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ABSTRACT 

The main objective of this thesis was to further develop Dr. Loov's model to 

predict the shear strength of beams using shear friction concepts. Twelve beams were 

tested and some existing test data was examined to aid in the development of the model. 

The major variables were a/d ratio, end anchorage and concrete strength. 

Based on the tests, a shear friction model was developed. In this model the 

stirrups and the longitudinal reinforcement are assumed to provide a clamping force 

thereby increasing the shear stress that can be resisted. The predicted values from the 

shear friction model were compared to current code methods including CSA simplified 

and general methods, ACI methods and the CSA strut-and-tie method. The predictions 

using the shear friction model were found to be reasonable and encourage further 

research. Some code methods were found to be very conservative. 
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NOTATION 

a shear span from centre of support plates to centre of load plate 

a maximum aggregate size in P2 equation 

c cohesion stress used in CSA shear friction equation 

avg mean of sample population 

A area of inclined plane 

A(, area of concrete section resisting shear transfer 

A area of reinforcement in tension zone 

area of one stirrup 

A,f area of shear friction reinforcement 

A,,h area of shear reinforcement parallel to longitudinal reinforcement 

A, minimum area of shear reinforcement for one stirrup 

bw width of beam web 

c vertical distance from the extreme compression fibre to the neutral axis 

C.O.v. coefficient of variation 

d distance from the extreme compression fibre to the centroid of the longitudinal 
tension reinforcement 

db diameter of a reinforcing bar 

d distance measured perpendicular to the neutral axis between the resultants of the 
tensile and compressive forces due to flexure 

E modulus of elasticity for longitudinal reinforcement 

1 specified yield strength of the stirrups 

ç specified yield strength of the longitudinal reinforcement or stirrups 
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• f2 stress in compressive concrete strut 

f maximum allowable stress in concrete strut 

f`C specified compressive concrete strength 

h overall height of member 

j lever arm factor 

k shear friction factor 

k1 bar location factor 

k2 coating factor 

k3 concrete density factor 

k4 bar size factor 

Ra length of reinforcement past outside face of support 

development length 

clear span length from inside face to inside face of the supports 

Mf factored moment at section 

M moment due to stirrups crossing inclined plane about the intersection of the neutral 
axis and the inclined plane 

N unfactored permanent load perpendicular to shear plane, positive for tension 

n number of stirrups crossing inclined plane 

p distance from center of the support plate to the intersection of the longitudinal 
reinforcement and the inclined plane 

Pe bearing stress on support plate due to reaction force 

ratio1 ratio of test failure load to predicted failure load 

R normal force on cracked horizontal plane 

xv 



R normal force on cracked inclined plane 

s spacing of stirrups 

slope1 rate of force development in longitudinal reinforcement applying to lengths 
of reinforcement past the outside face of the support 

slope2 rate of force development applying to lengths of reinforcement over the width of 
the bearing plates 

slope3 rate of force development applying to lengths of reinforcement between inside 
faces of the supports 

s2 spacing of reinforcement parallel to longitudinal reinforcement 

S shear force on cracked horizontal plane 

Si shear force on cracked inclined plane 

T tension force in longitudinal reinforcement at a given location 

TR sum of the components of forces normal to cracked inclined plane 

T5 sum of the components of forces parallel to cracked inclined plane 

T force in one stirrup 

T,t total force in all stirrups crossing cracked inclined plane 

T yield force in longitudinal reinforcement 

u distance from point load to closest stirrup 

v1 factored shear stress acting on beam 

VA vertical component of the interface shear 

V, factored shear resistance attributed to the concrete 

V factored shear resistance attributed to the concrete using CSA general method 

V shear strength of uncracked concrete 

Vd dowel force in the longitudinal reinforcement 

xvi 



Va predicted shear force along span based on diagonal bending failure 

Vf factored shear force at section 

V nominal shear resistance of beam 

Vr factored shear resistance of beam 

V factored shear resistance of beam using CSA A23.3-94 general method 

V factored shear resistance provided by the shear reinforcement 

Vd predicted shear force based on shear friction failure 

V factored shear resistance provided by the stirrups using CSA general method 

V.ax maximum shear resistance allowed by CSA A23.3-94 Clause 11.3.4 

w width of shear plane for Mattock's tests 

w, crack width 

w1 width of support plate used for test beams 

x distance from center of support plate to first stirrup in Kani's tests 

x1 distance of a stirrup from the center of support plate 

Yt vertical distance from top of beam to centroid of normal force on inclined plane 

af angle between shear friction reinforcement and shear plane 

a ratio of average stress of rectangular compressive stress block to the specified 
concrete strength 

factor accounting for the shear resistance of cracked concrete 

I3e factor accounting for the increase in rate of force development in longitudinal 
reinforcement due to vertical pressure 

ratio of depth of rectangular compressive stress block to depth of neutral axis 

factor that depends on the average tensile strains in the cracked concrete using 
CSA general method 

xvil 



P2 factor which prevents crack slipping failure using CSA general method 

ES tensile strain in tensile tie reinforcement due to factored loads 

Ex longitudinal strain of flexural tension chord of member 

61 principal tensile strain in cracked concrete due to factored loads 

0 angle of inclination of diagonal compressive struts to the longitudinal axis of a 
beam using Table 11-1 of CSA A23.3-94 

0 angle of compressive strut where f2 > f or where €becomes imaginary 

OS smallest angle between compressive strut and intersecting tensile ties 

A. factor to account for low density concrete 

11 coefficient of friction 

v shear stress on a plane according to Loov's equations 

v shear stress on a plane according to Birkeland's equations 

Vr shear resistance of a structural element given by CSA equations 

p longitudinal reinforcement ratio 

f,, transverse reinforcement ratio 

PW longitudinal reinforcement ratio in ACI equations 

a effective normal stress 

shear stress 

strength reduction factor 

4 resistance factor for concrete 

4, resistance factor for reinforcement 
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1. INTRODUCTION 

1.1 Problem Statement 

Current Canadian design methods for shear are based on a truss model in the form 

of a simplified and a general method. Although the truss model is an excellent conceptual 

tool, the actual mechanism of shear transfer is not directly accounted for. In the simplified 

method, the action of aggregate interlock and other mechanisms are taken into account by 

adding a concrete contribution term to the capacity of the truss. The general method 

allows a variable angle truss model to be used, but still adds a concrete contribution to the 

truss capacity. In the 1994 Canadian code, the shear strength provided by the concrete is 

often determined by limiting the "crack slip" across a shear crack. Also, the general 

method and strut-and-tie model use a concrete softening model which is felt to be 

questionable based on existing literature. 

1.2 Objectives 

The main objective in this thesis was to apply shear friction concepts, (formerly 

used in push-off tests) to beams. This was achieved by developing a model, comparing its 

predictions of shear strength to test data in existing literature, and by testing 12 beams and 

comparing the shear strength of these beams to the predicted values by the shear friction 

model. 

Another objective was to compare the shear strengths predicted by current design 

methods such as the simplified and general method, the strut-and-tie model and AC! 

methods to the shear strengths produced in the twelve beam tests. Other objectives were 
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to observe the impact of different concrete strengths, anchorage lengths and a/d ratios on 

the shear strength of beams, and to determine the effectiveness of relatively small stirrups. 

1.3 Outline of Thesis 

In chapter 2 of this thesis, the truss analogy, Canadian Standards Association 

(CSA) and American Concrete Institute (AC!) methods of shear design are described. In 

addition, the origin of Loov's shear friction equation is discussed along with details of a 

thesis which contained the application of shear friction concepts to dapped end beams. 

Another paper (Mattock, 1974) was examined which demonstrated the possibility of using 

shear friction reinforcement over a large range of angles. 

In chapter 3, the development of the shear friction model is explained. The model 

is then used to predict the shear strength of a number of beams from a variety of past 

shear tests on beams. 

In chapter 4, an overview of the testing procedure is given, including a description 

of the test specimens, set-up and instrumentation, and the objectives are outlined. 

In chapter 5, a comparison of the shear friction model, CSA, and AC! shear design 

methods to the test results is given. 

In chapter 6 and 7, conclusions and recommendations are presented. 
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2. LITERATURE REVIEW 

2.1 Truss Analogy 

The shear strength of a reinforced concrete beam is often determined with the aid 

of a truss analogy. In this pin-jointed truss, the concrete compression zone at the top of a 

reinforced concrete beam is represented by the top compression chord and the tension in 

the reinforcement is represented by the bottom tension chord. The web members in 

tension represent the stirrups and the web members in compression represent the concrete 

in compression between the inclined cracks. The diagonal compression chords are 

assumed to act at a 45 angle in the simplest truss analogy (Figure 2.1). 

Therefore for a segment of a beam with vertical stirrups as shown in Figure 2.2 the 

total number of stirrups crossing the diagonal crack is assumed to be: 

jd 
fla— 

where jd is the distance between the compressive and tensile resultants, and s is the 

(2.1) 

spacing of stirrups. Assuming that the web reinforcement yields as the ultimate strength is 

reached, the total vertical component of the stirrup forces across the crack is: 

V = n A f 

=A jd 

where A is equal to the cross-sectional area of one stirrup and f is equal to the yield 

strength of the stirrup. From force equilibrium, V6 also equals the shear strength of a 

beam subjected to a point load at its center. This is a very simple method of analysis, but 

it neglects the contribution of the uncracked concrete, dowel action and aggregate 

interlock to the shear resistance of a beam. 
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2.2 CSA Methods 

2.2.1 CSA Simplified Method 

The basic requirement for design is that: 

V1≥Vf (2.3) 

where V1 is the factored shear resistance of a beam, and Vf is the factored shear force 

(Canadian Standards Association, 1994). Also, 

V = V0 + V (2.4) 

where V is the shear carried by the concrete and V is the shear resistance provided by the 

web reinforcement. The shear strength of the uncracked concrete V, the vertical 

component of the interface shear V, and the dowel force V d1 the longitudinal 

reinforcement are combined together into one term V. which is assumed to be constant 

during all stages of loading even though the individual terms have varying magnitudes. V, 

is given as: 

V0 W  O.2A4 0 ,,/ bd (2.5) 

where A. is a factor that accounts for the effects of low and semi-low density concrete and 

(k is a material resistance factor equal to 0.6 for concrete (4),' = 0.65 for precast concrete). 

The shear resisted by vertical stirrups is equal to: 

- Os A f d (2.6) 

where 4, is the material resistance factor for the stirrup reinforcement and is equal to 0.85. 

V, is assumed to act over the effective depth, d, rather than jd as in the truss analogy. 
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Therefore, for a known factored shear force V, a beam can be designed by ensuring that 

V + V ≥ V. The CSA code requires a minimum amount of shear reinforcement 

wherever Vf ≥ VJ2 except for slabs and footings, concrete joist floors and certain classes 

of relatively wide and shallow beams. The minimum area of shear reinforcement is given 

as: 

A, = O.O6 aim f 
(2.7) 

In order to guard against brittle web crushing failure, shear compression failure and 

excessive crack widths, the CSA code gives an upper limit to the amount of shear 

reinforcement allowed, namely 

Von= = O.8 4fbd (2.8) OVA 0 

The CSA code also limits the maximum spacing of vertical reinforcement to the smaller of 

0.7d or 600 mm if Vf < 0.14f, or 0.35d or 300 mm when Vf ≥ 0.l4f (Clause 11.2.11). 

2.2.2 CSA. General Method 

An outline of the general method can be found in existing literature (CPCA, 1995). 

However, some important points will be discussed and the design procedure will be 

outlined. 

The general method for shear design (Canadian Standards Association, 1994) is 

based on the truss analogy and the modified compression field theory. It deals with the 

influence of diagonal tension cracking on the diagonal compressive strength, and the 

influence of shear on the design of longitudinal reinforcement in a more direct manner than 
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the simplified method. 

