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Abstract

In the petroleum industry, accurately simulating wellbore heat loss through hot fluid

injection remains a critical problem as heat transfer and fluid dynamics within the

annulus space is complicated. In this study a 2D transient mathematical model is

proposed for the conjugate natural convection and radiation within wellbore annuli.

The governing equations consist of a vorticity transfer equation, a stream function

equation, an energy balance equation and a radiative transfer equation. A finite

volume approach with second order upwind scheme is implemented for discretization.

Newton-Raphson iteration is deployed for linearization. The algorithm is validated

by consistency in simulation results compared with literature. Parameters such as

the aspect ratio, radius ratio, radiation and dimensionless time are examined. A case

study on vacuum insulated tubing heat transfer using Marlin Well A-6 data showed

the merits of the developed program by the consistency of simulation results compared

with field measurements.
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Chapter 1

INTRODUCTION

1.1 Overview

In the petroleum industry, a wellbore plays a critical role in recovery practice, it is the

only means of communication between surface facilities and the underground reser-

voir. In conventional reservoir simulation, the basic purpose of wellbore modelling is

to provide sink/ source terms for the reservoir model. Modern wells are evolved from

a simple vertical well. Modern, sophisticated wells include horizontal wells, multilat-

eral wells, wells with vacuum insulated tubing (VIT), and wells with multiple tubing

or strings. Sophisticated wells are considerably more expensive to drill and complete;

and their use must be justified by a corresponding increase in economic recovery [29].

For this reason, a rigorous wellbore model that can simulate the dynamic and thermal

behaviour at all locations, with a reasonable degree of accuracy, is required.

Thermal recovery processes involving steam injection are popular with the heavy

oil industry. Crude oil viscosity decreases sharply as temperature increases. Steam

is injected into the subsurface to carry heat to the reservoir, reduce oil viscosity,

provide drive energy and thereby improve the displacement efficiency of injected fluid

[19]. In the steam injection process, the steam condition at the sandface is one of the

critical parameters for reservoir simulation and management. To obtain information

about the steam condition, fluid flow and heat transfer of wellbore must be accurately

modelled.

Modelling wellbore dynamics and thermal behaviour has many critical applica-

tions. In well completion design, the estimation of tubing, casing, cementing tem-
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perature and the thermal stress induced is required to determine the tubing/ casing

size, material, type of insulation under specific operating conditions. A proper ce-

ment placement job requires knowledge of the bottom hole circulating temperature

(BHCT), the hot spot depth ( the depth where temperature is highest), and the over-

all temperature profile [3]. Estimation of annulus pressure build-up (APB), which is

caused by the thermal expansion of annulus fluid, is another important application of

these models, because APB related failures have occurred with improperly designed

wells [9].

Modelling wellbore fluid flow and heat transfer with a decent degree of accuracy

is not an easy task. Within the wellbore the complicates, strongly coupled, non-

linear nature of the fluid dynamics and heat transfer mechanisms are challenging.

Mathematical modelling of thermal wellbore can be dated back to Ramey (1962) who

presented an analytical approximation solution of wellbore fluid temperature and

pressure distribution, outer tubing wall temperature and inner casing wall temper-

ature, as functions of production time and well depth [54]. Ramey’s model consists

of three parts: 1) fluid flow and heat transfer within wellbore tubing, 2) heat trans-

fer from the tubing wall up to the casing/cementing boundary, and 3) heat transfer

in the surrounding formation. This formulation became fundamental to subsequent

research in thermal wellbore modelling. Research is often carried out by relaxing

Ramey’s assumptions to model more complex wellbores.

The state-of-the-art thermal wellbore models are able to simulate transient ther-

mal multiphase flow [4][7][3][69]. The governing equations contain coupled mass,

momentum and energy balance equations. A drift-flux model is applied to capture

the slip phenomenon between phases. The time- and depth- dependent overall heat

transfer coefficient that represents a series of thermal resistance from tubing wall to

the cementing/formation interface is supplemented as a source term in the wellbore

2



energy balance equation. Heat transfer in the formation is modelled by a 2D heat

conduction equation [20][7].

Figure 1.1: Schematic of state-of-the-art discretized thermal wellbore model, sub-
tracted from Bahonar 2010 [4]

The accuracy of the overall heat transfer coefficient significantly affects the model’s

efficiency in wellbore heat transfer analysis. The heat transfer mechanisms between

the flowing fluid and the cement-formation interface includes: conduction within

tubing and casing wall, conduction within cement and convection and radiation within

the annulus [65]. Among these mechanisms, the convective and radiative heat transfer

within the annulus is the most difficult to simulate, because of the complex fluid

dynamics and its high dependence on the annulus space geometry and boundary

conditions. In fact, natural convection in an enclosure is one of the major problems

in Computational Fluid Dynamics (CFD) [57].

To the author’s knowledge, in the literature on thermal wellbore modelling, the
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heat transfer within wellbore annulus is accounted for using empirical correlations.

The method for estimating the overall heat transfer coefficient was proposed by Will-

hite in 1967 [65]. In this method, the annulus convective heat transfer is calculated

using a correlation obtained from experiments on natural convection between two

parallel vertical plates. The radiative heat transfer is calculated based on Stefan-

Bolzmann law [45]. Willhite’s method for calculating an over all heat transfer coeffi-

cient historically satisfied the needs of industry. However, as more sophisticated wells

with dual tubing or with insulated tubing are in use, there is a growing need to apply

CFD techniques to insure accurate and versatile wellbore model.

The primary objective of this study is to use CFD techniques to simulate the con-

jugate natural convection and radiation within thermal wellbore annuli. The proposed

2D transient model couples the mass conservation equation, the vorticity-stream func-

tion formulation of 2D Navier-Stokes equations, the energy balance equation and the

radiative transfer equation. A finite volume discretization scheme is implemented

with second-order upwind scheme for the convection terms. The discretized system

is solved fully implicitly and coupled. The numerical schemes are validated by repli-

cating a series of tests from the literature, preserving high efficiency at high Rayleigh

numbers (Ra=1E7). The effects of aspect ratio, radius ratio, radiation and time on

the flow structure and heat transfer characteristics are examined. The program is

developed in C++. The objective-oriented programming allows the program to be

conveniently coupled with other thermal wellbore simulators. A case study is carried

out simulating vacuum insulated tubing heat transfer using a stand alone wellbore

simulator [69] coupled with the developed annulus heat transfer program. The simu-

lated results match remarkably well with the field experimental data, validating the

merits of this study.
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1.2 Thesis Outline

Chapter 2 consists of a literature review. Initially the history of thermal wellbore

modelling and simulator development are reviewed; the associated milestones are

identified. Then the computational fluid dynamics techniques used to solve natural

convection problems, and Navier-Stokes Equations are reviewed. In addition, the vac-

uum insulated tubing (VIT) heat transfer characteristics are reviewed in preparation

for the case study.

In Chapter 3, the mathematical model and the numerical schemes to simulate

the conjugate natural convection and radiation within a thermal wellbore annulus

are elaborated. First governing equations are constructed in primary variables (i.e.

pressure, temperature, velocities and intensity), that contain 2D transient Navier-

Stokes equations as the momentum balance equations. The the governing equations

are then derived in secondary variables, (i.e. stream function, vorticity, temperature

and intensity). After that the discretization schemes and numerical algorithm are

explained in detail.

The proposed numerical algorithm is validated in Chapter 4 by replicating a group

of tests in the literature. Simulation results including average Nussult numbers and

velocities are compared with the literature outcomes and consistency is found. This

reinforces confidence in the developed algorithm. Then a group of numerical experi-

ments are carried out to examine the effect of aspect ratio, radius ratio, intensity of

radiation and dimensionless time on the flow structure and heat transfer characteris-

tics.

Chapter 5 presents a case study on vacuum insulated tubing heat transfer simula-

tion using a stand alone wellbore simulator [69] coupled with the developed program.

Marlin Well A6 data [23] are used in the study. The simulation results match well

with the field data considered.
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All the findings are summarized in Chapter 6 followed by suggestions for further

research.
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Chapter 2

LITERATURE REVIEW

2.1 Development of Thermal Wellbore Modelling

The first mathematical wellbore model was formulated by Ramey in 1962 [54]. He

assumed single phase steady-state incompressible tubing fluid flow, fixed fluid and

formation properties, with no frictional loss or kinetic energy effect. Then he pre-

sented an analytical solution of wellbore fluid pressure and temperature, outer tubing

and casing wall temperature as functions of production time and well depth. Ramey

pointed out two critical issues in the formulation of wellbore model to estimate heat

loss: 1) the overall heat transfer coefficient from inner tubing wall to the cementing/-

formation boundary, 2) time function that characterizes the formation heat transfer

behaviour due to its relatively large thermal conductivity compared to wellbore fluids

and materials. Since then, Ramey’s work has built the foundation of thermal wellbore

modelling and his formulation of the model has been adopted in many subsequent

studies.

In 1967, Willhite [65] proposed the well-known iterative method for calculating

the overall heat transfer coefficient that has widely been used by industry. For a

wellbore, the overall heat transfer coefficient expresses the combined effect of the series

of thermal resistances between the flowing fluid and the cement-formation interface.

The overall heat transfer coefficient accounts for, in sequence, heat transfer from the

fluid to the inner tubing wall, conduction in the tubing wall, conduction in insulation

(if any), natural convection and radiation within annulus, conduction in the casing

wall and cement (Figure. 2.1). Since the thermal conductivities of tubing/casing wall
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and cement, the film coefficients of flowing fluid can be determined with confidence,

the difficulty lies in estimating convective and radiative heat transfer coefficient in

the annulus and the thermal conductivity of insulation. In Willhite’s paper, he used

Stefan-Boltzmann law to calculate the radiative heat transfer coefficient, and the

convective heat transfer coefficient is calculated from correlations obtained through

an experiment on natural convection within two parallel vertical plates.

proportionality factor k" is termed the thermal conduc-
tivity of the medium. In the radial system of the wellbore, 

dT 
Q = - 2-rrr k" dr 6L . . (5) 

Integration of Eq. 5 with Q constant gives Eqs. 6 through 
8 for conduction through the tubing wall, casing wall 
and cement sheath. 

T
. Q -_ 27rk'nb. (Tti-T'o)b.L Ublllg, 

ｉｮｾ＠
r ti 

C 
27rk,."", (T,,, - T,,) b.L 

ement, Q =--------

ｉｮｾ＠
rco 

(6) 

(7) 

(8) 

Three modes of heat transfer are present in the casing 
annulus. Heat is conducted through the air contained in 
the annulus. Radiation and natural convection also occur. 
When a body is heated, radiant energy is emitted at a 
rate dependent on the temperature of the body. The 
amount of radiant energy transported between the tubing 
and casing depends on the view the surfaces have of each 
other and the emitting and absorbing characteristics of 
their surfaces. Heat transfer by natural convection in the 
annulus between the tubing and casing is caused by fluid 
motion resulting from the variation of density with tem-
perature. Hot fluid near the tubing wall is less dense than 
the fluid in the center of the annulus and tends to rise. 
Similarly, the fluid near the casing wall is cooler (and 
denser) than in the center of the annulus and tends to 
fall. Fig. 2 is an interpretation of fluid motion in the cas-
ing annulus.' 

Radiation, natural convection and conduction are in-
dependent heat transfer mechanisms. Thus, the total heat 
flow in the annulus is the sum of the heat transferred by 
each of the above mechanisms. In practice, it is conven-
ient to define the heat transfer rate through the annulus 
in terms of the heat transfer coefficients h, (natural con-

Tt 

FLOWING 
FLUID 

TUBING 

',: - ... " .•... FORMATION 
ｾ＠ .:- -j ., 

Fig. I-Temperature distribution in an annular completion. 

