
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2012-10-25

An Atomic Source of Quantum Light

MacRae, Andrew

MacRae, A. (2012). An Atomic Source of Quantum Light (Doctoral thesis, University of Calgary,

Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/24840

http://hdl.handle.net/11023/310

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY
 

An Atomic Source of Quantum Light 

by 

Andrew John MacRae 

A THESIS
 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
 

DEGREE OF DOCTOR OF PHILOSOPHY
 

DEPARTMENT OF PHYSICS AND ASTRONOMY
 

INSTITUTE FOR QUANTUM INFORMATION SCIENCE
 

CALGARY, ALBERTA
 

October, 2012
 

c� Andrew John MacRae 2012 



Abstract
 

This thesis presents the experimental demonstration of an atomic source of narrowband 

nonclassical states of light. Employing four-wave mixing in hot atomic Rubidium vapour, 

the optical states produced are naturally compatible with atomic transitions and may be 

thus employed in atom-based quantum communication protocols. 

We first demonstrate the production of two-mode intensity-squeezed light and ana

lyze the correlations between the two produced modes. Using homodyne detection in 

each mode, we verify the production of two-mode quadrature-squeezed light, achieving a 

reduction in quadrature variance of 3 dB below the standard quantum limit. 

Employing conditional detection on one of the channels, we then demonstrate the 

generation of single-photon Fock states as well as controllable superpositions of vacuum 

and 1-photon states. We fully characterize the produced light by means of optical homo-

dyne tomography and maximum likelihood estimation. The narrowband nature of the 

produced light yields a resolvable temporal wave-function, and we develop a method to 

infer this wave function from the continuous photocurrent provided by the homodyne 

detector. 

The nature of the atomic process opens the door to a new direction of research: 

generation of arbitrary superpositions of collective atomic states. We perform the first 

proof-of-principle experiment towards this new field and discuss a proposal for extending 

this work to obtain full control over the collective-atomic Hilbert space. 
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Chapter 1 

Introduction 

This thesis describes a new method of generating narrow bandwidth non-classical light. 

What it means for light to be non-classical will be explained in detail in chapter 2, but for 

now suffice it to say that the defining non-classical light state is that of the single photon, a 

Bosonic particle representing a discrete quantum of energy. The photon has always been 

a controversial [2] and fundamentally interesting state owing, among other properties, 

to its ability to distribute a highly non-local quantum state over great distances. The 

famous EPR paradox, of Einstein Podolsky, and Rosen [3] was reformulated [4] and 

tested [5] in terms of photons. The 1956 discovery of photon anti-bunching by Hanbury 

Brown and Twiss [6] initiated the concept of characterizing a state from photon statistics 

and opened the field of quantum optics, although somewhat ironically, since the effect 

can be fully explained classically. Single photon indistinguishability led to quantum 

interference effects such as the Hong Ou Mandel dip [7] and counterfactual interaction 

free measurements [8]. The concept of photon bunching led to the concept of the squeezed 

states which overcome the limit placed by the Heisenberg uncertainty principle, on the 

minimum fluctuations allowed for a particular quadrature. In addition, squeezed states 

can exhibit non-locality in the original sense studied by EPR [9]. 

In the past few decades, nonclassical light has also become a subject of considerable 

practical interest. The increased precision possible with squeezed states allowed the possi

bility of increasingly sensitive atomic time standards [10] and ultra-precise interferometry 

with application to gravitational wave detection [11]. Another application has come with 

the advent of quantum communication and computing. It was realized that Moore’s law 

describing the number of transistors which can be placed onto an integrated circuit [12] 
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must one day fail as the required transistor size approaches atomic dimensions. At this 

scale, a quantum mechanical description of the circuit elements is required. 

The concept of using the laws of quantum mechanics to enhance quantum computa

tion dates back to Feynman who suggested it as a method of overcoming the complexity 

of simulating quantum systems [13]. Modern day quantum computing processes infor

mation using elements of a two-dimensional Hilbert-space known as qubits instead of 

conventional bits. A good candidate for a qubit is the photon, encoded in one of its 

degrees of freedom such as polarization or time. Optical qubits can travel over long dis

tances without interacting with its environment. As an added bonus, it does so at the 

speed of light. 

While a quantum computer will not likely ever act as a substitute to a conventional 

(classical) computer, it could greatly outperform a classical computer for several specific 

operations such as quantum simulation, database searching, and integer factoring [14]. 

The last operation is of particular relevance since it would compromise standard RSA 

encryption. The field of quantum communication solves the potential problem caused 

by quantum computing by allowing the transfer of a cryptographic key which be shared 

among two parties with unconditional security. The ability of an optical qubit to travel 

quickly over long distances places non-classical light at the heart of these applications. 

A fundamental difficulty plaguing optical quantum information processing lays in 

storing, retrieving, and manipulating, the involved states. The ‘selling point” that the 

optical qubit does not interact with other light while travelling creates a challenge, since 

computing often requires the manipulation of one qubit conditioned on the state of the 

other. One way around this is to engineer non-linear interactions with atoms that me

diate the cross-talk between optical fields, which has been at the focus of much our 

previous work [15]. Since light-matter coupling generally is mediated by an electronic 

transition with a finite bandwidth Δν, the bandwidth of the qubit must have comparable 
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bandwidth and have central frequency equal to that of the atomic resonance. Typical 

bandwidths range from 10 MHz for bare atoms to several GHz for solid state materials. 

For classical communication, one generally wants as large a bandwidth as possible in 

order to transfer maximal information. In contrast for quantum communications, the 

requirement of compatibility with atoms necessitates a source with a narrow spectral 

band, on the order of atomic line-widths. 

Much of the early progress in generating non-classical light came from a non-linear 

optical effect known as spontaneous parametric down conversion (SPDC) which efficiently 

generated single photons [16], and entangled photon pairs [17]. A drawback of this 

method was that the light produced was not compatible with atomic transitions having 

typical bandwidth ΔνSPDC ≈ 106Δνatom. In order to obtain light of suitable bandwidth 

several approaches have been taken. 

SPDC light has been spectrally filtered down to a suitable bandwidth but at the cost 

of greatly reducing the number of emitted photons per unit time1 [19]. From this, a 

figure of merit known as the “spectral brightness” S(ν) emerged quantifying the intrin

sic narrowness of the source. S(ν) is typically stated in terms of number of emissions, 

per second, per MHz of bandwidth. By placing the SPDC process in an optical cavity, 

non-classical light sources of very high spectral brightness have been realized [20, 21]. 

Employing a third-order nonlinear effect known as four-wave mixing (4WM) in optical 

fibers has also resulted in a high spectral brightness source [22]. Each of the above are 

examples of so called heralded sources based on correlated two-photon emission. Detec

tion of one photon of the pair heralds the existence of the other, but the pair generation 

itself is probabilistic. In contrast, on-demand photon sources, acting as a “photon pistol” 

have been produced using spatially confined semi-conductor devices known as quantum 

dots [23], but with relatively low spectral brightness and low collection efficiency. 

1This has been partially overcome by forming a waveguide-based SPDC system [18] 
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Perhaps the most natural solution to generating quantum light which is compatible 

with atoms is to use identical atoms to produce this light, which is the approach taken in 

this work. Indeed the first demonstration of squeezed light (see chapter 2) was generated 

with four-wave mixing in atoms by Slusher et al [24], but this accomplishment was soon 

overshadowed by SPDC which produced a higher degree of squeezing and was plagued 

with much less noise [25]. More recently, the DLCZ protocol for long distance quantum 

communication (see section 6.3.1) led to the experimental demonstration of an atom-

based, on-demand photon source by the groups of J. Kimble and M. Lukin [26, 27]. This 

was followed by a series of studies of this system by the group of S. Harris [28, 29]. Placing 

the ensemble of atoms in a high finesse optical cavity, a photon source of unprecedented 

spectral brightness was demonstrated by the Vuletic group [30]. Coming full circle since 

the 1986 work of Slusher et al, the group of P. Lett demonstrated the efficient generation 

of squeezed light using 4WM in atoms comparable to that of SPDC [31]. This atomic 

source had the additional benefit of wide spatial bandwidth allowing for the generation 

of entangled images [32]. 

The above photon sources inferred the purity of the generated light using photon 

statistics conditioned on the arrival of the light. Such statistical methods work well if 

the detected state is assumed a priori to belong to a restricted Hilbert space, but owing 

to losses and extra noise, this is often not the case [33]. For example, these methods can 

determine the quality of a single photon state provided that it is produced, but do not 

infer the probability of generating the state in the first place. By employing a technique 

known as optical homodyne tomography (see chapter 3), the full density matrix of the 

light state may be measured, including the probability of its generation. This has been 

accomplished for SPDC sources [19] and atomic based squeezed states [34, 35] but prior 

to this work, not for atom-based photon sources. 

The method of homodyne tomography is especially important for characterizing more 
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complex quantum optical states. For example, the recent demonstration of an arbitrary 

optical “qutrit” α |0� + β |1� + γ |2� relied heavily on OHT. In this experiment, the SPDC 

source was combined with auxiliary fields before detection resulting in a controllable 

superposition of 0, 1, and 2 photons [36]. Verification of the successful production of the 

desired state, required full knowledge of the measured density matrix which could not be 

obtained by photon statistics alone. 

The generation of non-classical light using atomic ensembles opens up a new pos

sibility: the engineering of atomic superposition states. The on-demand, “photon gun 

character of the DLCZ protocol mentioned earlier is perhaps slightly dishonest: in order 

to shoot the photon gun, one must first load it. This loading is accomplished by proba

bilistically creating a single collective spin excitation (CSE) - that is a single excitation 

shared across the entire ensemble. After this procedure however, one can in principle pro

duce a photon on demand, any time later2 by converting the CSE into a single photon. 

By performing conditional measurements during the loading procedure, a superposition 

of CSEs may be created, akin to [36]. The collective state of the atomic ensemble could 

then be written out optically, and measured via OHT. This new horizon has applications 

in quantum metrology as well as a fundamental study of the interplay between analogous 

Hilbert spaces of optical and collective atomic excitations. 

This thesis is organized as follows: In chapter 2 we provide some basic definitions of 

the non-classical light studied in this work and give an overview of criteria for labelling 

a measured state as non-classical. In chapter 3, we describe the method of measuring 

the quantum state of light employed in this work and describe an iterative algorithm for 

reconstruction the density matrix from a set of experimental data. Chapter 4 describes 

our experimental characterization of our source of non-classical light in terms of classical 

gain, and non-classical properties such as intensity and quadrature squeezing. In chapter 

2In practice, the ensemble decoheres over some characteristic time, after which the loading procedure 
must be restarted. 
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5, we describe the production of high quality narrow-band single photons compatible 

with atomic Rubidium, and introduce several new methods for inferring the temporal 

waveform of the produced photons. Finally, chapter 6 presents our progress towards 

manipulating arbitrary superposition states of a collective atomic ensemble. 
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Chapter 2 

Nonclassical Light 

2.1 Quantum Light 

Throughout history, light has been considered to be wave-like, particle-like, and in the 

past hundred years or so, both simultaneously. The wave-particle duality of quantum 

objects remains a conceptual obstacle to an intuitive picture of their behaviour, but 

quantum mechanics provides a sound formalism which allows us to calculate physically 

relevant quantities precisely and thus in some sense forgo the need for an intuitive picture. 

Quantum optics provides a quantum mechanical description of the electromagnetic field 

and yields a toolkit for working with light as a quantum object. 

Recall that for classical electromagnetism, we can define a spatio-temporal mode 

u(x, t) which provides a complete description of the field. A simple example of such a 

i(k·x−ωt)mode is a plane wave of some polarization1 u(x, t) = e . More complex modes can 

be written as a sum of these plane wave modes using the Fourier transform. The quantum 

state of a single mode2 of the electromagnetic field is mathematically equivalent to that 

of the quantum simple harmonic oscillator (QSHO) and we can associate an annihilation 

operator â with a given mode having Hamiltonian: 

Ĥ = �ω â†â+ 
1 

. (2.1)
2 

We can thus identify well-known states of the QSHO from elementary quantum theory 

1A plane wave however, is unphysical in that a monochromatic beam implies an infinite temporal 
width via the Fourier transform and infinite transverse extent since diffraction increases with decreasing 
beam width (see appendix C). Experimentally, a laser beam propagating within its Rayleigh range is a 
good approximation of a plane wave. 

2A state is said to be single mode with respect to a given mode decomposition if all modes but one 
in this decomposition are described by the vacuum state [37] (see sections 2.2 and 2.4). 
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and explore the optical realization of these states.
 

2.2 Quantum States of Light 

2.2.1 Quadrature States 

Although the creation and annihilation operators are of fundamental importance to the 

theory of quantum optics, they are not Hermitian and therefore not physically observable 

quantities. We can however, use them to form the Hermitian quadrature operators: 

â† + â 
X̂ = √ (2.2)

2 
â† − â

P̂ = i √ 
2 

(2.3) 

which represent the physically observable quadratures of the quantum field. The eigen

ˆstates of the quadrature operators3 are in turn defined such that: X |X� = X |X�, 

P̂ |P � = P |P �. 

Rewriting the basic Hamiltonian (2.1) in terms of the quadrature operators leads to 

the expression: 

Ĥ =
1
�ω X̂2 + P̂ 2 . (2.4)

2 

From the canonical commutation relation 

ˆ a † (2.5)a, ̂ = 1 

ˆ ˆwe find X, P̂ = i and thus X and P̂ exhibit the uncertainty relation: 

3Technically, these quadrature states are not normalizable and belong to the so-called rigged Hilbert 
space [38] but are included here owing to their mathematical convenience. For example, they form the 
quadrature wave-functions ψ(x) ≡ �X|ψ� which are physically measurable and are of high relevance to 
this work. 
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� � � � 1 
ΔX2 ΔP 2 ≥ . (2.6)

4 

Any state for which equality holds in the above relation is known as a minimum uncer

tainty state. 

2.2.2 Fock States 

We define the number operator as 

n̂ ≡ â†â (2.7) 

which represents a physical observable corresponding to the number of excitations of the 

field. The eigenstates of the number operator are known as Fock states |n� defined for 

n ≥ 0. The Fock states form an orthonormal basis 

�m|n� = δmn (2.8) 

and form the canonical basis for representing arbitrary quantum optical states in this 

work. The creation and annihilation operators acting on Fock states add and remove an 

excitation from the field respectively via: 

√ 
â†|n� = n + 1|n + 1� (2.9) 

√ 
â|n� = n|n − 1� . . . n > 0 

= 0 . . . n ≤ 0 

From the Hamiltonian (2.1) we see that each excitation has energy �ω and the vacuum 

state of the field |0� has non-zero energy �ω/2. 
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The quadrature expectation value for any Fock state is identically zero4 and the 

variance is then5 

� � � � 1 
ΔX2 = ΔP 2 = �n| n̂+ 1/2 |n� = n + . (2.10)

2 

Note that the Fock states obey the Heisenberg uncertainty relation, with equality holding 

only for the vacuum state |0�. 

In the following sections it will be useful to express the wave-function of a Fock state 

in a particular basis. In the quadrature basis they are [39]: 

− X
2 

e 2 

ψn(X) = �X|n� = � √ Hn(X) (2.11) 
2nn! π 

where Hn(X) is the Hermite polynomial of order n. 

2.2.3 Coherent States 

Classically, we expect that the mean quadratures of a harmonic oscillator evolve in time 

as6 X̂(t) = X̂(0) cos(ωt)+ P̂ (0) sin(ωt) and similarly for P̂ (t) . Fock states certainly 

do not fit this description since the mean quadrature vanishes at all times. We then 

seek a pseudo-classical quantum optical state which behaves like a harmonic oscillator 

in the classical limit. Such a state was discovered by Schrödinger [40], fully described in 

terms of quantum optics by Glauber [41], and is known as a coherent state. Formally, a 

coherent state is defined as an eigenstate of the annihilation operator: 

â |α� = α |α� (2.12) 

where α is a complex number describing the amplitude and phase of the state. The 

coherent state has several important properties which are of relevance to this work. 
√ � 

4�n| â± â† |n� = n �n|n − 1� ± (n + 1) �n|n + 1� = 0 � �2†5Using â± â = â2 + (â†)2 ± (ââ† + â†â) = â2 + (â†)2 ± (2n̂ + 1).
 
6Where, for example X̂ is the rescaled position mωx and P̂ is the classical momentum p.
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First, in contrast to the Fock states, coherent states do not contain a definite photon 

number, We can express a coherent state in the Fock basis as 

∞
|α|2 � αn 

|α� = e − √ |n� . (2.13)2 

n! n=0 

from which we see the photon number probability follows a Poissonian distribution. The 

mean photon number of a coherent state is: 

�n� = �α| â†â |α� = α ∗ α �α|α� = |α|2 (2.14)α 

and the photon number variance is7: 

Δn 2 = |α|2 . (2.15) 

Note that the relative uncertainty in photon number decreases monotonically as the mean 

photon number increases: �Δn� / �n� = 1/ �n� which one expects for a classical beam 

which has a does not experience intrinsic intensity fluctuations. Finally, coherent states 

are minimum uncertainty states satisfying equality in equation 2.6: 

ΔX̂2 = 
1 

(2.16) 
|α� 2 

meaning that the coherent states can be seen as a vacuum state which has been displaced 

in phase space. To this end, one can write a coherent state in terms of the displacement 

ˆoperator as |α� = D(α) |0�, where: 

D̂ (α) = exp αâ† − α ∗ â . (2.17) 

D̂(α) has the following properties [39]: � � � � � �2 � � � �27 n̂2 − �n̂�2 
= â†ââ†â − â†â = â†â†ââ+ â†â − â†â = |α|4 

+ |α|2 − |α|4 
= |α|2 



12 

ˆ ˆD (α)−1 = D (−α) (2.18) 

ˆ ˆD (α)† âD (α) = â+ α. 

Coherent states are of high experimental relevance since a standard laser operating 

above threshold produces a state which is in close approximation, a coherent state. This 

statement, although widely regarded as fact is still a subject of debate. Poissonian photon 

number distribution was verified experimentally shortly after the discovery of the laser 

[42]. In this experiment, photon statistics of a laser source operated well below, near, and 

well above threshold were observed to make a transition from a thermal to a Poissonian 

distribution. However this determines only the diagonal terms of the density matrix of 

the emitted state of light. The off-diagonal coherence terms turn out to be more subtle 

and objections have been raised [43] as to whether a laser in fact, produces a statistical 

mixture of photons or equivalently, a phase randomized coherent state: 

� 2π 

ρ̂ = |α� �α| dθ = e−|α|2 |α|2n 

|n� �n| . (2.19) 
n!0 

However, apart from particular cases involving non locality [44] the experimental results 

do not seem to differ whether equation (2.12) or (2.19) is used since most experiments 

do not require a particular coherent state with a particular global phase but rather any 

coherent state. Having thus absolved my conscience of this subtlety, we assume for the 

remainder of this thesis that a source of coherent states is provided from the lasers in 

the experiment. 

2.2.4 Thermal State 

As opposed to the coherent state which is generated from a coherent source and thus 

−|α|2 αn(α∗)m 

contains coherences ρnm = e √ , light from a thermal source such as a heated 
n!m! 
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filament is incoherent and is represented by a statistical mixture of photons. Such a 

state, known as a thermal state is given by [45]: 

∞ n
1 G − 1 

ρ̂ = |n �� n| (2.20)
G G 

n=0 

where G ≡ n̄ + 1, n̄ being the mean photon number of the field. The photon number 

variance of the thermal state is �Δn2� = n̄2 + n̄ and the quadrature variance is �ΔX2� = 

n̄+ 1/2.8 

2.2.5 Squeezed State 

So far two minimum uncertainty states - namely the vacuum state |0� and the coherent 

state |α� both satisfy ΔX̂2 = ΔP̂ 2 = 1/2. However it is only the product of these 

two values which are bound by inequality (2.6) - we could have a state with ΔX̂2 < 1/2 

ΔP̂ 2 ˆas long as is increased accordingly. Any state which for some quadrature Q 

satisfies ΔQ̂2 < 1/2 is known as a squeezed state. 

In terms of photon number, a squeezed state consists of pairs of correlated photons. 

Sources of squeezed states thus involve processes which emits photons in pairs but have 

suppressed single photon emission. Each photon in a pair can exist in the same spatio

temporal mode, producing a single-mode squeezed state or in different modes, yielding a 

two-mode squeezed state (TMSS), described by the operator: 

ˆ ˆ †b̂†Sab(ζ) = exp ζ âb − â . (2.21) 

The TMSS is of particular relevance, not only to this work, but also to fundamental 

physics since non-local correlations between quadratures may be quickly separated by 

great distances. In the limit ζ → ∞, the TMSS becomes the EPR state described by 

the original paper by Einstein, Podolsky, and Rosen which challenged the validity of the 

8Derivation of these properties is found in Appendix B. 
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quantum mechanical description of reality [3]. The non-local character of the quadrature 

correlations inspires the definition of the so-called joint quadrature operators: 

X̂a ± X̂b
X̂± = √ (2.22)

2 
ˆ

P̂± = 
Pa√± P̂b 

(2.23)
2 

√ 
where X̂a = (â† + â)/ 2 is the operator describing the quadrature in mode a etc. The 

squeezing operator 2.21 transform the creation and annihilation operators according to 

the Bogoliubov transformation:9 

Ŝ†âŜ = â cosh(ζ) − ̂b† sinh(ζ) (2.24) 

Ŝ†b̂Ŝ = b̂ cosh(ζ) − â† sinh(ζ) 

Ŝ† ˆ ˆ ˆ �ζX±S = X±e 

Ŝ†P̂  ± 
ˆ ˆ ±ζS = P±e . (2.25) 

A special case of a TMSS state is the so called (two-mode) squeezed vacuum: |ψ� = ab 

Ŝab(ζ) |0� |0� which in the Fock basis, equates to [46]: a b 

∞
tanh(ζ)n 

|ψ� = |n� |n�b . (2.26)ab cosh(ζ) a 
n=0 

2.3 The Wigner Function 

Given a quantum optical state |ψ� described in the last section, one would like to visualize 

and characterize its properties. Classically, we can characterize a state of a system by its 

phase space trajectory. Furthermore, given an ensemble of similarly prepared objects, we 

9See appendix A for derivation of these properties. 
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can define the classical phase space density function Wc(X, P ) which describes the proba

bility of finding the particle in the region R of phase space via PR = 
R Wc(X, P )dXdP . 

Having the interpretation of probability, the phase space density function is necessarily 

real and non-negative. Experimentally, we can measure a coordinate of phase space, 

say position X repeatedly and observe the statistical distribution of results. For large 

enough measurement sets, we build up the marginal distribution Pr(X) corresponding 

to the measured coordinate. We can relate the probability density to the marginal dis

tribution through the relation: 

� ∞ 

P r(X) = Wc(X, P )dP (2.27) 
−∞� ∞ 

P r(P ) = Wc(X, P )dX. 
−∞ 

Note that equation (2.27) also serves to relate the marginal distributions for different 

coordinates. 

In quantum mechanics, we are forbidden to define such a phase space picture since 

position and momentum are not simultaneous observables and follow the uncertainty 

relation (2.6). We can however, given an ensemble of identically prepared quantum 

states, make a series of measurements of a particular coordinate which could be X, P , 

or in general, a linear combination of the two: 

� � √ 
† −iθX̂θ ≡ X̂ cos θ + P̂ sin θ = â e iθ + âe / 2. (2.28) 

From these measurements we obtain the marginal distribution for each angle in phase 

space. Analogous to the classical case, a function exists which relates the marginal 

probability distributions of different coordinates as in (2.27).This function, known as the 

Wigner function [47], is defined as: 
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ρ̂
X +
 
Q
 
2
 

� ∞1 Q
iP Q X −Wρ(X, P ) = dQ. (2.29)
e

2π 2
−∞ 

The Wigner function shares many similarities with the classical probability density 

function. The marginal probability distribution for a given coordinate Xθ can be obtained 

via the Radon Transform: 

� ∞ 

Pr(Xθ) = W (Xcos(θ) − P sin(θ), P sin(θ) + X cos(θ))dX. (2.30) 
−∞ 

which is a generalization of (2.27). As in the classical case, the Wigner function is real � ∞
and normalized: W (X, P )dXdP = 1. By definition it is linear with respect to the −∞ 

density matrix so the Wigner function of a statistical mixture of states is represented as 

the sum of the Wigner functions of the constituent pure states. The Wigner function 

uniquely defines a quantum optical state, and the density matrix elements in a given 

basis may be obtained via [39]: 

� ∞ 

�n| ρ̂ |m� = 2π W|ψ�(X, P )Wn,m(X, P )dXdP (2.31) 
−∞ 

In contrast to the classical probability density function, the Wigner function may take 

on negative values and thus cannot be interpreted as a probability. Owing to equation 

(2.30) however, each negative dip must be surrounded by a positive hill so that the 

resultant marginal distribution is necessarily non-negative. 