The basic idea when designing a beam with the general method is to ensure that 

the diagonal compressive struts will not crush and that the stirrups have yielded at failure. 

This is accomplished implicitly through the use of 3 factors in the V'. term. 

Members are proportioned so that 

VIS  ≥ V (2.9) 

where Y is the factored shear resistance of a beam, and Yf is the factored shear force. 

Also for non-prestressed members: 

+ v go (2.10) 

where V is the shear carried by the concrete and V,, is the shear resistance provided by 

the web reinforcement. However, 

VIS  ≤ 0.25 4o, f'0 b,, d, 

Vis given as: 

(2.11) 

vex = 1.3 0 fF b d, 

where I is a factor that accounts for the effects of low and semi-low density concrete, 4, 

is a material resistance factor equal to 0.6 for concrete, 3 is a factor that depends on the 

average tensile strains in the cracked concrete and d is the distance perpendicular to the 

neutral axis between the resultants of the compressive and tensile forces (d ≥ 0.9d). The 

shear resisted by vertical stirrups is equal to: 

+,A,çd,cotO 
uI_ 9 (2.13) 
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The first step in design is to calculate the factored shear stress Vf = Vf /(bd) and 

then calculate vf/(4)JC). The maximum longitudinal strain € for a non-prestressed 

member with no axial force is computed from: 

cx 

0.5V Cot  + MdIV 

E, A 
(2.14) 

based on an assumed value of 0. 

Using Table 11-1 in the CSA code (Figure 2.3) for sections with transverse 

reinforcement, 3 and 0 can be determined by trial and error using v Ic1f and e at the 

most critical location. With these values V is calculated and then V is adjusted so that 

V + V ≥ V. The minimum spacing of transverse shear reinforcement in the longitudinal 

direction shall not exceed: 

600 mm or 0.7d, when Vf < 0.14f'0 

300 mm or 0.35d when Vf≥ 0.14f 

The 3 term is a factor that depends on the average tensile strains in the cracked 

concrete (CPCA, 1995). P, is given as: 

0.33 cot 0  

l+50O e (2.15) 

where El is the principal tensile strain in the cracked concrete due to factored loads. 

However if the crack widths are too wide, the maximum shear is limited by crack slip. 

Another equation which limits f3 to avoid these "crack slipping" failures is as follows 

(CPCA, 1995): 
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P2 
0.3 + 24  Wo(2.16) 

a + 16 

where a is the maximum aggregate size and w, is the crack width. After analyzing Table 

0.18 

11-1 in the CSA code, it is apparent that the majority of 3 values in the table have been 

derived from f32. This means that the failure of a beam in shear is predicted to be limited 

by the crack slipping (shear friction failure) and not from the failure of the truss. 

For each box in Table 11-1, values of P and 0 are given. For a given box, 0 was 

chosen so that the stirrups would yield at failure (i.e. 0 < 0) and so that the concrete 

would not crush and e remains real (i.e. 0> 0,). In Figure 2.4, [3 values are plotted 

over a range of 0 values for the center box in Table 11-1. Using f' =40 MPa, [3 has been 

chosen using P2 which limits "crack slipping". At all angles between 25° and 34, the 

stirrups would yield based on an f), = 400 MPa, and the concrete wouldn't crush since f2 < 

and e remains real. 

For a simply supported beam subjected to a point load at its center, the most 

critical location for shear is at the midspan according to the general method. Since Vf is 

constant (ignoring self-weight), the highest moment, and therefore largest E.,, will occur at 

the midspan. For a given beam, it is possible to determine the predicted nominal shear 

strength by using a trial and error method along with Table 11-1. With a given f'0 and 

beam size, V can be calculated. For each box in Table 11-1 corresponding to v/4f'0 and 

an ex,, a value for V can be calculated knowing f'0, and V, can be determined by 

subtracting V0 from V. With V8 known, one can determine the required spacing, s, of the 

stirrups and can compare this value to the existing spacing of stirrups. One must also 
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match e, with the value that would be obtained from the ; equation. Once the spacing 

and ; values are matched by altering the position in the chart, the calculated Vf term can 

be assumed to equal the shear resistance of the beam since Vf ≤ V. 

2.3 AC! Methods 

2.3.1 ACI Method for spans with QJd> 5 

The basic requirement for design is that: 

Vf ≤ Ovn (2.17) 

where Vf is the factored shear force, V is the nominal ultimate shear capacity of a 

concrete beam, and is a strength reduction factor equal to 0.85 for shear (American 

Concrete Institute, 1992) (note: ACT Ch. 1 1 unchanged in 1994 revisions). Also, 

Vn = V0 + V (2.18) 

where V. is the shear carried by the concrete and V, is the shear resistance provided by the 

web reinforcement based on the 45° truss analogy. Using SI units for the following 

equations, the ACT Code states that: 

V0 = /F b,d/6 (2.19) 

or as an alternative: 

but not greater than: 

V 
V. = {%I + 120 P.  d] bd 

0.3%/F bd 

(2.20) 
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Also, V1 /Mf shall not be taken greater than 1.0, where Vf and M1 are the factored shear 

and moment respectively acting at the section considered. The shear resisted by vertical 

stirrups is equal to: 

A fd 
v lI = '1  

S 
(2.21) 

The ACI code requires a minimum amount of shear reinforcement wherever V ≥ 4) VJ2 

except for slabs and footings, concrete joist floors and certain classes of relatively wide 

and shallow beams. The minimum area of shear reinforcement is given as: 

A,. 
(2.22) 

In order to guard against brittle web crushing failure, shear compression failure and 

excessive crack widths, the ACI code gives an upper limit to the amount of shear 

reinforcement allowed, namely 

V = 2 AFI bd/3 (2.23) 

To ensure that at least one stirrup will cross an assumed 45° inclined crack, the ACI code 

also limits the maximum spacing of vertical reinforcement to the smaller of d/2 or 600 mm 

(Clause 11.5.4.1). Also when 

,,/F bd/3 

the maximum spacing of vertical reinforcement is reduced to d/4 or 300 mm. 

(2.24) 
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2.3.2 ACI Method for spans with 2 ≤ 9jd ≤ 5 

For deep flexural members, the AC! code gives three options (American Concrete 

Institute, 1992). The shear strength can be calculated as: 

V n = ._L(lO + 9/d)bd 
19 0 

or V can be calculated by adding V, and V. V, is given as either: 

or, 

/F bdI6 

M 
V = 

Vt" 

1 
+ 120 PwVj1d j bd17 

(2.25) 

(2.26) 

(2.27) 

except that the first bracketed term in the second V, equation shall not exceed 2.5 and 

V0 ≤ fr;1 b,d/2 
Mf and Vf are calculated at the critical section as defmed in Clause 11.8.5 to be at a 

(2.28) 

distance 0.5a for beams with concentrated loads, but not greater than d. The resistance of 

the shear reinforcement is given as: 

[A(1+çId + A(11-./d1 
çd 

$ 12 ) 2' 12 
(2.29) 

where A is the area of shear reinforcement perpendicular to flexural tension reinforcement 

within a distance s, and A is the area of shear reinforcement parallel to flexural 

reinforcement within a distance s. For deep flexural members A., shall not be less than 

0.00 15bs and s shall not exceed d/5, nor 450 mm (Clause 11.8.9). A.,,, shall not be less 

than 0.0025bs2, and S2 shall not exceed d/3 nor 450 mm (Clause 11.8.10). 
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2.4 Strut-and-Tie Model 

Figure N11. 1.2(b)  in the 1994 CPCA Concrete Design Handbook shows that for a 

beam with an a/d ratio of less than about 2.5, the strut-and-tie model is most suitable for 

predicting the failure load. The beam is idealized to behave like a truss consisting of 

concrete compression struts and steel tension ties connected at nodal zones. These struts 

and ties actually represent stress fields acting over an area, modelled as forces acting in 

straight lines (see Figure 2.5). A description of the strut-and-tie procedure can be found 

in the existing literature (CPCA, 1995). 

In the strut-and-tie model, the compressive strength of concrete in a strut is 

reduced if the strut is crossed by a tension tie. The maximum compressive stress allowed 

to act on the concrete is given as: 

f = 

2Nx O.&+170 

fog 

where € is the principal tensile strain in the cracked concrete and is equal to: 

= 0.002 + 0.004 
cot 20 Ir 

(2.30) 

(2.31) 

assuming that the tension ties have yielded and that the maximum tensile strain in the 

direction of the tie, ;, is equal to 0.002. Therefore as 0 decreases, f decreases 

dramatically, greatly limiting the amount of load that a compressive strut is able to 

support. 
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2.5 Birkeland's Shear Friction Equation 

In 1966, Birkeland presented a paper concerning shear transfer in reinforced 

concrete where he introduced the following equation for shear stress (va) on a plane: 

Vn = 33 .5/p, f7 (psi) (2.32) 

= 2.78p, f, (MPa) 

where pf., was referred to as the clamping stress (Birkeland and Birkeland, 1966). The 

compressive strength of the concrete (f') was not considered to be a factor in determining 

shear strength. 

2.6 Loov's Shear Friction Equation 

In 1978, Loov presented a paper concerning the design of precast connections in 

which he gave the following relationship for shear stress (r) and normal stress (a) on a 

crack: 

t/f'0= kf?F0 (2.33) 

where k was assumed to equal 0.5 (Loov, 1978). This appears to have been the first time 

that PC was considered to be a factor in determining shear strength. He compared this 

equation to three suggested design equations and it appeared that his equation fit the 

experimental data from previous push-off tests better than the three design equations. 

2.7 A.H. Mattock's Tests 

Alan Mattock considered shear transfer in reinforced concrete across a shear plane 

(Mattock, 1974). Specifically, 23 pushoff specimens were tested, with either orthogonal 



14 

or parallel arrays of reinforcement at various angles to the shear plane. Some specimens 

were pm-cracked to model real-life situations such as shear transfer across cracks due to 

lateral restraint of shrinkage or temperature deformations. 

Mattock tested a large range of angles of shear reinforcement to the shear plane 

for specimens with parallel reinforcement and an initially cracked shear plane. The graph 

in Figure 2.6 shows the test values for these specimens plotted as the shear stress ('r) 

divided by f', versus the clamping stress (a) divided by f' and the predicted values using 

Loov's equation. Mattock's equation for ultimate shear stress, vu is given in imperial units 

as follows: 

VU = 400 gin201 + A fl (0 . g gin 2()  - O.5aln201) 
gw 

1=0 0°<0<51.3° 

= -1.6 f cos (0 + 38.7) 51.3° ≤ 01 <90° 

fy 90°≤0≤l80° 

stress in reinforcement (ksi) 

s - spacing of reinforcement (in.) 

w - width of shear plane (in.) 

(2.34) 

01 - angle of reinforcing bars to shear plane such that when 0° ≤ 0 <51.3°, the 
reinforcing bars tend to go into compression according to Mattock 
Also, 0 = 180 - a1 where af is the angle between the shear friction 
reinforcement and shear plane such that when a1 < 900 the reinforcing bars 
tend to go into tension according to the CSA shear friction method. 

Ar - cross-sectional area of one reinforcing bar (in) 

A significant amount of shear strength occurs even when 0 is less than 9Øo• 
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Current codes (CSA, ACI) allow reinforcement in shear friction transfer to be considered 

effective only at angles 900 or greater so that the reinforcing bars will go into tension 

(Figure 2.7). 

Mattock's tests appear to show that reinforcement placed at angles less than 900 

will still go into tension (Mattock did not measure the reinforcement strains at the crack). 

This is based on the theory that two irregular surfaces moving transversely relative to each 

other have to separate slightly to allow the protruding aggregate particles to move past 

each other (see Figure 2.8). For angles less than about 51°, Mattock considered that there 

would be no stress in the steel but added a term to account for shear strength due to 

dowel action. 