608 

vection and conduction) and hr (radiation). These coeffi-
cients are based on the outside surface area of the tubing 
(27rr,o ,6L) and the temperature difference between the 
outside tubing surface and the inside casing surface. Thus, 

Q = 2-rrr" (h,+h,) (T,,,-T,,) ,6L . (9) 

We can now "assemble" V to from its component terms. 
Note that 

Tf-T" = (Tf-Tti ) + (T" -Tt,) + (T,,,-T,,) 

+(T'i-T",) + (Lo-Th ) • (10) 

Since heat flow in the well completion is assumed to be 
steady state at any particular time, the values of Q in 
Eqs. 4 and 6 through 9 are equal. Solving for the respec-
tive temperature differences in these equations and substi-
tuting them into Eq. 10 gives Eq. 11. 

[ 

ｉｮｾ＠ ｉｮｾ＠
Q 1 r" 1 rei 

Tf-T,,=----+--+ +--
27rb.L rt;h f k'nh. r,.,(h,,+h,) k",,,. 

n-I r" 1 + r,,, . (11) 
k('('lll. 

Comparison with Eq. 2 shows that 

[ 

rt 1',. 
rt" In-' 1 rto In-

V, = ｾ＠ + r" + + _c--_r_'_i 
" rUh f k'nb. (h,+h,) k,,,,. 

I' '0 In -"--
+ 

I' ]-' roo . (12) 
kcem• 

In a similar manner, an expression for V'o can be written 
to include the case when the injection tubing is insulated 
with commefCiial insulation of th'ickness AI' and thermal 
conductivity kin, .. Let rin,. - 1"0 = b.r. Then, 

[ 

ｲＬＬＬｬｮｾ＠
ｾＫ＠ rti + 
r"h f k'nb. 

I r'ns. r to n--
1', 0 + _-:c;-r-;,0c-;-;-;-;: 

kins. Tins. (hc'+h/) 

+ 
r,o In _1"_' r,o In _r_" ]_' 

rei + _.....,._r,_,,, 
k("Ufl. k("(>IlL. 

(13) 
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Fig. 2-Natural convection in the casing annulus.' 
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Figure 2.1: An illustration of Willhite’s wellbore heat transfer model, subtracted from
Willhite 1967 [65]

In 1972, Pacheco and Farouq Ali [49] formulated two differential equations to

model wellbore steam injection and calculate steam pressure and quality. The model

took into account the variation of steam temperature and pressure due to friction, as

well as heat losses by radiation, conduction and convection. It was solved by numer-

ical iteration. In 1981, Farouq Ali [20] extended his previous model [49]. The new

pressure calculation took into account the slip and the prevailing flow regime using

noted correlations. Heat loss was treated more rigorously by solving a conductive

transfer equation, instead of using a time function. In 1982, Fontanilla and Aziz [22]
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proposed two simultaneous ordinary differential equations for estimating steam pres-

sure and quality. The major difference between this model and Farouq Ali’s [20] is

the correlations used to describe multiphase flow inside the wellbore tubing and the

techniques used to simulate formation heat transfer.

In 1990 Wu and Pruess [67] proposed an analytical wellbore heat transfer model

with various thermal properties in the surrounding formation layers. In 1994 Hasan

and Kabir [25] proposed an analytical solution of flowing fluid temperature in well-

bore tubing. Their model is based on a steady state energy balance equation that

takes into account of the Joule-Thomson effect. The simplification of the original par-

tial differential equation turned it into an ordinary differential equation that could

be solved analytically with appropriate boundary conditions. The original model is

further developed by the same author (Hasan, Kabir et al. 2003 [26]; Kabir, Hasan

et al 2004 [32]; Hasan, Kabir et al. 2009 [27]). In 2010, Livescu et al. [44] developed

a semi-analytical thermal multiphase wellbore model coupled to a reservoir model.

The reservoir mass and energy balance equations coupled with wellbore mass and en-

ergy balance equations were solved numerically, with the suppliment of an analytical

wellbore temperature solution.

In a series of papers by Bahonar et al, [4][5][6][7], he developed a numerical thermal

multiphase wellbore simulator that solved the wellbore mass, momentum and energy

balance equations in a fully implicit scheme. The wellbore model was then fully cou-

pled to a 1D radial reservoir model and numerical results were validated against field

data. In 2015, Xiong [69] improved Bahonar’s model by introducing new correlations

for wellbore annulus heat transfer. The new correlations enabled the wellbore model

to handle different configurations and completions. The correlations for annulus heat

transfer were obtained by a series of FLUENT simulations of buoyancy-driven flow

in the annulus with different sizes, lengths and numbers of tubing.
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2.2 Numerical Simulation of Natural Convection and Radi-

ation

Natural convection in a confined space has been studied in great extend both exper-

imentally and numerically. In fact, numerical simulation of natural convection has

been a core problem in the subject of Computational Fluid Dynamics (CFD). When

thermal wellbore models were first developed in 1960s, CFD techniques emerged and

were only used in research by NASA. The development of CFD techniques relies on a

combination of advances in computer power and algorithms. In 1970s finite-difference

methods were proposed for Navier-Stokes equations. In 1980s finite volume methods

were developed. In 1985 CFD techniques started to be applied to aeronautical engi-

neering; in 1995, it was applied to ”non-aero” industries [55]. Today the performance

of current high-end servers has increased several thousand times, which allows CFD

techniques to be applied more broadly.

A mathematical model of convective heat transfer is composed of a group of partial

differential equations, i.e. the mass conservation equation, the momentum conserva-

tion equation(s) and the energy conservation equation, derived from the laws of Con-

servation of Mass, Newton’s Second Law of Motion and Conservation of Energy. The

model is solved either with primary variables, e.g. pressure, velocities and tempera-

ture, or with secondary variables, like the stream function, vorticity and temperature.

The main difficulty with the primary variable methods lies in the proper discretization

of pressure gradient and the coupling of pressure and velocities. Classical algorithms

using primary variables include the SIMPLE algorithm series (SIMPLE, SIMPLER,

SIMPLEC, SIMPLEX) developed by Spalding and Patankar [50].

The difficulties associated with the primary variable algorithms lead to the devel-

opment of methods that eliminate the pressure terms from the governing equations.

In a 2D problem, by cross differentiation of the two momentum equations, the pres-

10



sure terms are eliminated, producing a vorticity-transport equation. Combined with

the definition of stream function, this forms the vorticity-stream function (secondary

variables) approach.

Numerical studies of pure natural convection are numerous. In 1975, Kuehn and

Goldstein [34] first studied the steady state natural convection in the annulus be-

tween horizontal concentric cylinders using experiments and numerical simulations.

Two sets of experiments were run: one with air and the Rayleigh number up to

9.56 × 104, another with water and the Rayleigh number up to 9.76 × 105. The nu-

merical study applied central difference along with Successive-Over-Relaxation (SOR)

method to solve the vorticity-stream function based governing equations. The simula-

tions support the experimental outcomes when comparing dimensionless temperature

profile and local equivalent conductivity. In 1978, these two authors extended their

experimental study to higher Rayleigh numbers and natural convection within ec-

centric horizontal cylindrical annuli [35]. Their study confirmed that with nitrogen

(Pr=0.7) no steady flow pattern exists with high Rayleigh numbers, oscillations of

the interferograms were first observed near RaL = 2× 105.

de Vahl Davis and Thomas first studied the natural convection in isothermally

heated vertical annuli and rectangular cavities [16] [62]. Many researchers then stud-

ied the same subject. Each author made an effort to extend the range of highest

Rayleigh number and the aspect ratio. In 1982 Lee, Korpela and Horne [39] modelled

the transient natural convection in a tall vertical annulus. They formed the governing

equations in a manner that by setting the radius ratio to unity, the problem degener-

ates into rectangular cases. They observed multicellular convection in their numerical

results with high aspect ratios. In 1983, Lee and Korpela [40] extended the study by

comparing the numerical simulation of multicellular natural convection in a vertical

slot with experiments results. Their calculated streamline faithfully represented what
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has been seen in the laboratory showing smoke traces in air and particle trances in

oils. They identified the limitation of accuracy of their numerical studies by point-

ing out the unreasonable jaggedness in the velocity profiles near the top and bottom

boundaries.

A lot of discussion and development of numerical heat transfer focus on the dis-

cretization of convection terms in the governing equations. Although only first-order

partial difference is involved in the convection term, its discretization is the most

difficult to handle, due to the strong sign of direction associated with convection [58].

An appropriate format of convection term discretization determines the accuracy,

stability and efficiency of the overall numerical algorithm. Since the common central-

difference method fails when the Peclet number is high [57], remedies are invented for

the difficulties encountered. Among these schemes a well-known one is the upwind

scheme (more often referred as the upstream scheme in reservoir simulation). It was

first proposed by Courant, Issacson and Rees [14]. The upwind scheme considers the

flow direction to determine the discretization method and the interpolation/extrapo-

lation value of the convected property at the grid cell interface. Other schemes that

solve the problem associated with central difference are the exponential scheme [50],

the hybrid scheme [11], and the power-law scheme [51]. However, Leonard [43] pointed

out that these methods will cause false diffusion when Peclet number is high due to

low truncation error (less than second-order). The second-order upwind scheme [41]

inherits the merits of first order upwind scheme and reduces false diffusion. More-

over, the second-order upwind scheme is a conservative and absolute stable numerical

scheme [57]. Other well-known higher order methods to avoid false diffusion include

the third-order upwind scheme, and the QUICK [42] format. A thorough and detailed

literature review on numerical heat transfer refers to Tao’s book[57].

Most of the investigations neglect the contribution of radiative heat transfer. How-
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ever, every object with a temperature greater than absolute zero can emit and absorb

radiative (electromagnetic) energy. In engineering applications such as combustion,

solar collector and nuclear engineering the influence of radiation on heat transfer can-

not be neglected. This is very apparent in thermal recovery processes where studies

have shown that radiation is high if the wellbore annulus contains a gas and the tub-

ing is hot [19]. Huygen and Huitt [31] pointed out that radiative heat loss account

for up to two thirds of the total wellbore heat loss when the annulus is dry.

In 1996, Weng and Chu [64] studied the steady state combined natural convection

and volumetric radiation in a vertical annulus. They used the PROJECTION algo-

rithms with primary variables and the two-dimensional P-1 approximation for the

radiative transfer equation. In 1998, Kuo et al. [36] studied the transient combined

natural convection and volumetric radiation within a horizontal annulus using spectral

and finite volume prediction. Primary variable formulation and P-1 approximation

for radiative transfer were also adopted in their study.

2.3 Vacuum-Insulated-Tubing (VIT) Heat Transfer Charac-

teristics

Besides estimating wellbore heat loss, wellbore temperature control is critical to ther-

mal well integrities, as high wellbore temperature may lead to annulus pressure build

up and casing failures [21]. Vacuum insulated tubing (VIT) is now widely deployed

in deepwater and arctic environments, however the design of a VIT installation intro-

duces a number of considerations not present in a design using conventional tubings.

In 1983 Aeschliman [1] reported on the thermal efficiency of a steam injection well

with insulated tubing in a steam flood pilot in the Aberfeldy Field near Lloydmin-

ster, Saskatchewan. It was observed that the coupling and internal structures (e.g.

centralizers) accounted for up to half of the string heat loss when the annulus was
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dry. For a wet annulus, casing temperature was maintained at 212 °F at all locations

because of the steam generated at the hot couplings refluxing in the vented annulus.

