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Abstract

The interface of two approaching fluids in porous media becomes unstable at strong enough

flow rates when the viscosity of the displacing fluid is less than that of the displaced one.

This phenomenon is studied to address the effect of nanoparticles (NPs) dispersed in the

displacing fluid assumed fully miscible with the displaced one. The problem is first studied

under isothermal conditions. The effects of the NP-induced additional properties such as

the viscosity of the nanofluid, the Brownian diffusivity and the NP deposition are addressed

on both the flow instability and the flow configuration. It was found that NPs attenuate

the instability of an initially unstable flow, but this effect is mitigated in the presence of NP

deposition. Moreover, the Brownian diffusivity was found to have a destabilizing effect, but

it cannot make an initially stable system unstable. The study is then extended to include the

thermal effects. This leads to the emergence of a new NP transport phenomenon known as

thermophoresis in which NPs migrate in opposite direction of the temperature gradient. This

effect is addressed in connection with other properties. Specifically, depending on whether

a hot fluid is displacing a cold one or vice versa, the competition between the two transport

mechanics, Brownian motion and thermophoresis, is found to lead to different trends in terms

of the flow configuration and instability. Next, the catalytic roles of NPs on the flow and

instability are investigated for approaching reactive fluids. The study is conducted under

both isothermal and non-isothermal conditions resulting from the heat of the reaction. A

new set of conditions is introduced to predict the instability of the isothermal case based on

the species mobility ratios, which then leads to six different flow configurations. Finally, the

coupled effects of the heat of reaction and thermophoresis on the flow configuration and the

amount of chemical products are addressed.
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Chapter 1

Introduction

Viscous fingering (VF) is a hydrodynamic instability that occurs when a low viscosity fluid

displaces a high viscosity one in porous media. At strong enough flow rates, finger-like

patterns develop as a result of growing disturbances at the interface of the fluids over time,

known as Saffman-Taylor instabilities [1]. The fingering patterns may also grow as a result

of gravity mismatch and are known as Rayleigh-Taylor instabilities [2] that develop when

a heavy fluid is present on top of a lighter fluid. Such instabilities are encountered in a

wide variety of fields. In some applications such as oil recovery process, chromatographic

separation, and contaminant transport in soil where a uniform front is desired to achieve

the highest volumetric sweep, such instabilities are unfavorable. On the other hand, in

microfluidic devices such as micromixers where inertial effects are negligible, VF is an efficient

mean to enhance the mixing rate [3]. There are two types of viscous fingering: miscible and

immiscible. In the miscible VF the change in the properties which leads to the growth of

instabilities results from the injection of a solvent fully miscible with the displaced fluid. On

the other hand in immiscible VF, the fluids are immiscible with each other. Consideration

of molecular diffusion and mechanical dispersion in miscible displacements distinguishes the

system from immiscible displacements where the surface tension must be considered instead.

Different parameters can affect the formation and propagation of these instabilities and

1



have been the subject of many studies. In the case of miscible VF which is the focus of the

present study, the effects of diffusion [4], permeability heterogeneity [5], heat transfer [6, 7],

chemical reaction [8, 9], melting [10], flow conditions [11] and flow configuration [12] have

been thoroughly analyzed. The common feature of the above mentioned physical conditions

is the alteration of the viscosity distribution, flow conditions or the medium properties to

control the instability. Another aspect that has so far received very limited attention is the

presence of solid additives in the flow, and more specifically nanofluids that can be injected

in porous media. Nanofluids, the suspension of ultra fine nano-sized particles (NP) in a

base fluid, are widely used in fluid flow systems [13]. Although nanofluids are well known

for their ability for heat transfer enhancement, they are broadly used in other applications

as they can affect a number of features of the flow systems. The NP-laden flows that

may lead to VF instabilities are observed in applications such as enhanced oil recovery

(EOR)[14, 15], nano-drug delivery [16] and particle mixing in microfluidic devices [17], to

name some. Implementation of NPs as catalysts in chemically reactive flows has also been

explored in VF related applications such as heavy oil upgrading [18] and soil remediation

[19].

Considering the importance of the problem, the lack of theoretical studies in the field

was an incentive to conduct the present study. In this work the effects of the presence of

NPs in the formation and the growth of instabilities in miscible systems are investigated.

The problem is solved either with linear stability analysis (LSA) or direct non-linear simu-

lations (NLS) of the governing equations. LSA is a strong method to predict the growth of

disturbances at early stages of their development. However, NLS lead to a full analysis of

the flow configuration and help to a further quantitative analysis. In both methods, small

disturbances are initially introduced to the system and the response of the system to the

induced perturbations is examined at later times.

The study is carried out in three stages, each introducing some aspects of NPs that may

affect the growth of instabilities and flow configuration in a specific flow condition. In the

2



first stage, the flow is under isothermal conditions with an emphasis on the effects of vis-

cosity modification after the addition of NPs, the Brownian diffusion and the deposition of

NPs on the porous medium. The second stage focuses on non-isothermal flow displacements

that as shall be seen later, triggers an additional NP transport phenomenon known as ther-

mophoresis, whose effects and competition with Brownian diffusion are thoroughly analyzed.

In the third stage, the catalytic effects of NPs are investigated in reactive flows under both

isothermal and non-isothermal conditions. The results of these three investigations are pre-

sented in Chapters 3, 4 and 5 respectively. Chapter 2 however, contains a review of previous

related studies. Finally, Chapter 6 concludes the summary of the results followed by some

recommendation for future works.
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Chapter 2

Background

This Chapter consists of four sections. First some of the important studies about the con-

cept of viscous fingering, specifically in miscible displacements, are reviewed. This general

overview includes two subsections to further address the effect of two important factors in

isothermal flows: diffusion/mechanical dispersion and permeability heterogeneity. Establish-

ing an understanding of the general features of this phenomenon, the review is then extended

to address the effects of heat transfer and chemical reaction on miscible VF instabilities in

NP-free systems, aligned with the investigation of their effects on NP-laden systems in Chap-

ter 4 and 5 respectively. Finally, in the last section, some studies are presented to discuss

some of the already reported effects of NPs on VF instabilities.

2.1 Viscous fingering phenomenon

The first scientific study of VF can reasonably be attributed to Hill (1952) [20]. Considering

a fluid with viscosity and density of µ2 and ρ2 on top of another fluid with µ1 and ρ1, he

defined a critical velocity ucr = gk(ρ1−ρ2)
(µ1−µ2)

to predict the instability. k is called the resistant

constant which is determined experimentally. He concluded that if the velocity exceeds

ucr the system with ρ1 > ρ2 and µ1 > µ2 is unstable while it is stable if ρ2 > ρ1 and

µ2 > µ1. After this prominent work by Hill, the attention of many scientists was drawn to this

4



phenomenon. There were a couple of studies in 1950s regarding this phenomenon, however

the most significant development can be found in the works of Chouke et al. (1958) [21]

and Saffman and Taylor (1958) [1], both on immiscible displacements. Chouke et al. carried

the first rigorous stability analysis of viscous fingering and found the stability condition

and the corresponding critical wave length for the initiation of the instability. They further

conducted experiments in a Hele-Shaw cell to validate the results of the stability analysis.

The experimental results were in good agreement with the analytic predictions. Finally,

they conducted further experiments in a porous medium to observe the differences in finger

configurations of the Hele-Shaw cell and the porous medium, and to further analyze the

effect of surface tension. Their results show that with the same displacing fluid, when the

viscosity of oil (displaced fluid) is higher, smaller fingers are formed. Furthermore, the lower

the bulk interfacial tension, the finer the fingers. These results are in accordance with their

presented theory. The stability of the immiscible flows were similarly analyzed by Saffman

and Taylor in a parallel study [1]. Through the experiments however, they investigated the

evolution and the shape of the dominant finger.

In a prominent classical study, Tan and Homsy (1986) [22] conducted a linear stability

analysis (LSA) of a miscible binary system. This is a distinguished work, as the previous

attempts to solve the problem by considering the time-dependant diffusion base state (one

dimensional flow in the absence of perturbations) had serious limitations. By introducing a

new correlation for the viscosity as a function of concentration, they solved the problem both

analytically and numerically using quasi steady state approximation (QSSA) and initial value

(IV) calculations. The QSSA, which was first proposed by these authors, is based on the fact

that the rate of change of the base state is much smaller than the growth of perturbations.

On the other hand IV calculation approximates the exact solution of the governing partial

differential equations. Their results show that the system is unstable for an unfavorable

log-viscosity ratios, namely if R = Ln
µdisplacing fluid
µdisplaced fluid

> 0. It was shown that the growth rate of

disturbances has its maximum value at t=0 and decays with time as a result of diffusion. In
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addition, the cut-off wave number, the wave number after which the system is stable, shifts

to lower values at later times.

The non-linear simulations (NLS) of the phenomenon in miscible displacements was first

successfully conducted by Peaceman and Rachford (1962) [23] using the finite difference

method (FDM). Their simulated fingers demonstrated good qualitative similarities with

experiments. However, due to the limitations in FDM, they were not able to capture the early

developments of the fingers. FDM has some limitations such as large numerical dispersion

in coarse mesh size, requires more grid points and has difficulty in treating the non-linear

terms. Attempts to avoid the mentioned disadvantages in FDM led to taking advantage

of other numerical techniques namely the spectral methods. The first NLS with spectral

method is attributed to Hatziavramidis (1987) [24] who used Chebyshev expansion to solve

the problem. However, his results were not in good agreement with many experimental

studies especially at high Péclet numbers.

A year later, a Fourier spectral method was used by Tan and Homsy (1988) [25] to

conduct NLS of a miscible displacement of a binary system in a rectilinear Hele-Shaw cell.

Using this technique, it was possible to solve the problem up to Pe = 500 with acceptable

accuracy compared to the results of LSA at early times. The authors reported that the Péclet

number and mobility ratio are the two parameters that determine the stability characteristics.

They noted that as time passes, the fingers become wider while their number decreases. This

phenomenon called spreading, reflects the fact that the wavelength of fingers shifts with time

to a larger spectrum. Furthermore, some fingers shield the growth of the adjacent fingers

and collapse with others to form a larger one (shielding phenomenon). They attributed

the spreading and shielding phenomena to span-wise secondary instabilities that are aided

by the transverse dispersion and the resulting cross flow. Another phenomenon referred as

tip-splitting, where the tip of a finger splits to form more fingers, was also observed in their

numerical study. The authors attributed the splitting phenomenon to the steep concentration

gradient at fingertip as a result of a stretching caused by cross flow. Accordingly, the tip-
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splitting mechanism in miscible displacement differs from immiscible displacement as the

flow field at the finger front needs to be stretched and become steep before a finger can split.

Finally, they examined the mixing length (ML) in this problem. The ML is the length in

which the transversely averaged concentration of one component is in a specific range along

the channel, typically 0.01 < Cav < 0.99. They reported that the dependence of the ML on

time is determined by two mechanisms: at early stages dispersion cause the ML to grow like

t
1
2 and at later times the non-linear fingers cause the ML to grow linearly with time.

Zimmerman and Homsy (1992) [26] studied the 3D miscible VF using the Hartley based

spectral method. Their aim was to find any differences both in fingering mechanisms and the

average quantities with previous 2D works. They reported that the 2D simulation captures

the most important physics of the miscible displacement observed from 3D simulations. In

both 2D and 3D simulations, the noise in modes outside the cutoff wave number is rapidly

damped to the precision limit of the simulation. Furthermore, the shielding, spreading and

coalescence (side attachment of one finger to another) observed in 3D simulations occur at

Pe numbers comparable to those in 2D simulations. They also observed the tip-splitting

but at higher Pe numbers compared to that observed in the 2D simulation. Furthermore,

the 3D longitudinally averaged concentration profiles show the same trend of a decrease

in the number of fingers at later times as a result of shielding and spreading mechanism as

observed in the 2D simulations. However, at specific Pe numbers, the final number of fingers

in 3D simulations was larger than that observed in the 2D ones. This was because the 3D

fingers tend not to travel sideways and as a result, experience less coalescence with respect

to the closed 2D fingers. Finally, the asymptotic ML in the 3D simulations derived from the

transversely averaged concentration profiles was found to be approximately the same as that

in the 2D simulations.

A recent comprehensive study about miscible displacements in a binary system was con-

ducted by Nijjer et.al (2018) [27]. They reported that the key dimensionless parameters to

study the flow are the Pe number and the log-viscosity ratio R defined above. The flow is
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unstable at R > 0, but only beyond a critical Pe number. The value of the critical Pe num-

ber decreases as R increases. The analysis introduced three distinct regimes in the unstable

flow: 1. early time, linearly unstable regime 2. intermediate time non-linear regime and

3. late time, single-finger exchange-flow regime. At early times, series of fine fingers start

to develop while growing exponentially with time. In this regime the number of fingers is

proportional to both the log-mobility ratio and the Pe number, n ∝ RPe while the mixing

length grows as ML ∝ ( t
Pe

)
1
2 . After some times the flow enters the non-linear regime where

the fingers interact non-linearly through different mechanisms such as fading, shielding, co-

alescence, tip-splitting, etc. The transition occurs at a time proportional to t ∝ O( φ2D
R2U2 )

where φ and D represent the porosity and the diffusion coefficient, respectively. As a result

of these fingering interactions, the number of fingers decreases with time as n ∝ ( t
Pe

)−
1
2 till

it reaches a single finger while the mixing length grows as ML ∝ Rt. Finally, in the third

regime n = 1 and the pair of counter-propagating fingers develop at both ends of the channel

but slow exponentially with time. This occurs at a transition time proportional to t ∝ W 2

D

when the instabilities diffuse across the entire width of the porous medium W . The mixing

length remains constant in this regime with ML ∝ RPe.

The aim in this review was to address the most important features of binary miscible

displacements. This preliminary review leads to the following conclusions: 1. A 2D analysis

of VF can capture almost all the physical properties of the problem and so there is no need

to use the complicated and time consuming 3D analysis. 2. The LSA with QSSA method

is a simple and at the same time very strong tool to predict the instability of the system.

3. The Spectral method has lots of advantages to model the miscible flows. 4. The miscible

flow in a homogeneous porous medium is unstable when the viscosity of the displacing fluid

is smaller than the displaced one (R > 0) if the Pe number exceeds a critical value. 5.

Diffusion is a stabilizing factor and the flow rate (injection velocity) is a destabilizing one.

6. In a diffusion dominant early time regime, the ML grows as t1/2 while in the convection

dominant non-linear regime it grows linearly with time. 7. The system finally reaches a
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single-finger growing regime while slowing exponentially and the ML becomes constant.

2.1.1 Diffusion/Dispersion in miscible viscous fingering

In earlier studies it was assumed that the transverse diffusion is not an important factor

to change the finger configuration. For example, Handy (1959) [28] attributed the claimed

neutral effect of diffusion to the fact that the distance between growing fingers is large

compared to the diffusional distance.

This conclusion was subsequently revised by Slobod and Thomas (1963) [29]. These

authors studied the effects of transverse diffusion on finger growth and the sweep efficiency

in a homogeneous porous medium. They used the X-ray technique to observe the shape of

the fingers. In order to study the effects of diffusion, they conducted a series of experiments

at two different flow rates: high and low. The lower flow rate represented the case with

higher residence time in the porous medium where the diffusion had enough time to act,

while the opposite is true for the higher flow rate. They observed that at fast flow rates,

initially generated fingers merge and finally reach to a couple of fingers in the middle of the

domain. On the other hand at the slow flow rate, the fingers appear initially so late and

finally merge to a single bulging finger. Accordingly, they concluded that in contrast to the

earlier studies, the transverse diffusion can move materials across the flow directions between

fingers if they have enough residence time. This further led to a conclusion implying that

transverse diffusion has a stabilizing effect.

The LSA of Tan and Homsy (1986) [22] validated the stabilizing effect of diffusion such

that the system was less unstable at larger base-state freezing time in QSSA where the system

had more time to diffuse. Furthermore, the analysis showed that the diffusion attenuates the

disturbances with wave numbers greater than a finite value (cutoff). As known, the dispersion

tensor is generally anisotropic and velocity dependent. Accordingly, extending the study to

consider anisotropic dispersion illustrated that the small transverse dispersion increases the

growth rate with respect to the isotropic case while the large transverse dispersion tends to
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stabilize the system.

Yortsos and Zeybek (1988) [27] conducted LSA of a miscible binary system focusing on

the dependence of the anisotropic dispersion on velocity. They reported that the strong

velocity-dependent longitudinal dispersion causes the system to become more unstable at

short wavelength. This effect is highly pronounced close to the onset of the displacement.

Zimmerman and Homsy (1991)[30] adopted a Hartley-based spectral method to conduct

NLS of this problem. Their dispersion coefficient was coupled with the velocity field. They

observed multiple coalescence and fading mechanisms in the non-linear finger growth with

lateral dispersion which had not be previously reported in the case of isotropic dispersion.

Using vortex analysis, they explained in particular the pairing mechanism. According to the

pairing mechanism, the number of vortices and hence the number of fingers in the linear

regime decreases by almost one-half before any macroscopic fingers appear. This is because

the uneven cross-flow generated by the transverse dispersion merges the neighboring vortices

of opposing spin or adjacent fingers. This allows one finger to spread and as a result shield

the growth of the neighboring finger. Accordingly, the slow growing finger disappears in

the wake of the fast growing one and the number of fingers decreases while their strength

increases. The authors further investigated the rate of growth of the ML in this system.

They reported that the ML at early times and late times grows as t
1
2 and t respectively,

similar to what were already known in the isotropic diffusive case. Their further analysis

shows that at constant R and high enough values of Pe numbers, the asymptotic mixing rate

is independent of the dispersion anisotropy and the Péclet number. In another study [31],

the same authors reported that the asymptotic mixing rate increases monotonically with the

viscosity ratio R.

In another prominent work, Manickam and Homsy (1993) [32] found out that the flows

that are predicted to be stable with step profile approximation in a system with non-

monotonic viscosity distribution, become unstable at later times as the base state diffuses

out. This was in contrast to what had been expected, in that diffusion has always a sta-
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bilizing effect. This study reveals that systems with non-monotonic viscosity profiles can

become unstable regardless of the value of the end-point viscosity as a result of diffusion.

They further determined the critical time at which the stable system becomes unstable, as

a function of the parameters of the model viscosity profile.

Ghesmat and Azaiez (2008) [33] investigated the effect of velocity dependent anisotropic

dispersion. The model they used contained a velocity dependent transverse dispersion which

had been ignored and simply substituted by diffusion in previous studies. Their results show

that the finger structure in flows with isotropic velocity dependent dispersion is similar to

those observed in a diffusive flow. However, the anisotropy in the dispersion has considerable

effects on the finger configuration and the interaction mechanisms between adjacent fingers.

Supported by a quantitative analysis, they concluded that as the ratio of the transverse to

longitudinal dispersion decreases, the system becomes more unstable with more intricate

finger configuration. Accordingly, the complexity of the system is mitigated as the effect of

the transverse dispersion increases.

If the diffusivities of the acting miscible solutions are different, double diffusive effects

may lead to interesting results. A comprehensive study of such systems was conducted by

Mishra et al (2010) [4]. Considering a fluid A with viscosity ratio and diffusivity of Ra

and Da, displacing a solution B with corresponding properties of Rb and Db, the system

is intrinsically unstable if Rb − Ra > 0 regardless of the values of diffusivities. However,

according to their study, the opposite trend with Rb − Ra < 0 does not always imply a

stable flow. Their LSA at t0 = 0 showed that in this scenario, the system becomes unstable

if δ < Rb
Ra

, while δ = Db
Da

. Further analysis at t0 > 0 showed that this system can actually

become unstable asymptotically if δ < (Rb
Ra

)
2
3 . It should be noted that Rb and Ra were both

taken to be positive in their study. This conclusion was further validated through a series of

NLS.

This brief review leads to the following conclusions: 1. The mutual diffusivity D in a

binary system has actually a stabilizing effect. 2. Systems with non-monotonic viscosity
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distributions become unstable with the contribution of diffusion. 3. The flow configuration

of the system with isotropic velocity dependant dispersion is similar to that observed in

the diffusive flows. 4. As the ratio of the longitudinal to transverse dispersion increases,

the system becomes more unstable compared to the diffusive system and vice versa. 5. The

viscously stable system (more viscous fluid displaces a less viscous one) may become unstable

as a result of the double diffusion effects of the approaching solutions.

2.1.2 Permeability heterogeneity in miscible viscous fingering

Most of the studies on VF instability have focused on homogeneous porous media. Exper-

imental works are mostly conducted in Hele-Shaw cells as a representative of homogeneous

porous media, since it is easy to set up and also to visualize the finger growth and their in-

teractions. However, in practice the porous medium may be heterogeneous and therefore the

variation of the microstructure of the medium may change the permeability. The change in

the permeability distribution of the porous medium leads to two instability mechanisms: 1.

mobility induced bypassing termed ‘fingering’ and 2. permeability related bypassing termed

‘channeling’ [34].

The first numerical study of the displacement in heterogeneous porous media is attributed

to Peaceman and Rachford (1962) [23], although the focus of their study was not the het-

erogeneity of the medium. The simulated finger configuration was qualitatively in a good

agreement with the experimental results of Blackwell et al. (1959) [35]. However the results

could not capture the early growth of the fingers.

Araktingi (1988) [36] used particle tracking to simulate miscible displacements in het-

erogeneous porous media. He took advantage of the heterogeneity index (HI = (σLnK)2λD)

to measure the heterogeneity of the medium. (σLnK)2 was the variance of the log normal

permeability distribution and λD represented the degree of correlation between the perme-

ability at two points of the medium. Based on the value of HI, he introduced two types of

flow patterns. For a small value of HI, the finger patterns were found to be similar to those
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observed in homogeneous systems. On the other hand, if HI was large, the growth of the

fingers was dominated by the permeability distribution. Accordingly, in this case the fingers

grew through the high permeability regions regardless of the value of the mobility ratio. The

author further investigated the validity of Koval’s assumption for these flow regimes. Ac-

cording to Koval’s assumption, the rate of growth of ML is constant after a period of time.

It was found that this assumption is valid for mobility dominated heterogeneous systems

(small HI), while it is not valid for permeability dominated systems (large HI).

The interaction between permeability heterogeneity and the viscosity-mismatch driven

instabilities was well depicted in the pioneering theoretical work of Tan and Homsy (1992)

[37]. Their permeability field was modeled by statistically stationary random function with

Gaussian distribution. They concluded that in addition to R, Pe and As (the domain aspect

ratio), the dynamics of the system were governed by an additional three dimensionless groups,

namely s (the variance of the permeability) and (lx,ly) the longitudinal and transverse

correlation scales. They found that at relatively small correlation scales (lx = 0.2,ly =

0.2), although the special variation of the permeability affects the specific path taken by

the fingers, the non-linear dynamics of the system still continue to be governed by the

mobility ratio. Furthermore, with this length scale, the ML varies linearly with time in the

heterogeneous porous media similar to what is observed in homogeneous media. However,

the convective mixing rate is not constant anymore and increases with the variance of the

permeability s.