Given a quantum state ψ written in the Fock basis: ρ̂ = ρmn |m� �n| the Wigner n,m 

function may by calculated by combining equations (2.11) and (2.29) as 

� ∞1 Q QiP Qψ ∗ e m(X − )ψn(X +Wρ(X, P ) =
 )dQ.

2π
 2
 2
−∞m,n � ∞ X2+iP Q+ Q

2 

21 e Q Q√ Hm(X − )Hn(X + )dQ. (2.32)=
 
m,n 

2π3/2 2n+mn!m!π−∞ 2
 2
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which may be quickly calculated analytically using a symbolic computing program (or 

tediously by hand if preferred). Wigner functions corresponding a number of quantum-

optical states are shown in figure (2.1): 

Although we primarily consider the Wigner function in this work, there are sev

eral commonly used quasi-probability distributions in quantum optics. The Glauber-

Sudarshan P function [41, 48] is defined as the deconvolution of the Wigner function 

with the Wigner function of a vacuum state: 

�� ∞ 

Wρ(X, P ) = Pρ(X
�, P �)W|0��0|(X − X �, P − P �)dX �dP � . (2.33) 

−∞ 

The P function can also be described as the function which diagonalizes the density 

matrix in the basis of coherent states. This property can be summarized by the optical 

equivalence theorem10: 

�� ∞ 

ρ̂ = P (X, P ) |α� �α| dXdP. (2.34) 
−∞ 

The P function usually exists in highly singular form. From equation (2.33) it is apparent 

that the P function of a coherent state is a delta function P|α��α| = δ2(α) and for many 

other states P is even more pathological. As a result, there is no convenient way to 

reconstruct the P function from experimental data, and experimentalists tend to prefer 

the Wigner function representation. 

Another distribution - the Husimi Q function is defined as the convolution of the 

Wigner function with the Wigner function of a vacuum state: 

�� ∞ 

Q(X, P ) = W (X �, P �)W|0��0|(X − X �, P − P �)dX �dP � . (2.35) 
−∞ 

10The are several distinct but equivalent forms of this theorem, the stated version may be found in 
[39] and others may be found in, ex. [49]. 
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Figure 2.1: Wigner functions of various states discussed in sec. 2.2: (a) Vacuum state 
|0�. (b) Coherent state |α� with α = 3eiπ/6 . (c) Squeezed state Ŝ(ζ) |0� with ζ = 2. (d) 
Thermal State with n̄ = 2. (e) Single photon Fock state |1�. (f) Arbitrary Superposition √ 
state |ψ� = (1 |0� + 2 |1� + 3 |2� + 4 |3�) / 30. Insets for each plot are the corresponding 
density plot. 
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Unlike the Wigner function, the Q function is non-negative and in fact may be interpreted 

directly as a probability distribution11 . The Q function of a state is identical to the 

Wigner function of the same state that has undergone a 50% loss up to a scaling of the 

coordinates. 

2.4 Quantum Optical Modes 

Thus far we have restricted the analysis to a single spatio-temporal mode12 . In general, 

full information of a quantum optical state may occupy several eigenstates of a chosen 

basis and are thus considered multimode. For the purpose of this work, light can be 

multimode in either spatial or temporal degrees of freedom[50]. Spatially multimode 

light requires more than one orthogonal transverse basis state for a full description. For 

example, laser light produced in a spherical optical cavity is bound by the orthonormal 

cavity eigen-modes TEMmn (see chapter 5.2). Often, lasing can occur within several 

TEM modes producing spatially multimode light. 

Continuous wave optical states such as a narrowband coherent state can be well 

described by a single temporal mode. We can represent this mode by the creation operator 

for the instant of time t: â(t). In a similar fashion we can isolate a particular frequency 

sideband of the steady state field â(ω). The support of the state in frequency space is 

described by its spectral power density S(ν). In contrast to the steady state situation, a 

heralded quantum state is formed by partial measurement defining an instant of time t at 

which the state is transformed. Clearly here, the single temporal mode is inappropriate. 

For such states, the temporal mode is defined by its temporal coherence function 

Γ(τ) = â†(t)â(t + τ) (2.36) 

11See for example chapter 6 in [39]
 
12With the exception of the two-mode squeezed state, for which this medication was straightforward.
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which is distributed over some envelope ψ(t). From this weighting function, we can write
 

a pure temporal state corresponding to ψ(t) in terms of instantaneous modes as 

� ∞ 

âψ ≡ ψ(t)â(t)dt. (2.37) 
−∞ 

Temporal and frequency modes are related through the Wiener-Khintchine theorem 

which states that the spectral power density is the Fourier transform of the temporal 

coherence function (2.36): 

� ∞ 
−2iπντ dτ. S(ν) = Γ(τ )e (2.38) 

−∞ 

2.5 Quantum Light vs. Nonclassical Light, Nonclassicality Criteria 

Quantum optics deals with a quantum mechanical treatment of the electromagnetic field. 

In this sense, all states of light in this formalism are quantum states of light but we wish 

to distinguish states that have a classical analogue and those that do not. To paraphrase 

Sir Peter Knight [51], who was, in turn, paraphrasing George Orwell [52], “all states are 

quantum, but some are more quantum than others.” As we have seen, the coherent state 

has the properties one would expect from a classical oscillator and it makes sense that 

we would classify this as a classical state. In fact, it is the classical state of light in terms 

of the following definition: 

Definition. A quantum optical state is said to be classical is it can be expressed as a 

statistical mixture of coherent states. A state is non-classical if it cannot. 
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2.5.1 Negativity of P function 

From the optical equivalence theorem (2.34), it is apparent that an equivalent definition 

for classicality is a positive definite P function13 since P (α) then acts as a weighting 

function for a given coherent state α. Indeed this has been shown more rigorously by 

Hillery [53] for the case of pure states. As mentioned, P functions are not conveniently 

inferred from experimental data, and so a number of non-classicality criteria exist which 

provide sufficient, but not necessary conditions on non-classicality: 

2.5.2 The Squeezing Criteria 

For the coherent state, �ΔXθ 
2� = 1/2 for all θ such that (2.6) is satisfied. Squeezed states, 

while still subject to inequality (2.6), have �ΔXθ 
2� < 1/2 for some θ. This leads to the 

following criterion: Any state for which there exist a phase-space coordinate Xθ satisfying 

�ΔXθ 
2� < 1/2 is non-classical under the squeezing criterion. For a pure squeezed state this 

follows from the definition of the P -function: Since the Fourier transform of a convolution 

of functions is the product of the Fourier transforms of the respective functions, equation 

(2.33) gives: 
F(W|0��0|(X, P ))

F(PS(ζ)(X, P )) = (2.39)
F(WS(ζ)(X, P )) 

The Fourier transform of a Gaussian of variance σ2 is a Gaussian of variance 1/ (2πσ2), 

and since both the squeezed state and vacuum state have Gaussian Wigner functions, 

F(PS(ζ)) must diverge along the (Fourier-transformed) squeezed quadrature and hence is 

more singular than a delta function14 . In general since any classical state is a statistical 

mixture of coherent states each having quadrature variance �ΔXθ 
2� = 1/2, the sum of all 

states must have variance �ΔXθ 
2� ≥ 1/2, with equality holding only in the case that each 

state is identical, i.e. a coherent state. Finally, note that the squeezing criterion does 

13For the purposes of this thesis, a delta function is considered to be positive definite.
 
14The Fourier transform of a simple delta function is a complex phase eikx0
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not require a minimum uncertainty state, but only that for at least one quadrature the 

variance is less than that of a coherent state. 

2.5.3 The Intensity Squeezing Criteria 

The definition of classicality in terms of coherent states also sets a limit on the level of 

photon number fluctuations, or equivalently intensity fluctuations, for a classical state. 

Recall that according to equations (2.14) and (2.15), a coherent state follows Poissonian 

statistics: �Δn2� = �n�. A state with �Δn2� < �n� follows sub-Poissonian photon number 

statistics and is said to be non-classical according to the intensity squeezing criterion. 

In terms of experimentally measurable quantities, the intensity squeezing criterion states 

that any state for which the photon number fluctuations are lower than that of a coherent 

state of the same intensity is intensity squeezed. The reason that intensity squeezing is 

considered to be a non-classical effect can be seen by noting that we can write �Δn2� = � � �2†2ˆ2 †ˆ�n� + â a − â a . The rightmost term can be re-expressed in terms of the P � � � ��2 
function as P (α) |α|2 − â†â d2α [51] so that: 

� � � � ��2 
Δn 2 − �n� = P (α) |α|2 − â†â d2α. (2.40) 

Clearly then, �Δn2� < �n� implies that P (α) must take on negative values in at least some 

regions of phase space and the intensity squeezed state is thus by definition, non-classical. 

2.5.4 Negativity of Wigner Function 

� X√+iP The Wigner function of a coherent state �α = is a displaced Gaussian centred at 
2 

(X, P ). Furthermore, the linearity of the Wigner function implies that for any classical 

state ρ̂ = n cn |αn� �αn| has a Wigner function which is the sum of Gaussians and is 

necessarily positive definite. If the Wigner function of a state takes on a negative value at 

any point (X, P ) then that state is non-classical. As an example, the single photon Fock 
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state is highly negative at the origin W|1��1|(0, 0) = − 1 . Not all nonclassical states have 
π 

negative Wigner functions however. For example the squeezed vacuum Wigner function 

is Gaussian, yet non-classical by the squeezing criterion. 

2.5.5 Anti-Bunching Criteria 

The intensity squeezing criterion classifies a state as non-classical based on sub-Poissonian 

statistics. Other non classicality criteria may be formulated in terms of photon counting 

statistics. This is especially relevant in experimental quantum optics at the few photon 

level where single photon counting modules are frequently employed15 . The first is based 

on the second order correlation function: 

â†(t)â†(t − τ )â(t)â(t − τ) 
g(2)(τ) = . (2.41)

�â†(t)â(t)�2 

which gives the probability of finding a second photon at a fixed delay τ from an initial 

photon at time t. Here, â†(t) describes the annihilation operator in the mode correspond

ing to time t, as described in section 2.4. If g(2)(τ) is at a maximum at τ = 0 then we 

have photon bunching (i.e. decreasing probability of finding a photon at later times) 

whereas a minimum g(2)(0) implies photon anti-bunching. Anti-bunching is closely re

lated to sub-Poissonian statistics described in section 2.5.3, but the two criteria are not 

equivalent [54]. 

For a coherent state 

�α| â†â†ââ |α� α∗α∗αα 
g(2)(0) = = 2 = 1. (2.42)

�α| â†â |α�2 (α∗α)

which set the classical limit: Any state for which g(2)(0) < 1 is said to be non-classical 

by the anti-bunching criterion. As an example, a Fock state |n� has g(2)(0) = 1 − 1/n 

whereas for a thermal state, g(2)(0) = 2. 

15See chapter 3. 
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An equivalent anti-bunching criterion is a negative Mandel Q parameter: 

�Δn2� − �n� 
Q = < 0. (2.43)

�n� 

To see the equivalence of the above criteria, note that we can re-write (2.41) at zero time 

delay in terms of photon number as: 

â†(ââ† − 1)â �n̂2� − �n̂� �Δn2� − �n̂� + �n�2 Q 
g(2)(0) = = = = + 1. (2.44)

�â†â�2 �n̂�2 �n̂�2 �n� 

Clearly then, g(2)(0) < 1 if and only if Q < 0. From the definition (2.43) it is evident 

that for sub-Poissonian light, Q < 0, for a coherent state Q = 0, and for super-Poissonian 

light, Q > 0. 

2.5.6 Criteria for Specific Density Matrix Elements 

Suppose that we are given a density matrix of an unknown quantum state and we wish 

to know whether or not it is non-classical16 . First, the probability of finding a specific 

number of photons n in a coherent state is non-zero (Prn = |�n|α�|2 = e−|α|2 |α|2n 

). A 
n! 

statistical mixture of coherent states thus has Prn > 0. Any state ρ having a vanishing 

diagonal element ρnn = 0 is non-classical17 . Consequentially, any non-vacuum state with 

a finite Fock state decomposition is non-classical. 

We can also look at particular density matrix elements. For a coherent state, equation 

−|α|2 |α|2 ne−n̄ n ≡ |α|2 d −n̄(2.13) gives ρ11 = e = ¯ where ¯ . Note then 
dn̄
ρ11 = (1 − n̄)e = 0 

when n̄ = 1, i.e. the highest possible single photon component of a coherent state occurs 

with a coherent state of mean photon number 1 for which ρ11 = e−1 ≈ 0.37. For a 

statistical mixture, ρ = α cαρα, ρ11 = α cαρα,11 ≤ max[ρ11] α cα = e−1 . Therefore, 

any state with ρ11 > e−1 is non-classical. 

16This is of particular relevance to this work since we extract the density matrix of a quantum optical 
field from data acquired using optical homodyne detection 

17The trivial exception being the vacuum state 
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Chapter 3
 

Detecting Nonclassical Light: Quantum State Tomography 

3.1 Quantum State Detection 

3.1.1 Intensity Detection 

The simplest way to detect light is by use of a detector which measures photon flux, 

that is, the number of photons per second incident on the detector’s active area. Such 

a device, known as a photodiode, accomplishes this by converting each incident photon 

into an electron with probability η, known as the quantum efficiency. In the near infra

red band, commercial Silicon PIN photo-diodes have η > 90% with specialized models 

reaching 99.8% [55]. Since even a small optical power corresponds to a large photon flux1 , 

a beam of light on a photodetector is measured as a current which may be amplified and 

measured on an oscilloscope. 

The signal from the photodiode is linear only over a small range of input powers, 

after which saturation causes a reduced response. This linear photo-current is typically 

weak and furthermore, depends on the impedance of the output load. To circumvent 

these limitations, a layer of electronics is typically placed between the photodetector 

and the measurement device. To extend the linear range and to decrease the response 

time of the diode, a reverse bias voltage is placed across the junction [56]. In order to 

provide isolation between the photodiode and the measurement device, and to produce a 

measurable signal level, an amplification stage consisting of a transimpedance amplifier 2 

1At λ = 795nm, each photon has an energy of hc/λ = 1.56 eV = 2.50 × 10−19J. The conversion factor 
is then 4 × 1018photons/second per Watt. The smallest signal detectable by a photo-diode (1 nW or so) 
still corresponds to about one billion photons per second. 

2An inverting op-amp with no input resistance is said to be in transimpedance configuration. In this 
case, the amplifier acts as a current to voltage converter with gain measured in Ohms. 
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followed by several op-amps is employed. This stage limits the bandwidth to some cut-off 

frequency fc avoiding electronic nonlinearities [57], and sets the gain to be constant for 

all frequencies less than fc. 

In this work, as in many experiments in quantum optics, we were primarily interested 

in the “noise” of the detected light. What is meant by noise in this context is a fluctuation 

in some property the light which is quantified by the variance of this property at a 

given frequency. As mentioned in section 2.5.3, a coherent state exhibits fundamental 

uncertainty in the number of photons in the field at a given time. When measured on 

a photodiode, this noise is converted to an electronic signal known as shot noise. Of 

course, the light could contain additional sources of noise due to amplitude or phase 

modulation of the source. This noise is typically known as technical, or classical noise. 

The electronics which amplify the photo-current also invariably add some noise to the 

signal, and it is important to distinguish between shot noise and the technical noise due 

to the equipment. 

The shot, electronic, and technical noise can be measured using two identically con

structed photodetectors as depicted in figure 3.1. A beam is split on a 50 : 50 beam-

splitter and sent to each detector, where the variance of the sum and difference of the 

outputs is monitored on a spectrum analyzer. When the light is blocked, the base level 

of noise gives the electronic noise floor. When the beam is unblocked, the difference port 

subtracts away all technical noise due to signal modulation and all that is left is the shot 

noise and electronic noise. Since the electronic and shot noise are uncorrelated, they add 

in quadrature so that the displayed clearance above electronic noise is the shot noise of 

the beam. Finally, the sum port is equivalent to directly measuring the signal with a 

single detector and the clearance above the difference signal gives the technical noise on 

the beam. A beam for which the sum and difference powers are equal is said to be shot 

noise limited. 
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Figure 3.1: Experimental setup to determine the electronic (black), shot (green), and 
technical plus shot (red) noise components of a signal. 

Given a single detector, it is also possible to tell whether or not the beam is shot noise 

limited based on the scaling of the measured noise with frequency. Recall that for the 

coherent state, �Δn2� = |α|2, i.e, the variance scales linearly with intensity. In contrast, 

technical noise is proportional to the electric field amplitude and thus scales quadratically 

with the electric field. The quadratic component of the scaling of the variance at a given 

frequency with power therefore determines the amount of technical noise on the beam. 

3.1.2 Photon Counting 

In order to measure signals below the resolution of the standard photodiode a modifica

tion of the above photodiode known as an avalanche photodiode (APD) may be used. In 

addition to the photosensitive surface region of a photodiode, an APD has a multiplica

tion region in which a strong electric field increases the kinetic energy of the photoelectron 

to the extent that it will create further electron-hole pairs as it collides with other atoms. 

The APD is thus a specialized photodetector with an internal gain mechanism controlled 

by a strong reverse bias. If the reverse bias is placed above the breakdown voltage of the 

diode, the APD is said to be in “Geiger mode” in which a single photo-electron in the 

multiplication region will create a self sustaining avalanche. A Geiger mode APD thus 
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serves as a single photon detector. After an avalanche has started, the current must be 

quenched so that the detector can respond to the next photon. This is accomplished by 

reducing the voltage below Vbias for a period Δt known as the dead-time. During the 

dead time, the APD no longer responds to incident photons. 

Often, the Geiger-mode APD and the quenching circuitry is placed together forming 

a single photon counting module (SPCM) which outputs a logical pulse for each photon 

event. SPCMs can identify individual photon events with a temporal resolution of a few 

hundred ps and are ideal for heralding the presence of a partner photon in a biphoton 

pair. Unfortunately, there are two major limitations of SPCMs: First, the quantum 

efficiency3 is much less than for a Si photodiode, typically less than 50%. Second, the 

dead-time places a limitation on the maximum photon flux measurable and there is 

always a probability of losing information during this time. Finally, SPCMs are not 

number resolving as the ’S’ in the acronym implies. Instead, they detect the presence 

of at least one photon but can not distinguish between 1, 2, or 10 simultaneous photon 

events. 

3.1.3 Quadrature Detection: The Homodyne Detector 

Intensity and SPCM measurements described above give information about photon num

ber distributions. In the Fock basis, these measurements determine only the diagonal 

elements but can not distinguish between the state |ψ� = α |0� + β |1� and the mixture 

ρ = |α|2 |0 �� 0| + |β|2 |1 �� 1|. The difference between the two cases lays in the coherence 

which describes a fixed phase relation between the two states. Since the phase of a typical 

optical mode oscillates at several hundred THz, we have no hope of measuring the field 

oscillations directly but rather measure the time averaged field squared, which erases 

phase information. 

3Strictly speaking, the quantum efficiency of the diode in the SPCM is as high as mentioned earlier, 
but the electronic layer leads to a photon detection probability of 50% or lower. 
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Figure 3.2: Basic configuration for homodyne detection. The state â|ψ� is mixed on a 50:50 
beam-splitter and each port is monitored by a photodiode. The resultant photocurrent is 
subtracted producing a signal proportional to the quadrature of |ψ�. The piezo-electric 
transducer attached to the mirror scans the optical phase of the local oscillator. 

A clever technique to directly measure the quadratures of a quantum state exists 

and is known as balanced homodyne detection (BHD). In BHD, a strong classical field 

is overlapped with the weak quantum state in question on a symmetric beam splitter 

(figure 3.2). Each output port is aligned incident on a linear photodiode to produce a 

photocurrent. The photocurrent from each arm of the beamsplitter is then subtracted 

and the difference in the photocurrent gives a signal that is proportional to the quadrature 

of the input state. The strong classical field, known as the local oscillator is assumed 

to be phase stable with the quantum state. We assume a coherent state |α� = �|α| eiθ 

for which the phase can be experimentally set by introducing a small delay via a mirror 

attached to a piezo-electric transducer. 

That the BHD measures the quadrature of the quantum state can be seen as follows: 

first note that as described in the last section, the photocurrent from each detector 

gives a signal which is proportional to the photon flux of the incident field î(t) = gn̂(t). 

The beamsplitter transforms the input fields as â1(2) → 2−1/2 (â1 ± â2) . Since the local 
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oscillator is bright (|α| � 1) we neglect its fluctuations and describe it solely by its 

amplitude so that â1(2) → 2−1/2 (â ± α). The number of photons in each channel is thus 

† 1 
� † iθ) 

� 
n̂1(2) = â1(2)â1(2) = n̂1 + n̂2 � |α| (âeiθ + â e . Identifying the right-most term as 

2 

the phase dependent quadrature, the difference in photocurrent îHD ≡ ̂i2 − ̂i1 becomes: 

îHD(t) = γ ̂qθ(t). (3.1) 

√ 
where γ ≡ 2 |α| g. 

Here we see the essential features of BHD. First, the classical noise is completely 

cancelled out so that technical noise does not pollute the measurement. Second, the 

local oscillator amplifies the phase of the quantum state to a measurable level so that 

extremely weak signals (�n̂� < 1) can be detected. Third, the high quantum efficiency 

of Si photodiodes allow for low-loss detection of the quantum state. Although the above 

calculation was on the “hand-wavy” side, more sophisticated treatments yield the same 

result [58]. 

There are several experimental caveats that must be made in stating equation (3.1). 

First, the inefficiency of real photodiodes must be taken into account. Second it may 

not be possible to perfectly match the spatio-temporal mode of the local oscillator to 

the quantum state in question. The degree of “mode-mismatch” can be quantified by 

the visibility V which is measured by interference contrast4 . Each of these degrading 

effects may be modelled as a beam splitter of transmissivity T with vacuum applied 

to the perpendicular port. For detectors with quantum efficiency η, T = η [39], for 

mode-mismatch, T = V2 [45]. 

Equation (3.1) describes an instantaneous measurement of the quadrature correspond

4If two states of equal intensity I0 occupy the same mode and the relative phase between the two 
is scanned, the resultant intensity will periodically vary from Imin = 0 to Imax = 4I0

2 . If they do not 
occupy the same mode, the amplitude of intensity modulation will be reduced and perfect cancellation 

Imax −Iminwill no longer be present, i.e. Imin > 0. This can be quantified by the visibility V = .Imax+Imin 
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ing to an instantaneous temporal mode described in section 2.4. To reconstruct the 

quadrature of a temporal mode described by φ(t), we define the quadrature akin to 

equation (2.37) as 

� ∞ 

Q̂ψ ≡ q̂(t)φ(t)dt. (3.2) 
−∞ 

From equation (3.1) we can then obtain a quadrature value from integrating the pho

tocurrent by the temporal mode function. 

In reality, the relation between the homodyne current is complicated by the presence 

of electronic noise and limited bandwidth of the detector. The electronic noise current 

ie(t) has some variance ΔQ̂e 
2 which adds in quadrature to the photocurrent. The 

bandwidth is limited by the response function of the detector r(t) in that faster signals 

become averaged out from the detectors inability to follow the changes. Ideally r(t) is a 

Dirac delta function but in reality, has some width. The maximum measurable frequency 

scales as the inverse of this width through the Fourier relation. What is measured on a real 

detector is then the convolution of the detectors response function with the photocurrent 

plus the electronic noise. 

