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Abstract 

Introduction: Potentially preventable errors and adverse events can occur as a 

consequence of patient transfer of care between health care providers. Intensive Care Unit 

transition programs (ICUTP) are a type of Rapid Response System Model, which presents a 

very simple idea: if a patient shows signs of imminent clinical deterioration, a team of 

providers is called up to the bedside to immediately assess and treat the patient in order to 

prevent intensive care unit transfer, cardiac arrest, or death. ICUTP incorporate ICU 

transition assignments, having a role in facilitating discharge and providing a smooth 

transition for complex convalescent patients to a general hospital ward. However, when 

assessing the ICU transition assignments for these teams, there is a substantial lack of 

available data, essential for assessing their effectiveness. This led us to inquire into the real 

role of a program in which significant investments have been placed. 

Objectives: Primary: To assess if ICU transition programs decrease the risk of ICU 

readmission when compared to standard care among patients who survive their initial 

admission to an adult ICU.  Secondary: To assess if ICU transition programs decrease the 

risk of in-hospital mortality when compared to standard care among patients who survive 

their initial admission to an adult ICU. 

Methods: We performed an interrupted time series (ITS) study, a variation of time-series 

studies classified as quasi-experiments,	involving all adults older than 18 years old, who 

survived their first ICU admission and were discharged to ward between 2002 and 2010 in 

Calgary, Alberta. The outcomes (ICU readmission and hospital mortality) were measured at 

every 3 months, before and after the implementation of our  ICUTP - the ICU outreach team 

(ICUOT). Multivariable segmented logistic regression was used to adjust the estimates of 
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the odds ratio (OR) of each outcome measure before and after the intervention. Data were 

reported as odds ratios (OR) and proportions with 95% confidence intervals (CI) and were 

evaluated for multicollinearity and autocorrelation. 

Results: At the start of the study 6.0% (95% confidence interval [CI] 4.9% to 7.0%) of the 

patients of our study population were readmitted to ICU. During the pre-intervention period, 

we could see a non-significant decrease of 0.02%(-0.02%, 95% CI -0.10% to +0.07%) in the 

proportion of patients readmitted to ICU per quarter of study. After implementation of the 

ICUOT, there was a 2.0% significant increase in the proportion of patients readmitted to 

ICU (+2.0%, 95% CI +0.5% to +3.2%). Subsequently, we saw a non-significant decrease in 

that proportion (-0.04% per quarter; 95% CI, -0.2% to +0.1%). At the end of the study, the 

proportion of patients readmitted in the ICU was 6.0% (95% CI, 4.8% to 7.0%). Regarding 

hospital mortality, 7.0% (95% confidence interval [CI] 6.0% to 9.0%) of the patients of our 

study population died in the hospital at the start of the study period. In the pre-intervention 

period, there was a non-significant decrease of 0.01% (-0.01% 95% CI, -0.09% to +0.07%) 

in the proportion of patients who died in the hospital per quarter. After implementation of the 

ICUOT, there was an immediate non-significant increase of 1.0% in the proportion of 

patients dying in the hospital,  (+1.0%, 95% CI -0.3% to +2.4%). Subsequently, there was a 

significant small decrease in that proportion (-0.2% per quarter; 95% CI, -0.3% to -0.05%). 

At the end of the study, the proportion of in-hospital deaths was 4.0% (95% CI, 3.0% to 

5.0%). 

Conclusion: This work, based on a robust methodology that uses an interrupted time-

series with segmented logistic regression, showed that ICU readmission rates remain the 

same based on the estimated changes in intercept and slope when comparing pre and post-
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intervention periods. There is insufficient evidence of a statistically significant effect of the 

ICUOT on ICU readmissions.  However, it is possible that closer monitoring and faster 

actions on those ICU survivors who required or did not required ICU readmission have been 

lead to a small but significant improvement in mortality. 



v	

Acknowledgments 

There are some people in the world that live their lives doing everything they can to 

help others to endeavor, win and find happiness. Tom Stelfox was a real mentor to me. His 

appreciation of coexisting issues I was experiencing, his continuous help, outstanding 

support, and his patience, made me admire him not only as an excellent researcher but as 

an extraordinary human being.  Thank you, Tom. 

I am also very grateful to the Department of Critical Care Medicine, especially 

Chip Doig, Andre Ferland, and Paul Boucher, for giving me support on my clinical work, so I 

could have tranquility to pursue and complete my research. 



vi	

Table of Contents 

 Approval Page ........................................................................................................................ i 
Abstract .................................................................................................................. …………….ii 
Acknowledgments...................................................................................................................v 
Table of Contents...................................................................................................................vi 
List of Figures ........................................................................................................................vii 
List of Tables .........................................................................................................................vii 

CHAPTER ONE: INTRODUCTION...........................................................................................1 

CHAPTER TWO: BACKGROUND........................................................................................... 2 
2.0 The ‘quicker and sicker’ discharged ICU patient ............................................................2 
2.1 Potential Solutions: The ICU Transition Program…………………………………………....4 
2.2 Literature Review ……………………………………………………………………………….5 
2.3 Research Question ………………………………………………………………………… ...9 

CHAPTER THREE: METHODS..............................................................................................10 
3.0 Study Design………………………………………………………………………………….10 
3.1 ICU Transition Program in Calgary, AB – The ICU Outreach Team……………………11 
3.2 Population, Data Source, Exposure and Outcome variables……………………………13 
3.3 Analysis………………………………………………………………………………………..14 
3.3.1 Segmented Logistic Regression in Interrupted Time-Series…………………………..16 
3.3.2 Autocorrelation………………………………………………………………………….  …21 

CHAPTER FOUR: RESULTS…………………………………………………………………… ...22 
4.0 Study Population……………………………………………………………….....................23 
4.1 Crude Pre and Post -Intervention Analysis of Outcomes………………….................... 23 
4.2 Adjusted Pre and Post -Intervention Analysis of Outcomes……………………………. 24 
4.3 Crude Interrupted Time-Series of ICU Readmission and In-Hospital Mortality………. 27 
4.4 Adjusted Interrupted Time-Series of ICU Readmission and In-Hospital Mortality….... 28 
4.5 Sensitivity Analyses…………………………….............................................................. 30 

CHAPTER FIVE: DISCUSSION……………………………………………………………………30 
5.0 Key Findings……………………………………………………………………………… ..30 
5.1 Relevance to existing scientific literature……………………………………………… ..33 
5.2 Limitations:…………………………………………………………………………………..34 

5.2.1 Internal Validity……………………………………………………………………34 
5.2.2 External Validity………………………………………………………………… .35 
5.2.3 Time-Series versus Advanced Longitudinal Analysis  ……………………. ..36 

5.3 Further Research…………………………………………………………………………   41 
5.4 Conclusions……………………………………………………………………………   ….42 

REFERENCES……………………………………………………………………………………….42 



vii	

List of Figures 

Fig 1. Rapid Response System Models…………………………………………………… …49 

Fig 2 Study Population Flow Diagram…………………………………………………………50 

Fig 3. Forrest Plot Outreach Systematic Review……………………………………………..51 

Fig 4. Segmented Regression Analysis on Interrupted Time-Series…………………… ...52 

Fig 5. Unadjusted Segmented Logistic Regression for ICU Readmissions……………….53 

Fig 6. Unadjusted Segmented Logistic Regression for In-Hospital Mortality…………… ..54 

Fig 7. Adjusted (Multivariable) Segmented Logistic Regression for ICU Readmissions…55 

Fig 8. Adjusted (Multivariable) Segmented Logistic Regression for In-Hospital Mortality..56 

List of Tables 

Table 1. Demographic Characteristics of the study population, before and after 
Intervention…………………………………………………………………………………… 57 

Table 2. Outcomes, Before and After Intervention………………………………………… 58 

Table 3. Unadjusted Proportions for ICU Readmissions and In-Hospital Mortality…..........58 

Table 4. Adjusted Proportions for ICU Readmissions and In-Hospital Mortality……….......59

 Table 5. Final Segmented Logistic Regression Model and Coefficients..............................60

Table 6: Final Model. Change in probabilities of ICU readmission and In-Hospital mortality 
per study quarter, expressed by dy/dx coefficients..............................................................61



viii	



1	

CHAPTER ONE: INTRODUCTION 

Potentially preventable errors and adverse events can occur as a consequence of 

patient transfer of care between health care providers.1,2  In this context, the transfer of 

patients from an intensive care unit (ICU) to a medical or surgical hospital ward is 

associated with a substantial decrease in their level of monitoring, which could make them 

susceptible to delays in the diagnosis of any clinical deterioration.2 Intensive Care Unit 

transition programs, which incorporate ICU transition assignments might have a role in 

facilitating discharge and providing a smooth transition for complex convalescent patients to 

a general hospital ward.  

Transition programs have been developed by many hospitals, and come in different 

forms like rapid response systems (RRS), medical emergency teams (METs) or Intensive 

Care Unit Outreach teams (ICUOTs). They are usually composed of a combination of a 

critical care/emergency nurse, a respiratory therapist, and/or an intensive care/emergency 

physician.3 Proper assessment of critical care response systems is complex and studies 

have been performed with inconclusive evidence as to their effectiveness. In addition, when 

assessing the ICU transition assignments for these teams, there is a substantial lack of 

available data, essential for assessing their effectiveness. Although we can draw an overall 

reduction of the pooled risk of ICU readmissions and mortality on recent studies of critical 

care outreach transition programs, these studies were based on a poor statistical analysis, 

which weakens the validity of the study findings. Nonetheless, considerable resources have 

been invested in outreach services worldwide over the last fifteen years.4 In fact, currently, 

there is a culture of ICUTP around the world even without a firm evidence of their 
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effectiveness and cost-effectiveness.5 This led us to inquire into the real role of a program in 

which significant investments have been placed.7,8.

