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Abstract

In seismic signal analysis, irregular structures and points of sharp variation contain critical

information, thus making the study of a signal’s local properties an appropriate mechanism

for obtaining information from seismic data. The local regularity of a seismic event is de-

termined by the wavelet transform modulus maxima and the associated Lipschitz exponent.

As a means of classifying regularities of a signal and estimating the associated Lipschitz

exponent, the linear and non-linear Mallat-Hwang-Zhong (MHZ) signal model based on the

wavelet theory is reviewed and developed.

For isolated seismic events, resembling a delta function or a Heaviside function, the linear

MHZ model is used to estimate the associated Lipschitz exponent and subsequently verify

the theoretical properties of the exponent. However for practical settings, in particular,

band-limited signal events, the more complex non-linear MHZ signal model must be applied

in order to estimate the local regularity and the additional smoothness parameter.

Based on the synthetic vertical seismic profile (VSP) modelling, a relatively complicated

mathematical mapping between the Lipschitz exponent and seismic quality factor Q is ob-

tained. However, analysing the smoothness parameter results in an invertible power law

relation between the aforementioned parameter and Q. Applying the non-linear MHZ model

to the Ross Lake VSP field data captures the general absorption trend estimated by Zhang

and Stewart (2006). Furthermore, the power law relation provides geophysically reasonable

Q values comparable to the estimated values using traditional methods, such as the steepest

descent. However, for a more robust mathematical relation between the Lipschitz exponent,

smoothness parameter and seismic quality factor Q, additional theoretical and field data

analysis is required.
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Chapter 1

Introduction

1.1 Statement of the Problem

Singularities and points of sharp variation (within signals) carry critical information that are

typically amongst the most important features for analysing properties of transient signals or

images (Mallat and Zhong, 1992). Points of sharp variation created by shadows, occlusions,

highlights are typically located at boundaries of image structures and contain di↵erent inten-

sity profiles (Mallat and Zhong, 1992). In seismic signal analysis, regions of abrupt change

classifiable as “edges” contain a considerable amount of a signal’s information, thus making

edge detection a potentially appropriate and e�cient tool for obtaining information from

seismic data (Innanen, 2003). Edge detection requires analysis of local properties of the

corresponding edges.

Traditionally, the Fourier transform has been the main mathematical tool and technique

for analysing singularities and irregular structures. However, a major drawback lies in the

fact that the Fourier transform generally provides a description of a signal’s overall singu-

larity, thus it is not well suited for finding spatial distributions and locations of singularities

(Mallat and Zhong, 1992; Mallat and Hwang, 1992).

Applying advanced mathematical techniques, namely continuous wavelet transform, en-

ables us to obtain the modulus maxima from seismic data and estimate the Lipschitz expo-

nents which in turn allows us to measure the local regularity of functions and di↵erentiate

the intensity profile of di↵erent edges (Mallat and Zhong, 1992; Mallat and Hwang, 1992).

Several important physical processes can in principle a↵ect the local regularity of a re-

flected event in a seismic trace: processes of absorption/wave attenuation, and reflections

from targets composed of thin (sub-wavelength) layers. It is generally understood that due
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to absorption, the energy of seismic waves propagating through an anelastic medium would

dissipate over a given distance. As a result, transient waveforms are distorted as they prop-

agate through such media; progressive loss of amplitudes and changes of phase are typically

encountered (Kjartansson, 1979; Zhang, 2008). The overall e↵ect of seismic attenuation is

described by the dimensionless quality factor Q, with studies in seismic data processing con-

centrating on modelling, estimation or compensation (Innanen, 2003). In practical terms,

estimation and compensation can potentially enhance the resolving power of the seismic

data. A robust estimation of the Lipschitz exponents from seismic data, alongside with prior

geological information, could potentially lead to processing and inversion algorithms able

to discern and characterise such targets. Algorithms of this kind would be of significant

scientific and economic value.

1.2 Background

To investigate the relationship between attenuation and the corresponding local regularity

and smoothness of a seismic signal, we implement and adapt a signal model based on the

continuous wavelet transform, and apply it to the synthetic and field vertical seismic profile.

Such a procedure requires a comprehensive understanding of time-frequency analysis, seismic

absorption and Q estimation methods, local signal properties and the vertical seismic profiles.

1.2.1 Time-Frequency Analysis

In the field of signal analysis, which involves the study and characterisation of basic signal

properties, it is often critical and beneficial to mathematically expand and study a signal in

a set of di↵ering representations characterised by the physical quantity vital to the problem

at hand (Cohen, 1995). As a result, one needs to use mathematical techniques that combine

spatial/temporal content with spectral content (Hogan and Lakey, 2003).

One of the most fundamental and popular mathematical tools employed in signal pro-
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cessing is the Fourier transform. The Fourier transform, converts a signal from the time

domain to the frequency domain by decomposing the respective signal into groups of wave-

forms (Qian, 2002). In essence the Fourier transform links time and frequency by breaking

a time waveform into a group of frequencies. Hence, a given signal, through the prism of

the Fourier transform has two major facets: time waveform and frequency spectrum (Qian,

2002).

In seismic signal analysis, there are several motivating factors for frequency or spectral

analysis. First and foremost, spectral analysis of a waveform provides a certain degree of in-

formation about the source. Second, the relationship between the wave propagation through

a given medium and frequency, is such that, waves with di↵erent frequencies propagate with

di↵erent velocities, a phenomenon known as “dispersion”. Furthermore, wave propagation

is subject to medium and frequency dependent attenuation or loss of energy. In order to

study wave propagation through a frequency dependent media, one needs to decompose a

signal into di↵erent frequency components, analyse each frequency component and subse-

quently reconstruct the signal in order to obtain the resulting waveform, hence the need

for the Fourier transform (Cohen, 1995). The third reason for signal decomposition relates

to the representation of waveforms as superposition of sinusoids. Mathematically, a signal

expanded in terms of sinusoids of di↵erent frequencies is given by (Cohen, 1995)

s(t) =
1

2⇡

+1Z

�1

S(!)e�i!td!, (1.1)

where ! represents the radial frequency. Clearly the signal is composed of the superposition

of simple waveforms, e�i!t characterised by the radial frequency ! (Cohen, 1995). Hence,

the Fourier transform provides greater insight and simplifies one’s understanding of the

waveform. Finally, based on the convolution theorem, the Fourier transform converts time

consuming convolutions in one domain (e.g. time domain) into a simple point multiplications

in the transformed domain (e.g. frequency domain).

However, the Fourier transform smears a signal’s local behaviour by providing a global

3



or average description of a signal’s characteristic. Essentially the Fourier transform based

methods are e↵ective as long as the frequency content of a given signal do not change or

evolve with time. Thus, the Fourier transform is a poorly suited method for analysing signals

with rapid or slow frequency changes (Qian, 2002).

The shortcomings of the Fourier transform have resulted in the development of localised

time frequency alternatives such as the short time Fourier transform or the wavelet transform.

Instead of globally processing the entire signal, the short time Fourier transform (STFT),

performs the Fourier transform on a block-by-block basis, describing how the spectrum of

a signal evolves or changes with time (Qian, 2002). Hence, the STFT is a very well suited

method for analysing the narrowband instantaneous frequency bandwidth (Qian, 2002).

Alternatively, the wavelet transform (closely related to multi-scale edge detection) com-

pares a signal with a set of short waveforms or wavelets, such that each wavelet has a di↵erent

time duration or scale (Qian, 2002). Additionally, an inverse correlation or relationship ex-

ists between the scale and frequency, such that the shorter the time duration or smaller

the scale, the wider the frequency bandwidth and vice versa (Qian, 2002). Essentially, the

wavelet transform decomposes the signals into fundamental building blocks localised in space

and frequency, hence, providing a mathematical description for a signal’s local behaviour.

Furthermore due to dilation (mathematical terminology for fundamental wavelet stretch-

ing or compression), the wavelet exhibits an impulse-like behaviour, as it becomes narrower

(Qian, 2002). Hence, the wavelet transform is a very powerful mathematical tool for detect-

ing and analysing impulse type signals; non-stationary signals with jump discontinuities or

local singularities .

1.2.2 Seismic Attenuation and Q

Traditionally, seismic wave propagation has been explained by the elastic wave equation

modelled within an ideal elastic medium (Zhang, 2008). However in practical applications the

elastic wave equation has been inadequate and in some instances an inaccurate description

4



of seismic wave propagation in complex media. For example, propagating seismic waves

within the earth experience absorption and irreversible conversion of energy into heat due

to anisotropy and heterogeneity.

It is generally understood that due to absorption, the energy of seismic waves propagating

through an anelastic medium would dissipate over a given distance. Thus, the absorptive

properties of the medium distort the shape of the transient waveform(s), resulting in change

of the corresponding amplitude and frequency content (Kjartansson, 1979; Zhang, 2008).

Seismic attenuation is generally categorised into scattering and intrinsic attenuation.

Scattering attenuation distributes seismic wave energy within the medium in arbitrary di-

rections and depends on the media’s heterogeneity such that higher frequency components

are lost due to destructive interference for scales of heterogeneity smaller than characteris-

tic wavelengths (Mittet et al., 1995; Quan and Harris, 1997). Intrinsic attenuation, mainly

caused by internal friction, refers to processes that convert energy into heat.

The overall e↵ect of internal friction is described by the dimensionless quality factor

Q with studies concentrating either on the microscopic processes leading to attenuation,

frequency dependence of Q or developing and obtaining equations of motion for material with

specific Q based on the stress-strain relation (Aki and Richards, 2002). The dimensionless

quantity Q is typically defined by the following (Kjartansson, 1979; Aki and Richards, 2002;

Lines et al., 2008),

• Q = �2⇡E
4E

where E is the peak strain energy stored and 4E represents the

energy lost per cycle.

• Q = 4⇡!
4! where ! is the mean energy stored and 4! is the mean energy loss

per single cycle of sinusoidal deformation.

• Q = ⇡f

v↵

where ↵ denotes the absorption coe�cient, f and v represent the

temporal frequency and seismic velocity respectively.

5



• 1
Q

= tan (�) where � represents the phase angle between stress and strain.

It should be noted that the Q definitions mentioned above are not equivalent.

1.3 Q estimation methods

Generally Q estimation methods can be separated into time domain and frequency domain

methods. Some of the most common techniques include the amplitude decay method, wavelet

modelling, phase modelling and the spectral ratio method (Tonn, 1991).

1.3.1 Amplitude decay method

Considered to be one of the simplest methods, theQ value is given by the following expression

(Tonn, 1991)

Q =
!4x

2c

⇢
ln

a(x1)

a(x2)

��1

, (1.2)

where ! represents the temporal frequency, a(x1) and a(x2) represent the amplitudes corre-

sponding to receivers located at x1 and x2 respectively. It should be noted that this method

requires true amplitude recordings (Tonn, 1991).