î(t) = r(t − t�)q̂(t�)dt� + îe(t) (3.3) 

If we measure the temporal mode ψ(t), we find 

� ∞ 
ˆ ˆQmeas ∝ i(t)ψ(t) (3.4) 

−∞� ∞ � ∞ � ∞ 

= γ q̂(t�)ψ(t)r(t − t�)dtdt� + îe(t)ψ(t)dt 
−∞ −∞ −∞� ∞ 

= γ q̂(t�)ψ�(t�)dt� + Q̂e
 � ∞ 

−∞ � ∞

where ψ�(t�) ≡ ψ(t)r(t − t�)dt and Q̂e = îe(t)ψ(t)dt. From this, we see that if −∞ −∞ 

we choose a temporal mode φ(t) such that ψ�(t) = φ(t), we can completely correct for 



����
 ����


� � � � 

32 

the degrading effects of limited bandwidth. This deconvolution is difficult to perform 

accurately for arbitrary response functions. However, if our detector bandwidth is much 

larger than the inverse time scale of the quantum state’s temporal mode, r(t) approxi

mates a delta function and does not significantly alter the measured state. The efficiency 

of reconstructing the state with true temporal mode ψ(t), in some mode φ(t) is given by 

[59]: 

� ∞ 

ψ�(t)φ(t)dt (3.5)
 
1
 

1 − ηbw = 
N −∞ � ∞

where N = |ψ�(t)|2 dt. Figure (3.3a) displays ηbw for a quantum state of Gaussian −∞ � �2t−t0
 
2σ
temporal shape ψ(t) = e − √ 

, in this mode (φ(t) = ψ(t)) as a function of detector 

bandwidth. We see that in order to faithfully reconstruct the quantum state, we need 

a bandwidth at least the same order of magnitude as the inverse temporal width of the 

signal. 

Electronic noise also reduces the effective measurement efficiency of the reconstructed 

state. With signal and electronic noise variance ΔQ̂2 and ΔQ̂e 
2 respectively this 

quantified as 

�ΔQ2 
e� 1 − ηe = . (3.6)

�ΔQ2� 

Experimentally we can view the electronic and photocurrent at all frequencies by 

monitoring the homodyne output on a spectrum analyzer. To the extent that the spec

trum of the detector is constant over the bandwidth of the detector, we can write equation 

(3.6) as (see appendix E.1) as: 

Se (ν0)
1 − ηe = . (3.7)

S (ν0) 

where ν0 is within the bandwidth of the detector.5 The quantity on the right hand side 
5If the electronic noise is not constant, equation (3.7) provides an lower bound on the efficiency. 
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Figure 3.3: (a) The detection efficiency of a wide-band state with a limited bandwidth 
detector. In order to accurately measure a signal, the response of the detector should 
be at least as fast as the inverse signal bandwidth. (b) The spectrum of the homodyne 
detector used in the single photon experiments of chapters 4 and 5. The clearance ranges 
from 10 dB to 18dB over the 100 MHz bandwidth. The peaks around 100 MHz correspond 
to classical noise peaks which were not fully suppressed by the detectors common mode 
rejection ration (CMRR). 

is known as the clearance. The clearance increases as the square root of local oscillator 

power6 and so the degrading effects electronic noise become less significant with increasing 

local oscillator strength. However, the saturation intensity of the photodiodes puts an 

upper bound on the maximum obtainable clearance. In practice, the local oscillator 

intensity is set just below saturation7 . 

From equation (3.7) we see that the degradation of the precision of a real homodyne 

detector is simply the inverse shot to electronic noise ratio, and as such special care needs 

to be taken to minimize electronic noise in the circuit. The additional requirement of 

high bandwidth is often incompatible with low electronic noise so homodyne detector 

design is a careful balance of bandwidth and low-noise amplification [59]. 

6Note that in the parlance of the last section, we are simply measuring the shot noise. 
7Of course, saturated or not saturated isn’t a binary question, but we can place a limit on the 

acceptable degree of nonlinearity. The data sheet for the particular photo-diode will state the saturation 
intensity for which the deviation from linearity is below a stated value. 
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Figure (3.3b) shows the performance of the detector used in the experiments described 

in chapters 4 and 5. The detector has a 3 dB bandwidth of approximately 100 MHz with 

a flat response over this range. In this trace a 12 mW local oscillator was split at a 

polarizing beam splitter yielding a clearance ranging from 10 dB to 18 dB over the 

spectral support of the detector. From equation (3.7) this corresponds to an efficiency 

ηe of 0.90 to 0.98. 

3.2 Iterative Maximum Likelihood Estimation of Quantum States 

Homodyne detection gives us the marginal distribution Pr(qθ) corresponding to any phase 

angle θ. From this set of projections, we then need to faithfully reconstruct the original 

state that produced them. Historically, this was accomplished by tomographic reconstruc

tion akin to medical computed tomography (CT) scanning where a three-dimensional 

object is reconstructed from a set of two-dimensional projections [60]. 

In optical homodyne tomography we are given a set of marginal quadrature distribu

tions, and aim to invert the Radon Transform (2.30) to extract the Wigner function [61]. 

From the Wigner function, the density matrix in any basis is directly computed from the 

Fourier relation (2.31). A drawback to this method is that numerical implementations 

of the inverse Radon transform must invoke low-pass filtering owing to a singularity of 

the integration kernel [33]. This filtering necessarily results in the loss of accuracy and 

the chosen cut-off frequency is somewhat arbitrary. This can be partially overcome by 

the method of pattern functions [62] in which individual density matrices are directly 

sampled from the quadrature data. The cut-off is now applied directly to the maximum 

photon number of interest rather than the spatial frequency which is usually the more 

well-known quantity. This method however contains another serious drawback: since 

the density matrix elements are individually sampled, the resultant density matrix as a 
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whole can be unphysical, often containing negative diagonal elements. 

To avoid the drawbacks of the above inverse transform techniques, a method of sta

tistical inference may be used known as maximum likelihood estimation. Very roughly, 

maximum likelihood determines the physically observable density matrix that fits the 

observed data with the highest probability. From the density matrix, the Wigner func

tion may be directly computed from equation (2.29). Maximum likelihood guarantees a 

physical density matrix which does not suffer from numerical artifacts associated with 

filtering and experimental fluctuations. 

3.2.1 Maximum Likelihood Estimation 

Suppose we have a source of pure single photons that are transmitted across a long optical 

fiber. Either the photon makes it through the fiber, in which case ρ = |1 �� 1|, or it does 

not, ρ = |0 �� 0|. The optical state at the output of the fiber may then be described as a 

mixture ρ = (1 − η) |0 �� 0| + η |1 �� 1|, for some 0 ≤ η ≤ 1. We then perform homodyne 

measurement and determine the marginal distributions along each quadrature8 and ask, 

what is the density matrix of my state? We can try different values of η and eventually 

we could find a good fit but experimental uncertainties will guarantee that we will never 

find a perfect fit. We thus seek a function which quantifies the “goodness” of our guess. 

One such function is known as the likelihood function. The likelihood supposes that 

each measurement xi is drawn from some distribution (the sum of vacuum and single 

photon marginals in the above example) which is described by some set of parameters 

(η here): Prη(x). Assuming independent measurements, the probability that the dis

tribution Prη(x) produced the measurements {xi} is just the product of the individual i 

probabilities: 

8Actually, any quadrature will give the same distribution in this example so we need not check them 
all. 
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N

L(η) = Prη(xi). (3.8) 
i=1 

The principle of maximum likelihood provides a estimation of the parameters of the 

parent distribution which maximize the likelihood of the measured data. The parameter 

set η which maximizes L is called the estimator. In practice the log-likelihood is max

imized which converts the product to a sum. For simple cases as above, the analytic 

expression for the estimator may be obtained directly by differentiation with respect 

to η. For an n-dimensional density matrix with order n2 parameters the condition for 

maximum likelihood estimator must be found numerically. 

3.2.2 An Iterative Algorithm Maximum Likelihood Estimation of Homodyne Data 

An optical homodyne detection measurement samples the continuous variable qθ at a 

fixed angle θ which is also continuous over [0, 2π]. To calculate the measured probability 

distribution at a given quadrature angle, we distribute the data over Nθ bins and calculate 

probability for the quadrature corresponding to the jth bin as the frequency of occurrence 

of a quadrature measurement laying in this range: 

Nθ,j 
fj,θ = . (3.9)

Nθ 

The experimental data we wish to estimate then consist of a quadrature histogram 

{Nj } for each angle θ. The log-likelihood is thus: 

Nθ,j ln [L(ρ)] = ln Pr = Nθ,j ln (Prθ,j ) (3.10)θ,j 
j,θ θ,j 

Note that the theoretical probability of a measurement of quadrature laying in the range 

[qj , qj+1] given a density matrix ρ is 



� � 

� 

� � 

� 

� 

37 

qj+1 qj+1 � � 
prj,θ = prθdq = Tr [ρ |qθ �� qθ|] dq = Tr ρ̂Π̂θ,j (3.11) 

qj qj 

ˆwhere Πθ,j ≡ qj+1 |qθ �� qθ| dq is the projection operator of the quadrature onto the 
qj 

interval [qj , qj+1]. 

Following previous developments [63], we note that the density matrix may be written 

as ρ̂ = σ̂†σ̂ where σ̂ is represented by lower triangular matrix. Maximizing the likelihood 

with respect to ρ̂ is then equivalent to maximizing with respect to σ̂. The rationale 

behind this representation is that ρ̂ is completely determined by its upper triangular 

elements since it is self-adjoint. Allowing ρi,j and ρj,i to be determined independently 

may result in unphysical density matrices. 

The maximum likelihood condition is also constrained to physically realizable den

sity matrices such that Tr(ρ) = 1. We can then formulate the condition for maximum 

likelihood for realistic density matrices as a Lagrange multiplier problem: 

d � � � � � � �� 
ln L (σ̂†σ̂ − λ Tr σ̂†σ̂ − 1 . (3.12)

dσ̂


To determine λ we carry out the differentiation9 to find
 

d � � � d � � �� 
Nθ,j ln Πθ,j σ̂

†σ̂ = λ Tr (σ̂†σ̂ (3.13)
dσ̂ dσ̂

θ,j 

Nθ,j 
Πθ,j σ̂ = λσ̂

prθ,j 
θ,j 

Nθ,j 
Πθ,j ρ̂ = λρ. 

prθ,j 
θ,j 

9Note that if Â and B̂ are matrices, d Tr( ÂB̂) = B̂T [64]. 
dÂ
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Tracing both sides we find
 

Nθ,j 
Tr [Πθ,j ρ̂] = λTr [ρ] . (3.14) 

prθ,j 
θ,j 

Nθ,j = N = λ 
θ,j 

Having found λ, equation (3.13) now reads 

Nθ fθ,j 
Πθ,j ρ̂ ≡ R̂ρ̂ρ̂ = ρ̂ (3.15)

N prθ,j 
θ j 

Clearly for the maximum likelihood estimator ρ0, R̂ρ = 1̂. In a similar manner ρ̂R̂ρ = ρ̂

so that since R̂ρ = R̂ρ
† , 

ˆ ˆRρρ̂0Rρ = ρ̂0. (3.16) 

If we managed to guess the correct estimator ρ̂0, equation (3.16) holds and the es

timator is unaffected. If however our estimator does not maximize the likelihood, the 

ˆ ρ ˆ ρ�operation Rρ ̂ Rρ will produce a density matrix ˆ that is a closer approximation to ρ̂0. 

Intuitively, we can see how this works: if for a given angle, ρ̂ overestimates the jth bin, 

we will have fθ,j < prθ,j and the projection operator for the corresponding bin in ρ̂� will 

be given less weight. Conversely, an underestimate in ρ̂ leads to an increased weight for 

the projection operator for the corresponding ρ̂� bin. This is the principle behind the 

iterative approach to maximum likelihood estimation of a quantum state. Starting with 

an initial guess, we compute 

ρ(i+1) ˆ ρ(i) ˆˆ = Rρ(i) ˆ Rρ(i) N (3.17) 

until termination10 . Here, N normalizes to a unitary trace which preserves positivity of 

the density matrix. 

10Termination here could mean (i) a fixed number of iterations, (ii) A threshold likelihood, (iii) suffi
ρ(i+1) − ˆciently low |ˆ ρ(i)|, (iv) impatience. 
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The above algorithm is not guaranteed to converge and at least one counterexample
 

has been concocted [65], but in our experience with real homodyne data, convergence is 

quickly reached. Furthermore, since the likelihood for quantum tomography is a convex 

function, if a maximum is found it is a global maximum so if after a number of steps the 

estimator is unchanged, there is a high probability that the correct estimator has been 

found. In order to test the validity of a particular reconstruction, the estimated density 

matrix may be used to simulate the quadrature data via equation (2.30) which are then 

compared to the experimentally acquired data. 
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Chapter 4
 

Producing Nonclassical Light: Four-Wave Mixing in Rb Vapour 

In this chapter, we describe a source of nonclassical light known as Four-Wave Mixing 

(4WM) in atomic vapour. We first characterize the spectroscopic properties of the sys

tem in terms of experimentally accessible parameters. We then go on to describe and 

demonstrate the generation of relative-intensity squeezed and quadrature squeezed light. 

The demonstration of a high degree of squeezing in this system was recently reported 

elsewhere [31, 32, 66] and provided the initial motivation to use this system to produce 

arbitrary superposition states of light as has been done with SPDC [36]. 

4.1 Four-Wave Mixing 

Under conditions of a propagating electromagnetic field oscillating at a frequency far 

from any atomic resonance, the response of a gas of atoms may be treated as a linear 

dielectric [67], having response1 , 

P = ε0χE (4.1) 

χ being the electric susceptibility of the medium [67]. In the vicinity of atomic resonance, 

the response of the medium to an electric field is no longer linear. To accommodate this 

nonlinearity, the susceptibility can be treated as a tensor which describes the response 

to a given electric field as a function of external fields: 

1Technically, no medium can respond instantaneously to an applied field so the correct form of (4.1) � t
is P(t) = ε0 −∞ χ(t − t�)E(t�)dt� [68] 
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Figure 4.1: (a) Photon picture of 4WM process. Two pump photons are spontaneously 
annihilated, creating a signal and an idler photon. (b) Atomic level diagram showing the 
relative frequencies of the pump, signal, and idler photons. Note that both pump beams 
are derived from the same laser. 

∞

χ(1)E + ε0χ̃
(2)EE + ε0χ̃

(3)EEE + · χ(n)EnP = ε0 ˜ · · = ε0 ˜ (4.2) 
n=1 

where χ̃(n) represents a tensor of rank n. 

Since an isotropic medium such as an atomic vapour has a vanishing second order 

susceptibility [68] the first non-linear term is third order: 

Pi(ω) = ε0 χ
(3) 

Ej (rj , t)Ek( rk, t)El(rl, t) + c.c. (4.3)ijkl

ijkl 

where χ(3) 
is the third order susceptibility tensor for field Ei, given fields Ej, Ek, and ijkl 

El. 

Equation 4.3 contains myriad terms2, but the terms responsible for individual pro

cesses can be isolated based upon energy and momentum conservation. From figure (4.1), 

we see that conservation of energy for this process demands that 

2In general χ(3) contains 81 terms, each of which is a sum of 48 independent sums [69]. 
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ωi = 2ωp − ωs. (4.4) 

and in terms of momentum: 

ki = 2kp − ks. (4.5) 

Since we can write Ej (r, t) = Ej e
i(kj ·r−ωj t), we therefore identify the term describing the 

creation of the idler field from equation 4.3 as: 

Pi(ωi) = ε0χ
(3)E2 

pE ∗ 
s (4.6) 

(3)
where χ(3) = χpps. 

We assume that the electric field takes on the form of a plane wave with a slowly 

varying envelope amplitude along the z-axis E(z). Also, without loss of generality for our 

purposes, we neglect the tensor nature of χ(3) and treat P and E as scalars. We therefore 

i(kj z−ωj t)write Ej (r, t) = E(z)j e . Equation (4.7) then can be written as: 

) = εχ(3)E2E∗ i((2kp−ks)z−ωct)Pi(ωc p s e (4.7) 

where we have used equation (4.4) and assumed propagation in the z-direction for each 

field3 . 

In order to study the dynamics of the system, we apply the paraxial wave equation.4 

solved in the steady state (all time derivatives are identically zero:) 

χ(3)E2 i(2kp−ks−ki)z∂zEi = i
ki

p (z)Es 
∗ (z)e (4.8)

2ε0 

3Experimentally, the fields propagate at a small angle with respect to one another but collinearity is 
assumed here for simplicity. 

14i.e. we write the wave equation (�2 − ∂t 
2)E = c2ε0 

∂t 
2P under the assumption that ∂z E � kE , 

∂tE � ωE so that the second derivatives vanish. 
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We assume that the pump is sufficiently strong that the depletion (due to converted 

photons) is insignificant and so ∂zEp = 0. Defining the phase mismatch Δk ≡ 2kp − (ks + 

kiχ
(3)

ki) and the constant κ ≡ kiχ
(3) 
ε0cE2 = Ip, we arrive at 2cε0 p cε0 

∂zEi = iκEs 
∗ e iΔkz . (4.9) 

Next we assume5 that ki ≈ ks and write the equivalent equation for the signal beam 

(by swapping i with s) to arrive at the coupled amplitude equations for Δk = 0: 

∂zEi = iκEs 
∗
 

∂zEs = iκEi ∗ . (4.10)
 

Differentiating the first equation and plugging in the second yields: 

∂2Ei = |κ|2Ei (4.11)z 

yielding the solutions: 

Ei(z) = Aei|κ|z + Be−i|κ|z
 

Es(z) ∗ = Aei|κ|z − Be−i|κ|z . (4.12)
 

Solving for the constants A and B in terms of Ei,s(0), and defining |κ|z ≡ ζ, we arrive at: 

Ei(ζ) = Ei(0) cosh(ζ) + Es 
∗ (0) sinh(ζ)
 

Es(ζ) = Es(0) cosh(ζ) + Ei ∗ (0) sinh(ζ). (4.13)
 

−λi5This approximation is valid since λp ≈ λi ≈ λs in the system under study ( λs

λp 
≈ 10−5) 
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Note that by replacing the field amplitudes with annihilation operators, we arrive at the 

two-mode squeezing transformation (A.5). However, in contrast to the classical case in 

which the unseeded process results in no signal or idler output fields, vacuum fluctuations 

can drive the process spontaneously leading to non-zero photon number in each field even 

in the absence of input fields. The classical picture is used when considering macroscopic 

properties such as gain and spectral characteristics, whereas the quantum formulation is 

required to predict squeezing and heralded state preparation. 

Equation (4.13) implies that if we seed the process by sending a weak beam into 

the signal channel, this beam experiences amplification and an idler beam appears in 

the direction which satisfies phase-matching. According to equation (4.4), the signal 

and idler beams will occur at equal and opposite sides of the pump beam, separated in 

frequency by twice the ground state splitting. 

Note that in the case of seeding the process with a weak seed beam (Es(0) ≡ E0, and 

Ei(0) = 0) the intensity of the seed is increased by a factor cosh2(ζ) ≡ G producing an 

amplified idler, and a signal is created with intensity Is = sinh2(ζ)I0 = (G − 1)Iseed. The 

ratio of idler to signal intensities is thus: 

Ii G − 1 
= . (4.14)

Is G 

4.2 Classical Characterization of the System 

The first step in the work described in this thesis was to obtain evidence that we had a 

system described by the above analysis. To this end we set up an experiment to observe 

gain and idler beam creation in a hot atomic vapour cell. The simplified experimental 

diagram is shown in figure 4.2. A weak coherent state seeds the process by overlapping 

with the pump at a small angle throughout the atomic vapour cell. This angle was chosen 
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Figure 4.2: (a) Simplified diagram of experiment to detect four-wave mixing. The pump 
is derived from a titanium sapphire Laser while the seed originates from an ECDL. (b) 
CCD image of signal and idler beams produced in the vapour cell. 

large enough to spatially separate the signal and idler fields but small enough that residual 

Doppler effects were negligible and phase-matching was met (discussed below). The cell 

contains isotopically pure 85Rb vapour and is maintained at a temperature of roughly 

130◦C inside an insulating oven. The windows are antireflection coated for λ = 795 

nm and the length of 12 mm is chosen so that the seed and pump interact throughout 

the entirety of the cell. The pump by was derived from a Coherent MBR 110 titanium 

sapphire laser (Ti:Sa) which was fiber coupled from a separate laboratory. The e−2 radius 

of the pump beam was 500 µm and the power was varied from 200 mW to 1W. The seed 

beam was generated with an external cavity diode laser (ECDL) which we constructed in 

the lab [70]. The beam was orthogonally polarized to the pump with radius 350 µm and 

had a power on the order of 100 µW. The beams were combined on a polarizing beam 

splitter and overlapped at an angle of 5 mrad at the centre of the vapour cell. 

Figure 4.3a shows the spectrum of the signal beam after passing through the medium 

as in figure 4.2a. The pump was tuned ≈ 1 GHz red of the
 5S1/2, F = 2 →
 5P1/2, F � 

transition6 . The signal beam experienced standard absorption from the two ground to 

6Due to Doppler broadening, the hyperfine levels of the 5P excited state are not resolved individually. 
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excited state transitions. However, whenever the magnitude of the frequency difference 

between pump and probe equaled the ground state splitting of approximately 3 GHz, 

sharp gain peaks were observed which are accompanied by the creation of an idler beam 

in the phase-matched direction (eq. (4.5)). 

The phase-matching condition caused the gain peak to be sensitive to alignment. 

Since the idler is automatically generated in the phase-matched direction, a natural 

question to ask is, “what does it mean to be phase matched here”? Defining θs(i) to be 

the angle between the pump and the signal (idler) and noting ck = nωω, phase matching 

implies that: 

niωi sin θi = nsωs sin θs (4.15) 

niωi cos θi = 2npωp − nsωs cos θs 

are both simultaneously satisfied. This occurs for particular values of ni,s,p which are in 

turn functions of frequency and pump power. As opposed to nonlinearities in crystals 

and cavities where generation can be obtained for a very small range of angles, the phase-

matching condition in the hot vapour cell was less stringent. This was primarily due to 

the large Fresnel number7 configuration of our setup. The Rayleigh range of our beams 

were on the order of 100 times longer than the vapour cell so that beam divergence could 

be neglected and the process could be stimulated for a large range of angles. To obtain 

a rough estimate of this angular range, note that approximating |k| ≈ |k| ≈ |k| and p s i 

θs ≈ −θi, the phase matching condition ΔkL � 1 reads 

7The Fresnel number is defined as the ratio of interaction length to the beam waist. 
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Figure 4.3: (a) Measured spectrum of the probe experiencing four-wave under high gain 
conditions (Tatoms = 135◦C). The two gain peaks at a frequency difference with the pump 
of the hyperfine ground-state splitting.(b) Simultaneous monitoring of the signal gain and 
idler creation for lower gain conditions (Tatoms = 110◦C). 

1 � 2kL(1 − cos θ)	 (4.16) 

≈	 2kL(1 − (1 − θ2/2) 

2πL 
θ2 = 

λ 

so that the approximate angular phase-matched range is thus 

λ 
θpm ≈ .	 (4.17)

2πL 

With our parameters, this corresponds to θ = ±5 mrad. This is consistent with our 

observations in which we found that gain was present anywhere between θs = 1 mrad to 

around 10 mrad, with maximal gain occurring at θs ≈ 5 mrad. 

Ideally, the gain increases dramatically with temperature: the susceptibility is linearly 

proportional to number density [69], but the gain is exponential in χ(3) and number den

sity increases approximately exponentially with temperature (see figure (4.4a)), predict

ing super-exponential scaling. Experimentally however we found that the gain initially 
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increased exponentially, but tapered off at a temperature of about 150 ◦C corresponding 

to a number density of 1014 cm−3 at which point additional nonlinear interactions began 

to dominate. One such interaction was self focusing of the pump [71], which destroyed 

the phase-matching as has been reported elsewhere [72]. 

A dramatic additional nonlinear effect was the appearance of pump-induced, incoher

ent blue fluorescence starting at around T = 130 ◦C. We first noticed the effect when 

exploring the scaling of idler power with temperature and found that near atomic res

onance, a pump with power of several hundred mW was completely absorbed. When 

viewing the oven to see if anything was obscuring the beam, we noticed the pump deple

tion was accompanied by an omnidirectional blueish glow. Spectroscopic measurements 

determined that the fluoresced light had a wavelength of 422 ± 4nm which was consistent 

with the 6P 3/2 → 5P 1/2 transition at 420 nm. One puzzling aspect of this generation 

is that there is no transition in the neighbourhood of 397.5 nm, so our laser could not 

be directly driving a two photon excitation. This effect has also been seen in a separate 

experiment in our lab and has been mentioned in the supplementary information in [73]. 

