high for large amounts of data. Based on [10], for very large and heavily skewed datasets

the load may not be balanced properly by generic PRBP.

He, et al. [10] suggest a new partitioning method which partitions data based on the estimated

computation cost, where the communication cost can be measured using statistics of the data dis-

tribution and the disk-access times of a query.
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Figure 4.2: Example partitioning phase in the MapReduce framework

The partitioning strategy in this thesis is chosen to be simple and fast, creating partitions by

dividing the interval of each dimension (feature) into equal portions, where the minimum and

maximum values of each feature is used to determine its interval. This strategy assumes that the

size of each partition could fit in the available memory of a single machine. The partitioning
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algorithm can be improved at any time, as it is an independent step in the entire process.

Before partitioning, all features of the data are normalized between 0 and 1. Also the input data

is indexed so that each point has a unique identification number.

The partitioning phase uses an algorithm implemented in the MapReduce framework, allowing

it to be performed on a cluster of machines in parallel. In a general view the algorithm receives

input data and emits each partition as output.

Algorithm 1 The map function in the partitioning phase
Input: a block of stored data items {p1, p2, ..., pn}, p = (d1,d2)
Output: Key: grid number (gnd1 ,gnd2) ∈ GNp; Value: a point with grid number (gnd1,gnd2)
Parameters:
point.index # index of a point
point.coordinates # coordinates of a point
point.status # “b” if a point is border and “n” if a point is non-border
GNd # grid number set for dimension d
GNp # grid number set for point p

1: for each point p do
2: for each dimension d do
3: find GNd , a set of all grid numbers for the dimension d
4: if |GNd|> 1 then
5: p.status = “b”
6: end if
7: end for
8: if p.status = “b” then
9: for each k ∈ GNp = GNd1×GNd2 do

10: Out put(k,(p.index+ p.coordinates+ p.status))
11: end for
12: else
13: p.status = “n”
14: GNp = GNd1×GNd2 and q ∈ GNp
15: Out put(q,(p.index+ p.coordinates+ p.status))
16: end if
17: end for

The partitioning phase is shown in Fig. 4.2. Two key elements of this phase are the map and

reduce functions; Algorithm 1 shows the map function. The map function performs the following

steps:

1. Create a grid for the data space
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The interval between minimum and maximum valuses of each dimension (feature)

is divided into an arbitrary number of equal portions, with an overlap of width 2ε

between the portions, where ε is the radius used by the DBSCAN algorithm. This

overlap is needed because of the possibility that the data points of a cluster are

spread across different partitions, so there should be an overlap (a joint or boundary

region) between adjacent partitions. Selecting a 2ε-wide boundary region ensures

sufficient information for the merge phase [9]. As an example, consider a two-

dimensional space in which each of the dimensions is normalized between 0 and

1, and the interval of each dimension is divided into two portions. Fig. 4.3 demon-

strates this example, with each dimension divided into two portions and indicated

by the unbroken red lines. The areas between the two dashed lines indicate the

boundary regions.
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Figure 4.3: Creating a grid for a two-dimensional space
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2. Find the grid number for each point

The map function takes each point and determines its corresponding cell within the

grid using its feature values. A border point will be one that is in more than one cell

of the grid. Referring to Fig. 4.3, consider a point P that is in two different cells. The

algorithm creates a set for each dimension to record the grid number(s). This set is

referred to as the grid number set for the dimension. Referring again to Fig. 4.3, for

point P the grid number set for dimension1 (x) is GNd1 = {1,2}, and for dimension2

(y) is GNd2 = {2}. After creating the grid number sets for each dimension, a set

will be created for the point P. This set is a Cartesian product of all dimensions’ grid

number sets, and is referred to as the grid number set for the point P. In Fig. 4.3,

the grid number set for point P will be GNp = GNd1×GNd2 = {(1,2),(2,2)}. Each

pair shows the grid numbers in the two dimensions of the example. For a pair (1, 2),

the first number shows the grid number in dimension one, and the second number

shows the grid number in dimension two.

3. Determine border or non-border points

In this step, the map function examines the cardinality of the grid number set for

each point, to decide whether a point is a border point. If the cardinality of the grid

number set for a point is greater than one, the point is deemed a border point, and

if the cardinality is equal to one, the point is not a border point.

Algorithm 2 shows the reduce function, which receives a list of all points with the same grid

number, collects them as a partition, and assigns a number to each partition. The output of the

reduce function is a partition with its constitutive points, and each point has a unique identification

number (index), coordinates, and a label which specifies whether the point is a border point or not.

The complete implementation and source code for the partitioning phase (algorithms 1 and 2)

is provided in Appendix A.1.
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Algorithm 2 The reduce function in the partitioning phase
Input: Key: grid number (gnd1,gnd2); Value: a list of points with grid number (gnd1 ,gnd2)
Output: Key: partition number; Value: a list of all points belonging to the partition number
Parameters:
point.index # index of a point
point.coordinates # coordinates of a point
point.status # “b” if a point is border and “n” if a point is non-border
partition number

1: partition number← 1
2: for each key (gnd1,gnd2) do
3: for each point p in values (a list of points with the same key) do
4: Out put(partition number,(p.index+ p.coordinates+ p.status))
5: end for
6: partition number← partition number+1
7: end for

4.2 Local processing

This phase is implemented in the MapReduce framework so that it can be distributed across a

cluster of machines. Fig. 4.4 shows the local processing phase.

The MapReduce-based parallelizing process in this phase differs from that of a common MapReduce-

based process. Usually, the Hadoop framework partitions input data to be processed on machines.

Here, the partitioned data from the previous phase is given to the machines in the cluster for fur-

ther processing. Local processing refers to all processes that are performed on a partition of the

input data, which includes performing DBSCAN and SGMM locally. In this phase, data in each

partition is clustered using the DBSCAN algorithm, then SGMM core points and their features are

extracted for each discovered cluster. Finally, the clusters that should be merged in the subsequent

merge phase are discovered.

The map function for this phase is shown in Algorithm 7, and performs these steps:

1. DBSCAN clustering

In this step, a DBSCAN algorithm is used to discover the clusters and noise in

the data. As mentioned in section 3.2, DBSCAN [7] starts with an arbitrary point

p in the dataset, and discovers all points that are density-reachable from p, using
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Algorithm 3 The map function in the local processing phase
Input: A partition of input data part
Output: A border point; Key: index of the point; Value: features of the point
Parameters:
point.index # index of a point
point.coordinates # coordinates of a point
point.border # TRUE if a point is a border point, and FALSE if not
point.Dcore # TRUE if a point is a DBSCAN core point, and FALSE if not
point.Score # TRUE if a point is an SGMM core point, and FALSE if not
point.label # point’s cluster label after clustering
point.n # number of neighbors for a point
point.Σ # Covariance of an SGMM core point
r # radius of neighborhood around a point

1: DBSCAN(part)
2: for each cluster ci found in part do
3: D← ci
4: j← 1
5: while D is not empty do
6: for each point o in D do
7: Neighbors(o) = {∀x|distance(x,o)< r}
8: o.n = |Neighbors(o)|
9: end for

10: D.sort()
11: k← D. f isrt ob ject()
12: k.Score← T RUE
13: k.Σ←Covariance(k,Neighbors(k))
14: k.n← |Neighbors(k)|
15: if k.border == T RUE then
16: k.label← part + ci
17: Out put(k.index,(k.label + k.Dcore+ k.coordinates+ k.Score+ k.Σ+ k.n))
18: end if
19: D.remove(k)
20: for each point q in Neighbors(k) do
21: if q.borer == T RUE then
22: q.label← part + ci
23: Out put(q.index,(q.label +q.Dcore+q.coordinates+q.Score+0+0))
24: end if
25: D.remove(q)
26: end for
27: j← j+1
28: end while
29: end for
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Figure 4.4: Example local processing phase in the MapReduce framework

Eps and MinPts. For each cluster found, all core points found by the DBSCAN

algorithm are labeled, as they will be later required for the merge phase. For the

current implementation, the DBSCAN clustering algorithm in the WEKA [62] API

is employed in the source code.

2. Find SGMM core points1

In this step, as explained in section 3.3, the set of neighbors is found for all points in

a cluster, based on a radius. The points are sorted based on the number of neighbors.

The first point in the sorted list is deemed to be a core point; this core point and

its neighbors are removed from the sorted list. This approach is continued on the

1The word “core point” exists in both DBSCAN and SGMM but as explained in sections 3.2 and 3.3 the concept
and definition of core point in each of them is different. In rest of this thesis “DBSCAN core point” will be used to
refer core point in DBSCAN and “SGMM core point” will be used to refer core point in SGMM.
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remaining points, until all the points have been removed from the sorted list. In this

way, all core points representing dense regions are discovered.

3. Extract SGMM core point features

Since only SGMM core points will be preserved to represent the cluster, a set of

features will be required to summarize the characteristics of their neighbors. For

each SGMM core point found in the previous step, Σi (the covariance calculated

using the SGMM core point and its neighbors) and n (the number of neighbors of

SGMM core point) are extracted.

In summary, the map function in this phase receives data points in a partition as input, and

clusters the input data using the DBSCAN algorithm. For each cluster found, SGMM core points

and their features are identified as a means of representing the cluster. The map function sends

only border points (points in boundary regions) to the reduce function.

The reason for sending border points to the reduce function is that if the data points of a cluster

are spread across different partitions, the border points can be used to help collect all the data

points into one cluster.