1.3.2 Wavelet modelling method

Introduced by Jansen et al. (1985), the wavelet modelling method utilises the travel-time

di↵erence and dispersion relation, in order to approximate an optimum Q value to an ob-

served signal at depth x2 by synthetically modifying a reference signal at depth x1 through

varying Q values (Tonn, 1991). Typically, one could compare the modelled signal with the

observed signal via the L1 norm (di↵erence between the amplitude of the wavelets) or the

L2 norm (di↵erence of the squares) (Tonn, 1991).
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1.3.3 Phase modelling method

Analogous to the wavelet modelling method, by utilising the dispersion relation and synthet-

ically modifying the instantaneous phases of a reference signal (by varying Q values), one

could obtain an optimum Q approximation to the observed signal. However, contrary to the

wavelet modelling method, one can only apply the L1 norm in order to compare the modelled

signal with the observed signal (in this case the L2 has no significant physical justification)

(Tonn, 1991).

1.3.4 Spectral ratio method

Arguably the one of best known methods for Q computation, the spectral ratio applies

changes in spectra at varying depth values. By computing the slope, one could obtain the

corresponding Q value from the following expression (Haase and Stewart, 2004)

ln


|A2(!)|
|A1(!)|

�
= (const.)� !

4x

2cQ
, (1.3)

where A1(!) and A2(!) represent the spectral amplitudes at depth values x1 and x2 respec-

tively and 4x corresponds to the depth di↵erence.

Over the past several decades additional Q estimation methods, such as the matching

technique, risetime method, frequency modelling and analytic signal method have been pro-

posed, applied in industry and extensively discussed in literature 1. However, the noted Q

estimation methods are not equivalent (the thesis objective is to estimate and compare Q

values to traditional methods such as the steepest descent).

1.4 Seismic signal smoothness & Lipschitz regularity

A seismic pulse that undergoes attenuation can be modelled as a delta function characterised

by an amplitude A, order of singularity with local regularity ↵ and smoothness convolved

1For in depth description, the following is recommend to readers: (Tonn, 1991).
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with a Gaussian of variance �2 (Innanen, 2003). The objective is to utilise the e↵ects of Q and

subsequent local regularity on a seismic signal as a framework for a potential mathematical

mapping or relation between the two parameters. From Kjartansson (1979) and Strick (1970)

the time-domain impulse response is given by

b(t) =

8
>><

>>:

 (Q)t
� 1

2
s

t
� 1

2�
s

, t � 0

0, t < 0

, (1.4)

where t
s

= t
⇣

4z

c0!
��

r

⌘ 1
(1��)

, � = 1
⇡

tan�1
⇣

1
Q

⌘
, c0 represents the wave velocity and  (Q) repre-

sents a combination of terms altering the casual response and smoothness (Innanen, 2003).

Since the amplitude and smoothing do not depend on the Lipschitz exponent ↵, one could

re-write the impulse response as

b(t) ⇡

8
>><

>>:

 0t
� 1

2
s

t
� 1

2�
s

, t � 0

0, t < 0

, (1.5)

by defining  (Q) ⌘  0 (Innanen, 2003). As absorption decreases with Q ! 1, then � ! 0

and the combined exponents ��+1
2� ! �1. Hence, for large Q values, the impulse response

displays “delta type” behaviour. As a result, the overall regularity ↵, will remain within a

range of �1 (Innanen, 2003). Conversely, by replacing the non-linear term � = 1
⇡

tan�1
⇣

1
Q

⌘

with its large Q approximation � = 1
⇡Q

and letting Q ! 0 (increasing absorption), the

impulse response becomes “step like”, hence the Lipschitz regularity ↵ tends towards 0. In

case of seismic events, the main challenge relates to detecting and mathematically describing

the potential mapping for Lipschitz values ranging from �1 to 0.

1.5 Vertical seismic profile (VSP) data

A vertical seismic profile (VSP) refers to seismic data sets recorded with vertical or near-

vertical distribution of seismic sensors or geophones (Simman, 2007). During the past two
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decades, a VSP has been widely used in a variety of geological provinces in order to improve

and assist geophysical data processing and geological interpretation (Kennett et al., 1980)

Although a VSP requires new processing requirements (because of vertical distribution of

geophones in direction of wave propagation), it can typically provide valuable information,

due to the fact that part of the measurement and observation takes pace within the earth

(Balch and Myung, 1984). For example, seismologists can observe the formation of reflections

(primaries, multiples and converted waves) and source pulse distortion and attenuation as it

propagates and progresses through the earth (Balch and Myung, 1984). Figure 1.1 illustrates

the e↵ects of absorption on a seismic pulse as it propagates through the medium. Clearly,

the seismic pulse experiences loss of amplitude and certain degree of smoothness (pulse

broadening) as it propagates through the absorptive medium.

Furthermore, one could measure acoustic properties of rocks and infer relationships be-

tween acoustic properties and lithology, porosity, permeability and fluid content (Balch and

Myung, 1984). Furthermore, at any point in the subsurface, a VSP allows separation and

independent study and analysis of downgoing and upgoing travelling waveforms (Kennett

et al., 1980).

Generally, VSP data enables access to direct arrivals corresponding to receivers of geo-

phones located at various depth values, hence an ideal data set for studying and analysing

attenuation.
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Figure 1.1: Illustration of VSP experiment and the e↵ects of absorption on a seismic pulse. The

seismic pulse undergoes the process of smoothness (pulse broadening) and loss of amplitude as it

propagates through the absorptive medium.

1.6 Thesis objective

The underlying problem and ultimate objective is to provide a mathematical expression that

describes the relationship between the local signal properties (local regularity and smooth-

ness), and the seismic quality factor, Q. Essentially, the solution to the problem consists of

the following three steps,

1. Assessing the stability of the linear and non-linear Mallat-Hwang-Zhong signal

model and subsequently verifying the associated properties of the Lipschitz

exponent.

2. Creating a synthetic VSP model with varying depth and Q values and subse-

quently applying the continuous wavelet transform on the corresponding direct

arrival in order to measure the associated regularity and smoothness values,

10



hence provide a mathematical mapping between absorption and local signal

properties.

3. Applying the obtained results from synthetic analysis to VSP field data in

order to estimate the corresponding Q values.

1.7 Thesis outline

The thesis is organised as follows:

• Chapter II consists of a theoretical description of time-frequency methods,

the continuous wavelet transform and its corresponding properties. Further-

more, a detailed description of the relationship between the wavelet transform

modulus maxima, Lipschitz exponent ↵ and mathematical methods for esti-

mating the Lipschitz exponent from the Mallta-Hwang signal model is given

in this chapter.

• Chapter III provides a mathematical model for estimating the regularity

and smoothness of “delta type” and “step like” functions along with their

corresponding Lipschitz exponent. Additionally, the e↵ects and limitations of

the model for closely spaced events is discussed.

• Chapter IV provides a synthetic case study of Q estimation from VSP data

and the mathematical relationship between Q. local regularity and smoothness

based on Mallat-Hwang-Zhang model parameters.

• In Chapter V the results from the previous chapter are applied to the Ross

Lake VSP field data in order to estimate and compare the results to previously

estimated Q values.
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• Finally, Chapter VI concludes the thesis with an overview of the results and

recommendations for future work.

12



Chapter 2

Continuous wavelet transforms and Lipschitz regularity

Compared to the existing time-frequency transformations, the continuous wavelet transform

provides a mathematical description of a function’s local behaviour. The local regularity or

behaviour of a seismic event is determined by the wavelet transform modulus maxima and the

associated Lipschitz exponent. As a means of classifying regularities of a seismic signal and

estimating the associated Lipschitz exponent, a linear and non-linear Mallat-Hwang-Zhong

signal model based on the wavelet theory is reviewed.

For certain kinds of signal events (impulse type events), the linear model can be applied

in order to determine the associated Lipschitz regularity. However, for band-limited signal

events with some degree of smoothness a more complex non-linear model has to be applied.

The non-linear signal model includes three parameters (as opposed to two for the linear

model), in order to fully reflect and characterise a propagating seismic pulse as it experi-

ences smoothness and loss of amplitude due to absorption. Hence, in order to estimate the

associated parameters (mainly the local regularity and smoothness), one would need to apply

the least squares method or a non-linear optimisation method such as the steepest descent.

2.1 Time-frequency methods

Over the past two centuries the Fourier transform, ubiquitous in science and engineering, has

been applied in solving a wide range of problems encompassing the fields of signal processing,

probability theory and quantum mechanics to name a few. In essence, the Fourier transform

decomposes a function into sinusoidal waveforms, hence providing a mapping between the

space/time and frequency domain (Mallat, 2009; Brigham, 1988).

Despite its versatility and e�ciency in analysing periodic functions or stationary signals,
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the Fourier transform is ill-suited and ine�cient in representing transient phenomena, as it

fails to provide su�cient information in regards to the evolution of frequency content in time

or local properties of the frequency content, since it integrates a given function f(t) over all

time (Daubechies, 1992; Kaiser, 1994; Qian, 2002). In other words, the global property of

the Fourier transform prevents local analysis of f(t) from bf(!) (Mallat, 2009).

In order to overcome the limitation(s) associated with the Fourier transform and provide

a local description of a given function, Dennis Gabor (1946) introduced an analysis window

of fixed size in order to perform a “time localised” Fourier transform (Gao and Yan, 2011;

Okamura, 2011). In essence this method, referred to as the short-time Fourier transform or

the windowed Fourier transform, maps a desired signal into a two dimensional function of

time and frequency by cutting a given function f(t) into blocks and subsequently perform-

ing the Fourier transform on a block by block basis which in turn provides information in

regards to the signal’s frequency content or behaviour during the time frame covered by the

corresponding window (illustrated in Figure 2.1) (Gao and Yan, 2011; Qian, 2002; Kaiser,

1994). The short-time Fourier transform can be described by the following mathematical

expression,

STFT{f(t)}(⌧,!) =
+1Z

�1

f(t)g(t� ⌧)ei!tdt, (2.1)

where f(t) is an arbitrary signal in L

2(R) and g(t) is the fixed window designed to localise

signals in time (Daubechies, 1992; Gao and Yan, 2011). Equation 2.1 represents a convolu-

tion between the signal f(t) and the time-shifted, frequency-modulated window g(t). Various

types of window functions have been developed specifically tailored for a particular applica-

tion, from the Gaussian window designed for analysing transient signals to Hamming-Hann

windows applicable to random, narrowband signals (Gao and Yan, 2011).

Despite the benefits of time-frequency localisation provided by the short-time Fourier

transform, an inherent drawback relates to the inflexible size of the window function. For

a small window, low frequencies are too large to be represented accurately. Additionally,
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one would have to use large windows for high frequencies which would result in loss of

information for brief or abrupt changes in the corresponding interval (Qian, 2002). As a

result, due to the rigid dimensional nature of the window, the short-time Fourier technique

does not guarantee and at times inhibits e↵ective signal decomposition (Gao and Yan, 2011;

Qian, 2002). In order to overcome the shortcomings associated with the short-time Fourier

transform, alternative techniques such as the wavelet transform has been proposed as a

means of analysing non-stationary signals.
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Figure 2.1: Visual description of the short-time Fourier transforms. The short-time Fourier trans-

form performs the Fourier transform on a block by block basis by multiplying the signal with

a windowed function (in this case a Gaussian window) and subsequently computing the Fourier

transform of the product. Moving the windowed function and repeating the process provides an

idea about the evolving frequency content of a given signal over time (Qian, 2002).
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2.1.1 Wavelet tranforms

Historically, the first reference to wavelet(s) dates back to the early twentieth century when

Alfred Haar (1910) constructed the following function,

 (t) =

8
>>>>>><

>>>>>>:

1 0  t < 1
2

�1 1
2  t < 1

0 otherwise

, (2.2)

such that the dilations and translations of  (t) generates an orthonormal basis in the L2(R)

space (Gao and Yan, 2011; Mallat, 2009). However, the theoretical formation and foundation

of the wavelet transform is for the most part attributed to Jean Morlet and Alex Grossmann

(1983) for proposing a technique for scaling and shifting the analysis window and additionally

introducing the notion that a signal can be transformed into a wavelet and back into its

original structure without loss of information (Gao and Yan, 2011; Mallat, 2009; Qian, 2002).