CHAPTER TWO: BACKGROUND 

2.0 The ‘quicker and sicker’ discharged ICU patient. 

Strategies to decrease ICU length of stay (LOS) can improve patient outcomes since 

prolonged stay in the ICU potentially increases the risk for nosocomial complications like 

bloodstream and urinary catheter-related infections, pulmonary edema and critical illness 

polyneuropathy/myopathy.6 Additionally, patients with prolonged LOS are troublesome for 

families, increase costs and resource consumption, and reduce the number of beds 

available for other acutely ill patients requiring ICU.9,10,11 However, discharge from the ICU 

is not without risk. When patients requiring high-intensity care are discharged before they 

can safely fit a lower level of monitoring and a less intensive care environment, they are at 

risk for both complications and delayed recognition of clinical deterioration.12 If readmitted to 

ICU, these patients will have higher risk-adjusted mortality and LOS.12,13 The average 

hospital stay for readmitted patients is at least twice as long as for patients discharged from 

ICU but not readmitted.13-17

A systematic review found that up to 42% of readmitted patients have probably been 

prematurely discharged, 22% of readmissions were potentially preventable, and 11% were 

potentially anticipated.12 In addition, hospital death rates are 1.5 to 10 times higher among 

ICU readmissions.12,16 Certainly, readmissions to an ICU may reflect opportunity for 

improved care.   Concerns that patients are being discharged “quicker and sicker” from ICU 
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have been raised and have led some payers and health researchers to propose two 

possible ways to minimize the risks among these discharged patients. The first way, the 

developments of ICU-discharge risk scores intending to help determine the optimal time to 

discharge a patient to ward. Decisions to discharge ICU patients to a general ward are often 

made with subjective clinical judgment. There may be a need for reliable tools to quantify 

the risk of discharge, in order to aid with discharge decision-making. Some characteristics 

that tend to increase the probability of readmissions are transfer from another hospital, age, 

chronic comorbidities, length of initial ICU stay, and severity of illness at ICU discharge. 

Recent studies found that sedation, Glasgow Coma Scale score at discharge, and a low 

serum creatinine and albumin (the latter two possibly reflecting patient malnutrition), are 

also indicators of high risk for deterioration at ward after discharge.18 

 Scores and risk models intending to identify patients with high probability of 

complications after ICU discharge have been developed and used. Examples are the SAPS 

II at ICU admission, SOFA score at ICU discharge, Stability and Workload Index for 

Transfer (SWIFT) on the day of ICU discharge and The Sabadell score, based on the 

physician's subjective impression at ICU discharge. In previous studies, they were able to 

predict post-ICU ward mortality.13,19-22 However, these tools are usually prediction models 

created and tested in specific populations, which can limit their external validity and they 

have not been tested in interventional studies to reduce ICU readmissions and mortality 

among ICU survivors.12,15-22 Also, their use is not practical, since they contain too many 

details and may be lengthy.  In addition, they are based on risk analysis and on our best 

guess. Patients might still be at risk when discharged to ward. The second way to minimize 

the risks among these discharged patients would be the close follow-up of discharged 
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patients by a skilled critical care team – the ICU transition program – it would provide a 

smooth patient transition to a general ward.  

2.1 Potential Solutions: The ICU Transition Program 

The ICU outreach team is a type of Rapid Response System Model (fig 1). Therefore, 

it presents a very simple idea: if a patient shows signs of imminent clinical deterioration, a 

team of providers is called up to the bedside to immediately assess and treat the patient in 

order to prevent intensive care unit transfer, cardiac arrest, or death. ICUTP incorporate ICU 

transition assignments, having a role in facilitating discharge and providing a smooth 

transition for complex convalescent patients to a general hospital ward. ICUTP, like all the 

Rapid Response System Models, have what is classically called “afferent and efferent 

limbs”, or the criteria for activating a code that calls the team and the response to that code, 

respectively. Ward staff will call the team for any of a number of prespecified criteria: heart 

rate over 140/min or less than 40/min, respiratory rate over 28/min or less than 8/min, 

systolic blood pressure greater than 180 mmHg or less than 90 mmHg, oxygen saturation 

less than 90% despite supplementation, acute change in mental status, urine output less 

than 50 cc over 4 hours and when staff member has significant concern about the patient's 

condition - are examples of those criteria. 

They provide an excellent opportunity to address the risk of preventable errors, 

anticipate potential readmissions and follow those patients who would have been 

discharged prematurely. Most clinicians believe that ICUTP are the most solid way to 

minimize risks among ICU discharged patients. 
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2.2 Literature Review 

A reduction in hospital mortality represents the most comprehensive and important 

outcome measure for rapid response systems. In fact, the achievement of intermediate 

endpoints, such as the rates of unexpected cardiac arrests outside ICU or unplanned ICU 

admission, is of limited benefit, if the patient’s final outcome does not change. 

Few studies have examined the effect of outreach teams on the risk of ICU 

readmission and death in ICU survivors discharged to ward. It is potentially attributable to 

many factors, e.g., these teams provide different follow-ups for patients discharged from the 

ICU, their composition differs substantially, and finally, the idea of a dedicated ICU transition 

service is something new within the context of rapid response teams in general. 

Nonetheless, there are many points that remain unclear regarding the ICU outreach 

transition programs effect on ICU survivors. Recent meta-analyses of controlled before-and-

after studies suggest that ICU transition programs facilitate the high-risk transition of 

patients from an ICU to a general ward by reducing the risk of ICU readmissions and 

death.32,35 However, more robust methodological approaches (i.e., segmented regression 

analysis of interrupted time series studies) have not been used to assess the effect of ICU 

transition programs on ICU survivors, until very recently.36 Also, some questions have 

arisen. What is the ideal model for the ICU transition programs? They are usually composed 

of a combination of a critical care/emergency nurse, a respiratory therapist, and/or an 

intensive care/emergency physician. Is physician inclusion in the team necessary? What are 
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the mechanisms through which patient outcomes could be improved? What is the effect on 

the rate of ICU readmissions of establishing goals of care?  

To lay the groundwork for this research proposal, we recently conducted a systematic 

review and meta-analysis of Critical Care Transition Programs and the Risk of Readmission 

or Death After ICU Discharge32. It assessed if critical care transition programs reduce the 

risk of ICU readmission or death when compared to standard care among patients who 

survive their incident admission to an adult ICU.  Studies had to meet each of the following 

inclusion criteria: 1) study population primarily included adult patients (<10% of study 

population was < 18 years of age) admitted to an ICU; 2) intervention cohort exposed to a 

critical care transition program; 3) control population was not managed with the aid of a 

critical care transition program; 4) ICU readmission rate reported; and 5) controlled study 

design (randomized clinical trial, controlled clinical trial, interrupted time-series, cohort, 

before/after study). Articles that met any one of the following exclusion criteria were not 

included in the review: 1) pediatric study population (>10% of study population < 18 years of 

age); 2) no clear description of a critical care transition program; 3) no control population 

described; 4) ICU readmission rate not reported; 5) article did not report on original research 

(i.e. narrative review, editorial, letter-to-the editor); and 6) animal study. 

A critical care transition program included any rapid response team/system, medical 

emergency team, critical care outreach team/service, or ICU liaison nurse program that 

provided routine follow-up to patients recently discharged from ICU. The search strategy 

included filters for the themes critical illness, outreach programs, readmission/mortality, and 

controlled study designs using a combination of exploded Medical Subject Heading (MeSH) 
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terms and text words that were combined with the Boolean operator “OR.”  The literature 

review identified 3,590 citations, of which nine studies were included in the systematic 

review. The studies generally included a mixed medical-surgical population, with a median 

sample size of 1,516 (470 – 3,001) patients. Most studies occurred in the United Kingdom 

and Australia/New Zealand. Seven of the nine studies took place in teaching 

hospitals.27,29,30  

The critical care transition programs were frequently associated with a hospital’s 

outreach/medical emergency team (MET) that was also responsible for attending to other 

unstable ward-based patients. A critical care physician was an active member of the 

transition program in only four studies and considering all nine studies and a respiratory 

therapist was included in just one program.24-27 However, three Australian centers utilized 

an ICU liaison nurse to specifically facilitate the high-risk transition from ICU to the general 

ward.26 With respect to the follow-up of patients discharged from ICU, only one of the 

outreach/MET teams visited patients prior to ICU discharge28, whereas the three ICU nurse 

liaison programs routinely visited patients prior to ICU discharge.27,29,30 Discharged patients 

were commonly followed for up to 48 hours or until evidence of clinical stability. Eight 

studies were included in the primary meta-analysis, among which there was no significant 

heterogeneity (I2 = 0.0%, p = 0.5). Each study employed a controlled before-and-after 

design, and all but one30 took place in a single hospital. The pooled risk ratio estimates 

demonstrated a reduced risk of ICU readmission (0.87, 95% CI 0.76 – 0.99, p = 0.03) and a 

trend towards a reduction in hospital mortality (0.84, 95% CI 0.66 – 1.05, p = 0.1) 

associated with a critical care transition program (Fig.3).32 While including outreach teams 

and nurse liaison programs, this review did not find any significant differences in the risk of 
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ICU readmission for the nurse liaison versus outreach programs in a subgroup analysis. In 

addition, the presence of a physician also did not significantly affect the risk of readmission 

to ICU. Although the two most important randomized clinical trials on rapid response teams 

(in which ICU outreach teams were included) failed to provide consistent results on their 

effectiveness, their design did not focus on that very high-risk population of ICU survivors. 