An example is shown in Fig. 4.5. Data points in cluster C are spread across partition1 and

partition2. Partition1 is used to find cluster P1C, and partition2 to find cluster P2C. Border points

in boundary regions which are in both partion1 and partition2 are used to determine whether cluster

P1C and cluster P2C should be merged.

Algorithm 4 shows the reduce function for this phase. The function discovers the clusters that

should be merged in the next phase (merge phase), based on a received list of border points. Each

border point appears in more than one partition and therefore the same point is characterized as a

member to different clusters in different partitions. . For example, in Fig. 4.5 border points belong

to both cluster P1C and cluster P2C. The reduce function for each border point determines if the

point is a DBSCAN core point in all its clusters. If so, these clusters should be merged to form a

single cluster [8]. Also in Fig. 4.5, if there is at least one border point which is a DBSCAN core
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Figure 4.5: A cluster scattered in two partitions

point in both P1C and P2C, the clusters should be merged.

After finding the clusters to be merged, the reduce function creates a list of the clusters and

sorts the list based on the partition number; the first item in the list will be selected as the label for

the scattered cluster. Again referring to Fig. 4.5, the sorted list is [P1C, P2C] and P1C will be the

selected label for cluster C. Clusters P1C and P2C cannot as yet be deemed final, since they still

need to be merged. The resulting cluster after merging P1C and P2C will be a final cluster.

At the end of this phase, all points are clustered, for each cluster which is still not a final cluster,

all SGMM core points and their features have been found. Also, all clusters that should be merged

and the new label for these clusters have been determined.
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Algorithm 4 The reduce function in the local processing phase
Input: Key: index of a point index; Value: a list of points with same index
Output: A list in which each member is a list of clusters that should be merged
Parameters:
point.Dcore # TRUE if a point is a DBSCAN core point and, FALSE if not
point.label # a point’s cluster label after clustering
cluster list # a list of clusters that should be merged
merge list # a list of cluster list

1: for each index do
2: i← 1
3: for each point p in values (a list of points with the same index) do
4: if p.Dcore == T RUE then
5: dcorei← T RUE
6: cluster list.add(p.label)
7: end if
8: i← i+1
9: end for

10: if (dcore1∧dcore2∧ ...∧dcoren) == T RUE then
11: cluster list.sort()
12: merge list.add(cluster list)
13: end if
14: Out put(merge list)
15: end for

The complete implementation and source code for the local processing phase (algorithms 7

and 4) is provided in Appendix B.
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Figure 4.6: Example mrge phase in the MapReduce framework

4.3 Merge

This phase uses an algorithm implemented in the MapReduce framework, as shown in Fig. 4.6.

First, all clusters that should be merged to form the final clusters are merged, and then a GMM

is created over a cluster using SGMM core points and features.

Algorithm 5 is used for the map function. It receives all points that are clustered in their

partition, along with a list containing all clusters to be merged. It changes the label of the clusters

to the new label, and creates the final clusters.

All data points in each final cluster are then sent to the reduce function, which is shown in

Algorithm 6. The reduce function receives all data points which belong to a final cluster, and

performs the following tasks:

1. Obtain the size of cluster

The reduce function counts the number of points in each final cluster, and calculates

CS, the size of the final cluster.
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2. Calculate SGMM core point weights

For each SGMM core point in the final cluster, the number of neighbors, n of the

SGMM core point, has been saved during the local processing phase. By knowing

n and CS from the previous step, the weight of each SGMM core point in the final

cluster (wi = n/CS) is calculated.

3. Calculate the GMM for the clusters

In this step, a GMM is calculated for each final cluster. A GMM is created over a

cluster using all SGMM core points found for the cluster. Based on Eqs. 3.2, each

component of the GMM is calculated using an SGMM core point (the center of the

component), the covariance of the SGMM core point (representing the distribution

information around the SGMM core point), and the weight of the SGMM core point

(which shows the relative contribution of the core point and its neighbors).

Algorithm 5 The map function in the merge phase
Input: All points that are clustered
Output: Key: label of a cluster; Value: a point which belongs to the cluster
Parameters:
point.index # index of a point
point.coordinates # coordinates of a point
point.Score # TRUE if a point is an SGMM core point, and FALSE if not
point.label # a point’s cluster label after clustering
point.Σ # covariance of an SGMM core point
point.n # number of neighbors of an SGMM core point
cluster list # a list of clusters that should be merged
merge list # a list of cluster list

1: for each point p do
2: for each cluster list in merge list do
3: if cluster list.contains(p.label) then
4: p.label← cluster list. f irst ob ject()
5: end if
6: Out put(p.label,(p.index+ p.coordinates+ p.Score+ p.Σ+ p.n))
7: end for
8: end for
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Algorithm 6 The reduce function in the merge phase
Input: Key: label of a cluster c label; Value: a list of points that belong to the cluster
Output: Key: label of a cluster c label; Value: a GMM for the cluster g(x)
Parameters:
point.coordinates # coordinates of a point
point.Score # TRUE if a point is an SGMM core point, and FALSE if not
point.Σ # covariance of an SGMM core point
point.n # number of neighbors of an SGMM core point
point.w # weight of an SGMM core point
c size # cluster size
Score list # a list of all SGMM core points in a cluster
g(x) # GMM for a cluster

1: for each cluster c label do
2: c size← 0
3: for each point p in values(a list of all points belong to cluster c label) do
4: c size← c size+1
5: if p.Score == T RUE then
6: Score list.add(p)
7: end if
8: end for
9: g(x)← 0

10: for each SGMM core point q in Score list do
11: N(x) = 1√

(2π)2|q.Σ|
e−

1
2 (x−q.coordinates)(q.Σ)−1(x−q.coordinates)T

12: q.w← q.n
c size

13: g(x)← g(x)+wN(x)
14: end for
15: Out put((c label),g(x))
16: end for

The complete implementation and source code for the merge phase (algorithms 5 and 6) is

provided in Appendix A.3.

4.4 Reducing the number of SGMM core points in MR-SGMM

The number of SGMM core points found using MR-SGMM is higher than the number of

SGMM core points found in single-node SGMM, as shown in Fig. 4.7. This results from border

points being copied into adjacent partitions. The algorithm thus clusters and finds SGMM core

points for data points in boundary regions more than once. Refer again to Fig. 4.5, with border
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points clustered in both partition1 and partition2, SGMM core points are found in both cluster

P1C and cluster P2C independently. This means that the task of finding SGMM core points is

performed twice. Therefore, the number of SGMM core points in boundary regions is higher than

for a single-node SGMM approach.

C C 

Boundary region 

Number of SGMM core points = 46 Number of SGMM core points = 55 

Single-node SGMM MR-SGMM 

Figure 4.7: SGMM core points in MR-SGMM and single-node SGMM

An approach is employed to reduce the number of SGMM core points found using MR-SGMM

to the number of SGMM core points in single-node SGMM. In this approach, after finding all

SGMM core points in MR-SGMM, all SGMM core points that are not in border areas are kept.

SGMM core points that are in border areas are then randomly sampled, such that the number of

SGMM core points ends up being equal to the number of SGMM core points found in single-node

SGMM.

4.5 Summary

In this chapter, the phases required for MR-SGMM were explained. These phases include

partitioning, local processing and merging.

The partitioning algorithm receives input data, and creates an overlapping grid for the data

space. Each cell of the grid is considered to be a partition. In this way, all points which are spa-
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tially close will lie in one partition or adjacent partitions. The overlapping area between adjacent

partitions is called the border (boundary) area. Points in border areas (border points) are copied

into all adjacent partitions. In a MapReduce framework, this algorithm is able to handle large

amounts of data.

After partitioning, the partitions are given to machines in the Hadoop cluster to perform the

DBSCAN and SGMM algorithms. In the local processing phase, the DBSCAN algorithm is first

applied on the data in each partition. For clusters that are found using DBSCAN which are not

yet final, the SGMM algorithm is applied, finding SGMM core points and extracting SGMM core

point features. Also, clusters required for the subsequent merge phase are discovered. The clusters

to be merged are those that have border points in common with other clusters, and for which the

border points are DBSCAN core points in all of their containing clusters.

In the merge phase, the clusters identified in the previous step are merged to form the final

clusters. After finding these final clusters, the DBSCAN task is complete. For each final cluster,

the SGMM algorithm is performed, creating a GMM for each cluster. After creating a GMM for

each final cluster, the SGMM task is complete.

The final step is to reduce the number of SGMM core points found in MR-SGMM so as to equal

the number of core points found in single-node SGMM. In this approach, SGMM core points that

are not border points are kept, and core points which are border points are randomly sampled to

achieve the required reduction in quantity.

Present results in this thesis were focused on 2-dimensional data. Extending this work to higher

dimensions is an important development that allows one to process data with multiple features.

The current partitioning method can be adapted to include multiple dimensions. However, the

merge phase requires a more sophisticated merge condition to be designed such that clusters shared

between different partitions can be merged back into one original cluster. This can be performed

based on proximity of clustering core points in one or more overlapping border regions.
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Chapter 5

Experimental results

In this chapter, results are reported for experiments using synthetic and real datasets to demonstrate

and assess the performance of MR-SGMM. All datasets were analyzed and regenerated using

MR-SGMM and single-node SGMM, enabling quantitative and qualitative comparison between

these approaches. To ensure a fair comparison between single-node SGMM and MR-SGMM the

same algorithms for DBSCAN and SGMM are used (see Appendix B for the single-node SGMM

algorithm).

The qualitative comparison was done first, to ensure that MR-SGMM functions properly. The

results were then assessed according to evaluation metrics, which are defined in this chapter, to

quantitatively compare MR-SGMM and single-node SGMM results. In addition, the ability of

MR-SGMM to handle large quantities of data was tested by comparing its running time to that of

single-node SGMM, as a function of the number of data entries.