In 2002 a series of three papers [10] [18] [23] addressed the failure of Well A-2 on the

Marlin tension leg platform (TLP) located in the Gulf of Mexico. In the first paper,

Bradford et. al [10] outlined several possible failure modes. By analytical and physical

evidence, the primary failure mechanism is identified to be the incremental annulus

fluid expansion (AFE) pressure in the annuli. Applying the failure analysis in the first

paper, Ellis et al. [18] proposed a redesign process using VIT for the remaining Marlin

wells. It was observed in the tests that heat loss at the coupling can dominate the

performance of a VIT joint. In the third paper of the series, Gosch et al. [23] made

a full-scale VIT testing with Fiber-optic cable run on completion to continuously

monitor the production-annulus temperature profile. It was observed that natural

convection significantly impacted VIT’s ability to isolate tubing temperatures from

the production annulus.
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Figure 2.2: Three distinc paths of VIT heat transfer, subtracted from Azzola 2004 [2]

A VIT consists of two concentric joints of tubing welded together, where the

annulus space between the two tubing is vacuum. Unlike conventional tubing, there

are three different heat paths of a VIT [2]: the first path runs around the vacuum

body (q1 in Figure.2.2), the second path runs around the coupler (q2 in Figure.2.2),

and the third path runs axially along the inner pipe toward the weld, through the

weld and axially down the outer pipe (q3 in Figure.2.2 ). Both field data [23] and

simulation studies [52][33] show that 50% to 90% heat loss is due to natural convection

cells developed around the coupling area.
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Figure 2.3: Major heat loss due to convection cells developed around the couplings,
subtracted from Bellary 2009 [9]
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Chapter 3

ANNULUS HEAT TRANSFER

MODELING AND SIMULATION

In this chapter, the mathematical model of conjugate natural convection and radiation

within a vertical concentric annulus space is elaborated. Both the primary variable

formulation and the secondary variable formulation are derived. Details of numeri-

cal algorithms: the discretization, linearization, choice of linear solver and iteration

scheme, are provided.

3.1 Mathematical Formulation

3.1.1 The Primary Variable Formulation

Consider a concentric vertical annular cavity of height l, inner radius ri and outer

radius ro as shown in Fig.3.1. The inner wall is held at temperature Ti which is

higher than the outer wall temperature To. The top and the bottom of the cavity are

insulated. It is assumed that the Boussinesq approximation [24] is valid. Density in

the gravitational force terms is represented by

ρ = ρo[1− α(T − To)] (3.1- 1)

where ρo is the fluid density at temperature To, α is the thermal expansion coefficient.
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Figure 3.1: A schematic of vertical annulus

A cylindrical coordinate system is adopted, the equations governing the conser-

vation of mass, momentum and energy, and the Radiative Transfer Equation (RTE)

can be written in terms of the pressure p′, velocities u′, w′, temperature T ′, and zero

moment of intensity i0. Let L = ro−ri denote the gap width; let H = l/L denote the

aspect ratio; let κ = ri/ro represent the radius ratio. Define κl = (1− κ)/κ(= L/ri),

and R = rκl + 1. By introducing the following non-dimensional variables

r =
r′ − ri
L

, z =
z′

L
, t =

t′ν

L2
,

u =
u′ri
ν
, w =

w′ri
ν
,

T =
T ′ − To
Ti − To

, p =
p′r2i
ρν2

, I =
i0
σT 4

i

,

(3.1- 2)

the governing equations take the form:
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continuity:

∂

∂r
(Ru) +

∂

∂z
(Rw) = 0 (3.1- 3)

radial momentum:

∂u

∂t
+

1

Pr

(
u
∂u

∂r
+ w

∂u

∂z

)
= −1

ρ

∂p

∂r
+∇2u− κ2l

R2
u (3.1- 4)

axial momentum:

∂w

∂t
+

1

Pr

(
u
∂w

∂r
+ w

∂w

∂z

)
= −1

ρ

∂p

∂z
+∇2w +RaT (3.1- 5)

energy:

∂T

∂t
+

1

Pr

(
u
∂T

∂r
+ w

∂T

∂z

)
=

1

Pr
∇2T +

1

Pr

Tfτ
2
0

N

((
T

Tf
+ 1

)4

− I

)
(3.1- 6)

and the radiative transfer equation:

∇2I = 3τ 20

(
I −

(
T

Tf
+ 1

)4
)

(3.1- 7)

The P1 differential approximation for a gray fluid [45] is used to model the radiative

transfer. In the formulation, Ra = gβ∆TL3/να is the Rayleigh number; Pr = ν/α

is the Prandtl number; and ν, α, β are the kinetic viscosity, thermal diffusivity and

thermal expansion coefficient of the fluid. σa is the absorption coefficient, τ0 = σaL is

the optical thickness, N = kσa/4σT
3
i is the conduction-to-radiation parameter that

indicate the relative importance of the radiation effect. ∇2 is the Laplace operator:

∇2 =
∂2

∂r2
+
κl
R

∂

∂r
+

∂2

∂z2
. (3.1- 8)
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3.1.2 The Vorticity-Stream Function Formulation

The main difficulty with the primary variable methods lies in the proper discretization

of pressure gradient and the coupling of pressure and velocities. Therefore methods

that eliminate the pressure terms from the governing equations are developed. In a

2D problem, by cross differentiation of the two momentum equations, the pressure

terms are eliminated, producing a vorticity-transport equation. Combined with the

definition of stream function, this forms the vorticity-stream function (secondary

variables) approach.

By differentiating Eq.3.1- 4 with respect to z and Eq. 3.1- 5 with respect to r and

subtract one from the other, a vorticity-transfer equation is obtained with ζ as the

dependent variable,

∂ζ

∂t
+

1

Pr

(
u
∂ζ

∂r
+ w

∂ζ

∂z

)
= ∇2ζ +

1

Pr

κl
R
uζ − κ2l

R2
ζ +Ra

∂T

∂r
, (3.1- 9)

where

ζ ≡ −(∂u/∂z − ∂w/∂r) (3.1- 10)

is the non-dimensional vorticity. Physically, vorticity describes the local spinning

motion of a continuum near the point under consideration.

The non-dimensional stream function ψ is defined by

1

R

∂ψ

∂z
= u,

1

R

∂ψ

∂r
= −w. (3.1- 11)

It can be shown that ψ identically satisfy the continuity equation Eq.3.1- 3, and it

relates to the vorticity by

1

R

(
∇2ψ − 2κl

R

∂ψ

∂r

)
= −ζ (3.1- 12)
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Therefore the governing equations with stream-function vorticity approach take

the form:

∂ζ

∂t
+

1

Pr

(
u
∂ζ

∂r
+ w

∂ζ

∂z

)
= ∇2ζ +

1

Pr

κl
R
uζ − κ2l

R2
ζ +Ra

∂T

∂r
(3.1- 13)

1

R

(
∇2ψ − 2κl

R

∂ψ

∂r

)
= −ζ (3.1- 14)

∂T

∂t
+

1

Pr

(
u
∂T

∂r
+ w

∂T

∂z

)
=

1

Pr
∇2T +

1

Pr

Tfτ
2
0

N

((
T

Tf
+ 1

)4

− I

)
(3.1- 15)

∇2I = 3τ 20

(
I −

(
T

Tf
+ 1

)4
)

(3.1- 16)

together with the definition of stream function ψ in Eq.3.1- 11 as the continuity

equation.

3.1.3 Boundary Conditions

The boundary conditions are given by:

at inner cylinder wall r = 0,

ψ = 0, u = w = 0, (3.1- 17a)

ζ = −∂2ψ/∂r2, (3.1- 17b)

T = 1, (3.1- 17c)(
1− 2

3τ0

∂

∂r

)
I =

(
1

Tf
+ 1

)4

(3.1- 17d)
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at outer cylinder wall r = 1,

ψ = 0, u = w = 0, (3.1- 18a)

ζ = − 1

κl + 1

∂ψ

∂r2
, (3.1- 18b)

T = 0, (3.1- 18c)(
1 +

2

3τ0

∂

∂r

)
I = 1 (3.1- 18d)

at the bottom insulation wall z = 0,

ψ = 0, u = w = 0, (3.1- 19a)

ζ = − 1

R

∂2ψ

∂z2
, (3.1- 19b)

∂T

∂z
+

1

3N

∂I

∂z
= 0, (3.1- 19c)(

1− 2

3τ0

∂

∂z

)
I =

(
T

Tf
+ 1

)4

(3.1- 19d)

at the top insulation wall z = 1,

ψ = 0, u = w = 0, (3.1- 20a)

ζ = − 1

R

∂2ψ

∂z2
, (3.1- 20b)

∂T

∂z
+

1

3N

∂I

∂z
= 0, (3.1- 20c)(

1 +
2

3τ0

∂

∂z

)
I =

(
T

Tf
+ 1

)4

(3.1- 20d)
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Vorticity Boundary Conditions

Note that two sets of boundary conditions are given for stream function (as veloc-

ity boundaries are treated as Neumann boundary for stream function), but there are

none for vorticity. In fact, one of the major difficulties in the vorticity-stream function

approach is determining the numerical non-slip wall boundary conditions for vortic-

ity. Failure of proper representation of the vorticity boundary creates challenges to

achieve a converged solution [50]. This problem has been addressed by several pa-

pers ([66][30][56][46]) and continuous to be investigated in the Computational Fluid

Dynamics (CFD) literature.

The stream-function vorticity formulation leads to two sets of boundary conditions

for stream function, but there are for vorticity. According to the governing equation

Eq.3.1- 14,

ζ = − 1

R

(
∇2ψ − 2κl

R

∂ψ

∂r

)
= − 1

R

(
∂2ψ

∂r2
+
κl
R

∂ψ

∂r
+
∂2ψ

∂2z

)
− 2κl

R

∂ψ

∂r

(3.1- 21)

the following boundary conditions for vorticity are derived:

at r = 0, since ψ = 0, ∂ψ/∂r = 0, ∂ψ/∂z|r=0 = 0, ∂2ψ/∂z2|r=0 = 0, R = 1, thereby

ζ = − 1

R

∂2ψ

∂r2
= −∂

2ψ

∂r2
(3.1- 22)

at r = 1, R = κl + 1, similarly,

ζ = − 1

R

∂2ψ

∂r2
= − 1

κl + 1

∂2ψ

∂r2
(3.1- 23)
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at z = 0, since ψ = 0, we have ∂ψ/∂r|z=0 = 0, and ∂2ψ/∂r2|z=0 = 0, thereby

ζ = − 1

R

∂2ψ

∂z2
(3.1- 24)

at z = 1, similarly,

ζ = − 1

R

∂2ψ

∂z2
(3.1- 25)

As can be seen, the coupled nature of ψ − ζ is not only shown in the governing

equations but also in the boundary conditions.

With the formulation of non-dimensional variables, pure natural convection can

be simulated by setting τ0 = 0 hence Eq. 3.1- 16 vanishes. By further setting the

radius ratio to one, calculations for the rectangular cases can be conducted.
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3.2 Discretization Method

3.2.1 The Computational Domain

 

 

i, radial

j, vertical

Figure 3.2: The computational domain

A point-distributed grid system is applied with Nmax nodes along the radial direction

and Mmax nodes the axial direction, as shown in Figure.3.2. The grid size is uniform,

with ∆r in the radial direction, ∆z in the axial direction. Control volume method is

deployed to discretize the governing equations.
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3.2.2 Discretization of the Diffusion Term

ܹ  ܲ   ܧ

 ݓ

ܰ

ܵ 

݊ 

݁ 

Δݎ 

Δݖ 

Control volume
 ݏ

ܰܰ 

ܵܵ 

ܹܹ   ܧܧ

Figure 3.3: A sketch of a control volume

Take any arbitrary variable ϕ for example, the diffusion term ∇2ϕ is discretized by

the standard second-order central difference scheme:

D∇2ϕ =
ϕE − 2ϕP + ϕW

∆r2
+
κl
R

ϕE − ϕW
2∆r

+
ϕN − 2ϕP + ϕS

∆z2
(3.2- 1)

write

De =
1

∆r2
+

κl
2R∆r

(3.2- 2a)

Dw =
1

∆r2
− κl

2R∆r
(3.2- 2b)

Dn =
1

∆z2
(3.2- 2c)

Ds =
1

∆z2
(3.2- 2d)

Dp = −2
1

∆r2
− 2

1

∆z2
(3.2- 2e)
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where e, w, p, n, and s designate the location of the control surface of each control

volume. Figure.3.3 gives a schematic explanation of the symbols used in Eqs. 3.2- 2.