The wavelet transform divides a given function or signal into di↵erent scale components,

and assigns a frequency range to each scale component by utilising a scalable modulated

window, that calculates the spectrum at every position and shifts the scalable window along

the signal, hence providing a time-scale representation of a given function or signal (Qian,

2002). Figure 2.2 illustrates the di↵erence between the short-time Fourier transform and the

wavelet transform. In the short-time Fourier transform, the size of the windowed function is

fixed regardless of the number of oscillations, whereas a wavelet adjusts the width, essentially

keeping the number of oscillations constant (Qian, 2002).

Mathematically, for a given function f(t) the continuous wavelet transform is given by

the following relation,

Wf(s, ⌧) =
1p
s

+1Z

�1

f(t) ⇤(
t� ⌧

s
)dt, (2.3)

where s represents the scaling factor inversely proportional to the frequency, ⌧ represents

translation along the time axis and  ⇤(.) denotes the complex conjugate of the “mother
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wavelet”  (t) (Gao and Yan, 2011; Qian, 2002). Mathematically, dilation (scaling) and

translation (time-shifting) of the mother wavelet produces a family of wavelets. Furthermore,

a wavelet must satisfy the following “admissibility condition” (Daubechies, 1992; Gao and

Yan, 2011; Qian, 2002),
+1Z

�1

��� b (!)
���
2

|!| d! < 1. (2.4)

The admissibility condition implies that,

��� b (0)
���
!=0

= 0, (2.5)

hence
+1Z

�1

 (t)dt = 0. (2.6)

For a wavelet satisfying the admissibility condition, one could reconstruct a given signal f(t)

by applying the corresponding inverse continuous wavelet transform. Mathematically, the

inverse continuous wavelet transform is given by the following expression (Gao and Yan,

2011; Qian, 2002; Daubechies, 1992),

f(t) =
1

C
 

+1Z

0

+1Z

�1

1

s2
Wf(s, ⌧)

1p
s
 (

t� ⌧

s
)dsd⌧ (2.7)

where C
 

=
R +1
�1

| b (!)|2
|!| < 1.

Based on Equation 2.6, one could make a distinction between functions that resemble

a wavelet, such as scaling functions, and an actual wavelet by ensuring that the function

integrates to zero (Figure 2.3). For practical applications and in order to implement a fast

numerical algorithm one would have to sample the continuous wavelet algorithm on a dyadic

grid, that is s = 2j, for j✏Z, where it has been proven that the wavelet transform on a dyadic

grid is complete and stable (Mallat and Zhong, 1992).
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Figure 2.3: A wavelet function (right side) as opposed to scaling function (left side) must in-

tegrate to zero in the time domain. (a) Meyer scaling function (b) Meyer wavelet (c) Daubeschies

“db8” scaling function (d) Daubeschies “db8” wavelet.
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2.2 Properties of the continuous wavelet transform (CWT)

By definition, the continuous wavelet transform is a linear operator characterised by the

following properties (Gao and Yan, 2011; Farge, 1992; Sheng, 2000) 1.

2.2.1 Superposition

For a given function f(t), the continuous wavelet transform satisfies the following relation

W(f1 + f2)(s, ⌧) = Wf1(s, ⌧) +Wf2(s, ⌧). (2.8)

2.2.2 Translation and dilation

The continuous wavelet transform is covariant under any translation or dilation, that is, for

f(t� t0) and f( t
a

) the continuous wavelet transform given by

(WT
t0f)(s, ⌧) = (Wf)(s, ⌧ � t0), (2.9)

and

(WD
a

f)(s, ⌧) =
p
a(Wf)(

s

a
,
⌧

a
) (2.10)

where

(T
t0f)(t) = f(t� t0) (2.11)

and

(D
a

f)(t) = f(
t

a
). (2.12)

2.2.3 Local regularity

An important property associated with the continuous wavelet transform is the ability to

characterise local regularities by smoothing a given signal f and detecting points of sharp

variation at various scales s. The local regularity of a function f is often measured by the

corresponding Lipschitz or Hölder exponent (Mallat and Zhong, 1992; Hong et al., 2002).

1For proof the following reading is recommended: (Gao and Yan, 2011)
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2.3 The Lipschitz exponent

The Lipschitz exponent, a generalised measure of a function’s di↵erentiability is defined in

the frequency domain by the following relation (Daubechies, 1992),

+1Z

�1

��� bf(!)
��� (1 + |!|)↵d! < +1. (2.13)

Based on Equation 2.13, the Lipschitz exponent ↵, corresponds to the decay of the Fourier

coe�cients with increasing frequency and equal to the supremum of all ↵ values satisfying

Equation 2.13 (Innanen, 2003). However, Equation 2.13 is not well adapted for measuring

local regularity of a function at a specific point since it only provides a global regularity

condition. As a result one would have to apply wavelet analysis in order to gain information

in regards to local regularity of a function. Based on the continuous wavelet transform,

a function f(x) is said to be uniformly Lipschitz ↵ over [a, b] if and only if there exists a

constant A > 0 such that the wavelet transform satisfies the following (Mallat and Zhong,

1992; Innanen, 2003),

|W
s

f(x)|  As↵ (2.14)

where |Wf(x)| is the modulus maxima of the function f(x) at various scales s = 2j for

j"Z. It should be noted that the Lipschitz exponent ↵, is assumed to be constant over

the interval which the signal is analysed. Equation 2.14 suggests that the evolution of the

modulus of the wavelet coe�cients across the scale depends on the local Lipschitz regularity

of the desired function (Innanen, 2003). Thus, based on the following properties associated

with the Lipschitz exponent, a distinction could be made between singular and di↵erentiable

function (Mallat and Zhong, 1992; Hermann, 1997)

• For a continuous and di↵erentiable function, f(x), the associated Lipschitz

exponent ↵, is equal to or greater than 1.

• A function f(x) is singular if the associated Lipschitz exponent, ↵, is less than

1.
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• The Lipschitz regularity of a delta function is equal to �1, since its associated

modulus maxima decreases with scale.

• If f(x) is Lipschitz ↵, then its integral g(x) has an associated Lipschitz expo-

nent equal to ↵ + 1.
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Figure 2.4: Original signal and corresponding continuous wavelet transform at scales, s = 2j .

2.4 Estimating Lipschitz regularity

In order to estimate the Lipschitz exponent ↵ from the data, one could linearise Equation

2.14 by taking the logarithms in order to obtain the following relation,

log2 |Ws

f(x)|  log2 |A|+ ↵ log2(s). (2.15)
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For s = 2j, equation 2.15 reduces to the following expression,

log2 |Ws

f(x)|  log2 |A|+ ↵j. (2.16)

Finding the slope and intercept of the relation given above (2.16), yields an estimate for ↵

and A. Although linearising Equation 2.14 simplifies the estimation of ↵, nevertheless this

procedure requires a certain degree of caution since it involves scaling the errors associated

with the numerical estimation of the modulus maxima. Additionally one could estimate ↵

and A by posing Equation 2.16 as an optimisation problem. Forming the objective function,

one would obtain the following expression

�(↵, A) =
nX

i,j=1

[log2 |ai|� (log2 |A|+ ↵ log2(sj))]
2, (2.17)

where a
i

=
��
W

s

j

f(x)
�� and s

j

= 2j for i, j = 1, 2, 3, ..., n. Minimising the objective function

provides the following system of equations (Burden and Douglas, 2005)

0

B@
log2 |A|

↵

1

CA =

0

BB@

n
nP

j=1
log2(sj)

nP
j=1

log2(sj)
nP

j=1
[ log2(sj)]

2

1

CCA

�1 0

BB@

nP
i=1

log2(ai)

nP
j=1

log2(sj).
nP

i=1
log2(ai)

1

CCA . (2.18)

2.4.1 The Mallat-Hwang-Zhong signal model

In seismic signal analysis, our main interest rests on estimating the Lipschitz values ranging

from �1  ↵  0. Thus it is preferable to use a wavelet with a single vanishing moment,

such as the first derivative of a Gaussian function. A wavelet  (x) is said to have n vanishing

moments if for k < n it satisfies (Mallat and Hwang, 1992),

+1Z

�1

xk (x)dx = 0. (2.19)

Furthermore, letting  (x) = d✓(x)
dx

, where ✓(x) is a Gaussian function, and taking the contin-

uous wavelet transform of f we obtain the following expression (Mallat and Hwang, 1992)

W

s

f(x) = f ⇤ (sd✓s
dx

)(x) = s
d

dx
(f ⇤ ✓

s

)(x). (2.20)
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Based on equation 2.20, the local extrema of W
s

f(x) corresponds to the inflection points of

f ⇤ ✓
s

(x). Hence, the inflection points or points of sharp variation corresponding to f ⇤ ✓
s

(x)

could be detected by estimating the local extrema of |W
s

f(x)| (Mallat and Zhong, 1992).

Due to absorption and loss of energy, a pulse undergoes a degree of smoothing, thus grad-

ually obtaining spectral characteristics of a Gaussian. To model and measure the smoothness

of the signal variation, a delta function h(x) is convolved with a Gaussian of variance �2

(Mallat and Zhong, 1992),

f(x) = h(x) ⇤ g
�

(x) (2.21)

where g
�

(x) = 1p
2⇡�

exp (�x

2

2�2 ). The continuous wavelet transform of 2.21 is given by the

following

W

s

f(x) = 2j
d

dx
(h ⇤ ✓

s0)(x) =
2j

s0
W

s0h(x) (2.22)

where ✓
s0 = g

�

(x) ⇤ ✓
s

, s0 =
p
22j + �2 and s = 2j. As a result, the modulus maxima and

Lipschitz regularity is given by the following relation (Mallat and Zhong, 1992; Mallat and

Hwang, 1992),

|W
s0h(x)| =

s0
s
|W

s0f(x)|  As↵0 (2.23)

or

|W
s0f(x)|  sAs↵�1

0 . (2.24)

Taking the logarithm of 2.24 provides the following expression

log2 |ai|  log2 |A|+ j +
↵� 1

2
log2(�

2 + s2) (2.25)

where |a
i

| = |W
s0f(x)|.