The angle between the critical shear crack and the longitudinal reinforcment in 

beams is typically between 25° and 60°. Over this range, the shear friction equation still 

matches the test results fairly well, although the shear friction equation assumes that the 

reinforcing bars are in tension. The shear friction predictions underestimate the shear 

strength in the 90° to 150° range of angles in Mattock's tests. This is most likely due to 

strain hardening, which results in a clamping stress and a force component parallel to the 

crack higher than that based on the yield stress of the steel. 

2.8 Shear Friction (CSA A23.3-94 Clause 11.6) 

In the CSA code (Canadian Standards Association, 1994), Clause 11.1.3 states 

that shear friction concepts may be used to consider "interfaces between elements such as 

webs and flanges, between dissimilar materials and between concretes cast at different 
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times or at potential major cracks along which slip can occur." Examples of the above can 

be seen in Figure 2.9. 

The shear resistance of a structural element is given by: 

yr = 4c,(° + go) + p fco (2.35) 

where: 

af = angle between shear friction reinforcement and shear plane so that shear 
friction reinforcement where (xf < 900 will go into tension according to 
CSA A23.3-94 

= coefficient of friction 

= shear friction reinforcement ratio 

= specified yield strength 

c = cohesion stress 

a = normal stress on plane 

= material resistance factor for concrete 

= material resistance factor for reinforcement 

Values of Ii and c are as follows (Clause 11.6.2): 

tL = 1.4)., c = 1.0 for concrete placed monolithically 

= 1.0)., c = 0.5 for concreted placed against hardened concrete with the surface 
clean and intentionally roughened to a full amplitude of at least 5 mm 

= 0.5), c =0 for concrete anchored to as-rolled structural steel by headed studs 
or by reinforcing bars 

= 0.6?, c = 0.25 for concrete placed against hardened concrete with the surface 
clean but not intentionally roughened 

where ). is a factor to account for lower density concrete namely, 
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A = 1.0 for normal density concrete 

A = 0.85 for semi-low density concrete 

A = 0.75 for low density concrete 

The expression )4(c+w) shall not be greater than 0.254f' nor No 

account is made for concrete strength in these equations since the friction force available is 

considered to be a function of the normal force and the surface roughness. 

An alternate to the above method has been included in the 1994 edition of the CSA 

code. This method is based on the work of Loov and Patnaik where the shear resistance 

was found to be a function of the concrete strength and the amount of reinforcement 

crossing the failure crack (Loov and Patnaik, 1994). The factored shear stress resistance 

is given as: 

Vr = A 0 + 4p, fYCOG af 

where 

(2.36) 

k = 0.5 for concrete placed against hardened concrete 

k = 0.6 for concrete placed monolithically 

and the first term in the v equation cannot exceed 0.254f c nor 7.Ok MPa and (Xf is the 

angle between the shear friction reinforcement and the shear plane. The value of 

= pfsinc + N/A8 where p,, = A,/A,,,, Af is the area of shear friction reinforcement, A(%, 

is the area of the concrete section resisting shear transfer and N is the unfactored 

permanent load perpendicular to the shear plane, positive for compression and negative for 

tension. 
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2.9 Tests of Dapped End Beams by Kumaraguru 

Kumaraguru questioned the validity of equation 11-31 in CSA Standard A23.3-94 

which is given as follows: 

(c + 0.002) 
C1 + 

cot 20 (2.37) 

where el is the principal tensile strain, e. is the strain in the longitudinal reinforcement and 

0. is the smallest angle between the reinforcement and the compression strut 

(Kumaraguru, 1992). This equation leads to a reduction in the allowable compressive 

stress due to the action of reinforcement in tension across the strut. Kumaraguru tested 6 

dapped end beams with different dapped end lengths and showed that the variation in nib 

capacity does not match that predicted using the Canadian code (Figure 2.10). 

Kumaraguru also found that a shear friction model accurately predicted the strength of the 

dapped end beams using a k = 0.55 in Loov's equation (see section 3). 
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COMPRESSION 

4 REINFORCING BAR 
IN TENSION 

Figure 2.1: Truss Analogy (Pillal and Kirk, 1988) 

Figure 2.2: Stirrups across inclined plane 
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Figure 2.3: Table 11-1 of CSA code (Canadian Standards Assocation, 1994) 
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fit 

Figure 2.5: Strut-and-tie modelling of structure (Sclilaich and Schaefer, 1991) 
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Figure 2.6 Mattock's tests 
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3. PROPOSED SHEAR FRICTION EQUATIONS 

3.1 Loov's Equation 

Loov's equation for shear stress can be written as: 

v • kfp, f, f0' (3.1) 

where k is a constant and was estimated at 0.6 (Figure 3.1). The term pJY is referred to 

as the clamping stress assuming the reinforcement yields. In this thesis, Loov's shear 

friction equation has been adapted for use in predicting the shear strength of beams. The 

clamping stress is provided by longitudinal reinforcement as well as by vertical stirrups but 

neither are necessarily assumed to have yielded. The force in each bar is based on the 

force that could be developed at the crack based on bond development lengths. Loov's 

equation can be written as: 

v (3.2) 

where v is the shear stress on the shear plane at failure and a is the normal stress on the 

shear plane at failure. For an inclined plane with v = S/A and a = R/A the above 

equation becomes: 

S. lit. 
k I —f' 

A '4A ° (3.3) 

where Si is the shear force acting on an inclined plane of area A and R1 is the normal force 

acting on the inclined plane (Figure 3.2). For a beam subjected to loads to the right of the 

crack and solving for R1 and Siusing force equilibrium we obtain: 

it1 TinO - V cog  + T Cos  (3.4) 

= TcoO V  sin  - TVt sin  
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where T = tension force in longitudinal reinforcement at the inclined crack 

0= angle between longitudinal reinforcement and the inclined crack 

T, = sum of vertical stirrup forces crossing inclined crack 

Solving for V, the shear strength of a beam based on shear failure on an inclined plane, 

and simplifying we can obtain: 

where 

with 

V = b1['1 - C1/b1 - i} 

- 

CI - 

TS sin  .+ 0.5k 2 UO A cos 0 

9in20 

- k2 f'0 AT SL 

Sin 2() 

TS a Tco0 - T,, sin  

T= T sin 0 + T Cos  

(3.5) 

All possible failure planes between the inside edge of the support plate and the inside edge 

of the load plate to a maximum angle of 90° are examined The maximum shear strength 

on each plane is calculated and then the lowest shear strength when comparing all the 

possible failure planes is taken as the governing shear strength. Because Tsin0 increases 

the clamping force while TcosO increases the applied shear, it is possible that the 

maximum shear strength (Va) of a beam may occur when the longitudinal reinforcement 

has not yielded (Figure 3.3). For a beam with k = 0.6, T = 122.4.kN, A = 0.2 m2, 
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P = 0.021, f = 500 MPa, P, =30 MPa, and 0= 29°. This phenomenon is highly 

dependent on the minimum possible 0 and the longitudinal steel ratio and is more likely to 

occur for high clamping stresses, where the shear strength of the inclined plane (v) 

remains relatively constant with increases in normal stress. In Figure 3.4, two examples 

are given of equilibrium on an inclined plane with two different tension forces (T) in the 

longitudinal steel using the same values as above. For the first case T = 765 kN giving a 

shear strength V = 246 kN, and for the second case T = 1300 kN giving a shear strength 

of 149 kN. Therefore the critical failure plane may occur when the longitudinal 

reinforcement where the plane intersects the longitudinal reinforcement has not yielded. 

Another type of failure which can be called a diagonal bending failure can also 

occur in a beam. This failure is similar to bending failure but it hypothesized to occur on 

an inclined plane. As an approximation, the c and P, factors that are normally applied on 

a vertical section for determining ultimate moment capacity are applied to an inclined 

section as well. The depth of the compression block, c, is therefore: 

(3.6) 

a1 f0'bj 1 

where T is the force in the longitudinal reinforcement at the inclined crack. The moment 

due to the stirrups about the intersection of the crack and the neutral axis is: 

M.=[T(P+ d-c ) I 
tan U (3.7) 

and is shown in Figure 3.5, where p is the distance from the centre of the support to the 

siart of the inclined crack at the level of the reinforcement, (d-c)/(tan 0) is the horizontal 
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projection of the inclined crack between the reinforcement and the neutral axis, x, is the 

distance from each stirrup to the center of the support plate and T is the force in each 

stirrup crossing the crack. Taking moments about the neutral axis and rearranging the 

equation for V,, which is the shear force at the support when diagonal bending failure 

occurs, gives: 

V& 
T  - M2) 1, 

(d - c  
I +P 

tan O  

(3.8) 

3.2 Development of Forces in Longitudinal Reinforcement 

Wang stated that the force in the longitudinal reinforcement develops at a faster 

rate when it is subjected to a vertical pressure at bearing plate locations (Wang, 1993). It 

is assumed therefore that the force development in the longitudinal reinforcement develops 

at three different rates for beams without full anchorage at the supports. The first slope 

(slope 1) is obtained by dividing the yield force by the development length (Clause 12.2.2 

CSA A23.3-94) and applies to that portion of reinforcement overhanging the support 

plates assuming no stirrups are present. The second slope (slope 2) is obtained by dividing 

the first slope by a factor P. which is dependent on the external pressure from the 

reactions at the support bearing plates. The external pressure is assumed to act only over 

the width of the bearing plate, w1. Pe is given as: 

PC 

13 p. 
1+ 

f, 
0 (3.9) 
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where p = VI(bw1) and s10pe2 = slopel/p,, where b is the width of the beam. The third 

slope (slope3) is obtained by dividing the yield force by the development length (CSA 

A23.3-94 Clause 12.2.2) and applies to that portion of reinforcement between the inside 

faces of the support and load plates assuming the CSA code requirements for stirrup size 

and spacing are satisfied (Figure 3.6). The code equations for development length are 

conservative when applied to test results because the capacity reduction factor is not 

defined but included implicitly. 

For a given shear crack, the maximum force in the reinforcement at the crack 

depends on the force that can develop from the end of the bar to the intersection of the 

shear crack and the bar. Therefore a longer anchorage length can increase the clamping 

force across an inclined crack and can be expected to increase the shear capacity. 

3.3 Development of Forces in Vertical Stirrups 

Due to the hook anchorage and the added length in addition to the hook, it is 

assumed that the full yield force in #15 stirrups and smaller develops over the distance 

from the top of the hook to the point of tangency between the hook and the vertical 

stirrup leg. This assumption is based on CSA A23.3-94 Clause 12.13.2. The force 

development in the stirrup is assumed to be symmetrical about the mid-height of the 

stirrup as shown in Figure 3.7. 

For a given shear plane each stirrup will cross the crack at a different point along 

its length. Using the above assumptions, the force in each stirrup can be estimated and 

resolved into components perpendicular and parallel to the inclined shear plane. 



30 

3.4 Location of Normal Force on an Inclined Plane 

A free body diagram of a beam to the left of a possible inclined crack and above a 

possible horizontal crack showing the forces on the section is given in Figure 3.8. 

Moments can be taken about point Q to find the location of R., the normal force on the 

inclined plane. The vertical distance that R1 acts from the top of the beam is given as 

follows: 

Rp + - p)' 
Yt = d R.. )slnO (3.10) 

where p is the distance from the center of the support plate to point Q, xi is the distance 

from each stirrup to the centre of the support, R1 is the normal force on the inclined plane 

and R is the normal force on the horizontal plane. The resultant normal force on the 

inclined plane should be located at the centroid of the assumed stress distribution function 

(Figure 3.9). This may be assumed to be a trapezoidal distribution or a triangular 

distribution depending on the location of R1. 

3.5 Comparison of Shear Friction Model to Existing Test Data 

Experimental data from existing tests was examined to determine the validity of 

applying the shear friction model to beams. The ratio of P-test/P-SF represents the ratio 

of the beam strength in the test to the beam strength predicted by the shear friction model. 