The discretization of diffusion term can be written as

D∇2ϕ = (Dn, Dw, Dp, De, Ds)



ϕN

ϕW

ϕP

ϕE

ϕS


(3.2- 3)

Ds, Dw, Dp, De and Dn are denoted as the diffusion term coefficients, and they can

be written in a vector format D = (Ds, Dw, Dp, De, Dn)
T . Next a vector ϕ5 =

(ϕS, ϕW , ϕP , ϕE, ϕN)
T is introduced and now the discretization of diffusion term can

be represented succinctly by

D∇2ϕ =DTϕ5. (3.2- 4)

3.2.3 Discretization of the Convection Term

Using a finite volume approach, the first order derivative in the convection term

u∂ϕ/∂r is approximated as

D

(
u
∂ϕ

∂r

)
=
ueϕe − uwϕw

∆r

Difference extrapolation methods for ϕe and ϕw lead to difference discretization

scheme. In the present study, second-order upwind (SUS) scheme is selected for

the discretization of convection terms. The second-order upwind scheme is a high-

order, conservative and absolute stable scheme [57]. As illustrated in Figure. 3.4, the
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second order upwind extrapolation of the value on finite volume surface is defined as

ϕw =


1.5ϕW − 0.5ϕWW , uw > 0

1.5ϕP − 0.5ϕE, uw < 0

ϕe =


1.5ϕP − 0.5ϕW , ue > 0

1.5ϕE − 0.5ϕEE, ue < 0

In a more compact form, the second order upwind scheme for convection terms can

be approximated by

D

(
u
∂ϕ

∂r

)
=

ue
∆r

ϕe −
uw
∆r

ϕw

= (1.5ϕP − 0.5ϕW )Jue, 0K/∆r − (1.5ϕE − 0.5ϕEE)J−ue, 0K/∆r
− (1.5ϕW − 0.5ϕWW )Juw, 0K/∆r + (1.5ϕP − 0.5ϕE)J−uw, 0K/∆r

(3.2- 5)

where Ja, bK = max(a, b).
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Figure 3.4: Second-order upwind scheme

Similarly in the axial direction,

D

(
w
∂ϕ

∂z

)
=
wnϕn − wsϕs

∆z

= (1.5ϕP − 0.5ϕS)Jwn, 0K/∆z − (1.5ϕN − 0.5ϕNN)J−wn, 0K/∆z
− (1.5ϕS − 0.5ϕSS)Jws, 0K/∆z + (1.5ϕP − 0.5ϕN)J−ws, 0K/∆z

(3.2- 6)
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The convection term coefficients are defined as

FSS = 0.5Jws, 0K/∆z (3.2- 7a)

FS = −1.5Jws, 0K/∆z − 0.5Jwn, 0K/∆z (3.2- 7b)

FWW = 0.5Juw, 0K/∆r (3.2- 7c)

FW = −0.5Jue, 0K/dr − 1.5Juw, 0K/∆r (3.2- 7d)

FP = 1.5Jue, 0K/∆r + 1.5J−uw, 0K/∆r + 1.5Jwn, 0K/∆z + 1.5J−ws, 0K/∆z (3.2- 7e)

FE = −1.5J−ue, 0K/∆r − 0.5J−uw, 0K/∆r (3.2- 7f)

FEE = 0.5J−ue, 0K/∆r (3.2- 7g)

FN = −1.5J−wn, 0K/∆z − 0.5J−ws, 0K/∆z (3.2- 7h)

FNN = 0.5J−wn, 0K/∆z (3.2- 7i)

and written in a vector format,

F = (FSS, FS, FWW , FW , FP , FE, FEE, FN , FNN)
T .

The nine-point stencil can be written in a vector format,

ϕ9 = (ϕSS, ϕS, ϕWW , ϕW , ϕP , ϕE, ϕEE, ϕN , ϕNN)
T ,

thus the convection term discretization can be written succinctly as

D

(
u
∂ϕ

∂r
+ w

∂ϕ

∂z

)
= F Tϕ9 (3.2- 8)

Since the formulated scheme results in a nine-point stencil in 2D mesh, as displayed

in Figure 3.3, modifications must be made to accommodate control volumes adjacent

to the boundaries. Details of the modifications are shown in Appendix A.
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3.2.4 Discretization of Velocities

Velocities at each control volume face are needed to calculate the convection term

coefficients, as shown in Eqs. 3.2- 7. They are discretized as follow:

uw =
1

R

ψsw − ψnw
∆r

=
1

R

ψS + ψSW − ψN − ψNW
4∆r

(3.2- 9a)

ue =
1

R

ψse − ψne
∆r

=
1

R

ψS + ψSE − ψN − ψNE
4∆r

(3.2- 9b)

wn = − 1

R

ψne − ψnw
∆z

= − 1

R

ψNE + ψE − ψNW − ψW
4∆z

(3.2- 9c)

ws = − 1

R

ψse − ψsw
∆z

= −ψSE + ψE − ψSW − ψW
4∆z

(3.2- 9d)

The notations used are illustrated in Figure 3.5.

ܲ ܹ   ܧ

ܰ 

ܵ 

ܹܰ   ܧܰ

 ܹܵ ܧܵ

 ݓ ݁ 

݊ 

 ݏ

 ݓ݊ ݊݁ 

 ݓݏ ݁ݏ

Δݖ 

Δݎ 

Figure 3.5: A sketch of notations
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3.2.5 Discretization of Temporal Terms

Temporal terms are discretized by backward difference in order to make the formu-

lation fully implicit. Using the notations introduced above, the discretized governing

equations can be written as

ζn+1
P − ζnP

∆t
+

1

Pr
· (Fn+1)T · ζn+1

9 −DT · ζn+1
5

=
1

Pr

κl
R
un+1ζn+1

P − κ2l
R2
ζn+1
P +Ra

T n+1
E − T n+1

W

2∆r
(3.2- 10a)

1

R
DT ·ψn+1

5 − κl
R2

ψn+1
E − ψn+1

W

∆r
= −ζn+1

P
(3.2- 10b)

T n+1
P − T nP

∆t
+

1

Pr
· (Fn+1)T ·Tn+1

9 =
1

Pr
DT ·Tn+1

5

+
1

Pr

Tfτ
2
0

N

((
T n+1
P

Tf
+ 1

)4

− In+1

)
(3.2- 10c)

DT · In+1
5 = 3τ 20

((
In+1
P − T n+1

Tf
+ 1

)4
)

(3.2- 10d)

3.2.6 Discretization of Boundary Conditions

As mentioned earlier in this chapter the vorticity boundary conditions need special

attention. In this study Thom’s formula [46] is applied to discretize the vorticity
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boundary conditions:

ζ0,j = − 2

∆r2
(ψ1,j − ψ0,j) = − 2

∆r2
ψ1,j (3.2- 11a)

ζNmax−1,j = − 2

∆r2(κl + 1)
(ψNmax−2,j − ψNmax−1,j) = − 2

∆r2(κl + 1)
ψNmax−2,1

(3.2- 11b)

ζi,0 = − 2

R∆z2
(ψi,1 − ψi,0) = − 2

R∆z2
ψi,1 (3.2- 11c)

ζi,Mmax−1 = − 2

R∆z2
(ψi,Mmax−2 − ψi,Mmax−1) = − 2

R∆z2
ψi,Mmax−2 (3.2- 11d)

Though this formula is first order accuracy, its relatively safe and won’t lead to

divergence in iterations [57].

3.3 Linearization and Solution Algorithm

The discretized algebraic systems Eqs.3.2- 10 are strongly coupled, and highly non-

linear in terms of convection term coefficients and the radiation terms in the energy

balance equation as well as in RTE. To linearize, for each time step n + 1, an inner

iteration is introduced (superscript n+ 1 is omitted when not confusing):

ζ(ν+1)

∆t
+

1

Pr
· (F(ν))T · ζ(ν+1)

9 −DT · ζ(ν+1)
5 − 1

Pr

κl
R
u(ν)ζ(ν+1) +

κ2l
R2
ζ(ν+1)

= Ra
T

(ν+1)
E − T

(ν+1)
W

2∆r
+
ζn

∆t

(3.3- 1)

1

R
DT ·ψ(ν+1)

5 − κl
R2

ψ
(ν+1)
E − ψ

(ν+1)
W

∆r
+ ζ(ν+1) = 0 (3.3- 2)

T (ν+1)

∆t
+

1

Pr
· (F(ν))T ·T(ν+1)

9 − 1

Pr
DT ·T(ν+1)

5 +
1

Pr

Tfτ
2
0

N
I(ν+1)

=
1

Pr

Tfτ
2
0

N

(
T (ν+1)

Tf
+ 1

)4

+
T n

∆t

(3.3- 3)
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DT · I(ν+1)
5 − 3τ 20 I

(ν+1) = −3τ 20

(
T (ν+1)

Tf
+ 1

)4

(3.3- 4)

3.3.1 The Newton-Raphson Iteration

The wellbore annulus is usually filled with gaseous fluid, such as nitrogen or air,

which has a very small absorption coefficient and thereby a very large conduction-to-

radiation coefficient. On the other hand wellbore tubing in thermal recovery processes

are usually very hot, up to 650 K. Thus the forth-order temperature term in both the

energy balance equation and the RTE is intensively non-linear. In order to formu-

late an efficient scheme to cope with strong non-linearity, Newton-Raphson iteration

method [12] is further embedded to solve the discretized energy equation Eq. 3.3-

3 and RTE Eq. 3.3- 4 fully implicitly. The Newton-Raphson iteration for energy

balance equation and RTE can be written as:

δT (l+1)

∆t
+

1

Pr
· (F(ν))T · δT(l+1)

9 − 1

Pr
DT · δT(l+1)

5 +
1

Pr

Tfτ
2
0

N
δI(l+1)

− 1

Pr

τ 20
N

· 4
(
T (l)

Tf
+ 1

)3

δT (l+1) =
T n

∆t
−RT (T

(l), I(l))

(3.3- 5)

where

RT (T
(l), I(l)) =

δT (l)

∆t
+

1

Pr
· (F(ν))T ·T(l)

9 − 1

Pr
DT ·T(l)

5

+
1

Pr

Tfτ
2
0

N
I(l) − 1

Pr

Tfτ
2
0

N
·
(
T (l)

Tf
+ 1

)4 (3.3- 6)

and

DT · δI(l+1)
5 − 3τ 20 δI

(l+1) + 3τ 20 · 4
(
T (l)

Tf
+ 1

)3

· δT
(l+1)

Tf
= −RI(T

(l), I(l)) (3.3- 7)
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where

RI(T
(l), I(l)) = DT · I(l)5 − 3τ 20 I

(l) + 3τ 20 ·
(
T (l)

Tf
+ 1

)4

(3.3- 8)

For temperature and intensity boundary conditions, similarly at inner cylinder

wall r = 0,

δT (l+1) = 1− T (l) (3.3- 9)