The benefit in terms of mortality rates and ICU readmissions seen in this systematic review 

of before and after studies, could be possibly explained by the fact that ICU survivors were 

much higher-risk patients than the average of patients rescued by general rapid response 

teams.27-30,32

The potential benefit of critical care transition programs might be restricted to ICU 

survivors, who have the greatest risk of experiencing an adverse event among intra-hospital 

patients.32 In fact, making sure that outreach teams that encompass a transition program 

are effective in our health system is our goal. Interrupted time series design is the strongest, 

quasi-experimental approach for evaluating longitudinal effects of such time-limited 

interventions. Segmented regression analysis of interrupted time series data allows us to 

assess, in statistical terms, how much an intervention changed pre-specified outcomes over 

time and whether factors other than the intervention could explain the change.38 Although 

many institutions worldwide have had ICU transition programs over a decade ago, formal 

longitudinal evaluation of these programs using adequate study designs is lacking. As ICU 

outreach programs are expensive, and evidence for their effectiveness on mortality is 

generally lacking, it is important to understand whether these services can improve 

outcomes. Consequently, the effect of ICU transition programs on ICU readmissions and 

mortality remains unclear. Based on the currently available literature on ICU outreach teams 
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with discharge transition programs, further research is required before recommendations 

concerning their universal implementation can be made.

                                      

2.3 Research Question 

A well-built question should include four parts, referred to as PICOD, identifying the 

population (P), the intervention (I), comparison (C), outcomes (O), and design (D). The 

PICOD questions for the proposed project is as follows: 

1. Patients: Adult patients who survive an initial admission to ICU and were discharged to

ward in Calgary, in the province of Alberta.

2. Intervention: ICU transition program

3. Control: No ICU transition program

4. Outcomes: Primary = ICU Readmission during the same hospitalization. Secondary =

in-hospital death among patients discharged from ICU to a general ward.

5. Design: Quasi-experimental study, using Interrupted time-series analysis

6. From the PICOD question, the primary and the secondary research questions are:

Primary: Do ICU transition programs decrease the risk of ICU readmission when compared 

to standard care among patients who survive their initial admission to an adult ICU? 

Secondary: Do ICU transition programs decrease the risk of in-hospital mortality when 

compared to standard care among patients who survive their initial admission to an adult 

ICU? 

A systematic review of before and 

after studies was not adequate for an evaluation of the ICU Outreach programs.

     As data had been collected from our ICU outreach program since its implementation in 

the 2002’s, it was time to clarify some of these points. Hence, since a natural experiment 

already existed, we decided to take advantage of an existent change, choosing a ro       bust 

interrupted time-series with segmented logistic regression to evaluate our program.
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CHAPTER THREE: METHODS 

3.0 Study Design 

The study design is an interrupted time series (ITS) method, a variation of time-series 

studies classified as quasi-experiments. The term “interrupted” refers to the points over time 

when there is a change from the established pattern because of a real-world event, a policy 

change, or an experimental intervention. Quasi-experimental studies, also known as quasi-

experiments, are studies in which the investigators do not have full control over the 

assignment or the moment of the intervention, although the studies are still conducted as if 

they were experiments.33,37 The defining aspects of these studies are an identifiable 

intervention and the absence of a random allocation. In addition, many of those studies do 

not have control groups. Time-series studies are the most epidemiologically strong quasi-

experiments. In this quasi-experimental design, there is a time-oriented or chronological 

sequence of observations on a variable of interest.33,37,39  

 In ITS method, multiple measurements of the study outcome are taken before and 

following the intervention without the use of a separate control group. Also, the repeated 

measurements will be equally spaced in time (Fig.4). The ITS analysis is a reasonable 

method for this study, where true randomization of cases and controls is not possible. In 

addition, it is well suited for retrospective clinical data. ITS detects trends of intervention 

effects and whether the effect of the intervention occurs immediately, or there is a delay 

between intervention and effect. Also, we can see if the effect continues to trend over time, 

stabilizes, or even goes away after a certain time – an advantage of the ITS designs. This 
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design permits the effect of the intervention to be estimated while taking into account 

secular trends or cyclic patterns that usually affect the study outcomes.33,40 These outcome 

measures could not be obtained with typical pre/post studies or randomized clinical trials.  

3.1 ICU Transition Program in Calgary, AB – The ICU Outreach Team (ICUOT) 

After a successful pilot project started at Rockview General Hospital in 2004, which led 

to a reduction of 39.7% in the code blue calls, the Intensive Care Unit Outreach Team 

(ICUOT) program was fully implemented at three sites in Calgary in 2006 (July 01 at 

Foothills Medical Center, July 01 at Rockview General Hospital and October 01 at Peter 

Lougheed Center). The main goal is to assist in the safe transfer of patients from ICU to the 

ward and also the management of adult patients (other than ICU survivors) and visitors who 

have been identified as or are at imminent risk of becoming physiologically unstable. The 

ICUOT responds to Code 66 calls (the specific overhead alarm that activates the ICUOT) in 

the adult population only. For individuals 17 years of age or less, the appropriate pediatric or 

neonatal code blue should be activated. The primary response to changes in patient 

condition is the responsibility of the attending medical team. The attending medical team, 

including the most responsible physician and the primary care registered nurse/licensed 

practical nurse or designate, are expected to attend the code 66.  In the event that the 

attending medical team is not available to respond within 15 minutes, and the specified 

clinical triggers are present, a Code 66 alarm is activated to add to the response of the 

attending medical team. When a Code 66 is activated for an admitted patient, the attending 

medical team will urgently attend the patient. The expected time for the ICUOT to respond 
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to a Code 66 is up to 15 minutes. A Code 66 can be activated by any staff member for any 

of the following: 

• threatened airway

• respiratory rate less than 8, or greater than 30 breaths per minute

• acute change in oxygen saturation to less than 90%, despite oxygen delivery

greater than 5 liters per minute

• pulse rate less than 40 or greater than 140 beats per minute

• systolic blood pressure less than 90 mmHg, greater than 200 mmHg, or an acute

change in systolic pressure 

• sudden decrease in level of consciousness or decrease in Glasgow Coma Scale

Score of 2 points or more

• prolonged or repeated seizures

• acute change in urinary output to less than 50 milliliters in four hours

• any time a caregiver has a patient they are seriously worried about

A Code 66 should generally not be activated for a patient receiving palliative care, and 

for whom the development of physiologic changes represents the natural evolution of the 

dying process. The inter-professional ICUOT program in Calgary includes: 

1. 01 Physician or 01 Nurse practitioners

2. 01 Registered nurse

3. 01 Registered respiratory therapist
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One special characteristic of the ICUOT in Calgary is the fact that the team is led by a 

physician.	The ICU Outreach Team Physician works as a member of the Intensive Care Unit 

(ICU) and collaborates with staff to assist in caring for critically ill patients with multi-system 

failure. The physician responds to all Outreach (Code 66) calls and assists in Code Blue 

response as required. It is expected that the ICU Outreach Physician speaks with the ICU 

Attending Physician at the end of every shift either in person or by telephone. It is also 

expected that the ICU Outreach Physician participates in ongoing continuing medical 

education. In addition, the ICU Outreach Physician assists in caring for critically ill patients 

both in and outside the ICU as designated by the ICU Attending Physician at each site. 

3.2 Population, Exposure and Outcome variables, Data Source 

The population of this study is all adults older than 18 years old, who survived their 

first ICU admission and were discharged to the ward between 2002 and 2010 in Calgary, 

Alberta (Fig.2). ICU is defined as a distinct hospital specialty care unit staffed by specialized 

healthcare professionals where immediate and continuous life-sustaining treatment (e.g. 

mechanical ventilation) is provided to hospitalized patients suffering from life-threatening 

conditions (e.g. septic shock).34  A hospital ward is defined as any inpatient hospital unit that 

does not provide immediate and continuous life-sustaining treatment (e.g. medical ward, 

etc.). ICU discharge is defined as a transition of care that involves transfer of accountability 

and responsibility for patient care from the ICU to a hospital ward. The exposure variable is 

the presence of an ICU transition program, which facilitates the transfer of care and 

provides follow-up to patients discharged from ICU to ward, in the intervention group. The 

outcome measures are ICU readmission and hospital mortality. A repeat admission to ICU 
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following discharge during the same hospitalization was categorized into early (< 48 hours 

after discharge) and late (≥ 48 hours) readmissions.34 

All quantitative measures (including potential confounders) were obtained from clinical 

databases derived from the eCritical - TRACER Reports, which routinely captures 

demographic, diagnostic, clinical, physiologic and outcome data for all ICU admissions to 

the participating Calgary ICUs. Hence, using the database TRACER Reports, data were 

collected from Rockyview General Hospital ICU, Peter Lougheed Centre ICU, Foothills 

Medical Centre (FMC) ICU and FMC Cardiovascular ICU Calgary.  

To design interrupted time series studies, it is necessary to know how many time 

points and how many observations at each time point are needed to obtain stable estimates 

of intervention effects. The outcomes (ICU readmission and hospital mortality) were 

measured at every 3 months, from 2002 to 2010. Using an ITS analysis, it allows us to 

detect trends of intervention effects (if they exist) and to detect whether the effects of the 

ICU transition program implementation occurred immediately, or whether there was a delay 

between its execution and the resultant effects.38,39 In addition, it is possible to see if the 

effects continued to trend over time, stabilized, or even went away after a certain time.  