Tchelepi et al. (1993) [38] studied the effect of permeability heterogeneity on miscible

VF. The concentration histories obtained by acoustic measurements were compared with the

numerical simulations conducted using the particle tracking method. Millstone and limestone

cores were used as the porous media, where limestone was much more heterogeneous than

the millstone. The results show that when the mobility ratio (M) decreases below unity,

the concentration distribution follows the dispersive behavior in both porous media and so,

the displacement suppresses the effects of heterogeneity. They attributed this behavior to
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the small longitudinal dispersivity, αl. Their calculations show that in the relatively more

heterogeneous porous medium, αl is very small when M < 1 compared to the case with

M > 1. In the unstable situation (M > 1) their 2D simulations show very good agreement

with both experimental observations and 3D simulations in homogeneous and relatively less

heterogeneous systems. In the case of the relatively more heterogeneous porous medium

however, there is a considerable disparity between the 2D simulations and the experimental

observations. However, the authors claimed that the results are still acceptable and therefore

the 2D simulations of a relatively more heterogeneous porous medium can lead to fairly

acceptable results.

In the previous studies, the permeability was modeled with a random function. Although

the random distribution of the permeability is a good representation of a real case and gives

very useful information, it has limitations when it comes to interpreting the fundamental

mechanisms of interactions between the viscosity driven fingering and the heterogeneous

permeability distribution. Accordingly, in order to resolve this limitation, De Wit and Homsy

(1997) [39, 40] introduced a simple spatially periodic model to define the heterogeneous

permeability. In their NLS they chose an initially viscosity-driven unstable system and

looked for the effects of permeability on fingering patterns and their growth rate. Their tool

was to change the magnitude of the amplitude (σ) and the wave numbers of the medium

heterogeneity (nx, ny). They chose two systems to study, namely the layered system (nx = 0

and ny varies) and the checkboards (both nx and ny vary). It was found that in the layered

system there is a critical value of σcr such that the fingering regime is changing. σcr depends

on the values of Pe and ny. In the system with σ < σcr the regime is convective in which

the fingering patterns are analogous to those in homogeneous porous systems with observed

shielding, tip splitting, fading, merging, etc. and the ML grows as t. On the other hand

in systems with σ > σcr the regime is dispersive in which the ”channeling” occurs and the

ML grows as t
1
2 . They further found that channeling occurs through a Taylor dispersion

mechanism. By introducing the axial spatial variation of permeability (checkboards system)
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channels were destroyed, tip splitting appeared and the system returned to the convective

regime.

Norouzi and Shoghi (2014) [41] investigated the effect of both anisotropic dispersion and

permeability in miscible binary systems. From LSA and NLS they concluded that as the

ratio of the longitudinal to transverse permeability (αk) and dispersion (αD) increases, a less

and more unstable flow is obtained, respectively. They justified their findings as follows: as

αk ≥ 1, the initial perturbations cannot easily grow as the fingers usually require transport

in the transverse direction. As a result the conditions for finger growth are not well-provided

and the flow is less unstable. In addition, as αD ≥ 1 the effect of transverse dispersion which

can moderate the concentration gradient is less pronounced and the flow is more unstable.

In the above mentioned discussion it is concluded that: 1. At very small mobility ratios

where the diffusion is dominant, the system still follows the dispersive regime regardless of

the degree of the permeability heterogeneity. 2. Depending on the permeability distribution

in the porous medium there are two instability mechanisms: fingering and channeling. In

the fingering regime, the non-linear dynamics of the flow are still governed by the mobility

ratio although the permeability heterogeneity affects the specific path taken by the fingers.

However, in the channeling regime, the effect of the mobility ratio is reduced and the flow

bypasses through the more permeable paths even under favorable mobility ratios. 3. The

variance of the permeability distribution and its covariance which is characterized by the

correlation scales, are the tools to distinguish the instability mechanisms. At small variance

and correlation scales the flow is dominated by the mobility ratio. The opposite trend in

the variance and the correlation scales of the permeability leads to the channeling regime.

4. In the fingering regime, the ML still grows linearly with time. However, its growth rate

increases with the variance of the permeability distribution.
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2.2 Thermo-viscous fingering phenomenon

Thermo-viscous fingering (TVF) instability is the term used to refer to displacements where

temperature mismatch of the approaching fluids may contribute to trigger, suppress or mod-

ify the instabilities. This modification is induced through the viscosity adjustment, different

thermal diffusivities of the fluids as well as the difference in the advective velocities of the

fluids and thermal fronts. These effects are usually represented by the dimensionless param-

eters of βT = Ln(
µT2
µT1

), the log viscosity ratio of the fluids at their initial temperatures, the

Lewis number (Le = α
D

= Pec
PeT

) which is the ratio of the thermal to solute diffusivity and the

thermal lag coefficient (λ =
φρfCf

φρfCf+(1−φ)ρsCs
) which represents the relative advective velocity

of the thermal front to solute front and is dependent on the properties of the fluids and the

porous medium. λ < 1 in a general porous medium while it is equal to one in the Hele-Shaw

cell. The general features of this phenomenon is explained below through a review of some

of the most representative studies.

The LSA of miscible TVF was conducted for the first time by Pritchard (2004) [42] for

radial flows. He conducted the analysis for a) single-front flows where one front is unstable

and the other is neutral and b) double-front flows where both or either fronts can be stable

or unstable. In the single front analysis, it is reported that with a new scaling of α = λD and

tT = λ−1tc, the re-scaled energy equation becomes identical to the concentration equation.

Accordingly, with this scaling the highest eigenvalue or equivalently the most dangerous mode

of the perturbations is identical in either of the systems with only the solutal or the thermal

front. The double-front stability analysis for unstable solutal fronts and unstable/stable

thermal fronts shows that the instability is controlled mainly by the properties of the solutal

front due to the much higher solute Pec as opposed to the thermal PeT . This implies

that the thermal front can only modify the instability of the system which is determined

principally by the solutal front. However, for very large values of λ or if βT >> βc (βc is the

solute viscosity ratio already shown by R in isothermal flows), the thermal front may have a

noticeable effect on the instability. The final case in which the solutal front is weakly stable
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but the thermal front is unstable, indicates that the fluid front cannot stabilize the instability

centered on the thermal front, although it provides a barrier to its growth. In summary, the

study concludes that the stability of these systems must be considered separately on each

front. If either of the fronts is unstable, then the instability is likely to grow although the

rate of its growth is modified significantly due to the double-front coupling effects.

Both LSA and NLS of TVF instabilities in the rectilinear geometry were carried out in

separate studies by Islam and Azaiez (2010) [6, 7]. The stability analysis was conducted

through both QSSA and IVC methods. It is worth stressing that in the IVC method, the

linearized governing equations were solved directly as apposed to QSSA where the equations

were solved at a fixed time. It is reported that at Le = 1, and λ = 1 the flow is equivalent

to the isothermal one with the effective viscosity ratio of βeff = βc + βT . This implies that

as βT increases the flow is more unstable. Investigating the behaviour of the system for

βc ≥ 0 and βT ≥ 0 showed that βT still has a noticeable destabilizing effect when λ < 1

but at Le = 1. This effect was observed even for very small values of λ. However, both the

maximum growth rate and the cut-off wave number were reduced as λ decreases, implying

that the system becomes less unstable with decreasing λ. Extending the study to investigate

the effect of βT at λ = 1 but in large Le numbers showed differences in the predictions of the

two methods of stability analysis. According to QSSA, βT still had a destabilizing effect at

large Le, while the opposite trend was found with IVC. However, comparing the results with

the NLS, the authors confirmed the validity of the results of IVC. It should be noted that

in both methods the maximum growth rate was found to decrease at higher Le compared to

the case where Le = 1, implying less unstable flows with increasing Lewis number. These

results were derived when both βc and βT are positive. The contours of concentration when

βc > 0 but βT < 0 show that the system is now more unstable at higher Le compared to

the case when Le = 1. It implies that the effect of Le is dependent on whether a hot fluid

displaces a cold one or vice versa. Finally, the authors reported that the coupled effect of

very large Le and small λ almost eliminate the destabilizing effect of βT .
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In the previous studies it was reported that at Le = 1 the non-isothermal system becomes

unstable if βc + βT > 0 while it is stable otherwise. However, different diffusivities of the

mass and heat (Le > 1) may lead to interesting counter-intuitive results. This effect, known

as ”double diffusion” was examined thoroughly by Mishra et al. (2010) in the case of a

Hele-Shaw cell (λ = 1). Some of the important conclusions derived from LSA and validated

through NLS, are summarized in Fig. 2.1. In this figure Rs and Rf represent the log

viscosity ratios of the slow (fluid) and fast (heat) diffusing components respectively, while

δ = Le =
Df
Ds

> 1. Depending on the values of Rs, Rf and δ, the study introduces six different

profiles for the viscosity distribution and accordingly for finger configurations. It is reported

that the system is always unstable if Rf +Rs > 0, however the opposite case of Rf +Rs < 0

represents either stable or unstable situation. The analysis shows that regions IVd and V

become immediately unstable (t = 0) while the other regions where Rf +Rs < 0 are stable.

However, as time passes, the unstable region expands in (Rs, Rf ) domain to include regions

III and IVc. Then asymptotically only regions IVa and IVb defined by Rf < −δ
3
2Rs < 0 are

stable.

Including the effect of thermal lag coefficient (λ < 1), Azaiez and Sajjadi (2012) [43]

investigated double-diffusive double convective effects in miscible displacements. Fig. 2.2

summarize some of the results of their study. In the figure, β1 and β2 represent the solutal

and thermal log viscosity ratios respectively. It is demonstrated that the flow is instantly

unstable as long as β1 + λβ2 > 0. In case where β1 + λβ2 < 0, the flow will still be unstable

at t = 0 under the condition that δβ1 + λβ2 > 0. This result implies that in the case of a

pure thermal displacement, the system is unstable as long as β2 > 0 and λ > 0, however as

λ decreases the system gets less unstable. Interestingly, with β1 = β2 the system with single

solutal front is more unstable than that with a single thermal front, as long as λ < 1. It

is also reported that at t > 0 the unstable region expands in the (β1, β2) domain in which,

asymptotically only the shaded region with β1 < 0, β2 < 0 is stable. The other important

result is that as λ < 1 decreases, the instantaneous unstable region in the quadrant (β1 > 0,
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Figure 2.1: (Rs, Rf ) plain of six different base state viscosity distributions in double diffusive
miscible displacements reported by Mishra et al. [4]. Rs and Rf are the log viscosity ratios

of the slow and fast diffusing components while δ =
Df
Ds

. Ln(n = 1, 2, 3) denotes lines of

Rf = −δ n2Rs

.

β2 < 0) expands while it shrinks in quadrant (β1 < 0, β2 > 0). Through QSSA, it was found

that at higher values of δ with β1 > 0, β2 > 0 the characteristic curves for all values of λ

collapse almost to a single curve, that for the isothermal flow with identical β1. However

interestingly, if β2 < 0 and β1 > 0 the system is more unstable than the isothermal flow

with identical β1. This implies that the presence of a favorable second component tends to

enhance the instability compared to the initially unstable single-component system. This

enhancement is more noticeable as λ decreases. These results were validated with NLS.

2.3 Viscous fingering of reactive fronts

Approaching two reactive fluids may trigger or modify the VF instabilities in porous media.

This phenomenon is observed in oil recovery [44], chromatographic separation [45], contam-
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Figure 2.2: The base state viscosity distributions in double diffusive-double convective misci-
ble displacements reported by Azaiez and Sajjadi [43]. β1 and β2 are the solutal and thermal
log viscosity ratio respectively, δ is the symbol used to represent Le number and λ is the
thermal lag coefficient.

inant degradation [46] and polymerization fronts [47] to name some. Relevant studies were

conducted mostly on systems in which the approaching fluids A and B are undergoing either

autocatalytic A→ B or bimolecular A+B → C reactions. The dynamics of the system are

then modified though the rate of the reaction, the diffusivities of the different components,

the velocity of the frontal chemical wave in the autocatalytic reaction and the viscosity of

the chemical product C in the bimolecular reaction. The rate of the reaction is reflected

through the Damköhler number (Da), representing the ratio of the dispersive time scale to

the reaction time scale. Additional dimensionless groups includes Rc that represents the log

viscosity ratio of the product C to that of the displacing fluid, and δi the relative diffusiv-

ities with respect to the displacing component. Below, the most important features of the

chemically driven VF instabilities are summarized by referring to some important studies.

The most important features of the systems undergoing an autocatalytic reaction were

reported by Dewit and Homsy (1999) in two separate studies [8, 9]. It is observed that
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the initially unstable non-reactive binary system becomes more unstable if the approaching

fluids are reactive following autocatalytic reaction in the absence of chemical traveling wave.

Specifically, increasing both the mobility ratio of the fluids and Da intensifies the instability.

An increase in the mixing zone of the fluids, enhancement of the tip splitting and formation

of droplets are some of the other features observed in the presence of chemical reaction.

However, the droplet formation and the finger propagation may be modified in the presence

of a chemical traveling wave.

Non-isothermal autocatalytic reactive systems were examined by Swernath and Pushpa-

vanam (2007) [48]. Heat transfer effects through the temperature dependency of the viscosity

in such systems, further increases the instability if the reaction is exothermic and mitigates

it if it is endothermic. The Le number on the other hand has an opposite effect such that it

increases the instability in endothermic reactions while it suppresses it in exothermic ones.

Most existing studies on chemically driven VF have focused on a simple A + B → C

reaction where the product C may have a different viscosity than those of the displacing and

displaced fluids; A and B. In two separate experimental studies, Nagatsu et al. (2007)(2010)

[49, 50] investigated the dynamics of the flow in both reactive and non-reactive systems at

similar unfavorable viscosity ratios. It was shown that the fingering patterns and the area

occupied by the fingers are different in those systems, implying the effect of the reaction on

the dynamics and the instability with unfavorable viscosity ratios.

Subsequently, Podgorski et al. (2007) [51] observed through experiments that initially

stable binary systems can even become unstable as a direct effect of the A + B → C reac-

tion. However, although both the invading and displaced fluids had the same viscosity, the

fingering patterns were interestingly different depending on which fluid is invading the other.

Conducting a theoretical study of such initially iso-viscous binary systems, Gérard and De-

wit (2009) [52] reported that the asymmetry in the finger patterns after the reaction emerges

as a result of unequal concentrated reactants and/or the difference in their diffusivities.

A thorough LSA of systems undergoing a bimolecular A+B → C reaction was conducted
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by Hejazi et al. (2010) [53]. Since the rate of chemical production is time dependent, it is

shown that the stability criteria change with time. However asymptotically, it was found

that an initially unstable binary system remains unstable after the reaction regardless of the

viscosity of the product. In addition, depending on the viscosity of the chemical products,

initially stable binary systems can become unstable as a result of the reaction. Specifically,

defining Rb and Rc as the log viscosity ratios of the displaced fluid and the product to that

of the invading fluid, it is reported that two zones, namely the trailing and the leading

zones, develop in the flow with the effective viscosity ratios of RT = Rc
2

and RL = Rb − Rc
2

respectively. If either RL or RT is positive, the system would be unstable asymptotically.

In other words, the viscosity distribution is monotonically decreasing if 0 > Rc
2
> Rb and

the system is stable. On the other hand it is unstable if 0 < Rc
2
< Rb where the viscosity

is monotonically increasing or if Rc
2

(Rb − Rc
2

) < 0 where the viscosity distribution is non-

monotonic. The large time asymptotic viscosity profile in (Rb, Rc) plain reported by the

authors is illustrated in Fig. 2.3 in which the stable flow condition is shown in shaded

regions.

NLS of such generic systems were carried out for both moderate and infinite Da numbers

respectively by Hejazi and Azaiez (2010) [54] and Nagatsu and De Wit(2011) [55]. It is

reported that in the diffusive regime, the cumulative amount of products increases with

time as t
1
2 . However, the rate of the production in the convective regime was shown to be

increased, indicating that the development of the fingers increases the mixing and in turn

the production rate. Furthermore, fingering patterns were analyzed according the already

classified stability conditions introduced in the LSA. It is observed that in the intrinsically

unstable system (Rb > 0), the fingering patterns after the reaction develop at both the

leading and trailing fronts, however they advance more in the trailing zone if RT > 0,

RL < 0 and vice versa. On the other hand, in those intrinsically stable systems (Rb < 0)

that the instability develops after the reaction, the fingering patters are less noticeable at

either of the zones with favorable viscosity ratios. Therefore, the fingers are more likely to
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Figure 2.3: Large time viscosity profiles of reactive systems with identical component diffu-
sivities undergoing A+B → C reaction in (Rb, Rc) plane. [53]
.

develop at the opposite zone in which the viscosity ratio is unfavorable.

2.4 Controlling viscous fingering with nanoparticles

As a result of the fast growing applications of nanotechnology, nanofluids, which can affect

the initial features of the flow systems, are widely used in different applications. In enhanced

oil recovery for example, the utilization of nanofluids is growing because they are very ef-

ficient. In comparison to conventional colloids, nanoparticles (NPs) can flow through the

porous medium and remain stable in the reservoir under harsh conditions of high pressure,

temperature, and salinity. It is also well-known that they can increase the viscosity, thermal

conductivity and the convective heat transfer coefficient of the base fluid [56–58]. Their

ability to control the mobility ratios of the fluids [59], to reduce the interfacial tension [14],
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to change the wettability of the porous medium [60, 61], to modify the self-diffusion [60]

and the relative permeability of the components [62] has been reported and discussed in

several studies. This raises the question of the potential effects of the presence of NPs on the

instability, specifically the miscible VF instabilities that is the focus of the present study.

However, despite the importance of this question, there are only very few studies on the

topic, dealing mainly with miscible displacements. Below the related studies are presented.

In these studies the nanofluid is injected to displace another fluid, fully miscible with the

injected one, in a porous medium or a Hele-Shaw cell.

Ghesmat et al. (2011) [63] conducted an LSA of an initially unstable isothermal system

after the addition of NP to the displacing fluid. It was reported that the addition of NPs

attenuates the instability. Specifically as Rn, the viscosity ratio of the nanofluid to that of the

base displacing fluid, increases the system becomes less unstable. NP deposition was however

reported to enhance the instability. Regarding the effect of NP diffusivity, the study shows

a turning point in the instability. Specifically, Brownian diffusivity was shown to attenuate

the instability if it is smaller than the diffusivity of the fluids, while make the system more

unstable otherwise. In another study [64] in (2013), the authors conducted an LSA of this

system, but with reactive fluids undergoing an autocatalytic reaction A+ n→ B + n where

the NPs act as nano-catalysts. It is shown that with the set of parameters used, both the

Damköhler number Da and the concentration of NPs enhance the instability. Furthermore,

similar to the non-reactive systems, it is reported that the NP deposition enhances the

instability while Brownian diffusivity has two opposing effects on the instability.

In a recent study by Zargartalebi and Azaiez (2018) [65] on the effects of NPs at the

mesoscopic scale for non-isothermal porous media consisting of regularly arranged imper-

meable disks, it was found that both the NP size and surface potential contribute to an

enhancement of the instability. It was also reported that for any given surface potential,

NPs are no longer able to affect the instability when their size exceeds a critical diameter.

Both LSA and NLS of the autocatalytic reactive isothermal systems have been investi-
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gated by Sabet et al. (2018) [66] in the presence of dispersed nano-catalysts in the invading

fluid. It is reported that the increase in the viscosity of the invading fluid after the addition

of nano-catalysts mitigates while the reaction rate promotes the instability. It is shown that

NP deposition at Rn > 0 may lead to two opposing behaviors in terms of stability and mixing

rate. At small enough Rn, deposition is shown to be led to less unstable/mixed situation.

However, at large enough Rn, deposition makes the system more unstable/mixed.
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Chapter 3

Dynamics of Isothermic Nano-flow

Displacements in Porous Media

1 In the present study, the effects of different parameters on VF instabilities in the presence

of non-reactive nanoparticles (NPs) are analyzed. First the LSA (linear stability analysis)-

based problem will be solved analytically at t = 0 to predict which parameters can have

a role in the growth of instabilities. Furthermore, the long wave instability and the cut-

off wave number analyses will be conducted to predict some features of the flow system.

Subsequently, the problem will be carried out numerically at larger times with both LSA

and nonlinear simulations (NLS), and the results will be explained broadly.

3.1 Mathematical model

3.1.1 Physical problem

A two dimensional miscible displacement of two fluids in a homogeneous porous medium

with constant porosity and permeability is considered in which the displacing fluid contains

1This chapter is based on the following journal article:
B. Dastvareh, J. Azaiez, “Instabilities of Nanofluid Flow Displacements in Porous Media”, Physics of Fluids,
vol. 29, (2017) 044101.
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Figure 3.1: Schematic view of the medium

NPs. Fluid A with initial concentration Ca0 and viscosity µa0 is injected with the constant

velocity U along the x axis to displace fluid B with the equivalent properties; Cb0 and µb0.

Fluid A contains NPs with the concentration Cn0 and viscosity µn0 which is the viscosity

of the base fluid after the addition of NPs. For the three components in the system, the

concentrations of each component are defined with reference to a base fluid. The base fluid

is the solvent to which components A, B and the NPs are added. Furthermore, as a result

of this multicomponent system, the diffusion coefficients of each component in the base fluid

are Da, Db and Dn. The length and width of the medium are L and W as shown in Fig. 3.1.