δI
(l+1)
P − 2

3τ0

δI
(l+1)
E − δI

(l+1)
P

∆r
=

(
1

Tf
+ 1

)4

−

(
I
(l)
P − 2

3τ0

I
(l)
E − I

(l)
P

∆r

)
(3.3- 10)

at outer cylinder wall r = 1,

δT (l+1) = 0− T (l) (3.3- 11)

δI
(l+1)
P +

2

3τ0

δI
(l+1)
P − δI

(l+1)
W

∆r
= 1−

(
I
(l)
P +

2

3τ0

I
(l)
P − I

(l)
W

∆r

)
(3.3- 12)

at bottom insulated wall z = 0,

(δT
(l+1)
N − δT

(l+1)
P ) +

1

3N
(δI

(l+1)
N − δI

(l+1)
P ) = −

[
(T

(l)
N − T

(l)
P ) +

1

3N
(I

(l)
N − I

(l)
P )

]
(3.3- 13)

δI
(l+1)
P − 2

3τ0

δI
(l+1)
N − δI

(l+1)
P

∆z
− 4

(
T

(l)
P

Tf
+ 1

)3
δT (l+1)

Tf

= −

I(l)P − 2

3τ0

I
(l)
N − I

(l)
P

dz
−

(
T

(l)
P

Tf
+ 1

)4
 (3.3- 14)
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at top insulated wall z = H,

(δT
(l+1)
P − δT

(l+1)
S ) +

1

3N
(δI

(l+1)
P − δI

(l+1)
S ) = −

[
(T

(l)
P − T

(l)
S ) +

1

3N
(I

(l)
P − I

(l)
S )

]
(3.3- 15)

δI
(l+1)
P +

2

3τ0

δI
(l+1)
P − δI

(l+1)
S

∆z
− 4

(
T

(l)
P

Tf
+ 1

)3
δT (l+1)

Tf

= −

I(l)P +
2

3τ0

I
(l)
P − I

(l)
S

dz
−

(
T

(l)
P

Tf
+ 1

)4
 (3.3- 16)

Eq.3.3- 5 to Eq.3.3- 16 form a complete linear system in δT and δI. These equa-

tions are solved iteratively to update T and I till δT and δI become sufficiently small

(1E-07 in this study).

3.3.2 The Overall Solution Algorithm

Assuming that solutions for time step n are known, then for time step n+ 1, assume

u(0) = un, w(0) = wn, T (0) = T n and initiate the following iteration:

1. Assume u(ν), w(ν), T (ν) = T n and I(ν) are already known, for inner iter-

ation step (ν + 1):

2. Call Newton-Raphson iteration Eq.3.3- 5 Eq. 3.3- 7 to solve for T (ν+1)

and I(ν+1). The systems for δT and δI are solved in a coupled manner.

3. With T (ν+1) known, solve Eq.3.3- 1 and Eq.3.3- 2 in a coupled manner.

The system becomes linear in ζ(ν+1) and ψ(ν+1).

4. ν+ = 1.
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5. Repeat step 2-4, computation for time step n+ 1 completes when

|ϕ(ν+1), ϕ(ν)|max ≤ 10−7,

for ϕ = T, ψ, ζ.

6. The above-described solution algorithm is repeated until a steady state

convergence criterion of the following form is met for all variables ϕ =

T, ψ, ζ:

|ϕn+1 − ϕn|max

|ϕn+1|max

≤ 10−6.

7. The local Nusselt number along the inner and outer annulus walls are

defined as

Nu = Nuc +Nur = −R
(
∂T

∂r
+

1

3N

∂I

∂r

)
(3.3- 17)

Numerical Nusselt numbers along the annulus walls is calculated using

three grid points by the following formula:

Nui =
7T0,j − 8T1,j + 2T2,j
6∆r − 2κl(∆r)2

+
1

3N

7I0,j − 8I1,j + 2I2,j
6∆r − 2κl(∆r)2

, (3.3- 18)

Nuo =R
7TNmax−3,j − 8TNmax−2,j + 2TNmax−1,j

6∆r − 2κl(∆r)2

+
1

3N

7INmax−3,j − 8INmax−2,j + 2INmax−1,j

6∆r − 2κl(∆r)2

. (3.3- 19)

8. The average Nusselt number can be defined as follows:

Nu =
1

H

∫ H

0

Nu dz (3.3- 20)
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where numerical integrate is calculated using Simpson’s rule.

9. The average heat loss rate of the inner cylinder wall per unit length is

calculated by

Qloss =
Nui · k

L · (Ti − To) · 2πri
. (3.3- 21)

3.4 Solution of Linear Algebraic System of Equations

Discretization of high dimensional transport equations usually results in large, sparse

and non-symmetric linear algebraic systems. Some of the widely used robust iterative

methods includes: conjugate gradient method (CG), bi-conjugate gradient method

(BiCG), bi-conjugate gradient stabilized method (Bi-CGSTAB), and the generalized

minimal residual method (GMRES) [8]. The CG method is extremely effective when

the coefficient matrix is symmetric positive definite. BiCG, like CG, uses limited

storage. It can be deployed when the coefficient matrix is non-symmetric and nonsin-

gular, however convergence is not always insured. BiCG-STAB is an enhancement of

BiCG method, It has better convergence performance and saves computational time.

However it may fail when the matrix is too large. In the present study, GMRES is

deployed as the linear solver for its efficiency for general non-symmetric matrices [13].

Since it requires a large amount of storage, the restart version of GMRES is used.

The incomplete LU fractorization algorithm is used as a preconditioning procedure

for GMRES. An open source iterative linear solver library IML++ [47] is embed-

ded in the program. The open source library SparseLib++ [48] is used for matrix

operations.
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3.5 Overall Algorithm

The overall numerical solution algorithm is summarized in the following flow chart

(Figure.3.6).

39



St
ar
t

In
pu

t I
ni
tia

l C
on

di
tio

ns
,

t=
0

YE
S

 
 

൅ݐ
ൌ
1;
 

St
ar
t i
nn

er
 it
er
at
io
n:
 

ߥ
ൌ
0 

 C
al
cu
la
te
 

ݐݑ
൅
1,
ሺߥ
ሻ ,
ݓ
൅ݐ
1,
ሺߥ
ሻ   

Re
ac
he

s
En

d 
tim

e?
 

Li
ne

ar
iz
e 
ve
lo
ci
tie

s t
er
m
s

Re
ac
he

s 
st
ea
dy

 st
at
e?
 

൅ݒ
ൌ
1;

 

St
or
e 
߰
൅ݐ
1 ,
ݐߞ
൅
1
, 

ݐܶ
൅
1 ,
ݐݑ

൅
1 ,
ݓ
൅ݐ
1  

Ca
lc
ul
at
e 
ܰ
ݑ ݅
,ܰ
ݑ ݋

,
ܰ
ݑ ݅

തതത
തത
, ܰ
ݑ ݋

തതത
തതത

 

N
O

YE
S

YE
S

N
O

N
ew

to
n‐
Ra

ph
so
n 
ite

ra
tio

ns
 fo

r 

ݐܶ
,ሺߥ
൅
1ሻ
ܫ,
,ݐ
ሺߥ
൅
1ሻ
 

En
d 
ca
lc
ul
at
io
n

G
en

er
at
e 
Ja
co
bi
an

 fo
r 

ݐܶ
,ሺߥ
൅
1ሻ
ܫ,
,ݐ
ሺߥ
൅
1ሻ
 

Ca
ll 
lin
ea
r s
ol
ve
r 

G
M
RE

S 

Co
nv
er
ge
 in

 

ݐܶ
,ሺߥ
൅
1ሻ
 a
nd

ݐܫ 
,ሺߥ
൅
1ሻ
 

G
en

er
at
e 
lin
ea
r s
ys
te
m
 o
f 

߰
ሺ,ݐ
൅ߥ

1ሻ
 a
nd

ߞ 
,ݐ
ሺߥ
൅
1ሻ
 

Ye
s

݈൅
ൌ
1 

N
o

N
O

Co
nv
er
ge
 in

 

߰
ሺ,ݐ
൅ߥ

1ሻ
 a
nd

ߞ 
,ݐ
ሺߥ
൅
1ሻ
 

Figure 3.6: Flowchart of the calculation procedure

The program is developed in C++, for its merits of objective-oriented program-

ming (OOP). It facilitates developing and maintaining large software systems, and
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I/O management with other wellbore/reservoir simulators. The IDE used for software

development is Microsoft Visual Studio 2013. A snapshot is shown in Figure. 3.7.

Figure 3.7: A snapshot of the program code
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Chapter 4

MODEL VALIDATION AND

SIMULATION RESULTS

In Chapter 3, the problem was formulated in a way such that by setting the ra-

dius ratio κ = 1 and the conduction-to-radiation coefficient N = ∞, the problem

degenerates to pure natural convection in a vertical slot. In this Chapter, the numer-

ical algorithm is first validated by comparing simulation results of pure convection

in a square slot with literature outcomes. Subsequently, the effect of aspect ratio,

radius ratio, conduction-to-radiation coefficient and dimensionless time, on the flow

structure and heat transfer characteristics are examined.

4.1 Validation Tests

From the foregoing mathematical formulation, it can be seen that the flow field and

temperature distribution for the problem under consideration are governed by the

following dimensionless parameters: the Rayleigh number Ra, the Prandtl number

Pr, the aspect ratio H, the radius ratio κ, the conduction-to-radiation parameter N

and the optical thickness τ0. In this chapter, in order to examine the main features

of the interaction between natural convection and radiation, all computations are

carried out with Pr = 0.7 and τ0 = 1.

Validation tests are first performed for with H = 1, κ = 1, and N = ∞, corre-

sponding to pure natural convection within a square slot. This setting allows the

comparison of the present simulation results to numerous results found in the lit-

erature. Steady state simulation results have been obtained for Ra = 103 − 107.

42



A mesh system of 41 (r direction) by (41 z direction) is found to be adequate for

Ra = 103 − 105, a 61 × 61 mesh for Ra = 106, and a 101 × 101 mesh for Ra = 107.

The mesh system adopted is based on a series of grid-independence calculations using

various meshes of 31×31, 41×41, 51×51, 61×61, 71×71, 81×81, 91×91, 101×101.

Table 4.1: Comparison of present simulation results with other work

Ra 103 104 105 106 107

de Vahl Davis [15]
Nui 1.118 2.243 4.519 8.800 -
umax(1/2, z) 3.649 16.1841 34.73 64.63 -
wmax(r, 1/2) 3.697 19.6204 68.59 219.36 -
Le Quéré and Alziary de Roquefort [38]a and Le Quéré [37]b

Nui 1.117a 2.245a 4.526a 8.825b 16.523b

umax(1/2, z) 3.6794a 16.183a 34.75a 64.83b 148.8b

wmax(r, 1/2) 3.6974a 19.629a 68.85a 220.57b 699.3b

Ho and Lin[28]
Nui 1.118 2.248 4.528 8.824 16.524
umax(1/2, z) 3.643 16.176 34.75 64.83 151.6
wmax(r, 1/2) 3.697 19.628 68.63 219.86 705.3

Present study
Nui 1.117 2.246 4.551 8.962 16.796
umax(1/2, z) 3.647 16.243 35.82 69.65 162.7
wmax(r, 1/2) 3.694 19.522 66.87 216.36 692.4

Table 4.1 compares the steady state computation results with those of the bench-

mark solutions in the literature[15] [38][37][28], in terms of the average Nusselt number

of inner cylinder wall, and the maximum velocity at both the horizontal and vertical

mid-plane. It can be seen that the results of present simulations agree remarkably

well with the benchmark results. This clearly confirms the validity of the present al-

gorithm. In particular, the agreement is strong between the average Nu of the present

study and the literature, as shown by a more intuitive comparison in Figure 4.1,
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Figure 4.1: Comparison of average Nusselt number along inner vertical wall of present
simulations and benchmark results

Figure 4.2 and 4.3 plot the (dimensionless) temperature and stream function as

well as velocity field of the two-dimensional solutions obtained for Ra = 103−107. In

both figures, the centro-symmetry of the isotherms and streamlines can be detected.