3.3 Analysis 

Statistical analyses were conducted using Stata 14 (Stata Corp, College Station, TX 

– USA). Histograms and Box-plots were used for inspecting the distribution of continuous

variables. Normally distributed variables were reported as means ± standard deviations 

(SD) and non-normal variables as medians with inter-quartile ranges (IQR). Differences in 

means were assessed with Student's t-test, and differences in proportions among 
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quantitative and categorical data were assessed using z-test and Chi2 test, respectively. 

The data collected before and following the intervention demonstrated comparable severity 

of illness, chronic comorbidities, performance indicators, and the population of the study 

also had comparable exposure to quality improvement co-interventions before and after the 

implementation of the intervention.  

To date, no satisfactory method exists to calculate the power and necessary sample 

size for interrupted time series studies. Additionally, segmented logistic regression was used 

to adjust the estimates of the odds ratio (OR) of each outcome measure before and after the 

intervention. The estimates of the proportions were also obtained from the estimates of the 

ORs. The following variables have been defined “a priori” to be part of the multivariable 

model: age, gender, severity of illness (APACHE II score), chronic comorbidities scale score 

(Charlson Index), admission classification type, ICU discharge time and day, ICU bed 

capacity/patient flow. Data were reported as odds ratios (OR) and proportions with 95% 

confidence intervals (CI). Also, data were evaluated for multicollinearity and autocorrelation, 

which will be discussed further. We used logistic regression including all the covariates above 

and their interaction terms containing two, three and four variables, in addition to time 

variables needed in segmented regression. The way we built the segmented regression, 

which is the core of our ITS study will be described further. 

Model calibration and fit were assessed by using the Specification error test, also 

known as Linktest in STATA. The Stata command Linktest is used to detect a specification 

error and it is done after the logit or logistic command. If the model is properly specified, 

there are no additional predictors that are statistically significant except by chance. After the 

regression command (logit or logistic), linktest uses the linear predicted value (_hat) and 
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linear predicted value squared (_hatsq) as the predictors to rebuild the model. The variable 

_hat should be a statistically significant predictor since it is the predicted value from the 

model. It will happen unless the model is completely misspecified. Otherwise, if the model is 

properly specified, variable _hatsq does not have predictive power except by chance. So, 

_hatsq should be non-significant, for a well specified model. Therefore, if _hatsq is 

significant, then the linktest is significant. This usually means that either we have omitted 

relevant variable(s) or our link function is not correctly specified.41,42,43  

We have also used the Hosmer and Lemeshow's goodness-of-fit test. The Hosmer-

Lemeshow goodness-of-fit statistic is computed as the Pearson chi-square from the 

contingency table of observed frequencies and expected frequencies.	The idea behind the 

Hosmer and Lemeshow's goodness-of-fit test is that the predicted frequency and observed	

frequency should match closely and that the more closely they match, the better the fit. 

A non-significant test reveals our model properly fits the data.44 All the statistical 

significance tests were two-tailed test with a p-value <0.05 required for statistical 

significance. 

3.3.1 Segmented Logistic Regression in Interrupted Time-Series 

The segmented regression analysis of interrupted time series is a statistical tool that 

permits us to evaluate, in statistical terms, how much an intervention changed an outcome 

of interest, immediately and over time. This analysis can show us if the change in an 

outcome happened immediately or with delay, transiently or for long periods and whether 

factors other than the intervention could explain or be the reason for the observed 

change.33,38,40  

Segmented regression analysis is the best method for statistically modeling the 



17	

interrupted time series data and requires data on continuous or counted outcome measures, 

summarized at regular, equally spaced intervals.33 Segments in a time series are described 

as sequences of measures, which have been split into two or more portions at change 

points. Change points are specific points in time where the observations or measurements 

of the time series would show a change from an established pattern because of a real-world 

event, a policy change, or an experimental intervention. The beginning and end of each 

segment are determined by the beginning and end of the intervention, and there may be 

some pre-specified lag time to allow the intervention to start working effectively.  

There are two parameters that give the meaning of each segment of a time series: 

level and trend. The level is the value of the series at the beginning of a given time interval 

or segment (i.e. the y-intercept for the first segment and the value immediately following 

each change point at successive additional segments). The trend is the rate of change of a 

measure or simply - the slope of a segment. In segmented regression analysis, each 

segment of the series shows both a level and a trend. The analysis consists of the 

evaluation of the changes in level and the trend that follow an intervention. A change in 

level, (e.g. a jump or drop in the outcome after the intervention) is equivalent to a sudden 

intervention effect. A change in trend is seen as an increase or decrease in the slope of the 

segment after the intervention as compared with the previous segment before the 

intervention. A change in trend represents a gradual change in the value of the outcome in 

the segment. Interpretation of the results is very straightforward in ITS.  

A great strength of ITS studies is the intuitive graphical presentation of the results, and 

a visual inspection of the series over time is the first step when analyzing time series data, 

since it approximately gives us a picture of the answers we are looking for.33 However, 
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although that graphical presentation frequently can show changes in level and or in trend of 

the outcome, we cannot easily see whether changes in level and trend could be the result of 

chance alone or the factors other than intervention.  

Chance and control for confounders are strictly necessary when segmented 

regression analysis is conduct. In segmented regression analysis, we build statistical 

models to estimate level and trend in the pre-intervention segment and changes in level and 

trend after the intervention (fig 4). In order to conduct a segmented regression analysis, it is 

necessary to have at least 12 data points before and after the intervention.33,38 With a 

minimum total of 24 equally spaced points of measurement, we are able to assess for 

seasonal variations.38 A minimum of 100 observations per time point is also required to 

achieve an acceptable level of variability of the estimate. It is important to note that our 

study meets all those requirements. 

Segmented regression models commonly fit a least squares regression line to each 

segment of the independent variable, time, and thus assume a linear relationship between 

time and the outcome within each segment. However, dealing with a binary outcome, like 

mortality, and then using a logistic distribution, we need to make an algebraic conversion to 

arrive at our usual linear regression equation. It is perfectly possible, since a logistic 

regression is a type of generalized linear model, with the model being linear to the 

parameters (i.e. Y = β0 + β1X + e). Therefore, logistic regression uses a linear combination 

of the dependent variable (outcome) with the parameters (β0 and β1) to predict the 

outcomes. 

 Recall the logistic model: the outcome or dependent variable is in fact, the probability 

or the odds or the ratio of odds for that event to occur given the presence of the intervention 
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or not, along with the rate of change of this proportions over time: 

 Y = p (x) which is read as the probability of the outcome for a given value of x, and logit 

 (p (x))  = log {p (x) / 1- p(x)} = β0 + β1 + e . 

It is important to note that in classic simple linear regression, ordinary least squares 

are used to estimate the parameters (also called coefficients). In logistic regression the 

coefficients will be estimated using maximum likelihood estimation. The maximum likelihood 

estimate of a parameter is that value that maximizes the probability of the observed data. It 

estimates β0 and β1 by those values of β0_hat and β1_hat that maximize the probability of 

the observed data under the logistic regression model. Consequently, we have the following 

linear equation as the basic model of our segmented logistic regression: 

Yt = β0 + β1*timet + β2*interventiont + β3*time after intervention + et  (Fig.4) 

Yt = is the estimate of the log of the odds of the outcome (i.e. ICU readmission) 

• this odds of ICU readmission is conditional on the ICUOT program – if present or not

β0 = an estimate of the log odds of ICU readmission at time zero and no ICUOT program.  

β1 = estimates the difference between the log of the odds of ICU readmission for each one-

unit increase in the variable time (i.e. one quarter) in the period before the implementation of 

the program. It is the expected change in log odds of ICU readmission for a one-unit 

increase in the time variable. In other words, β1 estimates the log of the odds ratio of ICU 

admission between each quarter before the implementation of the ICUOT. 

time = continuous variable (in quarters). 

β2  = similarly to β1, estimates the odds ratio of ICU admission, but in this case, just in the 

quarter immediately after the intervention. 

interventiont = indicator for time t occurring before (intervention =  0) or after 
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(intervention =  1) the Code 66, which starts at quarter 20 in the series;  

β3 = estimates the expected change in log odds of ICU readmission for a one-unit increase 

in the time (i.e. one quarter) in the period after the implementation of the program. In other 

words, β3 estimates the log of the odds ratio of ICU admission between each quarter after 

the implementation of the ICUOT. 

time after intervention = continuous variable, the number of quarters after the intervention 

at time t , coded “0” before the code 66 and  “time –19”  after the code 66 implementation. 

β1 + β3 is the post-intervention slope.  

Therefore, pre-intervention becomes Outcome = constant + β1time.  Post-intervention 

becomes Outcome= constant + β1time + β2intervention + β3time after intervention = 

(constant + β2) + (β1 + β3) time. Here, time and time after intervention are the same variable, 

considering post-intervention period. Therefore, the difference between the pre and post-

intervention constants (intercept) is β2 and the difference between slopes is β3.The error 

term et  at time t represents the random variability not explained by the model.33  The 

covariates and their interaction terms for multivariate analysis are then added to this model. 