The coefficient of variation (C.O.V.) was calculated using the following equation: 

a E( ratb0L i)2 
avg  

n - i 

(3.11) 
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where ratio1 is the ratio of P-test/P-SF for each beam, avg is the sample mean of the ratios 

of P-test/P-SF for the beams, and n is equal to the number of test beams. The given 

equation uses Bessel's correction which accounts for the fact that a sample out of a 

population of possible test beams was analyzed. 

3.5.1 Arthur Clark's Tests 

In 1951 Arthur Clark presented a paper in the Journal of the American Concret 

Institute discussing his tests of beams which failed in shear (Clark, 1951). These beams 

had different longitudinal and transverse reinforcement ratios, four span lengths and 

various concrete strengths. For all the beams bw was equal to 203 mm and h was equal to 

457 mm. Based on the information given in his paper, full anchorage of the longitudinal 

reinforcement was assumed and f, the yield stress of the reinforcement, was given as 46.5 

ksi (321 MPa). Clark used 3/8" (db = 9.53 mm) stirrups with f,, the yield stress of the 

stirrups, equal to 48.0 ksi (331 MPa) without support bars to anchor the hooks. For this 

thesis it was assumed that each stirrup would develop 1/2 of its yield force by the start of 

the straight portion of the stirrup leg. This assumption was made since it was felt that the 

lack of stirrup anchorage would somewhat reduce the rate of force development around 

the hook. The bearing plates were 3.5" (88.9 mm) wide and 1" (25.4 mm) thick. The 

concrete cover below the longitudinal reinforcement was asssumed to be 19.1 mm. This 

data was entered into the shear friction model with k = 0.6 and the results are shown in 

Table 3.1. In this table, a is equal to the shear span length, s is equal to the spacing of 

stirrups and p is equal to the longitudinal steel ratio. 
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Table 3.1 Shear Friction Model of Clark's Tests 

Beam a 
(mm) 

f', 
(MPa) 

s 
(mm) 

p V-test 
(kN) 

V-SF 
(kN) 

V-test 
V-SF 

Al-i 914 24.6 183 0.0310 222.5 240.7 0.92 

Ai-2 914 23.6 183 0.0310 209.1 235.4 0.89 

A1-3 914 23.4 183 0.0310 222.5 234.2 0.95 

Ai-4 914 24.8 183 0.0310 244.7 241.2 1.01 

B1-1 762 23.4 191 0.0310 278.8 278.1 1.00 

Bi-2 762 24.7 191 0.0310 256.6 286.9 0.89 

B1-3 762 23.7 191 0.0310 284.8 280.3 1.02 

B1-4 762 23.3 191 0.0310 268.1 277.8 0.97 

B1-5 762 24.6 191 0.0310 241.5 286.5 0.84 

B2-1 762 23.2 95 0.0310 301.1 337.2 0.89 

B2-2 762 26.3 95 0.0310 322.2 359.5 0.90 

B2-3 762 24.9 95 0.0310 334.9 349.3 0.96 

Cl-i 610 25.6 203 0.0207 277.7 273.1 1.02 

CI-2 610 26.3 203 0.0207 311.1 278.3 1.12 

C1-3 610 24.0 203 0.0207 245.9 259.8 0.95 

C1-4 610 29.0 203 0.0207 285.9 296.0 0.97 

C3-1 610 14.1 203 0.0207 223.7 179.3 1.25 

C3-2 610 13.8 203 0.0207 200.3 177.0 1.13 

C3-3 610 13.9 203 0.0207 188.1 178.2 1.06 

Avg. = 0.99 

C.O.V. = 0.10 

The average V-test/V-SF was 0.99 with a C.OV. of 0.10. Thus for a variety of 

stirrup spacings, compressive strengths, longitudinal steel ratios and a/d ratios, the shear 
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friction model predicted the shear strengths of these 19 beams amazingly well (Figure 

3.10). A slightly lower k value or smaller A would need to be used for design to eliminate 

the unconservative predictions. 

Clark's beam tests showed that the shear strength increased with decreasing a/d 

ratio, smaller spacing of stirrups and increased concrete compressive strength. The shear 

friction model followed the same general trends. When the a/d ratio was reduced from 

beam set Al to beam set B 1 while the longitudinal steel ratio, concrete strength, stirrup 

size and spacing were kept constant, the average shear strength increased as predicted by 

the shear friction model. The shear friction along an inclined crack increases for beams 

with smaller a/d ratios because the slope of the crack cannot be as flat as the slope in 

longer beams. The longitudinal reinforcement is more perpendicular to the crack and can 

provide more clamping force than a beam with a higher a/d ratio. When the spacing of 

stirrups was reduced from beam set B 1 to beam set B2 while keeping other variables 

constant, the average shear strength increased. This agrees with the shear friction model 

because a smaller stirrup spacing increases the number of stirrups across an inclined plane, 

thereby increasing the shear stress that can be resisted along the crack. The transition 

from beam set Cl to C3 shows that the reduction of a beam's concrete strength reduces its 

shear strength. This agrees with the shear friction model based on the assumption that the 

shear stress varies with the square root of '• 
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3.5.2 Kani's Tests 

Two sets of data were studied from Kani's extensive series of tests (Kani et al, 

1979). The tests of beams 713 to 717 involved varying the spacing and position of 4 

stirrups along the shear span and the tests of beams 543 to 545 investigated the effects of 

placing one stirrup at a constant distance from the support while varying the a/d ratio. 

Full anchorage capability of the longitudinal reinforcement in each beam was assumed due 

to the use of anchor plates at the ends of each beam. The results of the shear friction 

model using k = 0.6 are compared to test results in Table 3.2 and Figure 3.11. The value 

x/d is the distance from the first stirrup to the center of the support divided by the 

effective depth (d). The value aid is the spacing of the stirrups divided by d and u/d is the 

distance from the last stirrup to the closest load point divided by d. For all beams b was 

equal to approximately 152 mm and d was equal to 274 mm. The dimensions of the 

support and loading plates have not been provided. Both have been assumed to be 4 

inches (102 mm) wide. The bottom and top concrete cover was assumed to be 19.1 mm. 

For beams 713 to 717, a/d = 5.0, f = 400 MPa, f = 421 MPa, P. = 26.5 MPa, 

and p = 0.027 with slight variations in these values for each beam. Kani used four closed 

#3 stirrups (db = 9.53 mm) with hooks around the tension reinforcement but no support 

bars to provide anchorage at the top. It was felt that this anchorage was more effective 

than the anchorage of the stirrups in Clark's tests, but not as effective as stirrups anchored 

around support bars. Therefore it was assumed that 2/3 of the stirrup's yield force could 

be developed at the start of the straight portion of the stirrup leg. For beams 543 to 545, 

= 365 MPa, f = 355 MPa, f' = 28.7 MPa, p = 0.027 and one #3 stirrup 
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(db = 9.53 mm) was used. There were slight variations in these values for each beam. The 

a/d ratio varied from 1.98 for beam 543 to 2.72 for beam 545. 

Table 32 Shear Friction Model of Kani's Tests 

Beam a/d x/d aid u/d V-test 
(kN) 

V-SF 
(kN) 

Failure 
Type 

V-test/V-SF 

713 4.92 2.95 0.49 0.50 57 45 Shear 1.27 

714 4.98 2.49 0.62 0.63 54 58 Shear 0.93 

715 4.98 1.99 0.75 0.74 62 72 Shear 0.86 

716 4.85 1.48 0.87 0.86 66 72 Bending 0.92 

717 4.85 0.98 0.99 1.00 67 72 Bending 0.93 

543 1.98 1.24 - 0.74 150 125 Shear 1.20 

543A 2.23 1.24 - 0.99 145 126 Bending 0.92 

544 2.47 1.23 - 1.24 117 129 Shear 0.88 

545 2.72 1.24 - 1.48 102 129 Shear 0.79 

Avg. = 0.97 

C.O.V.= 0.16 

The average V-test/V-SF was 0.97 with a C.O.V. of 0.16. A slightly lower k 

value or smaller A would need to be used for design to eliminate the unconservative 

predictions. 

Beams 713 to 717 showed a general but small increase in shear strength as the first 

stirrup was moved closer to the support, the spacing of stirrups increased and the last 

stirrup was moved away from the load. The spacing would have little effect on the 

strength since the same number of stirrups was used in each case. However the movement 
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of the last stirrup away from the load, indicated by the increasing u/d ratio, could be 

expected to result in a steeper and stronger failure plane since the weakest plane occurred 

when the last stirrup was avoided. The stirrups in Kani's tests were 3/8 inches (9.53 mm) 

in diameter so they had a significant impact on the slope of the failure plane. As the u/d 

ratio increased, the predicted beam strength based on shear failure became larger than the 

predicted beam strength due to moment failure. The shear friction model agreed with the 

test results, with the prediction of moment failure being the reason for the constant 

predicted shear strength (based on moment failure) of 71.6 kN for beams 715 to 717. 

For beams 543 to 545, Kani used 1 stirrup at a constant distance from the support 

and varied the a/d ratio. According to the shear friction model, this would have little 

impact on the shear strength of the beam, because the weakest shear plane occurred at the 

same angle for these beams (i.e. avoiding the stirrup). Small changes in predicted shear 

strengths were due to slight changes in f, and V, The shear strength based on diagonal 

bending failure would be affected due to the change in moment arms, but the diagonal 

bending moment was not critical in these tests. There also was a slight change in concrete 

and steel yield strengths in beams 543 to 545. It is interesting to note in Kani's test results 

for these beams that one of the beams experienced a moment failure, but that subsequent 

beams with longer a/d ratios did not experience moment failure. A possible explanation 

for the reduction in beam strength with increasing a/d ratio but constant stirrup location, is 

that beams other than beam 543A may have experienced moment failure. He labelled the 

failure mode of these beams as a slow diagonal failure, and the beams' failure loads were 

stated as a percentage of moment capacity ranging from 85.7% to 92.5%. These values 
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suggested that the beams were at or very near moment failure. Another possible 

explanation for the reduction in beam strength with increasing aid ratio and constant 

stirrup location is that the stirrup had less impact than expected on the failure plane angle. 

If the stirrup had no impact on the location of the failure plane, the increasing aid ratio 

would allow the failure plane angle to be as flat as possible and would weaken the shear 

strength of the beam. 

3.5.3 Sarsam and Al-Musawi's Tests 

Test data from the ACI Journal in November 1992 was also examined (Sarsam and 

Al-Musawi, 1992). Sarsam and Al-Musawi investigated the effect of high-strength 

concrete on the shear strength of beams. Full anchorage of the longitudinal and transverse 

reinforcement was assumed based on the given information. It was assumed that the 

stirrup would develop its full yield capacity over the distance from the top of the stirrup to 

the start of the straight portion of the stirrup leg. The results of the 14 beam tests and the 

predicted values from the shear friction model using k = 0.6 are shown in Table 3.3. 