Moreover, the continuity shown in the velocity field plots also confirms the validity of

the developed algorithm. By comparing the isotherms and stream lines, the Rayleigh

number increases and the flow regime transits from nearly conduction to partially

turbulent, which is in agreement with the benchmark results. For large Rayleigh

numbers Ra = 106 and 107, the flow structure and temperature distribution are

featured by thin boundary layers along the vertical walls and secondary vortices in a

thermally stratified core. In particular, the occurrence of a recirculation region and a

flow divergence in the upper left and lower right corners of the enclosure at Ra = 107

can be readily detected from the stream function plot in Figure.4.3.
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Temperature Stream Function Velocity Field

(a)

Temperature Stream Function Velocity Field

(b)

Temperature Stream Function Velocity Field

(c)

Figure 4.2: Plots of temperatures, stream functions and velocity fields for (a)
Ra = 103, (b) Ra = 104 (c) Ra = 105, with a 41× 41 mesh
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Temperature Stream Function Velocity Field

(a)

Temperature Stream Function Velocity Field

(b)

Figure 4.3: Plots of temperatures, stream functions and velocity fields for (a)
Ra = 106, with a 61× 61 mesh (b) Ra = 107, with a 101× 101 mesh
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4.2 Effect of Aspect Ratio, Radius Ratio and Radiation on

the Flow Structure and Heat Transfer Characteristics

In the previous section, the effect of Rayleigh number on the flow structure and heat

transfer characteristics of the problem under consideration has been clearly demon-

strated in the validation tests. In this section, a total number of 20 simulations are

run to examine the effect of aspect ratio, radius ratio and conduction-to-radiation

coefficient on the flow field and heat transfer characteristics within the annulus. Pa-

rameters of each simulation are summarized in Table 4.2. Average Nusselt number

along inner cylinder wall of each simulation is also presented in the table.

Table 4.2: A Summary of parameters used in simulations to examine the effects of
aspect ratio, radius ratio and radiation

Case No. Ra Aspect ratio Radius ratio N t Nu0

1 106 2 0.5 ∞ steady state 10.564
2 106 4 0.5 ∞ steady state 9.379
3 106 8 0.5 ∞ steady state 8.165
4 106 10 0.5 ∞ steady state 7.759

5 106 2 0.5 1 steady state 12.591
6 106 4 0.5 1 steady state 11.461
7 106 8 0.5 1 steady state 10.511
8 106 10 0.5 1 steady state 10.169

9 105 2 0.5 1 steady state 7.803
10 105 4 0.5 1 steady state 7.270
11 105 8 0.5 1 steady state 6.627
12 105 10 0.5 1 steady state 6.423

13 106 4 0.8 1 steady state 9.521
14 106 4 0.5 1 steady state 11.461
15 106 4 0.2 1 steady state 14.563
16 106 4 0.1 1 steady state 17.162

17 106 4 0.8 10 steady state 7.910
18 106 4 0.5 10 steady state 9.528
19 106 4 0.2 10 steady state 12.203
20 106 4 0.1 10 steady state 14.538
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4.2.1 Effect of Aspect Ratio

(a) A = 2

(b) A = 4
(c) A = 8

(d) A = 10

Figure 4.4: The effect of aspect ra-
tio on the isotherms and streamlines for
Ra = 106 and κ = 0.5 without radiation,
case No.1 - 4

(a) A = 2

(b) A = 4
(c) A = 8

(d) A = 10

Figure 4.5: The effect of aspect ra-
tio on the isotherms and streamlines for
Ra = 106, κ = 0.5, and N = 1, case No.
5-8

Figure 4.4 shows the effect of aspect ratio on the dimensionless isotherms and stream-

lines with Ra = 106, κ = 0.5 and N = ∞. In each group of plots, the isotherm is

displayed on the left and streamline on the right. Laminar convection is the pri-

mary heat transfer mode. Thermal boundary layer is observed near both walls for

all aspect ratios. For H = 2, the isotherms in the center of the plane are almost

flat; when the aspect ratio increases, isotherm inversion is more intensive, since the

boundary layer is more readily developed for large aspect ratios. Figure 4.5 displays

a corresponding group of simulations with the same parameters, except that the

conduction-to-radiation coefficient is 1, indicating the effect of radiation. Comparing

to Figure 4.5, the streamlines in Figure 4.5 are more uniform. Thus we conclude that

radiation helps stabilize the flow structure.
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N=∞, A=2
N=∞, A=4
N=∞, A=8
N=∞, A=10
N=1, A=2
N=1, A=4
N=1, A=8
N=1, A=10

Figure 4.6: The effect of aspect ratio on the temperature profile at z = 0.5H, with
Ra = 106, κ = 0.5, for N = ∞ and 1

Figure 4.6 illustrates the effect of aspect ratio on the temperature profile at the

horizontal mid-plane, with Ra = 106, κ = 0.5, N = ∞ and 1. For a fixed aspect

ratio, the temperature is higher in the pure convection scenario, i.e. N = ∞ than

when N = 1. For a fixed N , the absolute value of the temperature gradient near

both walls decreases as the aspect ratio increases. This phenomenon is because the

thermal boundary layer is thicker when aspect ratio is large.

49



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

z/H

N
u

 

 

N=∞, A=2
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Figure 4.7: The effect of aspect ratio on local Nusselt number along the inner annulus
wall at Ra = 106, κ = 0.5, for N = ∞ and 1

Local Nusselt number along inner cylinder wall of each case discussed are shown

in Figure 4.7. Local Nusselt numbers are higher when N = 1 than N = ∞, which

is due to the contribution of radiation to the over all heat transfer rate. For a

fixed N the local Nusselt number decreases as aspect ratio increases. Once again,

this phenomenon can be explained by the fact that thermal boundary layer is more

readily developed at large aspect ratios.
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(a) H = 2

(b) H = 4
(c) H = 8

(d) H = 10

Figure 4.8: The effect of aspect ratio on the
isotherms and streamlines for Ra = 105 and
κ = 0.5 and N = 1, case No. 9 - 12

Figure. 4.8 shows a group of simulation results with Ra = 105, κ = 0.5 and

N = 1. Comparing to Figure 4.5, the streamlines are more uniform and isotherms

less distorted. This is because convection is weaker for smaller Rayleigh numbers.
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4.2.2 Effect of Radius Ratio

(a) κ = 0.8

(b) κ = 0.5

(c) κ = 0.2

(d) κ = 0.1

Figure 4.9: The effect of radius ra-
tio on the isotherms and stream-
lines for Ra = 106, A = 4 and
N = 1, case No. 13-16

(a) κ = 0.8

(b) κ = 0.5

(c) κ = 0.2

(d) κ = 0.1

Figure 4.10: The effect of radius
ratio on the isotherms and stream-
lines for Ra = 106, A = 4 and
N = 10, case No. 17-20

Figure. 4.9 and Figure. 4.10 show the effect of radius ratio on the temperature

profile and flow structure with Ra = 106, A = 4, N = 1 and N = 10, respectively.

In Figure.4.9 (a) when κ = 0.8, i.e. narrower annular space, the occurrence of a

recirculation cell at each of the upper left and lower right corners of the streamline

enclosure is seen. As the radius ratio decreases, these convection cells merge into

one major cell. Moreover, for a larger aspect ratio κ = 0.8, the isotherms penetrate

through the whole region while for small aspect ratio κ = 0.1 the isotherms penetrate

only part of the region. This phenomenon can be explained by that as radius ratio

increases, the gap of the annulus becomes smaller, therefore it is easier for thermal

energy to transport.
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Figure 4.11: The effect of radius ratio on the temperature profile at z = 0.5H for
Ra = 106, H = 4 and N = 1

Figure 4.11 depicts the effect of radius ratio on the temperature profile at the

horizontal mid plane for Ra = 106, H = 4, and N = 1. As the radius ratio increases,

the temperature increases sharply, due to the curvature effect.
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N=1, κ=0.8
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Figure 4.12: The effect of radius ratio on local Nusselt number along the inner annulus
wall at z = 0.5H for Ra = 106, H = 4, for N = 1

Figure 4.12 illustrates the effect of radius ratio on local Nusselt number along

inner cylinder wall with Ra = 106, H = 4, N = ∞ and 1. Again we can see the

contribution of radiation to the local heat transfer rate, as local Nusselt number

along inner cylinder wall is higher when N = 1 than N = ∞. For a fixed N , the

local Nusselt numbers increase as the radius ratio increases, which can be explained

by the curvature effect too.
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4.3 Effects of Dimensionless Time

The groups of simulations in this section are aimed to show the algorithm’s capability

and robustness in simulating the heat transfer within a very long vertical annulus,

which is the usual configuration of wellbore annuli. The effect of dimensionless time

on the flow structure and heat transfer characteristics is also demonstrated.

Figure 4.13 shows the simulation results of pure convection within a tall annulus

with Ra = 1.42E4, H = 20, κ = 0.8. The transient isotherms and streamlines are

captured with a dimensionless time increment of 0.05. From the streamlines, we can

tell that multiple convection cells develops in the plane and rise upward along time.

This phenomenon leads to the oscillations in the isotherms as well as in the local

Nusselt number along inner cylinder wall.
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Figure 4.14 demonstrates a corresponding simulation with Ra = 1.42E4, H =

20, κ = 0.8 and N = 1. In the streamlines, multiple convection cells form at first

and merge into one big cell as time passes by. The local Nusselt number along inner

cylinder wall are larger compared with the pure convection case.
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Chapter 5

APPLICATION IN VACUUM

INSULATED TUBING COMPLETED

WELLBORE SIMULATION

In Chapter 4 the accuracy and applicability of the developed module of annulus heat

transfer are demonstrated through series of validation tests and experimental tests.

In this Chapter, the developed module is applied by coupling to a stand-alone thermal

wellbore simulator developed by Xiong [69] for case studies of VIT completed wellbore

heat transfer simulation.

5.1 Overview of the Standalone Thermal Wellbore Simulator

The Standalone Thermal Wellbore Simulator is recently developed by Xiong in 2015

[69]. It is a multi-phase, multi-component, transient, thermal and fully-implicit well-

bore simulator. It has the capacity of modelling different complex wellbore configu-

rations including horizontal wells and wells completed with dual tubing.
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Results Obtained

• A standalone thermal wellbore simulator can handle differ

•
Figure 5.1: The Standalone Thermal Wellbore Simulator, Copyright ©2016 by Reser-
voir Simulation Group, University of Calgary

In the original simulator, a series of FLUENT simulations were run with different

tubing temperature, casing temperature, tubing radius and casing radius to calculate

the convective heat transfer within the annuli. FLUENT simulations were also run on

annulus enclosed by dual-tubing completions. Correlations between Nusselt number

and Rayleigh number were regressed based on simulation results, and embedded in

the wellbore simulator to improve heat loss calculations. For more details on the

Standalone Thermal Wellbore Simulator, the reader is referred to Xiong’s thesis [68].