After removing non-significant interaction terms and assessing for confounding we 

obtained the following final models: 

For ICU admission (categorical outcome)  

logit icu_readmit_hosp stdy post_66 ta4_66 Charlson_index CAP CI2, where 

logit stands for the logistic regression command in STATA, icu_readmit_hosp, stands 

for the outcome (ICU readmission), stdy, post_66 and ta_66, stand for time variables 

expressing time respectively for the pre–intervention period, moment of the intervention, 

and for the after-intervention periods (continuous variables). Charlson_index refers to the 
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index Charlson of comorbidities (continuous variable), CAP – the interaction term for the 

variables Charlson_index and Apache II score (APACHE_greaterEqual_25, a categorical 

variable) and finally, CI2 – the quadratic term of the variable Charlson_index. 

For In-hospital mortality (categorical outcome) 

logit inhosp_death_dad stdy post_66 ta4_66 Age Gender Charlson_index 

APACHE_greaterEqual_25 CAP ACAP CI2, where logit stands for the logistic regression 

command in STATA, inhosp_death_dad stands for the outcome (In-hospital mortality), stdy, 

post_66 and ta_66, stand for time variables as described above, Age in years, Gender. 

Charlson_index refers to the index Charlson of comorbidities and 

APACHE_greaterEqual_25 refers to the Apache II score greater or equal 25. CAP – the 

interaction term for the variables Charlson_index and Apache II score and ACAP stands for 

the interaction term between Age, Charlson_index and APACHE_greaterEqual_25. CI2 – 

the quadratic term of the variable Charlson_index. 

3.3.2 Autocorrelation 

Studies using time-series data can have some limitations. The traditional statistical 

analysis assumes independence. Time-series data are not independent. Each measure is 

from the same source and data will show a unique pattern based on process over time. Past 

events affect the current events and current events will affect the future outcomes. This 

dependence of data is called autocorrelation and threatens the internal validity of a time 

series study. So, the autocorrelation is a measure of the extent to which data collected close 

together in time are correlated with each other. The standard errors of the regression 

coefficients will be smaller than they should be and hence the statistical tests of these 
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parameters will be misleading; they will suggest that the estimates of the parameters are 

more precise than they really are. 33,38  

A stochastic process generates Time-Series. Frequently, the mean or variance of 

many time series increases over time. This is a property of time series data called non-

stationarity and this often results in a violation of the assumption of no serial correlation 

when using a generalized linear model.33,38,40 The stationary process implies that the mean 

and variance do not change over time and it was checked using Phillips-Perron, and 

Augmented Dickey-Fuller tests in this study. Therefore, these tests show us if the series 

have a trend, also called a unit root. If so, in order to build a model, we have to de-trend the 

series. If the tests are significant, they reject the null hypothesis of a unit root and conclude 

that the series is stationary, and our model is proper.33,40 

White noise refers to the fact that a variable does not have autocorrelation. In Stata 

use the wntestq (white noise Q test or the Portmanteau test for white noise) to check for 

autocorrelation. The null is that there is no serial correlation, but just white noise or random 

error accounting for the variability in the series.45 

Also, changes in the outcome variable due to normal developmental processes can 

occur, a phenomenon known as “maturation’. This means that contemporaneous quality 

improvement initiatives or programs – as competing interventions - can occur at exactly the 

same time, acting as confounders  

CHAPTER FOUR: RESULTS 
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4.0 Study Population 

From January 1, 2002, to December 31, 2010, 27571 patients age ≥ 18, excluding 

inter-ICU transfers, were admitted in 3 medical-surgical ICUs and 1 Post Cardiac Surgery 

ICU for the first time in their each hospital admission in 3 hospitals in Calgary, Alberta. From 

that group, 19137 ICU survivor patients were transferred to the ward, constituting our study 

population (Fig. 2). The mean age was 59 years, 34% were female, 30% had a medical 

reason for ICU admission, the median Charlson Index was 1 point (IQR 0-2), and the mean 

APACHE II score was 16 with a SD of 6.7. During their stay in the ICU, 2.2% of these 

patients underwent continuous renal replacement therapy (CRRT) and the median duration 

of mechanical ventilation in our study was 2 days (IQR 2-4). Also, the median length of stay 

in ICU was 2 days (IQR 1-6). Patient characteristics were similar in both the pre-intervention 

(n=10,562) and the post-intervention (n=8,575) periods (Table 1).  Below, we described the 

results of regression models (crude and multivariable) applied for the specific pre and post-

intervention periods – that is, not using segmented regression time-variables, but just using 

the explanatory and response variables showed in table 1 and 2. 

 4.1 Crude Pre and Post-Intervention Analysis of Outcomes 

Regarding ICU readmission, we saw statistically significant differences comparing the 

crude proportions of patients readmitted to ICU before and after the intervention. Before the 

implementation of the ICUOT, 5.5% of the patients in our study population were readmitted 

to ICU and 6.6% was the same proportion after the implementation of the ICUOT with a p-

value = 0.0026. In addition, 1.5% of patients were readmitted to ICU within 48 hours after 
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being transferred to the ward during the pre-intervention period, compared to 1.8% of 

patients, during the post-intervention period, p = 0.08 (table 2). 

The crude in-hospital mortality was 6.5% in the pre-ICUOT period and 5.7% in the 

post-ICUOT period with a p-value < 0.001 (table 2). 

4.2 Adjusted Pre and Post -Intervention Analysis of Outcomes 

ICU readmission in the pre-intervention period of study.  

When adjusting for covariates of clinical importance like comorbidities (Charlson 

Index), length of stay in ICU, severity of the disease (APACHE II), medical category for ICU 

admission, continuous renal replacement, and age, the multivariable analysis with logistic 

regression showed the following coefficient and results in the pre-intervention period: 

the proportion of patients readmitted to ICU was 5.5%. Holding other covariates at a fixed 

value, for each one-unit increase in age we expect to see about 34% increase in the odds of 

being readmitted to ICU (OR 1.34 - 95%CI 1.22 to 1.61). In the same way, for each one-unit 

increase in Charlson Index, is expected 17% increase in the odds of coming back to ICU 

(OR 1.17 – 95%CI 1.13 to 1.21). Similarly, the odds of being readmitted to ICU is 97.5% 

higher for patients who underwent CRRT comparing with those with no CRRT (OR 1.97 – 

95%CI 1.31 to 2.97). For each day that patients stay in ICU (ICU LOS) it was expected 4% 

increase in the odds of ICU readmission (OR 1.04 – 95%CI 1.03 to 1.05). Finally, having a 

APACHE II ≥25 and a medical admission category respectively decrease 22%(OR  0.78 – 

95%CI 0.64 to 0.94) and increase 38% (OR 1.38 – 95%CI 1.15 to 1.65) the odds of being 

readmitted.  

ICU readmission in the post-intervention period of study.  
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During the post-intervention period the adjusted multivariable model shows: 

• the proportion of patients readmitted to ICU was 6.6%.

• age – its influence on increase in the odds of being readmitted to ICU was not

statistically significant.

• Charlson Index - for each one-unit increase in Charlson Index, is expected 18%

(OR 1.18 – 95%CI 1.13 to 1.22) increase in the odds of coming back to ICU.

• CRRT – the odds of being readmitted to ICU is 55.4% (OR 1.55 – 95%CI 1.03

to 2.32) higher for patients who underwent CRRT comparing with those with no

CRRT.

• ICU LOS - For each day that patients stay in ICU it was expected 2.7% (OR

1.027 – 95%CI 1.02 to 1.03) increase in the odds of ICU readmission.

• APACHE II ≥ 25 – 44.3% (OR 1.45 – 95%CI 1.19 to 1.74) increase in the odds

of being readmitted.

• Medical category of admission - its influence on increase in the odds of being

readmitted to ICU was not statistically significant.

In-hospital mortality in the pre-intervention period of study. 

Proportion of in-hospital deaths was 6.5%. Holding other covariates at a fixed value, 

the odds of dying in the hospital was 20% lower for male comparing to female patients (OR 

0.80 – 95%CI 0.67 to 0.94) . For each one-unit increase in age, we expected to see about 

178% increase in the odds of dying in hospital (OR 2.78 – 95%CI		2.33 to 3.33). In the same 

way, for each one-unit increase in Charlson Index, was expected 26% increase in the odds 

of in-hospital death (OR 1.26 – 95%CI 1.22 to 1.30). Similarly, the odds of dying in hospital 

was 78% higher for patients who underwent CRRT comparing with those with no CRRT 
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(OR 1.78 – 95%CI 1.20 to 2.64). For each day that patients stayed in ICU (ICU LOS) it was 

expected 3.8% increase in the odds of in-hospital death (OR 1.03 - 95%IC 1.03 to 1.04). 

Finally, if patients had a medical admission category, it increased 216% the odds of dying in 

the hospital in the pre-intervention period when comparing it with patients with a non-

medical category of admission, in the same period (OR	3.16  - 95%CI 2.67 to 3.74). Having 

an APACHE II score ≥25 did not increase the odds of dying in hospital in a statistical point 

of view.  

In-hospital mortality in the post-intervention period of study.  

The multivariable analysis showed the following in the post-intervention period: 

• Proportion of in-hospital deaths was 5.7%.

• Age - for each one-unit increase in age we expect to see about 173% increase in the

odds of dying in the hospital (OR 2.73 - 95%CI  2.23 to 3.35).

• Charlson Index - for each one-unit increase in Charlson Index, it is expected 28%

increase in the odds of dying in the hospital (OR 1.28 – 95%CI 1.23 to 1.33).

• Similarly, the odds of dying in hospital is 125% higher for patients who underwent

CRRT comparing with those with no CRRT (OR  2.25 – 95%CI 1.53 to 3.30). For each

day that patients stay in ICU (ICU LOS) it was expect 3.8% increase in the odds of in-

hospital death (OR 1.03 – 95%CI 1.02 to 1.04).