The dependence on high temperature suggests the process is due to collisional-enhanced 

multi-photon excitation. In this case, the excited atom cascades back down to the ground 

state through 6P 3/2 → 5P 1/2 . This phenomenon, known as an energy pooling process 

was studied in Rubidum in 1983 by Barbier and Cheret [74], and has been exploited to 

produce coherent 420 nm generation [75, 76]. 

From equation (4.14), we could infer the gain by noting the resultant output powers. 

However, if we simply measure Psignal/Pseed we would underestimate the 4WM gain owing 

to the residual absorption from atomic resonance. The idler beam however was created 

much farther off resonance, did not suffer this absorption, and was thus a more reliable 

indicator of 4WM gain. Ideally, the idler power was directly proportional to input power 

Pi = (G − 1)Pseed. 
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Figure 4.4: (a) The expected scaling of number density with temperature, where the ideal 
gas approximation was assumed and the vapour pressure was modelled as described in 
[1]. (b) The scaling of gain with number density over the range of temperatures used in 
the experiment. Gain was inferred by the idler power and number density was obtained 
as in (a). 

As mentioned, one naively assumes super-exponential scaling of the 4WM gain with 

temperature. However, additional process discussed above which degrade the effective 

gain of the system also become more pronounced with number density and we expect less 

dramatic scaling in a realistic setting. In order to quantify this scaling experimentally, we 

monitored the measured gain via the idler beam power as a function of temperature. From 

the temperature we could calculate the number density, as shown in figure 4.4a8 . Figure 

4.4b shows the measured scaling which, on a log-log plot, gives approximately linear 

behaviour with slope 1.58. Over the range of temperatures accessed in the experiment, 
√ 

the gain thus scaled roughly as: G − 1 ≈ N N . 

The dispersive nature of the lower frequency gain peak in figure 4.3 was due to the 

8We use the Clausius Clapeyron relation with constants stated in [1] to determine the vapour pressure 
in the liquid phase as a function of temperature. We then determine the number density directly from 
the ideal gas relation N ≡ n/V = P/kB T , kB being the Boltzmann constant. 
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Figure 4.5: (a) The transmission profile of the seed(idler) for increasing pump intensity. 
The red region displays the gain peak while the dark blue region is Raman absorption. 
(b) The transmission spectrum of the created signal where each trace corresponds to a 
horizontal slice of (a). 

interplay between four-wave mixing gain and Raman absorption [31], indicative of the 

complicated interplay of effects present in the setup. The higher frequency gain peak was 

farther from atomic resonance and did not exhibit the same complicated profile. This 

implied that for the observation of correlations between signal and idler photons, it was 

preferable to seed the process at a slightly higher frequency than two-photon resonance 

in order to minimize the loss in the system. 

The most accessible experimental parameter controlling the gain was the pump power. 

Increasing the pump Rabi frequency9 Ωp more efficiently drove coherence between the 

ground-states and overcame the degrading effects of population exchange. On the other 

hand, the Rabi frequency broadened the line-width of two-photon transitions, which was 

detrimental for the generation of quantum light compatible with atomic transitions. In 

figure 4.5a, the signal spectra for a range of pump Rabi frequencies is displayed. The 

gain peak is seen to shift as a result of the AC-stark effect and the Raman absorption dip 

dij ·E9The Rabi frequency for the |i �� j| transition is given by Ω = , dij being the transition dipole 
moment for the given atomic transition. 
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Figure 4.6: (a) The idler bandwidth was seen to increase linearly with pump Rabi fre
quency. Here the bandwidth is defined to be the full width at half-max of the idler profile 
(fig 4.5b). (b) Similarly, the gain was seen to increase linearly with pump Rabi frequency. 
This is in contrast with the theoretical prediction of G ∝ ec0Ω

2 
p implying the presence of 

additional processes such as self-focusing. 

becomes significantly broader. Figure 4.5b shows the generated idler spectrum for each 

pump power. It is apparent that the idler creation is attenuated as a result of Raman 

absorption of the signal and thus becomes asymmetric. The bandwidth of the generated 

field is also seen to increase with pump power. This is an important measurement since 

it is the width of the signal gain peak that ultimately determines the bandwidth of the 

system. This is quantified in figure 4.6, where both the gain and the bandwidth are seen 

to be linear in pump Rabi frequency. Converting the Rabi frequency back to optical 

power of the 500 µm pump beam shows that the bandwidth increases as 24.28 MHz per 

Watt of pump power. 

Owing to the fact that the process was operated far off atomic resonance, the gain 

was fairly insensitive to the one-photon detuning of the pump beam. This is fortunate as 

it implies that the light generated by the 4WM system was tuneable. Although the signal 

was produced far off resonant to the 85Rb system it was created in, it could be made 

directly resonant to the
 5S1/2, F = 1 →
 5P 1/2, F � transition of 87Rb by tuning the 
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pump red- instead of blue-detuned from the excited manifold. This was the configuration 

which produced the most squeezing but the photon experiment was optimized for the 

blue-detuned case. Consequentially, the light generated could be directly interfaced with 

resonant atom-based quantum memories and logic gates employing 87Rb. 

4.3 Relative Intensity Squeezing 

4.3.1 A Brief Theoretical Description 

The standard quantum limit (SQL) for intensity noise is set by the Poissonian limit: 

�Δn2� ≥ n̄. The ultimate violation of this limit is the Fock state for which �Δn2� = 0. 

For two separate beams occupying modes a and b respectively, the relative intensity noise 

between these modes is: 

Δ(na − nb)
2 = Δn 2 

a + Δn 2 
b − 2cov(na, nb), (4.18) 

where cov(na, nb) = �nanb� − �na� �nb� is the covariance between the photon number in 

each channel. For uncorrelated modes, this covariance vanishes and the relative intensity 

noise is the sum of the individual beams’ intensity noise. Two coherent states in separate 

modes thus behave as a coherent state with |α|2 = |α|2 + |α|2 and define the two mode a b 

SQL for intensity noise. 

Relative intensity squeezing was first observed in 1987 in which an optical parametric 

oscillator resonant to two separate modes produced bright twin beams with relative 

intensity squeezing of 1.55 dB below the SQL [77]. Relative intensity squeezed beams 

have a number of practical applications include quantum imaging [78], high sensitivity 

spectroscopy [79], and measurement of extremely weak optical attenuation [80]. 

Operationally, our 4WM system amplifies the seed beam by scattering one pump 

photon into the signal channel and another into the idler channel. Whereas the mean 
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photon number is increased, the relative intensity noise is unaffected since the added 

light is, loosely speaking, a “two-mode Fock state” |na, nb�. 

To get a quantitative understanding, we assume that the signal channel is a coherent 

state of mean photon number |α|2, the idler channel is initially vacuum, and proceed in 

the Heisenberg picture: 

ˆ|ψ� = Ssi(ζ)D̂i(α) |0i� |0s� . (4.19) 

Using the properties of the two-mode squeezing operator in equation (A.5) and the 

displacement operator in equation (2.18), we find (see appendix D for details): 

�n̂� = |α|2 cosh2(ζ) + sinh2(ζ) (4.20)i 

�n̂� = (|α|2 + 1) sinh2(ζ)s 

In the limit of large mean photon number (even a humble 100 µW laser beam has |α|2≈ 

1010) this reduces to equation (4.14) from the classical calculation with G ≡ cosh2(ζ). 

However, as opposed to the classical derivation the mean photon number in each channel 

is nonzero and is given by sinh2(ζ) = G − 1 in the absence of input coherent state. This 

vacuum-stimulated 4WM process leads to squeezed vacuum discussed in the next section 

and forms the basis of the narrowband photon source presented in chapter four. 

Proceeding with the calculations of the individual terms in equation (4.18), the indi

vidual variance of each channel is: 

�Δn̂i�2 = |α|2 cosh2(ζ)(cosh2(ζ) + sinh2(ζ)) + cosh2(ζ) sinh2(ζ) (4.21) 

�Δn̂s�2 = |α|2 sinh2(ζ)(cosh2(ζ) + sinh2(ζ)) + cosh2(ζ) sinh2(ζ). 

Note that for large α, �Δn̂i�2 = |α|2 G(2G − 1) whereas for a coherent state of the same 

optical power, �Δn̂�2 = |α|2 G. Therefore, the amplified seed beam itself is no longer a 
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minimum uncertainty state in terms of intensity, and carries an extra factor 2G − 1 of 

�2extra noise. In the case of no seed |α| = 0, �Δn̂s = �Δn̂i�2 = cosh2(ζ) sinh2(ζ). 

Computing the covariance term in (4.18) and computing the sum yields: 

Δ(ns − ni)
2 = |α|2 (4.22) 

This is the root of the relative intensity squeezing effect - the total noise on the 

difference signal is equal only to that of the input beam. Since the process results in 

gain, the optical power can be much greater than that of the input state while the noise 

is equivalent to that of a coherent state of much less power. In order to quantify this 

effect, we can compare the noise of the twin beams to that of a coherent state of equal 

optical power and obtain the relative intensity noise normalized to the standard quantum 

limit for intensity noise: 

�Δ(n̂s − n̂i)2� 
RI = 

2 . (4.23)
�Δn̂CS � 

2Using �Δn̂CS � = (2G − 1) |α|2 from eq. (4.20), we obtain for the 4WM process: 

1 
RI = . (4.24)

2G − 1 

Note that a value of RI < 1 implies non-classicality (see section 2.5.3), an effect known 

as relative intensity squeezing. Since G ≥ 1, the process always results in squeezing, 

provided that there is no extra noise and the channels experience no loss. Under these 

assumptions the squeezing is monotonic with gain. This is not the case when losses 

are present since in the presence of gain, the individually noisy channels are carefully 

balanced. Loss in one channel breaks this balance and for large gains the excess noise 

quickly grows above the noise level of a coherent state of the same optical power. Loss 

L ≡ 1−η can be modelled by a beam splitter with transmissivity ηs(i) in the signal (idler) 
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Figure 4.7: (a) Theoretically predicted relative intensity squeezing in the presence of loss. 
In the presence of loss the amount of squeezing obtained is not monotonically decreasing 
with increasing gain. (b) Loss in the signal (idler) channel is modelled as a beam splitter 
of transmissivity ηs(i) and a vacuum state incident on the reflecting port 

channel [39]. The corresponding expression for (4.24) using this model is calculated in the 

appendix D. Figure 4.7 shows the predicted relative intensity squeezing in the presence 

of loss. Note that owing to the imbalance of input powers (equation (4.14)) optimal 

squeezing for low gain is obtained with slight loss on the probe channel. This counter-

intuitive result has been pointed out elsewhere [81]. 

4.3.2 Experimental Results 

A large amount of time was devoted to the observation of relative intensity squeezing. 

After much experimentation, it was determined that phase stability between the pump 

and seed beams was an extremely crucial parameter and even an almost unnoticeable 

amount of technical noise on the input beam will be amplified to well above the standard 

quantum limit. This is discussed in more detail in the next section. 

Figure 4.8 displays the experimental configuration with which relative intensity squeez
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Figure 4.8: The final configuration of the experimental setup to observe relative intensity 
squeezing. The dotted path accessible by the removable mirror allows for the calibration 
of the standard quantum limit. 

ing was eventually observed. The pump is derived from a Tekhnoscan TIS-777 titanium 

sapphire ring resonator laser (Ti:Sa) driven by a Lighthouse Photonics Sprout 8W 532 

nm pumping laser. The Ti:Sa provided up to 1.3W of 795 nm light with extremely nar

row line width (Δν < 5 KHz). A small fraction of this light was passed to a Brimrose 

GPM-400-1600 acousto-optical modulator (AOM). The first-order sideband was shifted 

by about 1.5 GHz and was counter-propagated back into the AOM to produce a beam 

phase-stable with an adjustable two photon detuning roughly equal to the ground state 

splitting frequency of 85Rb of 3.035 GHz. This “double-pass” configuration had the 

draw-back of limited seed power since the single pass efficiency was < 20% leading to a 

double pass efficiency of a few percent. The small active aperture of the acoustic crys

tal (≈ 25µrad) and the optical damage threshold of 5W/mm2 led to a maximum input 

power of about 10 mW and thus a maximum seed power of about 200 µW. The AOM 

also introduced elliptical divergence on the beam which required cylindrical lenses to cor
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Figure 4.9: (a) Relative intensity squeezing. The dotted curves are the signal and idler 
beams alone incident on one of the detectors, each of which is much noisier than the 
measured SQL (red) However, when both beams are simultaneously incident on the 
detectors, the resultant noise (green) is below the SQL. (b) Calibration of the SQL for 
our detectors. Linearity of measured noise with respect to optical power implies that the 
signal is not polluted with classical noise. 

rect. Despite these drawbacks, the double-pass AOM configuration was the only method 

by which we obtained sufficient pump-seed phase stability to observe relative intensity 

squeezing. 

The pump and signal beam were set to orthogonal polarizations via half-wave plates 

(λ/2 in the figure) and sent at an angle of about 5 mrad through the 115 ◦C atomic 

vapour cell. The pump was isolated after the cell by means of a Glan-Thompson polarizer 

and the signal and idler beams were separated and directed to a Thorlabs PDB 150C 

differential detector. The detector was custom designed to make use of Hamamatsu S3883 

photodiodes which had a nominal quantum efficiency of 91%. Individual outputs allowed 

us to observe the output power of each beam separately while the difference photocurrent 

was monitored on a spectrum analyzer. The SQL was calibrated by sending the seed beam 

around the cell and adjusting the power to that of the total 4WM output light. An SQL 

calibration curve for the detector we used is displayed in figure 4.9b. 
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Figure 4.9a summarizes the results found in the relative intensity experiment. In
 

this plot, the pump power was 760mW and was detuned about 800 MHz red of the 

F = 1 → F � transition. The traces are presented on a logarithmic scale with respect 

to the measured SQL for the experiment. Here the power of the signal and idler beams 

was 72 µW and 78 µW respectively and the SQL was calibrated for a coherent state of 

power 150 µW. The residual absorption of the near-resonant seed (see figure 4.3) led to 

a signal with higher power than the idler, in contrast to equation (4.14). The intensities 

of the signal and idler were individually much noisier than the SQL when incident on 

the detector individually, but when both beams were incident simultaneously the noise 

was dramatically reduced, reaching as far as 3 dB below the SQL. The noise peak at 

around 800 kHz was due to technical noise present on the Ti:Sa beam which could not 

be perfectly cancelled out by the limited common mode rejection ratio of the differential 

detector. The intensity correlations extended out to 3 MHz and at higher frequencies the 

difference signal was slightly above the standard quantum limit owing to uncorrelated 

emission from the atomic ensemble. 

4.3.3 The Effect of Technical Noise on Intensity Squeezing 

The most important requirement for relative intensity squeezing was a high degree of 

phase stability between the pump and seed beam and a great deal of time was spent 

achieving this. An intuitive reason for this is that we are measuring correlations in the 

sidebands of the relative intensity spectrum (see figure 4.9a). Phase noise manifests itself 

as modulation of the carrier signal and in the frequency domain, the sidebands then 

measure a bright, uncorrelated signal in place of vacuum fluctuations. 

Originally, the pump beam was coupled into the experiment from a Ti:Sa in a sepa

rate laboratory and we generated the seed beam from a separate laser which was phase 

locked to the pump [82]. While this created a narrow beat frequency between the two 
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beams and thus a low phase variance, the digital locking signal created spurious side

bands which, when amplified in the 4WM system, overwhelmed the intensity noise. This 

led to an initial “false positive” for squeezing: We originally configured the SQL by send

ing the phase-locked signal beam through the atoms, split it on a 50:50 beam splitter, 

and subtracted the photocurrent as in figure 3.1. However, when the signal was phase 

locked, the gain property of the 4WM system amplified the lock-induced sidebands and 

produced a noise level well above the case when the SQL is measured by a beam which 

did not propagate through the atoms. The measured relative intensity noise between 

the signal and idler, while far below the falsely-calibrated SQL, was above the true SQL. 

This excess noise from the atomic gain was identified by shifting the locked pump-signal 

frequency difference away from the atomic two-photon resonance determined by the hy

perfine splitting, and is shown in figure 4.10. In order to circumvent this problem, we 

moved to the double-pass AOM setup described in the last section. In this configuration, 

the phase noise is eliminated since each beam stems from the same source and the relative 

path difference is well within the Ti:Sa laser’s coherence length. 

An additional source of noise turned out to stem from the fiber coupling the pump light 

from a separate lab. At high optical powers, the fiber began to introduce uncorrelated 

noise into to pump beam which could not be subtracted away by the CMRR of the 

detector. This phenomenon was most likely due to 4WM process within the single-mode 

which begin to appear around a few hundred mW of power [83]. Figure 4.10b shows 

the evidence for this noise source: the beam was passed through the fiber for various 

input powers, attenuated to a fixed level and the sum and difference photocurrent was 

monitored, as described in figure 4.10. For powers above 500 mW, the fiber-induced 

technical noise dominated above the shot noise level. The only way to get around this 

noise source was to obtain, with some reluctance, a new titanium sapphire laser for our 

lab, which finally allowed us to observe the relative intensity squeezing of figure 4.9. 
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Figure 4.10: (a) The sidebands induced by the optical PLL added significant technical 
noise to the seed beam. Here each trace represents a different two photon detuning from 
the Raman transition between ground states δ2 ≡ ω − ωHF . The peak value of each 
trace corresponds to the chosen value of δ2. (b) At high optical powers, the fiber coupled 
Ti:Sa light acquired significant technical noise. Both noises in (a) and (b) destroyed the 
intensity squeezing. 

4.4 Quadrature Squeezing 

4.4.1 Basic Theory 

Just as the 4WM system produced two-channel correlations between the photon number 

of the signal and idler fields, the process can also produce correlations in the joint quadra

ture of the fields. Instead of the non-local photon number, �Δ(n̂s − n̂i)2�, we can observe 

the non-local joint-quadratures described by equation (2.22). Since the photocurrent in 

a balanced homodyne detector placed in the signal(idler) channel is directly proportional 

to the single mode quadrature x̂s(i) via equation (3.1), subtracting the photocurrent from 

matched homodyne detectors in each channel measures the joint quadrature. By scan

ning the phase of one detector with respect to another we can measure the two-mode 

squeezed state at all quadratures and fully characterize the output state. 

As in the case of relative intensity squeezing, the quadratures of the individual chan
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nels are noisy, but correlated with one another so that when combined, they can exhibit 

noise below the standard quantum limit (2.6). The quantity measured in our experiments 

was the quadrature variance, measured as the noise power in the homodyne detector. 

Since the mean quadrature value of the squeezed vacuum state is zero, the variance is 

just the mean-square and we see from (2.24) that 

1 
ΔX̂2 ±2ζ 

± = e . (4.25) 
sq 2 

Squeezing is frequently measured on a logarithmic scale, so that in the ideal case of a pure 

squeezed vacuum, the variances of the squeezed (S) and anti-squeezed (A) quadratures 

are equidistant above and below the SQL. In a linear scale, the SQL is often normalized 

to 1, so that S = 1/A. Since the individual quadratures are very noisy10, the fact that 

the TMSS is a minimum uncertainty state relies on careful subtraction. In the presence 

of loss, this subtraction is incomplete and results in extra noise. 

The quality of a measured squeezed state can be quantified directly by observing the 

squeezed and anti-squeezed quadratures and introducing the generalized efficiency ηsq 

[84]. This model supposes that we start with a pure squeezed state and subject it to loss 

by passing it through an attenuator with transmissivity ηsq. By observing an imperfect 

squeezed state in our experiment, we can then seek the equivalent transmissivity that 

would give our results, supposing an initially pure squeezed state from the 4WM process. 

On a linear scale, with squeezing S and anti-squeezing A, 

A + S − (AS + 1) 
ηsq = . (4.26)

A + S − 2 

Clearly, for an ideal squeezed state (AS = 1) ηsq = 1. An important figure of merit 

is the amount of squeezing required for an efficiency of at least 50% regardless of the 

anti-squeezing. Solving the above equation for ηsq = 1/2 yields S = 
2A
A 
−1 , which in the 

10Even for a gain G = 2, the variance of an individual channel is thrice the SQL. 
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Figure 4.11: The experimental setup for the two-mode squeezing experiment. The local 
oscillators were produced via a separate 4WM process. The local oscillator and signal 
beam for each channel were overlapped and sent to individual homodyne detectors. The 
joint quadratures were extracted by subtracting the outputs of the individual homodyne 
detectors on a hybrid junction. 

limit A → ∞ becomes 1/2 or equivalently -3 dB. Thus any setup displaying at least 3 dB 

of squeezing displays a squeezed state of efficiency ηsq > 0.5 regardless of anti-squeezing. 

4.4.2 Experimental Details 

The experimental setup used to produce and detect quadrature squeezing is shown in 

figure 4.11. In order to mode-match the frequency and transverse mode of the two-

mode squeezed vacuum state to the local oscillators required for homodyne detection, we 

followed the approach of [32] and generated the local oscillators dynamically by seeding a 

separate 4WM in the same atomic vapour cell. This was crucial during the initial phases 
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of the experiment since we needed to explore the multidimensional parameter space11 in 

search of an suitable operating regime, and the transverse mode of the signal and idler 

depended to some extent on each of the parameters. Producing the local oscillators in 

the same 4WM system as the squeezed state thus allowed us to monitor the effect of 

varying the experimental conditions without realigning the homodyne detection setup. 

In addition the local oscillators were automatically generated in the correct frequency, 

forgoing the need for additional lasers or AOMs. 

We measured the joint quadratures by subtracting the output of the individual ho

modyne detectors in each channel on a hybrid junction (M/ACOM H9sma). To ob

serve the phase-dependent quadrature phase, we introduced a delay in the signal channel 

via a piezo-electric transducer while monitoring the output of the hybrid junction on a 

spectrum analyzer. The standard quantum limit was calibrated by simply blocking the 

two-mode squeezed vacuum modes before mixing with the local oscillator. 

In order to measure the joint quadratures, it was imperative that the electronic re

sponse of the individual homodyne detectors were matched. To this end, we manufac

tured two identical homodyne detectors with matched surface mount components and an 

adjustable gain for fine tuning. To compensate for the imbalance in power between the 

seeded signal and idler beams described in the last section, we attenuated the stronger of 

the two signals so that the local oscillators had equal power. In this case equation (3.1) 
√ 

xs−x̂igives: î− = îs − ̂ii = 2γ ˆ√ = γ�X̂−. 2 

4.4.3 Experimental Results 

Figure 4.12a displays squeezing obtained in the experiment. We obtained 2.9 dB of 

squeezing with 5.4 dB of anti-squeezing corresponding to an efficiency of ηsq = 0.61. 

Here, the 800 mW pump was tuned 800 MHz blue of the F = 1 → F � transition, and the 

11This parameter space included formed by pump power, pump detuning, two photon detuning, cell 
temperature, angle with respect to pump, and beam diameter. 
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Figure 4.12: The squeezing produced experimentally. (a) We obtained up to -2.9 dB of 
squeezing corresponding to an efficiency of 0.61. The data here were taken with δ = 12 
MHz, Δ ≈ 800 MHz, and Ppump = 850 mW(b) The amount of squeezing obtained 
depended strongly on the two photon detuning 

local oscillators were generated using a 200 mW pump, derived from the same beam. In 

order to observe significant squeezing, we needed to devote most of the available pump 

power to the squeezed vacuum signal, leaving only as much pump as necessary to produce 

the local oscillators. 

We found that as for relative intensity squeezing, the most crucial parameter for 

efficiency in our setup was the two photon detuning δ2 of the local oscillator with respect 

to the pump. This is most likely due to the asymmetry in the pump-induced signal 

beam absorption shown in figure 4.3 and mentioned in the analysis of relative intensity 

squeezing. An asymmetric loss quickly overwhelmed the squeezing and brought even the 

squeezed quadrature above the SQL. We explored this by measuring the envelope formed 

by the maximum and minimum quadrature noise as a function of two photon detuning 

as summarized in figure 4.12b. The optimal squeezing occurred for δ2 between 10 and 15 

MHz, and for negative detunings, the noise was so great that no squeezing was present 

at all. We can quantify the thermal noise added to the system by taking the geometric 
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Figure 4.13: (a) By modelling the produced state as a statistical mixture of thermal 
and squeezed states, the excess noise on the system is plotted. (b) The Efficiency from 
equation (4.26) is plotted for the corresponding data. 

mean of the values in figure 4.12b.Figure 4.13a shows this figure, the behaviour of which 

closely resembles the pump induced absorption in figure 4.3. From this we can conclude 

that a major source of the δ2-dependent degradation in squeezing is the asymmetric 

Raman absorption profile. The corresponding efficiency of the process as a function 

of two-photon detuning is displayed in 4.13b. Note that the efficiency for the analysis 

performed on this set of measurements is less than displayed in figure 4.12a. This is 

because later alignment and improvements of the experiment yielded a higher degree of 

squeezing some time after the δ2-dependence data were taken. 