For all the beams b = 180 mm, h = 270 mm and d = 233 mm. The stirrups 

measured 4 mm in diameter and had an f.,, = 820 MPa. Various longitudinal bars were 

used with diameters of 16 mm (f = 525 MPa), 20 mm (f = 495 MPa) and 25 mm 

(f = 543 MPa) to give the required longitudinal steel ratios (p). The bearing plates were 

100 mm wide, 25 mm thick and 180 mm long. The bottom, top and side concrete cover 

was equal to 25 mm. 
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Table 3.3 Shear Friction Model of Sarsam and Al-Musawi's Tests 

Beam a/d s 
(mm) 

rc 
(MPa) 

p V-test 
(kN) 

V-SF 
(kN) 

V-test/V-SF 

AL2-N 4.0 150 40.4 0.0223 115 99 1.16 

AL2-H 4.0 150 75.3 0.0223 123 108 1.14 

AS2-N 2.5 150 39.0 0.0223 189 148 1.28 

AS2-H 2.5 150 75.5 0.0226 201 176 1.14 

AS3-N 2.5 100 40.2 0.0223 199 160 1.24 

AS3-H 2.5 100 71.8 0.0223 199 175 1.14 

BL2-H 4.0 150 75.7 0.0282 138 141 0.98 

BS2-H 2.5 150 73.9 0.0282 224 229 0.98 

BS3-H 2.5 100 73.4 0.0282 228 229 1.00 

BS4-H 2.5 

- 

75 80.1 0.0282 207 229 0.90 

CL2-H 4.0 150 70.1 0.0351 147 168 0.88 

CS2-H 2.5 150 70.2 0.0351 247 233 1.06 

CS3-H 2.5 100 74.2 0.0351 247 250 0.99 

CS4-H 2.5 75 75.7 0.0351 221 277 0.80 

Avg.= 1.05 

0.13 

The average V-test/V-SF was 1.05 with a C.O.V. of 0.13. The shear friction 

model again gave good results (Figure 3.12). The predicted strengths were based on 

either a shear failure or a diagonal bending failure on a vertical section at midspan. The 

strengths of beams BS4-H and CS4-H with a stirrup spacing of 75 mm were lower than 

companion beams with stirrup spacings of 100 mm and 150 mm. This is opposite to what 

is expected, therefore the predicted values are slightly unconservative for these cases. One. 
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possibility is that the 75 mm spacing of stirrups was too congested and affected the crack 

pattern thereby weakening the beam. From the limited number of normal strength 

concrete beams tested, it did seem however that similar beams generally showed a slight 

increase in shear strength with an increase in concrete strength and decreasing a/d ratio. 

It is possible some of these beams failed in moment because the test capacities for 

beams AL2-N, AL2-H, AS2-N, AS2-H, AS3-N and AS3-H exceeded the theoretical 

moment capacities. These 6 beams had the lowest longitudinal steel ratio of all the test 

beams and used very small stirrups which were 4 mm in diameter. Beams AL2-N and 

AL2-I-I had an a/d ratio of 4 increasing the likelihood of moment failure. Beams AS3-N 

and AS3-H had a shorter a/d ratio of 2.5, but had a smaller spacing of stirrups. The 

possibility of moment failure would explain the small increases in shear strength with 

increasing V. 
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Figure 3.9: Assumed normal stress distribution 
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4. EXPERIMENTAL PROGRAM 

4.1 Overview of Experimental Program 

Twelve rectangular reinforced concrete beams were tested to investigate the 

validity of the proposed shear friction equations for intermediate length beams. The 

beams had varying a/d ratios, concrete strengths and end anchorage lengths for the 

longitudinal reinforcement. All beams had the same cross-section, spacing and size of 

vertical stirrups, and longitudinal reinforcement ratios. A single load at midspan was used 

to test the beams. 

4.2 Objectives 

The main objective of the beam testing was to determine the validity of a shear 

friction model for determining the shear strength of beams. In the past, shear friction was 

mainly examined during pushoff or pulloff tests in which the reinforcement was 

perpendicular to the crack or at angles which would cause the reinforcement to go into 

tension upon the sliding movement of the specimen on opposite sides of the crack. As 

was shown previously, reinforcement at angles greater than 900 also seems effective (see 

section 2.5). Therefore the longitudinal reinforcement in concrete beams can be expected 

to play an important role in increasing the friction that can be resisted by a crack. Other 

objectives include: 

1. To investigate the effects of different end anchorages (length of 

reinforcement past support) on the beam behaviour and shear strength. 

2. To investigate the effects of different a/d ratios on the beam behaviour and 
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shear strength. 

3. To investigate the effects of concrete strength on the beam behaviour and 

shear strength. 

4. To predict the shear strength of the 12 beams using the CSA, ACT and 

proposed shear friction methods and compare the predictions. 

5. To investigate the effectiveness of small stirrups (db = 5.68 mm), the 135° 

hook anchorage, and 150 mm spacing in providing shear strength. 

4.3 Test Specimens 

Twelve reinforced concrete beams were tested. For all 12 beams b = 360 mm, 

h =400mm and d = 345 mm. Three different a/d ratios (3.05, 2.61 and 2.17) were used 

and each beam had a different overhang referring to the length of reinforcement past the 

outside edge of the support plate. Six beams were of normal strength concrete (about 30 

MPa) and six were of high strength concrete (about 77 MPa) as seen in Table 4.1. The 

concrete compressive strength for each beam was obtained by testing 3 cylinders and 

averaging their strengths. The overhang shown in Table 4.1 is the length of reinforcement 

past the outer face of each support. 

The concrete composition consisting of water, Type 10 Portland cement, concrete 

sand, coarse aggregate (14 mm maximum size), silica fume and Rheobuild 1000 

superplasticizer for the normal and high strength concrete mixes used in the tests are 

shown in Table 4.2. 
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Table 4.1 Test Beam Details 

Beam (MPa) Beam 
length (m) 

aid overhang (mm) 

1 28.9 2.80 3.05 300 

2 30.2 2.40 2.61 250 

3 28.9 2.26 3.05 30 

4 28.9 2.16 2.17 280 

5 30.1 1.98 2.61 40 

6 33.6 1.78 2.17 90 

7 74.3 2.56 3.05 180 

8 77.8 2.36 2.61 230 

9 77 2.22 3.05 10 

10 76.3 1.94 2.61 20 

11 81.5 1.88 2.17 140 

12 77.7 1.64 2.17 20 

Table 4.2 Concrete Mix Design (by mass) 

Material Normal Strength Concrete High Strength Concrete 

Water 7.84% 6.16% 

Cement 11.92% 17.23% 

Concrete Sand 31.64% 31.38% 

Coarse Aggregate 48.56% 43.31% 

Silica Fume 0.00% 1.93% 

Superplasticizer 208 me 3.74 
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The reinforcing steel for every beam consisted of 5 Grade 400 No. 25 bars 

(f = 433 MPa) providing an area of 2500 mm'. A bar spacing of approximately 64 mm 

provided a clear distance of over 1.4 times the bar diameter between the No. 25 bars as 

required by the CSA code. The stirrups measured 5.68 mm in diameter and had a yield 

stress of almost 600 MPa. The area of each stirrup (2 legs) is 50.7 mm' which satisfies the 

minimum requirement given by the CSA code is given as: 

A, = O.O6 %/_!_ 
(4.1) 

where equals approximately 30 mm' for the beams with normal strength concrete 

and approximately 48 mm' for the beams with high strength concrete. The spacing of 

150 mm also satisfies clause 11.2.11 which states that s ≤ 600 mm or 0.7d for the shear 

stresses that occurred during each beam test. For the stirrups, at least 60 mm of straight 

bond length was provided beyond the 135° hook as required. Two #10 bars were used to 

provide support and anchorage for each leg of the stirrup and were extended to each 

support (Figure 4.1): 

For each of the three different a/d ratios, two beams were tested with normal 

strength concrete and two beams were tested with high strength concrete. For each a/d 

ratio, two different end anchorages were used. One beam had a short overhang length 

which provided enough development force capability to resist the tension induced by shear 

(CSA Clause 11.4.9.1) and the other had a longer overhang to prevent a diagonal bending 

failure as described in Section 3.1. 

The beams were covered with burlap and cured until being tested, and the 
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cylinders were placed in a fog room at 100% humidity. The beams were tested at 

approximately 14-17 days from the time of casting and the appropriate concrete cylinders 

were tested on the day of the beam test. 

4.4 Test Setup and Procedure 

Each concrete beam was supported by and plastered to two hardened steel plates 

(which then sat on rollers allowing for horizontal movement during testing. The plates 

were 100 mm wide, 38 mm thick and 420 mm long. Another steel plate was plastered to 

the top surface of the beam at the midspan. The plates were used to prevent concentrated 

compressive stresses which could crush the concrete at the load points. Each beam was 

tested in an Amsler testing machine (type 200 DB 76) shown in Figure 4.2. An oil pump 

driven by an electric motor is built into the pendulum dynamometer and pumps oil into a 

piston thus driving the loading ram upwards. The ram lifts a stiffened steel beam which 

supports each test beam and produces a load at midspan and reactions at the supports 

when the concrete beam is in contact with the cross-head. 

The load was applied in stages so that cracks could be marked, crack widths 

measured and photographs taken. Crack measurements were taken up to 50-60% of the 

predicted failure load (ie. up to typical service loads). During testing, it was observed that 

from a certain load level and upwards the crack pattern remained relatively unchanged. 

Therefore once the major cracks stopped propagating the beam was taken to failure 

without further stoppages unless a change in crack pattern occurred. 
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4.5 Instrumentation 

For all tests the loads that were applied were measured by a pendulum 

dynamometer located within the testing machine and recorded with the Labtech Notebook 

data acquisition program. The analog signal from the gauges was converted to a digital 

signal using the Measurement Systems Datascan 7000 data acquisition unit. Calibration 

factors for the load and displacement transducers, as well as gauge factors for the strain 

gauges were input into the Labtech Notebook file for each test. 

Two displacement transducers were placed at the centerline of the beam 

underneath each bottom edge of the beam to measure vertical displacements during the 

tests. A graph of load versus displacement was plotted during the test to give some visual 

assistance in determining the onset of failure. 

Strains in the reinforcing steel were measured using electrical resistance gauges. 

These strains were recorded with the Labtech Notebook program as well. Before the 

strain gauges were attached, the reinforcing bars and stirrups were ground smooth at the 

desired location and then the gauges were glued to the bars. A length of wire was 

connected to each gauge that would eventually be connected to the data acquisition 

system. They were covered with wax and wrapped in electrical tape to prevent water 

from damaging the gauges upon casting. The gauges were attached on 3 of the 5 bars 

near the end of the bar and at the centre (Figure 4.3). These gauges were attached at the 

neutral axis of the bar to prevent erroneous results due to the bending of the bar. The 

gauges at the centre measured strains at the location of maximum moment and the end 

gauges measured the strains in the reinforcement at or near the critical crack location. 
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Strain gauges in the stirrups were attached at the level of the stirrup near where the 

critical crack was expected to occur. This was on a straight line from the inside edge of 

support to the closest edge of the loading plate (Figure 4.4). Gauges were attached on 

both legs as a backup in case one gauge was non-functional. 
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5. SHEAR FRICTION MODEL AND CODE COMPARISONS 
TO BEAM TESTS 

5.1 Test Results 

All beams failed due to a loss of shear capacity across a crack. This occurred on 

either an inclined plane or a horizontal plane as described in section 5.3. The measured 

inclined crack angle, the tensile force in the. longitudinal reinforcement at the crack, the 

length of horizontal crack plane and the failure load are given in Table 5.1. The forces in 

the reinforcement were approximated by interpolating between two strains at locations on 

the reinforcement where the forces were known based on the strain gauge readings. 

Therefore there is considerable uncertainty in these tensile forces. The angles were 

measured between' the longitudinal reinforcement and a straight line from the point where 

the main inclined crack appeared to intersect the reinforcement to the edge of the load 

plate. Many of the main inclined cracks were not straight, therefore there is some 

uncertainty in these values. There was also some uncertainty in the measured horizontal 

crack lengths due to the difficulty in determining the exact start of the inclined crack at the 

level of the longitudinal reinforcement. 
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Table 5.1 Details of Beam Failures 

Beam a/d Crack 
angle () 

Tensile force in 
reinforcement (kN) 

Length of hor. 
crack plane (mm) 

Failure load 
(kN) 

1 3.05 29.9 740 700 498 

2 2.61 28.6 1037 550 767 

3 3.05 26.2 639 330 449 

4 2.17 37.5 1050 530 889 

5 2.61 28.1 604 240 586 

6 2.17 37.5 633 340 662 

7 105 27.9 1003 530 609 

8 2.61 31.2 1043 510 782 

9 3.05 29.9 657 410 484 

10 2.61 33.3 1000 345 781 

11 2.17 42.6 1083 465 1024 

12 2.17 53.0 1083 460 1189 

Upon initial loading, a vertical flexural crack typically appeared near the midspan 

of the beam. Further flexural cracks developed further from midspan as the load was 

increased. The flexural cracks nearest the support then began to flatten and head towards 

the load plate. As the main flexure-shear crack neared the load plate a horizontal crack 

started to propagate from the outermost flexural crack at the level of the longitudinal 

reinforcement At this point the cracks usually stabilized until failure when the main 

inclined crack opened up and extended from the edge of the load plate to a point at the 

level of the longitudinal reinforcement. The horizontal crack usually propagated along the 

reinforcement to the end of the beam at failure. Photos of each beam after failure can be 
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seen in Figure 5.1-5.6 and 5.7-5.12 for the normal and high strength concrete specimens 

respectively. 