3.1.2 Governing equations

The flow is governed by the equations for conservation of mass, conservation of momentum

in the form of Darcy’s law and volume averaged mass balance equation. A convection

diffusion equation with a first order irreversible kinetic deposition term is used to describe

the transport of NPs.
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∇ · ~VD = 0 (3.1)

~∇P = − µ
K

~VD (3.2)

∂Ca
∂t

+
1

φ

(
~VD · ~∇

)
Ca = Da∇2Ca (3.3)

∂Cb
∂t

+
1

φ

(
~VD · ~∇

)
Cb = Db∇2Cb (3.4)

∂Cn
∂t

+
1

φ

(
~VD · ~∇

)
Cn = Dn∇2Cn − kdepCn (3.5)

In the above equations, ~VD(u, v) is Darcy’s velocity, P the local pressure, µ the viscosity,

K the permeability, φ the porosity, Ca, Cb, Cn the volume averaged concentration (or the

mass fraction) of component A, B and NPs respectively, Di the effective diffusity and kdep

represents the deposition rate which can be described with the widely applied colloidal

filtration theory (CFT) [67–69]. According to CFT, the deposition rate is proportional

to the particles concentration in the base fluid and kdep is constant through the porous

medium. Furthermore, the model does not consider the detachment of the particle from the

solid surface. The equations will be first written in terms of the interstitial velocities and

then is formulated in a Lagrangian reference frame moving at the velocity U
φ

(~u′ = ~u − U
φ
~i

). Furthermore, the equations are made dimensionless using diffusive scaling. The viscosity

of the solvent µs and the initial concentration of fluid A, Ca0 , are used to make the viscosity

and concentration dimensionless. It should be mentioned that in this study the permeability

K is assumed constant and incorporated in the expression of the viscosity by treating µ
K

as

µ and the ratios of µ shall be referred to as either viscosity or mobility ratios.

x∗ =
x
Daφ
U

, y∗ =
y
Daφ
U

, t∗ =
t

Daφ2

U2

, u∗ =
u
U
φ

,

v∗ =
v
U
φ

, p∗ =
P

µsDaφ
, µ∗ =

µ

µs
, C∗i =

Ci
Ca0

(3.6)

The resulting dimensionless equations are:
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∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (3.7a)

∂p∗

∂x∗
= −µ∗(1 + u∗),

∂p∗

∂y∗
= −µ∗v∗ (3.7b)

∂C∗a
∂t∗

+ u∗
∂C∗a
∂x∗

+ v∗
∂C∗a
∂y∗

=
∂2C∗a
∂x∗2

+
∂2C∗a
∂y∗2

(3.7c)

∂C∗b
∂t∗

+ u∗
∂C∗b
∂x∗

+ v∗
∂C∗b
∂y∗

= δb(
∂2C∗b
∂x∗2

+
∂2C∗b
∂y∗2

) (3.7d)

∂C∗n
∂t∗

+ u∗
∂C∗n
∂x∗

+ v∗
∂C∗n
∂y∗

= δn(
∂2C∗n
∂x∗2

+
∂2C∗n
∂y∗2

)−DadepC∗n (3.7e)

where Dadep =
kdepDaφ

2

U2 represents the dimensionless deposition rate. δb and δn are the

dimensionless diffusion rate of fluid B and NPs with respect to the diffusion of the displacing

fluid A. Similarly, using the above mentioned dimensionless groups, the domain dimension

will vary from (−Pe
2
, Pe

2
) in the x direction and (−Pe

2As
, Pe

2As
) in the y direction, where As = L

W

is the cell aspect ratio and Pe = UL
φDa

is the Péclet number. Furthermore, the following

boundary conditions are adopted:

(u∗, v∗, Ca
∗, Cb

∗)(
−Pe

2
, y) = (0, 0, 1, 0) (3.8a)

(u∗, v∗, Ca
∗, Cb

∗)(
Pe

2
, y) = (0, 0, 0, 1) (3.8b)

∂Cn
∗

∂x
(
−Pe

2
, y) =

∂Cn
∗

∂x
(
Pe

2
, y) = 0 (3.8c)

(u∗, v∗, Ca
∗, Cb

∗, Cn
∗)(x,

−Pe
2As

) = (u∗, v∗, Ca
∗, Cb

∗, Cn
∗)(x,

Pe

2As
) (3.8d)

Eq. 3.8a and 3.8b indicate that fluid A is always present at the inlet (left boundary)

with its initial concentrations, while this applies for fluid B at the outlet (right boundary).

It is also assumed that the initial concentrations of fluid A and fluid B are equal. As a result

of the deposition, the NPs concentration does not remain constant at the domain inlet and

decreases with time to less than Cn0, its initial dimensionless concentration. Accordingly,

the Neumann boundary condition is implemented for the NP concentration. Furthermore,
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similar to previous studies [25, 70], periodic boundary conditions are used in the transverse

direction. In all that follows, the analysis will be conducted with the dimensionless variables

from which the asterisks are dropped for convenience. In particular, all results will be

presented at dimensionless times.

To complete the model, a form for the dependence of viscosity on concentration must

be specified. Here the exponential viscosity-concentration relationship is chosen to complete

the model as below [22]:

µ = exp(RaCa +RbCb +RnCn) (3.9)

where Ra, Rb, Rn are log mobility ratios defined as follows:

Ra = ln(
µa0
µs

), Rb = ln(
µb0
µs

), Rn = ln(
µn0

µs
) (3.10)

By considering equal diffusion rates (δi = 1) and in the absence of NP deposition

(Dadep = 0), one expects the flow to be unstable if Ra +Rn < Rb. In the following, the flow

instability will be analyzed through LSA and NLS. First the LSA formulation is presented.

The linearized equations will be solved analytically and general conclusions will be derived

from a long wave and cut-off wave number analysis followed by the full numerical solution.

Finally, by NLS of Eq. 3.7 the finger growth and its configuration will be investigated.

3.2 Linear stability analysis

3.2.1 Problem formulation

After getting the linearized disturbed equations, the pressure P ′ and transverse velocity v′

disturbances are eliminated by taking the curl of Darcy’s law and utilizing the continuity

equation (see Appendix A). Since the base state is a function of only the x co-ordinate and

time, the disturbances are decomposed in term of Fourier components in the y direction to
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conduct a normal mode analysis:

(u′, C ′a, C
′
b, C

′
n)(x, y, t) = (Υ,Φ, X,Ψ)(x, t) exp(iky) (3.11)

Where k is the wave number of disturbances. This leads to the following set of coupled

partial differential equations:

(
∂

∂t
− ∂2

∂x2
+ k2)Φ(x, t) = −∂C̄a

∂x
Υ(x, y) (3.12a)

(
∂

∂t
− δb

∂2

∂x2
+ δbk

2)X(x, t) = −∂C̄b
∂x

Υ(x, y) (3.12b)

(
∂

∂t
− δn

∂2

∂x2
+ δnk

2 +Dadep)Ψ(x, t) = −∂C̄n
∂x

Υ(x, y) (3.12c)

(
∂2

∂x2
− k2 + (Ra

∂C̄a
∂x

+Rb
∂C̄b
∂x

+Rn
∂C̄n
∂x

)
∂

∂x
)Υ(x, t) = k2(RaΦ +RbX +RnΨ) (3.12d)

In a moving reference frame and in the absence of any disturbances, the base state

velocity and pressure are defined as ū(x, t) = v̄(x, t) = 0 and P̄ (x, t) = −
∫ x

µ̄(x′, t)dx′.

Furthermore, the base state concentration profiles which are derived after solving the one

dimensional diffusion equation for fluid A and B and the one dimensional diffusion equation

with deposition for NPs are:

C̄a(x, t) =
1

2
erfc(

x

2
√
t
) (3.13a)

C̄b(x, t) =
1

2
erfc(

−x
2
√
δbt

) (3.13b)

C̄n(x, t) =
Cn0

2
exp(−Dadep t) erfc(

x

2
√
δnt

) (3.13c)

The above base state equations are different from the ones reported by Ghesmat et al. [63]

as they have defined the fluids front at the entrance of the medium. The Pe number is taken

large enough to reach constant values for the base state concentrations at both ends of the

domain. In order to solve Eq. 3.12 numerically, the quasi steady state approximation (QSSA)

is adopted [22]. QSSA is based on the assumption that the growth rate of perturbations
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is faster than the rate of change of the base state, which therefore can be frozen at a time

t0. Though it has some limitations that have been recognized [71], QSSA has proven to

be a very powerful tool to analyze the stability of this system. In particular, it has been

successfully used in the stability analysis of systems containing ethylene glycol and methanol

(EG-MeOH)-water [72], propylene glycol (PPG)-water [73] and CO2-water [74]. Applying

QSSA, the perturbation function of Eq. 3.11 is expressed as:

(Υ,Φ, X,Ψ)(x, t) = (Y, φ, χ, ψ)(x, t0) exp(γt) (3.14)

Where, γ is the quasi-static growth rate. Substituting the above expression into Eq. 3.12,

the following system of equations is derived:

(γ −D2 + k2)φ = −dC̄a
dx

Y (3.15a)

(γ − δbD2 + δbk
2)χ = −dC̄b

dx
Y (3.15b)

(γ − δnD2 + δnk
2 +Dadep)ψ = −dC̄n

dx
Y (3.15c)

(D2 − k2 + (Ra
∂C̄a
dx

+Rb
∂C̄b
dx

+Rn
∂C̄n
dx

)D)Y = k2(Raφ+Rbχ+Rnψ) (3.15d)

Eq. 3.15 is an eigenvalue problem with boundary conditions (Y, φ, χ, ψ) → (0, 0, 0, 0) as

x → ±∞. It should be mentioned that the domain varies from [−Pe
2
, Pe

2
]. However, the

LSA is conducted for an infinite Péclet number that results in the most unstable scenario.

The quasi static growth rate γ is a function of the parameter t0, wave number k and the

physical properties of the system. It is worth mentioning that this is a temporal stability

analysis where the wave number is a real positive number, while the growth rate can be

complex. Eq. 3.15 is a system of coupled second order ordinary differential equations with

known boundary conditions where D and D2 refer to the first and second order derivatives

with respect to x, respectively. In the following, both analytical and numerical methods are

presented to solve the above equations.
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3.2.2 Analytical solution

Eq. 3.15 maybe solved analytically if the perturbations were induced to the base state at

t0 = 0, where there is no time for diffusion. This implies that the base state is frozen at

t0 = 0 with the concentrations in the form of Heaviside step functions. Generally, the sharp

front represents the most dangerous situation in terms of instability but it is not always true

as discussed in Ref [32]. The resulting characteristic equation for such conditions is (see

Appendix B for detailed derivation):

k
√
δnk2 + γ +Dadep

√
δbk2 + γ(

k2Ra

γ
− 2
√
k2 + γ − kRa

γ

√
k2 + γ)

+
k2Cn0Rn

γ +Dadep

√
k2 + γ

√
δbk2 + γ(k

√
δn −

√
δnk2 + γ +Dadep)

+
√
δnk2 + γ +Dadep

√
k2 + γ

k2Rb

γ
(
√
δbk2 + γ − k

√
δb) = 0

(3.16)

It is worth noting that Cn0 and Rn do not appear independently but as a group, hence,

Eq. 3.16 does not change if one treats Cn0Rn as an independent variable or if simply one

sets Cn0 = 1. This can be also understood easily by substituting Ψ = Cn0Ψ∗ in Eq. B.1-B.4.

Accordingly, henceforth Rn is used as a representative of Cn0Rn in the analytical solution.

It is not possible to solve the above algebraic equation analytically. But as shall be seen

later, it can be used to get some general conclusions regarding the contribution of long wave

disturbances as well as the cut-off wave numbers. Before doing so, some limiting cases are

examined to check the validity of the above equation.

By substituting δb = 1, δn = 1 and Dadep = 0 into Eq. 3.16 and after some algebra one

gets:

4γ2 + 4k(k +R)γ +Rk2(R + 4k) = 0 (3.17)

Where R = Ra +Rn −Rb. Solving this equation leads to

γ =
−k(k −R)−

√
k3(k + 2R)

2
(3.18)
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which is identical to the equation Tan and Homsy [22] reported for a simple binary system.

Furthermore, by substituting Dadep = 0, Rn = 0 and δn = 1 into Eq. 3.16, one can reach the

following equation reported by Mishra et al. [4] for a binary system with different diffusion

rates:

2γ

k
= Rb(1−

k√
k2 + γ

δb

)−Ra(1−
k√
k2 + γ

) (3.19)

It should be noted that in the absence of NPs, a binary (A-B) system will be intrinsically

unstable if the displaced fluid is more viscous than the displacing one (Rb > Ra) or if the

displaced fluid is less viscous than the displaced one (Rb < Ra) and the two fluids diffuse at

different rates with δb < (Rb
Ra

)
2
3 . This condition is also valid for Rb = Ra > 0. Otherwise, dis-

placement will be intrinsically stable [4]. In what follows long wave disturbances asymptotic

expansions are presented followed by an analysis of the cut-off wave number. The results are

presented for intrinsically unstable displacements followed by a stable ones. This will lead

to interesting results without solving the equations directly.

Intrinsically unstable displacements

Long wave expansion analysis is a very useful tool to predict the instability condition for

very small wave numbers. By assuming γ = Λkm, Eq. 3.16 results in series expansion with

respect to k as k → 0. The following first order expansion is obtained:

γ =
Rb −Ra

2
k + o(k) (3.20)

Eq. 3.20 indicates that there is a long wave instability in the system for Rb > Ra. Further

analysis for the special case of Rb = Ra and δb 6= 1 results in the following expression:

γ = (
Ra(1−

√
δb)

2
)
2
3k

4
3 + o(k

4
3 ) (3.21)

Eq. 3.21 is valid when Ra(1 −
√
δb) > 0. Accordingly, for a positive Ra the system is

34



unstable for long wave disturbances if δb < 1 and vice versa. The above results show that

the highest order term in the long wave expansions does not involve any of the properties of

the nanofluid. This implies that NPs have no effect on the onset of long wave instabilities

and the problem reduces to that of a binary system with double diffusion effects. Let's now

examine the cut-off wave number kc, defined as the largest wave number that makes the flow

unstable. Using the limit γ → 0 in Eq. 3.16 leads to the following algebraic equation for

determining kc:

Γ(k) =
Rb

2δb
− Ra

2
− Rn

Dadep

(
k2 − k3

√
δn√

δnk2 +Dadep

)
− 2k = 0 (3.22)

The largest real root of the above equation gives the cut-off wave number beyond which

the flow is stable. Eq. 3.22 indicates that unlike the long wave expansion, the properties

of the NPs have effects on the cut-off wave number. It is not possible to solve the above

equation analytically, however interesting conclusions may be drawn as shall be seen later.

The aim here is to predict the nature of the dispersion curves for the variation of <(γ) with

the wave number k, using both long wave and cut-off wave number analyses. As discussed

by Cross and Hohenberg [75] there are three types of dispersion curves. The first type of

dispersion curves (Type I) cross the line <(γ) = 0 at three different wave numbers k = 0,

k1 and k2 with the flow being unstable for k1 < k < k2. However the flow is stable for

0 < k < k1 and k > k2. Type II curves cross the line <(γ) = 0 at two different wave

numbers; k = 0 and kc such that the value of <(γ) is positive at 0 < k < kc and the flow is

unstable for all the range of wave numbers less than kc. The third type of dispersion curve

in which <(γ) 6= 0 at k = 0 is not possible in our case.

As discussed above, the system is unstable for long waves when Rb > Ra or Rb = Ra > 0,

δb < 1 or Rb = Ra < 0, δb > 1. Accordingly, it is concluded that the dispersion curve is

type II in these conditions. Further analysis is needed for the case of Rb < Ra to conclude

whether the system is intrinsically unstable. Since lim
k→∞

Γ(k) = −∞, if Γ(0) > 0 there must
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be at least one root in (0,∞). Accordingly, the flow is unstable for Rb < Ra and δb <
Rb
Ra

.

This indicates that the conclusion derived for the case of Rb = Ra above is a special case

of this situation. These conclusions are consistent with the results of Mishra et al. [4] for

binary systems at t0 = 0 which should be compatible with our results for long waves. The

analysis could not predict the type of characteristic curve for this case but the numerical

solution of Eq.3.19 for long waves shows that it must be type II. On the other hand for the

case of Rb < Ra and δb >
Rb
Ra

, Γ(k) will be always negative and the flow is stable except for

Rn < 0. In the latter case Γ(k) may have roots and the system will be unstable.

To summarize, the flow is unstable for long waves when Rb > Ra regardless of the

values of other properties and the characteristic curve is type II. Furthermore, in case of

Rb = Ra > 0 (Rb = Ra < 0) the flow is unstable as long as δb < 1 (δb > 1) and the

characteristic curve is again type II. In addition, the system is unstable with the characteristic

curve of type II in the case of Rb < Ra, δb <
Rb
Ra

. This analysis shows that the properties

of the fluids have a critical role with respect to the properties of NPs in the stability of

the system. In other words it could be concluded that when a binary system is unstable,

addition of NPs cannot make it stable and the instabilities grow at least for long waves. But

what about the opposite scenario? Do they make the stable system unstable? In the next

part the instability analysis will be conducted for the critical stable case of Rb = Ra, δb = 1.

Intrinsically Stable Displacements

The system without NPs is stable when Rb <Min(Ra, δbRa). Analyzing the critical case of

Rb = Ra, δb = 1 would help understand the possible effects of NPs on the stability of the

system. In this case the characteristic equation (Eq. 3.16) reduces to:

(k2 + γ)
{
− 2
√
δnk2 + γ +Dadep +

kRn

γ +Dadep
(k
√
δn −

√
δnk2 + γ +Dadep)

}
= 0 (3.23)

By solving this equation it is concluded that for Rn > 0 the flow is stable (See Ap-
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pendix C). In the case of Rn < 0, the flow can be stable or unstable depending on the

rate of the NPs diffusion and deposition. In particular, the system is unstable if Rn <

−
√

4(5.5 + 2.5
√

5)δnDadep (See Appendix C) and stable otherwise. It should be mentioned

that in most cases, the addition of NPs would increase the viscosity of the base fluid i.e.

Rn > 0. There are however cases that show the opposite trend leading to negative val-

ues of Rn [76]. The characteristic curve in this case is type I and consists of two separate

equations as below (See Appendix C). Without this analytical solution one could have also

predicted from the long wave analysis that where NPs can destabilize a flow, must have the

characteristic curve of type I:

γ = −k2, k < kcr (3.24a)

γ = −1

2
δnk

2 − 1

2
kRn −Dadep −

k

2

√
δ2
nk

2 − 2δnRnk, k > kcr (3.24b)

Where kcr is the wave number in which the characteristic curve equation changes form.

Equating the two separate equations in Eq. 3.24 leads to the following equation to find kcr

(See Appendix C)

4(1−δn)k4
cr−4(1−δn)Rnk

3
cr+(R2

n+4(δn−2)Dadep)k
2
cr+4RnDadepkcr+4(Dadep)

2 = 0 (3.25)

kcr has the following criteria:

1. (2− δn)kcr
2 −Rnkcr − 2Dadep ≥ 0

2. If after considering the first condition more than one positive real root is left, the

smaller root is kcr.

To validate the results, Eq. 3.23 is solved numerically for δn = 1 and Dadep = 0.01 for

different Rn and the variation of Max(γ) with respect to the wave number is illustrated along

with the characteristic curves of Eq. 3.24. According to the above mentioned expression it

is predicted that the system is unstable for Rn < −0.67. As shown in Fig.2 the results are
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Figure 3.2: Characteristic curve for Ra = Rb, δb = 1, δn = 1, Dadep = 0.01 and different Rn.
Lines represent the results of Eq. 3.24 and symbols represent the numerical solution of Eq.
3.23

compatible with each other. The figure shows that with Rn = −0.5, γ < 0 in response to the

perturbations of different wave numbers and so the flow is stable. It should be mentioned

that the characteristic curve of Eq. 3.25 is just valid for Rn < 0.

Finally, to answer the question in the last section, it can be said that when a binary

system is stable, the NPs cannot make the system unstable for the common positive values

of Rn.

3.2.3 Numerical results at t0 = 1

The above analysis shows that for Rb > Ra, the flow is unstable to long wave disturbances

and the characteristic curve is of type II which is in contrast with the numerical results of

Ghesmat et. al [63] who have reported a stable system for long waves. In order to validate

our conclusions and also for investigating other scenarios, the system of eigenvalue ODEs of

Eq. 3.15 is solved numerically. Furthermore, the results derived from LSA will be used to

validate the NLS which will be presented in the next section. Using second order central

discretization with respect to x with non-uniform grid points and taking advantage of the
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boundary conditions the following system of equations is obtained:

(A− γI)φ = CaY (3.26a)

(B − γI)χ = CbY (3.26b)

(C − γI)ψ = CnY (3.26c)

DY = k2(Raφ+Rbχ+Rnψ) (3.26d)

A, B, C and D are tridiagonal matrices while Ca, Cb, Cn, Ra, Rb and Rn are diagonal

matrices. By eliminating Y the final equation is written in the following form.
A−k2RaCaD

−1 −k2RbCaD
−1 −k2RnCaD

−1

−k2RaCbD
−1 B−k2RbCbD

−1 −k2RnCbD
−1

−k2RaCnD
−1 −k2RbCnD

−1 C−k2RnCnD
−1



φ

χ

ψ

 = γ


φ

χ

ψ

 (3.27)

The goal in QSSA is to find the eigenvalues (γ) with the largest real part corresponding

to each wave number. It is also worth mentioning that the length of the domain (Pe) was

chosen long enough to ensure the eigenfunctions decay at both ends of the domain according

to the boundary conditions. In what follows the viscosities of the solutions are chosen to

represent an unstable condition, and the results are presented and discussed for Ra = 2,

Rb = 5. Furthermore, it is assumed that the presence of NPs increases the viscosity of the

base state (Rn > 0). For convenience the initial concentration of the NPs is assumed to

be equal to one (Cn0 = 1). Results of the numerical solutions which for brevity are not

presented here, show that the increases of Rn and Dadep have stabilizing and destabilizing

effects, respectively as discussed by Ghesmat et al. [63], but in contrast with their results, the

characteristic curves are type II in concordance with the analytical solution. Furthermore,

the results confirm the conclusion of the analytic solution indicating that the presence of

NPs has virtually no effect on the long wave disturbances (see Fig. 3.3). Fig. 3.3 shows that

the presence of NPs makes the system less unstable, but interestingly the system is unstable

even at high Rn where Ra + Rn > Rb. This again validates the results of the analytical

solution which indicates that the system is unstable as long as Rb > Ra. This is as a result
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of NP deposition and will be discussed broadly in the next part. Furthermore, comparing

Fig. 3.3a and 3.3b it can be seen that the system is less unstable when δb > 1. In this case

the large viscosity fluid B diffuses more to the upstream and makes the flow less unstable

by attenuating the viscosity contrast. This can lead to the creation of locally stable regions

adjacent to the X = 0 as illustrated by the base state viscosity profile in Fig. 3.4. The

sudden change in the slope of the characteristic curves for δb = 2 in Fig. 3.3 is attributed to

a change in the order of the imaginary part of γ which is as a result of the double diffusion

effect that has been discussed in Ref [4] and [43].

(a) (b)

Figure 3.3: Characteristic curves at different nanofluid viscosity, δn = 1, Dadep = 0.01, (a)
δb = 1, (b) δb = 2

Fig. 3.5 shows the effect of NP diffusion. An increase in δn causes the system to be

more unstable which is in contrast to the results of Ref [63] where it was reported that for

δn < 1 larger δn makes the system less unstable while in case of δn > 1 the opposite trend

takes place. One can say that as δn increases, NPs diffuse more to the downstream and by

increasing the local viscosity creates a more intensified viscosity mismatch in the system.

In order to complete the discussion let's have a look at the characteristic curves of the

situation where Rb < Ra (Ra = 2, Rb = 1) in the presence of NPs with Rn > 0. Fig. 3.6a
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X

Figure 3.4: Variation of the base state viscosity along the domain at higher δb = 2, δn = 1,
Dadep = 0.01
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Figure 3.5: Effect of the NP diffusion, Rn = 1, Dadep = 0.01 (a) δb = 1, (b) δb = 2

41



(a) (b)

k

γ

0 0.04 0.08 0.12 0.16
-0.0002

0

0.0002

0.0004

0.0006

0.0008 δb=0.3

δb=0.35

δb=0.4

δb=0.5

δb=0.6

k

γ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002
δn=1

δn=3

δn=6

δn=10

Figure 3.6: Effect of the diffusion of both displaced fluid and NPs when Rb < Ra and Rn > 0,
Ra = 2, Rb = 1, Rn = 1, Dadep = 0.01, (a) δn = 1, (b) δb = 0.5

shows that as long as δb < 0.5 the system is unstable which is in concordance with the

analytical solution. This indicates that although NPs lead to an increase of the viscosity of

the upstream solution, the stability condition still depends on the properties of the fluids.