In comparison to the linear model given by 2.16, the new model is non-linear and requires

minimisation of the following objective function,

�(A, s, �) =
nX

i,j=1

[log2 |ai|� log2 |A|� j � ↵� 1

2
log2(�

2 + 22j)]2. (2.26)
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Evidently, the new model incorporates the linear model as the value of � decreases. Taking

the limit of 2.25 as � ! 0, one obtains the expression given by 2.15,

lim
�!0

�(A, s, �) = lim
�!0

(
nP

i,j=1
[log2 |ai|� log2 |A|� j � ↵�1

2 log2(�
2 + 22j)]2)

=
nP

i,j=1
[log2 |ai|� (log2 |A|+ ↵j)]2

(2.27)

Minimising the objective function given by 2.24 requires the least squares method or a non-

linear optimisation method such as the steepest descent.

2.4.2 Implementation of the MHZ model: steepest descent

Initially proposed by Cauchy (1847), the steepest descent also known as the gradient descent,

determines a local minimum for a non-linear multivariate function by applying directional

line search proportional to the negative of the gradient (Burden and Douglas, 2005; Meza,

2010; Wang, 2008). For a function defined by

g(x1, x2, ..., xn

) =
nX

i=1

[f
i

(x1, x2, ..., xn

)]2, (2.28)

the following non-linear system of equations

f1(x1, x2, ..., xn

) = 0,

f2(x1, x2, ..., xn

) = 0,

...

f
n

(x1, x2, ..., xn

) = 0,

(2.29)

has a solution at x = (x1, x2, ..., xn

)T when g has a minimum value of 0. To reduce g(x) to

its minimum value, one needs to (Burden and Douglas, 2005):

1. Evaluate g at an initial guess/approximation x

(0) = (x(0)
1 , x(0)

2 , ..., x(0)
n

)T .

2. Determine a descent direction from x

(0).

3. Proceed an appropriate amount in the direction that decreases the value of g

and assign a new value x

(1).
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4. Update by repeating steps 1 through 3 until convergence is achieved.

An appropriate choice for x(1) is given by the following relation,

x

(1) = x

(0) � �rg(x(0)) (2.30)

where

rg(x) = (
@g

@x1
(x),

@g

@x2
(x), ...,

@g

@x
n

(x))T (2.31)

for � > 0. In order to assign a value for �, such that g(x(1)) < g(x(0)), one needs to proceed

with one of the following steps (Burden and Douglas, 2005)

1. Di↵erentiate h(↵) = g(x(0) � ↵rg(x(0))) and subsequently find the root value

in order to determine the critical point(s) of h.

2. Choose ↵1 < ↵2 < ↵3, such that a quadratic polynomial p(x) interpolates h at

↵1,↵2 and ↵3. Subsequently, use p(↵), a minimum in [↵1,↵3], to approximate

the minimum value of h(↵).

Compared to alternative optimisation methods such as the quasi-Newton or the conjugate

gradient method, the steepest descent method is relatively simple to implement and requires

lower storage, O(n). However, a major drawback relates to the rate of convergence which is

generally lower than the quasi-Newton or the conjugate gradient method.
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Figure 2.5: Illustration of steepest descent. The basis for the method is based on the observation

that a continuous function should decrease in the direction proportional to the negative of the

gradient.

2.4.3 Implementation of the MHZ model: least-squares

Typically applied as an approach to solving an overdetermined system of equations, the least

squares method, minimises the sum of the squares of the residuals. Essentially, the least

squares method reduces the errors between the data and the best approximating function

(Burden and Douglas, 2005; Aster et al., 2005). For n data pairs (x1, y1), (x2, y2), ..., (xn

, y
n

),

if a =


a0 a1 · · · a

m

�
T

is a solution to the normal equations

(MTM)a = MTY (2.32)
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where

Y =

2

66666664

y1

y2
...

y
n

3

77777775

& M =

2

66666664

f0(x1) f1(x1) . . . f
m

(x1)

f0(x2) f1(x2) · · · f
m

(x2)

...
...

...

f0(xn

) f1(xn

) · · · f
m

(x
n

)

3

77777775

, (2.33)

then the best approximating function (fit) to the data is given by (Nicholson, 1990)

f(x) = a0f0(x) + a1f1(x) + ...+ a
m

f
m

(x). (2.34)

For an invertible matrix M , the solution to a is given by (Nicholson, 1990)

a = (MTM)�1MTY. (2.35)

Despite the fact that 2.25 trends towards non-linearity as � increases, one can apply

linear least squares method by reframing 2.25 as a linear model

y = a0 + a1x (2.36)

where y = log2 |ai|+ j, a0 = log2 |A| and a1 =
↵�1
2 . The solution to 2.36 is given by (Burden

and Douglas, 2005)

a0 =

nP
i=1

x2
i

nP
i=1

y
i

�
nP

i=1
x
i

y
i

nP
i=1

x
i

n(
nP

i=1
x2
i

)� (
nP

i=1
x
i

)2
(2.37)

and

a1 =

n
nP

i=1
x
i

y
i

�
nP

i=1
x
i

nP
i=1

y
i

n(
nP

i=1
x2
i

)� (
nP

i=1
x
i

)2
(2.38)

where n is the number of data points.
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Chapter 3

Algorithms for estimating regularity and smoothness

An accurate estimation of the Lipschitz regularity of a seismic trace is regarded as a highly

desirable goal. The linear signal model based on the continuous wavelet transform can be

used for estimating the Lipschitz exponent associated with delta type or step like functions.

For such events, we can estimate the Lipschitz exponent by measuring the slope or forming

the objective function associated with the linear signal model.

However, for closely spaced signal events or seismic events that experience smoothness due

to absorption, the linear model is impractical, thus the need for a non-linear signal model.

Nevertheless, the linear signal model is applied to verify the properties of the Lipschitz

exponent and used as a framework for the more practical non-linear signal model.

3.1 The Lipschitz regularity of a spike

For single, isolated events with an associated Lipschitz value of ↵ = �1, 0 or 1, the linear

model given by

log2 |Ws

f(x)|  log2 |A|+ ↵j, (3.1)

reduces the computation to a simple slope estimation. To verify the accuracy of the model,

one needs to compute the continuous wavelet transform and modulus maxima of a function

with a known Lipschitz value. The corresponding theoretical Lipschitz value of the delta

function is equal to ↵ = �1. Figures 3.1, 3.2 (a) and (b) represent the input function, the

continuous wavelet transform and corresponding modulus maxima respectively.
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Figure 3.1: Original input signal

31



−1
0
1

j=1

−1
0
1

j=2

−1
0
1

j=3

−1
0
1

j=4

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
−1

0
1

x(m)

j=5

A
m

p
li
tu

d
e

(a)

−1
0
1

j=1

A
m

p
li
tu

d
e

−1

0

1

j=2

−1

0

1

j=3

−1

0

1

j=4

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
−1

0

1

j=5

(b)

Figure 3.2: (a) Corresponding continuous wavelet transform at each scale s = 2j (b) Corresponding

modulus maxima of original signal at each scale s = 2j

Based on the theoretical properties of the delta function, an inverse correlation exists

between modulus maxima values and the continuous wavelet transform scales. Clearly, such

behaviour is observed in Figure 3.3, where the scale index ranges from j = 1, 2, .., 5. Plotting

the logarithm of the modulus maxima against scale index and subsequently computing the

slope yields, one obtains an estimate for the Lipschitz exponent, which is equal to �0.998, a

very close estimate compared to the theoretical value of ↵ = �1. Furthermore, the intercept
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provides an estimate for A, which is equal to 2.333 (one should add a unit value of 1 to the

estimated value of A, since x -axis starts at 1). Additionally, forming the objective function

(Figure 3.4) and minimising yields 2.44 and �1.0004 for A and ↵ respectively.
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Figure 3.3: log2 |a| vs scale index, j

Figure 3.4: Two parameter objective function. The x and y axes represent the values for A and

↵ respectively
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j 1 2 3 4 5
|a

i

| 1.3333 0.6696 0.3337 0.1667 0.0835
log2 |ai| 0.4150 -0.5785 -1.5832 -2.5881 -3.5821

Table 3.1: Corresponding maxima modulus values at each scale, s = j for the delta function

3.2 The Lipschitz regularity of a step and ramp function

Theoretically, integration increases the associated Lipschitz value of a particular function by

1. By integrating the delta function, one obtains the unit step function or the Heaviside

function defined by the following

H(x) =

8
>>>>>><

>>>>>>:

0 x < 0

1
2 x = 0

1 x > 0

. (3.2)

Furthermore, integrating the Heaviside function results in the ramp function, defined by the

following

R(x) =

8
>><

>>:

x x � 0

0 x < 0

(3.3)

hence, based on the theoretical properties associated with the Lipschitz exponent one would

expect an associated Lipschitz value of 0 and 1 for the Heaviside and the ramp function

respectively.
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Figure 3.5: (a) Continuous wavelet transform at each scale s = 2j for Heaviside function (b)

Corresponding modulus maxima values at each scale s = 2j

As expected, one obtains an almost constant maxima modulus values for the Heaviside

function, resulting in a constant slope and increasing maxima modulus values for the ramp

function, yielding a positive slope. Similar to the case study for the delta function, plotting

the maxima modulus values against scale and computing the slope yields a Lipschitz value of

↵ = �6.50e� 04 and ↵ = 1.462 for the Heaviside and ramp function respectively. However,

estimating the Lipschitz exponent from the slope requires a degree of caution. In contrast
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to the delta function, it is clearly evident from Figures 3.6 and 3.7 that the slopes contain

a degree of error. For the Heaviside function, the Lipschitz values ↵ vary from �0.0010 to

�0.0044. To reduce the errors, one needs to form the objective function

�(↵, A) =
nX

i,j=1

[log2 |ai|� (log2 |A|+ log2(sj))]
2, (3.4)

and subsequently minimise to find the corresponding A and ↵ values. Based on this method,

one obtains ↵ = 0.00 and ↵ = 0.9258. Additionally minimisation yields the following values

of A = 1.1138 and A = 6.3440. The value of A apparently depends on the input function

and may be the measure of the energy at the lowest scale (as the value di↵ers for the delta

function, Heaviside and ramp function). However without further study we can not state

with certainty if A is dependent on the input function.
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Figure 3.6: log2 |a| vs scale index, j for the Heaviside function
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j 1 2 3 4 5
|a

i

| 1.3333 1.3393 1.3350 1.3304 1.3359
log2 |ai| 0.4150 0.4215 0.4168 0.4119 0.4179

Table 3.2: Modulus maxima values at each scale index, j for the Heaviside function

j 1 2 3 4 5
|a

i

| 0.0133 0.0357 0.0777 0.1584 0.3200
log2 |ai| -6.2288 -4.8074 -3.6865 -2.6582 -1.6439

Table 3.3: Modulus maxima values at each scale, j for the ramp function
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Figure 3.7: log2 |a| vs scale index, j for the ramp function

3.3 The e↵ect of closely-spaced events

For a medium with a relatively low Q value, a seismic pulse gradually obtains spectral

characteristics of a Gaussian, hence, plotting the modulus maxima value against the scale

provides a degree of insight into to the extent of absorption. Figure 3.8 represents the

“evolution” of log2 |a| vs scale index j, for a pulse travelling within an absorptive medium.