Table 5.2 shows the approximate crack widths for the 12 test beams at 60% of the 

predicted failure load using the CSA simplified method. This method gave the highest 

predicted loads of all the methods except for the AC! method using equation 2.25 which 

only applied to 8 of the 12 beams. These crack widths were obtained by interpolating 

between known crack widths at known load levels. This load level represents the typical 

service load that a beam might be subjected to during its lifetime. The maximum crack 

width under service loads given indirectly by CSA A23.3-94 Clause 10.6.1 is 

approximately 0.4 mm assuming interior exposure (CPCA, 1995). 
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Table 5.2 Crack Widths at Service Loads 

Beam Crack width at 60% of predicted failure 
by CSA simplified method 

(mm) 

1 0.059 

2 0.079 

3 0.093 

4 0.082 

5 0.084 

6 0.069 

7 0.16 

8 0.16 

9 0.21 

10 0.16 

11 0.21 

12 0.18 

At 60% of the predicted failure load, all the crack widths satisfied Canadian code 

requirements. By observation, it appears that the crack width limitations would also be 

satisfied using the predicted loads based on all other methods except for the ACI method 

using equation 2.25. Based on the crack widths measured in the tests, it appears that the 

spacing and size of stirrups used in these test beams is adequate to prevent excessive 

cracking at service loads. This is reassuring since the maximum spacing and the minimum 

area of shear reinforcement as required by the CSA code were satisfied. 

Table 5.3 shows the approximate crack widths at strain values in the stirrups that 

relate to yield strains for stirrups with f = 400 MPa and f = 500 MPa. The crack widths 
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are approximate because they were interpolated between known crack widths at known 

load levels. Also, the cracks did not always intersect the stirrup at the gauge location, so 

the actual crack widths at these strain levels may be smaller than recorded because the 

strains at the crack were most likely higher than that read by the gauges 

Table 5.3 Crack Widths at Stirrup Location 

Beam Crack width at 
= 0.0020 (mm) 

Crack width at 
; = 0.0025 (mm) 

1 0.5 - 0.9 0.5 - 0.9 

2 0.4 - 0.5 0.5 - 0.6 

3 0.7-0.8 0.7-0.8 

4 >0.9 >0.9 

5 0.5 - 0.7 0.7 - 1.6 

6 0.2-0.5 0.2-0.5 

7 >0.2 >0.2 

8 0.5-0.6 0.5-0.6 

9 >0.2 >0.2 

10 0.4 - 0.5 0.4 - 0.5 

11 >0.3 >0.3 

12 0.5 - 0.6 0.5 - 0.6 

It appeared that most crack widths were less than 1 mm when Grade 400 and 

Grade 500 stirrups would have yielded, and in some cases the crack widths were less than 

0.5 mm. This indicates that for wider cracks at failure when slippage of the cracked 

surfaces occurs, yielding of the stirrups seems certain to have taken place. 

Table 5.4 shows the estimated force developed in each longitudinal bar at the given 

location from the end of the bar based on the average strains recorded by the gauges, as 
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well as the force at this location based on Clause 12.2.3 of the CSA code, assuming no 

stirrups are present along the developed length and f' is not limited to less than 64 MPa. 

F represents the force in the reinforcement assuming yielding has occurred. 

Table 5.4 Force Development Comparison 

Beam Gauge 
location (mm) 

Force based on 
gauge (kN) 

Force based on 
CSA equation (kN) 

1 400 95 71 

2 350 190 64 

3 130 116 23 

4 380 217(F) 66 

5 50 88 9 

6 300 83 58 

7 400 211 114 

8 400 180 .117 

9 200 101 58 

10 200 169 58 

11 300 .217(F) 90 

12 200 2l7 (F) 58 

In all 12 beams the forces in the reinforcement appeared to be much higher than 

that predicted by the CSA equation. The longitudinal reinforcement for beam 5 developed 

approximately 40% of it's full capacity over a 50 mm length. The longitudinal 

reinforcement for beams 4, 11 and 12 reached over 90% of it's full capacity over a 200 to 

400 mm length. These observations suggest that the CSA code equation for development 

length (Clause 12.2.3) is too conservative for beams supported like these test beams. 

Figure 5.13 shows a graph of failure load versus a/d ratio. The general trends 
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showed an increase in shear strength with increasing concrete strength, increasing 

overhang, and decreasing a/d ratio. The general increase in shear strength with increasing 

concrete strength in the beam tests agrees with Loov's shear friction equation which gives 

shear strength varying with the square root of An increased anchorage length also 

increased the shear strength in most beams, but is affected by the location of the critical 

shear crack which determines the length available for force development This was 

expected since a longer anchorage length meant that a higher normal force was available 

on the inclined plane, resulting in a higher shear friction force across the crack. The beams 

showed a general increase in strength with decreasing aid ratio which also was expected. 

A smaller a/d ratio usually meant that a steeper crack angle occurred in beams which 

resulted in a higher friction force across the crack, since the main reinforcement is closer 

to being perpendicular to the inclined crack. In Figure N 11.1.2.(b) of the CPCA Concrete 

Design Handbook, it can be seen that there is also a general increase in strength in beams 

tested previously over the range of aid ratios from 3.05 to 2.17 (CPCA, 1995). 

Some peculiarities were observed during the testing. For beam 1, the horizontal 

crack along the level of the longitudinal reinforcement did not extend to the end of the 

reinforcement, but ended at the inside of the support. 

Beam 2 experienced 2 vertical cracks near failure extending from the top of the 

beam to about mid-depth of the beam above the supports. At failure, many short diagonal 

cracks parallel to the main inclined crack appeared near the load. Some of these diagonal 

cracks extended underneath the load plate. 

The main inclined crack for beam 3 flattened as it approached the load, but at 
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failure a steeper crack occurred extending between the corner of the load plate and the 

flattened crack. 

Beam 4 experienced 2 short vertical cracks extending from the top of the beam at 

the location of the supports similar to beam 2. The main diagonal crack was very steep 

near the load plate and was flatter nearer the support. Some spaffing of the concrete in the 

compression zone near the load, plate occurred at failure. 

At failure, beam 5 did not appear to have cracked through the entire section. It 

seems to have failed along a horizontal plane at the end of the beam at the level of the 

longitudinal reinforcement This was impossible to observe during the testing due to the 

speed of crack propagation at failure. Beam 5 had a short overhang which may have 

reduced its anchorage capability and increased the likelihood of a horizontal shear failure. 

Due to the location of the inclined crack, the horizontal crack plane was very short 

increasing the shear stress across this plane. Another flexure-shear crack extended under 

the load plate as the beam approached failure. 

Some spalling of the concrete in the compression zone near the load plate occurred 

at failure for beam 6. An inclined crack flattened and extended under the load plate as the 

beam approached failure.. 

For beam 7, one flexure-crack flattened and extended under the load plate as the 

beam approached failure. 

The main inclined crack for beam 8 flattened as it approached the load, but at 

failure a steeper crack occurred extending between the corner of the load plate and the 

flattened crack where it crossed the closest stirrup. The horizontal crack was fairly 
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irregular. It appeared that all but one stirrup leg broke in the shear span before failure 

occurred. 

At failure, beam 9 did not appear to have cracked through the entire section. It 

failed along a horizontal plane at the end of the beam in the same way as beam 5. Beam 9 

had a short overhang which may have reduced its anchorage capability and increased the 

likelihood of a horizontal shear failure. 

Beam 10 had a particularly irregular cracking pattern at failure. A portion of the 

inclined crack was vertical giving the crack a rough surface. This crack may have 

strengthened the inclined plane in shear, dramatically decreasing the beam's ability to slip 

along this plane. A fair amount of spalling occurred at failure. Beam 10, which had an 

anchorage length that was 210 mm shorter than the anchorage length of beam 8, had the 

same strength as beam 8. 

The main inclined crack for beam 11 flattened as it approached the load plate, but 

a steeper crack formed at failure extending between the inclined crack and the corner of 

the load plate. It appeared that all 3 stirrups in the shear span broke before failure 

occurred. 

As beam 12 approached failure, the flexural cracks began to propagate again and 

approached the top of the beam. With a shorter overhang, beam 12 was stronger than 

beam 11 (the same beam with a longer overhang). This appeared to be due to a much 

steeper crack that occurred in beam 12, which means a higher normal force could develop 

along the sloping crack since the longitudinal reinforcement was more perpendicular to the 

inclined plane. The steeper crack also meant that a longer length of longitudinal 
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reinforcement was bonded to the concrete resulting in a higher developed force and a 

higher friction force across the crack. In effect, the added anchorage length in beam 11 as 

compared to beam 12 would have had little effect on the development force since the 

length of reinforcement beyond the main inclined crack was about the same. 

5.2 Shear Friction Model Predictions 

Table 5.5 shows the predictions using the shear friction model. The la term refers 

to the overhang length, which is the length of reinforcement past the outside face of the 

support The predictions were based either on failure of the inclined plane, diagonal 

bending failure, or on moment failure. For the shear failure on an inclined plane and 

diagonal bending failure calculations, development length equations from the CSA code 

(even though these contain implicit material resistance factors) were used to calculated the 

force in the longitudinal reinforcement, and the weakest plane governed the failure 

prediction. Values of shear strength are fairly sensitive to changes in the failure plane 

angles, especially when they are governed by minimum angles (between edges of load 

plates). 

The average P-test/P-SF was 1.24 and the C.O.V. was 0.29, where P represents 

the failure load. A comparison of test loads to predicted loads is shown in Figure 5.14 

where the beam strength refers to the load (P) at midspan at failure. The beam strength 

predictions for beams 1, 7, 8 and 9 are unconservative. It was hypothesized that these 

beams failed due to a shear failure on a horizontal plane at a lower load than the load 

based on failure of the inclined plane as predicted by the shear friction model. 
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Table 5.5 Shear Friction Model Predictions with Forces in 
Longitudinal Bars and Stirrups Based on Bond Lengths using CSA A23.3-94 

Beam aid fc 
(MPa) 

'a 

(mm) 
P-test 
(kN) 

P-SF 
(kN) 

P-test/P-SF 

1 3.05 28.9 300 498 536 0.93 

2 2.61 30.2 250 767 546 1.40 

3 3.05 28.9 30 449 406 1.11 

4 2.17 28.9 280 889 570 1.56 

5 2.61 30.1 40 586 414 1.42 

6 2.17 33.6 90 662 532 1.24 

7 3.05 74.3 180 609 688 0.89 

8 2.61 77.8 230 782 810 0.97 

9 3.05 77.0 10 484 526 0.92 

10 2.61 76.3 20 781 554 1.41 

11 2.17 81.5 140 1024 900 1.14 

12 2.17 77.7 20 1189 624 1.91 

Average = 1.24 

- C.O.V. = 0.29 

The prediction for beam 12 was very conservative. The actual inclined crack for 

beam 12 was very steep and it appeared that the shear strength on this plane was very 

high, meaning that failure may have occurred on the horizontal plane. Other possible 

reasons for conservative results are that the forces in the longitudinal reinforcement were 

based on development equations in the CSA code which seem to be very conservative for 

these beams, and because the inclined cracks were usually somewhat steeper in the test 

beams than those used for the predictions. A higher longitudinal force induces a higher 
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shear force across a potential failure plane, and a steeper crack is stronger than a flatter 

crack because the longitudinal steel, which has a much larger cross-sectional area than the 

stirrups, would be more perpendicular to the crack, inducing a higher friction force. The 

predictions for beams .7 and 8 were based on moment failure because the predicted shear 

strengths were higher than the predicted shear force along the shear span at moment 

failure. This seemed to occur using the shear friction model because these 2 beams had 

long overhangs and had higher concrete strengths which increased their predicted shear 

strengths. 