The role of the NPs is just reducing the intensity of the instability by reducing the growth

rate with respect to the binary solution. The neutral role of the properties of NPs (where

Rn > 0) in the case of a stable binary system is well depicted in Fig. 3.6b. Although δb

is chosen in its critical value (δb = Rb
Ra

= 0.5) the diffusion of NPs cannot make the system

unstable while as illustrated in Fig. 3.5, they can increase the instability of an unstable

system.

3.3 Non-linear simulations

3.3.1 Numerical technique

Direct simulations of Eq. 3.7 have been conducted to gain insight into the finger growth and

study the effects of non-linear terms which were ignored in LSA. A pseudo-spectral Hartley

based scheme [30] has been used to solve the equations. By taking the curl of Darcy’s
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law, writing velocities in the form of stream functions and taking advantage of Eq. 3.9 for

viscosity the final equations are written as a function of vorticity (ω), stream function (ψ)

and concentration (Ci). Then following earlier studies, the model equations are formulated

in terms of a base state (C̄i(x, t)) and a perturbation (Ci
′(x, y, t)) that decays to zero at the

domain's stream-wise boundaries. Such formulation results in periodic conditions and allows

the fast Hartley transform to solve the governing equations for the perturbations:

∂Ca
′

∂t
= Ja +

∂2Ca
′

∂x2
+
∂2Ca

′

∂y2
(3.28a)

∂Cb
′

∂t
= Jb + δb(

∂2Cb
′

∂x2
+
∂2Cb

′

∂y2
) (3.28b)

∂Cn
′

∂t
= Jn + δn(

∂2Cn
′

∂x2
+
∂2Cn

′

∂y2
)−DadepCn′ (3.28c)

ω = RaNa +RbNb +RnNn (3.28d)

∇2ψ = −ω (3.28e)

Where:

Ji =
∂ψ

∂x

∂Ci
′

∂y
− ∂ψ

∂y
(
∂C̄i
∂x

+
∂Ci

′

∂x
)

Ni =
∂ψ

∂x
(
∂C̄i
∂x

+
∂Ci

′

∂x
) + (1 +

∂ψ

∂y
)
∂Ci

′

∂y

(3.29)

ψ(x, y, t), ω(x, y, t) and C ′i(x, y, t) are zero at the boundaries. Moreover, a random number

distribution of concentrations is used as the initial condition:

c′(x, y, t0) = δp rand(y) exp(−x
2

σ2
p

) (3.30)

where rand(y) is a random number between (−1, 1), the perturbation magnitude δp is a small

number relative to unity and σp
2, also a very small number, represents the penetration of the

disturbances in the domain. The resulting ordinary differential equations in the transform

space are stepped in time using a semi-implicit algorithm based on the Adams-Bashforth

and Adams-Moulton predictor-corrector scheme. See Appendix D for a brief explanation
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Figure 3.7: Iso-contours of Ca(0.1 ≤ Ca ≤ 0.6) from the present study (left) and Singh [78]
(right), R = 3, Pe = 1000, As = 1.

of the solution procedure. More details can be found in [30, 77]. The code was validated

with the results of NLS of a binary system reported in the literature by considering δb = 1,

δn = 1, Dadep = 0 and R = Rb −Ra −Rn. As shown in Fig.3.7 the finger configurations are

qualitatively similar to those reported by Singh [78]. LSA was also used to validate the code

by checking that the wave number corresponding to the maximum growth rate corresponds

to the wave number of the instabilities at the early stages of the NLS.

In all that follows a cell aspect ratio As = 2 and Pe = 1024 is assumed. Results are

presented in the form of iso-surface of fluid A, and only time frames that illustrate the most

important structures are shown. In addition, plots of the mixing length (ML) are shown

to further quantify the instability. The ML is defined as the ratio of the length within

concentration range Ca,av = 0.01 to Ca,av = 0.99 to the length of the whole domain [25]
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Figure 3.8: Contours of Ca at different NP deposition rate, Rn = 1, δb = 1, δn = 1

where:

Ca,av(x, t) =
As
Pe

∫ Pe
As

0

Ca(x, y, t) dy (3.31)

Larger values of ML indicate a more unstable situation and vice versa. Furthermore,

wherever it seems helpful, the discussion is extended with the contribution of the concept of

breakthrough time, the time for fingers to reach the end of the domain.

3.3.2 Results and discussion

The important feature of the presence of NPs is their effect on the viscosity which is inter-

connected with the effect of the deposition rate. In this stage, the viscosities of the fluids

are chosen such that the flow is unstable in the absence of NPs. Accordingly, in all what

follows, as a representative of an unstable condition Ra = 2, Rb = 5 is taken.

Fig. 3.8 shows the development of instabilities for different deposition rates. It is clear that

as the deposition rate increases the flow becomes more unstable with more intricate finger

structures. These qualitative trends are confirmed with the analysis of the ML where larger

deposition rate leads to larger ML and is demonstrated in Fig. 3.9.
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Figure 3.9: Mixing length over time for different deposition rates, Rn = 1, δb = 1, δn = 1

This trend can be explained by the fact that an increase in the deposition rates result in

a reduction of NPs which in turn affects the viscosity contrast of the system (see contours

of Cn in Fig. 3.10). However, one should consider that further increase in the deposition

rate was found not to change the ML and the finger complication. This can be attributed

to the fact that at high deposition rates, NPs are removed rapidly and at some point, are

completely eliminated from the system (see Fig. 3.10c). As a result, further increase in the

deposition rate will have no effect on the instability.

The presence of deposition leads to a significant effect in the fluid flow system. Consider-

ing the system of Eq. 3.28, one can conclude that by neglecting Dadep and assuming a unit

diffusion rate, the system is controlled by an effective viscosity ratio R = Ra + Rn − Rb. If

R ≥ 0 the flow is stable and it is unstable otherwise. Fig. 3.11 depicts results of the con-

centration of fluid A for Rn = 5, δb = 1 and for two cases with and without NP deposition.

Although R ≥ 0 in both systems, it is clear that deposition has changed the displacement

from a stable one (Fig. 3.11a) to an unstable flow with a front exhibiting intricate fingers.

This change in the nature of the displacement instability was predicted from the linear stabil-
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Figure 3.10: Contours of Ca and Cn at three NP deposition rates at t = 500, Rn = 1, δb = 1,
δn = 1. It is seen that at Dadep = 0.5 the NPs are completely removed from the system.

Figure 3.11: Contours of Ca representing the role of deposition rate in changing the stability
of the system, Rn = 5, δb = 1, δn = 1

ity analysis in the previous section, and in particular from the long wave expansion analysis

of Eq. 3.20. One may however ask how does the presence of deposition can make the ini-

tially stable system (not binary stable system), unstable? Analyzing the variation of the

base state viscosity and concentrations of Fig. 3.12 along the channel shows that although

the system is stable at early times, as time passes, due to the deposition and the removal

of NPs, the viscosity distribution changes from monotonically decreasing to monotonically

increasing one, and finally makes the system unstable.

It should be mentioned that despite the presence of deposition, the effect of the initial

viscosity ratio of the nanofluids (Rn) in controlling the instabilities is very significant. This
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Figure 3.12: (a) variation of the base state concentration along the channel, (b) variation of
the base state viscosity along the channel, Rn = 5, δb = 1, δn = 1, Dadep = 0.01

effect is well illustrated in Fig. 3.13 depicting results for δb = δn = 1, Dadep = 0.01 and

two values; Rn = 1 and Rn = 3. It is clear that an increase of Rn tends to attenuate the

instability. However, as NPs are removing from the system their effect is less pronounced.

The analysis of the breakthrough time and ML for different nanofluid viscosity ratios shown

in Fig. 3.14 conforms the qualitative results. These trends towards attenuating the instability

also confirm the prediction from LSA in the previous section where it was found that a larger

Rn systematically results in smaller growth rates and a reduction of the spectrum of unstable

wave numbers (Fig. 3.3).

Diffusion can play an important role in controlling the initial instabilities in the flow.

It is known that the instabilities will grow when the viscosity is monotonically increasing

along the channel. However diffusion rate of each component can have a significant effect on

the redistribution of viscosity in the system. Depending on other properties, diffusion can

have either stabilizing and destabilizing effects in an unstable flow or make a stable system

unstable [4]. At this stage, the aim is to investigate the effect of both NPs and fluids diffusion

rate when the flow is initially unstable (Rb > Ra) and in case of Rn > 0. Fig. 3.15 shows

that as the diffusion of NPs increases the flow is more unstable. This effect is more obvious

in higher nanofluid viscosity ratios and specially in the early stages of the grow where the
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Figure 3.13: Contours of Ca for different nanofluid viscosity ratio δb = 1, δn = 1, Dadep = 0.01

Figure 3.14: (a) Mixing length, (b) breakthrough time, at different nanofluid viscosity ratios,
δb = 1, δn = 1, Dadep = 0.01
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Figure 3.15: Contours of Ca for different NP diffusion rate Rn = 1, δb = 1, Dadep = 0.01

NPs are exist in the system with higher concentrations. This result confirms the prediction

of LSA where it was found that larger values of δn lead to a more unstable displacement (see

Fig. 3.5). Further quantitative analysis depicted in Fig. 3.16 confirms that higher values of

NP diffusion lead to a more unstable situation with higher ML. Moreover, the variation of

the transversely averaged concentration along the channel indicates that at higher values of

δn, the instabilities cause fluid A to penetrate further downstream in comparison with lower

δn.

The effect of δb is shown in Fig. 3.17. It is clear that δb has a strong effect such that even a

small deviation from δb = 1 to the lower or upper values changes the flow pattern significantly

(compare with Fig. 3.13a). As shown the number of fingers in the early stages of the flow

increases as δb is decreased and that flows involving a displaced fluid with a smaller diffusion

coefficient than that of the displacing one, lead to a clearly more unstable displacement and

more complex finger structures. These results are in concordance with the predictions of the

LSA where it was found that a smaller δb leads to a wider spectrum of unstable modes and
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Figure 3.16: (a) Variation of mixing length with time (b) transversely averaged concentration
along the channel, Rn = 1, δb = 1, Dadep = 0.01

larger growth rates. Furthermore, the tip splitting configuration of the fingers represents the

higher rate of cross flow, more stretched front and steeper concentration gradient near the

front which is a suitable condition for small disturbances to grow. The higher rate of cross

flow causes the initial small disturbances at the front to diffuse and grow faster and make

the flow more unstructured. Hence, as time passes, finger splits stretch more and become

narrower and if δb is small enough, interact with each other and fade away. This constitutes

a good condition for enhancing fluid mixing in very low Re numbers flows. However for

δb > 1, the sharp viscosity gradient fades away and the disturbances cannot grow easily.

In order to dissociate the role of NPs from that of the rates of diffusion of the species,

Fig. 3.18 depicts results for δb = 1.5 in the presence and absence of NPs. The latter case

corresponds to the study of Mishra et al.[4]. It is clear that although the presence of NPs

makes the system less unstable, it does not however induce major changes in the finger

overall structures.
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Figure 3.17: Contours of Ca for different diffusion rate of displaced fluid Rn = 1, δn = 1,
Dadep = 0.01

Figure 3.18: Finger configuration when δb = 1.5 in both (a) particle-free and (b) particle-
included δn = 1, Dadep = 0.01 systems
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Chapter 4

Thermophoretic Effects on

Instabilities of Nanoflows in Porous

Media

1 The objective of this study is to investigate the role of parameters affecting the devel-

opment and growth of viscous fingering (VF) instabilities of non-isothermal nanoflows in

homogeneous porous media. More specifically, the study will analyze the combined effects of

Brownian diffusion and thermophoresis, the average motion of nanoparticles (NPs) resulting

from the temperature gradient, on the flow dynamics, particle distribution and the insta-

bility. The use of thermophoretic effects and the potential for the transport of particles by

temperature gradients has been applied in a number of processes that include thermal field-

flow fractionation where micro and nano-scale particles can be separated from the solvent

by imposing temperature gradient [79], ultrafine particle collection [80], and the design of

thermophoretic swimmers where particles are self-propelled as a result of anisotropic heat-

ing of the surrounding fluid [81]. Accordingly, thermophoresis as an additional transport

1This chapter is based on the following journal article:
B. Dastvareh, J. Azaiez, “Thermophoretic Effects on Instabilities of Nanoflows in Porous Media”, Journal
of Fluid Mechanics, vol. 857, (2018) 173-199.
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mechanism of NPs that may affect the NP laden VF instability observed in applications

such as nano-drug delivery [16], particles mixing in microfluidic devises [17] and the heavy

oil upgrading and recovery in the presence of nano-catalysts [82].

In this study, first the effects of Brownian diffusion and thermophoresis are analyzed in

two representative unstable systems; HDC (Hot fluid Displaces Cold fluid) and CDH (Cold

fluid Displaces Hot fluid). The analysis is conducted using the concentration distribution of

the displaced fluid, resulting from direct non-linear simulations of the flow. The observed

phenomena are explained in terms of the viscosity and NP concentration distributions and

through quantitative analyses. Physical interpretations of the observed trends are presented.

Then the study is extended to examine the effects of thermophoresis in the case of initially

stable systems.

4.1 Physical problem

A two dimensional homogeneous porous medium with constant intrinsic permeability K or

equivalently a horizontal Hele-Shaw cell is considered, where fluid B with initial concentration

Cb0, viscosity µb0 = µ(0, Cb0, 0) and temperature Tb is at rest. A miscible fluid A with

initial concentration Ca0, viscosity µa0 = µ(Ca0, 0, 0) and temperature Ta containing NPs

with initial concentration Cn0, is injected at a constant velocity U to displace fluid B. The

viscosity of the resulting initial nanofluid (fluid A containing NPs) is µn0 = µ(Ca0, 0, Cn0)

and the NPs are assumed to be in thermal equilibrium with the host fluid. Furthermore, the

fluids are assumed to be incompressible and the nanofluid is dilute. The length and width

of the medium are L and W as shown in Fig. 4.1.
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Figure 4.1: Schematic view of the flow geometry.

4.2 Problem formulation

The flow is modeled with the following equations:

~∇ · ~VD = 0 (4.1)

~∇P = − µ
K

~VD (4.2)

∂Cb
∂t

+
1

φ
( ~VD · ~∇Cb) = Dba∇2Cb (4.3)

∂Cn
∂t

+
1

φ
( ~VD · ~∇Cn) = ~∇ · (Dn

~∇Cn +DT

~∇T
T

)− kdepCn (4.4)

∂T

∂t
+
λ

φ
( ~VD · ~∇T ) = ~∇ · (α~∇T ) + β(Dn

~∇Cn · ~∇T +DT

~∇T · ~∇T
T

) (4.5)

The continuity equation and Darcy’s law (Eqs. 4.1, 4.2) are used for the conservation of mass

and momentum, where ~VD(u, v) is Darcy's velocity, P the local pressure, µ the viscosity and

K the intrinsic permeability. The flow is also governed by the advection diffusion equations

for the transport of fluids and NPs. One expects that in multi-component systems like the

one considered here, the flux of one component is affected not only by its own concentration

gradient, but also by other driving forces including the concentration gradients of other

components and the temperature gradient. However, since the mass fraction of the NPs is
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very low, the mass averaged velocity of the system in the absence of bulk motion is essentially

the same as that of the solvent (fluid) velocity [83]. This implies that the diffusion of the NPs

does not affect the molecular flux of the miscible base fluids. Accordingly, it is legitimate to

neglect the NP flux effect on the transport of the fluids (Eq. 4.3). Furthermore, the fluids

molecular flux effect on the transport of the NPs and the temperature gradient effect on the

transport of the fluids (Soret effect) are ignored.

It is well-known that NPs increase the viscosity, thermal conductivity and the convective

heat transfer coefficient of the base fluid [56–58]. Buongiorno [84] attributed the abnormal

increase of the convective heat transfer coefficient to the NP/base fluid relative (slip) ve-

locity. As a result of his analysis of the effect of seven different slip mechanisms, it was

concluded that Brownian diffusion and thermophoresis (particle migrations under the effect

of temperature gradient) are the most important slip mechanisms. Accordingly, he proposed

a two component (NP-fluid) model for the mass and heat transport in nanofluids. Eq. 4.4

is based on his model for the transport of NPs and is adapted for flows in porous media

[85]. The first and second terms in the RHS of this equation represent the net rate of change

of NP concentration as a result of Brownian diffusion and thermophoresis, respectively. In

equations 4.3 and 4.4, φ is the medium porosity, Ci the mass fraction or volume fraction

(in ideal solution), T the absolute temperature, Dba the mutual diffusion coefficient of the

fluids and Dn and DT are the diffusion coefficient of NPs resulting from Brownian motion

and thermophoresis. Finally, the energy equation (Eq. 4.5) is also used to model this non-

isothermal system, where the last two terms represent the contributions of the Brownian

motion and thermophoresis. In the energy equation, λ is the thermal lag coefficient, α the

thermal diffusivity and β the relative volumetric heat capacity of the NPs to that of the

medium.

λ =
φ(ρcp)nf
(ρcp)m

, α =
km

(ρcp)m
, β =

φ(ρcp)p
(ρcp)m

(4.6)
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Where:

(ρcp)m = φ(ρcp)nf + (1− φ)(ρcp)s (4.7a)

km = φknf + (1− φ)ks (4.7b)

In the above equations, k is the thermal conductivity and ρcp the volumetric heat capacity.

The subscripts m, p, s and nf stand for the medium, NP, solid and nanofluid respectively. In

the present model α is assumed to be constant since the thermal conductivity of the porous

medium is mostly dominated by the solid phase, rather than the NPs. Even in the case

of a Hele-Shaw cell, it is legitimate to take a constant value for the thermal conductivity

of nanofluid (knf ) as one of its properties. (ρcp)nf is also assumed constant by a similar

argument. In Eq. 4.4, kdep is the deposition rate described with the widely applied colloidal

filtration theory (CFT) [67, 86]. A list of deposition models along with their pros and cons

according to experimental data can be found in [87, 88].

To complete the formulation, a brief discussion of thermophoresis is presented. Ther-

mophoresis is an additional transport mechanism of particles dispersed in a continuum aside

from Brownian diffusion. It is associated with temperature gradients and is the equivalent of

the Soret effect in gaseous and liquid mixtures. Physically, it represents the time-averaged

chaotic impulse of the surrounding fluid on the particles [89]. It must be noted that due to

this random force, particles move randomly in all directions, however their average displace-

ment is slightly biased to the opposite direction of the temperature gradient. From Eq. 4.4,

the total mass flux of particles aside from convection, is:

~Jp
ρp

= −Dn
~∇Cn −DT

~∇T
T

(4.8)

The Brownian diffusion coefficient can be expressed with the Stokes-Einstein equation,

Dn = kBT
3πµbfdp

, where kB is the Boltzmann constant, µbf viscosity of the base fluid and

dp the diameter of the particles. On the other hand, although different correlations for
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thermophoretic velocity and accordingly thermophoretic diffusivity have been introduced

in gaseous mixtures, there are rather limited studies when it comes to liquids. A ther-

mophoretic diffusion coefficient based on experimental data reported by [90] for relatively

large (dp ∼ 1µm) latex spheres particles in water and n-hexane is expressed as follows [84]:

DT = −Kth
µbf
ρbf

Cn (4.9)

Where ρbf is the density of the base fluid and Kth = 0.26
kbf

kbf+kp
. Since Eq. 4.9 is derived

for very large particles, it would result in very small thermophoretic diffusion coefficient for

NPs. Furthermore, it suggests almost zero DT for highly conductive NPs (kp >> kbf ) which

does not concord with experimental measurements involving nanoflows [91, 92] and indicates

that this model is not fit to represent the thermophoretic diffusivity in nanofluids. Recently,

Michaelides [89] proposed a model for the thermophoretic velocity of NPs in liquids, and

suggested that it depends strongly on the size of the NPs. The model which is validated

with experimental data suggests fairly considerable values of the thermophoretic velocity

and accordingly thermophoretic diffusivity of NPs. The thermophoretic diffusion coefficient

derived from his model is similar to Eq. 4.9 with Kth = A0( rp
rp0

)−B0 where rp is the radius of

the NPs in nanometer, rp0 = 1nm, while A0 and B0 are experimental constants that depend

on the NP/base fluid system [89].

Thermophoretic diffusion of particles is typically expressed in the literature by the ther-

mophoretic mobility D̂T = DT
CnT

[m
2

sK
] or by D̃T = DT

Cn
[m

2

s
] known as the true thermophoretic

diffusion coefficient [93]. Although very diverse values can be found in the literature, in

most investigated systems the thermophoretic mobility varies within the fairly limited range

of 10−12 < D̂T < 10−11m2

sK
[93]. Accordingly, the value of the true thermophoretic diffusion

coefficient is in the order of D̃T < O(10−9)m
2

s
. However larger values; O(10−10)m

2

sK
for D̂T

or O(10−8)m
2

s
for D̃T have also been reported in some studies dealing with metal NPs [92].

Values of the true thermophoretic diffusion coefficient D̃T for some metal or metal-oxide NPs
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derived from the correlation introduced by [89] can even reach to O(10−7)m
2

s
.

Regarding the relative importance of Brownian vs thermophoretic diffusions, small values

of δ = D̃T
Dn

; as low as zero (or δ < 0, which is not the focus of this study) as well as large

ones; e.g. δ = 156 (R = 53nm) and δ = 641 (R = 253nm) for polystyrene (PS) spheres

in aqueous systems have been reported [94]. Accordingly, the effects of thermophoresis can

be very important compared to those of Brownian diffusion and therefore cannot be ignored

when modeling the transport of NPs.

In this study the Brownian and thermophoretic diffusion coefficients are assumed to be

linear functions of T and Cn respectively, and to depend on the base fluid constant viscosity

and density [84]. Accordingly, one may express them as Dn = Dn0

T
Ta

and DT = DT0
Cn
Cn0

where

Dn0 and DT0 are constants. It must be noted that DT must not be treated as constant, as

this may lead to unphysical negative values of the NP concentrations, especially when the

NP concentration gradient and temperature gradient are in opposite directions. This is a

common mis-application encountered in the literature involving numerical simulations of

nanoflows based on Buongiorno’s model, e.g. [95].

The governing equations are made dimensionless and then formulated in a reference frame

moving at the injection velocity U . Note that since the permeability K is constant, it is

incorporated in the definition of the viscosity such that, henceforth µ
K

stands for µ.

x∗/y∗ =
x/y
Dbaφ
U

, ~V ∗ =
~VD
U
, t∗ =

t
Dbaφ2

U2

, P ∗ =
P

µa0Dbaφ

µ∗ =
µ

µa0

, C∗b =
Cb
Cb0

, C∗n =
Cn
Cn0

, θ =
T

Ta

(4.10)
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The dimensionless equations where the asterisks have been dropped for convenience, are:

~∇ · ~V = 0 (4.11)

~∇P = −µ(~V +~i) (4.12)

∂Cb
∂t

+ ~V · ~∇Cb = ∇2Cb (4.13)

∂Cn
∂t

+ ~V · ~∇Cn = δnθ∇2Cn + (δn +
δT
θ

)~∇θ · ~∇Cn + (δT ~∇ · (
~∇θ
θ

)−Dadep)Cn (4.14)

∂θ

∂t
+ (λ− 1)

∂θ

∂x
+ λ(~V · ~∇θ) = Le∇2θ + ε(δnθ~∇Cn · ~∇θ + δTCn

~∇θ · ~∇θ
θ

) (4.15)

Where:

δn =
Dn0

Dba

, δT =
DT0

DbaCn0

, Le =
α

Dba

Dadep =
kdepDbaφ

2

U2
, ε =

Cn0φ(ρcp)p
(ρcp)m

(4.16)

In the above equations Le is Lewis number, Dadep the deposition rate coefficient while δn

and δT are referred to as the Brownian and the thermophoretic diffusivity, respectively. It

should be noted that the present study is limited to displacements with no NP deposition,

and henceforth Dadep = 0. This is a reasonable assumption as NP deposition in porous media

can indeed be avoided through the use of either surfactants or surface charge technology [96].