Clearly, the modulus maxima values trend towards non-linearity with increasing �.
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Figure 3.8: log2 |a| vs scale index, j for a pulse with increasing � values from (a) to (d)

Despite the benefits, several limitations associated with the modulus maximum model,

such as closely spaced events, restrict and complicate our ability to accurately estimate and

analyse the corresponding Lipschitz regularity. For two closely placed events, the modulus

maxima values start to merge and represent a single event with increasing scale (illustrated in

Figure 3.10), hence rendering any form of distinction between two events almost impossible.

One possible solution is to impose some sort of thresholding on the scale. However such

a procedure not only becomes complicated due to the behaviour of a Gaussian function,

but also leads to criticism of visual bias. Unfortunately, as illustrated in Figure 3.11, one

can not observe a dominant trend or pattern in order to impose a threshold on the scale.
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For two Gaussians with � = 0.01 and � = 0.05, it is unclear how one could restrict the

scale without the corresponding modulus values merging (at a certain scale) in order to

di↵erentiate between the two events.
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Figure 3.9: Two closely spaced Gaussians representing the input signal
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Figure 3.10: Corresponding modulus maxima values. From j = 1, .., 5 we have two max values

corresponding to two distinct events. However at j = 6 the two max values merge, thus representing

a single event
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increasing smoothness (� values) due to absorption.
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Chapter 4

Determining Q from the regularity of VSP data:

synthetic study

4.1 Vertical seismic profile (VSP) data

Over the last few decades, vertical seismic profiling (VSP) has become an indispensable tool

in seismic surveys. By utilising surface sources and borehole receivers, a vertical seismic

profile refers to the measurement(s) of a seismic signal generated at the surface and recorded

at various vertical depth locations (Hardage, 1983; Hinds et al., 1996; Sergio and Ulrych,

1988). The procedure provides understanding of reflection and transmission processes within

the earth and insight into the fundamental properties of seismic wave propagation, which

in turn enhances and improves structural and lithological interpretations of seismic surface

recordings (Hardage, 1983).

The applications of VSP data include the separation of up-doing and down-going wave

components (due to small amplitudes of up-going waves), identification of multiples, mea-

surement of compressional and shear wave velocities, location of fault planes and estimation

of reflector dip(s) among others (Sergio and Ulrych, 1988; Hardage, 1983). Based on the

geometrical configuration, a VSP survey is categorised into near-o↵set or zero-o↵set and

far-o↵set. Our primary focus is on zero-o↵set VSP, which refers to the vertical alignment of

source and receiver locations which is illustrated in Figure 4.1 (Hinds et al., 1996). It should

be noted that for visual clarity, the source-receiver o↵set has been exaggerated.

In order to assess the e↵ects of absorption on a given pulse and establish an empirical

relation between the Lipschitz exponent ↵ and the loss factor Q, a synthetic zero-o↵set VSP

model for a single layer with varying velocity, depth and Q values is constructed. Applying
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the continuous wavelet transform to the given impulse response and subsequently estimating

the corresponding modulus maxima values permits us to use the methods developed in the

previous two chapters to estimate the corresponding Lipschitz values. The evolution of the

Lipschitz values with depth is then to provide the necessary mathematical mapping relation

between Q and ↵.

Surface

Reflector

VSP Survey

Direct Wave

Reflected Wave

Figure 4.1: Zero-o↵set VSP field layout.

4.2 The regularity and smoothness of VSP events

For the initial VSP model, the wave velocity is set to a fixed value of v = 2500m/s, whereas

the receiver depth and Q vary from 300m to 1600m and 10 to 200 respectively. The wavelet

scale index ranges from j = 1 to j = 6 with the sample rate and sample number set to

4ms and 512 respectively. As one would expect with decreasing Q, the pulse starts to lose

amplitude and broaden in width (illustrated in Figure 4.2). Hence, the expected Lipschitz

value should shift from �1 to values closer to 0. In order to estimate the Lipschitz values,

we need to minimise the following multivariable objective function (detailed description of
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the following relation provided in section 2.4.1)

�(A, s, �) =
nX

i,j=1

[log2 |ai|� log2 |A|� j � ↵� 1

2
log2(�

2 + 22j)]2. (4.1)

4.2.1 Steepest descent estimation

For a receiver located at depth z = 270m and the loss factor set to Q = 20, the steepest

descent method converges to �0.4501 and 0.9893 for ↵ and A respectively. Based on the

extent of absorption, the estimated value for the Lipschitz exponent ↵ is clearly within an

acceptable range, close to 0. However, based on the results given in Table 4.1 it is clearly

evident that the steepest descent method fails to provide an estimate for the variance �.

This could possibly be related to the topography of the objective function, such that a

global minimum may not exist along the �-axis. Nevertheless, it is di�cult to provide a

plausible explanation without further study. Alternatively, reducing absorption by setting

the loss factor to Q = 50 and Q = 100, should decrease the value of the Lipschitz exponent

↵. The steepest descent converges to ↵ = �0.7089 and ↵ = �0.9858 for Q = 50 and Q = 100

respectively.

Guess 1 Estimated Guess 3 Estimated Guess 3 Estimated
↵ -0.4 -0.6806 -0.2 -0.4294 -0.4 -0.4501
A 2 1.9506 1 0.9251 1 0.9838
� 1 1.0000 0.1 0.1000 0.01 0.0101
rg 1.8306 1.3772 1.3134

Table 4.1: Estimated values using the steepest descent for a receiver located at z = 270m and
Q = 20.

Although the steepest descent method provides an acceptable value for the Lipschitz

exponent, one should not ignore the limitations and drawbacks associated with this method.

First and foremost, the steepest descent method tends to be a time consuming procedure

with the gradient rg serving as the only guide in order to improve the initial guess values

and subsequent convergence. Furthermore as the extent of absorption increases, the method

provides an estimate for the Lipschitz exponent that may seem suspicious. Setting the
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Figure 4.2: Direct arrivals corresponding to a receiver at z = 270m with (a) Q = 20 (b) Q = 50.

velocity to v = 1500m/s, Q = 20 and receiver depth to z = 450m the steepest descent

converges to a value of ↵ = �0.5460. Based on the theoretical model and previous results,

one would expect a Lipschitz value closer to ↵ ' 0. It should also be noted that the steepest

descent fails to provide any information related to the third parameter .

4.2.2 Scales to be used and avoided

As an alternative to the steepest descent, one may consider linearising the problem by

analysing the dominant trend or behaviour of the modulus maxima values against the wavelet
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Q = 50 ↵ A � rg
Optimal Guess �0.65 1 0.001
Estimated Value �0.70 1.4876 0.001 0.4358

(a)

Q = 100 ↵ A � rg
Optimal Guess �0.90 3 0.001
Estimated Value �0.9858 2.9675 0.001 0.1556

(b)

Table 4.2: Estimated values using steepest descent for receiver located at z = 270m and (a)
Q = 50, (b) Q = 100.

Estimated Value
↵ -0.5460
A 0.3626
� Not determined
rg 5.1412

Table 4.3: Estimated values using steepest descent for receiver located at z = 450m and Q = 20.

scale. Setting velocity to v = 2500m/s, loss factor toQ = 100 and receiver depth to z = 270m

and subsequently applying the continuous wavelet transform on the obtained trace provides

an estimate for the corresponding modulus maxima values. As expected, by plotting the

logarithm of modulus maxima values against the wavelet scale one obtains a linear model.

However (as illustrated in figure 4.3), it is clearly evident that the slope is slightly steeper

from j = 2 to j = 6. Limiting the scale index to j = (2�6) and subsequently computing the

slope yields an estimate equal to ↵ = �0.9550 for the corresponding Lipschitz exponent. For

the same model the estimated Lipschitz value obtained from the steepest descent method

di↵ers by �0.0308.

However one should be aware and consider the limitations associated with this method.

First and foremost, it is not possible to linearise the problem or observe a dominant trend

or behaviour with increasing absorption. Clearly, as evident in Figure 4.4, with increasing

absorption the obtained model (log2 |ai| vs scale index, j) trends towards non-linearity, hence

regardless of the scale cut-o↵ it is impossible to calculate or estimate a dominant slope value.

Furthermore, restricting the model to a simple slope estimation leads to loss of information
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regarding the two additional parameters, A and �.
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Figure 4.3: Logarithm of modulus maxima values vs scale index j. The dashed line and blue arrow
indicate the scale index cut-o↵ and number of scales used for measuring the slope respectively.
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Figure 4.4: Logarithm modulus maxima values vs scale index j for z = 710m and Q = 20.

The dashed line indicates the scale index cut-o↵ and the di�culty obtaining a dominant trend as

illustrated in (b) and (c).

4.3 A re-arrangement of the model

In order to overcome the deficiencies, limitations and setbacks associated with the steepest

descent or thresholding technique, one could re-arrange and pose the three parameter non-

linear model (mapping modulus maxima values to the Lipschitz exponent) given by

log2 |aj| = log2 |A|+ j +
↵� 1

2
log2(�

2 + 22j) (4.2)
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as follows

y = a0 + a1x (4.3)

where y = log2 |ai|� j, x = log2(�
2 + 22j), a0 = log2 |A| and a1 = �↵�1

2 . It should be noted

that for our analysis, the indices i and j are equivalent, thus the index i in log2 |ai| has

been replaced by j. Forming the objective function and minimising using the least squares

method yields the following

log2 |A| =

nP
j=1

[log2(�
2 + 22j)]2

nP
j=1

(log |a
j

|� j)�
nP

j=1
[log2(�

2 + 22j)](log2 |aj|� j)
P
j=1

[log2(�
2 + 22j)]

n(
nP

j=1
[log2(�2 + 22j)]2)� (

nP
j=1

[log2(�2 + 22j)])2

(4.4)

and

↵ = 1� 2

n
nP

j=1
[log2(�

2 + 22j)](log2 |aj|� j)�
nP

j=1
[log2(�

2 + 22j)]
nP

j=1
(log2 |aj|� j)

n(
nP

i=1
[log2(�2 + 22j)]2)� (

nP
j=1

[log2(�2 + 22j)])2
, (4.5)

where n is the number of data points. In essence, minimising equation 4.2 for a range of �

values provides the best fit to the plot of log2 |ai| vs j.

Figure 4.6 illustrates the maxima modulus values against wavelet scale corresponding to

the direct arrivals at receiver locations z = 270m, z = 630m, z = 1230m and z = 1470m

(Figure 4.5) where Q = 50 and v = 2500m/s. Taking into consideration the fact that

non-linearity in Equation 4.2 stems from increasing � value, the least squares minimisation

method not only captures the non-linear segment given in Figure 4.6, but provides an overall

accurate fit to the data (log2 |ai| vs j ). The total error between the data and least squares

fit in Figure 4.6 (a) to (d) is 0.0034, 0.0206, 0.0177 and 0.0438 respectively. It should be

noted that the total error is calculated by the following expression

E
i

=
nX

i=1

|y
i

� p
i

|2 (4.6)

where y
i

, p
i

and n represent the data points, estimated values and number of data points

respectively. Furthermore, the least squares minimisation provides a relatively accurate
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estimate for all three parameters ↵, A and as indicated in Table 4.4. However one should

be cautious of the first two ↵ values in Table 4.4 corresponding to Q = 20 and Q = 30.