• Finally, having a medical admission category increases 168% the odds of dying in the

hospital (OR 2.68 – 95%CI 2.20 to 3.26). Also, having an APACHE II score ≥25 does

not increase the odds of dying in hospital in a statistical point of view.

Following, in addition to the ORs, we also used the concept of marginal effects to 
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show the change in probability when the predictor or independent variable increases by one 

unit. So, the marginal effect tells you by how many units the probability of the outcome 

changes if the explanatory variable changes by one unit and is calculated after running a 

logistic regression of the independent variables on the dependent variable.  

4.3 Crude Interrupted Time-Series of ICU Readmission and In-Hospital Mortality 

ICU Readmission (Fig.5). When modeling Crude Time-Series Segmented Regression, 

6.0% (95% CI 4.9% to 7.0%) of the patients of our study population were readmitted to ICU 

at the start of the study period.  

During the pre-intervention period, we could see a decrease in the odds of ICU 

readmission of 0.7% per quarter, which represented a non-significant decrease of 0.04%(-

0.04% 95% CI -0.13% to +0.05%) in the proportion of patients readmitted to ICU per quarter 

of study. After implementation of the ICUOT program, there was an immediate significant 

increase of 50% in the odds of being readmitted to ICU, which means a 2.3% significant 

increase in the proportion of patients readmitted to ICU (+2.3%, 95% CI 0.9% to +3.7%). 

Subsequently, we saw a decrease in the odds of ICU readmission of 0.7% per quarter, 

which in fact, represented a non-significant decrease in the proportion of patients readmitted 

to ICU in the post-intervention study period (-0.04% per quarter; 95% CI, -0.2% to +0.1%). 

At the end of the study, the proportion of patients readmitted in the ICU was 6.0% (95% CI, 

5.2% to 7.0%) (Table 3). 

In-Hospital Mortality (Fig.6).  Our Crude Time-Series Segmented Regression shows 

that 7% (95% confidence interval [CI] 6.0% to 9.0%) of the patients of our study population 

died in the hospital at the start of the study period. In the pre-intervention period, there was 
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a decrease in the odds of in-hospital mortality of 0.8% per quarter, which represented a 

non-significant decrease of 0.04%(-0.04% 95% CI -0.12% to +0.04%) in the proportion of 

patients who died in the hospital per quarter of study. After implementation of the ICUOT 

program, there was an immediate significant increase of 30% in the odds of in-hospital 

mortality, which means a 1.5% significant increase in the proportion of patients dying in the 

hospital (+1.5%, 95% CI 0.2% to +3.0%). Subsequently, there was a decrease in the odds 

of in-hospital mortality of 3.4% per quarter, which in fact, represented a significant decrease 

in the proportion of patients who died in the hospital in this post-intervention study period (-

0.2% per quarter; 95% CI, -0.3% to -0.05%). At the end of the study, the proportion of in-

hospital deaths was 4.0% (95% CI, 3.0% to 5.0%) (Table 3). 

4.4 Adjusted Interrupted Time-Series of ICU Readmission and In-Hospital Mortality 

ICU Readmission (Fig.7). The multivariable analysis was based on an adjusted 

interrupted time-series segmented regression using covariates clinically relevant for the 

outcomes. In the final model the included covariates were the APACHE II ≥ 25 and the 

Charlson index. One interaction term with APACHE II and Charlson index and a quadratic 

term with the Charlson index were required in order to obtain a good fit for the model. When 

admission categories were included in the complete model, the effects were hold only for 

cardiac surgery admission. However the inclusion of that variable in the final model made it 

unfit for the data. Hosmer - Lemeshow's and the linktest just showed goodness-of-fit when 

the admission category variables were removed from what we considered the best and final 

model.  

At the start of the study 6.0% (95% confidence interval [CI] 4.9% to 7.0%) of the 
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patients of our study population were readmitted to ICU. During the pre-intervention period, 

we could see a decrease in the log odds of ICU readmission of 0.3% per quarter, which 

represented a non-significant decrease of 0.02%(-0.02% 95% CI -0.10% to +0.07%) in the 

proportion of patients readmitted to ICU per quarter of study. After implementation of the 

ICUOT program, there was an immediate significant increase of 40% in the odds of being 

readmitted to ICU, which means a 2.0% significant increase in the proportion of patients 

readmitted to ICU (+2.0%, 95% CI +0.5% to +3.2%). Subsequently, we saw a decrease in 

the odds of ICU readmission of 0.7% per quarter, which in fact, represented a non-

significant decrease in that proportion (-0.04% per quarter; 95% CI, -0.2% to +0.1%). At the 

end of the study the proportion of patients readmitted in the ICU was 6.0% (95% CI, 4.8% to 

7.0%) (Table 4). 

In-Hospital Mortality (Fig.8). The final model included the covariates age, gender, 

Charlson index, APACHE_greaterEqual_25, one interaction term with APACHE II and 

Charlson index, one interaction term with age, APACHE II ≥ 25 and Charlson index and 

a quadratic term with Charlson index. These interaction terms produced significant 

effect modification on the outcome, and they were also required for a good fit of the 

model with the data. Regression showed that 7.0% (95% confidence interval [CI] 6.0% 

to 9.0%) of the patients of our study population died in the hospital at the start of the 

study period. In the pre-intervention period, there was a decrease in the odds of in-

hospital mortality of 0.2% per quarter, which represented a non-significant decrease of 

0.01% (-0.01% 95% CI -0.09% to +0.07%) in the proportion of patients who died in the 

hospital per quarter of study. After implementation of the ICUOT program, there was an 

immediate non-significant increase of 22% in the odds of in-hospital mortality, which 
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means a 1.0% non-significant increase in that proportion (+1.0%, 95% CI - 0.3% to 

+2.4%). Subsequently, there was a decrease in the odds of in-hospital mortality of 3.5% 

per quarter, actually representing a significant small decrease in the proportion of 

patients who died in the hospital in the post-intervention study period (-0.2% per 

quarter; 95% CI, -0.3% to -0.05%). At the end of the study the proportion of in-hospital 

deaths was 4.0% (95% CI, 3.0% to 5.0%) (Table 4). 

4.5 Sensitivity Analyses 

Multivariable analyses were performed using various covariates of clinical relevance. 

Sex, age, Charlson Index of chronic comorbidities, APACHE II score, continuous renal 

replacement therapy, mechanical ventilation requirements, length of stay in ICU, ICU 

admission categories (Medical, Surgical, Cardiac Surgery, Trauma, Neurological) were used 

alone or composing two, three or four interaction terms in order to assess their effects on 

the outcomes. Also, quadratic or cubed terms were tested intending to find effect 

modification or attempting to find the best model that would fit the data. The best models 

were reported in the Results section of this document.  

CHAPTER FIVE: DISCUSSION 

5.0 Key Findings 

Our study investigated the effects of the implementation of a critical care transition 

program, which was created to facilitate the transition of patient care from the ICU to the 
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hospital wards. We found that the ICUOT program had no significant impact on patient 

readmission to ICU.  

Considering hospital mortality, we could appreciate a very small, but significant 

reduction in the proportion of in-hospital deaths in survivors of their first ICU admission. Our 

results remained the same, when performing sensitivity analyses with many different 

multivariable models using segmented logistic regression.  

In the literature review section of this document, we described the findings of our 

recent systematic review and meta-analysis of Critical Care Transition Programs and the 

Risk of Readmission or Death After ICU Discharge. The pooled risk ratio estimates 

demonstrated a reduced risk of ICU readmission (0.87, 95% CI 0.76 – 0.99, p = 0.03) and a 

trend towards a reduction in hospital mortality (0.84, 95% CI 0.66 – 1.05, p = 0.1) 

associated with a critical care transition program.32 

In our study, we could not find any significant impact of implementing a critical care 

transition program on ICU readmission, but a small significant reduction in hospital mortality 

among patients transferred from ICU to ward. One possible explanation is that differently 

from the majority of previous studies, which were conducted in single hospitals and 

employed before-and-after study designs that are at increased risk of bias, we evaluated 

our critical care transition program in three tertiary hospitals using a robust scientific 

approach comprised of an interrupted time series design with segmented logistic regression, 

involving a period of 9 years – 5 years before and 4 years after the implementation of the 

ICUOT program. Additionally, we assessed a multiprofessional critical care transition 

program with a systematized approach. That approach included the handing over of patient 

information and responsibility of care to the ward staff. These patients were then followed by 
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the team members for a range of 2 to 5 days - period when the outreach team worked 

collaborative with the ward staff in order to optimize care. 

Some could argue that ICUOT might have been just beneficial for elderly patients, with 

high admission APACHE II scores or multiple comorbidities. Perhaps also beneficial for 

patients with longer ICU length of stay and prolonged mechanical ventilation - that is, very 

sick and complex patients. However, our sensitivity analyses using multivariable models 

were adjusted for those variables and produced similar results.  

These results might bring out questions about what is the real role of ICUOT program 

on safety and quality of care of patients discharged from ICU. Would those services be just 

a tool to make ICU discharge faster, simply because they are perceived to improve the 

quality of care provided to seriously ill patients with complex medical problems when they 

arrive in the ward? Studies employing qualitative methods have suggested that critical care 

transition programs are thought to increase the comfort of less experienced nurses caring 

for them in the ward.46,47 In other words, because the program is available, would 

intensivists be comfortable to faster transfer patients to the ward and ward staff comfortable 

to receive them? All in all, possibly it could improve ICU bed flow, making new beds 

available for very acute cases requiring ICU, while the ICUOT could keep continued care of 

those patients transferred from ICU to ward, until a readmission back to ICU would be 

required. 