The installed Hadoop cluster consisted of four nodes. Each node was a virtual machine with

four Intel Xeon© 2.4 GHz CPUs, each with 8 GB of RAM, running on the Ubuntu Linux 12.04

operating system. The Hadoop version was 1.2.1, running on Java 1.7.0. The system used the

default configuration settings.

5.1 Datasets

Synthetic and real datasets were used for the experiments described in this chapter. These

included three synthetic datasets and two real geographic datasets. The three synthetic datasets

each contained points in two dimensions, referred to in this chapter as SDS1, SDS2, and SDS3,

having 8,000, 10,000 and 8,000 points, respectively. These datasets had been originally generated

and used for clustering assessment in [39].
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The real datasets were from the United States Census Bureaus MAF/TIGER database, contain-

ing features such as roads, railroads and rivers, as well as legal and statistical geographic areas

[63]. The features that were selected to use in the experiments were latitude and longitude, but

re-scaled to numbers between 0 and 1. These datasets are referred to here as RDS1 and RDS2,

with 10,786 and 72,539 entries, respectively. The geometric shapes of the five datasets are shown

in Fig. 5.1.

SDS1: 8,000 points SDS2: 10,000 points SDS3: 8,000 points 

RDS1: 10,786 points RDS2: 72,539 points 

Figure 5.1: Geometric shape of datasets.

5.2 MR-SGMM testing

5.2.1 Partitioning

Each dataset was partitioned into an arbitrary number of partitions. The length for the joint

area between adjacent partitions was selected equal to 2ε , which ε is the radius for DBSCAN

clustering. The datasets SDS1, SDS2, RDS1 and RDS2 were partitioned into four partitions and

SDS3 into six partitions. Fig. 5.2 shows the partitioning results for the SDS1, RDS2 and SDS3

datasets.
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(a) (b) (c) 

Figure 5.2: Partitioning results for the (a) SDS1, (b) RDS2 and (c) SDS3 datasets. Points with

different colors show membership in different partitions. Points with a black color show border

points (the joint area between adjacent partitions).

5.2.2 Local processing

After partitioning, data in each partition was clustered with the DBSCAN algorithm. Then,

SGMM core points and their features were found for each cluster. Toward a simplified description

of the MR-SGMM phases, visual results for each step are depicted here only for the SDS1 dataset.

Fig. 5.3 shows the results after clustering and finding SGMM core points in each partition of the

SDS1 dataset.

5.2.3 Merge

After clusters and SGMM core points with their features were found for each partition, the

next step in the experimental sequence was to identify clusters to be merged to form the final

clusters. This was performed by identifying clusters with a joint member that is one which is both

a border point and a DBSCAN core point. Fig. 5.4 shows a representation of the clusters to be

merged, as well as final clusters after merging for MR-SGMM on SDS1. As shown in Fig. 5.4, the

condition for merging was satisfied for a collection of clusters called [P1C2, P2C1, P2C3], [P1C0,

P1C3, P2C0], [P1C1, P3C1], [P2C2, P4C0], [P3C2, P4C2], [P3C0, P4C1]. These cluster sets were

merged to P1C2, P1C0, P1C1, P2C2, P3C2 and P3C0. Finally, a GMM was created over each final

cluster using SGMM core points and their features.
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Figure 5.3: Clustering results for (a) partition 1, (b) partition 3, (c) partition 2 and (d) partition 4
in the SDS1 dataset. The “x” marks in the figure show SGMM core points for clusters.
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Figure 5.4: (a) Clusters with common border points. The “+” marks show border points that are

also DBSCAN core points. (b) The final clusters.

In addition, all datasets were clustered with DBSCAN, and summarized using single-node
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SGMM. (Note that both single-node SGMM and MR-SGMM rely on Euclidean distance measures

for DBSCAN). After summarizing the datasets, SGMM core points and their related variances

were used to regenerate the datasets. The difference between the original and regenerated datasets

using SGMM core points and their variances are indicators of the ability for summarization of

SGMM methods.

5.3 Data regeneration

SGMM allows tools for generating random normal deviates for data regeneration. SGMM core

points and their related variances can be used as input to Gaussian random number generators.

For this step of the experiment, random normal deviates were produced based on the Box-Muller

method [64].

Figs. 5.5, 5.6, 5.7, 5.8, and 5.9 show results for MR-SGMM and single-node SGMM on the

five datasets. For each dataset, clustering results for original data, SGMM core points and the

regenerated datasets are shown. Visual comparison of the results for MR-SGMM and single-node

SGMM shows encouraging resemblance.
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Figure 5.5: Dataset SDS1: depictions of the original (clustered) dataset, SGMM core points and the

regenerated dataset for the single-node SGMM (left column, with 269 core points) and MR-SGMM

(right column, with 470 core points).
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Figure 5.6: Dataset SDS2: depictions of the original (clustered) dataset, SGMM core points and the

regenerated dataset for the single-node SGMM (left column, with 358 core points) and MR-SGMM

(right column, with 452 core points).
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Figure 5.7: Dataset SDS3: depictions of the original (clustered) dataset, SGMM core points and the

regenerated dataset for the single-node SGMM (left column, with 250 core points) and MR-SGMM

(right column, with 417 core points).
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Figure 5.8: Dataset RDS1: depictions of the original (clustered) dataset, SGMM core points and

the regenerated dataset for the single-node SGMM (left column, with 288 core points) and MR-S-

GMM (right column, with 427 core points).
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Figure 5.9: Dataset RDS2: depictions of the original (clustered) dataset, SGMM core points and

the regenerated dataset for the single-node SGMM (left column, with 579 core points) and MR-S-

GMM (right column, with 740 core points).

5.4 Figures of merit

Section 5.3 showed a qualitative comparison between the single-node SGMM and MR-SGMM,

indicating that MR-SGMM functions properly on a variety of datasets. However, a quantitative

analysis is required to confirm these results.

A common approach for examining data summarization results is to compare calculated clus-

tering analysis measures for the original (clustered) and regenerated data. In the present research,

MR-SGMM and single-node SGMM were applied to the input datasets to cluster the datasets using

DBSCAN, summarize the datasets based on the SGMM core points and their variances, and finally

to regenerate the datasets. Clustering analysis measures were calculated for the original (clustered)

datasets and for the regenerated data, using both methods of single-node and MR-SGMM. Ideally,

the difference between these clustering measures for the original data and its regenerated counter-

part would approach zero to indicate quantitative similarity between regenerated and original data.
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In general, clustering evaluation metrics are divided into two categories of internal and external

evaluation. External evaluation metrics are based on some ground knowledge about the data which

limits their application to specific areas. Here, we use internal evaluation metrics where no prior

knowledge about the data is required, and rely on high similarity measures inside clusters and high

dissimilarity between clusters. Well-known internal evaluation metrics for clustering are Dunn’s

and Davies-Bouldin (DB) indexes and Silhouette coefficient [65]. In the following, Dunn’s and

Davies-Bouldin (DB) indexes, are introduced, evaluated and compared for the single-node and

MR-SGMM methods.

The Dunn’s index [66] is a validity index which identifies compact and well-separated clusters

for a specific number of clusters; it is given by:

Dc =
minc

i=1{minc
j=i+1{dis(ci,c j)}}

maxc
k=1 diam(ck)

, (5.1)

where c is the number of clusters and dis(ci,c j) is the dissimilarity function between two clus-

ters ci and c j. Large values of this index indicate that clusters are compact and well-separated —

the larger value of Dunn’s index, the better [66].

For experiments presented here, the data is summarized and regenerated using the core points

of GMMs and the Dunn’s indexes is calculated in both distributed and not distributed approaches.

Finally, the regeneration ability of MR-SGMM is examined using the difference between

Dunn’s indexes of regenerated data with MR-SGMM and original dataset compared to difference

between Dunn’s indexes of regenerated with single-node SGMM and original dataset. Difference

in Dunn’s indexes near zero indicates that how the MR-SGMM method regenerates the data which

follows the shape and distribution of the original data similar to single-node SGMM. Table 5.1

shows the results for the five datasets discussed in this section (each value in the tables below is

the average of ten independent runs).

A second measure considered for the present experiments was the DB index [67], which is the

mean value of the ratio of within-cluster scatter to between-cluster separations. The DB index is
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Dataset MR-SGMM regeneration vs. Single-node SGMM regeneration vs.
original data original data

SDS1 0.0073 0.0037
SDS2 0.0070 0.0054
SDS3 0.0029 0.0037
RDS1 0.0022 0.0032
RDS2 0.0021 0.0142

Table 5.1: Differences of Dunn’s indexes for regenerated vs. original data for both the MR-SGMM
and single-node SGMM approaches

defined as:

DB =
1
c

c

∑
i=1

max
i 6= j

(
δi +δ j

∆i j

)
, (5.2)

where c is the number of clusters, δi is the average distance of all members of the cluster to

their cluster center, and ∆i j is the distance between centers of cluster i and cluster j. Small values

of the index indicate compact and well-separated clusters — the smaller value of DB index, the

better [67].

Similar to the procedure for Dunn’s index, the DB index difference was calculated for regener-

ated data versus original data for MR-SGMM and single-node SGMM. Table 5.2 shows the results

for all datasets (again, each value in the table represents the average of ten independent runs).