Dimensionless geometric quantities result from the domain boundaries which are (−Pe
2
, Pe

2
)

in the x-direction and (0, Pe
As

) in the y-direction, where As = L/W is the domain aspect ra-

tio and Pe = UL
φDba

is the Péclet number. The boundary conditions in this reference frame

consist of zero flux for concentrations and temperature in the x-direction, and periodicity in

the y-direction:

(u, v)(−Pe
2
, y, t) = (u, v)(

Pe

2
, y, t) = (0, 0) (4.17a)

(
∂Cb
∂x

,
∂Cn
∂x

,
∂θ

∂x
)(−Pe

2
, y, t) = (

∂Cb
∂x

,
∂Cn
∂x

,
∂θ

∂x
)(
Pe

2
, y, t) = (0, 0, 0) (4.17b)

(u, v, Cb, Cn, θ)(x, 0, t) = (u, v, Cb, Cn, θ)(x,
Pe

As
, t) (4.17c)
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One must note that due to thermophoresis, zero flux NP concentration in the x-direction,

requires that δnθ
∂Cn
∂x

+ δTCn
θ

∂θ
∂x

= 0, which is automatically satisfied by the conditions ∂Cn
∂x

=

∂θ
∂x

= 0.

To complete the model a form for the dependence of the viscosity on concentration

and temperature must be specified. Following previous studies, an exponential viscosity-

concentration-temperature relationship is adopted [22, 42]:

µ = exp(RbCb +Rθ
1− θ
1− r

+RnCn) (4.18)

Where r = Tb/Ta is the temperature ratio of the displaced fluid to the displacing one, while

Rb, Rθ and Rn are mobility ratios defined as:

Rb = ln(
µb0
µa0

)Ta , Rθ = ln(
µTb
µTa

), Rn = ln(
µn0

µa0
)Ta (4.19)

In particular, Rb > 0(Rb < 0), Rθ = Rn = 0 represents an unstable (stable) isothermal

NP-free system where a low (high) viscosity fluid displaces a high (low) viscosity one, while

Rθ > 0(Rθ < 0), Rb = Rn = 0 represents an unstable (stable) non-isothermal NP-free system

where a hot (cold) fluid displaces a cold (hot) fluid. Flows with Rn > 0 represent the case

where addition of NPs increases the viscosity of the displacing base fluid. Note that Rθ and

r enter the model as a group; R′θ = Rθ
1−r .

4.3 Numerical method

Following the procedure expressed in section 3.3, the governing equations are first formulated

in terms of the vorticity (ω), stream-function (ψ), concentrations (Ci) and temperature (θ).

Then the resulting equations are solved numerically using the Hartley based Pseudo-Spectral
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method [77]. The base state concentrations and temperature are derived from:

∂C̄b
∂t

=
∂2C̄b
∂x2

(4.20)

∂C̄n
∂t

= δnθ̄
∂2C̄n
∂x2

+ (δn +
δT
θ̄

)
∂θ̄

∂x

∂C̄n
∂x

+ (δT
∂

∂x
(
1

θ̄

∂θ̄

∂x
)−Dadep)C̄n (4.21)

∂θ̄

∂t
+ (λ− 1)

∂θ̄

∂x
= Le

∂2θ̄

∂x2
+ ε(δnθ̄

∂C̄n
∂x

∂θ̄

∂x
+
δT C̄n
θ̄

(
∂θ̄

∂x
)2) (4.22)

It should to be mentioned that the base state velocities are zero in the moving reference

frame. Zero flux boundary conditions are used to solve the above-mentioned base state

equations. The solution of Eq. 4.20 is determined analytically as:

C̄b(x, t) =
1

2
erfc(

−x
2
√
t
) (4.23)

Furthermore, the coupled Eq. 4.21 and 4.22 are solved numerically with the method of lines.

The equations for the perturbation terms are:

∇2ψ = −ω (4.24)

ω = RbNb −
Rθ

1− r
Nθ +RnNn (4.25)

∂Cb
′

∂t
= Jb +

∂2Cb
′

∂x2
+
∂2Cb

′

∂y2
(4.26)

∂Cn
′

∂t
= Jn +Gn −DadepCn′ (4.27)

∂θ′

∂t
= λJθ + (1− λ)

∂θ′

∂x
+ εGθ + Le(

∂2θ′

∂x2
+
∂2θ′

∂y2
) (4.28)

Where:

Ni =
∂ψ

∂x
(
∂X̄i

∂x
+
∂Xi

′

∂x
) + (1 +

∂ψ

∂y
)
∂Xi

′

∂y
(4.29)
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Ji =
∂ψ

∂x

∂Xi
′

∂y
− ∂ψ

∂y
(
∂X̄i

∂x
+
∂Xi

′

∂x
) (4.30)

(4.31)

Gn = δn

(
θ′
∂2C̄n
∂x2

+ (θ̄ + θ′)(
∂2Cn

′

∂x2
+
∂2Cn

′

∂y2
)

)
− δT θ

′

θ̄(θ̄ + θ′)

∂C̄n
∂x

∂θ̄

∂x

+

(
δn +

δT
θ̄ + θ′

)(
∂C̄n
∂x

∂θ′

∂x
+
∂Cn

′

∂x

∂θ̄

∂x
+
∂Cn

′

∂x

∂θ′

∂x
+
∂Cn

′

∂y

∂θ′

∂y

)
+ δT (C̄n + Cn

′)

[
∂

∂x
(
∂θ′

∂x
+ ∂θ̄

∂x

θ̄ + θ′
) +

∂

∂y
(

∂θ′

∂y

θ̄ + θ′
)

]
− δT C̄n

∂

∂x
(
∂θ̄
∂x

θ̄
)

(4.32)

Gθ = δnθ
′∂C̄n
∂x

∂θ̄

∂x
+

δT
θ̄ + θ′

(
∂θ̄

∂x
)2(Cn

′ − C̄nθ
′

θ̄
)

+
δT (C̄n + Cn

′)

θ̄ + θ′

(
(
∂θ′

∂x
)2 + (

∂θ′

∂y
)2 + 2

∂θ̄

∂x

∂θ′

∂x

)
+ δn(θ̄ + θ′)

(
∂C̄n
∂x

∂θ′

∂x
+
∂Cn

′

∂x

∂θ̄

∂x
+
∂Cn

′

∂x

∂θ′

∂x
+
∂Cn

′

∂y

∂θ′

∂y

)
Where Xi = (Ci, θ). As discussed above ω(x, y, t), ψ(x, y, t), Ci

′(x, y, t) and θ′(x, y, t) are

zero at the stream-wise boundaries and according to Eq. 4.17c they are periodic in the

transverse direction. Moreover, zero values for vorticity and stream function, and a random

number distribution for the concentration and the temperature perturbations are used as

initial conditions.

In order to validate the code, the numerical convergence was checked, and it was found

that a grid size of 256 × 256 is satisfactory. Furthermore, results were also validated by

comparing with isothermal NP-laden and NP-free displacements. LSA was also carried out

and the instability characteristic equation was derived for an arbitrary choice of parameters

in a NP-laden non-isothermal system. The number of fingers predicted from the LSA was

compared with that of the early growing fingers from the NLS. From the characteristic

curve in Fig. 4.2, the critical wave number is kcr ≈ 0.2 resulting in a number of fingers

NF = kPe
2Asπ

≈ 16.3. This is in concordance with the results of NLS at early times where

NF ≈ 17. This further confirms the validity of the nonlinear code.
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Figure 4.2: (a) Instability characteristics curve from LSA (b) iso-contour of Cb = 0.5 at
early times from NLS. Rb = 3, Rθ = 1, Rn = 1, λ = 0.8, δn = 1, δT = 3, Le = 3, ε = 0.01,
Dadep = 0, r = 0.5, t0 = 1, Pe = 1024, As = 2.

4.4 Results and discusion

Before presenting the results and discussion, a few adopted terminologies and reference

parameters are defined. Throughout this study, an intrinsically unstable (stable) system

corresponds to a system without NPs that is unstable (stable). This is to be contrasted with

unstable (stable) systems that refer to unstable (stable) systems in the presence of NPs with

or without heat transfer. Furthermore, this study focuses on NPs that increase the viscosity

of the base fluid (Rn > 0).

Two types of non-isothermal displacements are considered; a Hot fluid Displacing a Cold

one (HDC) where Rθ > 0 and 0 < r < 1, and a Cold fluid Displacing a Hot one (CDH) where

Rθ < 0, r > 1. The reference parameters for the HDC system are: Rθ = 1, r = 0.5 while they

are Rθ = −1, r = 2 for the CDH system. Furthermore, unless mentioned otherwise, the other

parameters are set as: Rb = 3, Rn = 1, λ = 1, δn = 1, δT = 3, Le = 3, ε = 0.001, Dadep =

0, P e = 1024, As = 2 and t0 = 1. The choice of these parameters represents unstable systems.

The qualitative characterization of the instability will be supported by a quantitative

analysis based on transverse average concentrations (Cav) and the mixing length (ML). The

ML is defined as the ratio of the length within concentration range Cb,av = 0.01 to Cb,av = 0.99
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to the length of the whole domain where:

Cb,av(x, t) =
As
Pe

∫ Pe
As

0

Cb(x, y, t) dy (4.33)

Larger values of ML indicate a more unstable situation and vice versa.

In the previous Chapter it was found that the addition of NPs to the displacing fluid

(Rn > 0) attenuates the instability of an intrinsically unstable solution as it decreases the

viscosity contrast in the system. More specifically, it was found that in the absence of depo-

sition and with the new set of parameters used here, the system is unstable if Rb − Rn > 0

and is stable otherwise. However in the presence of deposition, NPs are gradually removed

from the system and their effects on the viscosity of the fluids are weakened. As a result the

instability is determined mainly by the viscosity ratio of the base fluids. In other words, if

Rb > 0 the system is unstable although the addition of NPs mitigates the instability. It im-

plies that NPs (Rn > 0) cannot make an intrinsically unstable system stable in an isothermal

case in the presence of deposition. It was also reported that Brownian diffusion increases

the instability of an unstable system. However, it cannot make either stable or intrinsically

stable systems, unstable. Unlike the isothermal flow, Brownian diffusion coefficient of the

NPs (Dn) here, varies with temperature. We will therefore start the discussion by analyzing

its effects under non-isothermal conditions.

4.4.1 Brownian diffusion

Fig. 4.3 depicts concentration distributions of species B for the HDC and CDH case for

two values of the Brownian diffusivity. Similar to the isothermal system, as δn increases

both HDC and CDH systems exhibit more intricate finger configurations, reflecting the

destabilizing effect of Brownian diffusion. Plots of the variation of the ML with time for

different values of δn are presented for both systems in Fig. 4.4. The trends of a systematic

increase of the ML with Brownian diffusion confirm the previous conclusion quantitatively.
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Figure 4.3: Contours of Cb for two values of Brownian diffusivity in both HDC and CDH
systems.

One may also note that the effects of δn are more prominent in the CDH system compared

to the HDC one, and that the concentration distribution is more diffuse in the latter case.

This points to an important role that the temperature probably plays in conjunction with

Brownian diffusion in determining the distribution of NPs in the flow, and in turn in affecting

the instability.

In order to analyze these effects, plots of the transversely averaged concentration of

the NPs (Cn,av) are presented in Fig. 4.5 with an inset of NPs concentration contours at

an instance in time. An examination of the concentration contours in the insets reveals

that the distributions of the NPs are different in the HDC and CDH systems, and that in

the latter one, changes in δn induce a dramatic variation of the distribution at the front.

In particular, NPs in the HDC system move downstream easily in the low resistance paths

provided by the growing fingers. On the other hand, in the CDH system, there is a resistance

for the downstream transport of the NPs, which tend to accumulate at the front. For the

small Brownian diffusivity, the NP concentration is characterized by a narrow band at the

front with very large concentration values. This local accumulation of NPs leads to a local
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Figure 4.4: Variation of the Mixing Length with time for different Brownian diffusivities, (a)
HDC system and (b) CDH system.

increase of the nanofluid viscosity which reduces the mobility ratio between the fluids and

results in the observed attenuation of the instability. For δn = 1 however, the distribution

is more spread-out around the front with a wide region of small NP concentrations that

contributes to the growth of the instability. These conclusions about the distribution of the

NPs concentrations are confirmed by the corresponding plots of Cn,av. Furthermore, it is

worth noting from Fig. 4.5 that the maximum average NP accumulation in the CDH system

starts to decrease after some time, however its location is systematically receding from the

front and tends to move upstream.

Fig. 4.5 also reveals the development of localized regions of high NP concentrations in

the CDH case for δn = 1, where NPs in the upstream tend to accumulate in the concave

regions between the backward growing fingers (see Fig. 4.5b in the CDH case). A close

examination of the corresponding streamlines presented in Fig. 4.6, reveals that as a result

of the convective flow where counter-rotating dipoles develop, fingers grow backward and at

the same time NPs are entrained into the space between the growing fingers. This results in

the development of regions with large localized concentrations of NPs.

The intensive accumulation of NPs in the narrow band at the front in the CDH system
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Figure 4.5: Variation of the transversely averaged NP concentration along with contours of
Cn for both HDC and CDH systems, (a) δn = 0.1 and (b) δn = 1.0
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Figure 4.6: A closer view of the contour of Cn illustrated in Fig. 4.5 b. The accumulation of
NPs in the region between the backward growing fingers is the result of the counter-spinning
dipoles (δn = 1).
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Figure 4.7: Viscosity contours for two values of Brownian diffusivity in the CDH system, (a)
δn = 0.1 and (b) δn = 1.0

with δn = 0.1 leads to the creation of stable regions (negative viscosity gradient) upstream of

the front. The viscosity distribution depicted in Fig. 4.7 clearly illustrates the local regions

of stable flow where a large viscosity fluid displaces a low viscosity one. The development of

local stable spots leads to a situation where the instabilities cannot grow easily as already

observed in Fig. 4.3a.

To further investigate this, the viscosity distribution is presented along with the stream-

lines in Fig. 4.8. Four representative regions with specific features have been identified and

are labeled in the figure. A relatively high viscosity region 1, which is the consequence of

69



Figure 4.8: A closer view of the viscosity contour depicted in Fig. 4.7a along with the
streamlines.

the accumulation of NPs, and region 2 sandwich a lower viscosity region 3. Due to this

configuration, the less viscous (more mobile) fluid in region 3 experiences resistance from

region 2 to flow downstream and from region 1 to flow upstream. As a result, region 3

acts as a barrier to the flow while the identified region 4 offers a low resistance path to the

flow. Due to this barrier, the fluid in region 1 cannot easily flow downstream to feed both

forward and backward fingers. The fluid in region 2 experiences the same resistance to flow

upstream resulting in the suppression of backward extending fingers. Although part of the

fluid can flow downstream through the low resistance region 4, the forward fingers are also

unable to grow since, first the extent of the low resistance paths is very small as the stable

spots are dispersed in the channel width, and second the mobility ratio between the fluids

is reduced because of the presence of small diffusing NPs. This explains why the initiated

instabilities are hardly able to grow in the case δn = 0.1. The larger value δn = 1 results in

the weakening or even disappearance of the upstream stable spots where the fluid does not

experience resistance to backward. Furthermore, due to the diffusion of NPs, the mobility

ratio between the fluids increases resulting in a relatively easier growth of forward fingers.

Accordingly, fingers growth is stronger compared to the case δn = 0.1.
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(a) HDC (b) CDH

Figure 4.9: Variation of the transversely averaged NP concentration with insets of NP con-
centration contours at different temperature ratios for (a) HDC system (t = 500) and (b)
CDH system (t = 1500).

Fig. 4.9 depicts the effects of the temperature ratio r on the NPs distribution and the

corresponding variation of Cn,av along the channel. It is clear that increasing the temperature

difference of the fluids at constant Brownian diffusivity leads to more downstream migration

of NPs in the HDC system and higher upstream accumulation of the NPs in CDH system,

similar to the reported effects of δn. Clearly temperature gradients in NP-laden systems have

dramatic effects on the instability. One may therefore infer that Brownian diffusion is not

the only mechanism responsible for the observed trends, and heat related mechanisms may

be an important factor. Since these trends were not reported in NP-free flows, it is natural

to suspect that thermophoresis which is responsible for the transport of NPs as a result of

temperature gradients, is playing a major role in the dynamics of the flow.

4.4.2 Thermophoresis

Thermophoretic effects are examined by analyzing results for different values of the ther-

mophoretic diffusivity δT at constant temperature ratio r. It should be noted that as δT
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Figure 4.10: Contours of Cb for different thermophoretic diffusivities in the HDC system.
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Figure 4.11: Variation with time of the Mixing length for different thermophoretic diffusivi-
ties in the HDC system.

increases, the thermophoretic velocity of the NPs increases and vice versa.

Fig. 4.10 shows contours of Cb for different values of the thermophoretic diffusivity in

the HDC system. It is observed that higher values of δT lead to a more unstable flow.

The quantitative analysis also validates this conclusion, where for instance according to Fig.

4.11, the system with higher values of δT has a larger ML. This increase in the instability

corresponds to the local enhancement in the viscosity contrast at the interface as a result of

the migration of NPs downstream at higher δT .

Fig. 4.11 reveals that as δT increases the shift from the dispersion regime to the nonlinear

fingering regime occurs at earlier times. In the non-linear fingering regime, the fingers interact
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Figure 4.12: Contours of Cn for different thermophoretic diffusivities in the HDC system.

closely with each other and the ML grows linearly with time. Furthermore, for the set of

parameters considered, the rate of growth of the ML is virtually independent of δT . One

must note that this linear growth with time in the convective regime is typically observed in

constant viscosity ratios and large Péclet number flows where the ML growth rate does not

depend on dispersion [22, 27, 30, 97]. However, since thermophoresis is not a pure diffusive

phenomenon, a close analysis of the flow revealed another important factor that can affect

the ML growth rate in the non-linear regime, namely the development of non-monotonic

viscosity distributions due to the NP migration. In particular we found that the ML growth

deviates from the linear regime and also becomes dependent on the thermophoretic diffusivity

for large enough NP viscosity ratios, Rn as long as the Péclet number is not very large. This

effect may be observed in both HDC and CDH systems but it is more prominent in the latter

case.

An examination of contours of NP concentration depicted in Fig. 4.12 reveals that at

large enough values of the thermophoretic diffusivity, localized regions with accumulation

of NPs can actually develop in the flow which move upstream with the backward growing

fingers (see result for δT = 10). This trend was found to be stronger for even larger values

of the thermophoretic diffusivity and the nanofluid viscosity. This unexpected trend will be

discussed later below.

Different trends were obtained in the CDH case. The concentration contours of Fig.

4.13 show that unlike the HDC system, increasing δT tends now to attenuate the instability.
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Figure 4.13: Contours of Cb for different thermophoretic diffusivities in the CDH system.

In particular backward growing fingers that tend to extend upstream in the absence of

thermophoretic effects, are noticeably inhibited for δT = 10. To understand the reason of

this attenuation, the distribution of the NP concentration and of the viscosity are analyzed

(Fig. 4.14). It is clear that increasing δT leads to the accumulation of NPs in the upstream

part of the flow, such that the larger the value of δT the more the NP accumulation. The

upstream NP accumulation also affects the presence of NPs downstream. Specifically, as

δT increases, the larger accumulation of NPs in the upstream part of the flow implies lower

downstream concentration. At higher values of δT where the accumulation of NPs is more

intense, a local increase in the viscosity is expected. The new distribution of NPs leads to the

creation of locally stable upstream regions and hampers the growth of backward developing

fingers. This stable position is clearly identified in the viscosity distribution for δT = 10

(Fig. 4.14). Further analysis of the transverse average NP concentration (Cn,av) which is

not illustrated here, indicates that as time passes, the location of (Cn,av)max is receding from

the front and its value starts to decreases after some time, similar to our discussion of this

trend in Fig. 4.5 for the CDH system.

Further increase of δT results in another trend in terms of the forward growing fingers.

Fig. 4.15 shows the contours of Cb, Cn and of the viscosity for δT = 20. As expected the NP

accumulation is intensified and the backward growth of fingers is more obstructed. However,

counter-intuitively, forward developing fingers are actually growing faster, ultimately result-

ing in the increase of the ML (see Fig. 4.16). This reveals two distinct regimes, whereby
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Figure 4.14: Contours of Cn and viscosity for different thermophoretic diffusivity in the CDH
system.

Figure 4.15: Contours of concentrations and viscosity in the CDH system for δT = 20.

initially the ML increases with increasing δT , followed by a reverse of the trend beyond a

critical value of δT ≈ 10. It must however be noted that the conclusions regarding higher

accumulations of NPs at the front and the creation of strong stable regions leading to the

suppression of backward instabilities, are still valid for higher δT . Furthermore, the results

indicate that generally the CDH system is less unstable in the presence of thermophoresis in

comparison to the case where thermophoresis is absent (δT = 0).

To understand the tendency for a faster downstream growth of fingers at higher δT ,

viscosity contours for δT = 20 along with the streamlines, are presented in Fig. 4.17. First,

it must be mentioned that the reverse flow which is observed in all miscible displacements is

driven by convection rather than dispersion, such that the fluid failing to flow through the
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Figure 4.16: Variation with time of the Mixing Length for different thermophoretic diffusiv-
ities in the CDH system.

low resistance path created by the forward fingers, tends to flow backward [70]. Along the

same arguments used in the interpretation of the results in Fig. 4.8, at large values of δT the

backward fingers encounter a region of strong resistance to grow, that arises from the local

accumulation of NPs. As a result, the fluid tends instead to return to flow downstream and

contributes to the further growth of forward developing fingers. The streaming of the fluid

to the forward extending finger is coupled with another effect. As one can notice from Fig.

4.15, the concentration of NPs downstream is reduced as a result of their larger accumulation

at the front. The ensuing depletion of NPs especially inside the forward developing fingers

leads to an increase of the viscosity contrast inside and outside these fingers. These coupled

effects explain the observed faster growth of forward developing fingers and lead to the larger

ML.

We will now focus on analyzing the mechanisms of NP accumulation in both HDC and

CDH systems. First, the distributions of the base state characteristics in the HDC case

where an unexpected trend was reported, are examined. Fig. 4.18 depicts the base state

concentration of NPs at different values of δT along with a representative variation of ∂θ̄
∂x

and
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Figure 4.17: The closer view of the viscosity contour of Fig. 4.15 along with the streamlines,
δT = 20.