Based on the theoretical property, the Lipschitz value (↵) should decrease with increasing

Q (decreasing absorption), hence one should expect values closer to �1 compared to the

successive values.
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Figure 4.5: Direct arrivals corresponding to receivers located at z = 270m, z = 630m, z = 1230m
and z = 1470m respectively with Q = 20.

4.4 The relationship between MHZ model parameters and Q

Plotting ↵ against Q, could provide greater insight into the possible relation between the

Lipschitz exponent and absorption. As illustrated in Figure 4.7 (a) it is clearly evident that

for the ↵ and Q values given in Table 4.4, a trivial function or mathematical description

providing a mapping between ↵ and Q may not exist.

4.4.1 The relationship between the Lipschitz regularity ↵ and Q

Based on the curve fitting methods and a certain degree of trial and error, in order to

establish a mapping between ↵ and Q one might consider the following function

↵ = a1Q
m lnQ+ a2Q

m + a3. (4.7)
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Figure 4.6: log2 |ai| vs j for direct arrival at (a) z = 270m (b) z = 630m (c) z = 1230m (d)
z = 1470m.

The solution to a1, a2 and a3 is given by

A = (MTM)�1MTY (4.8)

where

A =

2

66664

a1

a2

a3

3

77775
, Y =

2

66666664

↵1

↵2

...

↵
n

3

77777775

(4.9)
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z = 270m ↵ A � TotalError, E
i

Q = 20 �0.9707 5.7788 4.3700 0.0177
Q = 30 �0.9481 4.0218 2.7300 0.0040
Q = 40 �0.9472 3.4721 2.0600 0.0032
Q = 50 �0.9531 3.2482 1.7200 0.0034
Q = 60 �0.9610 3.1515 1.5200 0.0022
Q = 70 �0.9659 3.0753 1.2600 0.0015
Q = 80 �0.9702 3.0241 1.2600 0.0011
Q = 90 �0.9743 2.9924 1.1800 0.0009
Q = 100 �0.9771 2.9618 1.1100 0.0007
Q = 110 �0.9792 2.9354 1.0500 0.0006
Q = 120 �0.9811 2.9146 1.0000 0.0005
Q = 130 �0.9820 2.8907 0.9500 0.0004
Q = 140 �0.9841 2.8830 0.9200 0.0004
Q = 150 �0.9848 2.8643 0.8800 0.0003
Q = 160 �0.9858 2.8531 0.8500 0.0003
Q = 170 �0.9865 2.8407 0.8200 0.0003
Q = 180 �0.9877 2.8355 0.8000 0.0002
Q = 190 �0.9886 2.8294 0.7800 0.0002
Q = 200 �0.9893 2.8226 0.7600 0.0002

Table 4.4: Corresponding estimated values for direct arrival at z = 270m with Q = 50 and
v = 2500m/s.

and

M =

2

66666664

Qm

1 lnQ1 Qm

1 1

Qm

2 lnQ2 Qm

2 1

...
...

...

Qm

n

lnQ
n

Qm

n

1

3

77777775

. (4.10)

Hence, based on Equation 4.7 and the Q and ↵ given in Table 4.4, one obtains the following

relation

↵ = 22.3210Q�1.6 lnQ� 63.2414Q�1.6 � 1.0011. (4.11)

The optimum value for m is obtained through trial and error. Figure 4.7 (b) illustrates the

estimated fit to the data with a total error of 1.4472e � 05. However, one should be aware

of the limitations associated with Equation 4.7. As travel-time increases with an increasing

receiver depth, hence increasing absorption, the curvature or “kink” observed in Figure 4.7

seemingly flattens and shifts towards increasing Q values. Thus, one would need to exclude
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the lower Q values in order to apply Equation 4.7. Plotting ↵ against Q for z = 630m

and z = 1230m would require exclusion of Q values lower than 50 and 100 respectively

(illustrated in Figures 4.8 and 4.9). Minimising and obtaining the solution to Equation 4.7

yields the following

↵ = 112.7576Q�1.6 lnQ� 423.1553Q�1.6 � 1.0096 (4.12)

and

↵ = 291.5000Q�1.6 lnQ� 1293.700Q�1.6 � 1.0000 (4.13)

for z = 630m and z = 1230m respectively. The total error between data and estimated fit

for z = 630m is equal to 0.0005 and equal to 1.4286e� 06 for z = 1230m.

In contrast to Figure 4.7 (a), with increasing absorption due to an increasing receiver

depth, Equation 4.7 fails to capture or estimate the data (↵ vs Q) in its entirety. For

z = 630m and z = 1230m, Equation 4.7, only captures or provides an estimate to a portion

of the data, as evident in Figures 4.8 and 4.9. Hence, Equation 4.7 fails to provide a

robust mathematical description between ↵ and Q for all possible model scenarios (such

as varying receiver depth values). Furthermore, one can not easily invert Equation 4.7 in

order to estimate Q values from ↵, thus limiting the probable application(s) associated with

absorption and the Lipschitz exponent ↵. It should be stated that Equation 4.7 simply

provides a mathematical estimate to the data, lacking any meaningful physical information

between the two parameters.
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Figure 4.7: (a) Plot of ↵ vs Q for z = 270m (b) Estimated Fit.
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Figure 4.8: (a) Plot of ↵ vs Q for z = 630m (b) Estimated Fit. In order to fit the data and reduce
the corresponding errors between the fit and data points, the ↵ values preceding the dashed line in
(a) are excluded.
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Figure 4.9: (a) Plot of ↵ vs Q for z = 1230m (b) Estimated Fit. Similar to Figure 4.8 (a) the ↵
values preceding the dashed line are excluded in order to improve the estimated fit to data.

4.4.2 The relationship between smoothness, �, and Q

Given the limitations associated with the mathematical function mapping ↵ to Q, one might

consider the possible relation between the third parameter � and Q. Contrary to ↵, plotting

� against Q values given in Table 4.4 reveals a relatively trivial power law type relation

between the two variables. As illustrated in Figure 4.10, one could easily estimate a fit to

the given data by the following relation

� = b1Q
b2 . (4.14)
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For exponentially related data, one must linearise the problem and subsequently minimise

by using the least squares method. Linearising Equation 4.14 yields the following expression

ln � = ln b1 + b2 lnQ. (4.15)

Hence, by minimising one obtains the following solutions

b1 = exp

0

BB@

nP
i=1

(lnQ
i

)2
nP

i=1
ln �

i

�
nP

i=1
lnQ

i

ln �
i

nP
i=1

lnQ
i

n(
nP

i=1
(lnQ

i

)2)� (
nP

i=1
lnQ

i

)2

1

CCA (4.16)

and

b2 =

n
nP

i=1
lnQ

i

ln �
i

�
nP

i=1
lnQ

i

nP
i=1

ln �
i

n(
nP

i=1
(lnQ

i

)2)� (
nP

i=1
lnQ

i

)2
. (4.17)

Plotting � against the logarithm of Q (figure 4.10 (b)), one could re-write Equation 4.14 as

� = b01 lnQ
b

0
2 (4.18)

Subsequently minimising yields the following solution

b01 = exp

0

BB@

nP
i=1

(ln(lnQ
i

))2
nP

i=1
ln �

i

�
nP

i=1
ln(lnQ

i

) ln �
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ln( lnQ
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)

n(
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))2)� (
nP
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))2
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CCA (4.19)

and

b02 =

n
nP

i=1
ln(lnQ

i

) ln �
i

�
nP

i=1
ln( lnQ

i

)
nP

i=1
ln �

i

n(
nP

i=1
(ln(lnQ

i

))2)� (
nP

i=1
ln(lnQ

i

))2
. (4.20)

Additionally, one could improve the fit or estimation by applying additional weight on esti-

mation points with lower error values relative to the data points. Referred to as the weighted

least squares method, an estimation to data is obtained based on the following mathematical

expression

min
nX

i=1

[ln �
i

� (ln b1 + b2 lnQi

)]2

(�0
i

)2
(4.21)
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where �0
i

is the standard deviation of the ith observation. Due to the limiting fact that our

data consists of a single observation, the error between the least squares fit (without weights)

and data points has been assigned as weights in the weighted least squares estimation.
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Figure 4.10: Plot of (a) � vs Q (b) � vs lnQ for z = 270m.

Figure 4.10 illustrates the expected trend, such that increasing absorption broadens a

given pulse, hence resulting in increasing � values. Compared to the least squares approxi-

mation, the weighted least squares method slightly overestimates the given data. However,

one could improve the weighted least squares approximation by implementing an iterative

method such that the weights (�0
i

) are updated at each step. The total error (E
i

) between
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the data and estimated least squares and the weighted least squares fit is 0.7491 and 1.5478

respectively. Additionally, plotting � against lnQ and subsequently minimising yields the

most accurate fit with a total error of 0.1825. The mathematical relation mapping � and Q,

for a receiver located at z = 270m, is given by

� = 29.1085Q�0.7015 (4.22)

and

� = 21.4660Q�0.6390 (4.23)

for least squares and weighed least squares respectively. Additionally, the relation between

� and lnQ for z = 270m is given by

� = 101.0296 lnQ�2.9492. (4.24)
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Figure 4.11: (a) Plot of � vs Q� vs lnQ (a) � vs lnQ for z = 270m.
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Figure 4.12: Plot of (a) � vs Q (b) � vs lnQ for z = 630m.
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Figure 4.13: Plot of (a) � vs Q (b) � vs lnQ for z = 1230m.

z = 270m z = 330m z=510m z=630m z = 750m z=870m z = 990m z = 1110m z = 1230m z=1350m z=1470m
b1 29.10 46.77 70.60 95.38 123.59 149.83 169.59 198.46 212.26 225.05 246.50
b2 �0.70 �0.75 �0.80 �0.83 �0.86 �0.87 �0.87 �0.89 �0.88 �0.88 �0.88
E

i

0.74 0.67 0.43 0.69 0.77 0.88 1.07 1.26 1.63 2.21 2.66

Table 4.5: Corresponding values mapping � to Q using least squares.

z = 270m z = 330m z=510m z=630m z = 750m z=870m z = 990m z = 1110m z = 1230m z=1350m z=1470m
b1 21.46 44.75 69.99 80.82 124.90 138.95 170.86 199.80 215.99 237.33 255.22
b2 �0.63 �0.74 �0.80 �0.80 �0.86 �0.86 �0.88 �0.89 �0.89 �0.89 �0.89
E

i

1.54 0.73 0.44 1.31 0.76 1.07 1.06 1.25 1.58 1.89 2.33

Table 4.6: Corresponding values mapping � to Q using weighted least squares.
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z = 270m z = 330m z=510m z=630m z = 750m z=870m z = 990m z = 1110m z = 1230m z=1350m z=1470m

b01 101.02 173.10 280.81 397.25 535.14 662.00 752.38 900.01 957.36 1010.1 11163.0

b0
2 -2.94 �3.14 �3.34 �3.47 �3.57 �3.63 �3.65 �3.70 �3.68 �3.66 �3.67

E
i

0.18 0.87 1.05 1.33 1.59 2.66 2.44 3.13 2.89 2.50 2.89

Table 4.7: Corresponding values mapping � to lnQ.