Dataset MR-SGMM regeneration vs. Single-node SGMM regeneration vs.
original data original data

SDS1 0.0413 0.0307
SDS2 0.0681 0.1288
SDS3 0.0684 0.0471
RDS1 0.0499 0.0169
RDS2 0.0656 0.0532

Table 5.2: Differences of DB indexes for regenerated vs. original data for both the MR-SGMM
and single-node SGMM approaches

Similar to the results for Dunn’s index, the differences of DB indexes between the regenerated

and original data with MR-SGMM were close to zero.

Results using Dunn’s and DB indexes show that the performance of the MR-SGMM method
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was reliable, and managed to properly summarize and regenerate data. Its performance during

testing was comparable to that of the single-node SGMM, and in some cases better results has

been demonstrated.

5.4.1 Core point reduction

As seen in Figs. 5.5 to 5.9, the number of SGMM core points for MR-SGMM was more than

for single-node SGMM. As described in section 4.4, this is an outcome of border points being

accounted for more than once in neighboring partitions (via copying). The algorithm finds SGMM

core points for border points more than once, which results in a higher number of core points in

border areas.

The first step in the approach proposed and implemented to reduce the number of SGMM core

points in MR-SGMM to the number of core points in single-node SGMM is to keep all core points

that are not border points. Then, SGMM core points that are border points are randomly sampled

such that the total number of core points is equal to the number of core points in single-node

SGMM. Finally, the data is regenerated with the reduced set of core points.

Experimental results showed that Dunn’s and DB indexes for regenerated data with this new

approach were still close to the original dataset, and the differences of Dunn’s and DB indexes

were close to zero. In some cases, the results of MR-SGMM with reduced set of SGMM core

points were slightly improved compared to MR-SGMM using all core points; this means that the

regenerated data using the reduced set of core points was actually closer to the original dataset.

The results for the RDS1 and RDS2 datasets are shown tables 5.3 and 5.4 (with each value in

the tables representing an average of 20 independent runs).

These Dunn’s and DB index results show that the MR-SGMM method with a reduced set of

SGMM core points also generates an accurate summary of datasets which is comparable to MR-
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Dataset SGMM core points Regenerated with MR-SGMM vs. original data
RDS1 all 0.0022
RDS1 reduced 0.0026
RDS2 all 0.0021
RDS2 reduced 0.0017

Table 5.3: Differences of Dunn’s indexes for regenerated and original data for MR-SGMM with
all and reduced SGMM core points

Dataset SGMM core points Regenerated with MR-SGMM vs. original data
RDS1 all 0.0499
RDS1 reduced 0.0472
RDS2 all 0.0656
RDS2 reduced 0.0549

Table 5.4: Differences of DB indexes for regenerated and original data for MR-SGMM with all
and reduced core points

SGMM with all core points.

5.5 Efficiency comparison

To compare the efficiency of single-node SGMM and MR-SGMM, different sizes of datasets

were executed using both approaches, and the execution time was recorded. Datasets with 8,000,

10,000, 18,000, 36,000 and 72,539 entries were used, with results shown in Fig. 5.10.

From Fig. 5.10, the MR-SGMM execution time was consistently shorter than that for single-

node SGMM for the same processed data. As the number of data entries grew, the increase in

execution time in single-node SGMM was higher than that of MR-SGMM. Therefore, MR-SGMM

became increasingly advantageous in handling increasingly large datasets thanks to its distributed

implementation.

A detailed complexity analysis of the present algorithm in the MapReduce framework is diffi-

cult, however, one can discuss different aspects of this implementation and its associated computa-

tional costs. A quadratic fit to the execution times as a function of dataset sizes indicates that there

is a constant cost associated to the three MapReduce-based phases in the present implementation.

This leads to a crossing in the execution time plot for very small datasets where distributed imple-
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Figure 5.10: Efficiency comparison between single-node SGMM and MR-SGMM

mentation is not justified. For the current experiments, the datasets are partitioned into 4 partitions.

This means that ideally a 4-fold improvement can be expected. As it can be seen in Fig. 5.10, a

3-fold improvement in the execution time has been achieved. This is due to the fact that some parts

of the data have to be duplicated in the partitioning phase, which results in additional overhead

in the processing in the MapReduce framework. The computational cost associated to this step

depends on the total number of points in the border regions. In addition, the Reduce function that

recalls border points to be saved for the merge phase is not necessarily optimal as number of points

recalled from each partition is different. A load-balanced partitioning is expected to reduce the

probability of receiving skewed data by the reducers on average. This can help to operate closer to

the optimal condition in the MapReduce framework.

5.6 Summary

In this chapter, the results of a set of experiments performed on synthetic and real datasets were

presented in order to validate the results and as an assessment of MR-SGMM performance. The

validation process was based on comparing the fidelity of single-node SGMM and MR-SGMM.
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SGMM allows regenerating data using data summaries. The observed differences between

the regenerated and original data can be used to assess the goodness of a summarization method.

Visual comparison of MR-SGMM and single-node SGMM results for all datasets, depicted in

Figs. 5.5, 5.6, 5.7, 5.8, and 5.9, indicates a resemblance between these results.

Dunn’s and DB indexes were used to compare the fidelity of MR-SGMM and single-node

SGMM. The differences of Dunn’s index and DB index between regenerated versus original data

for MR-SGMM and single-node SGMM were calculated, with results shown in tables 5.1 and 5.2

for all datasets. The summarization results for MR-SGMM compared with single-node SGMM

showed a negligible difference.

The experimental results show that reducing the number of SGMM core points in MR-SGMM

to the number of core points in single-node SGMM did not significantly affect the summarization

results of MR-SGMM. Based on tables 5.3 and 5.4, the Dunn’s and DB indexes for regenerated

data with a reduced set of core points was very close to the original data.

Fig. 5.10 shows that MR-SGMM outperformed single-node SGMM in handling larger volumes

of data. Distributing data and computations across a cluster of machines in MR-SGMM makes the

algorithm capable of dealing with massive volumes of data.

In summary, MR-SGMM is a distributed version of SGMM algorithm implemented using

MapReduce framework which generates comparable results to single-node SGMM and makes

SGMM algorithm scalable and suitable for large datasets.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, an implementation of a data summarization and regeneration approach using the

MapReduce framework has been proposed and tested. This implementation, called MR-SGMM,

allows summarization of data based on a Gaussian Mixture Model (GMM) in a distributed man-

ner. The summarization process is performed by data clustering and then representing each cluster

in a compact format. The data clustering step is based on the DBSCAN approach, which is a

density-based clustering technique and can find arbitrary-shape clusters. For summarizing a clus-

ter, Summarization based on Gaussian Mixture Model (SGMM) is employed to represent each

cluster as a mixture of Gaussian distributions. SGMM significantly decreases the number of points

required for representing each cluster, while preserving the cluster shape and distribution. In ad-

dition, information extracted from the SGMM process can be used to regenerate the original data.

The data regeneration process has also been demonstrated in this study. The proposed implemen-

tation consists of three independent phases.

The first phase is a partitioning step, used to split input data and distribute the partitioned

data between nodes of a Hadoop cluster. In this process, the spatial position of points is taken into

account in the partitioning algorithm, to avoid random partitioning of the data. In addition, adjacent

partitions must maintain an overlap to guarantee a proper clustering, although some clusters may

be split between neighboring partitions. A simple approach for partitioning, applied in this thesis,

is to make an overlapping grid for the data space, and consider each cell to be a partition. This

partitioning strategy can be performed efficiently because of its simplicity, while its MapReduce-

based implementation affords the ability to handle massive datasets.

The second phase consists of processes that are executed on nodes of the Hadoop cluster in

63



parallel. In this phase, data in each partition is clustered with the DBSCAN algorithm, and then

a set of SGMM core points and their related features are found for each cluster. Border points in

areas of overlap between partitions are explored to collect information required for eventual data

re-assembly (or merging), in the next phase.

In the third phase, the clustering and summarization results are collected from the nodes of

the Hadoop cluster. It is possible that some points may belong to a single cluster that resided and

was processed in different partitions. These points must be merged to form a single cluster. In

this phase, the results of different partitions are merged and all clusters are finalized. A GMM is

created for each finalized cluster, using SGMM core points and their related features.

After summarizing each cluster with a GMM, the GMM is in turn used to regenerate the data.

Experiments comparing the regenerated data from the MR-SGMM approach to regenerated data

from a single-node SGMM approach showed similar outcomes. Two evaluation metrics were

used to quantitatively compare MR-SGMM and single-node SGMM. These indicate that the data

partitioning, local processing and data re-assembly steps were performed properly, with similar

results.

The quantity of summarized data resulting from MR-SGMM is larger than that for single-node

SGMM. This means that the number of SGMM core points (the only points which are kept for

summarization) found in MR-SGMM is larger than in single-node SGMM. A proposed solution

was able to reduce the number of SGMM core points from MR-SGMM to equal the single-node

SGMM number. Experimental results showed that reducing the number of SGMM core points

could be performed effectively without affecting the quality of MR-SGMM summarization.

For massive datasets, MR-SGMM is able to use Hadoop Distributed File System (HDFS) for

data storage, and distribute the processes of DBSCAN and SGMM across a cluster of machines

through all three above-mentioned main phases. In MR-SGMM, the summarization process is

performed on different machines across a cluster in parallel, and the execution time grows more

slowly with an increase in data size compared to the single-node method. MR-SGMM outper-
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formed single-node SGMM in handling large volumes of data.