∂2 ln θ̄
∂x2

. In this figure, ∂θ̄
∂x

varies from zero to negative values with its absolute maximum at the

center of the channel. Furthermore, ∂2 ln θ̄
∂x2

= 0 at both ends, with a local positive maximum

value at x > 0 and a local negative minimum value at x < 0. It is observed that the NP front

advances in the channel as δT increases. In addition, for small δT , NP concentration decreases

monotonically along the channel. However, as δT increases, an inflection point appears

in the profile of C̄n after a critical value of the thermophoretic diffusivity (δTcr). Further

increase of δT results in a non-monotonic concentration profile, exhibiting a local minimum

and maximum. The local increase in the profile of C̄n represents the local accumulation

of the NPs in the flow. The critical values of δT associated with the development of an

inflection point in the profile of C̄n is generally a function of all other parameters and time.

However, as a general trend it was found that with all other parameters fixed, δTcr increases

with increasing Brownian diffusivity δn. This fact is illustrated in a representative plot in

Fig.4.19.

These trends can be understood by looking at the equation for the NP base state con-

centration:

∂C̄n
∂t

= δnθ̄
∂2C̄n
∂x2

+ δT
∂

∂x
(
1

θ̄

∂θ̄

∂x
)C̄n + (δn +

δT
θ̄

)
∂θ̄

∂x

∂C̄n
∂x

(4.34)

The rate of change of NP concentration is the result of three terms. The first one
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Figure 4.18: Base state NP concentration and a scaled variation of ∂θ̄
∂x

and ∂2 ln θ̄
∂x2

along the
channel in the HDC system at t = 500.
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Figure 4.19: A typical variation of δTcr with δn in the HDC system at t = 500 and other
default parameters.
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corresponds to a diffusion with a temperature dependent diffusivity, while the second term,

whose strength is directly proportional to the thermophoretic diffusivity, acts as either a

source or a sink term depending on the sign of ∂
∂x

(1
θ̄
∂θ̄
∂x

). It is clear that since ∂
∂x

(1
θ̄
∂θ̄
∂x

) = ∂2 ln θ̄
∂x2

is not constant, the strength of the source/sink term varies in the channel. The last term, can

be considered as a convective term with an effective velocity that depends on the temperature

gradient and the Brownian and thermophoretic diffusivities. It can be also regarded as the

difference of the NP frontal speed compared to that of the solutal/thermal front in the case

λ = 1 and negligible thermophoretic and Brownian effects in the energy equation (see section

4.4.4). The expression of this difference in the fronts’ speeds at x = 0 is:

ure =
1− r

2
√
πtLe

(δn +
2δT
r + 1

) (4.35)

Clearly ure = 0 in the isothermal case (r = 1, ∂θ̄
∂x

= 0), implying that all fronts travel at the

same speed. The expression of ure also indicates that the higher Le, the smaller this speed

difference and the ensuing effects on the instability.

This front speed is positive in the HDC case (r < 1, ∂θ
∂x
< 0) implying that the NP front

travels ahead of the solutal/thermal front resulting in the downstream transport of NPs.

This difference in the fronts’ speeds increases with increasing thermophoretic or Brownian

diffusivity. As δT increases, the downstream transport of NPs towards the cold fluid in-

creases bringing the NPs into a flow region where their convective velocity is essentially zero

( ∂θ̄
∂x
→ 0). Therefore, the NPs in the region with larger absolute temperature gradients are

flowing downstream faster (~Vt ∝ − ∂θ̄
∂x

) while those in the region of cold fluid are moving

slowly, leading to the local accumulation of NPs. In fine, the NP front is convected further

downstream to a flow region with a high local value of the source term δT
∂2 ln θ̄
∂x2

> 0 resulting

in a local increase in the NP concentration, as already seen in Fig. 4.18 in the case δT = 20.

To complete the discussion the NP accumulation mechanism in the CDH system is ex-

amined. Fig. 4.20 depicts the base state NP concentration variation along the channel for
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Figure 4.20: Base state NP concentration and a scaled variation of ∂θ̄
∂x

and ∂2 ln θ̄
∂x2

along the
channel at t=1500 in the CDH system.

different δT with the representative scaled variation of ∂θ̄
∂x

and ∂2 ln θ̄
∂x2

. Both ∂θ̄
∂x

and ∂2 ln θ̄
∂x2

decay

to zero at both ends of the domain. However, ∂θ̄
∂x

has a positive local maximum at the center

of the channel, while the variation of ∂2 ln θ̄
∂x2

exhibits a positive local maximum at x < 0 and

a negative local minimum at x > 0. The figure shows that as δT increases, NPs tend to

accumulate at the front and the location of both NP front and (C̄n)max move upstream. As

in the HDC case, these trends can be understood by examining the NP base state equation,

Eq. 4.34. Since ∂θ̄
∂x
> 0 in this case, the convective term (δn + δT

θ̄
) ∂θ̄
∂x

is always positive (or

ure < 0), implying that the NP front convects more upstream as δT increases and leads to a

stronger presence of NPs in the upstream region x < 0, and in turn a weaker presence in the

downstream section; x > 0. However in x < 0, NPs have different thermophoretic velocities,

with stronger backward velocity due to the higher positive ∂θ̄
∂x

(~Vt ∝ − ∂θ̄
∂x

) close to x = 0,

and an almost zero thermophoretic velocity far away from the front. As a result, the NPs

tend to accumulate at the front and this accumulation intensifies more as δT increases.

The accumulation is a result of thermophoresis and is strengthened with δT , since as
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the thermophoretic diffusivity increases, the source term δT
∂2 ln θ̄
∂x2

gets larger at x < 0 and

also more NPs are convected upstream
(

(δn + δT
θ̄

) ∂θ̄
∂x

)
. Although an increase of the Brown-

ian diffusivity results in larger NP frontal speed ure and consequently a stronger upstream

transport of NPs, it is also accompanied with stronger Brownian diffusion which explains

the observed trend towards smaller NP accumulation as the Brownian effects gets stronger

(see Fig. 4.5 for CDH case).

The previous results indicate that Brownian and thermophoretic effects have similar

destabilizing effects in the HDC system, where larger values of δn or δT lead to a more

unstable displacement. The effects of these two mechanisms are however different in the

CDH case, where a stronger Brownian diffusion tends to increase the instability while larger

thermophoretic effects have actually a stabilizing effect at least in some ranges. In particular

a large accumulation of NPs that leads to local stable regions upstream of the front, are

observed in the CDH case for smaller δn and larger δT which hinders the growth of backward

developing fingers. These results point to the close interplay of these two effects that can

either act synergistically or have counter-effects. In the HDC case, Brownian diffusivity and

thermophoresis act together towards the migration of the NPs in the downstream direction,

while in the CDH case where the temperature gradient is opposite to the HDC case, Brownian

diffusion tends still to transport NPs downstream of the flow towards the hot fluid while now

thermophoresis acts in the opposite direction resisting the downstream migration of the NPs.

Accordingly, the counter effects of thermophoresis in the CDH case are more noticeable

for smaller δn or larger δT . In the HDC case on the other hand, the two mechanisms

have synergistic effects, and larger values of δn and/or δT lead to the migration of NPs in

the downstream direction towards the cold less viscous fluid, resulting in a more unstable

displacement.
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Figure 4.21: Contours of Cb in the HDC system with Rn = 5.

4.4.3 Thermophoretic effects in stable/intinsically stable systems

The previous results and physical interpretations lead to the natural question of whether

thermophoresis effects would destabilize a stable or intrinsically stable system. To answer

this question, the instability of both HDC and CDH systems with large nanofluid viscosity

ratio, Rn = 5, is investigated in the presence and the absence of thermophoretic effects. Note

that such a flow is unstable (Rb = 3, Rθ = 1(HDC), Rθ = −1(CDH)) in the absence of NPs.

Fig. 4.21 shows the concentration contours in the HDC system in the presence and ab-

sence of thermophoretic effects. It is observed that the system is stable in the absence of

thermophoreis (δT = 0), while it is unstable otherwise (δT = 10). The instability devel-

ops as a result of the advancement of the NP front downstream which then leads to the

non-monotonicity in viscosity distribution. Therefore, one can extend the enhancement of

instability in an already unstable flow to a destabilization one of a stable flow, when one is

dealing with the HDC case. The analysis did not show this effect in the CDH system such

that the system was stable both in the presence and the absence of thermophoresis.

The problem is now extended to an intrinsically stable system. The choice of Rb = −1

(more viscous fluid displacing a less viscosus one) represents the intrinsically stable HDC

system (Rθ = 1) in the absence of NPs (Rn = 0, ε = 0). Note that the default values of the

other parameters are still used. Fig. 4.22 reveals that although the addition of NPs further

increases the viscosity of the displacing fluid and may lead one to expect the flow stability to
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Figure 4.22: Contours of Cb in the HDC system for Rb = −1 in (a) the absence, (b) the
presence of NPs. Note that Rn and ε are set to zero to generate the case without NPs.

be maintained, it is found that the dynamics are changed and fingers start to develop in the

flow as a result of thermophoretic effects (δT = 20). In other words such a system became

unstable only as a result of the addition of NPs and their migration due the already present

temperature gradient. This shows that thermophoresis can even make an intrinsically stable

HDC system, unstable. The CDH system with Rb = −1 did not show this effect.

4.4.4 Thermophoresis and Brownian diffusion in the energy equa-

tion

The previous results and interpretation were based mainly on changes in the distribution

of NPs as a result of Brownian and thermophoretic effects. However, these effects are also

present in the energy equation and it is legitimate to ask if the dynamics can be explained

by an analysis of the contributions of different terms in the energy equation, Eq. 4.15.

The last two terms in the right hand side of this equation represent the Brownian and

thermophoresis contributions. However, their effects on the instability depend directly on

the value of ε =
Cn0φ(ρcp)p

(ρcp)m
which has not been addressed yet.

Note that the volumetric heat capacity (ρcp) of both solids and liquids are of the order

of 106. Furthermore, the maximum order of magnitude of the NPs mass/volume fraction

and the porosity are typically 10−2 and 10−1, respectively. This leads to the conclusion

that O(ε) = O(Cn0φ), or ε < 0.01. Adopting ε = 0.01 the contributions of the Brownian
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motion and thermophoresis are analyzed while other parameters are fixed. Examinations of

contours and maximum and average values of the diffusive term Le∇2θ and of the combined

Brownian-thermophoretic term ε(δnθ~∇Cn · ~∇θ+ δTCn
~∇θ·~∇θ
θ

) revealed that the latter term is

order of magnitudes smaller than the former, for both HDC and CDH cases. The analysis

revealed almost the same conclusion even with ε = 0.1. This result was found systematically

over a wide range of the other flow parameters. It clearly points to the negligible contribution

of the Brownian motion and thermophoresis in the energy equation and to the fact that such

mechanisms can be actually ignored in the modeling and analysis of the energy effects, at

least for the system at hand. It also implies that the main effects of Brownian diffusion and

thermophoresis arise from their contribution to the NP transport while their contribution

through the energy equation can be safely disregarded.

∂θ

∂t
+ (λ− 1)

∂θ

∂x
+ λ(~V · ~∇θ) = Le∇2θ (4.36)
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Chapter 5

Dynamics of Nano-Catalytic Reactive

Flows in Porous Media

1 As a result of the increase in use of nano-catalysts in different applications particularly

those for enhancing reaction rates in porous media [18, 98–100], and due to the important

effects of nano-catalysts on both the properties of the fluids and the reaction rate, miscible

VF instabilities of reactive systems will be investigated in the presence of dispersed nano-

catalysts in the invading fluid. Specifically, the objective of this study is to analyze the VF

instabilities of nano-catalytic systems in the presence of A+B + n→ C + n reaction which

is more prone to create viscosity mismatch compared to the autocatalytic reaction. The

analysis will first examine the case of isothermal flows and then focus on non-isothermal

conditions that result from the heat of the reaction. This phase of the analysis is important

as shall be seen later, the nano-catalysts are subject in particular to thermophoretic effects

that have the potential to alter the dynamics of the flow.

1This chapter is based on the following journal article:
B. Dastvareh, J. Azaiez, “Instabilities of Non-Isothermic Nano-Catalytic Reactive Flows in Porous Media”,
Physical Review Fluids 4(3)(2019) 034003.
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Figure 5.1: Schematic view of the medium

5.1 Physical problem

A schematic view of the system is illustrated in Fig. 5.1 representing a homogeneous porous

medium or equivalently a Hele-Shaw cell. The channel is initially occupied by a solution B

with the initial mass fraction (or volume fraction in ideal solutions) of C0 and the viscosity

µb0 = µ(0, C0, 0, 0). Solution A with the same mass fraction of C0 and the viscosity µa0 =

µ(C0, 0, 0, 0) carrying nano-catalysts with initial mass fraction of Cn0 and the viscosity µn0 =

µ(0, 0, 0, Cn0) is injected into the channel at a velocity U . As soon as the solutions are in

contact, the following reaction takes place:

A+B + n→ C + n (5.1)

The viscosity of the chemical product C at the mass fraction of C0 is µc0 = µ(0, 0, C0, 0).

Before the reaction takes place the system is at temperature of T0, which may change after the

reaction as a result of the change in the enthalpy, ∆H. ∆H < 0 if the reaction is exothermic

and ∆H > 0 when it is endothermic. Finally, it is assumed that the fluids are incompressible

and the nano-catalysts are in thermal equilibrium with the medium. Henceforth NP notation

may refer to either nano-catalysts or nanoparticles.
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5.2 Problem formulation

The problem is governed by the following equations representing the conservation of mass,

the conservation of momentum in the form of Darcy's law, transport of the components A,

B, C, and NPs and finally the conservation of energy:

~∇ · ~VD = 0 (5.2)

~∇P = − µ
K

~VD (5.3)

∂Cj
∂t

+
1

φ
( ~VD · ~∇Cj) = Dj∇2Cj ± rR (5.4)

∂Cn
∂t

+
1

φ
( ~VD · ~∇Cn) = ~∇ · (Dn

~∇Cn +DT

~∇T
T

)− kdepCn (5.5)

∂T

∂t
+
λ

φ
( ~VD · ~∇T ) = α∇2T − φ∆H

(ρcp)m
rR (5.6)

Where ~VD is the Darcy's velocity, P the local pressure, µ the viscosity and K the intrinsic

medium permeability. In Eq. 5.4, Cj = (Ca, Cb, Cc) is the mass/volume (in ideal solutions)

fraction of the components, Dj = (Da, Db, Dc) the corresponding diffusion coefficient, φ the

porosity and rR is the rate of reaction. Dj are assumed to be constant while the cross

diffusion and Soret effects are ignored as they are order of magnitude smaller than the

principal diffusion effects. A first order dependency on the concentration of the reactants

and the NPs is adopted for the rate of reaction, where rR = kRCaCbCn. Note that the

linear dependency of the reaction rate on the nano-catalysts concentration has been reported

in previous experimental studies [101–104]. Moreover, it is assumed that the heat of the

reaction is small enough not to affect the dynamics through kR which will be considered

constant. Dn and DT in Eq. 5.5 represent the Brownian and thermophoretic diffusion

coefficients of NPs while kdep is the deposition rate following the widely applied colloid

filtration model [67]. Finally, λ =
φ(ρcp)nf
(ρcp)m

is the thermal lag coefficient [42] where the

subscripts nf and m refer to the nanofuid and the medium respectively, α = km
(ρcp)m

thermal

diffusivity, ρcp the volumetric heat capacity and k the thermal conductivity. Brownian
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and thermophoresis diffusion coefficients are in general not constant. In particular based

on Einstein equation (Dn = kBT
3πµbfdp

) it is assumed that Dn varies linearly with temperature

while following Piazza and Parola [93] and Buongiorno [84], DT in Eq. 5.5 is a linear function

of Cn. Assuming Dn = Dn0
T
T0

and DT = DT0
Cn
Cn0

[105] and incorporating constant K into

the viscosity definition, the equations are then made dimensionless. Accordingly, the length,

time and pressure are scaled with Daφ
U

,Daφ
2

U2 , Daφµa, viscosity with µa, velocity with U , Cj

with C0 and Cn with Cn0. Finally the dimensionless temperature is defined as θ = T−T0
T0HR

,

where HR = −φ∆HC0

T0(ρcp)m
= ∆T

T0
. HR, which is assumed to be small (HR << 1) and does not lead

to any fluid phase changes, represents the temperature changes as a result of the reaction.

Finally, the equations are formulated in a reference frame moving with the velocity U . The

equations are then in the following form:

~∇ · ~V = 0 (5.7)

~∇P = −µ(~V +~i) (5.8)

∂Cj
∂t

+ ~V · ~∇Cj = δj∇2Cj ±DaCaCbCn (5.9)

∂Cn
∂t

+ ~V · ~∇Cn = δn~∇ · ((1 +HRθ)~∇Cn) + δT ~∇ · (Cn~∇Ln(1 +HRθ))−DadepCn (5.10)

∂θ

∂t
+ (λ− 1)

∂θ

∂x
+ λ(~V · ~∇θ) = Le∇2θ + sgn(HR)DaCaCbCn (5.11)

In these equations all the variables are dimensionless, where:

δj =
Dj

Da

, δn =
Dn0

Da

, δT =
DT0

DaCn0

, Le =
α

Da

Dadep =
kdepDaφ

2

U2
, Da =

kDaφ
2C0Cn0

U2

(5.12)

Where δj, δn, δT are the solute, Brownian and thermophoretic diffusivities respectively,

Da Damköhler number, Le Lewis number and Dadep the dimensionless deposition rate. The

positive sign in Eq. 5.9 is used for component C while the negative sign is used for components

A and B. Furthermore, HR > 0 and accordingly sgn(HR) = +1 in the exothermic reaction
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while HR < 0, sgn(HR) = −1 in the case of endothermic one. With the introduced scalings,

the dimensions of the domain are (−Pe
2
, Pe

2
) in the x direction and (0, Pe

As
) in the y direction,

where Pe = UL
φDa

is the Péclet number and As = L
W

is the domain aspect ratio. In the

moving reference, the concentrations of A, B and NPs obey the zero flux condition at the

x-boundaries while the velocity, Cc and θ are zero. In addition, periodic boundary conditions

are used in the y-direction. The model is completed by adopting the following widely used

exponential viscosity–concentration–temperature relationship [22, 42]:

µ = exp(RbCb +RcCc +RnCn +Rθθ) (5.13)

Where Rb, Rc, Rn and Rθ are the mobility ratios defined as:

Rb = ln(
µb0
µa0

)T0 , Rc = ln(
µc0
µa0

)T0 , Rn = ln(
µn0

µa0
)T0 , Rθ = ln(

µT0(1+HR)

µT0
) (5.14)

Rb > 0, Rc > 0 and Rn > 0 indicate that the initial viscosities of the solutions made by

components B, C and NPs are greater than that of A respectively. Furthermore, Rθ > 0 in

endothermic reactions while Rθ < 0 in exothermic ones.

5.3 Numerical methods

Similar to that discussed in the previous Chapters, the equations are first formulated in

terms of vorticity (ω), stream function (ψ), concentrations (Cj, Cn) and temperature (θ) and

then are solved with the Pseudo-Spectral method [77]. The base state equations for Ca, Cb
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and Cn are below while C̄c, θ̄, V̄ is zero:

∂C̄a
∂t

=
∂2C̄a
∂x2

(5.15)

∂C̄b
∂t

= δb
∂2C̄b
∂x2

(5.16)

∂C̄n
∂t

= δn
∂2C̄n
∂x2

−DadepC̄n (5.17)

Adopting C̄a = H(−x), C̄b = H(x) and C̄n = Cn0 = H(−x) as the initial condition and

zero flux boundary values, C̄a(x, t) = 1
2
erfc( x

2
√
t
), C̄b(x, t) = 1

2
erfc(− x

2
√
δbt

) and C̄n(x, t) =

Cn0
2
erfc( x

2
√
δnt

). The perturbation equations are simply derived by subtracting the model

equations from the base state equations:

∇2ψ′ = −ω′ (5.18)

ω′ = RbNb +RcNc +RnNn +RθNθ (5.19)

∂Cj
′

∂t
= Jj + δj ~∇C ′j ±Da(C̄a + C ′a)(C̄b + C ′b)(C̄n + C ′n) (5.20)

∂Cn
′

∂t
=Jn + δn~∇ · ((1 +HRθ

′)~∇(C̄n + C ′n))

+δT ~∇ · ((C̄n + C ′n)~∇Ln(1 +HRθ
′))− δn

∂2C̄n
∂x2

−DadepC ′n
(5.21)

∂θ′

∂t
= λJθ + (1− λ)

∂θ′

∂x
+ Le∇2θ′ + sign(HR)Da(C̄a + C ′a)(C̄b + C ′b)(C̄n + C ′n) (5.22)

Where

Ni =
∂ψ′

∂x
(
∂X̄i

∂x
+
∂Xi

′

∂x
) + (1 +

∂ψ′

∂y
)
∂Xi

′

∂y
(5.23)

Ji =
∂ψ′

∂x

∂Xi
′

∂y
− ∂ψ′

∂y
(
∂X̄i

∂x
+
∂Xi

′

∂x
) (5.24)

Where Xi = (Cj, Cn, θ). The perturbation BCs are now periodic in both longitudinal and

transverse directions. Furthermore, ψ′, ω′, C ′c, θ
′ are initially set zero, while the random
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Figure 5.2: The contours of Cc in the isothermal NP-free reactive system derived from the
present study (left) and Hejazi and Azaiez [54] (right), Rb = 3, Rc = 5, Da = 0.5, Pe = 1024,
As = 2.

number distributions are allocated for C ′a, C
′
b and C ′n.

Finally, the numerical convergence has been checked and it was found that a grid of

256×128 is satisfactory for the range of considered parameters. The code has been validated

for both binary and reactive systems in the absence of NPs. First, setting Rc = Rn = Rθ =

Da = 0 the results are compared with available results for binary systems. The results

found to be in good agreement with each other. Subsequently, the finger configurations of

a NP-free reactive system reported by [54] are compared with the results of the developed

code by setting Rn = Rθ = 0 and Cn = 1. As shown in Fig. 5.2 the fingers have similar

structure qualitatively.

5.4 Results and discussion

The considered problem involves a large number of parameters. Therefore to narrow them,

the reference values of λ = 1, Le = 1, δj = δn = 1, Da = 1, Dadep = 0, As = 2, Pe = 1024

are adopted unless otherwise indicated. Furthermore, in order to investigate the direct

coupled effect of the presence of NPs and the heat of reaction, Rθ is set to be zero. This

choice will be in particular valid when the heat of the reaction is localized at the interface

where the reaction takes place, resulting in large temperature gradients and in turn strong

thermophoretic effects while the overall changes in the temperature are not strong enough

to induce noticeable changes in the fluids viscosities. Note that in NP-free reactive systems
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the presence of the heat of reaction has no effects on the instabilities if Rθ = 0. Therefore,

any changes in the dynamics of the system that may arise in the presence of NPs, will be

interesting.

The analysis starts with NP-laden isothermal reactive systems. This analysis will allow

development of a classification of the reactive systems in terms of the mobility ratios of the

different chemical species. The analysis is then expanded to analyze the effects of the heat of

reaction in each classified NP-laden systems for both exothermic and endothermic reactions.