A key figure of merit of the source of squeezed light is the range of frequencies over 

which the state can be generated. This is important since atom based applications of 

squeezed light require specific frequencies which may vary from experiment to experiment. 

The frequency of the output state is tuned directly by the one-photon detuning Δ of the 

pump from the excited state (see figure 4.1). Figure 4.14a shows the squeezed and anti-

squeezed quadrature noise for a one GHz scan of the one-photon detuning from 400 MHz 
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to 1400 MHz blue of the F = 1 → F � transition. From about 650 MHz to 1100 MHz 

the squeezing is roughly constant. The wide range of tuneability in this setup stems 

from its off resonant nature. For larger detunings, the squeezing decreases as a result of 

the decrease in χ(3) which falls off with Δ. For smaller detunings, the process becomes 

dominated by additional effects such as pump scattering and losses from the Doppler 

broadened resonance begin to dominate. The optimal one-photon detuning is thus a 

compromise between maximizing the nonlinearity and minimizing the loss. 

The dependence of temperature on squeezing was also explored. Since the squeezing �√ � 
is related to the gain via equation (4.25) with ζ = cosh−1 G , the squeezing is ex

pected to scale in the same manner as the gain, which increased up to around 150◦C. 

Figure 4.14b displays the squeezing obtained as a function of temperature. The resultant 

efficiency is included as the deviation from ηsq = 0.5 for each temperature. Although the 

magnitude of quadrature squeezing increased with temperature as expected, the anti-

squeezed quadrature increased such that the efficiency remained approximately constant 
√ 

for all temperatures. Since the Doppler width scales as T , the inhomogenous broad

ened line width did not increase dramatically over this range of temperatures. On the 

contrary, the number density more than doubled over this temperature range and so this 

sharp dependence on temperature is most likely number-density dependent. From figure 

4.4 the gain should increase by approximately a factor of 4 over this range and thus 

we expect a significant increase in squeezing. However additional noise-adding nonlinear 

processes increase concordantly with number density and introduce excess noise which 

reduces the effective efficiency of the squeezed source. 
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Figure 4.14: (a) The tuneability of the absolute frequency of the squeezing process is 
plotted by adjusting the one-photon detuning. (b) The effect of temperature on the 
absolute squeezing, and the efficiency of the resultant state. The black, dotted line 
shows the deviation of ηsq from 0.5, scaled by a factor of 10. The dip in the datum 
around 131◦C was the result of accidental misalignment which was not noticed at the 
time of the experiment. 
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Chapter 5
 

An Atomic Source of Narrowband Single Photons 

The historical workhorse of single photon generation is spontaneous parametric down 

conversion (SPDC) [16]. SPDC photon sources exploit the fact that ideally, photons are 

always emitted in pairs, into distinct channels. The measurement of a single photon 

in one channel collapses the state of the other channel to a single photon Fock state. 

One of the drawbacks of the conventional SPDC approach is that even if the emission 

wavelength matches that of an electronic transition, the phase-matching bandwidth is 

much wider than a typical atomic line-width. As a result, even SPDC sources which 

operate at the desired central wavelength produce photons which have a low probability 

of atomic interaction owing to spectral mismatch1 . A natural solution to this problem is 

to use atoms to generate the quantum state of light rather than a bulk crystal, so that 

the light then naturally has the correct spectral characteristics to be efficiently mapped 

into another atomic system. 

Our atomic photon source operates on the principle that in the unseeded case, the 

4WM system produces a two-mode squeezed vacuum state described in the Fock basis 

by equation (2.26). A photon in the idler channel then implies the existence of a photon 

in the signal channel as in SPDC. Defining G ≡ cosh2 ζ as in the previous chapter, we 

see that the signal channel obeys thermal statistics when the idler channel is traced out: 

∞ � �
1 G − 1 n 

ρ̂s = |n �� n| . (5.1)
G G 

n=0 

An important drawback lies in the fact that conditioned upon one and only one 

1Quantitatively, the typical atomic transition has a line width Δν ≈ 101 MHz whereas a typical 
SPDC process has Δν ≈ 107 MHz. 
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photon in the idler channel the signal is the single photon Fock state |1�. However, the 

single photon counters employed in our experiment, and indeed in nearly all experiments, 

do not resolve the number of photons present, but rather the presence of at least one 

photon. The state conditioned on a detection event is thus not truly a pure Fock state, 

but rather an approximation whose fidelity depends on the squeezing parameter. The 

renormalized state in the case of at least one photon becomes: 

∞ � �
1 G − 1 n 

ρ̂cnd = |n �� n| . (5.2)s G − 1 G 
n=1 

The fidelity of the conditioned state is then: 

1 
f|1� = �1| ρ̂cnd |1� = . (5.3)s G 

For optimal fidelity, the gain must be kept low. However, from equation (4.20) the 

mean photon number in the signal channel is given by G − 1, and so the experimental 

count rate decreases with gain. Since photon counting modules exhibit false counts which 

introduce vacuum and thus lower the fidelity, the gain must be sufficiently high that the 

true counts greatly outnumber the dark counts. The optimal fidelity is given by the 

gain that balances the trade-off between maximal single-to-multiple photon events and 

true-to-false detector counts. 

Using the analysis of the previous chapter, we were able to configure the system to 

produce high quality single photon states. The basic experimental procedure was 

as follows: 

1. Operating in the low-gain unseeded regime, the signal channel was mixed with the 

local oscillator and continuously monitored at the homodyne detector, resulting in 

a background thermal state. 
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2. The idler channel registered a photon event, heralding a signal photon at the ho

modyne detector. This triggered an acquisition card to record the photocurrent for 

a temporal window about the photon event. This trace corresponded to a single, 

unprocessed quadrature datum. 

3. After collecting a large number of quadrature data, each trace was integrated along 

the temporal mode of the photon creating a single quadrature point as per equation 

(3.2). This formed the marginal quadrature distribution. 

4. A maximum likelihood estimation of the density matrix corresponding to the marginal 

distribution was made, as described in section 3.2.1. 

5. (Optional) The Wigner function corresponding to the density matrix was computed 

using equation (2.32). 

In order to ensure that the trigger event corresponded to an idler photon and not 

a pump, background, or signal photon, the trigger channel required significant filtering. 

This is addressed in section 5.2. An additional challenge arose in that we did not know 

the temporal wave function ψ(t) of the heralded photon in advance. Without ψ(t), we 

could not reconstruct the quadratures in step 2 above as described in section 3.1.3. We 

developed several methods to address this challenge which are described in section 5.3. 

5.1 Experimental Design 

The full experiment layout is shown in figure 5.1. The pump laser was derived from 

the Ti:Sa and could be seeded as in the relative intensity squeezing experiment for the 

purpose of alignment. The system was operated at low gain as per equation (5.3), with 

cell temperature of 97 ◦C corresponding to a gain of about 1.1. All of the alignment 

was performed with a weak seed to provide a measurable signal at each mirror, and the 
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Figure 5.1: Full setup for the generation of narrowband single photons.
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seed was blocked during the experimental runs. The signal channel was continuously 

monitored on a homodyne detector while the output was sent to an Agilent Acquiris DP 

214 digital acquisition card. The idler channel was subject to a high degree of spectral and 

spatial filtering (see next section) and sent to a single photon counting module (SPCM). 

Upon receiving a photon event, the SPCM triggered the acquisition hardware to save all 

homodyne current within a temporal window of 180 ns for later analysis. 

We initially faced the challenge of producing a phase-stable local oscillator for detect

ing the quadrature of the signal field. We could not seed the process as in the case of 

quadrature squeezing since we were operating at low gain and the resultant intensity was 

very weak (on the order of 10 µW), whereas the noise equivalent power of the homodyne 

detector was on the order of 1 mW. To bypass this problem we phase locked a separate 

external cavity diode cavity laser (Toptica DL 100) to the Ti:Sa at a frequency separa

tion equal to the hyperfine ground state splitting of 85Rb, thus matching the generated 

signal field. The self-built optical PLL [82] which was used for an earlier experiment on 

double-lambda systems [15] allowed up to 20 mW of local oscillator power, with residual 

phase noise with respect to the pump of less than 10 Hz. A small fraction of this beam 

was tapped off and sent through an auxiliary Rb cell for purposes of spectroscopy. A 

weak portion of the pump was also tapped off and mixed with the spectroscopy beam. 

The resultant beat frequency between the spectroscopy laser and the pump beam allowed 

us to monitor and set the one photon pump detuning with respect to 85Rb atoms. 

To compensate for the slight birefringence in the glass of the atomic vapour cell as 

well as Faraday polarization rotation from the atoms, a quarter-wave and a half-wave 

plate were placed at the exit of the cell. The pump was then attenuated by two successive 

polarizing beam-splitters. The signal and idler channels were allowed to propagate for 

some distance to allow for spatial filtration of the pump, as discussed in detail in the 

next section. 
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Since the 4WM process was spatially multimode [32], the mode selection was non

trivial. The idler channel was sent to a single mode fiber, subjected to spectral filtering, 

and then to a SPCM-AQR-14 Perkin Elmer single photon counting module (SPCM). 

Upon detection of a single photon at the SPCM, the signal channel collapsed to well-

defined spatio-temporal mode as described by the Klyshko advanced wave model [85, 86]. 

According to this model, the heralded mode of the signal photon is that of the spatial filter 

of the idler, namely a single mode fiber which closely approximates a TEM00 Hermite-

Gaussian mode [87]. Instead of applying spatial filtration directly to the signal channel 

which would have introduce a loss, we spatially filtered the local oscillator which selected 

an approximate TEM00 spatial mode without imposing any loss on the signal. Telescopes 

in each channel matched the waist and origin of each of the Gaussian modes. 

5.2 Filtering out the Pump Field: Monolithic Filter Cavity 

Imagine a grain of red sand dispersed throughout pile of black sand the size of a large 

mountain which is pouring into a container from above over the course of a second. 

Now imagine we must devise an apparatus which lets only the red grain of sand into 

a container and rejects all of the others. This was the order of magnitude of filtering 

required in the experiment to separate the idler photons from the pump beam. Each 

pump photon which made it through the filters to the SPCM caused a “false trigger” 

event. Consequentially, the detected state was then the background thermal state instead 

of the desired |1�, lowering the fidelity of the reconstructed data. Clearly we needed far 

fewer pump photons than idler photons in the trigger channel. Since the mean photon 

number of the pump beam was on the order of �n� = 1016, whereas the signal beam had 

�n� ≈ 0.1 a suppression of over 170 dB was required for a SNR of at least 10:1. 



74 

5.2.1 Polarization and Spatial Filtering 

Using the fact that the pump photons were orthogonal to the signal and idler, we ob

tained 50 dB of suppression with two successive polarizing beam splitters. Additionally, 

the signal and idler beams were at a small angle with respect to the pump, we allowed 

approximately 1.5 meters of free space propagation to spatially separate signal, idler and 

pump photons. One might ask why we did not allow much longer free space propagation 

to obtain arbitrarily large spatial separation. The reason is three-fold: First, the degrad

ing effects of air fluctuations and mechanical motion of mirrors become more pronounced 

with propagation distance. Second, some pump light is scattered directly into the mode 

the idler mode and beam propagation, no matter how far, will not filter out this light. 

Finally, after a propagation distance of several Rayleigh lengths, i.e. the far field, the 

beam divergence and spatial separation each increase linearly and further propagation 

will not decrease the mode overlap which reaches an asymptote. 

The measure of spatial filtering obtained by propagation was a competition between 

beam divergence and separation of the beam centres. Since θ � 1, the beam separation 

Δx after a distance z from the atoms was Δx ≈ zθ. On the other hand the beam width 

λfor z � zR (see appendix C, was w(z) ≈ 
πw0 

z. The separation between the pump and 

idler beams was then 
λ w0,p + w0,i

Δxp,i = (θ − )z. (5.4)
π w0,pw0,i 

The first term is the angular separation and the second term represents the beam diver

gence. Clearly, for the fixed beam waist sizes in our experiment there was a minimum 

angle possible, below which divergence would cause the beams to overlap after propaga

tion. For our parameters this corresponded to approximately 1 mrad. Figure 5.2 shows 

the attenuation of the pump beam for our beam parameters. From this our pump at

tenuation was expected to be at least 70 dB after isolating the idler mode by passing it 
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Figure 5.2: Spatial filtering in the setup: (a) shows the competition between beam diver
gence and spatial separation obtained by beam propagation. In (b) the overlap between 
the beams as a function of propagation is calculated for the experimental parameters: 
w0p = 550µm, w0i = 400µm, θ = 4.2 mrad. The inset shows the far-field overlap which 
approaches an asymptotic limit. 

through a single mode fiber, neglecting pump photons which were scattered into the fiber 

mode. We still needed over 50 dB of pump suppression to isolate single photons in the 

idler channel. To this end, we employed a novel design for a Fabry-Perot filter cavity. 

5.2.2 Fabry Perot Filter Cavities 

A high quality spectral filter can be made by placing two mirrors separated by distance 

l, with high reflectivity R (such that 1 − R � 1) along the optical axis as diagrammed 

in figure 5.3. As light is incident upon the first mirror, a small portion of the field enters 

the resonator and propagates back and forth between the mirrors. Most light incident 

on the cavity is reflected, but for certain frequencies, the phase acquired through one 

complete passage meets the resonance condition: 

Δφ = kl = qπ, with q ∈ Z (5.5) 
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and the internal field constructively interferes with the incident light, quickly building 

up inside the cavity and allowing for perfect transmission. Since these resonances can 

be quite narrow, light of a given frequency can be isolated from a noisy background. 

To understand the transmission profile in more detail, consider a plane wave in the z-

direction Eineikz incident on the cavity in figure 5.3: After the first mirror and traversing 

the cavity with an intensity loss of 1 − η2, the field becomes ηtEineikL, where t is the field 

transmission related to the intensity reflectivity as t2 = 1 − r2 = 1 − R. At this point 

the light could either escape the cavity with amplitude t or bounce back any number of 

times before exiting, picking up a factor η2r2e2ikL each time it does so. The total field at 

the output is the sum of each of the escaped field amplitudes: 

∞� 
ikl 2ikl Eout = ηt2 e η2R2 e 

n ηt2eikl 
Ein = Ein (5.6)

2 2ikl 1 − η2r
 e

n=0 

where we’ve identified the geometric series in the summation. The intensity transmission 

function is defined as Iout/Iin =
 |Eout|2 / |Ein|2 .
 Using
 1 − xeiθ =
 (1 − x)2 + 4x sin2 θ 

and noting that kl = nlω/c, n being the index of refraction of the intracavity medium, 

we arrive at: 

1 
T (ω) =
 

σ2 + F sin2 nl ω 
c 

(5.7)
 

where F = 4R/(1 − R)2 is the coefficient of finesse and σ2 = (1 − η2R)2/η2(1 − R)2 

quantifies the intracavity loss. Note that σ2 ≥ 1 with equality holding only for the case 

of no intracavity loss (η2 → 1). 

Equation (5.7) illustrates a number of important features of Fabry-Perot filters. First, 

the transmission at resonance is σ−2 i.e. for a lossless cavity, perfect transmission is 

obtained, but the maximum obtainable transmission decreases with loss. For high reflec

tivity, this decrease in maximum transmission is sharp with loss, as shown in figure 5.4. 
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Figure 5.3: Illustration of the model for a simple Fabry-Perot Cavity. Loss in the cavity 
is modelled as a beam splitter with transmisivity η. 

Second, the profile is periodic owing to the sin2(nlω/c) term in the denominator. The 

period is known as the free spectral range (F SR): 

c 
F SR ≡ . (5.8)

2nL 

Note that the F SR is solely a function of the cavity geometry. Transmission profile for 

η = 1 and 0.995 with R = 0.97 is shown in figure 5.4. 

Near resonance the small angle approximation applies and the transmission profile 

approaches a Lorentzian with full width at half maximum2 (FWHM), given by Δν = 
√ 

π 
2 F × FSR. This motivates the definition of the finesse as the ratio between the peak 

separation and the line width: 

F SR F ≡ . (5.9)
Δν 

√ 

In terms of the loss parameter and the coefficient of finesse, F = 2 
πσ 
F , so losses degrade 

the finesse and decrease the “sharpness” of the cavity profile.
 � � √ �−1�−12 F nl2For small x, sin2 x ≈ x so 1 + F sin2(nlω/c) becomes 1 + ( )2ω2 , a Lorenztian with c√ √ 
cFWHM Δω = 2πΔν = 4 F = 4 F × F SR. 2nl 
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Figure 5.4: (a) Transmission spectrum spectrum for a Fabry-Perot Cavity over several 
F SRs with (blue) and without (red) loss. The reflectivity was set to R = .97 and the 
loss was 1 − η2 = 0.005. The lower inset displays the transmission minimum for the 
normalized transmission spectra, showing the degrading effect of loss on the filter (b) 
The maximum transmission (solid green) and corresponding finesse F (dotted black) as 
a function of mirror reflectivity R for a cavity with a round trip loss of 0.005. 

A final important note regarding equation (5.7) is that the transmission minimum 

ideally scales as F−2 so a high finesse is a crucial parameter for the quality of a filter. 

However, since both finesse and peak transmission scale sharply as R → 1, there is 

a fundamental trade-off between peak transmission and unwanted mode rejection as 

diagrammed in figure 5.4. Higher quality filters thus require low optical losses since we 

require 1 − L ≤ R for high transmission. 

5.2.3 Spherical Fabry-Perot Cavities 

The assumption of an incident plane wave in the preceding analysis ensured that wave-

front of the internal cavity field matched the mirrors at all points. This idealization can 

not be met in reality for two reasons. First, imperfections in the cavity surface cause 

wavefront mismatch and lower the effective fidelity. More fundamentally, plane waves 

are an idealization: real beams diverge while propagating (see Appendix C), and after 
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several round trips the mismatch between incident and propagating light destroys the 

constructive interference causing resonance. For this reason, planar Fabry-Perot cavities 

are limited to a finesse of about 100. 

In order to circumvent this problem, concave mirrors can be used in place of flat 

mirrors to form a spherical Fabry-Perot cavity. The resonant modes of such a cavity are 

to close approximation the Hermite-Gauss modes of order (m, n) denoted TEMmn [88]. 

The resonance condition (5.5) is still valid but for Gaussian modes propagating through 

a focus, an additional phase is acquired as compared to a plane wave, known as the Gouy 

Phase. The Gouy phase of a TEMmn mode is 

z 
φG = (1 + m + n) tan−1 . (5.10) 

zR 

Taking the Gouy phase shift into account, the condition for resonance of a TEMmn mode 

in a spherical Fabry-Perot cavity of length L with radii of curvature r1 and r2 becomes 

[89] 

c 1 + m + n L L 
νqmn = q + arccos (1 − )(1 − ) , where q, m, n ∈ Z (5.11)

2L π r1 r2 

The first term represents the plane wave resonance condition and the second term is the 

Gaussian beam correction. 

While the refocusing effect of the spherical Fabry-Perot mirrors corrects for the beam 

divergence, the focus can be made too tight such that no Gaussian beam exists for which 

the radii of curvature at the cavity boundaries match the mirror surfaces. At this point, 

the resonator is said to be unstable. The condition for cavity stability was studied in [88] 

in which the cavity was modelled as a series of lenses separated by distance nL ≡ L� . In 

this case, the resonant field is the infinite product of ray-transfer matrices which may or 

may not diverge. The condition for convergence (and thus for cavity stability) can be 
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Figure 5.5: (a) Cavity Stability: the lighter region meets the condition (5.12) for resonator 
stability. Various configurations are displayed at their location on the stability plot. (b) 
A typical spectrum of a spherical Fabry-Perot cavity with an input that is not perfectly 
matched to the fundamental cavity mode. Such a spectrum displays the decomposition 
of the input mode into the basis defined by the cavity. 

written as: 

� �� � 
L� L� 

0 < 1 − 1 − < 1. (5.12)
R1 R2 

Defining the coordinates g1(2) ≡ (1 − nL/R1(2)), the region of cavity stability can then 

be visualized as in figure (5.5a). 

The resonance condition (5.11) implies that separate transverse modes are resonant 

to different frequencies. The exceptions are flat mirror (r → ∞) and confocal (r = L) 

cavities for which all transverse modes are degenerate. Confocal cavities are often used 

to ease the mode-matching process. 
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5.2.4 Our Design: A Monolithic Non-Confocal Fabry-Perot 

Traditionally, filter cavities in quantum optics experiments have fallen into two categories: 

solid flat-surface Fabry-Perot cavities also known as etalons, and spherical Fabry-Perot 

cavities formed with separate mirrors. The solid design is highly stable and simple 

to construct but suffers from limited finesse. Several successive cavities are typically 

needed to obtain a high degree of filtering. In addition, tuning the resonant frequency 

is a challenge and is typically accomplished by thermal expansion or tilting the cavity 

at a small angle with respect to the beam. On the other hand, spherical Fabry-Perot 

cavities are capable of achieving high finesse and are easily tuned, but the separation 

between them must be actively stabilized. This is typically achieved by monitoring 

the transmission frequency of an auxiliary beam and providing feedback to maintain a 

constant transmission. However, residual phase noise from this process is never fully 

suppressed and is transferred to the transmitted light. In addition, the locking beam 

must then be filtered out so that it does not corrupt the signal. When the signal is a 

single photon, this is a considerable challenge. 

Our approach was to employ a hybrid between the two existing paradigms, a mono

lithic spherical Fabry-Perot filter constructed by coating a standard lens substrate with 

high-reflectivity coating. This had the advantage of high degree of filtration after a single 

pass through the cavity while maintaining good transmission of the desired photon. The 

monolithic design provided long term stability without introducing any optical locking 

techniques. Operating in the non-confocal regime allowed for additional spatial filtering 

since pump light in a different spatial mode than the photons will not be matched to the 

cavity mode and photons which may escape the cavity at the pump frequency will not 

be in the same spatial mode as the idler photons. 



82 

Tuning was accomplished by utilizing thermal expansion of the substrate: 

dL 
= αL (5.13)

dT 

where α is the coefficient of thermal expansion of the substrate. The shift in frequency of 

the qth longitudinal mode with temperature can then be found as follows: the condition 

where κ ≡ α + is the sum of the thermal expansion coefficient and the fractional
 

for resonance is3 ν = q c 
2nL so that4 

dν ∂ν dL ∂ν dn 
dT 

= 

= 

∂L dT 
+ 

∂ qc � 
∂n dT� 
αL + 

∂ � qc � dn 

(5.14) 

∂L 2nL� ∂n � 2nL dT 

= − 
qc 

α + 
1 dn 

2nL n dT 

= −κν 

1 ∂n 
n ∂T 

change in index of refraction with temperature and is well known for optical materials 

[90]. 

Practically, a high value of κ meant easier tuning whereas a low κ meant a higher 

tolerance to temperature drift. Our design principle was to find the highest κ (and 

thus fastest tuneability) available such that the temperature fluctuations in our system 

corresponded to frequency shifts of less than a cavity line-width. Of the possible optical 

materials, BK7 had the highest κ with α = 7.4 × 10−6 and 1 dn |λ=795nm = 2.5 × 10−6 
n dT 

dν[90]. Given this, 
dT = 3.7 GHz/K. Since Δν = 0.084 GHz, we required a temperature 

stability of 0.023 ◦C, which was obtainable with current technology. We could then scan 

over a F SR by change in temperature of 6.24 ◦C. 

We placed the cavity in a standard lens mount (Thorlabs HCS031) with a temperature 

transducer (Analog Devices AD590) physically inserted into the mount. The detector was 

3. . . ignoring for now, the Gaussian beam correction since typically, q � m, n 
4Actually, n = n(ν, T ), but Δν ∂n ≈ 9 × 10−7, while ΔT ∂n ≈ 2 × 10−5 over a F SR and so the ∂ν ∂T 

variation of index of refraction with frequency may be safely neglected. 
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Figure 5.6: (a) Mode-matching to the cavity was achieved by matching the radii of 
curvature of the Gaussian beam to the cavity mirrors. (b) In order to aid the align
ment procedure, the transverse mode structure could be monitored on a CCD camera 
simultaneously with the cavity intensity transmission on a photodiode. 

thermally coupled to a Peltier element with a large aluminum block serving as a heat-

sink. The Peltier element was controlled by a PID feedback-loop controller (Thorlabs 

ITC-110) which maintained a constant substrate temperature to 0.01 ◦C, which was 

within the desired tolerance. 