6.2 Limitations and future work

The present study is a first demonstration of a MapReduce-based SGMM, and lays groundwork

for further development. There are several areas for potential future research, toward technical and

technological improvements and a more versatile implementation of distributed data clustering and

summarization:

• The partitioning step used in the present implementation is grid-based, meaning

spatial information is used to partition the data. This implies that input data with a

non-uniform density will lead to imbalanced partitioning. An implementation that

maintains load-balanced data partitioning for arbitrary input data is an important

challenge that can be overcome for a more practical implementation of MR-SGMM.

• The current method relies on DBSCAN clustering, where the radius of the neigh-

borhood for a point is fixed. When clusters are of diverse densities, the accuracy

and goodness of clustering can be diminished. This is a limitation associated to DB-

SCAN, which could be improved by using a clustering approach which allows sig-

nificant density variations within a cluster, such as DMDBSCAN [68]. Therefore,

implementing MR-SGMM based on clustering techniques such as DMDBSCAN is

desirable.

• The present scheme focused on two-dimensional datasets, which are relatively eas-

ier to process and visualize. For a more versatile implementation of MR-SGMM,

it would be important to generalize the proposed approach to handle datasets of

higher dimensions. A similar but a more sophisticated grid-based approach could

be developed to deal with challenges in partitioning and data re-assembly for such

multi-dimensional data.
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Appendix A

Implemented algorithms in java

A.1 Partitioning source code

import java.io.IOException;

import java.util.ArrayList;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

class MinMaxTuple

{

double min;

double max;

public MinMaxTuple(double min, double max)

{

this.min = min;

this.max = max;

}

public double getMin()
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{

return min;

}

public double getMax()

{

return max;

}

public void set(double min, double max)

{

this.min = min;

this.max = max;

}

public double[] get()

{

double[] x = new double[2];

x[0]=this.min;

x[1]=this.max;

return x;

}

}

public class Partitioning

{

public static class TokenizerMapper

extends Mapper<Object, Text, Text, Text>

{

/// Unique ID(Index) for each point

int index;
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/// Length of joint area between adjacent grids

public double epsilon = 0.04;

/// Number of partitions in each dimension

public int NoPInD = 0;

private double word;

public MinMaxTuple[] minmax = new MinMaxTuple[2];

public double[] pt = new double[2];

/// Grid number for each dimension

public int[] gd = new int[2];

//************************************ MAP FUNCTION

public void map(Object key, Text value, Context context)

throws IOException, InterruptedException

{

/// A 2D array which the first dimension is the ith

dimension of data and the second dimension is the grid number

ArrayList<ArrayList<Integer>> grids = new

ArrayList<ArrayList<Integer>>();

String[] lines = value.toString().split("\n");

String[] features=lines[0].toString().split("\t");

/// Number of features(dimensions)

int NoFeatures = features.length;

StringTokenizer itr = new StringTokenizer(value.toString());

minmax[0] = new MinMaxTuple(0,1);

minmax[1] = new MinMaxTuple(0,1);

/// Coordinate of each point

String point_coordinate="";

index = Integer.parseInt(itr.nextToken());
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/// Iterator for each (feature)dimension in a line

int i = 0;

while (itr.hasMoreTokens())

{

/// An array which contains the grid number of the current dimension

ArrayList<Integer> grid = new ArrayList<Integer>();

word = Double.parseDouble(itr.nextToken());

pt[i] = word;

//if(i == 0) NoPInD = 3;

//if(i == 1) NoPInD = 2;

NoPInD = 2;

if(i==NoFeatures-1)

point_coordinate = point_coordinate + word;

else

point_coordinate = point_coordinate + "\t" + word + "\t";

/// ---------Finding the grid number for current dimension

/// k is the number of partitions in each dimension

for(int k=1; k<=NoPInD; k++)

{

///-----------First partition

if(k==1)

{

if(word >= minmax[i].min && word <= minmax[i].min +

k*(minmax[i].max - minmax[i].min)/NoPInD + epsilon)

{

gd[i] = k;

grid.add(k);

}
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}

///----------Last partition

else if(k==NoPInD)

{

if(word >= minmax[i].min + (k-1)*(minmax[i].max

-minmax[i].min)/NoPInD - epsilon && word <=

minmax[i].min + k*(minmax[i].max -

minmax[i].min)/NoPInD)

{

gd[i] = k;

grid.add(k);

}

}

///----------Middle partitions

else if(k>1 || k<NoPInD)

{

if(word >= minmax[i].min + (k-1)*(minmax[i].max -

minmax[i].min)/NoPInD - epsilon && word <=

minmax[i].min+ k*(minmax[i].max -

minmax[i].min)/NoPInD + epsilon)

{

gd[i] = k;

grid.add(k);

}

}

}

grids.add(i,grid);

i++;
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}

/// To save all combinations of grid numbers for the dimensions

ArrayList<String> GRIDS = new ArrayList<String>();

///----------Finding all combinations of grid numbers for the

dimensions

for(int j=0;j<grids.get(0).size(); j++)

{

for(int m=0; m<grids.get(1).size(); m++ )

{

GRIDS.add(grids.get(0).get(j) + "," + grids.get(1).get(m));

}

}

for(int m=0; m<GRIDS.size(); m++)

{

/// --------Sending the grid numbers(partitions) found for a point

as KEY to reducer

/// --------Sending point index + point coordinates + "b" or "n" as

VALUE to reducer

if(GRIDS.size() > 1)

{

context.write(new Text(GRIDS.get(m)), new Text(index +"\t"+

point_coordinate +"b"));

}

else

{

context.write(new Text(GRIDS.get(m)), new Text(index +"\t"+

point_coordinate +"n"));

}
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}

index++;

}

}

public static class IntSumReducer

extends Reducer<Text,Text,String, String>

{

/// Variable for changing the labels of grids(partitions)

public int partition = 1;

//************************************ REDUCE FUNCTION

public void reduce(Text key, Iterable<Text> values,Context context)

throws IOException, InterruptedException

{

/// ----------KEY is the grid numbers(partitions) for the point

/// ----------VALUE is point index + point coordinates + "b" or "n"

for (Text val : values)

{

context.write(Integer.toString(partition), val.toString());

System.out.println(Integer.toString(partition)+" "+

val.toString());

}

context.write(Integer.toString(0), "----------");

partition++;

}

}
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public static void main(String[] args) throws Exception

{

Configuration conf = new Configuration();

Job job = new Job(conf, "partitioning");

job.setJarByClass(Partitioning.class);

job.setMapperClass(TokenizerMapper.class);

//job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(String.class);

job.setOutputValueClass(String.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

FileInputFormat.addInputPath(job, new

Path("hdfs://localhost:9000/user/kddhadoop/input/Normal_Aggregation.txt"));

Path outputDir = new Path(

"hdfs://localhost:9000/user/kddhadoop/hadoop/output" );

outputDir.getFileSystem( conf ).delete( outputDir, true );

FileOutputFormat.setOutputPath( job, outputDir );

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

A.2 Local processing source code

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;
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import java.util.List;

import java.util.StringTokenizer;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import org.apache.hadoop.mapreduce.InputSplit;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.TaskAttemptContext;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.hadoop.util.LineReader;

import org.apache.commons.math.linear.LUDecompositionImpl;

import org.apache.commons.math.linear.MatrixUtils;

import org.apache.commons.math.linear.RealMatrix;

import org.apache.commons.math.stat.correlation.Covariance;

import java.util.ArrayList;
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import java.util.HashMap;

import java.util.Map;

import weka.clusterers.forOPTICSAndDBScan.DataObjects.DataObject;

import weka.clusterers.forOPTICSAndDBScan.Databases.Database;

import weka.core.Attribute;

import weka.core.DistanceFunction;

import weka.core.EuclideanDistance;

import weka.core.Instance;

import weka.core.Instances;

import weka.core.DenseInstance;

import java.util.Iterator;

class myDataObject extends DataObject

{

public myDataObject(Instance originalInstance, String key, Database database)

{

super(originalInstance, key, database);

// TODO Auto-generated constructor stub

}

int treeIndex;

boolean isCore = false;

boolean isCoreGMM = false;

int neighbourNum;

String border="";

public void setCore()

{

this.isCore = true;

}

83



public boolean isCore()

{

return isCore;

}

public void setNeighbourNum(int neighbourNum)

{

this.neighbourNum = neighbourNum;

}

public int getNeighbourNum()

{

return neighbourNum;

}

public void setBorder(String border)

{

this.border = border;

}

public String getBorder()

{

return border;

}

public void write(DataOutput out) throws IOException

{

out.writeInt(treeIndex);

out.writeBoolean(isCore);

out.writeBoolean(isCoreGMM);

out.writeInt(neighbourNum);

out.writeChars(border);

}
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public void readFields(DataInput in) throws IOException

{

treeIndex = in.readInt();

isCore = in.readBoolean();

isCoreGMM = in.readBoolean();

neighbourNum = in.readInt();

border = in.toString();

}

}

public class Local_processing

{

static double[][] x_arr = {{0.0987047,0.1124767554}};

public static class AllInputFileReader

extends FileInputFormat <LongWritable,Text>

{

@Override

public RecordReader<LongWritable, Text> createRecordReader(InputSplit

split, TaskAttemptContext context)

throws IOException,InterruptedException

{

return new CustomizedRecordReader();

}

}

public static class CustomizedRecordReader

extends RecordReader <LongWritable, Text>

{

private LineReader in;
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private static final Text EOL = new Text("\n");

private Pattern delimiterPattern;

private String delimiterRegex;

private long start;

private long pos;

private long end;

private int maxLineLength;

private int maxLengthRecord;

private LongWritable key = new LongWritable();

private Text value = new Text();

private static final Log LOG =

LogFactory.getLog(CustomizedRecordReader.class);