In this chapter, the developed annulus heat transfer module is coupled to the wellbore

simulator to replace the original correlations.
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5.2 Marlin Well A-6 Data

In 2002 a series of three papers [10] [18] [23] addressed the failure of Well A-2 on the

Marlin tension leg platform (TLP) located in the Gulf of Mexico. By analyzing the

physical evidence, the primary failure mechanism is identified to be the incremental

annulus fluid expansion (AFE) pressure in the annuli [10]. Based on this failure

analysis, a redesign process using VIT for the remaining Marlin wells was proposed

[18]. Well A-6 is chosen for a full-scale test of VIT, with fiber-optic cable run on

completion to continuously monitor the production-annulus temperature [23]. In this

section, the Marlin Well A-6 data is used for the case study. Figure. 5.2 shows a

schematic of Marlin A-6 Well. All parameters are originally in field units, in this

study, they are converted to SI units. Terminology used are summarized in Table 5.1,

parameters are listed in Table 5.2. Design parameters of vacuum insulated tubing are

summarized in Table 5.3.
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Gelled Brine Recipe. Fig. 6 is identical to Fig. 5, with the addition
of fiber data from the same interval in Well A-4. There is a marked
difference between the two profiles in the region between the
connection spikes. In Well A-6, the gelled brine is properly for-

mulated and mixed and performs its primary function of minimiz-
ing natural convection in the A annulus. The difference in con-
ductivity between the VIT body and the connection is readily
apparent. In Well A-4, on the other hand, with a lower gel-loading
concentration, heat from the connection region is convected along
the length of the tubing, lowering the effectiveness of the vacuum
body. Although these two wells are roughly equivalent in their
production characteristics, Well A-4 is the hotter wellbore, but the
additional temperature is not sufficient to result in unacceptable
safety factors in the B and C annuli. In Table 6, the design as-
sumption of brine for an A-annulus fluid below the POTH is
representative of a complete breakdown of the gelled packer fluid.

Regional Heating. Redesign of the Marlin wells addresses each
well as an individual. The spacing at Marlin, however, is fairly
close. The seafloor pattern is two rows of three wells each, with a
spacing of roughly 25 ft between rows and columns. With time and
production, the proximity of neighboring wellbores can be ex-
pected to heat the critical outer annuli of a well beyond what is
anticipated in a single-well study.

An attempt was made to numerically quantify the effect of
regional heating on an individual wellbore and, more importantly,
an individual annulus. This study is complicated by the fact that
one must marry an oilwell thermal simulator with another thermal-
analysis package (finite element in the case of Marlin) in which the
capabilities of the two tools to address all issues (semi-infinite
boundaries, wellbore-fluid properties, natural convection, and ther-
mal interference) in a consistent manner may not exist. The result

Fig. 3—Schematic of Marlin Well A-6.

Fig. 2—Representative output from Marlin fiber-optic installation.

126 June 2004 SPE Drilling & Completion
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0.251 m

Figure 5.2: Schematic of Marlin Well A-6, subtracted from Gosch et al. 2002 [23]

Table 5.1: Terminology for Marlin A-6 Well

Item Explanation
POTH the submudline tubing-hanger packer is called a packoff tubing hanger
A- annulus the production tubing/tieback (5 1/2- × 10 3/4- in.) annulus
B- annulus the annulus outside production tieback
C- annulus the annulus outside the intermediate casing
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Table 5.2: Summary of Design Parameters for Marlin A-6 Well Input Variables in SI
Units

Variable Value
Thermal conductivity of formation 0.865 w/m-°C for 0 to 121.92 m below

mudline, 1.5916 w/m-°C deeper
Thermal conductivity for chrome 24.22 w/m-°C deeper
A-annulus fluid Nitrogen from TLP to POTH, brine

from POTH to total depth (TD)
B- and C-annulus fluids Fresh water at the hydrostatic pres-

sure of the installation fluid
POTH position 24.384 m below mudline
Flow rate An initial production scenario suffi-

cient to produce a flowing hydrocar-
bon temperature of 82.22°C

Mudcake 0.02699 m on both the 0.508 −
×0.407− m surface casing and liner
and the 0.346 − ×0.273− m interme-
diate casing

Table 5.3: Design parameters of the vacuum insulated tubing

size 7 1/16- × 5 1/2- in. (0.1178 × 0.1397
m) above POTH, 5 1/2- × 4 1/2- in.
(0.1397 × 0.1016 m) below POTH

VIT unit length approximately 40 ft. (12.192 m)
coupling length approximately 3 ft. (0.914 m)
Thermal conductivity of VIT pipe 0.0346 w/m-°C
Thermal conductivity of VIT couping 45.326 w/m-°C

A fiber-optic cable is run along the production annulus to continuously collect

the production casing temperature data. Typical output temperature data is shown

in Figure 5.3. The temperature profile demonstrates severe zig-zag pattern. By

expansion of a segment of the profile, shown in Figure 5.4, we can clearly detect

the temperature spikes in the casing temperature profile. The spikes occur regularly,

roughly every 40 ft., which is in consistence with the locations of VIT couplings along

the wellbore.
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Figure 5.3: Typical output of the Marlin Well fiber-optic installation, subtracted from
Gosch et al. 2002 [23]

Figure 5.4: Typical output of the Marlin Well fiber-optic installation, subtracted from
Gosch et al. 2002 [23]
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5.3 Annulus Fluid Thermal Properties

Fluid thermal properties are correlated to temperature through regression, for four

types of annulus fluid: air, nitrogen, water and brine (11 lb/gal CaCl2 brine). Symbols

and units are listed in Table. 5.4. Due to space limitations the original datasets used

for regression are listed in Appendix B. The following correlations are embedded in

the program such that thermal properties can be calculated automatically when the

fluid type and reference temperatures are specified.

Table 5.4: Annulus Fluid Thermal Properties and Units

Symbol Definition Unit
T reference temperature K
ρ0 density kg/m3

cp specific heat capacity kJ/kg·K
k thermal conductivity W/m·K
µ dynamic viscosity Pa.s
β thermal expansion coefficient 1E-3 1/K

5.3.1 Air Thermal Properties

The following correlations for air thermal properties are valid in a temperature range

T from 273.15 K to 673.15 K:

ρ0 = −9.03741E−09T 3+1.68507E−05T 2−1.14308E−02T+3.33646, R2 = 0.999982

cp = −6.84638E−10T 3+1.26091E−06T 2−5.50107E−04T+1.07539, R2 = 0.996294

k = 6.900488E − 05T + 5.660888E − 03, R2 = 0.9990451

µ = 3.890163E − 08T + 7.164925E − 06, R2 = 0.9953380

β = 1.198E − 05T 2 − 0.01646T + 7.197, R2 = 0.9963272
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5.3.2 Nitrogen Thermal Properties

The following correlations for nitrogen thermal properties are valid in a temperature

range T from 273.15 K to 673.15 K:

ρ0 = 4E − 06T 2 − 0.0056T + 2.4407, R2 = 0.9962

cp = 3E − 07T 2 − 0.0002T + 1.0683, R2 = 0.999

k = 0.0594T + 8.4392, R2 = 0.9992

µ = 0.0382T + 6.7241, R2 = 0.9967

β = 1E − 05T 2 − 0.0163T + 7.1609, R2 = 0.9963

5.3.3 Water Thermal Properties

The following correlations for water thermal properties are valid in a temperature

range T from 273.15 K to 373.15 K:

ρ0 = −0.0035T 2 + 1.1231T + 911.68, R2 = 0.9997

cp = −9E − 08T 3 + 7E − 05xT−0.0188T + 5.7227, R2 = 0.9909

k = −0.0099T 2 + 5.599T − 114.4, R2 = 0.9999

µ = −2E − 06T 3 + 0.0016T 2 − 0.4142T + 35.425, R2 = 0.9994

β = −2E − 06T 3 + 0.0016T 2 − 0.399T + 34.269, R2 = 0.9995
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5.3.4 Brine Thermal Properties

The brine selected is 11 lb/gal CaCl2 brine. The following correlations are valid in a

temperature range T from 273.15 K to 373.15 K:

ρ0 = −0.3322T + 1409.3, R2 = 0.9988

cp = 0.0014T + 2.2981, R2 = 0.9993

k = 0.0603T + 25.832, R2 = 0.9995

µ = −2E − 05T 3 + 0.017T 2 − 6.0602T + 724.04, R2 = 0.9991

β = 0.46

5.4 Numerical Settings

Numerical parameters are designed to be read from the input file and thus can be

specified outside the program. The parameters used for the case study are listed in

Table 5.5.

Table 5.5: Numerical controls for annulus heat transfer simulation in the present case
study

Parameter Value
Number of grids along radial direction 21
Number of grids along axial direction 21
Dimensionless time step 0.001
Convergence tolerance for inner iterations 1.0E-7
Maximum number of inner iteration 50
Convergence tolerance for Newton-Raphson iteration 1.0E-6
Maximum number of Newton-Raphson iteration 50
Convergence tolerance for the linear solver 1.0E-8
Maximum number of the linear solver iteration 150
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5.5 Simulation Results and Analysis

Simulations were run with Marlin Well A-6 data presented above. The annulus fluid

properties are calculated using the correlations provided. Since the primary objective

of this case study is to examine the heat transfer characteristics of vacuum insulated

tubing, only a segment of the whole wellbore was simulated. The fluid temperature,

fluid pressure and casing temperature profiles were obtained, for time 0.01 day, 2

days, 1 month, 2 months and 3 months, shown in Figure 5.5, Figure 5.6 and Figure

5.7 respectively.

Figure 5.5: Simulation results of tubing fluid temperature at 0.01 day, 2 days, 1
month, 2 months and 3 months

As shown in Figure 5.5, the tubing fluid temperature profile exhibits a zig-zag

pattern consistent with the location of vacuum insulated tubing couplings at 0.01

day and 2 days as the production is initialized. After the production of 1 month

the tubing fluid temperature reaches a stable state. The fluid temperature is almost
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constant within the depth of our investigation.

Figure 5.6: Simulation results of tubing fluid pressure at 0.01 day, 2 days, 1 month,
2 months and 3 months

Figure 5.6 shows the tubing fluid pressure profile, at the time of 0.01 day, 2 days,

1 month, 2 months and 3 months. Tubing fluid pressure increases as the depth

increases, and is stable along the production time.
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Figure 5.7: Simulation results of casing temperature profiles at 0.01 day, 2 days, 1
month, 2 months and 3 months

Casing temperature profiles are also obtained from the simulation study, shown

in Figure 5.7. By comparing with the field data of a segment of measured casing

temperature profile displayed in Figure 5.4, it is evident that the research simulation

precisely captures the temperature spikes, indicating that the new simulator is accu-

rate and reliable. The temperature spikes can be explained by the higher heat transfer

rate at the couplings, which is clearly demonstrated by the overall heat transfer co-

efficient. The overall heat transfer coefficient of both VIT pipe and VIT coupling are

listed in Table 5.6.

Table 5.6: Overall heat transfer coefficient Uto of VIT pipe and VIT coupling

Variable Value
Overall heat transfer coefficient Uto of VIT pipe 1.81554 W/m2°C
Overall heat transfer coefficient Uto of VIT coupling 5.64513 W/m2°C

The multicellular convection in VIT annulus induced by the hot couplings plays

a critical role and significantly decrease the VIT overall insulation efficiency. It must
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be well analyzed to determine heat loss through VIT and prevent tubular failure due

to much higher thermal stress in the tubular and the annulus pressure buildup (APB)

than expected.
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Chapter 6

CONCLUSIONS AND FUTURE

WORKS

This study addressed the conjugate natural convection and radiation within thermal

wellbore annuli using a rigorous mathematical model and numerical simulation, which

to the author’s knowledge has not been done before. The major contributions of this

thesis are reported below followed by recommendations for future work.

6.1 Conclusions

1. A novel 2D transient mathematical model of the conjugate natural

convection and radiation within thermal wellbore annuli is proposed. A

vorticity- steam function based approach is used to form the governing

equations. This method avoids the calculation of pressure terms and

results in relatively succinct solution algorithms.