How come the ICUOT would not be able to help to avoid ICU readmissions, but 

somehow it would improve quality of care being associated with a decrease in the risk of 

patient death? Perhaps, appreciation of clinical deterioration of those patients requiring ICU 

would be faster and better noticed by the ICUOT and more effective resuscitative 
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maneuvers would be rapidly initiated by this team on the ward. These “golden hours” would 

not be enough to decrease their ICU readmission rates but could be good enough to 

improve their survival rates at the hospital discharge, maybe explaining at least in part our 

findings regarding the small, yet significant reduction in hospital mortality for that population 

of ICU survivors.   

5.1 Relevance to existing scientific literature 

This work, based on a robust methodology that uses an interrupted time-series with 

segmented logistic regression highlights one of the more important knowledge gaps in acute 

care medicine – the ability of the intensive care systems, hereby represented by one of its 

arms or extensions - the ICU outreach team, in trying to maintain stability and the achieved 

recovery on ICU survivors after a life-threatening health condition treated in the ICU.   

Even using a systematic preventive approach on their follow-up after ICU discharge, 

ICU readmission rates remains the same based on the estimated change in intercept and 

slope from pre to post-intervention using segmented regression. There is insufficient 

evidence of a statistically significant effect of the ICUOT on ICU readmissions.  However, it 

is possible that closer monitoring and faster actions on those ICU survivors who required or 

did not required ICU readmission lead to a small but significant improvement in mortality. 

Therefore, ICUOT may contribute to a better care of high-risk patients who have been 

transferred from ICU to ward, and I believe that this idea would add motivation for a 

continued support to our ICUOT program at least at this point in time. 
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5.2 Limitations 

5.2.1 Internal Validity 

A common challenge when using interrupted time series design to evaluate  

quality improvement interventions is that even small improvements in diagnostic methods 

and treatments, staff education and training, logistics and organizational factors introduced 

at different times over the study period will introduce biases to the effects of the intervention 

on the outcomes being measured.33-40 Such possible improvements in quality of care may 

have taken place over the nine - year period of our study. When a regression analysis is 

used with time modeled as a single continuous variable, an estimate is obtained for the 

slope over time, but it is impossible to distinguish the effect of the intervention from the 

underlying secular trend and to make causal claims about the effects of the intervention, 

especially if no control group was simultaneous evaluated, which is the case in our study.40  

ITS designs are also subject to threats to internal validity that are related to history 

(such as seasonality) that influence the dependent variable and maturation bias where there 

is a pattern of improvement in the experimental group prior to the intervention.33-40 However, 

we performed correlograms, also called autocorrelation plots on our series and no 

seasonality pattern was seen.  Also, instrumentation bias, a classic type of bias that occurs 

in time series design, where changes in the way records are kept or the way the outcomes 

are measured may change over time, did not occur in our study. The intervention was 

unlikely to affect data collection as well. Selection bias, which could cause a differential drop 

out in the post-intervention group probably did not happen, because our dataset covered 80 

- 100% of the total number of survivors of their first admission to ICU in each hospital 

readmission. Also, patient baseline characteristics were very similar, comparing the pre and 
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post-intervention periods. 

Like in many interrupted time series studies, we had different participating sites 

contributing data. In our analyses of these data, we used a single time series of data 

aggregated across all sites (etracer). An analysis of aggregated data is likely to have less 

power than a multilevel logistic regression analysis of the time series from the individual 

sites. As an alternative we could have conducted separate segmented regression analyses 

at each site, and then estimate the overall effect by pooling the estimates of intervention 

effect across sites using inverse variance weights in a meta-analytical model.38,40 We also 

could have fitted a single model to the data from all sites and account for heterogeneity 

across sites by incorporating random effects for the sites.38,40 It could be relevant, since we 

also assessed patients from a post-cardiac surgery ICU who may receive different types of 

care, protocols, treatment and diagnostic procedures. 

We did not assess the presence of specific comorbidities, like Diabetes Mellitus, 

Chronic Obstructive Pulmonary Disease, Heart Failure, Cirrhosis or Malignancies, but 

instead, we used the Charlson Index score to quantify the presence of comorbidities. It may 

have been an important limitation of our study since different comorbidities may correlate 

with prognosis, even for short-term outcomes (e.g. ICU readmission and in-hospital 

mortality). 

5.2.2 External Validity 

Since it is difficult to measure how differently secular trends affect different institutions, 

or how simultaneously quality-improvement interventions and other activities affecting 

outcomes are implemented in different institutions over time, threats to external validity are 
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a major issue in studies like ours. Otherwise, different institutions may have different ICUOT 

programs with its own peculiar characteristics. For example, different ICUOT models, 

afferent limbs and warning scores systems, closed versus open intensive led model of ICUs 

and private versus publicly funded healthcare system may occur in different institutions. 

Also, allocation of resources and processes for ICU discharge frequent vary across 

healthcare jurisdictions. Hence, the results may not apply to other institutions.36 

5.2.3 Time-Series versus Advanced Longitudinal Analysis 

When dealing with Time-Series data, the most important problem we need to assess is 

the autocorrelation of the data that arises with clusters of measurements over time. That is, 

the data exhibits some level of dependency over time and it needs to be taken into account. 

In a stochastic process, randomness requires independency of successive events.  It’s also 

important to remember that random or independent variables must be uncorrelated.33-40 

One can find uncorrelated dependent data. Independence is a stronger condition. In our 

study, we find no evidence for correlation in our response variables taken quarterly, despite 

we were likely dealing with dependent data. However, since linear autocorrelation of the 

data was not found, we were safe enough to consider our model a stochastic process and 

go ahead. 

The classical and simplest definition of longitudinal Studies is that they are studies in 

which individuals are measured repeatedly through time. However, the way most authors 

best deal with longitudinal data in longitudinal studies has been substantially different from 

the way they have been analyzing time-series data.48,49 With longitudinal data, repeated 

measures are obtained from the same person who is followed over time and those 
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measures are usually positively correlated. Observations from different individuals are 

independent, while repeated measurements of the same individual are not assumed to be 

independent. 

Those types of data shows: 

• Between-Subject Variation: Different subjects respond differently; some are “high"

responders, some are “low" responders, and some are “medium" responders.

• Within-Subject Variation: Random variation appears from the process of

measurement; e.g. due to measurement error and/or sampling variability.

That is, the response for the ith subject at the jth occasion is assumed to differ from the 

population mean, XijB, by a subject effect, bi, and a within-subject measurement error, eij. 

Then:  

• Yi = Xi β + Zibi + ei, where β is a (k x 1) vector of fixed effects;

• bi  is a (q x1) vector of random effects and bi ~N (0;G);

• Xi is a (pi x k) matrix of covariates;

• Zi is a (pi x q) matrix of covariates (usually the columns of Zi are a subset of the

columns of Xi and q < k); ei is a (pi x 1) vector of errors and ei ~ N (0;Ri). 

Again, Yi = Xi β + Zibi + ei:  the vectors of regression parameters β are the fixed effects, 

which are assumed to be the same for all individuals. In contrast to β, the bi are subject-

specific regression coefficients and describe the mean response profile of a specific 

individual (when combined with the fixed effects). The pillar of this approach is that we 

assume that there is natural heterogeneity across individuals in a subset of the regression 

parameters. That is, a subset of the regression parameters (e.g. intercepts) is assumed to 

vary across individuals according to some distribution. Then, conditional on the random 



38	

effects model, it is assumed that the responses for a single individual are independent 

observations from a distribution belonging to the exponential family (Normal, Bernouilli, 

Gamma, Poisson etc). These mixed (fixed plus random effects) models are most useful 

when the scientific objective is to make inferences about individuals rather than the 

population averages. That is, the main focus is on the individual and the influence of 

covariates on the individual.48,49 

When dealing with analyses of longitudinal data, where repeated measures of the 

outcome are obtained on the same subject, we usually face 5 types of challenge that threat 

the internal validity of the study: 1) heterogeneity (random subject-specific effects), 2) 

correlated errors of measurement (short-term residual correlation which tends to decrease 

exponentially with the temporal distance between the measurement occasions), 3) missing 

data, 4) irregularly spaced measurement occasions, and 5) clusters (in our study, repeated 

measures of outcome over time – clusters – generates correlation). 

For the 5 problems above  - the most widely used statistical modeling include mixed-

effects regression models and GEE or generalized estimating equations. Fundamentally, 

mixed-effects regression (MRM) models are useful to add individual-specific effects into the 

model that will account for the data dependency and describe differential time trends for 

different individuals. They provide estimates of person-specific effects (e.g., person-specific 

trend lines) that are quite useful in understanding inter-individual variability in the 

longitudinal response process and in predicting future responses for a given subject or set 

of subjects from a particular subgroup. This is precisely what they do. Mixed-effects 

regression models allow both the intercept and time-trend to vary by individuals. Because 

they make full use of all available data from each subject, they are called full-likelihood 
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methods. Missing data can be ignorable if the missing responses can be explained either by 

covariates in the model or by the available responses from a given subject. Therefore, 

subjects with incomplete data across time are included in the analysis. These methods 

allow for understanding how specific individuals change across time and are robust to 

missing data and irregularly spaced measurement occasions. Regression estimates from 

the mixed model are “subject specific” to reinforce the notion that they are conditional 

estimates, conditional on the random (subject) effect - conditional models. Thus, they 

represent the effect of a regressor on the outcome controlling for or holding constant the 

value of the random subject effect. 