@Override

public void close() throws IOException

{

if (in != null)

in.close();

}

@Override

public LongWritable getCurrentKey()

throws IOException, InterruptedException

{

return key;

}

@Override

public Text getCurrentValue()

throws IOException, InterruptedException

{
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return value;

}

@Override

public float getProgress()

throws IOException, InterruptedException

{

if (start == end)

{

return 0.0f;

} else

{

return Math.min(1.0f, (pos - start) / (float) (end - start));

}

}

@Override

public void initialize(InputSplit genericSplit, TaskAttemptContext

context)

throws IOException, InterruptedException

{

Configuration job = context.getConfiguration();

this.delimiterRegex = job.get("record.delimiter.regex");

this.maxLengthRecord = job.getInt(

"mapred.linerecordreader.maxlength", Integer.MAX_VALUE);

delimiterPattern = Pattern.compile(delimiterRegex);

// This InputSplit is a FileInputSplit

FileSplit split = (FileSplit) genericSplit;

// Retrieve configuration, and Max allowed bytes for a single record

// Split "S" is responsible for all records starting from "start" and
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"end" positions

start = split.getStart();

// System.out.println("initialized start of split: "+ start);

end = start + split.getLength();

// System.out.println("initialized end of split: "+ end);

// Retrieve file containing Split "S"

final Path file = split.getPath();

// System.out.println("initialized Path of split: "+ file );

FileSystem fs = file.getFileSystem(job);

FSDataInputStream fileIn = fs.open(split.getPath());

if (fileIn == null)

{

//System.out.println("file didn’t OPEN");

}

else

{

//System.out.println("OPENED ALREADY: "+ fileIn);

}

// If Split "S" starts at byte 0, first line will be processed

// If Split "S" does not start at byte 0, first line has been already

// processed by "S-1" and therefore needs to be silently ignored

boolean skipFirstLine = false;

if (start != 0)

{

skipFirstLine = true;

// Set the file pointer at "start - 1" position.

// This is to make sure we won’t miss any line

// It could happen if "start" is located on a EOL
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--start;

fileIn.seek(start);

}

in = new LineReader(fileIn, job);

//System.out.println("What is in in: " + in);

// If first line needs to be skipped, read first line and stores its

content to a dummy Text

if (skipFirstLine)

{

Text dummy = new Text();

// Reset "start" to "start + line offset"

start += in.readLine(dummy, 0, (int) Math.min((long)

Integer.MAX_VALUE, end - start));

}

// Position is the actual start

this.pos = start;

//System.out.println("initialize end: bye-- so start this.pos is: " +

this.pos);

}

@Override

public boolean nextKeyValue()

throws IOException, InterruptedException

{

// Current offset is the key

key.set(pos);

// System.out.println("Key in here is : " + key.get());

int newSize = 0;

// System.out.println("end in here is : " + end);
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// Make sure we get at least one record that starts in this Split

int i = 1;

//System.out.println("enter into while indicator: " + i++);

// Read first line and store its content to "value"

newSize = readNext(value, (int)end, (int)end);

// No byte read, seems that we reached end of Split

// Break and return false (no key / value)

//System.out.println("key: "+ key.get() +"\n"+ "Value: "+ value );

// Line is read, new position is set

pos += newSize;

// Line is too long

// Try again with position = position + line offset,

// i.e. ignore line and go to next one

// TODO: Shouldn’t it be LOG.error instead ??

LOG.info("Skipped line of size " + newSize + " at pos " + (pos -

newSize));

if (newSize == 0)

{

// We’ve reached end of Split

key = null;

value = null;

return false;

} else

{

// Tell Hadoop a new line has been found

// key / value will be retrieved by

// getCurrentKey getCurrentValue methods

return true;
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}

}

private int readNext(Text text, int maxLineLength, int maxBytesToConsume)

throws IOException

{

int offset = 0;

text.clear();

Text tmp = new Text();

for (int i = 0; i < maxBytesToConsume; i++)

{

int offsetTmp = in.readLine(tmp, maxLineLength, maxBytesToConsume);

offset += offsetTmp;

Matcher m = delimiterPattern.matcher(tmp.toString());

// End of File

if (offsetTmp == 0)

{

break;

}

if (m.matches())

{

// Record delimiter

break;

} else

{

// Append value to record

text.append(EOL.getBytes(), 0, EOL.getLength());

text.append(tmp.getBytes(), 0, tmp.getLength());

}
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}

return offset;

}

}

static ArrayList<ArrayList<String>> labels_total = new

ArrayList<ArrayList<String>>();

public static class RecordMapper

extends Mapper<LongWritable, Text, IntWritable, Text>

{

private MultipleOutputs mos;

public void setup(Context context)

{

this.mos = new MultipleOutputs(context);

}

/// Radius of neighborhood for DBSCAN

public double epsilon = 0.02;

/// Minimum number of points in neighborhood of a core point in DBSCAN

public int minPoints = 6;

/// Label of clusters

int clusterID = 0;

/// Database for applying DBSCAN

public Database database;

/// Distance function which here is Euclidean distance

public DistanceFunction m_DistanceFunction = new EuclideanDistance();

int counter =0;

private boolean expandCluster(myDataObject dataObject)

{
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/// List of points in epsilon neighborhood of dataObject

List seedList = database.epsilonRangeQuery(epsilon, dataObject);

/** dataObject is NO coreObject */

if (seedList.size() < minPoints)

{

dataObject.setClusterLabel(DataObject.NOISE);

return false;

}

/** dataObject is coreObject */

dataObject.setCore();

dataObject.setNeighbourNum(seedList.size());

for (int i = 0; i < seedList.size(); i++)

{

DataObject seedListDataObject = (DataObject) seedList.get(i);

/** label this seedListDataObject with the current clusterID,

because it is in epsilon-range */

seedListDataObject.setClusterLabel(clusterID);

if (seedListDataObject.equals(dataObject))

{

seedList.remove(i);

i--;

}

}

/** Iterate the seedList of the startDataObject */

for (int j = 0; j < seedList.size(); j++)

{

myDataObject seedListDataObject = (myDataObject) seedList.get(j);

List seedListDataObject_Neighbourhood =
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database.epsilonRangeQuery(epsilon, seedListDataObject);

/** seedListDataObject is coreObject */

if (seedListDataObject_Neighbourhood.size() >= minPoints)

{

seedListDataObject.setCore();

seedListDataObject.setNeighbourNum(seedListDataObject_Neighbourhood.size());

for (int i = 0; i < seedListDataObject_Neighbourhood.size(); i++)

{

DataObject p = (DataObject)

seedListDataObject_Neighbourhood.get(i);

if (p.getClusterLabel() == DataObject.UNCLASSIFIED ||

p.getClusterLabel() == DataObject.NOISE)

{

if (p.getClusterLabel() == DataObject.UNCLASSIFIED)

{

seedList.add(p);

}

p.setClusterLabel(clusterID);

}

}

}

seedList.remove(j);

j--;

}

return true;

}

//************************************ MAP FUNCTION
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public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException

{

/// Label of clusters

clusterID = 0;

String[] lines = value.toString().split("\n");

String[] features=lines[1].toString().split("\t");

/// Number of features(dimensions)

int NoFeatures = features.length - 3;

StringTokenizer itr = new StringTokenizer(value.toString());

/// Variable for reading form input file

double word[] = new double[NoFeatures+1];

/// A hash map which its key is the coordinates of a point

/// and its value is the index +","+ border of the point

Map<String, String> instanceList = new HashMap<String, String>();

/// List of attributes for an instance

ArrayList<Attribute> attList = new ArrayList<Attribute>();

for(int i=0; i<NoFeatures ; i++)

{

Attribute attr = new Attribute("attr" + i);

attList.add(attr);

}

Instances instances = new Instances("Data", attList, 2);

/// Partition of a point

int partition = -1;

/// Determines if a point is a border point(b) o not(n)

String border ="";

/// Reading data from the input file and creating instances

95



while (itr.hasMoreTokens())

{

partition = Integer.parseInt(itr.nextToken());

for(int i=0; i<NoFeatures+1; i++)

{

word[i] = Double.parseDouble(itr.nextToken());

}

border = itr.nextToken();

int ind = (int) word[0];

Instance inst = new DenseInstance(NoFeatures);

for(int i=0; i<NoFeatures; i++)

{

inst.setValue(i, word[i+1]);

}

instances.add(inst);

instanceList.put(inst.toString(), ind+","+border);

}

/// Label of a point after DBSCAN clustering

ArrayList<Integer> labels = new ArrayList<Integer>();

/// Creating the database from instances

database = new Database(m_DistanceFunction, instances);

for (int i = 0; i < database.getInstances().numInstances(); i++)

{

myDataObject dataObject = new myDataObject(

database.getInstances().instance(i), Integer.toString(i),

database);

database.insert(dataObject);

}
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/// Iterating database and first getting index of point as key

/// second clustering the database with DBSCAN

Iterator iterator = database.dataObjectIterator();

while (iterator.hasNext())

{

myDataObject dataObject = (myDataObject) iterator.next();

for(Map.Entry<String, String> entry : instanceList.entrySet())

{

String key1 = entry.getKey();

String val = entry.getValue();

if(key1.equals(dataObject.getInstance().toString()))

{

dataObject.setKey(val.toString());

}

}

if (dataObject.getClusterLabel() == myDataObject.UNCLASSIFIED)

{

if (expandCluster(dataObject))

{

labels.add(dataObject.getClusterLabel());

clusterID++;