Example calculation 

For beam 2, the following equations for forces parallel and perpendicular to the 

crack were used: 

T R = T sin O + TcoO 

= TcoO - 

where T = 604 kN and T =95 kN based on development equations and considering that 

the failure plane was found to occur when 0= 28.9°. These equations gave T5 = 483 kN 

and TR = 375 kN. The area of the inclined plane is given as: 

A 
bd (Si) 

gin  

and with b = 360 mm and d = 345 turn, A = 257x103 mm2. 

Using f, = 30.2 MPa, and k = 0.6 in the following equations: 

bi 
TsinO + O.5k 2f0 Acos 0 
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TS - k2f'0 ATR 
Cl 

gin 2() 

gives b1 = 6.251•10 kN and c1 = 3.489.106 kN2. Substituting these values into the 

equation for V, namely: 

V,f = b'[/1 - c1/b12 _i] 

gives a V = 273 kN based on the inclined plane. 

To calculate the shear strength based on the diagonal bending failure criteria, 

moments are taken about the intersection of the inclined crack and the neutral axis of the 

beam. The weakest plane was found to occur where 0= 23.2° (different from 0 for shear 

friction failure). Using the following equations for z and P 1: 

= 0.85 - 0.0015 f,' (5.2) 

= 0.97 - 0.0025 f0' 

= 0.805 and P, = 0.895. The depth of the compression zone is equal to: 

T  
= 

f0'bj 1 

and with T = 604 kN, b = 360 mm and f', = 30.2 MPa, c =77 mm. The moment due to 

the stirrups about the intersection of the crack and the neutral axis is: 

M ..bnv =Z[T(P+ d - c -)1 
tan 0 

where p is the distance from the centre of the support to the start of the inclined crack at 

the level of the reinforcement and was equal to 175 mm, (d-c)/(tan 0) is the horizontal 
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projection of the inclined crack between the longitudinal reinforcement and the neutral 

axis and was equal to 625 mm, xi is the distance from each stirrup to the centre of the 

support plate and T is the force in each stirrup based on where the crack intersects each 

stirrup. M =30 kN•m (using x1 = 200,350,500 and 650 mm for the four stirrups 

respectively and T = 7.1 kN, 30.6 kN, 30.6 kN and 18.7 kN respectively). To solve for 

V41 ,, moments about the intersection of the crack and the neutral axis are taken giving: 

T(d - + M oiaw 
e 2)  
d-c 
tan  P) 

This equation gives Vdb = 329 kN for beam 2 based on a diagonal bending failure. The 

internal moment was calculated at a vertical section located halfway between the centre of 

the load plate and the edge of the load plate. The load corresponding to the moment 

capacity of the beam was therefore approximated using the following equation: 

2.T (d - 

2) 

W2 
a- - 

4 

(5.3) 

and was equal to 722 kN, using T = 1083 kN (based on Af where A =2500 mm2 and 

= 433 MPa), d = 345 mm, a =900 mm, c = 138 mm. Based on these calculations the 

critical shear strength is equal to 273 kN based on shear failure on an inclined plane and 

gives a predicted failure load of 546 kN. 
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5.3 Extended Shear Friction Model Predictions 

An extended model was created due to the particular failure mode of some of the 

twelve test beams. For many of the beams the major inclined shear crack was steeper than 

expected (i.e. not the flattest possible) and a relatively long horizontal crack appeared at 

failure at the level of the reinforcement (Figure 5.15 and Figure 5.16). It was not certain 

which of the 2 main cracks (horizontal or inclined) initiated failure in the tests due to the 

speed of the crack propagation at failure, but it was hypothesized that failure would occur 

on the weaker of the two planes as predicted by the shear friction model. The horizontal 

shear occurring at the level of the reinforcement may have become critical before failure 

on an inclined plane occurred. This is somewhat different from typical bond failures since 

the bottom half of the reinforcing bars were still firmly embedded in the concrete and did 

not pull out of the concrete. Using the strain data, forces in the longitudinal reinforcement 

and stirrups were estimated. Using equilibrium and Loov's equation, values of shear (V) 

that would result in shear failure (using k = 0.6) were calculated for each beam, assuming 

either shear or diagonal bending failure on an inclined plane, or shear failure on a 

horizontal plane. The lowest value for V was considered to be the failure shear for that 

beam. For values of R (normal force) on the inclined plane, checks were made to ensure 

that moment equilibrium was achieved and that Ri acted within the beams' depth and 

according to the stress distribution approximations as discussed in section 3.4. 

The shear acting on the horizontal plane was assumed to be equal to the force in 

the longitudinal steel at the furthest point along the horizontal crack from the support. 

Based on equilibrium the normal force R on the horizontal crack was assumed to be equal 
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to the shear force (V), assuming that a vertical crack is located between the support and 

the closest stirrup and that no shear is transferred across this crack. It was also assumed 

that no shear is taken by the concrete located below the reinforcement since it is felt that 

this concrete is very flexible. Therefore V = R, where R is given as: 

s2 

k 210'A (5.4) 

which is a rearrangement of Loov's equation. 

The results are shown in Table 5.6. The predictions were based either on failure of 

the inclined plane, failure on a horizontal plane, diagonal bending failure, or on moment 

failure. For the shear failure on an inclined plane, shear failure on a horizontal plane and 

diagonal bending failure calculations; strain measurements from the tests were used to 

estimate forces in the stirrups and longitudinal reinforcement across the inclined and 

horizontal cracks. The lengths of the horizontal crack and the angle of the main inclined 

crack were measured and used in these calculations. 
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Table 5.6 Extended Shear Friction Model Predictions with forces in 
Longitudinal Bars and Stirrups Based on Estimates from Strain Measurements 

Beam a/d fe 
(MPa) 

la 
(mm) 

P-test 
(kN) 

P-SF 
(kN) 

P-test/P-SF 

1 3.05 28.9 300 498 497.1 1.00 

2 2.61 30.2 250 767 612.0 1.25 

3 3.05 28.9 30 449 383.0 1.17 

4 2.17 28.9 280 889 617.3 1.44 

5 2.61 30.1 40 586 590.5 0.99 

6 2.17 33.6 90 662 643.3 1.03 

7 3.05 74.3 180 609 530.4 1.15 

8 2.61 77.8 230 782 534.1 1.46 

9 3.0 77.0 10 484 458.8 1.05 

10 2.61 76.3 20 781 758.2 1.03 

11 2.17 81.5 140 1024 568.4 1.8 

12 2.17 77.7 20 1189 892.5 1.33 

Average = 1.22 

C.O.V. = 0.26 

The extended shear friction model gave an average P-test/P-SF of 1.22 and a 

C.O.V. of 0.26. Predicted values for P-SF were based on actual forces in the stirrups and 

longitudinal reinforcement, and actual failure plane angles, and were calculated based on 

the weaker of either the inclined or horizontal shear failure plane. Even though there was 

only a slight change in P-test/P-SF and the C.O.V. using the extended model, all but one 

of the predictions are conservative and the only unconservative prediction is within 1% of 

the test value. The predictions for beams 8 and 11 worsened with the extended model 
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because a lower shear strength was predicted due to failure on a horizontal plane. 

Example calculation 

The yield force of a stirrup based on the stress-strain curve shown in Figure 5.17 

is 30.6 kN using a 0.2% offset. For beam 6, it appeared that the 3 stirrups on the side of 

the beam that failed had fully yielded but did not break prior to reaching peak load 

(Figures 5.18 - 5.20). Although some of the strain gauges did not indicate yielding of all 

of the stirrups, the strains were close to yield and the gauges were not located exactly at 

the crack where the highest strain was assumed to be. It was therefore assumed that all 3 

stirrups had yielded giving a T of 91.8 kN. 

The yield force in the 5 longitudinal bars was calculated as 1083 kN based on the 

stress-strain curve shown in Figure 5.21. A tension force in the longitudinal reinforcement 

(1') at the crack equal to 633 kN based on the average strain in 3 of the 5 longitudinal bars 

(Figures 5.22 - 5.23) was estimated by interpolating between the strains near the support 

and the strains at the midspan to estimate the strains at the crack. Due to the distance 

between the gauges and the crack location, there was considerable uncertainty in the 

strains estimated. Using 0= 37.5 for the angle of the inclined failure plane, Ve was equal 

to 353.8 kN. V was equal to 390.7 kN. 

For failure on the horizontal plane, Loov's equation was rearranged as follows: 

K-- 
k 

s2 

and assuming that k = 0.55 since it was felt that the coefficient of friction would be less 

between a concrete and steel interface than between two concrete surfaces. Using 



73 

A = 1.224. 10' n 2 based on a horizontal crack length equal to 340 mm and b = 360 mm, 

= 33.6 MPa and S = 633 kN, R = 322 kN. Assuming a flexible area of concrete below 

the reinforcement as discussed in Section 5.3, V = R. Therefore V = 321.7 kN. Taking 

the lowest of the three values of shear strength based on inclined shear failure, horizontal 

shear failure and diagonal bending failure, the predicted shear strength of the beam would 

be 321.7 kN resulting in a predicted load capacity of 2•V or 643.3 kN. The load at 

midspan at the theoretical moment capacity-was found to be 966.3 kN. A check was 

made to ensure that the resultant R1 on the inclined plane acted within the beam's depth as 

discussed in Section 3.4. The shear force on the inclined plane Si based on a horizontal 

shear failure was calculated from: 

1](T,sinO) - RsinO - Sew O 

and the normal force on the inclined plane R1 was calculated from 

RI 
sin  

(5.5) 

(5.6) 

Taking moments about Point Q in Figure 5.24, Ri acts at a vertical distance y from the 

top of the beam where yt is calculated as: 

/ Rp + - 

y=d -   ,Jsino 
R1  

where p is the distance from the centre of the support to the start of the inclined crack at 

the level of the longitudinal reinforcement and x1 is the distance from each stirrup to the 

centre of the support. In the case of beam 6, y = 78 mm. The other 11 beam strengths 

were predicted in a similar manner. 
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The predictions of shear strength for the 12 test beams as shown previously in 

Table 5.4 given by the shear friction model were reasonable. This model's equations take 

into account the aid ratio, anchorage length and f' and therefore reflect the changes in 

shear strength due to alterations in these variables. In Figure 5.25, plots of beam strength 

vs. a/d ratio for both the test and predicted values are shown. The predictions by the shear 

friction model were influenced by the forces, angles and length of horizontal cracks 

measured during the test which tended to affect the expected trends using the shear 

friction equations. For example, for the high strength concrete beams .with longer 

overhangs, the predicted shear strengths remained almost constant as the a/d ratio 

decreased. This was due to the fact that the shear friction model predicted horizontal 

shear failure which was not directly dependent on the a/d ratio, but rather the shear force 

on the plane and the length of the plane. This matched the trend between beams 8 and 10. 

The shear friction model also matched the trend between beams 11 and 12, where the 

shear strength increased with a shorter overhang length. 

5.4 CSA Predictions 

5.4.1 CSA Simplified Method 

The predictions given by the simplified method gave reasonable results and are 

shown below in Table 5.7. Material resistance factors were set to 1.0 in the calculations. 