The beam was matched to the fundamental mode of the cavity by matching the 

radius of curvature of the input Gaussian beam to that of the mirror surfaces. Since our 

cavity was formed from a plano-convex lens, the beam was focused at the planar side 

(R(0) = R1 = ∞.) We then required the beam to have a radius of curvature at the other 

surface to be R(nL) = R2. Using equation (C.5) this yielded the required beam waist of 

the fundamental cavity mode: 

λnL R 
w0 = 

π nL 
− 1. (5.15) 

For our parameters of R2 = 40.68 mm, nBK7 = 1.51 at λ = 795 nm, and L = 5.3 mm the 

fundamental mode was a Gaussian beam focused at the planar side of the cavity with 

waist w0 = 64.0µm. Figure 5.6 shows the setup for matching the optical mode to the 

cavity. 
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5.2.5 Filter Cavity Performance 

Since we needed to isolate the idler photons at frequency ωi, from both pump and signal 

photons at frequency ωp ≈ ωi +3.04 GHz and ωs ≈ ωi +6.08 GHz respectively, we required 

a cavity with simultaneous rejection at these frequency differences from the resonance. 

To simplify this condition, we decided on a cavity for which each of these frequencies 

was within a single free spectral range. Based on the availability of lens substrates, we 

had six lenses coated by Lambda Research Optics, two each of center thickness d = 4.3 

mm, d = 5.3 mm, and d = 7.5 mm corresponding to a F SR of 23.1 GHz, 18.7 GHz, 

and 13.2 GHz respectively. Each lens had a radius of curvature R2 = 40.68 mm and was 

specified to a surface flatness of λ/10 at 633 nm. The reflectivity of each surface was 

R = .990 ± 0.0025 at λ = 795 nm leading to an ideal finesse of F = 312. 

In order to investigate the performance of the filter cavities, we first focused a Gaus

sian beam with the desired waist at the flat side of the cavity (equation (5.15)), and 

simultaneously observed the output of the cavity on a photodetector and on a ccd cam

era as diagrammed in figure 5.6. The detector allowed us to observe the transmission 

spectrum and the camera displayed the transverse mode of a given transmission peak. 

The cavity alignment was then optimized by making iterative adjustments to the input 

focus and incident angle, maximizing the TEM00 transmission peak while minimizing all 

peaks corresponding to higher order modes. We achieved a maximum transmission of 

60% while suppressing all higher modes by at least 30 dB. 

Figure 5.7 displays a scan of the d = 4.3 mm cavity over a full FSR. The FSR was 

23.1±0.2 GHz which is consistent with the theoretical value of 23.09 GHz from eq. (5.8). 

We fit the transmission profile of the TEM00 mode to a Lorentzian and found Δν = 83.85 

MHz5 . The ratio of F SR to line-width gave us a cavity finesse of 275 MHz, less than the 

5This was in actuality a convolution between the laser line-width and the cavity transmission but since 
the laser was narrowband with respect to the cavity transmission profile (Δνlaser ≈ 100 kHz � 83.85 
MHz), this contribution was negligible. 
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Figure 5.7: (a) The transmission profile of the d = 4.3 mm filter cavity over an entire 
FSR. The plot was normalized to a peak transmission of 55%. Transverse profiles of 
the first three peaks are shown as they appeared on the ccd camera and are identified 
as the TEM00, TEM01 and TEM02 modes. The inset shows a Lorentzian fit to the 
fundamental peak. (b) The same plot, but on a logarithmic scale to illustrate the rejection 
of unwanted frequency modes. The spectral location of the idler, pump, and signal 
photons is displayed. 

ideal value as result of loss, surface defects, and imperfect mode matching as discussed 

above. This imperfect mode-matching lead to several higher order transverse modes 

apparent in the spectrum, but aside from these narrow peaks, a high degree of isolation 

at separate frequencies was obtained. We also observed the spectrum on a logarithmic 

scale in order to quantify the frequency isolation with respect to the idler photons we 

wanted to isolate. The transmission for off-resonant frequencies was about 48 dB barring 

discrete higher order resonant frequencies. The transmission of both the pump and signal 

frequencies were constrained by this noise bound. 

We investigated the temperature tuneability by observing the shift in a given reso

nance peak for varying temperatures, as shown in figure 5.8. The slope was seen to be 

linear with slope of 3046 MHz/◦C. This differed from the theoretically predicted value of 

3732 MHz/◦C using coefficients from the literature. This discrepancy was most likely due 

to a combination of inaccuracy in the stated values BK7 (which varied by 20% depend

ing on the source) and the temperature calibration of our sensor. However, our primary 
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Figure 5.8: (a) The calibration curve for temperature tuning the cavity resonance. Blue 
dots show the frequency of the transmission peak at a given temperature. The red line 
is a linear fit with slope -3046 MHz/◦C. (b) The long term frequency stability of our 
system. The transmission frequency (blue squares) was measured over a 25 minute span. 
The green curve shows the cavity transmission profile for scale, and the shaded area 
represents the cavity FWHM. 

concern was the ability to tune a particular substrate to a given frequency which was 

possible from this calibration curve. In order to verify the long-term frequency stability 

of our filter cavities, we monitored the frequency difference of the transmission peak with 

respect to a separate laser which was stabilized to an atomic transition using saturated 

absorption spectroscopy. We observed a drift of ±15.5MHz = 0.18Δν over a two hour 

span with a maximum drift velocity of 0.04Δν/minute. Figure 5.8 displays a 15 minute 

interval of this measurement. 

The slight birefringence in BK7 led to a splitting of transmission peaks for horizontal 

(s) and vertical (p) polarizations. Since we were using linearly polarized light, we simply 

aligned the polarization to the fast or slow axis of the substrate in order to maximize the 

transmission. If we were using circularly polarized photons a material with less birefrin
√ 

gence would have been needed. The transmission for s, p and (s + p)/ 2 polarizations 

is shown in figure 5.9. Incidentally, this plot served as an accurate measurement of the 

qsc qpcbirefringence of the substrate: Since resonance implied L = = for each polar
2nsνs 2npνp 
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Figure 5.9: (a) The birefringence of the substrate led to separate peaks for s and p 
polarized light. (b) The slow light effect of the cavity’s steep transmission profile gave 
important timing information for the single photon experiment. 

ization, and noting that for small birefringence, the peak for each polarization is the same 

longitudinal mode number q, we have npνp = nsνs so that Δν = νs − νp = νs(1 − 
n
n
p

s νs). 

The birefringence is thus: 

ns Δν 
1 − = . (5.16) 

np ν 

For our substrate, this corresponded to 4.79 × 10−7 . 

Since the idler photon passing through our cavity was used to trigger a temporal 

event, it was important to quantify the cavity-induced delay the photon experienced. To 

this end, we created a 40 ns pulse of light which was split and sent through equal path 

lengths, one containing the cavity and the other, free space. The delay, shown in figure 

5.9 was found to be 4.4 ns, which corresponded to a free space delay of 1.32 m. 

5.3 Inferring the Temporal Mode of the Photon 

In order to reconstruct the quadrature value from homodyne detection, we required the 

temporal profile as in equation (3.2). In previous single photon systems, this mode is 

well defined from the characteristics of the system. For example, in the case of an optical 

parametric oscillator the temporal mode is approximately a double-decaying exponential 
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[20], and in the case of pulsed SPDC, the temporal mode is defined by the pump [19]. In 

contrast the 4WM source was in some sense uncharted waters The temporal mode was 

not known a priori and we needed to develop methods for inferring it. 

5.3.1 Method of Point-Wise Variance 

Fock states are noisy. From equation (2.10), the quadrature variance of a the state |1� 

is thrice that of |0�. By monitoring the quadrature variance from the homodyne current 

as a function of delay from the trigger event, we found we could map out the magnitude 

of the temporal wave function of the photon |ψ(t)|. We did this by discretizing an 

interval of time surrounding the trigger event into N bins. After taking M samples, each 

corresponding to an individual trigger event, we computed the variance of each given 

bin individually. For a vacuum state, the variance should be constant within statistical 

fluctuations at all times, the value of which defines the standard quantum limit. Similarly, 

the randomly triggered signal mode should have no variation in variance with time, and 

the noise level above the standard quantum limit is given by the gain (equation (B.5)). 

In contrast, the trigger event in the idler channel defines a well defined temporal mode 

of a given duration, surrounding the event. 

The temporal duration of the photon is roughly determined by its bandwidth via 

Δt|1� ≈ (Δν|1�)−1 . Since the width of the gain peak in the 4WM system was observed to 

be around 2π × 10 MHz, and since the photon bandwidth is determined by the width of 

this process, we predicted Δt|1� to be around 16 ns. Both the SPCM and the acquisition 

card we chose had temporal resolution of 0.5 ns thus allowing us to temporally resolve 

ψ(t) but the finite bandwidth of the detector (Δν−1 ≈ 10 ns) smoothed out the profile 

and we observed the convolution of the detector’s response function and ψ(t). 

We employed the following procedure for measuring the point wise variance: The 

acquisition card sampled the homodyne current for N = 180 bins of duration 500 ps 
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Figure 5.10: (a) Experimentally measured point-wise variance for the single photon ex
periment. The SQL was set by blocking the input to the homodyne detector. The 
background was obtained by randomly triggering the acquisition card. (b) We devel
oped custom software to interface with the acquisition card, allowing us to monitor the 
variance real-time, while aligning the experiment. 

around each trigger event and dumped this trace to memory. This was repeated for 

M = 105 samples for a given data run. Since the photon counting rate was around 

250,000/second, this procedure took approximately 2 seconds. The variance of each bin 

over the duration over all traces was calculated and formed one point in the point-wise 

variance trace. Such a plot is shown in figure 5.10a. 

In order to align the experiment to maximize the magnitude of the triggered feature, 

we developed custom software to provide continuous updates of the point-wise variance 

while aligning the experiment. This was crucial since subtle alignments made major 

differences in the obtained efficiency. From the point-wise variance, we could obtain an 

estimate of the fidelity of the retrieved state. Assuming that we have a statistical mixture 

of a pure Fock state and vacuum from losses: ρ̂ = (1 − η) |0 �� 0| + η |1 �� 1| the measured 

quadrature variance is then �Δq̂2� = 1−
2 
η + 3η 

2 , whereas for the vacuum state it is just 

�Δq̂02� = 
2
1 . If we measure the ratio of vacuum to triggered variance as r, the efficiency 
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Figure 5.11: (a) The measured temporal profile of the photon for various cavity detunings. 
(b) The product of a Lorentzian photon spectrum with an off centre Lorentzian cavity 
profile leads to an oscillatory temporal profile. 

is then: 

r − 1 
η = . (5.17)

2 

Experimentally the above assumptions are not met exactly: there is a finite probability 

of emitting more than one pair of photons and there is a thermal background present. 

Since the thermal background is uncorrelated to the trigger events, it adds in quadrature 

and may be subtracted out. Also, as long as the gain is close to 1, contribution from 

higher order pairs is small (5.3). This allowed an on-the-fly rough estimate of Fock state 

fidelity which is displayed on figure 5.10b. 

The point-wise variance displayed oscillations with a period of roughly 8 ns. Further

more, it was found that the temporal profile, the count rate, and the measured fidelity 

varied sharply with detuning of the idler photon from the resonant frequency of the 

filter cavity. Figure 5.11a displays the measured point wise variance for several small 

detunings with respect to the filter cavity. Note that the temporal profile of the photon 

is given by the Fourier transform of the spectral profile. Assuming a Lorentzian gain 
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peak, one would naively assume the temporal shape to be the Fourier transform of the 

Lorentzian, which is the double-decaying exponential exp(−κ |t|). However the spectral 

filtering of the lens-cavity yielded a spectral profile which was the product of the lens-

cavity and photon spectra, and the product of two Lorentzian functions is not itself a 

Lorentzian. Figure 5.11b shows the expected temporal profile of a spectrally-Lorentzian 

photon passed through a Lorentzian filter of the same width for various relative detun

ings and oscillations in the temporal mode appear as in the point wise variance. This 

implies that especially in the case of the idler photon being slightly off cavity resonance, 

the signal photon’s spectral profile is determined in part by the spectral filter. 

We found that the magnitude of the point-wise variance along with the inferred 

efficiency varied dramatically with cavity detuning. For the signal beam blue detuned 

with respect to cavity resonance the peak variance was maximized and the temporal 

profile contained minor oscillations. On cavity resonance, the count rate was highest, 

reaching 106 counts/second, and the temporal profile was wider, but the peak variance 

was reduced compared to the blue detuned case. When red-detuned, the increase in 

variance due to the photon was barely noticeable above the constant background noise 

resulting in poor efficiency (not shown in figure 5.11). This behaviour can be understood 

in terms of our findings for the two-mode squeezing, particularly in figure 4.13. When red 

detuned, the 4WM process is overwhelmed by Raman absorption, resulting in scattering 

of uncorrelated photons into the trigger channel. Each of these scattering events results 

in a “false click” and the signal to noise ratio of the detected photons is reduced. By 

adjusting the cavity to transmit light which is blue detuned with respect to two-photon 

resonance, we maximized the probability that the detected photon was from the four-wave 

mixing process and thus heralded a photon in the signal channel. 

From the variance of thermal background as compared to vacuum, we were able to esti

X2 X2mate the mean photon number of the 4WM source. From equation (B.5), Δ ˆthrm / Δ ˆ
vac ≡ 
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rthrm = 2n̄ + 1. Our data showed rthrm = 1.2 implying that for our source, n̄ = 0.1. 

5.3.2 Method of Auto-Correlation 

An initial question we faced when first analyzing the experiment was whether or not 

the correlated photons were emitted in a well defined temporal wave-function. To gain 

insight, we addressed the problem in the following way: suppose we have a single photon 

which can be in one of infinitely many discrete time bins tm with some probability ρmm. 

Denoting a single photon in the mth bin as · · · |0� |1� |0� · · · ≡ |m�, we can write m−1 m m+1 

the density matrix in the orthonormal basis defined by these time-bins as 

ρ̂ = ρmn |m� �n| . (5.18) 
m,n 

If the state is fully mixed then the density matrix will contain only diagonal terms. On 

the other hand, if the photon’s temporal wave-function is a pure state |ψ(t)� = cn |n�,n 

then the density matrix will contain off-diagonal terms representing the coherence be

tween the different moments in time. We thus sought a method to obtain the temporal 

density matrix6 . To this end we discovered a relation between the autocorrelation matrix 

of the experimentally measured homodyne current and the density matrix. With the 

ˆautocorrelation matrix A defined as 

Aij = �i(ti)i(tj )� , (5.19) 

where the average is taken over all experimental realizations, we have (see Appendix E.2) 

1 
Â = Re [ρ̂] + 1. (5.20)

2 

6Note the distinction here between the usual density matrix in the Fock basis used everywhere else in 
the thesis and the temporal density matrix defined in this restricted Hilbert space, consisting of a single 
photon spread out in time. 
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Figure 5.12: (a) The autocorrelation matrix reconstructed from an experimental run. 
Here the diagonal matrix of the background thermal state has been subtracted off. (b) 
Density plot of the auto correlation matrix. The high degree of symmetry about the x−y 
axis implies a pure temporal mode. 

Figure 5.12 displays the autocorrelation matrix of the photocurrent we measured in an 

experimental run. To isolate the photon from the thermal background and the detectors 

response function, we first calculated the autocorrelation of the (untriggered) background 

and subtracted it from that of the triggered photon state. This also removed the identity 

term from equation (5.20) leaving only Re[ρ̂]. From the top view, we found that the 

ˆcentral feature of A was round in shape, and symmetric about x and y, implying that it 

could be written as the product of a vector |ψ �� ψ|, i.e. a pure temporal state. We then 

ˆdiagonalized A and found that the matrix had a primary eigenvalue, roughly 50 times 

larger than any other eigenvalue. The eigenvector corresponding to this eigenvalue thus 

represents the temporal weighting function ψ. This vector, as well as the corresponding 

vector found using other approaches is displayed in figure 5.13b. 

5.3.3 Method of Genetic Algorithm 

Determining the correct temporal mode can be thought of as an optimization problem: 

given the space of all real weighting functions ψi(t) find the particular function that max
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imizes the quality of the reconstructed state. This could mean maximizing the variance 

of the heralded quadrature distribution, or maximizing the single photon probability 

�1| ρ̂ |1� of the resultant density matrix. Since the problem is not necessarily convex or 

linear, many optimization procedures may become stuck at a local maximum. An elegant 

approach to optimization under these circumstances is the use of a genetic algorithm [91]. 

Genetic algorithms borrow from the concept of Darwinian evolution [92]. The func

tion to be optimized is parameterized in terms of a bit-sequence called a genome. The 

fitness of a given genome is evaluated by a fitness function f which returns a real number 

that increases based on how well suited the genome is to solving the problem. Initially, a 

population of random genomes is chosen and their fitness is evaluated. Parent genomes 

are then chosen in pairs which “mate” by producing offspring whose genomes are formed 

as combinations of the parents’ genomes. The process works as a lottery in which the 

probability of being chosen as a mate increases with f . This “mating procedure” is re

peated until a new generation is populated, and the procedure repeats. This is continued 

until a satisfactory solution is found, or until manual termination of the program. In or

der to avoid local maxima, random mutations in the genomes occur with some probability 

at the beginning of each generation. 

For the problem of finding the optimal wave function, the genome encoding was 

chosen as the sum of n Gaussians, with standard deviation ranging from 1 to 2m, height 

from 1 − 2s−1 to 2s−1 and position chosen from 2t bins evenly spaced across the chosen 

temporal range of the photon, yielding a n × m × s × t-bit genome. The fitness was 

chosen as a monotonically increasing (polynomial) function of either the variance, or the 

single photon component of a least-squares fit to a truncated density matrix. The least 

squares fit was performed by assuming a statistical mixture of photons (no off-diagonal 

elements) with maximum photon number 3. The marginal distribution of the resultant 

density matrix was then an analytic expression in 3 unknowns: Pr(x) = (1 − η1 − η2 − 



� 

95 

Figure 5.13: (a) The genetic algorithm program estimating the wave function of some ex
perimental data. The upper panel displays the fittest genome and the lower panel shows 
the marginal quadrature distribution for this temporal mode of this genome. (b) Com
parison of the different methods for inferring the temporal wave-function of the photon. 
Although the point-wise variance is positive-definite, the square of the auto-correlation 
function closely resembles the point-wise variance as seen in the inset. 

η3) Pr0(x) + η1 Pr1(x) + η2 Pr2(x) + η3 Pr3(x) where Prn(x) is the Fock state marginal 

distribution. The least squares solution could be written directly and the fitness was 

then proportional to η1. 

The mating procedure used in the program was based on the “Roulette wheel” se

lection. Here a random number x between 0 and the total fitness of the population 

F = fi is chosen. The fitness of each member of the population is then added until 

this sum exceeds x, at which point, the last member who’s fitness was added is chosen 

for mating, and the next random number is chosen. This method has the property that 

even the fittest member of the generation may not be selected. To ensure at least one 

copy of the fittest gene survives, the principle of “elitism” is employed in which the fittest 

member is copied automatically to the next generation. Random mutations may then 

occur with some small probability to the remainder of the population and the process is 

repeated. Figure 5.13a shows the program in action. 
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Figure 5.14: (a) Fock (red) and vacuum (blue) quadratures for a given data run. Each 
trace contains 105 points. (b) Marginal histograms for the data in (a). 

We found that after a few hundred generations, the solution did not significantly 

change and that most of the time, a solution was found that closely resembled the tem

poral profiles inferred by point-wise variance and autocorrelation. On one hand this was 

good in that it con fired the consistency of the above approaches, but of course was less 

dramatic than a vastly different mode evolved genetically. We also noted that the profiles 

that maximized ρ11 were slightly different than those that maximized the variance. We 

attribute this to the fact that in the presence of the noisy thermal state, the maximal 

variance is obtained not only by including the photon, but also the noisy background 

at the periphery of ψ(t). In contrast, the least squares method weights the background 

less since it contains 0 and 2 photon components which are included at the expense of 

ρ11. Given the wave function found by one of several different methods, we could then 

proceed to produce the quadrature ensemble and reconstruct the full density matrix of 

the heralded state. 



97 

5.4 Experimental results 

5.4.1 Tomographic Reconstruction of Heralded Photon 

Given the temporal mode of the heralded photon, we could produce the set of measured 

quadratures using equation (3.2). We collected 105 quadrature samples to form the 

marginal quadrature distribution which was then analyzed using an iterative maximum 

likelihood program. Figure 5.14 shows the marginals for the Fock vacuum data. Note 

that the marginal distribution displayed a clear dip at the origin as expected for the 

single photon state. In the ideal case, the probability of measuring a quadrature value 

of zero vanishes, but this is not the case here owing to the mixture of vacuum due to 

loss and thermal state due to the background. The corresponding density matrix and 

Wigner function are displayed in figure 5.15. As expected for the single photon, the 

heralded state showed no quadrature phase dependence. We verified this by scanning 

the phase of the local oscillator and observing the resultant distribution. This simplified 

the experiment since small phase shifts due to mechanical vibrations did not affect the 

measured state. 

The high uncorrected single photon fidelity obtained here is notable since it is roughly 

an order of magnitude higher than that of previous atomic sources. The diagonal den

sity matrix elements were (ρ00, ρ11, ρ22, ρ33) = (0.424, 0.488, 0.069, 0.019), with relative 
√ 

uncertainty given by the standard error of 1/ N = 3% [93]. The relatively high two-

photon fraction of 0.069 as compared to SPDC sources for which ρ22 ≈ 0.01 depending 

on the source [94, 95], was most likely due to several effects. First, in order to obtain 

high efficiency, we needed to operate at a temperature corresponding to a gain of 1.1. 

From equation (5.1), the ratio of double to single photon probabilities was 1 − 1/G ≈ 9% 

here. Additionally, Raman scattering of pump photons off atoms flying into the beam 

contribute a thermal background. The portion of this background which is scattered 
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Figure 5.15: (a) The reconstructed Wigner function of the state produced in the exper
iment, showing the characteristic dip at the origin. (b) The density matrix recovered 
from the maximum likelihood procedure showing ρ11 = 0.487. (c) Cross-section of the 
recovered Wigner function displaying a negative value at the origin due to large single 
photon and minor three photon components. 
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into the mode of the signal photons will contribute to the two photon component of the
 

reconstructed density matrix. 

5.4.2 Performance of the Source in Terms of Standard Figures of Merit 

In contrast to previous experiments on atomic based photon sources, our tomographic 

reconstruction of the density matrix gave full information of the quantum state emitted 

from the atoms. This allowed us to calculate common figures of merit for single pho

ton sources defining the state as non-classical as in section 2.5. We found that in the 

uncorrected reconstructed temporal mode the second order correlation of the field was 

g(2)(0) ≡ �â†â†ââ�/ (n̂)2 = 0.51 < 1 and the Mandel Q-parameter is Q = −0.32 < 0 evi

dencing the nonclassical character of our photon source. The difference between the ideal 

value of g(2) = 0 and our reported figure is primarily due to the higher-number terms re

sulting from the background thermal state. When we operated the process at much lower 

gain, corresponding to a temperature of 69◦C, our two-photon component was negligible 

and was bounded above only by the statistical uncertainty of our measurement (0.3%). 

In this case the second order correlation was bounded above by g(2)(0) < 0.13. However, 

the single photon fidelity was lower at this gain, reaching only 21%. This was most 

likely due to a poorer signal to background noise ratio as the count rate was significantly 

reduced at this temperature. 

Another figure of merit for a heralded photon source is the conditional cross-correlation 

function which quantifies the probability that a photon in the trigger channel accompa

nies a photon at the homodyne detector, compared to the probability that the homodyne 

detector detects a photon without a trigger event. For continuously monitored homodyne 

current, this can be written in terms of the quadrature variance of the triggered data 

�ΔX̂2 � and the thermal background �ΔX̂2 � as [20] trig bck
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X2 
(2) �Δ ˆ

trig� − 1/2 
gsi = . (5.21) 

�ΔX̂2 
bck� − 1/2 

At lower temperatures we find gsi
(2) 

= 24.2 > 1 at zero delay whereas for higher tempera

tures we measure gsi
(2) 

= 6.0. 