This will be conducted qualitatively through the contours of Cc and quantitatively through

the first moment of the transversely averaged product concentration as a representative of its

center of mass and the cumulative concentration of the chemical products. The normalized

first moment of the transversely averaged concentration of the products is defined as:

xm(t) =
1

Pe

∫ Pe
2

−Pe
2

xCc,av(x, t)dx (5.25)

Where

Cc,av =
As
Pe

∫ Pe
As

0

Cc(x, y, t)dy (5.26)

Positive xm indicates that the products are mostly developed downstream and vice versa.

The normalized cumulated value of the chemical product is further defined as

(Cc)t =
As
Pe2

∫ Pe
2

−Pe
2

∫ Pe
As

0

Cc(x, y, t)dydx (5.27)

It is expected that in the absence of NP deposition the value of (Cc)t increases monoton-

ically as a result of the chemical reaction.

5.4.1 Isothermal reactions

In the absence of the heat of reaction (HR = 0), θ = 0 in the channel while the NP transport

equation reduces to the simple form of ∂Cn
∂t

= δn
∂2Cn
∂x2
− DadepCn. This equation is coupled
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with the other governing equations through the rate of reaction and viscosity which distin-

guishes it from the NP-free reactive systems. In the NP-free reactive systems involving a

A + B → C reaction with constant diffusivities, it was already reported that if the system

is unstable before the reaction (Rb > 0), it remains unstable after the reaction regardless

of the value of Rc. On the other hand in the case of an initially stable system (Rb ≤ 0),

the subsequent instability condition after the occurrence of the reaction depends on Rc.

Specifically, the viscosity distribution is monotonically decreasing if 0 > Rc
2
> Rb and the

system is stable. On the other hand the system is unstable if 0 < Rc
2
< Rb where the vis-

cosity is monotonically increasing or if Rc(Rb − Rc
2

) < 0 where the viscosity distribution is

non-monotonic [53]. We will attempt here to extend these conclusions to NP-laden reactive

A + B + n → C + n systems where the NPs have a catalytic role. Similarly, two systems

are distinguished depending on whether the NP-laden systems are unstable or stable befor

the reaction. As reported [106], in the absence of deposition which is the focus of this study,

the NP-laden non-reactive system is unstable if Rb − Rn > 0 and stable otherwise. Hence-

forth we will refer to these two non-reactive NP-laden systems as intrinsically unstable and

intrinsically stable respectively. Adopting Rb = 3, Rn = 2 as an intrinsically unstable and

Rb = −0.5, Rn = 2 as the intrinsically stable systems, the variations of the one dimensional

Log-viscosity with respect to the variable η = x
2
√
t

are presented at an asymptotic large time

at Fig. 5.3. Insets of contours of Cc obtained from non-linear simulations are included to

illustrate the instability condition and show the finger configurations. The figure shows that,

consistent with the results of the NP-free reactive systems, in the NP-laden reactive systems,

intrinsically unstable systems remain unstable after the reaction as it generates either mono-

tonically increasing or non-monotonic viscosity distributions. On the other hand, initially

stable systems may become unstable as a result of the non-monotonicity in the viscosity

distribution after the reaction. Furthermore, similar to the NP-free systems, in both cases

the system with Rc = Rb obeys the one-dimensional viscosity distribution in the form of

error-function. This is the less unstable case after the reaction in the intrinsically unstable
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�  Intrinsically unstable ( ) Intrinsically stable

Figure 5.3: One dimensional Log-viscosity variation with respect to η = x
2
√
t

at asymptotically

large times (t→∞) along with insets of corresponding contours of Cc derived from NLS. The
contours are represented at t = 1000 for intrinsically unstable and t = 1300 for intrinsically
stable systems.

system according to the contours of Cc. However as |Rc − Rb| increases, both intrinsically

stable and unstable systems are prone to more unstable situation as a result of the chemical

reaction.

From Fig. 5.3 one may note that the viscosity variation may be different for η > 0 or η < 0

henceforth referred to as the leading zone and trailing zone respectively [53]. Comparing the

viscosity variations and the finger configurations, it is clear that monotonically increasing

viscosities in any zone lead to more finger development in that region. Unlike the NP-free

systems, the present viscosity variation is affected by Rn in addition to Rb and Rc in identical

diffusivities.

To determine the exact condition for instability in each zone, the one dimensional form of

the governing equations in the direction of the flow is adopted to obtain the viscosity distribu-

tion µx. Accordingly, assuming δj = 1, one concludes that ∂(Cax+Cbx+2Ccx)
∂t

= ∂2(Cax+Cbx+2Ccx)
∂x2

and so with the defined boundary and initial conditions, Cax+Cbx+2Ccx = 1. Furthermore,

it can be shown that Cbx − Cax = erf( x
2
√
t
). Taking advantage of these results and further
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assuming δn = 1 to get rid of double diffusivity effects and simply denoting Cn0Rn by Rn,

Eq. 5.28 is obtained in the absence of deposition. Note that in the presence of deposition,

NPs are gradually removed from the system and the effect of Rn decreases with the passage

of time. Furthermore, not only does the rate of deposition diminish the effect of Rn, but

it also has a direct effect on the chemical product concentration. So, the coupled effect of

Dadep on the viscosity of the system and the production rate may have different effects on

the dynamics of the flow. This however is not the focus of the present study and may be the

subject of a separate investigation.

2

µx

∂µx
∂x

= (Rc −Rn)(−Cax
∂x

) + (2Rb −Rc −Rn)
Cbx
∂x

(5.28)

If ∂µx
∂x

> 0 the viscosity distribution is monotonically increasing and the system is unstable

and vice versa. Since ∂Cbx
∂x

and (−Cax
∂x

) are positive, one can conclude that for Rn ≥ 0, Rb

has destabilizing and Rn has stabilizing effects, while the effect of Rc on the instability is

non-monotonic. As expected, this equation allows to distinguish two zones that develop as

a result of the reaction; the leading zone with RL = 2Rb − Rc − Rn and the trailing one

with RT = Rc −Rn. Therefore, RL > 0 and RT > 0 indicate unstable zones and vice versa.

It is concluded that the viscosity distribution will be monotonically increasing if RL > 0

and RT > 0 while it is monotonically decreasing if RL < 0 and RT < 0. However, if

RLRT < 0 the viscosity distribution may be non-monotonic where the flow is unstable. The

special case of Rb = Rc reduces the problem to that of a non-reactive NP-laden displacement

while Rc = Rn represents a neutrally stable trailing zone which implies no extremum in the

viscosity distribution in this zone. However, the system with Rb > Rn = Rc is more unstable

than the intrinsically unstable system as the viscosity gradient now is confined in the smaller

leading zone than the total channel. On the other hand with Rb < Rn = Rc the system is

stable.

Assuming Rb > Rn that represents an intrinsically unstable system, one can conclude
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Table 5.1: Characteristics of classified isothermal systems.
System Before the reaction Unstable zone after the reaction
Unstable Unstable (Rb > Rn) Both (2Rb −Rc −Rn > 0, Rc > Rn)
IUD Unstable (Rb > Rn) Leading (2Rb −Rc −Rn > 0, Rc < Rn)
IUU Unstable (Rb > Rn) Trailing (2Rb −Rc −Rn ≤ 0, Rc > Rn)
Stable Stable (Rb ≤ Rn) None (2Rb −Rc −Rn ≤ 0, Rc < Rn)
ISD Stable (Rb ≤ Rn) Leading (2Rb −Rc −Rn > 0, Rc < Rn)
ISU Stable (Rb ≤ Rn) Trailing (2Rb −Rc −Rn ≤ 0, Rc > Rn)

that 2Rb −Rc −Rn > −(Rc −Rn). If 2Rb −Rc −Rn > 0 , then Rc −Rn can be positive or

negative while if 2Rb−Rc−Rn ≤ 0, then Rc−Rn can only be positive. Accordingly, as long

as Rb > Rn at least one of the fronts is unstable, indicating that the intrinsically unstable

system remains unstable after the reaction regardless of the value of Rc. Similarly, in the case

Rb ≤ Rn corresponding to an intrinsically stable system, one has 2Rb−Rc−Rn ≤ −(Rc−Rn).

If 2Rb−Rc−Rn > 0 then Rc−Rn can only be negative while if 2Rb−Rc−Rn ≤ 0, Rc−Rn

can be either positive or negative. As a result, depending on the value of Rc, the intrinsically

stable system will either remain stable or become unstable as a result of the reaction. These

logical expressions further imply that depending on the particular values of Rb, Rc and Rn

where Rc 6= Rb and Rn six different classes of systems can be identified in terms of their finger

configuration. We will refer to them as Unstable (intrinsically unstable, both zones unstable

after the reaction), IUD (intrinsically unstable, the leading zone unstable after the reac-

tion where the products are mostly developed downstream), IUU (intrinsically unstable, the

trailing zone unstable after the reaction where the products are mostly developed upstream),

Stable (intrinsically stable, both zones stable after the reaction), ISD (intrinsically stable,

the leading zone unstable after the reaction where the products are mostly developed down-

stream) and ISU (intrinsically stable, the trailing zone unstable after the reaction where

the products are mostly developed upstream). Table 1 summarize this classification with

the representative mobility ratios for each case. The qualitative viscosity variation along the

channel can be found in Fig. 5.3 for all the cases discussed.

Fig. 5.4 presents the variation of xm with time for two values of Da and shows where the
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Figure 5.4: Variation of the normalized first moment of the transversely averaged product
concentration with the inset of contours of Cc. Dashed lines represent those systems with
Da = 10.

products in each classified systems are developed. The representative systems for each class

are Rb = 3, Rn = 2, Rc = 2.5 (Unstable), Rb = 3, Rn = 5, Rc = 4 (Stable), Rb = 3, Rn =

2, Rc = 1 (IUD), Rb = 3, Rn = 2, Rc = 4 (IUU), Rb = −0.5, Rn = 2, Rc = −5 (ISD),

Rb = −0.5, Rn = 2, Rc = 5 (ISU). Note that xm = 0 in the Stable system as the system

is diffusion dominated. On the other hand, as predicted, the products are more developed

downstream (xm > 0) in the IUD and ISD systems while they are more developed upstream

(xm < 0) in the IUU and ISU cases. Furthermore, xm > 0 in the Unstable case as RL > RT .

One may notice that the increase in xm is monotonic in both IUD and ISD systems as the

direction of bulk flow is aligned with the fact that RL > 0. In the ISU system however, xm

is decreasing monotonically as the products experience strong resistance to flow downstream

and so reverse to flow upstream instead. On the other hand the behavior of xm in the IUU

and Unstable systems is non-monotonic, indicating a competition between the bulk flow and

the viscosity contrast effects.

NPs have a catalytic role in the present study and accordingly their transport has an

impact on the total amount of chemical product. To analyze the effects of NPs on production
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and compare the trends with those of NP-free reactive systems, the variation in time of the

total accumulated production is plotted in Fig. 5.5 for both NP-laden intrinsically unstable

and stable systems by varying Rc. Again Rb = 3, Rn = 2 and Rb = −0.5, Rn = 2 are

selected as the mobility ratios of the NP-laden intrinsically unstable and stable systems

respectively. Note that in these figures as Rc is increased, the type of systems changes from

IUD to Unstable and finally to IUU in the intrinsically unstable case, and from ISD to

Stable and finally to ISU in the intrinsically stable systems. Fig. 5.5 shows that in the

Log-Log scale (Cc)t increases linearly in the diffusive regime similar to the NP-free reactive

systems. Furthermore, in the IUD system increasing Rc leads to smaller chemical production

until the system switches to an Unstable type (Rc = 2.5). The Unstable system has the

lowest amount of the chemical product. Further increase in Rc changes the type of the

system to IUU in which the amount of products starts to increase. Similarly, according to

Fig. 5.5b, as Rc increases the amount of chemical product in the ISD type decreases until

the system becomes Stable (Rc = −0.5) where the amount of chemical product attains a

minimum. Further increase of Rc changes the system to ISU type where the amount of

chemical product is increased. These trends were observed with other choices of the values

of the viscosity ratios and with a higher reaction rate of Da = 10. In the next section the

present results will be extended to see the effect of the heat of reaction in the NP-laden

catalytic systems.

5.4.2 Non-isothermal reactions

It is known that NP free thermo-viscous fingering instabilities both in the presence and

absence of reaction develops as a result of the change in viscosity through Rθ [6, 42, 48].

Accordingly, if Rθ = 0, heat transfer does not affect the instability in the case of NP-free

systems. However, since the temperature gradient resulting from the heat of reaction affects

the transport of NPs, one may suspect that this effect may change the dynamics and the

chemical products even if Rθ = 0. To analyze this effect the results in the previous section
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(a) Intrinsically unstable (b) Intrinsically stable

Figure 5.5: The effect of Rc on the total amount of chemical products in the NP-laden
isothermal reactive systems in the Log-Log scale.

are extended to include the heat of reaction but still for Rθ = 0. Specifically, the effect

of temperature driven NP transport which is represented by thermophoretic diffusivity δT

is investigated in the already introduced representative Unstable, IUD, IUU , Stable, ISD

and ISU systems while HR 6= 0 for both exothermic and endothermic reactions.

Exothermic reactions

The objective here is to investigate the coupled effect of HR and δT while the other heat

transfer related properties are fixed. The analysis is first conducted for an exothermic re-

action where the reference value of HR = 0.1 is adopted. Fig. 5.6 shows the variation of

xm for different thermophoretic diffusivities with insets of contours of the chemical product

concentration Cc. The solid curves represent the reference systems at δT = 0 and the dotted

ones correspond to higher thermophoretic diffusivities. It is clear that for the set of adopted

parameters, the variation of xm in the absence of thermophoretic diffusivity is virtually iden-

tical to that in the isothermal system. However, at larger thermophoretic diffusivities the

change in the variation of xm is considerable. The figure shows that as δT increases, the tran-

sition time from the diffusion to the convective regime is reduced for systems with xm ≥ 0
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and vice versa. Accordingly, at earlier times in convective regime thermophoresis leads to a

systematic tendency for xm to shift to more absolute values in systems with xm ≥ 0 and to

less absolute values in systems with xm < 0.

At later time, |xm| still systematically increases with δT in IUD (except for a short

interval) and ISD where only the leading zone is unstable. According to the finger con-

figurations, this effect is attributed to more developed forward fingers or most importantly

to the suppression of reverse fingering at higher δT . The same increasing trend is observed

in the Stable case at high enough values of δT where the system becomes unstable with

fingers developing downstream. Similar trends have been obtained in systems with larger

Damköhler number, Da = 10.

In the IUU and ISU systems where only the trailing zone is unstable, a non-monotonic

trend is observed in the variation of xm. However, at higher δT where thermophoretic

effects are stronger, a general decreasing trend in the absolute value of xm with increasing

δT can be reported. According to finger configurations in both systems, backward fingers

are suppressed at higher values of δT which is the main reason for this trend. Further

examination of the finger configurations reveals that for IUU and ISU systems, the products

become confined in a narrow region as δT increases. In these systems the leading zone is

locally stable and acts as a barrier to the upcoming flow. The upcoming flow as a result,

returns and feeds the reverse fingers as the trailing front is unfavorable. However, with

the suppression of reverse fingering at higher δT , the products have less possibility to move

backward as well, and so get confined afterwards. The suppression of the forward fingers in

addition to the backward fingers in IUU system is also attributed to this feature. Note that

the backward finger suppression only delays the transport of the products upstream and the

absolute value of xm still increases at later times. Further analysis shows that this trend is

virtually similar in higher reaction rates.

Finally, in the Unstable case the suppressed backward fingers now find the way to develop

downstream as the leading zone is unstable. However, the forward fingers cannot accommo-
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(a) Intrinsically unstable (b) Intrinsically stable

Figure 5.6: The variation of xm with time at different thermophoretic diffusivities in both
intrinsically unstable and stable reference systems along with the inset of the contours of Cc.
The contours are depicted at identical times in each systems. The solid lines represent the
systems with δT = 0.

date all the upcoming flow. Accordingly, one may observe the confined products with few

stretched fingers downstream at high δT . So, the general increasing trend for xm with δT is

observed and this trend is most noticeable at late times.

In summary, it is observed that the thermophoretic effects resulting from the heat of

reaction alter both the finger configurations and the transport of the products. It can cause

more developed or complex finger configurations in systems with unstable leading zone, leads

to the suppression of backward product fingers, make the stable system unstable, and confine

the chemical products in systems with leading stable zones (or even weak unstable zone).

This affects the center of mass of the products as discussed above.

Fig. 5.7 shows the corresponding one dimensional viscosity distribution of the reference

systems in the presence and absence of thermophoresis. Analyzing this figure elucidates the

underlying reasons behind the changes in the variation of xm shown in Fig. 5.6. The coupled

effects of the viscosity increase at x < 0 and its decrease at the center cause the generation or

intensification of locally stable regions in the trailing zone at δ = 20 and result in a stronger
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(a) Intrinsically unstable (b) Intrinsically stable

Figure 5.7: The one dimensional viscosity variation in the reference systems in the presence
(δT = 20) and the absence of thermophoresis.

resistance to the transport of the products upstream (in all systems except Stable). This

important feature along with a sharper increase of the viscosity in systems with unfavorable

leading zone (Unstable, IUD, ISD) at x > 0 and the fact that the monotonically decreasing

viscosity distribution in the Stable system becomes non-monotonic at δT = 20, lead to the

reported trends in the variations of xm and the finger configuration.

One may wonder what triggers these changes in the flow behavior when the viscosities

of the fluids are not changing with temperature variations (Rθ = 0) and what is the role of

heat of reaction? To attempt to answer this question, we examine the one dimensional NP

transport equation, Eq. 5.10:

∂Cnx
∂t

= δn(1+HRθx)
∂2Cnx
∂x2

+HR(δn+
δT

1 +HRθx
)
∂θx
∂x

∂Cnx
∂x

+δT
∂2Ln(1 +HRθx)

∂x2
Cnx (5.29)

The first and second terms on the RHS represent diffusion-like and convection-like con-

tributions respectively while the third one is a source/sink-like term. This equation is solved

along with the other coupled one-dimensional heat and concentration equations for different
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values of δT and HR with the already-defined reference parameters. Note that since u = 0 in

these 1D equations, the viscosity is decoupled from the equations and the choice of mobility

ratios does not have any effects on the concentrations and temperature distributions. Ac-

cordingly with any arbitrary choice of mobility ratios, Fig. 5.8 shows the NP concentration

distribution along the channel for different values of δT and HR including the corresponding

scaled variation of the convective term: Conv = HR(δn + δT
1+HRθx

)∂θx
∂x

and the source/sink

term: Src = δT
∂2Ln(1+HRθx)

∂x2
. Note that Conv = Src = 0 at both ends of the domain and

clearly everywhere in the case of the isothermal system. Conv ≤ 0 with a local minimum for

x > 0 while Conv ≥ 0 with a local maximum for x < 0. Positive Conv leads to a negative

thermophoretic velocity (NP velocity as a result of temperature gradient Vt ∝ −∂θx
∂x

) and

vice versa. On the other hand Src experiences a local minimum with a negative value at the

center and two positive local maxima at each side.

The figure shows that by increasing δT and HR, there is more accumulation of NPs at

x < 0 and depletion at the center. Following a previous flow analysis [105], this behavior

is a direct consequence of the temperature gradient driven convective transport of the NPs

from the center to either sides of the channel. More specifically, the convected NPs from

the center increase the local concentration of NPs at either side while NP concentration

is decreased at the center, in the position of positive and negative Src respectively. From

the definition, both Conv and Src increase with increasing δT and HR. This indicates that

the two thermal-related terms, δT and HR have synergic effects in the accumulation of NPs

at either side of the channel and their depletion at the center. Accordingly as Rn > 0,

a viscosity decrease at the center and its increases at x < 0 (considerably) and x > 0

(less pronounced) is expected if δT and HR increase. This will affect the transport of the

products, the variation of xm and the total chemical production. Note that there is not

any accumulation or depletion if δT = 0 although there is a convective velocity driven by

the temperature gradient and Brownian diffusivity. This is because the convected NPs then

diffuses according to the diffusive term δn(1 +HRθx)
∂2Cnx
∂x2

in the absence of Src.
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Figure 5.8: The one dimensional NP concentration variation at different δT with constant
HR = 0.1, and at two HR with constant δT = 20 including the scaled convective and
source/sink terms variation. The representative inset of the contours of Cn derived from
NLS are attached for δT = 0 and δT = 20.

Now with the change in the transport of NPs discussed above, the question is how the

amount of chemical products is changing in NP-laden reactive systems. We will examine

next how the accumulated amount of chemical products is changing in the presence of ther-

mophoretic effects with respect to the case in the absence of thermophoresis. Note that since

with the set of parameters used, the total chemical production in the isothermal system is

almost identical with that for δT = 0, one can extend these results to compare it with the

isothermal case as well.

Defining (Cc)ri = (Cc)t(δT=i)−(Cc)t(δT=0)
(Cc)t(δT=0)

, Fig. 5.9 shows the variation of (Cc)ri over time in

the representative intrinsically unstable and stable systems respectively. (Cc)ri > 0 indicates

that chemical production is larger than the case in the absence of thermophoresis and vice

versa. According to Fig. 8a, the presence of thermophoresis leads in a first stage of the

flow to a larger production in both the IUD and Unstable systems. This trend is however

subsequently reversed and (Cc)ri starts actually to decrease becoming later negative, imply-
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ing that thermophoresis ultimately leads to smaller chemical production. Further analysis

which for brevity is not shown here indicates that depending on the choice of parameters,

the final value of (Cc)ri may not always be negative in these systems. Opposite trends are

found in the IUU system where the presence of thermophoresis results first in a decrease and

then an increase of the relative chemical production. According to this figure, depending on

the choice of parameters, the final relative production value in this case can actually lead

to positive (Cc)ri indicating ultimate stronger chemical production than in the absence of

thermophoretic effects. Note also that with increasing δT , chemical production is intensified

in all the cases.

In contrast to the intrinsically unstable case, thermophoresis always leads to a positive

values of (Cc)ri in the ISD and negative ones in the ISU systems (except for a short interval

when δT = 3). This indicates that thermophoresis increases the chemical production in the

ISD and decreases it in the ISU systems and this trend is intensified by increasing δT .

Finally, interestingly large enough values of δT can lead to larger chemical production even

in the representative Stable system as a direct effect of the developed instabilities. The

analysis shows virtually identical trends with higher reaction rate of Da = 10 in all systems

which for brevity are not shown here.