2. An efficient and robust numerical scheme involving second-order up-

stream method and Newton-Raphson iteration is developed and vali-

dated. The scheme demonstrates its merit when convection and radia-

tion are strong, as well as when the aspect ratio is very high.

3. A flexible module of annulus heat transfer simulation is developed in

C++, and fully coupled to a standalone thermal wellbore simulator.

The significance of the developed module is shown by a case study

of vacuum insulated tubing (VIT) heat transfer simulation. The new
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simulator precisely captures the temperature spikes along casing tem-

perature profile, and accurately calculates heat loss within the wellbore.

6.2 Recommendations for Future Work

There is still lots of work required to improve the features of the developed program

and the further development of a thermal wellbore simulation. The work to be done

is summarized as follows:

1. Analyze the casing thermal stress and annulus pressure build up based

on the present simulation results. This analysis is critical to thermal

wellbore integrity and constructive to well design.

2. Conduct a full-scale simulation of hot fluid injection through VIT versus

bare tubing to justify VIT’s insulation efficiency in both short term and

long term.

3. Simulate the conjugate natural convection and radiation within the an-

nulus space enclosed by a dual-string completion. Since the annulus

space of this kind is irregular, a 3D model is required. Unstructured

mesh (can be generated by Delauney triangulation) is needed for dis-

cretization. A new discretization scheme and solution algorithms that

adapt to the unstructured mesh are also needed.

4. Continue to study the types of annulus fluid thermal properties, espe-

cially the radiative properties. For a material, the radiative absorption

coefficient depends on the frequency of the absorbed wave and the tem-

perature of the material. In the present radiation model, an average

number of absorption coefficient is used as the gray fluid assumption
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indicates. Therefore a delicate determination of average value is needed

for any annulus fluid.

5. Simulate the evaporation and condensation process for a wet annulus.

The literature has shown that for a wet annulus, evaporation at the hot

joint and condensation at relatively cold tubing wall will lead to more

heat loss.
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Appendix A

Convection Term Modifications for

Border Control Volumes

Discretization using second-order upwind scheme leads to a nine-point stencil for 2D

problems. As illustrated in Figure A.1, a modification on the discretization is needed

for control volumes adjacent to the boundaries [59].Taking an arbitrary variable ϕ for

example, the convection term writes

(
u
∂ϕ

∂r
+ w

∂ϕ

∂z

)
.

In the following sections, discussion will focus on the discretization of the convection

term for border control volumes in different scenarios.
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i, radial

j, vertical

Figure A.1: A sketch of mesh used for discretization

A.1 Left Border Control Volume

Consider a typical border point P adjacent to the left boundary, shown in Fig.A.2.

In the axial direction, each of ϕn and ϕs has two upwind neighbours in each direction.

As long as the control volume is not on the corner, the original second-order upwind

scheme can be used for its discretization along axial direction. In the radial direction,

ϕe can be estimated using second-order upwind scheme, as two upwind neighbours

exists in each direction. However P only has one neighbour on its left (namely,W ). If

the flux uw is from the left boundary, i.e. uw > 0 only schemes involves one neighbour

is valid, such as the first order upwind or central difference. In the present study, the

central difference is used for this scenario. If the flux uw comes toward the west face

from the interior of the domain, i.e. uw < 0, as two neighbours exist on the right

84



hand side and second-order upwind scheme can be deployed.

Le
ft
 b
o
u
n
d
ar
y

       
   

 

  

Figure A.2: Schematic of border (near boundary) control volume: a typical left border
u control volume

To sum up, the discretization for w ∂ϕ
∂z

remains unchanged, the discretization for

u∂ϕ
∂r

writes,

D

(
u
∂ϕ

∂r

)
=
ueϕe
∆r

− uwϕw
∆r

where on the east face, the second order upwind scheme

ueϕe
∆r

= (1.5ϕP − 0.5ϕW )Jue, 0K/∆r − (1.5ϕE − 0.5ϕEE)J−ue, 0K/∆r
remains unchanged.

On the west face,

−uwϕw
∆r

= −0.5(ϕW + ϕP )Juw, 0K/∆r + (1.5ϕP − 0.5ϕE)J−uw, 0K/∆r
i.e second-order upwind scheme is applied when uw < 0, central difference is applied

when uw > 0.

The convection term coefficients F left for control volumes adjacent to the left
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boundary is written as

FSS = 0.5Jws, 0K/∆z (A.1- 1a)

FS = −1.5Jws, 0K/∆z − 0.5Jwn, 0K/∆z (A.1- 1b)

F ∗
WW = 0 (A.1- 1c)

F ∗
W = −0.5Jue, 0K/∆r − 0.5Juw, 0K/∆r (A.1- 1d)

F ∗
P = 1.5Jue, 0K/∆r + 1.5J−uw, 0K/∆r + 1.5Jws, 0K/∆z
+ 1.5J−wn, 0K/∆z − 0.5Juw, 0K/∆r (A.1- 1e)

FE = −1.5J−ue, 0K/∆r − 0.5J−uw, 0K/∆r (A.1- 1f)

FEE = 0.5J−ue, 0K/∆r (A.1- 1g)

FN = −1.5J−wn, 0K/∆z − 0.5J−ws, 0K/∆z (A.1- 1h)

FNN = 0.5J−wn, 0K/∆z (A.1- 1i)

where the superscript ∗ indicates that the coefficient is modified from that of inner

control volumes. This formulation implements the algorithm more conveniently. For a

control volume near the left boundary, we only convection coefficients with superscript

∗ need to be modified.

A.2 Right Border Control Volumes

Similarly, for a typical control volume adjacent to the right boundary, the discretiza-

tion of the convection term along the axial direction remains unchanged as long as the

control volume is not at the corner. In the radial direction, the second-order upwind

scheme is still valid for the west face as two neighbours exists for both directions, i.e.
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on the west face,

−uwϕw
∆r

= −(1.5ϕn+1
W − 0.5ϕn+1

WW )Juw, 0K/∆r + (1.5ϕn+1
P − 0.5ϕn+1

E )J−uw, 0K/∆r
remains unchanged.

On the east face, central difference is deployed when the flux ue comes from the

right boundary, i.e. ue < 0, and second-order upwind is used when the flux ue comes

from the inner domain:

ueTe
∆r

= (1.5TP − 0.5T n+1
W )Jue, 0K/∆r − 0.5(TE + TP )J−ue, 0K/∆r

The convection term coefficients for control volumes adjacent to the right boundary

F right is written as

FSS = 0.5Jws, 0K/∆z (A.2- 1a)

FS = −1.5Jws, 0K/∆z − 0.5Jwn, 0K/∆z (A.2- 1b)

FWW = 0.5Juw, 0K/∆r (A.2- 1c)

FW = −0.5Jue, 0K/dr − 1.5Juw, 0K/∆r (A.2- 1d)

F ∗
P = 1.5Jue, 0K/∆r + 1.5J−uw, 0K/∆r + 1.5Jws, 0K/∆z
+ 1.5J−wn, 0K/∆z − 0.5J−ue, 0K/∆r (A.2- 1e)

F ∗
E = −.5J−ue, 0K/∆r − 0.5J−uw, 0K/∆r (A.2- 1f)

F ∗
EE = 0 (A.2- 1g)

FN = −1.5J−wn, 0K/∆z − 0.5J−ws, 0K/∆z (A.2- 1h)

FNN = 0.5J−wn, 0K/∆z (A.2- 1i)
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where the superscript ∗ indicates the coefficient is modified from that of inner control

volumes.

A.3 Bottom Control Volumes

For a typical control volume adjacent to the bottom boundary, shown in Figure A.3,

discretization for convection term along radial direction remains unchanged as long

as the control volume is not at a corner. The discretization at the north face of the

control volume cell can still deploy second-order upwind scheme, since two neighbours

exist in each direction, thus

wnϕn
∆z

= (1.5ϕP − 0.5ϕS)Jwn, 0K/∆z − (1.5ϕN − 0.5ϕNN)J−wn, 0K/∆z
For the discretization at the south face of the control volume, if the flux ws comes

from the inner domain, i.e. ws < 0, second order upwind scheme is used, otherwise if

the flux ws comes from the bottom boundary, i.e. ws > 0, central difference is used.

−wsϕs
∆z

= −(0.5ϕS + 0.5ϕP )Jws, 0K/∆z + (1.5ϕP − 0.5ϕN)J−ws, 0K/∆z
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Bottom Boundary

 

 

    

 

 

   

Figure A.3: Schematic of border (near boundary) control volume: a typical left border
control volume

The convection term coefficients for a bottom border control volume is F bottom,
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where the elements are

F ∗
SS = 0 (A.3- 1a)

F ∗
S = −0.5Jws, 0K/∆z − 0.5Jwn, 0K/∆z (A.3- 1b)

FWW = 0.5Juw, 0K/∆r (A.3- 1c)

FW = −0.5Jue, 0K/dr − 1.5Juw, 0K/∆r (A.3- 1d)

F ∗
P = 1.5Jue, 0K/∆r + 1.5J−uw, 0K/∆r + 1.5Jwn, 0K/∆z
+ 1.5J−ws, 0K/∆z − 0.5Jws, 0K//∆z (A.3- 1e)

FE = −1.5J−ue, 0K/∆r − 0.5J−uw, 0K/∆r (A.3- 1f)

FEE = 0.5J−ue, 0K/∆r (A.3- 1g)

FN = −1.5J−wn, 0K/∆z − 0.5J−ws, 0K/∆z (A.3- 1h)

FNN = 0.5J−wn, 0K/∆z (A.3- 1i)

A.4 Top Border Control Volumes

Similarly, for a typical control volume adjacent to the top boundary, discretization

along radial direction remains unchanged as long as the control volume is not at a

corner. For the axial direction, discretization at the south control volume face deploys

second order upwind,

wsϕs
∆z

= −(1.5ϕS − 0.5ϕSS)Jws, 0K/∆z + (1.5ϕP − 0.5ϕN)J−ws, 0K/∆z
On the north face,

wnϕn
∆z

= (1.5ϕP − 0.5ϕS)Jwn, 0K/∆z − 0.5(ϕN + ϕP )J−wn, 0K/∆z

90



The convection term coefficients for a bottom border control volume is F top, where

the elements are

FSS = 0.5Jws, 0K/∆z (A.4- 1a)

FS = −1.5Jws, 0K/∆z − 0.5Jwn, 0K/∆z (A.4- 1b)

FWW = 0.5Juw, 0K/∆r (A.4- 1c)

FW = −0.5Jue, 0K/dr − 1.5Juw, 0K/∆r (A.4- 1d)

F ∗
P = 1.5Jue, 0K/∆r + 1.5J−uw, 0K/∆r
+ 1.5Jwn, 0K/∆z + 1.5J−ws, 0K/∆z − 0.5J−wn, 0K/∆z (A.4- 1e)

FE = −1.5J−ue, 0K/∆r − 0.5J−uw, 0K/∆r (A.4- 1f)

FEE = 0.5J−ue, 0K/∆r (A.4- 1g)

F ∗
N = −0.5J−wn, 0K/∆z − 0.5J−ws, 0K/∆z (A.4- 1h)

F ∗
NN = 0 (A.4- 1i)

A.5 Control Volume at Corners

For a control volume at a corner (red points shown in Figure A.1), since it is adjacent

to two boundaries, the convection terms coefficients need modification in both axial

and radial direction. For example, for the NW corner point, FWW,FW , FP , FN , FNN

need to be modified. Details of the modification can be easily derived from our

discussions above.
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Appendix B

Annulus Fluids Properties Data
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