While in mixed-effects models, the conditional mean (conditional to random effects – 

as describe above,) of Yi, given bi, is E (Yijbi) = Xi β + Zibi.   In marginal models, the marginal 

or population-averaged mean of Yi is E (Yi) = Xi β. The basic premise of marginal models is 

to make inferences about population averages. The term `marginal' is used to emphasize 

that the mean response modeled is conditional only on covariates and not on other 

responses (or random effects). 

Differently from classical marginal fixed-effects models, GEE or generalized estimating 

equations, which are also marginal models, include an additional variance component to 

accommodate correlated data, and to allow for differences among individuals or clusters. In 

this marginal model, we model the regression of the response on covariates and the 

covariance structure separately. The main point, is that coefficients have population-

averaged interpretations.48,49 Excepting the intercept, the coefficients describe differences in 

mean response, but now across all observations (and hence across all clusters). The 
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random effects part of the model (which characterizes a mixed-effects regression) is not 

included in the equation.  

They also generalize easily to a wide variety of outcome measures with different 

distributional forms. The price of this flexibility, however, is that partial likelihood methods 

(like GEE) are more restrictive in their assumptions regarding missing data. Also, parameter 

estimates and empirical standard errors are robust to misspecification of the correlation 

structure (repeated observations over time will produce a pattern of correlation of the data 

that we may not know). 

All in all, GEE and MRM account for correlation or autocorrelation. GEE is a marginal 

model and MRM allow for understanding how specific individuals change across time with 

robustness to missing data and irregularly spaced measurement occasions.  

Now, why we used a fixed-effect regression, which is a marginal model (segmented 

logistic regression) and not MRM or GEE for the analysis of our time-series data?  

1. We used a conventional fixed-effect model (a segmented classic logistic

regression) because we did not make repeated measurements on the same

individual over time. We made repeated measurements of outcomes over time on

our population of first admission ICU survivors, obtaining quarter clusters of

outcomes along the study period. Specific random individual changes across time

(intercept and trend lines, MRM) were out of context in this study.

2. We used what should be important to answer our questions – a marginal model 

too, that could give us population-averaged estimates, which is more useful when 

estimating effects of an intervention at a population level26,27. So, it would not be 

necessary to use GEE, since we opted for a simpler marginal model.
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3. It’s highly probable that our ICU database has cover 80 to 100% of all patients 

admitted to and transferred from ICU during the period of study. No concerns about 

missing data would arise. No use for MRM.

4. Measurements of outcome were made in spaced measurement occasions.

5. Finally, we tested our series for presence of autocorrelation. A stochastic stationary

process generated our time series implying that the mean and variance did not

change over time and it was checked using Phillips-Perron, and Augmented

Dickey-Fuller tests in this study. In addition, the white noise Q test or the

Portmanteau test for white noise showed us no evidence for autocorrelation. That

is – we would not have a clear necessity to address correlation using the advanced

longitudinal methods described above.

Therefore, we opted to make our analysis simple and easy, using a classic model that 

we were convinced that was going to be reliable for our study and familiar to readers and 

researchers in the health services research field. 

5.3 Further Research 

What we actually know is that survivors of critical illnesses who experienced intensive 

care treatments belong to a very complex population from which outcomes like ICU 

readmission and mortality are very difficult to predict despite our efforts, either due to 

overwhelming illness, co-morbidity or even genetic makeup.36 We probably need to 

evaluate different combinations of multifaceted interventions in order to identify what 

patients are safe for being transfer to the ward, and when arriving there, what of those are 
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likely to require ICU readmission or die.36 Perhaps alterations in ICUOT composition or in 

their protocols, better ward staff education and training, better warning scores systems, 

technological advances, identification of specific inflammatory prognostic markers and other 

still unknown tools, may allow more efficient preventive and reactive interventions towards 

those patients resulting in a better outcome profile. These are possible ways to continue to 

investigate the effects of ICUOT on ICU survivors. 

5.4 Conclusions 

There is insufficient evidence of a statistically significant effect of the ICUOT on ICU 

readmissions.  However, it is possible that closer monitoring and faster actions on those ICU 

survivors who required or did not required ICU readmission have been lead to a small but 

significant improvement in mortality. Therefore, ICUOT may contribute to a better care of high-

risk patients who have been transferred from ICU to ward, and I believe that this idea would 

add motivation for a continued support to our ICUOT program at least at this point in time. 
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Figures and Tables 

Fig	1.	Rapid	Response	System	Models	

Model	 Members	 Assignments	

Medical	Emergency	Team	 Physicians	(critical	care	or	hospitalist)
and	nurses	 Respond	to	emergencies	

ICU	Outreach	 Critical	care	physicians	and	nurses	

Respond	to	emergencies	

Follow	up	on	patients	discharged	from	ICU	

Proactively	assess	high-risk	ward	patients	

Educate	ward	staff	

Rapid	Response	Team	
Critical	care	nurse,	respiratory	therapist,	
and	physician	(critical	care	or	hospitalist)	
backup	

Respond	to	emergencies	

Follow	up	on	patients	discharged	from	ICU	

Proactively	evaluate	high-risk	ward	patients	

Educate	and	act	as	liaison	to	ward	staff	



50	

Fig 2 Study Population Flow Diagram 

eTracer 

31075 1st ICU admissions 

31075 1st ICU admissions (any Hospital 
admissions from 2001-2012). 

2002-2010 and age > 18 minus, 
no inter-ICU transfers. 

27571 1st ICU admissions (any hospital 
admission from 2002-2010, age ≥ 18 and no 
inter-ICU transfers). 

Sample of ICU survivors who were 
transferred to ward. 

19137 transfers to ward. 

Our study population 
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Fig 3. Forrest Plot Outreach Systematic Review 

ICU readmissions 

Hospital Mortality	
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Fig 4. Segmented Regression Analysis on Interrupted Time-Series 
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Fig 5. Unadjusted Segmented Logistic Regression for ICU Readmissions 

Probabilities of ICU readmissions per quarter during the period of study. A new trend is observed 
following a change in level, immediately the 20th quarter, meaning a non-significant -0.04% decrease 
ICU readmissions per quarter (95% CI, -0.2% to +0.1%) when ICUOT program starts. 
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Fig 6. Unadjusted Segmented Logistic Regression for In-Hospital Mortality 

Probabilities of In-Hospital mortality per quarter during the period of study. A new trend is observed 
following a change in level, immediately the 20th quarter, meaning a significant -0.2% decrease in In-
Hospital mortality per quarter (95% CI, -0.3% to -0.05%), when ICUOT program starts.
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Fig 7. Adjusted (Multivariable) Segmented Logistic Regression for ICU Readmissions 

Probabilities of ICU readmissions per quarter during the period of study. A new trend is observed 
following a change in level, immediately the 20th quarter, meaning a non-significant -0.04% decrease 
ICU readmissions per quarter (95% CI, -0.2% to +0.1%) when ICUOT program starts.
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Fig 8. Adjusted (Multivariable) Segmented Logistic Regression for In-Hospital Mortality. 

Probabilities of In-Hospital mortality per quarter during the period of study. A new trend is observed 
following a change in level, immediately the 20th quarter, meaning a significant -0.2% decrease in In-
Hospital mortality per quarter (95% CI, -0.3% to -0.05%), when ICUOT program starts.
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Table 2. Outcomes, Before and After Intervention 

Table	2:	Outcomes	before	and	after	Outreach	Program	Implementation	

Before	(n	=	10562)	 After	(n	=	8575)	 p	value	

ICU	readmission	n	(%)	 	451	(4.3)	 469	((5.5)	 <0.001	

<48	hrs	 150	(1.4)	 149	((1.7)	
0.08	

>48	hrs	 301	(2.8)	 320	((3.7)	
<0.001	

In	Hospital	Mortality	 683	(6.5)	 488	((5.7)	 0.02	

Table 3. Unadjusted Proportions for ICU Readmissions and In-Hospital Mortality 

ICU	Readmissions%	(CI95%)	 In-Hospital	Mortality%	(CI95%)	

Beginning	of	Study	 6.0	(4.91	to	7.12)	 7.0	(6.02	to	9.01)	

Baseline	Trend	Change	Quarter-to-Quarter	 0.04	(-0.11	to	0.05)	 -0.04	(-0.12	to	0.04)	

Immediate	Change	Post-Implementation	 2.3	(0.90	to	3.70)	 1.5	(0.20	to	3.02)	

Change	in	Trend	Post-Implementation	 -0.04	(-0.20	to	0.11)	 -0.2	(-0.30	to	-0.05)	

End	of	Study	 6.0	(5.20	to	7.00)	 4.0	(3.00	to	5.00)	
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Table 4. Adjusted Proportions for ICU Readmissions and In-Hospital Mortality 

ICU	Readmissions%	(CI95%)	 In-Hospital	Mortality%	(CI95%)	

Beginning	of	Study	 6.00	(4.90	to	7.01)	 7.0	(6.00	to	9.01)	

Baseline	Trend	Change	Quarter-to-Quarter	 -0.02	(-0.10	to	0.07)	 -0.01	(-0.09	to	0.07)	

Immediate	Change	Post-Implementation	 2.0	(0.50	to	3.20)	 1.0	(-0.30	to	2.40)	

Change	in	Trend	Post-Implementation	 -0.04	(-0.20	to	0.10)	 -0.2	(-0.30	to	-0.05)	

End	of	Study	 6.0	(4.80	to	7.00)	 4.0	(3.00	to	5.00)	
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