}

}

}

//////////////////////////////////// Finding cores for GMM

/// Radius of neighborhood for finding cores for GMM

double epsilon = 0.04;

/// Distance function which is Euclidean distance
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m_DistanceFunction = new EuclideanDistance();

Database db , dbM = null;

//// Finding GMM cores for each cluster(label) in the partition

for(int i=0; i<labels.size(); i++)

{

Instances instances2 = new Instances("Data2", attList, 2);

/// Creating db and dbM databases from instances2

db = new Database(m_DistanceFunction, instances2);

dbM = new Database(m_DistanceFunction, instances2);

Iterator iterator2 = database.dataObjectIterator();

while (iterator2.hasNext())

{

myDataObject dataObject = (myDataObject) iterator2.next();

if(dataObject.getClusterLabel() == labels.get(i))

{

instances2.add(dataObject.getInstance());

db.insert(dataObject);

}

}

dbM = db;

String maxK="";

/// Key of core point to store the index of point

String maxKey="";

myDataObject max;

boolean cond = true;

boolean remove = false;

while(cond)

{
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/// Finding the GMM core point which has the maximum number

/// of neighbors in epsilon neighborhood

int maxN = Integer.MIN_VALUE;

Iterator iterator3 = db.dataObjectIterator();

while (iterator3.hasNext())

{

myDataObject dataObject3 = (myDataObject) iterator3.next();

List seedList_SGMM = db.epsilonRangeQuery(epsilon,

dataObject3);

dataObject3.setNeighbourNum(seedList_SGMM.size());

if(dataObject3.getNeighbourNum() > maxN)

{

maxN = dataObject3.getNeighbourNum();

maxK = dataObject3.getKey();

String[] mkb = maxK.split(",");

maxKey = mkb[0];

}

}

/// If the point has just 2 neighbors (one neighbor and itself)

if(maxN <= 2)

{

Iterator iterator31 = db.dataObjectIterator();

while (iterator31.hasNext())

{

myDataObject dataObject31 = (myDataObject)

iterator31.next();

String[] inb = dataObject31.getKey().split(",");

/// Index of the point
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IntWritable index = new

IntWritable(Integer.parseInt(inb[0]));

/// Determines if the point is border or not

String bor = inb[1];

Text val = new Text("p" + partition + "c" +

dataObject31.getClusterLabel() + "," +

dataObject31.isCore + "," +

dataObject31.getInstance().value(0) + "," +

dataObject31.getInstance().value(1) + "," + "NO" +

"," + 0 + "," + "null" + "," + 0 + "," + bor);

/// If the point is core and also border point

if(bor.equals("b"))

{

/// Sending point to Reducer

context.write(index, val);

counter++;

}

else

{

/// Write the point which is not core and not

border to NotBorders file

/// For points that are not sent to Reducer

mos.write("NotBorders", new

Text(index.toString()+","),val);

}

}

cond = false;

break;
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}

/// If the point has more than 2 neighbors

else if(maxN > 2)

{

/// GMM core point

myDataObject coreObject = (myDataObject)

db.getDataObject(maxK);

/// ArrayList to save the GMM core point and its neighbors

ArrayList<Instance> points = new ArrayList<Instance>();

/// List of neighbors of GMM core point

List seedList2 = db.epsilonRangeQuery(epsilon, coreObject);

/// Number of neighbors of GMM core point

int nom = seedList2.size()-1;

for(int k=0; k<seedList2.size(); k++)

{

myDataObject n = (myDataObject) seedList2.get(k);

/// Saving the GMM core point as the first element of

ArrayList

if

(coreObject.getInstance().toString().equalsIgnoreCase(seedList2.get(k).toString()

{

points.add(0, n.getInstance());

}

else

{

/// Saving neighbors of GMM core point

points.add(n.getInstance());

}
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/// Remove the GMM core point and its neighbors from

instances

if(instances2.remove(n.getInstance()))

remove = true;

}

/// Saving GMM core point and its neighbors in a 2D

array(matrix)

double[][] po_co = new double[nom+1][NoFeatures];

for(int m=0; m<points.size(); m++)

{

for(int n=0; n<NoFeatures; n++)

{

po_co[m][n] = points.get(m).value(n);

}

}

/// Saving GMM core point in a 2D array(matrix)

double[][] core_arr = {po_co[0]};

double N_x = -1;

/// Saving GMM core point as a RealMatrix(vector)

RealMatrix core_vec =

MatrixUtils.createRealMatrix(core_arr);

/// Saving x as a RealMatrix(vector)

RealMatrix x_vec = MatrixUtils.createRealMatrix(x_arr);

/// Calculating (x - core point) vector for the formula

RealMatrix x_core_vec = x_vec.subtract(core_vec);

/// Calculating Transpose of (x - core point) vector

RealMatrix x_core_vec_T = x_core_vec.transpose();

/// Calculating Covariance Matrix of GMM core point and its
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neighbors

Covariance covariance = new Covariance(po_co);

/// Saving Covariance Matrix as a RealMatrix(vector)

RealMatrix covar = covariance.getCovarianceMatrix();

/// Saving diagonal of Covariance Matrix

double [][] cova = new double[2][2];

String cov_diag = "";

for(int z=0;

z<covariance.getCovarianceMatrix().getData().length;

z++)

{

for(int o=0;

o<covariance.getCovarianceMatrix().getData()[z].length;

o++)

{

if(o == z)

{

cova[o][z] = covar.getData()[o][z];

cov_diag = cov_diag +

covariance.getCovarianceMatrix().getData()[z][o];

if(z !=

covariance.getCovarianceMatrix().getData().length-1)

cov_diag = cov_diag + ";";

}

}

}

/// Calculating the determinant of diagonal of Covariance
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Matrix

RealMatrix cov = MatrixUtils.createRealMatrix(cova);

LUDecompositionImpl co = new LUDecompositionImpl(cov);

double deter = co.getDeterminant();

/// Calculating the inverse of diagonal of Covariance Matrix

if (co.getSolver().isNonSingular())

{

RealMatrix cov_inverse = co.getSolver().getInverse();

/// Calculating the power of e for the formula

RealMatrix power =

(x_core_vec.multiply(cov_inverse)).multiply(x_core_vec_T);

/// Second part of the formula

double m2 = Math.exp(-0.5 * power.getEntry(0, 0));

/// First part of the formula

double m1 = 1/Math.sqrt((Math.pow(2 * Math.PI,

NoFeatures) * deter));

/// Calculating the formula(Normal Distribution formula)

N_x = m1 * m2;

}

/// If the point has been removed from database

if(remove == true)

{

for(int k=0; k<seedList2.size(); k++)

{

myDataObject n = (myDataObject) seedList2.get(k);

/// If the point is GMM core point

if

(coreObject.getInstance().toString().equalsIgnoreCase(seedList2.get(k).toString()))
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{

String[] inb = n.getKey().split(",");

/// Index of the point

IntWritable index = new

IntWritable(Integer.parseInt(inb[0]));

/// Determines if the point is border or not

String bo = inb[1];

Text val = new Text("p" + partition + "c" +

n.getClusterLabel() + "," + n.isCore + "," +

n.getInstance().value(0) + "," +

n.getInstance().value(1) + "," + "YES" + "," + N_x

+ ","+ cov_diag + "," + nom + "," + bo);

if(bo.equals("b"))

{

/// Sending point to Reducer

context.write(index, val);

}

else

{

/// Write the point which is not core and not

border to NotBorders file

/// For points that are not sent to Reducer

mos.write("NotBorders", new

Text(index.toString()+","),val);

}

}

/// If the point is not GMM core point
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else

{

String[] inb2 = n.getKey().split(",");

/// Index of the point

IntWritable index2 = new

IntWritable(Integer.parseInt(inb2[0]));

/// Determines if the point is border or not

String bo2 = inb2[1];

Text val2 = new Text("p" + partition + "c" +

n.getClusterLabel() + "," + n.isCore + "," +

n.getInstance().value(0) + "," +

n.getInstance().value(1) + "," +

coreObject.getKey().substring(0,

coreObject.getKey().indexOf(",")) + "," + N_x +

"," +" null" + "," + 0 + "," + bo2);

if(bo2.equals("b"))

{

/// Sending point to Reducer

context.write(index2, val2);

}

else

{

/// Write the point which is not core and not

border to NotBorders file

/// For points that are not sent to Reducer

mos.write("NotBorders", new

Text(index2.toString()+","),val2);

}
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}

}

}

/// Creating database after removing GMM core point and its

neighbors from instances

db = new Database(m_DistanceFunction, instances2);

for (int o = 0; o < instances2.numInstances(); o++)

{

myDataObject dataObject4 = new

myDataObject(instances2.get(o), Integer.toString(o),

db);

dataObject4.setKey(instanceList.get(dataObject4.getInstance().toString()).toString());

dataObject4.setClusterLabel(i);

myDataObject c = (myDataObject)

dbM.getDataObject(dataObject4.getKey());

if(c.isCore)

dataObject4.setCore();

db.insert(dataObject4);

}

}

}

}

}

protected void cleanup(Context context)

throws IOException, InterruptedException

{

mos.close();

}
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}

public static class IntSumReducer extends

Reducer<IntWritable, Text, String, String>

{

private MultipleOutputs mos;

public void setup(Context context)

{

this.mos = new MultipleOutputs(context);

}

//************************************ REDUCE FUNCTION

public void reduce(IntWritable key, Iterable<Text> values, Context context)

throws IOException, InterruptedException

{

/// ArrayList for saving values of a border point

ArrayList<String> data = new ArrayList<String>();