A noteworthy aspect of our results is that the above values are not corrected for 

loss, and the system is taken as-is. Our uncorrected photon efficiency, known as the 

heralding efficiency is an order of magnitude higher than other atomic sources reported 

in the literature. One reason for this dramatic increase was that we used homodyne 

detectors which have quantum efficiency as high as 90% as opposed to the less than 50% 

efficiency of the SPCMs used in previous experiments. Correcting for a modest estimate 

of optical loss and imperfect detectors yields a lower bound on the photon efficiency: 

ρ11 > 0.65. We also worked off atomic resonance which minimized uncorrelated photon 

emission which typically cause false counts. 

Table 5.1 summarizes the current state of the art for single photon sources using 

various technologies. 

Table 5.1: Comparison of g(2)(0) for various single photon technologies 

System Reference g(2)(0) Retrieval Efficiency 

Cold Atomic Cloud [96, 97] 0.25 0.2 
Single Atom in Cavity [98, 99] 0.06 0.05 
Quantum Dot in Cavity [100] 0.02 0.10 

Waveguided SPDC [101] 0.0007 0.07 
Bulk SPDC [102] .60 0.0014 

4WM in Photonic Crystal Fiber [103] 0.01 0.18 
This Work [104] 0.5 0.49 

5.4.3 Bandwidth and Spectral Brightness 

Even with a wide-band source of photons such as standard SPDC, one can always place 

a narrow spectral filter in the trigger channel, resulting in photons in the signal channel 
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Figure 5.16: (a) The bandwidth of the photon is inferred from the Fourier transform 
of the temporal mode used to reconstruct the density matrix. The standard deviation 
of the mode is 36 MHz. (b) The spectral shape of the autocorrelation mode is more 
complicated, owing to modulation terms. 

with a bandwidth of the spectral filter [85]. However this comes at a cost: the probability 

of a generating a photon per unit frequency is a property of the source, not the filter. As 

a result, the production of narrowband light comes with a greatly reduced production 

rate. This is quantified by the spectral brightness S(ν), giving the counts per second, 

per unit bandwidth. Given a source of spectral brightness S(ν), the bandwidth may be 

narrowed with a filter to Δνf yielding a production rate of S(ν)Δνf . 

The bandwidth of a source may be obtained by observing the Fourier transform of 

the temporal mode [30]. Roughly speaking, a wave-form with temporal duration σt, 

will have a angular frequency spread of σt 
−1 . For a Gaussian waveform, this relation is 

exact and the temporal pulse is said to be transform limited. Figure 5.16a shows the 

bandwidth of the temporal mode used to reconstruct the quadrature data presented in 

figure 5.15. Note the waveform is not transform limited, so the frequency domain profile 

falls off more slowly than a Gaussian. The e−2 width was found to be 36 MHz. Given the 

count-rate of about 250,000 counts/second, this corresponded to S(ν) ≈ 7000 cts/s . The
MHz 
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Fourier transform of the autocorrelation of the point wise variance principle eigenvector 

is also shown in figure 5.16. Owing to the extra oscillations present in the time domain, 

the maximum is shifted from 0 frequency. 

Table 5.2 displays a sample of photon sources with the highest spectral brightness to 

date, including our 4WM based source. 

Table 5.2: Comparison of high spectral brightness sources 
Group System Reference Δν [MHz] λ0 [nm] S(ν) × 103 counts 

MHz s 

O. Benson OPO [105] 3 860 130 
V. Vuletic Cavity QED [30] 1.1 795 45.4 
J.-W. Pan OPO [21] 5 795 36 
This Work 4WM in Rb [104] 36 795 7.0 

Michler Q. Dot [23] 1000 907 5.9 
Gisin SPDC [106] 1200 1550 3.1 

E. Polzik OPO [20] 8 860 1.5 
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Chapter 6
 

Engineering Arbitrary Superposition States of Light and Matter 

In the last chapter we described our implementation of a narrowband source of a partic

ular quantum state: the single photon Fock state |1�. We could also consider creating 

more complex quantum states which are compatible with atomic ensembles. We can 

write any single mode state consisting of N photons in the Fock basis. The most general 

such state is: 

N

|ψ� = cn |n� , (6.1) 
n 

where ideally, N → ∞. 

In this chapter we will describe how we accomplished an arbitrary superposition of 0, 

1, and 2 photons using a conventional SPDC source and how we did a similar experiment 

with our narrowband source. Creating the superposition state with an atomic ensemble 

opens up a new exciting possibility: the ability to engineer arbitrary superposition states 

of atomic excitations. 

6.1 Arbitrary State Up To N=2: α |0� + β |1� + γ |2� 

Both SPDC and 4WM produce a two-mode squeezed state which can be written in the 

Fock basis as in equation (2.26). By heralding on precisely n photons in the trigger 

channel, we collapse the signal channel to the Fock state |n�. Suppose however that we 

interfere the idler with an auxiliary state with some mean photon number. Now when 

we detect n photons in the idler channel we don’t know if n are from the idler, or n − 1 

from the idler and 1 from the auxiliary state, and so on. We are thus left with a coherent 
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Figure 6.1: (a) The setup for observing an arbitrary superposition of |0�, |1�, and |2� 
states. A pulsed Ti:Sa drives a LBO crystal to produce a second harmonic pulse which 
in turn drives SPDC in a PPKTP crystal. This creates a two mode squeezed state. 
The trigger (idler) mode is interfered with two coherent state pulses |α� and |β�. Upon 
two-fold coincidence, the signal state is collapsed to equation (6.2). (b) A pair of states 
acquired in the setup. The upper state is |ψ� = √8 |0� + 1 |2�. The lower state is: 

3 2 2 

18 5 1|ψ� = √ − i3 |0� + |1� + |2�. 
5 2 2 4 2 

superposition of n photons in the signal channel. The weighting and relative phase of 

the superposition state may be manipulated by adjusting the auxiliary field. 

Figure 6.1a shows our implementation of this scheme for creating an arbitrary state 

up to N = 2. An SPDC process driven by a pulsed Ti:Sa laser was used to produce a two-

mode squeezed state parameterized by γ ≡ ( sinh ζ )2 is in equation(2.26). Two auxiliary 
cosh ζ 

coherent states |α� and |β� were tapped off from the same laser. The magnitudes of α, 

β, and γ were chosen so that the probability of having more than two photons in the 

system at a given time was negligible. In order to maintain phase stability between these 

states and the SPDC trigger photons, calcite beam displacers were used [36] in place 

of standard beamsplitters (not shown in the figure). Conditioned on a simultaneous 

click in both SPCMs, the state |ψ� was recorded using optical homodyne tomography. 

This dual-coincidence could correspond to three possibilities: A: both photons originated 

from the SPDC process implying that the signal state is |2�. This occurs with probability 
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Pr2 ∝ γ2 . B: Precisely one photon came from SPDC, the other from a coherent state, 

leaving the signal channel in state |1�. Owing to Hong-Ou-Mandel interference [7], the 

probability of |α� being detected on the first SPCM vanishes, so that the probability of 

this occurring is Pr1 ∝ βγ. C: Both photons came from the auxiliary coherent states, so 

that the signal channel is vacuum. The probability of this is proportional to the coherent 

state amplitudes. 

Since the photons from the coherent states and the SPDC were made indistinguish

able through mode-matching and narrow filtering of the PPKTP output, each of these 

possibilities are indistinguishable, yielding a coherent superposition state. The constants 

of proportionality in the above are calculated to be [107]: 

α2 αβ βγ γ2 

|ψ� = − √ + |0� + |1� + |2� . (6.2)
2 2 2 2 2 

The conditioned states were reconstructed using optical homodyne tomography. Fig

ure 6.1b displays a sample of the density matrices and corresponding Wigner functions 

produced in the experiment by varying α, β, and γ. In each case, the density matrix 

corrects for a loss of 55% by means of iterative maximum likelihood. A gallery of the 

produced states is presented in [36]. 

6.2 Extension to Narrowband Light: α |0� + β |1� 

The above experiment succeeded in creating arbitrary superpositions of Fock states. 

However, the light produced was not compatible with atomic-based experiments and 

quantum information protocols. Aside from the wavelength of 791 nm, the bandwidth of 

the light was 383 GHz despite spectral filtering of the trigger. Since our 4WM system can 

be seen as a narrow-band alternative to SPDC, a natural step was to engineer arbitrary 

states as in our SPDC experiment with this new source. 
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Figure 6.2: (a) The local oscillator phase was inferred by observing the mean quadrature 
value at a particular time. (b) The obtained density matrix corrected for a transmission 
of η = 0.75. 

As a proof of principle demonstration, we sought to produce a coherent superposition 

state of |0� and |1�. In order to achieve this, we weakly seeded the trigger channel with 

a coherent state which had mean photon number on the same order of magnitude as 

the squeezed vacuum output n̄ ≈ G − 1 ≈ 0.2. The experimental setup was identical 

figure 5.1 except that the seed from the double passed AOM was unblocked and highly 

attenuated. Now, a trigger event could either be due to the coherent seed (amplitude α) 

or from the 4WM process (probability (G − 1)/G). The gain was kept sufficiently low 

so that the probability of stimulating a second photon from the seed was much less than 

the probability of spontaneous emission. The coherent state was calibrated to give the 

same count rate as the unseeded 4WM process. 

Unlike the Fock state generation, the coherent superposition of vacuum and photon 

state was not phase insensitive and for each value, a corresponding quadrature phase was 

required. To accomplish this, we noted that for the state |ψ� = α |0� + β |1�, the mean 

|αβ|quadrature is X̂θ = √ cos θ� where θ� = θ−arg(α∗β) is the difference between the local 
2 

oscillator phase and the relative phase of α and β. By tracking the mean quadrature 

value throughout the course of the measurement, we extracted the phase of the local 
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oscillator with respect to the generated state. Specifically, we took a running average 

over several hundred successive measurements yielding a well defined mean quadrature 

over the corresponding time interval X̄t. The phase was then extracted as θt = cos−1(X̄). 

One such phase tracking measurement is shown in figure 6.2a. 

The reconstructed density measurement of an experimental run for an approximately 

equal superposition of |0� and |1� is shown in figure 6.2b. The density matrix was found to 

contain strong coherence terms providing evidence that a coherent superposition, rather 

than a statistical mixture was created. Quantitatively, we found the density matrix 

correcting for an estimated loss of 25% to have ρ00 = .64, ρ11 = .25, and ρ01 = .24i − .03, 
√ 

whereas for a pure superposition state (|0� + eiφ |1�)/ 2, ρ00 = ρ11 = |ρ01| = 0.5. The 

Wigner function shows a coherent displacement as well as a non-Gaussian “dimple” near 

the origin owing to the single photon component. Analogous to expression (4.26) for 

squeezing efficiency, we can consider the generalized efficiency of the single-rail optical 

qubit. As before, the efficiency is the transmissivity of an absorbing medium though 

which a pure state propagates to obtain the experimentally measured state. In terms of 

the density matrix elements, this is [108]: 

ρ11
ηqubit = . (6.3)

1 − |ρ01|2 /ρ11 

For the state above, the corresponding efficiency is 0.32. It is expected that this prelim

inary result can be improved upon with increased visibility between the seed and 4WM 

modes. 

6.3 Coherent Superpositions of Collective Atomic Excitations 

The fact that our system can be seen as an “atomic SPDC process” opens up an inter

esting possibility: Compared to bulk materials at room temperature, the ground state 
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coherence of atomic vapours is extremely long lived. This has already been utilized to 

store heralded single atomic excitations [26, 27], following the protocol of Duan, Lukin, 

Cirac, and Zoller [109]. By employing the conditional measurements on the heralding 

photon, we could prepare arbitrary superposition states of collective atomic excitations. 

We could then read-out this atomic state in the form of a corresponding optical super

position state. 

6.3.1 The DLCZ protocol 

The DLCZ protocol outlines a technique for long distance quantum communication by 

employing entanglement swapping between intermediate nodes. At the heart of the 

DLCZ protocol is the concept of collective enhancement of photon generation owing to 

constructive interference. 

The basic idea is outlined in figure 6.3. We start with an ensemble of Λ configuration 

three-level atoms, with meta-stable states |g� and |e� and excited state |x�. The ensemble 

is prepared in the ground state |g�: |Ψ0� = |g1g2 . . . gn�. A weak, off-resonant “write” 

pulse is applied to the sample which, with some probability, scatters a “Stokes” photon 

into a solid angle covered by an SPCM. At this point there is a single excitation amongst 

the atoms. The detector is placed a distance from the ensemble such that it is fundamen

tally uncertain as to which atom emitted the Stokes photon1 and the resultant state is a 

superpositions all permutations of a single excitation to state |e�. This states known as a 

� = N−1/2 iφNcollective spin excitation (CSE) |Ψe eiφ1 |e1g2 . . . gN � + . . . + e |g1g2 . . . eN � , 

where the phase terms account for the momentum kick acquired in the Raman scattering. 

This excitation is now stored in the atoms and is ready to be read out. 

This read-out is accomplished by means of a strong on-resonance “read” pulse which 

1Operationally, this is accomplished by making the distance to the detector much larger than the 
cloud dimensions. The angle between photons emitted from opposite sides of the cloud is thus sufficiently 
small so that two photons emitted from any part of the cloud show good interference visibility. 
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Figure 6.3: Basic sketch of the DLCZ idea. (a) An ensemble of 3-level atoms in Λ con
figuration are prepared in state |g�. A fixed SPCM monitors the atoms for fluorescence. 
(b) An off resonant “write pulse” creates a scattered “Stokes” photon from the ensemble, 
creating a single collective excitation in state |e�. (c) Some time later, a resonant “write” 
pulse pumps the atom back into state |g�. The scattered “anti-Stokes” photon is emitted 
with high probability into the direction which satisfies phase-matching. 
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converts the atomic excitation back into optical form via Raman scattering of an “anti-

Stokes” photon. Owing to collective interference from the accumulation of the phase 

factors, there is a strong enhancement of probability of the anti-Stokes photon being 

emitted in the phase-matched direction. Specifically, the CSE may be written as: 

N
1 i(ks−kw)·rn|Ψe� = √ e |g1 . . . en . . . gN � (6.4)
N n=1 

where ks(w) is the k-vector of the Stokes (write) photon. The creation of a CSE can also 

be written in terms of a collective atomic creation operator: 

ˆ|Ψe� = S† |g1 . . . gN � . (6.5) 

After application of the read pulse, the anti-Stokes scattering event occurs with some 

probability, causing another momentum kick ka − kr. With Δk ≡ ks + ka − kw − kr, the 

state some short time after the arrival of the read pulse is: 

�N 
��Ni(ks−kw)·rn iΔk·rn 

n=1 e |g1 . . . en . . . gN � ⊗ |0as� + e |g1 . . . gN � ⊗ |1as� n=1 
|Ψe� = � , 

N + | eiΔk·rn |2 
n 

(6.6) 

where |nas� represents the number of anti-Stokes emissions. From this we can infer the 

probability per unit time of emitting an anti-Stokes photon, as a function of emission �N iΔk·rndirection, which determines Δk. Since limN →∞ n=1 e = δ(3)(Δk), the probability 

that the anti-Stokes direction satisfies Δk = 0 goes as 1− 
N 
1 . Since for typical experiments 

N ≈ 1013, this probability is effectively unity. 

The above dynamics can be described by the Hamiltonian [110] 

Ĥ = χ â†Ŝ† + âŜ (6.7) 
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where â is the annihilation operator in the Stokes mode. Note that this Hamiltonian is 

identical to that of SPDC, but describes a two-mode state between the Stokes channel 

and collective atomic state. 

6.3.2 Arbitrary Superpositions of Collective Spin Excitations 

The experiments described in chapter 4 can be viewed as an instantaneous write-in 

read-out DLCZ experiment, with the pump acting as both the read and write fields, 

the Stokes as the trigger and the anti-Stokes as the signal. The results of section 6.2 

thus served as a proof of principle demonstration of the creation of a superposition of 

collective atomic excitations. While these experiments unitized only the first order terms 

in the Hamiltonian (6.7), higher order terms can be employed as was done for SPDC 

in section 6.1, and the engineering of collective spin excitations can be extended to 

higher N . One way of achieving this is to employ multiple partial photon subtractions 

as outlined in figure 6.4. The trigger photon passes through N stages each consisting 

of a low-reflectivity beam splitter with reflection coefficient ri and an incident coherent 

state with amplitude αi. At each stage, an SPCM monitors the reflected port of the 

beam-splitter, and an additional SPCM monitors the final transmitted port. The state 

|ψ� is heralded upon each reflected-port SPCM clicking and the absence of a click in the 

final transmitted port. 

To see how this prepares an arbitrary state, note first that each stage the click could 

come from the coherent state (so that |ψi+1� → |ψi�) with probability amplitude (1 − 

r2)α ≈ α, or from |ψi� in which case |ψi+1� → â |ψi�, with amplitude ri. Thus each i 

ˆpartial photon subtraction stage performs the operation Ai = (αi + riâ). After N of 

these operations the state is transformed to: 
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Figure 6.4: Scheme for generating the state 
�N cn |n�. There are N stages each consistn=0 

ing of a low-reflection beam splitter and an incident coherent state. The state is heralded 
upon a click in each of the upper detectors and a null-detection in the right-most detector. 

N

ˆ|ψ� = Ai |ψin� (6.8) 
i=1 

= (α1 + r1â) (α2 + r2â) · · · (αN + rN â) |ψin� 

= β0 + β1â+ · · · + βN â
N |ψin� , 

where βi = βi(r1, . . . , rN , α1, . . . , αN ) are the coefficients of the resultant polynomial. 

With the input state written in the basis |Stokes field� ⊗|Atomic Excitations� given s a 

by |ψin� = γn |n� |n� , and null detection on the final SPCM, the atomic state n s a

collapses to: 

|ψ� = �0| βmâ
mγn |n� |n� (6.9)a s s a 

n,m � 

= 
� 

m,n<m 

γnβm � √ 

m! 
(m − n)! 

�0|m − n� s |n� a 

= 
n 

γnβn � 

n! |n� a 

= cn |n� a , 
n 
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where the cn are functions of (ri, αi) through the βi. For a given set {ci} we can then find 

the unique {ri, αi} which determine these values. We know that these values exist from 

the fundamental theorem of algebra2 . We thus have, at least in principle, a method to 

create any collective atomic state. Technically, this will be limited by the dark count rate 

and quantum efficiency of the detector. Also, for increasing N , the mean photon number 

in each state must be kept sufficiently low to ensure only N photons are present for a 

given realization. Thus even with perfect detectors, states with large photon numbers 

will be ultimately limited by the lifetime of the experimenter3 . 

n2The FTA states that an nth order polynomial has n roots. Since here βnâ = (αi + riâ), the � n i 
n{ri, αi} are just the roots of the polynomial βnâ . n 

3Or, at the very least, the duration experimenter’s funding. 
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Chapter 7 

Conclusions and Outlook 

The work presented in this thesis has both practical and fundamental aspects. On one 

hand, the generation of narrow-band non-classical light resonant to atomic Rubidium is 

of high practical value. For example, storage and retrieval of non-classical light is a far 

more convincing test of a quantum memory than a classical signal at the single photon 

level, and atom based single photon nonlinearities [111] could form quantum logic gates. 

In addition, a qubit formed from such a photon may be used in the myriad atom-based 

examples for optical quantum computing. On the other hand, this work has looked at the 

unexplored area of controllably manipulating superposition states of CSEs. This allows 

us to begin to explore the isomorphism between the optical and collective-atomic Hilbert 

spaces and provides a new testbed for quantum information protocols. 

The natural next step in terms of the practicality of the non-classical light source 

is to interface single photons with atomic ensembles, and perform simple operations. A 

introductory proof-of-principle demonstration will be to observe linear absorption from a 

cold atom trap. Owing to the one-photon tuneability of the source, simple spectroscopy 

could be performed with individual light quanta. Once suitable light-atom coupling is 

achieved, a future step will involve storing and retrieving a single photon state from 

the atomic gradient echo memory (GEM) [73] in our laboratory. GEM allows for high 

retrieval efficiencies of over 80% so that the non-classical character of the stored light 

may be observed after retrieval. One challenge associated with this will be to match the 

frequency of the quantum memory to that of the photons. This can be overcome in two 

steps. In order to match the relatively narrow bandwidth (on the order of 1 MHz) of our 

current GEM setup, an additional spectral filter in the trigger channel can be employed. 
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The high spectral brightness of our photon source allows us to achieve this filtration while 

maintaining a high experimental repetition rate. In order to operate the memory and 

the source at the same absolute frequency, each pump laser can be locked to an atomic 

line by means of saturated absorption spectroscopy. 

Another interesting experiment to perform would be that of heralded photon amplifi

cation. In this experiment, a single photon generated in the atomic source would be fed 

into another 4WM setup or into the same cell. A photon click gated to be synchronized 

with the arrival of the seed photon would herald the creation of a two photon Fock state. 

Since we operate with gain G = 1.1 in our setup, this will occur at a rate approximately 

10 times less than the single photon count rate. Nevertheless, the high single photon 

count rates achieved (300,000 s−1 or higher) allow us to prepare Fock states up to |4�. 

This could form an alternative to measuring n > 1 Fock states by n−fold photo detection 

in the trigger channel. 

In terms of collective atomic superposition states, the immediate next step is to 

observe a transient collective superposition state using the protocol of [36] as outlined 

in section 6.3.2 but with continuous wave read/write fields. The next step will be more 

challenging. To fully utilize the long-lived ground state coherence of atomic ensembles, we 

will have to move to the pulsed regime, where we prepare the atomic superposition state, 

wait for some time, and then verify the atomic state via optical homodyne detection. 

One difficulty of this will be to scatter, with high probability, a Stokes photon in the 

trigger channel. In traditional DLCZ experiments, the probability of scattering into 

a particular spatial mode is low, and the experiment is repeated many times before a 

successful “write” event heralds an atomic excitation. The gain must then be sufficiently 

high to record an acceptable experimental count rate, but not so high as to increase the 

number of generated excitations. Another challenge will be to obtain the high retrieval 

efficiency in the pulsed regime, which was achieved in this work in the CW regime. So far, 
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our experiment has achieved a heralding efficiency approximately an order of magnitude 

higher than previous works, but this may be largely on account of the CW “4WM-regime” 

in which we work. 

The underlying accomplishment of this work was the introduction of a new source 

of narrowband photons, which was built on the recent demonstrations of high quality 

multi-spatial mode squeezed light [32, 66]. Combining the high efficiency of this source 

with the idea of DLCZ opens up a territory in exploring the isomorphism between the 

optical and collective atomic Hilbert spaces. Owing to the novelty of the system, there are 

many potential avenues to explore and we can’t say for certain what will be discovered. 

Although my time with the experimental setup is sadly over, it is now in the hands of 

the next generation of graduate students in our lab, and ultimately the future success or 

failure of the above ideas is in their able hands. I am confident that we have only seen 

the beginning of the experiments which come out of this technology. I look forward to 

reading about it in the future. 
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Appendix A 

Properties of the Two Mode Sqeezing Operator 

The operator (2.21) stems from the Hamiltonian: 

Ĥ = i� γâ†b̂† − γ ∗ âb̂ (A.1) 

The evolution of for example â is then given by: 

dâ 1 ˆ= H, â (A.2)
dt i� 

†ˆ=
1 

i� γâ b† − γ ∗ âb̂ , â
i� 

† b̂† = γ â , â

= −γb̂† . 

Similarly, 

db̂† 1 †b̂† − γ ∗ ˆˆ b̂† = i� γâ ab , (A.3)
dt i� 

= −γ ∗ â b̂, ̂b† 

−γ ∗ ˆ= a. 

Differentiating (A.2) and substituting (A.3) yeilds: 

d2â
= |γ|2 â→ â = A cosh(|γt|) + B sinh(|γt|). (A.4)

dt2 

For the initial conditions we have â(0) = A, dâ(0)/dt = |γ| B = − |γ| ̂b† . Letting ζ = 

γt and choosing ζ to be real1 we arrive at the squeezing transformation for â. The 

† b̂†corresponding transformation for b̂ follows from direct substitution, and â , follow by 

taking the Hermitian conjugate of above: 

1Experimentally, this corresponds to choosing particular overall reference phase of the local oscillator. 
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â→ â cosh(ζ) − ̂b† sinh(ζ) (A.5) 

b̂ → b̂ cosh(ζ) − â† sinh(ζ) 

â† → â† cosh(ζ) − ̂b sinh(ζ) 

b̂† → b̂† cosh(ζ) − â sinh(ζ). 