Endothermic reactions

In this section the previous analysis is extended to endothermic reactions. To start the anal-

ysis, let’s examine the energy equation, Eq. 5.11. In this equation θ > 0 and sgn(HR) = +1

in the exothermic reaction while sgn(HR) = −1 and θ < 0 in the endothermic one. Accord-

ingly, it is clear that with all parameters fixed, θendo(x, y) = −θexo(x, y) if the distribution

of Ca, Cb and Cn are not changed by changing the type of reaction. In particular by substi-

tuting θ(x, y) → −θ(x, y), the transport equation of the NPs and other components do not

change if HR → −HR. In addition, the viscosity distribution and the Darcy’s law will not

change as long as Rθ → −Rθ or Rθ = 0. So, one can extend all the conclusion discussed
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(a) Intrinsically unstable (b) Intrinsically stable

Figure 5.9: Variation of (Cc)ri in the representative systems at different thermophoretic
diffusivities

about the exothermic reaction to the endothermic one if HR → −HR. This conclusion was

validated by NLS.
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Chapter 6

Conclusion

The flow instability in homogeneous porous media is investigated in the presence of nanopar-

ticles (NPs) dispersed in the displacing fluid. The study is conducted in three phases. In the

first phase, the problem is analyzed under isothermal conditions. Here, the additional NP

related properties namely the viscosity of the nanofluid, the Brownian diffusion and the NP

deposition rate are introduced and their effects on the stability and the dynamics of the flow

are discussed. Results show that for unit diffusivities and in the absence of deposition, the

instability condition is governed by the parameter R = Rb−Rn−Ra. Ra, Rb and Rn are the

Log-viscosity ratios of the invading fluid A, displaced fluid B and the nanofluid respectively

to that of the base fluid. Specifically, if R > 0 the system is unstable while it is stable

otherwise. This implies that the presence of NPs in the displacing fluid can both modify

the instability of an initially unstable system or make it totally stable. The study is then

extended to include the effects of the deposition rate. It was found that the effects of NPs

in this condition are limited only to the control of the instabilities and making an initially

unstable binary system less unstable. As long as Rb > Ra, the instabilities grow over time

even if Ra + Rn > Rb. Moreover, the LSA shows that NPs do not have any effect on the

long wave instability of the system and hence the instability condition is identical to that

for the binary system. In other words, the system is unstable when Rb > Ra or Rb < Ra
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and δb <
Rb
Ra

or Rb = Ra > 0 (Ra < 0) and δb < 1 (δb > 1). This highlights the critical role

of the diffusion rate of the fluids with respect to that of the NPs. Further analysis shows

that increasing δn makes the flow more unstable but it cannot however make a stable binary

system unstable. The more unstable situation also appears when δb < 1 in which case the

fingers can easily be stretched and split as a result of the stronger cross flow. The opposite

scenario takes place for δb > 1. Finally, it is found that as Dadep increases, the initially

unstable flow becomes more unstable. It was discussed that this is due to the fact that NPs

are constantly eliminated from the system and as a result modify the viscosity distribution

towards a more unstable situation.

The study is then extended to include the thermal effects in the second phase. This phase

of the study introduced an additional transport mechanism of NPs called thermophoresis and

then analyzed its effect in connection with other properties, especially the Brownian diffu-

sion. The analysis is conducted for two representative systems: HDC, where a Hot fluid

Displaces a Cold fluid and CDH, where a Cold fluid Displaces a Hot fluid. In the HDC

system, the NP concentration and temperature gradients are in the same direction. As a

result, Brownian diffusion and thermophoresis act synergically to transport NP downstream

towards the cold fluid in the low resistance paths created by the forward-growing fingers.

It is found that increasing δT makes an initially unstable NP-laden system more unstable,

which is similar to the effects of δn. The destabilizing effects of thermophoresis in the HDC

flows are extended to initially stable and intrinsically stable systems. On the other hand, the

gradient of NP concentration and temperature in the CDH system are in opposite directions.

As a result, Brownian diffusion still tends to transport the NP downstream towards the hot

fluid while thermophoresis now resists such migration. These counter effects lead to a local

upstream accumulation of NP and their depletion downstream, at higher δT but lower δn.

Because of the NP accumulation, local stable positions are generated which in turn affect

the growth of the instabilities, especially those of backward-growing fingers. Accordingly,

initially unstable NP-laden CDH systems are less unstable in the presence of thermophoresis
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compared to the case without thermophoresis, although Brownian diffusivity still has desta-

bilizing effects. Two counter-intuitive phenomena are found and discussed in both HDC and

CDH systems. First, although Brownian diffusion and thermophoresis transport NP down-

stream synergically in the HDC system, local NP accumulation spots have been observed in

the flow after a critical value of δT . This was attributed to the advancement of the NP front

downstream into the cold fluid region for large enough values of δT . As a result, the viscos-

ity profile becomes non-monotonic at large enough values of δT and Rn which can result in

the destabilization of initially stable HDC systems. Second, two regimes of instabilities are

observed in the CDH case. For a range of small enough values of thermophoretic diffusivity,

the flow instability was found to be attenuated with increasing δT . These trends are however

reversed beyond a certain critical value of δT . Interestingly, these non-monotonic effects of

δT on the instability in the CDH case are systematically accompanied with a suppression of

the growth of backward-developing fingers as δT increases. This change in the trends was

explained in terms of the development of regions resisting backward flow that can lead to

an enhancement of the development of forward-growing fingers. One must note that, the

general trends towards an attenuation of the instability are still observed in the presence

of thermophoresis compared to the case without thermophoresis. It is also discussed that

the NP accumulation due to the mechanisms discussed is intensified for low δn while it is

mitigated under smooth temperature distributions, observed in particular at large Lewis

numbers. Finally it is found that the main effects of Brownian diffusion and thermophoresis

arise from their contribution to the NP transport while their contribution to the energy

distribution can be safely disregarded.

In the third phase, the dispersed NPs had catalytic effects, causing the approaching

fluids to react and produce another component in between. The approaching fluids A and

B actually undergo the A+B + n→ C + n reaction. This system was analyzed under both

isothermal and non-isothermal conditions resulting from the heat of the reaction. In the

isothermal case, as long as Rb > Rn the flow is unstable after the reaction regardless of the
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value of Rc while the stability condition is dependent on Rc if Rb ≤ Rn. Rb, Rc and Rn are

the Log-viscosity ratios of the displaced fluid B, the chemical products C and the nanofluid

respectively to that of the displacing pure fluid A. Specifically, defining RT = Rc − Rn and

RL = 2Rb − Rc − Rn as the effective viscosity ratios of the trailing and the leading zones

respectively, the viscosity distribution is monotonically increasing if RT > 0 and RL > 0

while it is monotonically decreasing when RT < 0 and RL < 0. On the other hand its

distribution may be non-monotonic if RTRL < 0. The special case of Rb = Rc reduces

the problem to that of a non-reactive NP-laden displacement. The analysis showed that

similar to non-reactive NP-laden systems, Rb and Rn has destabilizing and stabilizing effects

respectively. However, the effect of Rc on the instability is non-monotonic. The dynamics

of the products then can be categorized based on the condition of the system before the

reaction (whether it is intrinsically stable or unstable) and the effective viscosity ratios of

the trailing and leading zones after the reaction. This allowed to identify six cases as Unstable

(intrinsically unstable, both zones unstable after the reaction), IUD (intrinsically unstable,

the leading zone unstable after the reaction), IUU (intrinsically unstable, the trailing zone

unstable after the reaction), Stable (intrinsically stable, both zones stable after the reaction),

ISD (intrinsically stable, the leading zone unstable after the reaction) and ISU (intrinsically

stable, the trailing zone unstable after the reaction).

The study reveals that in the presence of the heat of the chemical reaction that does not

affect the mobility ratios, these stability conditions are no longer valid. This is in contrast

with the NP-free systems where the dynamics of the flow in non-isothermal conditions are

identical to those of isothermal systems if Rθ = 0. Further analysis shows that this behavior

is a result of thermophoretic effects that interfere with the transport of NPs at large enough

values of HR and δT . The synergic effects of the heat of reaction and thermophoretic diffu-

sivity can lead to an accumulation of NPs at both zones and their depletion at the center in

both exothermic and endothermic reactions. The NP accumulation is more pronounced at

the trailing zone where they are more abundant. Then with positive Rn the viscosity dis-
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tribution and accordingly the transport of the chemical products are changed. Specifically,

the viscosity is locally increased and decreased in the regions with accumulated or depleted

NPs, respectively. The new viscosity distribution results in more developed or complex finger

configurations in systems with unstable leading zone, the suppression of the backward prod-

uct fingers, making stable system unstable and confining the chemical products in systems

with the leading stable (or weakly unstable) zones. Accordingly, the center of mass of the

products is affected compared to the isothermal case.

Regarding to the chemical products, in intrinsically unstable systems, the heat of reaction-

thermophoretic effects may have a non-monotonic behavior compared to cases where ther-

mophoretic effects are not accounted for. Specifically, defining (Cc)ri = (Cc)t(δT=i)−(Cc)t(δT=0)
(Cc)t(δT=0)

,

in the IUD and Unstable systems (Cc)ri is first increasing with positive values in the passage

of time, but later decreases and even becomes negative. However an opposite trend is ob-

served in the IUU systems. Depending on the choice of parameters the final value of (Cc)ri

may not always be negative for the IUD and Unstable or positive in the IUU systems. Dif-

ferently, the response of intrinsically stable systems to the heat of reaction-thermophoretic

effects are monotonic. In other words, in the ISD and Stable systems (Cc)ri ≥ 0 while in

the ISU system (Cc)ri ≤ 0.

The study shows that the presence of NPs has dramatic effects on the formation, growth

and configuration of instability. However, many aspects are needed to be investigated to make

the problem well understood. There is still a lack of knowledge about the deposition of NPs

in porous media and so a complete model to predict its mechanism needs to be developed.

A comprehensive model which includes many aspects of its mechanism may lead to new

dynamics compared to the model used in this study. The addition of NPs to non-Newtonian

fluids may result in different features in terms of the shear stress and so the viscosity. Very

interesting dynamics are expected to be observed in this system. In terms of the flow in the

non-isothermal condition, there is a great gap to find the stability criteria including all the

parameters playing role beside the mobility ratios. The same question arises regarding nano-
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catalyst-laden systems both in the isothermal and non-isothermal conditions. A thorough

investigation of the effect of NP deposition in the reactive systems is also recommended.

In these systems the deposition not only does affect the viscosity of the nanofluid, but also

it changes the reaction rate and the amount of the chemical products. The competition

between these two factors may lead to interesting results.
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Appendix A

Derivation of the Linear Disturbed

Equations

In order to conduct linear stability analysis, small disturbances are introduced to the system:

(u, v, P, Ci, µ)(x, y, t) = (ū, v̄, p̄, C̄i, µ̄)(x, t) + (u′, v′, p′, Ci
′, µ′)(x, y, t) (A.1)

Where µ′ = Ca
′ ∂µ̄

∂C̄a
+ Cb

′ ∂µ̄

∂C̄b
+ Cn

′ ∂µ̄

∂C̄n
. By neglecting the higher order perturbations

the resulting linear disturbed equations are:

∂u′

∂x
+
∂v′

∂y
= 0 (A.2)

∂P ′

∂x
= −µ̄u′ − µ′, ∂P ′

∂y
= −µ̄v′ (A.3)

∂Ca
′

∂t
+ u′

∂C̄a
∂x

=
∂2Ca

′

∂x2
+
∂2Ca

′

∂y2
(A.4)

∂Cb
′

∂t
+ u′

∂C̄b
∂x

= δb(
∂2Cb

′

∂x2
+
∂2Cb

′

∂y2
) (A.5)

∂Cn
′

∂t
+ u′

∂C̄n
∂x

= δn(
∂2Cn

′

∂x2
+
∂2Cn

′

∂y2
)−DadepCn′ (A.6)

By taking the curl of Darcy’s law the pressure is eliminated from the equations. This
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leads to the following equation:

− ∂

∂x
(µ̄v′) +

∂

∂y
(µ̄u′ + µ′) = 0 (A.7)

Or:

µ̄(
∂v′

∂x
− ∂u′

∂y
)− ∂µ′

∂y
+ v′

∂µ̄

∂x
= 0 (A.8)

By taking derivative from Eq. A.8 with respect to y and using the continuity equation,

the dependency of this equation on v′ will be eliminated.

∂2u′

∂x2
+
∂2u′

∂y2
+

1

µ̄

∂2µ′

∂y2
+

1

µ̄

∂u′

∂x

∂µ̄

∂x
= 0 (A.9)

Where

1

µ̄

∂µ̄

∂x
= Ra

∂C̄a
∂x

+Rb
∂C̄b
∂x

+Rn
∂C̄n
∂x

(A.10)

Eq. A.9 and A.4-A.6 are the final linear disturbed equations that would be decomposed

in terms of Fourier components in the next stage.
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Appendix B

Derivation of the Characteristic

Equations for Sharp Front

By assuming dC̄a
dx

= −dC̄b
dx

= −δ(x) and dC̄n
dx

= −Cn0δ(x) the results are the following set of

equations:

d2φ

dx2
− l2φ = −Y δ(x) (B.1)

d2χ

dx2
− p2χ =

Y δ(x)

δb
(B.2)

d2ψ

dx2
− q2ψ = −Y Cn0δ(x)

δn
(B.3)

d2Y

dx2
+ (Rb −Ra − Cn0Rn)δ(x)

dY

dx
− k2Y = k2(Raφ+RbX +Rnψ) (B.4)

Where:

l2 = k2 + γ

p2 = k2 +
γ

δb

q2 = k2 +
γ +Dadep

δn

(B.5)

By solving the above set of equations for x away from the interface one gets:
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φ(x) = A1 exp(lx) x < 0,

φ(x) = A2 exp(−lx) x > 0

(B.6)

χ(x) = B1 exp(px) x < 0,

χ(x) = B2 exp(−px) x > 0

(B.7)

ψ(x) = C1 exp(qx) x < 0,

ψ(x) = C2 exp(−qx) x > 0

(B.8)

Y (x) = aA1 exp(lx) + bB1 exp(px) + cC1 exp(qx) +D1 exp(kx) x < 0,

Y (x) = aA2 exp(−lx) + bB2 exp(−px) + cC2 exp(−qx) +D2 exp(−kx) x > 0

(B.9)

Where:

a =
k2Ra

γ
, b =

k2Rbδb
γ

, c =
k2Rnδn
γ +Dadep

(B.10)

Equation B.6-B.9 has eight unknowns which shows that eight conditions are needed to

solve it. By using the condition of continuity of the concentrations and velocity at x = 0,

jump in the normal stress and integration of concentration equations (Eq. B.6 to B.8) from

0− to 0+, the following equations are obtained:

(1 + α)(alA1 + bpB1 + cqC1 + kD1) = 0

(a− 2l)A1 + bB1 + cC1 +D1 = 0

aA1 + (b+ 2δbp)B1 + cC1 +D1 = 0

aA1 + bB1 + (c− 2δnq

Cn0

)C1 +D1 = 0

(B.11)

Where α = µ(0+)
µ(0−)

= exp(Rb − Ra − Cn0Rn). Other four unknowns (A2, B2, C2, D2) are

equal to their pairs (A1, B1, C1, D1). For non-trivial solutions, the determinant of the matrix

containing the coefficients of the above equations must be zero. This leads to:
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(1 + α)(pqδbδn(ak − 2lk − al) + Cn0pclδb(k − q) + qblδn(p− k)) = 0 (B.12)

Dividing both sides by (1 + α) and substituting a, b, c, l, p and q Eq. 3.16 is derived.
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Appendix C

Stability Criteria and Characteristic

Equation for Intrinsically Stable

Displacement

From Eq. 3.23 it is concluded that

k2 + γ = 0 (C.1)

−2
√
δnk2 + γ +Dadep +

kRn

γ +Dadep
(k
√
δn −

√
δnk2 + γ +Dadep) = 0 (C.2)

Accordingly, γ = −k2 can be an answer. Setting Y =
√
δnk2 + γ +Dadep and after some

algebra, Eq. C.2 can be written as follows:

(k
√
δn − Y )(2Y 2 + 2Y k

√
δn + kRn) = 0 (C.3)
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Solving the above equation results in the following roots for Y:

Y = k
√
δn (C.4a)

Y =
−k
√
δn

2
+

1

2

√
δnk2 − 2kRn (C.4b)

Y =
−k
√
δn

2
− 1

2

√
δnk2 − 2kRn (C.4c)

Since Y must be positive, Eq. C.4c is not acceptable. Eq. C.4a also cannot be an

acceptable solution as after substituting Y , it is concluded that γ = −Dadep, which is not

acceptable considering Eq. C.2. Accordingly, simplification of Eq. C.4b results in the

following equation for the growth rate:

γ = −1

2
δnk

2 − 1

2
kRn −Dadep −

k

2

√
δ2
nk

2 − 2δnRnk (C.5)

Eq. C.5 is composed of two parts: with and without square root. For Rn > 0 the first

part (without square root) is always negative. The second part can be a real negative number

or a pure imaginary one (k ≤ 2Rn
δn

). Since the real part of Eq. C.5 is always negative the

flow is stable for Rn > 0. For Rn ≤ 0 depending on the value of −1
2
kRn with respect to the

other terms, the flow can be stable or unstable and the criteria of stability will be discussed

after finding the cut-off wave number. For Rn ≤ 0, the dispersion curve should be composed

of Eq. C.5 and/or γ = −k2. It can be easily shown that the long wave expansion of Eq. 3.23

is in the form of γ = −k2 + o(k2). Accordingly, and since Eq. C.5 is not valid for k = 0, it

can be concluded that in the range of 0 ≤ k ≤ kcr the dispersion curve is γ = −k2 and for

k ≥ kcr it obeys Eq. C.5. To find kcr, equating Eq. C.5 and γ = −k2 leads to:

k
√
δ2
nk

2 − 2δnRnk = k2(2− δn)− kRn − 2Dadep (C.6)
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After some algebra the following equation is derived to determine kcr:

4(1− δn)k4 − 4(1− δn)Rnk
3 + (R2

n + 4(δn − 2)Dadep)k
2 + 4RnDadepk + 4Da2

dep = 0 (C.7)

Eq. C.7 has in general four roots that can be obtained analytically. The acceptable real

positive root must obey the condition k2(2− δn)−kRn−2Dadep ≥ 0 resulting from Eq. C.6.

The aim here is to find the dispersion curve in unstable situations. So, it must be noted

that since the dispersion curves must be type 1, if more than one real positive root satisfies

the mentioned condition, the smallest one among them is kcr. For the case of δn = 1, Eq.

C.7 reduces to a second order equation and kcr can be easily found in this case. To find the

condition of instability the following procedure is conducted.

Substituting γ = 0 into Eq. C.5 one reaches:

k
√
δ2
nk

2 − 2δnRnk = −(δnk
2 + kRn + 2Dadep) (C.8)

After some algebra, the cut off wave number can be found form the flowing equation:

4δnRnk
3 + (R2

n + 4δnDadep)k
2 + 4DadepRnk + 4Da2

dep = 0 (C.9)

Considering Eq. C.8, the acceptable k must satisfy the following condition:

δnk
2 + kRn + 2Dadep ≤ 0 (C.10)

Eq. C.9 has analytical solution. Based on the properties of NPs one has three scenarios:

1. Eq. C.9 has three distinct real roots. Among these roots one of them will not satisfy

Eq. C.10 and the remaining roots are the acceptable roots. In this situation the flow is

unstable and the larger positive real root is the cut off wave number. It is well-known that

the criteria for a cubic equation of ax3 + bx2 + cx+ d = 0 to have a three distinct real roots
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is 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2 > 0. Accordingly, and after some algebra one can

reach to following condition for the instability:

Rn < −
√

4(5.5 + 2.5
√

5)δnDadep (C.11)

2. Eq. C.9 has one real root and two complex roots. This real root will not satisfy Eq.

C.9 and as a result the system is stable.

3. Eq. C.9 has multiple roots. In this situation the flow is stable.

133



Appendix D

Solving the non-linear equations with

pseudo-spectral method

In this section the procedure to solve Eq. 3.28 is described briefly. The similar procedure is

implemented to solve Eqs. 4.24 and 5.18.

Hartley introduced the following direct and inverse transforms in 1942:

ĝ(kx) =
1√
2π

∫ +∞

−∞
g(x)[cos(kxx) + sin(kxx)]dx (D.1)

g(x) =
1√
2π

∫ +∞

−∞
ĝ(kx)[cos(kxx) + sin(kxx)]d(kx) (D.2)

Where kx and ky are the wave numbers in the x and y directions. For a real function g(x),

the wave numbers in the transform space is real. As a result, one only deal with real numbers

by implementing Hartley transform.
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The derivatives of a function in Hartley space are in the following form:

H[
∂

∂x
g(x, y, t)] = −kxĝ(−kx,−ky, t) (D.3)

H[
∂

∂y
g(x, y, t)] = −kyĝ(−kx,−ky, t) (D.4)

H[
∂2

∂x2
g(x, y, t)] = −kx2ĝ(kx, ky, t) (D.5)

H[
∂2

∂y2
g(x, y, t)] = −ky2ĝ(kx, ky, t) (D.6)

Accordingly, Eq. 3.28 is transformed to the Hartley space as below:

∂Ĉa
∂t

= Ĵa − (kx
2 + ky

2)Ĉa (D.7a)

∂Ĉb
∂t

= Ĵb − δb(kx2 + ky
2)Ĉb (D.7b)

∂Ĉn
∂t

= Ĵn − [δn(kx
2 + ky

2)−Dadep]Ĉn (D.7c)

ω̂ = RaN̂a +RbN̂b +RnN̂n (D.7d)

ω̂ = (kx
2 + ky

2)ψ̂ (D.7e)

Note that Ĉi, ω̂, ψ̂, Ĵi, N̂i are the Hartley transform functions of Ci, ω , ψ, Ji, Ni respectively.

The ODEs in Eq. D.7 are actually in the following form:

∂Ĉ

∂t
= Ĵ − λ2Ĉ (D.8)

Assuming Ĉ = C̃e−λ
2t and after some manipulations, one can reach to:

∂C̃

∂t
= J̃ (D.9)

Where J̃ = Ĵeλ
2t. To find the concentrations in the next step a two-step semi implicit Adam-

Bashforth, Adam-Molton predictor-corrector method is used. In this scheme first the rough
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approximation of the desired concentrations are calculated by Adam-Bashforth method:

C̃p(t+ ∆t) = C̃p(t) +
∆t

2
(3J̃(t)− J̃(t−∆t)) (D.10)

Or after substituting J̃(t) = Ĵ(t)eλ
2t and C̃(t) = Ĉ(t)eλ

2t:

Ĉp(t+ ∆t) = [Ĉp(t) +
∆t

2
(3Ĵ(t)− Ĵ(t−∆t)e−λ

2∆t)]e−λ
2∆t (D.11)

The predicted values for concentrations are then used to update the vorticity ω̂(t + ∆t)

through Eq. D.7d and in turn to update ψ̂(t + ∆t) through Eq. D.7f. Later, the predicted

concentrations are corrected using Adam-Bashforth method:

ĈC(t+ ∆t) = [ĈC(t) +
∆t

2
(Ĵ(t) + Ĵp(t+ ∆t)eλ

2∆t)]e−λ
2∆t (D.12)

With the updated concentrations, ω̂(t+ ∆t) and ψ̂(t+ ∆t) are then corrected as well. This

procedure is now iterated to reach the desired values of Ĉi(t+ ∆t), ω̂(t+ ∆t) and ψ̂(t+ ∆t).

At the end, Ci, ω and ψ is found in the real space using the inverse Hartley transform.
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