/// ArrayList for saving that the border point is core in how many

clusters(in different partitions)

ArrayList<String> out = new ArrayList<String>();

/// ArrayList for saving the labels of a border point which has more

than one label

ArrayList<String> labels = new ArrayList<String>();

boolean core = true;

String strr="";

for (Text val : values)

{

int co=0;
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String[] vals=val.toString().split(",");

/// If the point is not a border point

if(vals[8].equals("n"))

{

context.write(key.toString()+",",val.toString());

}

/// If the point is a border point

else if(vals[8].equals("b"))

{

/// Saving the labels

labels.add(co, vals[0]);

/// Saving the number of partitions that the point in core in them

out.add(co, vals[1]);

/// Saving the values

data.add(co, val.toString());

co++;

}

}

/// If a border point is core point just in one partition

/// No need to merge the clusters

if(out.size() == 1)

{

for(int i=0; i<data.size(); i++)

{

context.write(key.toString()+",", data.get(i).toString());

}

}

/// If a border point is core point in more than one partition
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/// clusters should be merged

if(out.size() > 1)

{

/// Counting the number of trues which means

/// number of partitions in which the point is core point

int trues = 0;

for(int i=0; i<out.size(); i++)

{

if(out.get(i).equals("true"))

{

trues++;

}

}

/// If the border point is core point in not all partitions

if(trues < out.size())

{

/// Sending point as output

context.write(key.toString()+",", data.get(0).toString());

}

/// If the border point is core point in all partitions

/// Merge should happen

if(trues == out.size())

{

/// Sorting the labels based on the label of partition(p)

for(int i=0; i<labels.size(); i++)

{

for(int j=i+1; j<labels.size(); j++)

{
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int ind = labels.indexOf(labels.get(i));

int ind2 = labels.indexOf(labels.get(j));

String str = labels.get(i);

String str2 = labels.get(j);

int part =

Integer.parseInt(str.substring(1,str.indexOf(’c’)));

int part2 =

Integer.parseInt(str2.substring(1,str2.indexOf(’c’)));

if(part2 < part)

{

labels.set(ind,str2);

labels.set(ind2,str);

}

}

}

/// Selecting the correct final label for the border point

for(int i=0; i<data.size(); i++)

{

String[] lab = data.get(i).toString().split(",");

if(lab[0].equals(labels.get(0)))

{

/// Sending point as output

context.write(key.toString()+",", data.get(i));

}

}

/// Clusters that should be merged

/// The first item in the array is the final label for all other

items
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if(labels_total.isEmpty() || ! labels_total.contains(labels))

{

labels_total.add(labels);

mos.write("Labels", new Text("Z"),new

Text(labels.toString()));

}

}

}

}

protected void cleanup(Context context)

throws IOException, InterruptedException

{

mos.close();

}

}

public static void main(String[] args) throws Exception

{

String regex = "----------";

Configuration conf = new Configuration(true);

conf.set("record.delimiter.regex", regex);

Job job = new Job(conf);

job.setInputFormatClass(AllInputFileReader.class);

job.setJarByClass(Local_processing.class);

job.setMapperClass(RecordMapper.class);

job.setReducerClass(IntSumReducer.class);

MultipleOutputs.addNamedOutput(job, "Labels", TextOutputFormat.class,

Text.class, Text.class);
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MultipleOutputs.addNamedOutput(job, "NotBorders", TextOutputFormat.class,

Text.class, Text.class);

job.setOutputKeyClass(String.class);

job.setOutputValueClass(String.class);

job.setMapOutputKeyClass(IntWritable.class);

job.setMapOutputValueClass(Text.class);

FileInputFormat.addInputPath(job, new

Path("hdfs://localhost:9000/user/kddhadoop/input/Aggregation_partitioned2.txt"));

Path outputDir = new Path(

"hdfs://localhost:9000/user/kddhadoop/hadoop/output" );

outputDir.getFileSystem( conf ).delete( outputDir, true );

FileOutputFormat.setOutputPath( job, outputDir );

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

A.3 Merge source code

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;
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import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

class Point

{

double[] attr;

public Point()

{

for(int i=0; i<attr.length; i++)

{

this.attr[i] = 0;

}

}

public Point(double[] a)

{

for(int i=0; i<a.length; i++)

{

this.attr[i] = a[i];

}

}

public void set(double[] a)

{

for(int i=0; i<a.length; i++)

{

this.attr[i] = a[i];

}
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}

public Point subtraction(Point a)

{

double[] sub = new double[a.attr.length];

for(int i=0; i<a.attr.length; i++)

{

sub[i] = this.attr[i] - a.attr[i];

}

Point subt = new Point(sub);

return subt;

}

public double dot(Point a)

{

double sum=0;

for(int i=0; i<a.attr.length; i++)

{

sum = sum + this.attr[i] * a.attr[i];

}

return sum;

}

}

public class Merge

{

public static class RecordMapper

extends Mapper<LongWritable, Text, Text, Text>

{
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//************************************ MAP FUNCTION

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException

{

/// Labels of clusters that should be merged

ArrayList<String> labels = new ArrayList<String>();

/// tract2010

labels.add("p1c1,p3c1");

labels.add("p1c2,p3c2");

labels.add("p1c3,p2c0");

labels.add("p3c0,p4c1");

String[] lines = value.toString().split(",");

/// Cluster of the point

String cluster = lines[1];

/// Changing the labels of clusters that should be merged to the final

label

for(int i=0; i<labels.size(); i++)

{

String[] labs = labels.get(i).split(",");

for(int j=1; j<labs.length; j++)

{

if(cluster.equals(labs[j]))

{

cluster = labs[0];

}

}

}

/// Sending the final clusters to Reducer
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context.write(new Text(cluster), new Text(value.toString()));

}

}

public static class IntSumReducer

extends Reducer<Text, Text, String, String>

{

private MultipleOutputs mos;

public void setup(Context context)

{

this.mos = new MultipleOutputs(context);

}

/// Cluster name(label)

int cl = 0;

//************************************ REDUCE FUNCTION

public void reduce(Text key, Iterable<Text> values, Context context

)

throws IOException, InterruptedException

{

/// Cluster size

int CS = 1;

/// Array of core points

ArrayList<String> cores = new ArrayList<String>();

for (Text val : values)

{

/// Sending the final clusters as output

context.write(Integer.toString(cl)+",", val.toString());
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CS++;

String[] vals = val.toString().split(",");

if(vals[5].equals("YES"))

{

/// Adding core points to cores list

cores.add(val.toString());

/// Saving core points into Cores file

mos.write("Cores", new Text(Integer.toString(cl)),

new Text(vals[3]+"\t"+vals[4]+"\t"+ vals[7]));

mos.write("CoresB", new Text(Integer.toString(cl)), new

Text(vals[3]+"\t"+vals[4]+"\t"+vals[7]+"\t"+vals[9]));

}

}

/// Calculating g(x) formula (Gaussian Mixture Model)

if(!cores.isEmpty())

{

double sum = 0;

for(int i=0; i<cores.size(); i++)

{

String[] vas = cores.get(i).split(",");

double w = (double) Integer.parseInt(vas[8])/CS;

double N_x = Double.parseDouble(vas[6]);

double g_x = (double) w * N_x;

sum = sum + g_x;

}

}

cl++;

}
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protected void cleanup(Context context)

throws IOException, InterruptedException

{

mos.close();

}

}

public static void main(String[] args)

throws Exception

{

String regex = "----------";

Configuration conf = new Configuration(true);

conf.set("record.delimiter.regex", regex);

Job job = new Job(conf);

job.setJarByClass(Merge.class);

job.setMapperClass(RecordMapper.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(String.class);

job.setOutputValueClass(String.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

MultipleOutputs.addNamedOutput(job, "Cores", TextOutputFormat.class,

Text.class, Text.class);

MultipleOutputs.addNamedOutput(job, "CoresB", TextOutputFormat.class,

Text.class, Text.class);

FileInputFormat.addInputPath(job, new

Path("hdfs://localhost:9000/user/kddhadoop/input/tract2010_azmayesh1_result_0.05.txt"));

Path outputDir = new Path(
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"hdfs://localhost:9000/user/kddhadoop/hadoop/output" );

outputDir.getFileSystem( conf ).delete( outputDir, true );

FileOutputFormat.setOutputPath( job, outputDir );

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}
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Appendix B

Single-node SGMM Algorithm
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Algorithm 7 Single-node SGMM
Input: Input dataset data
Output: A GMM for each cluster
Parameters:
point.coordinates # coordinates of a point
point.Score # TRUE if a point is an SGMM core point, and FALSE if not
point.n # number of neighbors for a point
c size # cluster size
point.Σ # Covariance of an SGMM core point
r # radius of neighborhood around a point

1: DBSCAN(data)
2: for each cluster ci found in data do
3: D← ci
4: while D is not empty do
5: for each point o in D do
6: Neighbors(o) = {∀x|distance(x,o)< r}
7: o.n = |Neighbors(o)|
8: end for
9: D.sort()

10: k← D. f isrt ob ject()
11: k.Score← T RUE
12: k.Σ←Covariance(k,Neighbors(k))
13: k.n← |Neighbors(k)|
14: k.w← k.n

c size

15: N(x) = 1√
(2π)2|k.Σ|

e−
1
2 (x−k.coordinates)(k.Σ)−1(x−k.coordinates)T

16: g(x)← g(x)+wN(x)
17: D.remove(k)
18: for each point q in Neighbors(k) do
19: D.remove(q)
20: end for
21: end while
22: Out put(ci,g(x))
23: end for
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