Compared to the least squares method and based on the values provided in Tables 4.5

and 4.6, the total error associated with the weighted least squares method tends to improve

with increasing receiver depth, hence increasing absorption. As illustrated in Figure 4.14,

beyond receiver depth values greater than z = 990m, the weighted least squares estimation

in comparison to the least squares method tends to improve the approximation to the given

data. Nevertheless, all three methods yield a relatively accurate approximation to the data.

Clearly, the addition of the third parameter � provides new insight and possibly a new avenue

into the relation between the e↵ects of absorption and applications of the continuous wavelet

transform. Contrary to the Lipschitz exponent, one obtains a relatively trivial mathematical

function relating � to the loss factor .
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Figure 4.14: Comparison of total errors associated with least squares and weighted least squares
approximation.
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4.4.3 Q estimation from MHZ model parameters

In contrast to the Lipschitz exponent (↵), one could easily invert Equations 4.14 and 4.18

in order to find a solution for Q. Hence, inverting, yields the following solutions

Q =

✓
�

b1

◆ 1
b2

(4.25)

and

Q = exp

"✓
�

b
0
1

◆ 1

b

0
2

#
. (4.26)

Using the � values corresponding to z = 270m and respective coe�cients given in Table 4.5,

4.6 and 4.7 the estimated Q values obtained from Equation 4.25 provides a slightly more

accurate estimate to true Q values with lower absolute error values. However, as illustrated

in Figure 4.16 (a) and (b), with increasing absorption, Equation 4.26 generally tends to

approximate the true Q values with higher degree of accuracy, thus lower absolute error

values.
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Figure 4.15: Comparison of absolute errors for z = 270m.
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Figure 4.16: Comparison of absolute errors associated with least squares, weighted least squares

and � ! lnQ approximation for (a) z = 750m (b) z = 1470m.
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z = 270m Estimated Q,LS Estimated Q,WLS Estimated Q,from � ! lnQ

Q = 20 14.9247 12.0737 18.1848

Q = 30 29.1843 25.2116 30.0312

Q = 40 43.5987 39.1736 42.2288

Q = 50 56.3820 51.9510 53.4736

Q = 60 67.2458 63.0393 63.4034

Q = 70 77.9803 74.1701 73.5753

Q = 80 87.8618 84.5507 83.2662

Q = 90 96.4736 93.6919 91.9736

Q = 100 105.2608 103.1019 101.1129

Q = 110 113.9378 112.4699 110.3925

Q = 120 122.1440 121.3941 119.4038

Q = 130 131.4092 131.5407 129.8548

Q = 140 137.5594 138.3152 136.9552

Q = 150 146.5577 148.2800 147.5795

Q = 160 153.9859 156.5516 156.5620

Q = 170 162.0784 165.6073 166.5671

Q = 180 167.8848 172.1323 173.8873

Q = 190 174.0542 179.0895 181.7952

Q = 200 180.6169 186.5198 190.3583

Table 4.8: Estimated Q values from 4.25 (using least squares and weighted least squared method)

and 4.26 for z = 270m.
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4.5 Towards application to field data

4.5.1 Noise

It is generally a common practice to introduce noise within a given data in order to test the

stability, e↵ectiveness and robustness of the mathematical model. The extent of noise within

given data is usually described by the signal-to-noise ratio (SNR). Mathematically the SNR

value is given by the following expression

SNR
dB

= 10 log10

✓
E

Signal

E
Noise

◆
(4.27)

where E

Signal

E

Noise

represents the energy ratio between the signal and background noise. Essen-

tially the SNR is a mathematical expression for the ratio between the maximum possible

signal value and power of distorting noise. Hence, based on Equation 4.27, typically lower

SNR values indicate greater degree of noise within the data.

Figure 4.17 (a) and (b) represents direct arrivals corresponding to receiver location

z = 630m and Q = 20 with SNR values of 18.01 dB and 2.27 dB respectively. Apply-

ing the continuous wavelet transform, measuring the corresponding modulus maxima values

and subsequently minimising Equation 4.3 yields relatively accurate approximations to data

containing normally distributed noise with SNR value of 18.01. Furthermore, the estimated

↵ and � values are within close range to the estimated value corresponding to noise-free

data. However, for data containing normally distributed noise with SNR value of 2.27 dB

noise, the model seemingly breaks down, failing to provide an accurate estimation to ↵ or �.

4.5.2 A Procedure for application to field data

Based on the results from synthetic modelling and in order to estimate Q values from zero-

o↵set field data, we proceed by

1. Applying the continuous wavelet transform to seismic trace corresponding to

direct arrival(s).
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2. Estimating the modulus maxima values, form the objective function based on

Equation 4.2 and subsequently minimise (using the least squares method) in

order to find the corresponding � values.

3. Subdividing the target medium into several layers and subsequently estimate

the corresponding local � values for each layer by calculating the di↵erence

between the � values from the preceding layer and the target layer.

4. Inverting for Q using Equation 4.25 and 4.26 for a range of b1, b2 and b
0
1, b

0
2

values.

5. Finally, comparing the obtained results to estimated Q values from traditional

methods, such as the spectral ration method.
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Figure 4.17: Direct arrivals corresponding to z = 630m and Q = 20. (a) Data containing normally
distributed noise with SNR value of 18.01 dB noise (b) Data containing normally distributed noise
with SNR value of 2.27 dB.
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Figure 4.18: log2 |ai| vs j for direct arrival at z = 630m and Q = 20. a) Data containing normally
distributed noise with SNR value of 18.01 dB noise (b) Data containing normally distributed noise
with SNR value of 2.27 dB.
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Chapter 5

Application to the Ross Lake VSP field data set

5.1 Study area

The validity, stability and ultimately viability of a mathematical model requires departure

from a controlled setting (i.e. synthetic modelling), where input parameters are known, to

an unknown, uncertain environment consisting of field data. The Ross Lake 3D VSP data,

not only provides an opportunity to test, examine and analyse the behaviour of the modulus

maxima on field data, but also an opportunity to study the empirical relation between

↵, � and Q obtained from synthetic modelling. In June 2003, the Ross Lake heavy oil field

(located in south western Saskatchewan) was subject to a multi-o↵set VSP survey conducted

by the CREWES project in conjunction with Husky Energy Inc. and Schlumberger Canada

in order to study the relationship between rock properties and attenuation, AVO e↵ect of

the reservoir and to improve the characterisation of the Cretaceous Channel (Zhang, 2010).

Figure 5.1: Ross Lake heavy oil field, (Zhang, 2010).
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5.2 Data set

The Ross Lake exploration target and producing reservoir was the Cretaceous Channel sand

in the Dimmock Creek, member of the Mannville group, underlying the Jolie Fou formation of

the Colorado group (Zhang, 2010). The Cantuar formation is subdivided into the McCloud,

the Atlas and Dimmock Creek members, consisting of channel sands with a high degree

of porosity and permeability. Furthermore, the Cantuar formation of the Mannville group

mainly consists of sediments developed within the ancient valley system, carved into the

upper Jurassic vanguard group (Christopher, 1974; Zhang, 2010). Figure 5.3 illustrates the

regional stratigraphy of south western Saskatchewan.

The multi-o↵set VSP survey conducted by CREWES, Huskey Energy Inc. and Schlum-

berger Canada on June 2003, provided a detailed mapping of the Cantuar channel resevoir

and further enhanced the interpretation of the 3C-3D seismic survey acquired in 2002 (Zhang,

2010). All conducted surveys utilised downhole five-level, three-component VSP tools with

vertical and horizontal vibrator sources used for zero-o↵set VSP survey and vertical vibrator

sources used for both far-o↵set and walkaway VSP surveys (Zhang, 2010).

For the zero-o↵set VSP survey, the horizontal component recorded reflected, transmitted

and direct S-waves, whereas the vertical component mainly recorded the incoming P-waves.

Hence, the horizontal and vertical components were used for processing SS and PP waves re-

spectively (Zhang, 2010). Furthermore, for the vertical vibrator source, aligning the obtained

zero-o↵set VSP data with first arrival time, estimating the downgoing P-waves by a 13-trace

median filter and subsequently subtracting the downgoing P-wave from the wavefield yields

an estimate for the upgoing P-wave (Zhang, 2010). Similarly, processing the zero-o↵set data

obtained from the horizontal components yields an estimate for the upgoing and downgoing

S-wave. Compared to the zero-o↵set VSP data, the far-o↵set VSP data requires a slightly

di↵erent set of processing steps in order to determine the wave polarisation, clear upgo-

ing and downgoing waves via data rotation and separate upgoing P and SV waves through
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time-variant data rotation (Zhang, 2010). However, by and large, the processing steps re-

semble that of zero-o↵set VSP data. Table 5.1 provides additional information regarding the

zero-o↵set and far-o↵set VSP survey acquisition parameters.

(a)

(b)

Figure 5.2: Estimated P and S wave velocities respectively, from zero-o↵set VSP first arrival time

(Zhang, 2008).
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Survey Type Zero-o↵set VSP Far-o↵set VSP
O↵set 53.67m 399.12m

Source Elevation 856.10m 867.70m
Source Azimuth 16.30o 337.20o

Litton 315 P-vibe:
Sweep= 8� 180 Hz, Litton 315 P-vibe:

Source Type IVI S-MINI vibe(inline): Sweep= 8� 180 Hz
Sweep= 5� 100 Hz; 12s linear sweep

Top Level 197.50m 197.50m
Bottom Level 1165m 1165m

Receiver Spacing 7.50m 7.50m
Reference Datum KB= 871.60m

Table 5.1: Acquistion parameters for the Ross Lake VSP survey (Zhang, 2008).

5.2.1 Q in the Ross Lake VSP data

Whether the established empirical relation between � and Q, obtained from the synthetic

data is applicable to the field data, hinges on the behaviour modulus maxima values applied

on the field data. Figure 5.4 (a), represents the downgoing P-wave corresponding to the far-

o↵set VSP survey. The o↵set value for this particular VSP survey is equal to x = 399.12m,

with a total of 119 receivers spaced 7.5m apart where the first receiver is located at a depth

of z = 197.50m. Additionally, the corresponding VSP survey has a total number of 3001

samples with a sampling rate of 1ms.

Figure 5.4 (b), represents the trace of the direct P-wave arrivals corresponding to the 5th,

20th, 50th and 100th receiver. It is evident that the progressive amplitude decay implies a

degree of absorption. Hence, based on theoretical properties and synthetic results, applying

the continuous wavelet transform to the VSP data, calculating the corresponding modulus

maxima values and plotting the logarithm against the wavelet scale should exhibit a certain

degree of sensitivity to absorption within the data. Minimising the following equation,

log2 |ai|� j = log2 |A|+
↵� 1

2
log2(�

2 + 22j) (5.1)

yields an estimate to ↵, � and subsequently provides an approximation to the data.
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Figure 5.4: Downgoing P-wave corresponding to the far-o↵set VSP survey.
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Figure 5.5: Trace of direct P-wave arrival corresponding to the (a) 5th, (b) 20th, (c) 50th and (d)

100th receiver.
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Figure 5.6: log2 |ai| vs scale for P-wave corresponding to the (a) 5th, (b) 20th, (c) 50th and (d)

100th receiver respectively.