The joint quadrature operators (2.22) have simple transformation properties. For 

example: 

Ŝ†X̂aŜ + Ŝ†X̂bŜ
Ŝ† ˆ ˆX+S = √ (A.6)

2 

Ŝ†ˆ ˆ S†ˆ† ˆ Ŝ†b̂ ̂ S†b̂† ˆaS + ˆ a S S + ˆ S 
= + 

2 2 
â cosh(ζ) − ̂b† sinh(ζ) + â cosh(ζ) − ̂b† sinh(ζ) 

= 
2 

â cosh(ζ) − ̂b† sinh(ζ) + â cosh(ζ) − ̂b† sinh(ζ)
+ 

2 
â+ â† + b̂ + b̂† 

= (cosh(ζ) − sinh(ζ)) . 
2 

= 

= 

X̂a + X̂b√ 
2 

e −ζ 

X̂+e 
−ζ 

and by the same analysis: 

X̂− 

P̂+ 

→ 

→ 

X̂−e 
ζ 

P̂−e 
ζ 

(A.7) 

P̂− → P̂+e 
−ζ 
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Appendix B
 

Properties of the Thermal State
 

Defining the parameter γ ≡ G
G 
−1 , we can write the thermal state density matrix as: 

∞
1 

ρ̂th = γn |n �� n| . (B.1)
G 

n=0 

The mean photon number n̄ ≡ �n̂� is then: 

n̄ = Tr [ρ̂thn̂] (B.2) 

1 
= γn �m|n� �n| n̂ |m� 

G 
m,n 

1 
= γn m̂δmn

G 
n,m 

1 
= nγn 

G 
n 

1 γ 
= 

G (1 − γ)2 

= G − 1, 

n xwhere we’ve noted that (1 − γ)−1 = G and the sum nx = was computed as n (1−x)2 

n d n d 1 x 2 n x(1+x)nx = x x = x = Similarly we can compute n x = n dx n dx 1−x (1−x)2 . n (1−x)3 . 

Continuing along these lines we find: 
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n̂2 = Tr ρ̂thn̂
2 (B.3) 

γn =
1 

m 2δmn
G 

m,n 

1 
= n 2γn 

G 
n 

1 γ(1 + γ) 
= 

G (1 − γ)3 

= (G − 1)(2G − 1), 

so that �Δn̂2� is 

2 2 2Δn̂ = n̂ − n̄ (B.4) 

= (G − 1)(2G − 1) − (G − 1)2 

= G(G − 1) 

= n̄2 + n̄. 

In a similar manner we can compute ΔX̂2 for the thermal state. From the sym

metry of the Wigner function, X̂ = 0 so that ΔX̂2 = X̂2 . Thus 
th th 

1 ˆΔX̂2 = γn �n| X2 |n� (B.5)
G 

n 

1 
= γn(2n + 1) 

2G 
n 

1 γ 1 1 
= + 

G (1 − γ)2 2G 1 − γ 
1 

= (G − 1) + 
2 

2n̄ + 1 
= . 

2 

Note that this is the just the quadrature variance of the Fock state |n�.
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Appendix C 

Some Properties of Gaussian Beams 

Since lasers generally consist of a gain medium inside a spherical resonator, the transverse 

intensity profile given by a mode of such a resonator1, namely a Hermite-Gauss Mode 

of order m, n denoted TEMmn [112]. The fundamental mode TEM00 has a cylindrically 

symmetric Gaussian transverse profile which may be written as: 

−2( r )
2 

I(r) = I0e w(z) . (C.1) 

The quantity w0 is known as the beam waist and describes the radius at which the 

intensity drops by a factor of e−2 . Owing to diffraction, the w(z) has a minimum value 

and diverges as z → ∞. Although the waist increases, the profile remains Gaussian as per 

equation (C.1). For convenience, z = 0 corresponds to the minimum waist: w0 ≡ w(0). 
√ 

A key parameter is the distance z over which the beam has diffracted to 2w0. This 

distance, known as the Rayleigh range is given by: 

πw0
2 

zR ≡ . (C.2)
λ 

The general dependence of the waist as a function of z can be written in terms of zR 

as: 

� �2 
z 

w(z) = w0 1 + . (C.3) 
zR 

Note that for distances well outside the Rayleigh range, the divergence is linear: w(z) ≈ 

θ0z, with 

1i.e. a solution to the Maxwell equations subject to the spherical boundary conditions. 
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λ 
θ0 = . (C.4)

πw0 

Unlike a plane wave, the phase front of a TEM mode is not constant across any plane 

z apart from the origin. Instead, the constant phase fronts are approximately spherical 

with radius: 

� �2zR
R(z) = z 1 + . (C.5) 

z 

As compared to their plane-wave counterparts, Gaussian beams acquire an additional 

phase factor over an on-axis propagation distance z. This factor known as the Gouy 

phase shift is given for a TEMmn by: 

z 
φG = (1 + m + n) tan−1 . (C.6) 

zR 
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Appendix D
 

Relative Intensity Squeezing in the Presence of Loss (3.7)
 

The mean photon number of the seeded signal field after the 4WM process is 

ˆ�ˆ � = �α, 0| Ŝ†â†ˆ S |α, 0� (D.1)ns sas 

S†ˆ ŜŜ†ˆ ˆ= �α, 0| ˆ a † asS |α, 0�s 

= �α, 0| â† cosh(ζ) − âi sinh(ζ) âs cosh(ζ) − â† sinh(ζ) |α, 0�s i 

= �α| n̂s |α� cosh2(ζ) + �α|α� sinh2(ζ)
 

= |α|2 cosh2(ζ) + sinh2(ζ),
 

where we’ve inserted the identity operator S†S in the second step. 

Along the same lines we compute: 

�ni� = (1 + |α|2) sinh2(ζ). (D.2) 

2 S†ˆ†ŜŜ†ˆ ŜŜ†ˆ†ŜŜ†ˆ ˆWe compute �n � via �α| ˆ a as a asS |α� to obtain s s s 

n 2 = |α|2 (1 + |α|2) cosh4(ζ) + (3 |α|2 + 1) cosh2(ζ) sinh2(ζ) + sinh4(ζ), (D.3)s 

so that 

Δn̂s 
2 = n̂s 

2 − �n̂s�2 

= |α|2 (1 + |α|2) cosh4(ζ) + 3 |α|2 cosh2(ζ) sinh2(ζ) + cosh2(ζ) sinh2(ζ) 

+ sinh4(ζ) − |α|4 cosh4(ζ) − 2 |α|2 cosh2(ζ) sinh2(ζ) − sinh4(ζ) 

= |α|2 cosh2(ζ)(cosh2(ζ) + sinh2(ζ)) + cosh2(ζ) sinh2(ζ). (D.4) 
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�2 = |α|2so that for large α, this becomes �Δn̂s G(2G − 1). We calculate the variance for 

the idler channel in the same manner to obtain: 

n 2 = (1 + |α|2) cosh2(ζ) sinh2(ζ) + (1 + 3 |α|2 + |α|4) sinh4(ζ), (D.5)i 

and 

�Δn̂i�2 = |α|2 sinh2(ζ)(cosh2(ζ) + sinh2(ζ)) + cosh2(ζ) sinh2(ζ). (D.6) 

Note that in the case of no seed, �Δn̂s�2 = �Δn̂i�2 = cosh2(ζ) sinh2(ζ). 

Similarly we find 

�n̂sn̂i� = (1 + 3 |α|2 + |α|4) cosh2(ζ) sinh2(ζ)(1 + |α|2) sinh4(ζ) (D.7) 

so that using eqs. (D.1) and (D.2), 

cov(n̂sn̂i) = �n̂sn̂i� − �n̂s� �n̂i� = cosh2(ζ) sinh2(ζ)(1 + 2 |α|2). (D.8) 

We can now combine equations D.4, D.6, and D.8 to obtain the solution to equation 

(4.22): 

�Δ(n̂s − n̂i)�2	 = �Δn̂s�2 + �Δn̂i�2 − 2(�Δ(n̂sn̂i)� − �n̂s� �n̂i�) (D.9) 

= |α|2 cosh4(ζ) + |α|2 sinh2(ζ) cosh2(ζ) + sinh2(ζ) cosh2(ζ) 

+ |α|2 sinh4(ζ) + |α|2 sinh2(ζ) cosh2(ζ) + sinh2(ζ) cosh2(ζ) 

−2 sinh2(ζ) cosh2(ζ) − 4 |α|2 sinh2(ζ) cosh2(ζ) 

= |α|2 (cosh4(ζ) − 2 cosh4(ζ) sinh2(ζ) + sinh4(ζ)) 

= |α|2 (cosh2(ζ) − sinh2(ζ))2 

�Δ(n̂s − n̂i)�2	 = |α|2 . 
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To calculate the effect of losses, we model a loss in a given channel as a beamsplitter
 

√ 
with transmissivity t = η as diagrammed in figure 4.7b. The action of the beamsplitters 

on a channel is given by the unitary beamsplitter formula [39]: 

B̂†ˆ ˆasB = tsâs + rsâvac,s (D.10) 

† † †B̂†ˆ ˆa B = tiâi + riâi vac,i 

and so on, where âvac,s(i) is the (vacuum) mode incident on the unused side of the signal 

(idler) beamsplitter. These additional modes now must be taken into account so that 

the state in (4.19) becomes: 

ˆ ˆ ˆ ˆ|ψ� = BsBiSsiD(α)s |0� |0� |0� |0� (D.11)s i vac,s vac,i . 

We can calculate the transformed quantities from the previous section in the same 

way. For example, equation (D.1) becomes: 

† † ˆ†B̂† † ˆ B̂† ˆ ˆ ˆ�ψ| âsâs |ψ� = �0vac,s0vac,iαs0i| ŜsiBi s âsBs s âsBsBiSsi |0vac,s0vac,iαs0i� (D.12) 

S† † † = �0vac,sαs0i| ˆsi(tâs + râvac,s)(tâs + râvac,s)Ŝsi |0vac,sαs0i� �0vac,i|0vaci � 

2 † ˆ= t �αs0i| Ŝ n̂sSsi |αs0i�a si
 

= ηs �n̂s�Ŝ


with �n̂s�Ŝ being the quantity already calculated in equation D.1. We similarly express 

the other previously calculated quantities in terms of the beamsplitter coefficients: 
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�n̂s�Ŝ → ηs �n̂s�Ŝ

�n̂i�Ŝ → ηi �n̂i�Ŝ
2 η2 2 n̂ → n̂ + ηs(1 − ηs) �ˆ � ˆs Ŝ s s Ŝ

ns S 

n̂2 
S 

→ η2 n̂2 
S 
+ ηi(1 − ηi) �n̂i� ̂i ˆ i i ˆ S 

�n̂sn̂i�Ŝ → ηsηi �n̂sn̂i�Ŝ , (D.13) 

yielding the following parameters used to calculate equation 4.24: 

�2 η2 �2�Δn̂s → s �Δn̂s + ηs(1 − ηs) �ns� 

�Δn̂i�2 → ηi 
2 �Δn̂i�2 + ηi(1 − ηi) �ni� 

�n̂sn̂i� − �n̂s� �n̂i� → ηsηi(�n̂sn̂i� − �n̂s� �n̂i�). (D.14) 

Again, G ≈ 10 and |α|2 ≈ 1010 � G so that we neglect terms which do not include 

α1 and consider the relative intensity squeezing in the case of losses. Equation (4.22) is 

now normalized to ηs |α|2 G + ηi |α|2 (G − 1) to include these losses. 

1i.e. the contributions from the (nondisplaced) vacuum input 
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Appendix E 

Deferred Derivations of Equations Stated in Text 

E.1 Derivation of equation (3.7) 

By the Wiener-Khintchine theorem the measured spectrum is the Fourier transform of 

the autocorrelation of the temporal signal � ∞ � � 
2iπντ dτS (ν) = î(t)̂i(t + τ) e (E.1) 

−∞ 

We can write the autocorrelation in terms of equation (3.3) to find 

�� ∞ �� � � ∞ 
ˆ ��)r(t ��i(t)̂i(t + τ) = γ2 q̂(t�)q̂(t � − t)r(t − t + τ)dt�dt�� (E.2) 

−∞ −∞�� ∞ � � � 
+2γ q̂(t�)r(t − t�)dt�̂ie(t) + îe(t)̂ie(t + τ) . 

−∞ 

Noting that the quantum noise is uncorrelated with the electronic noise and that �q(t)� = 

�ie(t)� = 0, the second term vanishes. Also since for the vacuum state1 q̂(t�)q̂(t��)) = 

δ(t� − t��), (E.2) becomes: 

� � � ∞ 

î(t)̂i(t + τ) = γ2 r(t)r(t + τ )dt + �ie(t)ie(t + τ )� (E.3) 
−∞ 

so that equation (E.1) is: 

� ∞ � ∞ � ∞ � � 
S(ν) = γ2 r(t)r(t + τ)e 2iπντ dtdτ + îe(t)̂ie(t + τ) dτ (E.4) 

−∞ −∞ −∞ 

= γ2 |r̃(ν)|2 + Se(ν) 

1We measure the vacuum state by simply not putting any light into the signal port of the beam-splitter 
in figure 3.2. 
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where the convolution theorem was used in the second line. This shows that the spectrum 

is simply the sum of the electronic noise spectra and the Fourier transform of the response 

function scaled by the homodyne gain. 

Next, from equation (3.4): 

� ∞ � ∞ 
ˆ ��)ψ�(t ˆQ2 = γ2 q̂(t�)q̂(t �)ψ�(t��)dt�dt�� + Q2 (E.5)meas e 

−∞ −∞� ∞ 

γ2
2 

Q̂2 = |ψ�(t)| dt + e 
−∞� �∞ 

ˆ
2 

ψ̃�(ν)γ2 Q2 
e+
=
 

−∞� ∞ 

ψ̃(ν) 
2 
|r̃(ν)|2 Q̂2γ2 +
=
 e 

−∞ 

ˆwhere Parseval’s theorem was employed from line 2 to line 3. Now we can write Qe as 

the Fourier transform of the auto-convolution of îe(t)ψ(t), i.e. 

� ∞ 

Q̂2 
e = se(ν) ψ̃(ν) 

2 
dν. (E.6)
 

−∞ 

ˆ ΔQ̂2 Q̂2Finally, since = 0, we have = . We can then combine Qmeas meas meas 

equations (E.4), (E.5), and (E.6) to find: 

� ∞ 

ΔQ̂2 
meas = S(ν) ψ̃ 

2 
dν. (E.7)
 

−∞ 

Inasmuch as S(ν) is constant, we can pull it out of the integral and find for some 

frequency ν0 in this range: 

ψ̃ΔQ̂2 
e Se(ν0) 

� ∞ 
−∞ 

2 
dν Se(ν0) 

.
 (E.8)
 
ψ̃ 

=
 =
 � ∞ 2 S(ν0)dνΔQ̂2 
meas S(ν0) −∞ 
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E.2 Derivation of the Autocorrelation Matrix in Relation to ρ̂
 

Consider a single photon which can occupy any single time bin. We write the state of a 

photon occupying a given time bin in terms of the creation operator: 

√ 
âi 
† . . . |0� |0� |0�i+1 . . . = . . . 1 |0� |1� |0�i+1 . . . ≡ |i� . (E.9)i−1 i i−1 i 

The corresponding annihilation operator is defined similarly. We can then write the 

quadrature operator for a given temporal mode as: 

âi + âi 
† 

X̂i = √ . (E.10)
2 

For simplicity, we write two photons in a given mode as |2i� and no photons in any mode 

as |0̄�. Combining the homodyne relation (3.1) with the auto-correlation current (5.19), 

we assume perfect detector resolution and find,: � � 
Aij ∝ X̂i X̂j (E.11) � � � 

= Tr 
m,n 

ρmn |m �� n| X̂i X̂j 

ˆ= ρmn �k|m� �n| X̂iXj |k� 
m,n,k 

ˆ= ρmn �n| X̂iXj |m� 
m,n 

ˆWe then need to compute the term �n| X̂iXj |m�. Since �n|m� = δmn, many terms 

will not contribute to the sum: 

√1ˆ�n| X̂iXj |m� = √ �n| X̂i δjm |0� + 2δjm |2m� + (1 − δjm) |jm� (E.12)
2 

1 
= �n| [δjm |i� + 2δimδjm |m� + (1 − δjm)(δij |m� + δim |j�)]

2 
1 

= (δjmδni + 2δimδjmδnm + (1 − δjm)(δij δmn + δimδjn))
2 
1 

= (δjmδni + 2δimδjmδnm + δij δmn + δimδjn − δjmδij δmn − δjmδimδjn)
2 



� 

� 

� 

130
 

We can then proceed with the sum (E.11):
 

ˆρmn �n| X̂iXj |m� = (E.13) 
m,n 

1 
(δjmδniρmn + 2δimδjmδnmρmn + δij δmnρmn + δimδjnρmn − δjmδij δmnρmn − δjmδimδjnρmn) = 

2 
m,n 

1 
(δniρjn + 2δij δnj ρjn + δij ρnn + δjnρin − δij δjnρjn − δij δjnρjn) = 

2 
n 

1 
(ρji + 2δij ρjj + δij Tr [ρ̂] + ρij − δij ρjj − δij ρjj ) = 

2
 
ρij + ρji 1
 

+ δij . 
2 2
 

Since the density matrix is self-adjoint, ρij + ρji = 2Re [ρij ]. Thus
 

Â ∝ Re [ρ̂] + 
1
1, (E.14)

2 

with the constant of proportionality given by the electronic transfer function of the 

homodyne detector. 



Bibliography
 

[1] D. A. Steck. Rubidium 85 D Line Data (revision 2.1.4, 23 December 2010).	 http: 

//steck.us/alkalidata. 

[2] W. E. Lamb. Anti-Photon.	 Applied Physics B: Lasers and Optics, 60:77–84, 1995. 

10.1007/BF01135846. 

[3] A. Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical Description of 

Physical Reality Be Considered Complete? Phys. Rev., 47:777–780, May 1935. 

[4] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed Experiment to 

Test Local Hidden-Variable Theories. Phys. Rev. Lett., 23:880–884, October 1969. 

[5] A.	 Aspect, P. Grangier, and G. Roger. Experimental Tests of Realistic Local 

Theories via Bell’s Theorem. Phys. Rev. Lett., 47:460–463, August 1981. 

[6] R. Hanbury Brown and R. Q. Twiss. Correlation between Photons in two Coherent 

Beams of Light. Nature, 177(4497):27–29, January 1956. 

[7] C. K. Hong, Z. Y. Ou, and L. Mandel.	 Measurement of Subpicosecond Time 

Intervals Between Two Photons by Interference. Phys. Rev. Lett., 59:2044–2046, 

November 1987. 

[8] A. Elitzur and L. Vaidman. Quantum Mechanical Interaction-Free Measurements. 

Foundations of Physics, 23:987–997, 1993. 10.1007/BF00736012. 

[9] M. D. Reid and P. D. Drummond. Quantum Correlations of Phase in Nondegen

erate Parametric Oscillation. Phys. Rev. Lett., 60:2731–2733, June 1988. 

131 

http://steck.us/alkalidata
http://steck.us/alkalidata


132 

[10] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen. Spin 

Squeezing and Reduced Quantum Noise in Spectroscopy. Phys. Rev. A, 46:R6797– 

R6800, December 1992. 

[11] J. Abadie et al. A Gravitational Wave Observatory Operating Beyond the Quantum 

Shot-Noise Limit. Nature Physics, 7(12):962–965, September 2011. 

[12] G. Moore.	 Cramming More Components Onto Integrated Circuits. Electronics, 

38(8), April 1965. 

[13] R. P.	 Feynman. Simulating Physics with Computers. International Journal of 

Theoretical Physics, 21:467–488, 1982. 10.1007/BF02650179. 

[14] M. A. Nielsen and I. L. Chuang.	 Quantum Computation and Quantum Information. 

Cambridge Series on Information and the Natural Sciences. Cambridge University 

Press, 2000. 

[15] A. MacRae, G. Campbell, and A. I. Lvovsky.	 Matched Slow Pulses Using Double 

Electromagnetically Induced Transparency. Opt. Lett., 33(22):2659–2661, Novem

ber 2008. 

[16] C. K. Hong and L. Mandel. Experimental Realization of a Localized One-Photon 

State. Phys. Rev. Lett., 56:58–60, January 1986. 

[17] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih. 

New High-Intensity Source of Polarization-Entangled Photon Pairs. Phys. Rev. 

Lett., 75:4337–4341, December 1995. 

[18] Enrico Pomarico, Bruno Sanguinetti, Nicolas Gisin, Robert Thew, Hugo Zbinden, 

Gerhard Schreiber, Abu Thomas, and Wolfgang Sohler. Waveguide-based opo 

source of entangled photon pairs. New Journal of Physics, 11(11):113042, 2009.
 



133 

[19] A. I. Lvovsky,	 H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller. 

Quantum State Reconstruction of the Single-Photon Fock State. Phys. Rev. Lett., 

87:050402, July 2001. 

[20] J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. 

Polzik. High Purity Bright Single Photon Source. Optics express, 15(13):7940–9, 

June 2007. 

[21] H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.M. Zhao, J. Rui, Y. He, 

X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, 

B. Zhao, and J.-W. Pan. Preparation and Storage of Frequency-Uncorrelated En

tangled Photons from Cavity-Enhanced Spontaneous Parametric Downconversion. 

Nature Photonics, 5(October):628–632, 2011. 

[22] J. Fan and A. Migdall. A Broadband High Spectral Brightness Fiber-Based Two-

Photon Source. Opt. Express, 15(6):2915–2920, March 2007. 

[23] A. Ulhaq, S. Weiler, S. M. Ulrich, M. Rossbach, R. Jetter, and P. Michler. Cascaded 

Single-Photon Emission from the Mollow Triplet Sidebands of a Quantum Dot. 

Nature Photonics, 6:238 – 242, 2012. 

[24] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley.	 Observation 

of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity. Phys. 

Rev. Lett., 56:788–788, February 1986. 

[25] L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu. Generation of Squeezed States by 

Parametric Down Conversion. Phys. Rev. Lett., 57:2520–2523, November 1986. 

[26] C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, 

A. S. Zibrov, and M. D. Lukin. Atomic Memory for Correlated Photon States. 

Science, 301(5630):196–200, 2003. 



134 

[27] A. Kuzmich, W. P. Bowen, A. D. Boozer, A Boca, C. W. Chou, L-M Duan, and 

H. J. Kimble. Generation of Nonclassical Photon Pairs for Scalable Quantum 

Communication with Atomic Ensembles. Nature, 423(6941):731–4, June 2003. 

[28] P. Kolchin. Electromagnetically-Induced-Transparency-Based Paired Photon Gen

eration. Phys. Rev. A, 75:033814, March 2007. 

[29] S. Du,	 P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris. Subnatu

ral Linewidth Biphotons with Controllable Temporal Length. Phys. Rev. Lett., 

100:183603, May 2008. 

[30] J. K. Thompson, J. Simon, H. Loh, and V. Vuletic̀. A High-Brightness Source of 

Narrowband, Identical-Photon Pairs. Science, 313(5783):74–77, 2006. 

[31] C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett. Strong Relative Intensity 

Squeezing by Four-Wave Mixing in Rubidium Vapor. Optics letters, 32(2):178–80, 

January 2007. 

[32] V. Boyer, A. M. Marino, R. C. Pooser, and P.	 D. Lett. Entangled Images from 

Four-Wave Mixing. Science, 321(5888):544–547, 2008. 

[33] A. I. Lvovsky and M. G. Raymer.	 Continuous-Variable Optical Quantum-State 

Tomography. Rev. Mod. Phys., 81:299–332, March 2009. 

[34] T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. Sørensen, and E. S. Polzik. 

Spin Squeezing of Atomic Ensembles via Nuclear-Electronic Spin Entanglement. 

Phys. Rev. Lett., 101:073601, August 2008. 

[35] J. Appel, E. Figueroa, D. Korystov,	 M. Lobino, and A. I. Lvovsky. Quantum 

Memory for Squeezed Light . Physical Review Letters, 100(9):093602 (4), March 

2008. 



135 

[36] E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky. Quantum-Optical State
 

Engineering up to the Two-Photon Level. Nature Photonics, 4(April):243–247, 

2010. 
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