Figure 5.6, represents the logarithm of modulus maxima values against scale for the

P-wave arrival corresponding to the 5th, 20th, 50th and 100th receiver. With increasing

absorption, hence decay in amplitude, one could observe a gradual, progressive shift in

curvature with increasing scale (from Figure 5.6 (a) to (d)). For field data, such gradual shift

in curvature within data is encouraging, since it is via curvature that the model captures

the e↵ects of absorption, hence, it confirms and validates the sensitivity of the model to

absorption. The total error between the least squares approximation and data corresponding

to Figure 5.6 (a) to (d) is 0.1023, 0.0909, 0.1013 and 0.1077 respectively. Thus, the relatively

small error between the least squares fit to data yields an opportunity to estimate Q based

on the existing mathematical relation between � and the loss factor obtained from synthetic

modelling. Figure 5.6, illustrates increasing � values with increasing receiver depth, hence
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an increase in absorption with increasing depth. The sudden “bump” or increase in � values

roughly corresponding to the 50th to 70th receiver indicates a sudden increase in absorption.

This could imply a decrease in velocity, thus resulting in a greater degree of absorption.

5.2.2 Estimating Ross Lake MHZ parameters and Q

Figure 5.7 represents the measured � values corresponding to the respective receiver. In

order to estimate the corresponding Q values, we need to measure the local � values. With

the exception of the first � value, the remaining values represent the cumulative Q e↵ects

from the previous layers. Mathematically, the cumulative e↵ect could be represented as

follows,

�
m

=
mX

n=1

b1Q
b2
n

(5.2)

and

�
m

=
mX

n=1

b
0

1 lnQ
b

0
2
n

(5.3)

where m represents the corresponding layer. In order to exclude the cumulative Q e↵ects

from the previous layers and measure the local � value(s), we deduct the two successive �

values from each other. For example, in order to estimate the local � value corresponding

to the second receiver, we deduct the first value from the second � value as follows,

�
local�2 = �2 � �1 =) 4�2 = b1Q

b2
2 + b1Q

b2
1 � b1Q

b2
1 = b1Q

b2
2 . (5.4)

Repeating the process provides an estimate to the local � values corresponding to each

receiver. Figure 5.8, represents the estimated local � values corresponding to each receiver.

Clearly, the highest value (4�1 = 18.2800) indicates a high degree of absorption within the

first layer (from source to the first receiver). However, based on the Figure 5.8 the estimated

local � values (excluding the first value) reveal negligible yet gradual absorption, with the

maximum local � value equal to 0.8600. As a result, the medium has been subdivided into

six intervals or layers, hence measuring the average Q value corresponding to each layer.

Table 5.2 represents the � values corresponding to each layer. It should be noted that the �
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corresponding to the second layer is calculated by deducting the local � value corresponding

to the first receiver from the � corresponding to the 34th receiver (located at z = 450m).

Hence the estimated local � value corresponds to the average Q values from z = 200m to

z = 450m. The rest of the � values (corresponding to the remaining layers) are estimated

in similar fashion.

Depth(m) Local � value
7� 200 18.2800
200� 450 1.3000
450� 600 2.4300
600� 800 1.4800
800� 1000 2.3600
1000� 1165 1.2400

Table 5.2: Corresponding depth and local � values.

Thus far, based on synthetic modelling, the following two mathematical expressions

Q =

✓
�

b1

◆ 1
b2

(5.5)

and

Q = exp

"✓
�

b
0
1

◆ 1

b

0
2

#
. (5.6)

exists, where a power law function provides a mapping between Q and �. It should be

noted that b1 and b2 were obtained using the least squares and the weighted least squares

method. Table 1.2, provides the minimum, maximum and mid-level values obtained for each

coe�cient based on a wide range of tested synthetic models.

Applying the minimum and mid-range values given in Table 5.3 to Equation 5.5 and 5.6,

yields unrealistic Q values corresponding to the first layer, with minimum Q values ranging

from roughly 1.2859 to just under 15. However, the remaining Q values range from the

high twenties to just under 270, a relatively acceptable range. Additionally, applying the

maximum obtained values yields Q estimates ranging from roughly 20 to Q values slightly

over 600. Figure 5.9, represented the estimated Q values using Equations 5.5 and 5.6. For

the minimum and mid-range values Equation 5.5 and 5.6 provide Q values in relative close
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proximity. However, using the maximum values given in Table 5.3, Equation 5.6 seems to

overestimate the measured Q values.

Minimum Value Mid-level Value Maximum Value
b1 29.1085 149.8336 259.5581
b2 �0.7015 �0.8765 �0.8787
b1w 21.4660 138.9541 261.0325
b2

w

�0.6390 �0.8617 �0.8807
b
0
1 101.0296 662.0009 1176.3000
b
0
2 �2.9492 �3.6388 �3.6624

Table 5.3: Maximum, medium-range and minimum coe�cient values from synthetic modelling
were b1, b2 is obtained from least squares method and b1w, b2w is obtained from weighted least
squares method.
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Figure 5.7: Plot of estimated � values against receiver number.
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Figure 5.8: Plot of estimated local � values against receiver number.

In order to estimate and measure the attenuate factor Q, the most commonly used method

or technique in the field of exploration geophysics is the spectral ratio method. The method

utilises change in spectra at di↵erent depth levels in order to estimate the attenuation factor

Q (Haase and Stewart, 2003). Table 5.4, provides the estimated Q
p

values from downgoing

P-wave obtained from the Ross Lake VSP data. From an interval of z = 200m to z = 1000m

the Q
p

values estimated by Xu and Stewart (2004) generally reveals a downward trend in

Q
p

values with a maximum value of Q
p

= 197 and minimum value of Q
p

= 28. Hence,

for the most part, absorption seems to be increasing. For the deepest interval, z = 1000m

to z = 1165m, absorption seems to decrease with Q
p

value of 136. The general trend for

absorption (from z = 450m�1165m) seems to be captured by the estimated � and Q values,

with the minimum and mid-level values provided in Table 5.3 yielding relatively accurate Q

values to the estimated values by using the spectral ratio method.
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Q
p

Q
p

Depth (a) (b)
200� 450m 197
450� 600m 28
600� 800m 51 67
800� 1000m 46
1000� 1165m 136

Table 5.4: Estimated Q
p

values from downgoing P-wave were (a) and (b) represent the values
obtained by Xu, Stewart (2004) and Haas (2003) respectively (Zhang and Stewart, 2006).

5.2.3 Discussion

In essence, the spectral ratio method employs a linear fit to the data (logratio of a amplitudes

vs frequency), with the estimated slope of the fit yielding a linear mapping to Q. However,

Figure 5.10 illustrates a major drawback associated with the spectral ratio method. Although

a linear downward trend is used as a justification for a linear fit, one could clearly notice

the degree of errors between the fit and data, which ultimately carried into the Q estimate.

However, without extensive error analysis it is di�cult to comment on the accuracy on the

method. Nevertheless, the spectral ratio method is the most commonly utilised method in

the field of exploration geophysics in order to estimate the attenuation factor. Hence, new

techniques and proposed methods should be measured against the spectral ratio method.

Clearly, the estimated Q values using the continuous wavelet transform falls short compared

to the estimated Q values using the spectral ratio method.
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Figure 5.9: Estimated Q values using Equation 5.5 and 5.6 with (a) Minimum obtained values
given in Table 5.3 (b) Mid-level obtained values given in Table 5.3 (c) Maximum obtained values
given in Table 5.3. 82



Figure 5.10: Spectral ratio plot of downgoing P-wave (Haase and Stewart, 2003).
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Chapter 6

Conclusion

The aim of this thesis has been to utilise the continuous wavelet transform in order to analyse

and study the e↵ects of absorption on a given pulse and subsequently establish an empirical

relation between a functions regularity and the loss factor Q. An accurate estimation of the

Lipschitz regularity of a seismic trace is regarded as a highly desirable goal, The continuous

wavelet transform and the associated Lipschitz regularity provide a potentially e�cient and

powerful tool for analysing singularities in a signal. For a single event, a linear model enables

us to estimate the Lipschitz exponent and characterise the singularity with relative ease.

For a single event, resembling a delta type function, one could use a linear model and

subsequently estimate the associated Lipschitz estimate the Lipschitz exponent by finding the

slope. Additionally, estimating the Lipschitz exponent associated with a Heaviside function

and a ramp function confirms the theoretical properties of the Lipschitz regularity, such that

the integration increased the Lipschitz value by 1. Furthermore, it has been shown that the

MHZ signal model can not provide an accurate Lipschitz estimation for two closely spaced

events as the associated modulus maxima values merge, hence representing a single event

rather than two distinct seismic events.

For practical applications and in order to accurately represent a seismic pulse that ex-

periences attenuation, a signal would have to be modelled as a delta function smoothed by

a Gaussian (with variance �2), thus leading to a non-linear model. In order to estimate the

Lipschitz exponent, one would have to impose some sort of thresholding technique, form

the objective function and minimise using a relatively time consuming and computationally

expensive method such as the steepest descent or re-arrange the MHZ model and minimise

using the least squares method.
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For synthetic VSP modelled events, the steepest descent method fails to provide any

information related to the smoothness parameter �. A possible explanation could be related

to the topography of the objective function, however without further investigation one can

not state with certainty whether the topography limits the accuracy or e�ciency of the

method. Furthermore, as Q decreases the steepest descent method provides estimates for

the Lipschitz exponent ↵ that seems suspicious.

By imposing some sort of thresholding, one could linearise the problem, eliminate two of

the parameters (A and ↵) and solely focus on estimating the Lipschitz exponent ↵. However

this method is prone to errors of visual bias. Re-arranging the non-linear MHZ signal model

and minimising by using the least squares method, one obtains relatively accurate values

for all three parameters (regularity, smoothness and amplitude) corresponding to respective

VSP events.

An accurate estimation of signal regularity and smoothness for varying Q values (cor-

responding to VSP model) provides an opportunity to mathematically map Q to ↵ and �.

Plotting the ↵ against a range Q values corresponding to a single receiver within the VSP

Model, does not provide a trivial mathematical relation. Furthermore, the obtained mathe-

matical function (mapping Q and ↵) is limited to a certain range of Q values or absorption

levels. However, plotting the smoothness parameter � against Q does provide a relatively

trivial, power law type relation between the two parameters. Additionally, inverting the

obtained relation, does provide accurate Q values in comparison to the original values.

Applying the obtained mathematical relation between � and Q (from synthetic VSP

modelling) to the Ross Lake field data provides mixed results. Compared to the spectral

ratio method, the Q values estimated from the obtained power law relation falls short.

However, a positive and encouraging sign relates to the fact that the re-arranged non-linear

MHZ model does capture the e↵ects of absorption on a seismic signal. Hence, a theoretical

and practical framework exists, such that additional research could potentially lead to a
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robust mathematical relation between smoothness and Q.
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