The predictions given by the CSA simplified method are generally conservative with an 

average P-testlP-Simplifed of 1.48 and a C.O.V. of 0.28. However, the prediction for 

beam 9 was unconservative. This was due to the fact that the predicted shear strengths 
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for the six high strength beams were essentially the same. A reduction in the shear 

capacity of beam 9 as compared to beam 7 due to a decrease in anchorage length was not 

reflected using this method and appeared to be the reason for the unconservative 

prediction. 

Table 5.7 CSA Simplified Method Predictions 

Beam a/d P-test 
(kN) 

P-simplified 
(kN) 

P-test/P-Simplified 

1 3.05 498 408 1.22 

2 2.61 767 414 1.85 

3 3.05 449 408 1.1 

4 2.17 889 408 2.18 

5 2.61 586 414 1.42 

6 2.17 662 429 1.54 

7 3.05 609 569 1.07 

8 2.61 782 579 1.35 

9 3.05 484 577 0.84 

10 2.61 781 575 1.36 

11 2.17 1024 589 1.74 

12 2.17 1189 578 2.06 

Average = 1.48 

C.O.V. = 0.28 

Example Calculation 

For beam 1, with an VC of 28.9 MPa, b= 360 mm, d =345 mm, s = 150 mm, 

= 600 MPa, A = 50.7 mm 2,  1.0, 4 = 1.0, ). = 1.0 and using the following 

equations for V and V: 
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V0. i;; b d 

$, A, f, d 
V II . 

= 133.5 kN and V = 70.4 kN giving a total P-Simplified (2•V) of 408 kN versus a 

P-test of 498 kN. The other 11 beam strengths were calculated in a similar manner. The 

theoretical moment capacities for the beams were calculated in the same manner as for the 

shear friction method and were not critical in these calculations. 

No account is made for the a/d ratio or overhang length in these shear equations 

(Figure 5.26). The compressive strength is accounted for, but there are essentially 2 

predicted values (roughly 410 kN and 580 kN) of shear strength based on the 2 average 

values of PC for the 12 beams. Therefore any increases in shear strength due to increased 

overhangs or decreasing a/d ratio are not reflected in the simplified method. 

Since the predicted shear values are low and there is no moment at the ends of the 

beams, the required anchorage lengths as stated by the CSA code are satisfied in all 12 

beams tests, even though some beams had overhangs as little as 10 mm past the support 

plate. The best predictions occurred for the longest span (except for beam 9) suggesting 

the need for a better model for the smaller a/d ratios. 
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5.4.2 CSA General Method 

Comparisons of the general method to the test results were made and the results 

are shown below in Table 5.8. Material resistance factors were set to 1.0 in the 

calculations. 

Table 5.8 CSA General Method Predictions 

Beam a/d P-test 
(kN) 

P-General 
(kN). 

P-test/P-General 

1 3.05 498 393 1.27 

2 2.61 767 411 1.87 

3 3.05 449 393 1.14 

4 2.17 889 423 2.10 

5 2.61 586 411 1.43 

6 2.17 662 439 1.51 

7 3.05 609 505 1.21 

8 2.61 782 530 1.48 

9 3.05 484 510 0.95 

10 2.61 781 527 1.48 

11 2.17 1024 558 1.84 

12 2.17 1189 550 2.16 

Average= 1.54 

St.Dev. = 0.25 

The CSA general method's predictions are fairly conservative with an average 

P-test/P-General of 1.54 and a C.O.V. of 0.25. 

Example Calculation 

For beam 6 with an P. of 33.6 MPa, the shear strength was determined using a trial 
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and error method as discussed in Section 2.2.2. As the final guess vf/4Cf'C = 0.0585, 

= 0.00133, O= 39.1 and 3 = 0.168. 

Using: 

Vf Vf • f'0bd, 
•o a 

with b=360 mm, d=31l mm, V=219.7 kN. Using: 

VCg - 1.34 .P rF b,,d, 

with 3 = 0.168, V = 141.7 kN. With: 

vex Vf Vg 

V, = 78.0 kN. From V the spacing of stirrups, s, can be calculated from: 

A, çd, 

tan 

(5.7) 

(5.8) 

using an A = 50.7 mm2, f = 600 MPa, s = 150 mm. This matches the spacing in the test 

beam. The assumed value of; must be matched with the ; from the following equation: 

O.5Vf cot  + M/d, 

B, A 

with E, = 200000 MPa, A. =2500 mm2 and Mf = V(a where a is the shear span length and 

is equal to 750 mm. ; = 0.00133 which checks with the original guess. Therefore the 

predicted shear strength of beam 6 is 219.7 kN. The other 11 beams were calculated in a 

similar manner. The theoretical moment capacities were calculated in the same manner as 

with the shear friction method and were not critical in these calculations. 

A very slight increase in shear strength is predicted for decreasing a/d ratios, but 
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no account for the overhang length is made in the shear equations. There are essentially 2 

predicted values of shear strength based on the 2 average values of f' for the 12 beams of 

different lengths and different end anchorages (Figure 5.27). The best predictions 

occurred for the longest spans, but worsened as the span was shortened. Also, there was 

one slightly unconservative prediction for beam 9 with a P-test/P-General of 0.97. This 

was minimally unconservative but indicated, as did the Simplified Method, that since the 

predicted values were essentially constant, the reduction in shear capacity with increasing 

a/d ratio was not reflected and led to an unconservative estimate for beam 9. 

5.4.3 CSA Strut-and-Tie Methods 

5.4.3.1 CSA Strut-and-Tie Method using CSA code equations 

The CSA strut-and-tie method was used to predict the failure loads of the test 

beams, and the model along with the forces F1 to F. are shown in Figure 5.28. When 

applying the strut-and-tie method, different assumptions were made, giving three sets of 

predicted values. For the CSA strut-and-tie method using CSA code equations, the force 

developed in the longitudinal reinforcement was based on the CSA code equation, f 

was based on code equations, and the stirrups were assumed to be capable of reaching 

yield. The second strut-and-tie method assumed that there was no restriction on the 

amount of force that the reinforcement could develop and that f,,,  was based on code 

equations. The third strut-and-tie method assumed that f was equal to 0.6f' as 

opposed to the code equations and that there was no restriction on the amount of force 

that the reinforcement could develop. In all cases, the height of the vertical tension tie 
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representing the stirrups was varied to determine the maximum strength of the beam for 

this model. By varying the height of the vertical tension tie, the angle between the 

longitudinal reinforcement and the tension tie was altered which affected the forces in the 

struts and ties as well as the limiting values of f. The bottom node was located at the 

intersection of the support and the level of the reinforcement. The top node was located 

at the intersection of the point load and the centroid of the compression block. The point 

load at the centre of the beam was split into, two loads acting at 1/4 and 3/4 points of the 

load plate in order to analyze half of the beam. Material resistance factors (4k, 4) were 

set to 1.0 in the calculations. 

The predictions given by this method are very conservative with an average 

P-test/P-Strut-and-Tie, of 2.64 and a C.O.V. of 0.38 as shown in Table 5.9. The 

predicted strength was limited by the maximum forces that could be developed in the 

horizontal and vertical tension ties. The force in the horizontal tension ties were limited by 

the development length equation and the force in the vertical tension tie representing the 

stirrups was limited by the maximum force that the stirrups could carry assuming that each 

stirrup yields. 
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Table 5.9 CSA Strut-and-Tie Predictions using CSA Code Equations 

Beam aid P-test 
kN) 

P-Strut-and-Tie1 
(N) 

P-test/P-Strut and Tie, 

1 3.05 498 368 1.35 

2 2.61 767 356 2.15 

3 3.05 449 128 3.51 

4 2.17 889 388 2.29 

5 2.61 586 164 3.57 

6 2.17 662 260 2.55 

7 3.05 609 412 1.48 

8 2.61 782 496 1.58 

9 3.05 484 176 2.75 

10 2.61 781 228 3.43 

11 2.17 1024 428 2.39 

12 2.17 1189 256 4.64 

Average 2.64 

C.O.V. = 0.38 

Example calculation 

It is assumed that along the anchorage length overhanging the support bond is not 

affected by the stirrups, since none are present along this length. Therefore the following 

equation is assumed to apply: 

fd 
9 = O.6kk2k3k4_!_ 

(5.9) 

where k1 is the bar location factor, k2 is the coating factor, k3 is the concrete density 

factor, k4 is the bar size factor. For beam 1, with k1 = k2= k3= k4= 1.0 based on Clause 
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12.2.3, f = 433 MPa, db = 25.2 mm, and PC = 28.9 MPa, 'd = 1220 mm. The length of 

reinforcement to the inside face of the support is: 

= +W1 (5.10) 

which is equal to 400 mm, where oh is the overhang length and is equal to 300 mm, w1 is 

the support plate width and equals 100 mm. Therefore the maximum allowable tension in 

the reinforcement at the inside face of the support is: 

(5.11) 
T 

where T = 1083 kN based on an f = 433 and an A = 2500 mm'. This equation gives 

T = 355 kN. The depth of the compression block is based on the following equation: 

F6 

0.85b f0' (5.12) 

where F6 is the force in the tension tie near the midspan. The critical forces using this 

model were F2, which was the force in the tension tie near the support and was limited by 

the anchorage force that could be developed and F4, which was the force in the vertical 

tension tie and was limited by the maximum force that could be developed in the vertical 

tension tie based on the number of stirrups. For beam 1 there were 5 stirrups giving a 

maximum force of approximately 153 kN based on yielding of the stirrups. The force in 

the compressive strut (F1) nearest the support was not critical in these cases due to the 

restrictive development equation. For beam 1, the maximum beam strength occurred 

when 01 = 30.0°. This gave F4 = 147 kN and F2 = 355 kN which satisfied the limits of 153 

kN and 355 kN respectively. The other 11 beams were calculated in a similar manner. 
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In Figure 5.29, it can be seen that the predictions given by this strut-and-tie model 

showed a slight increase in strength for decreasing aid ratios. The predictions for the high 

strength concrete beams were only slightly higher in general than the normal strength 

concrete beams due to a faster rate of force development in the longitudinal reinforcement. 

The predictions for beams with short overhangs were very conservative because these 

beams were largely affected by the restrictive CSA development equation. 

5.4.3.2 CSA Strut-and-Tie Method without Development Length Equation 

If the development length equation for the longitudinal reinforcement was ignored 

and full anchorage capability were assumed, the predicted values improved substantially. 

The following table gives the predictions using this strut-and-tie model. 
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Table 5.10 CSA Strut-and-Tie Method Predictions 
without Development Length Equation 

Beam aid P-test 
(kN) 

P-Strut-and-Tie2 
(kN) 

P-test/P-Strut-and-Tie2 

1 3.05 498 420 1.19 

2 2.61 767 468 1.64 

3 3.05 449 420 1.07 

4 2.17 889 516 1.72 

5 2.61 586 468 1.25 

6 2.17 662 584 1.13 

7 3.05 609 716 0.85 

8 2.61 782 808 0.97 

9 3.05 484 672 0.72 

10 2.61 781 804 0.97 

11 2.17 1024 1000 1.02 

12 2.17 1189 996 1.19 

Average= 1.14 

CON. = 0.26 

This improved results from an average P-test/P-Strut-and-Tie2 of 2.64 to 1.14 and 

a C.O.V. from 0.38 to 0.26. For beams I to 10, the critical factors were the force in the 

vertical tension tie and the force in the compressive strut (F1). The maximum predicted 

strengths for these beams occurred when both F1 and F4 were at their limit. For beams 11 

and 12 the predicted beam strength was limited by the maximum force in F6, based on the 

yield force in the longitudinal reinforcement 

From Figure 5.30, it can be seen that the increase in strength with decreasing a/d 
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ratios was very well reflected in strut-and-tie method 2 after the restrictive development 

equation was removed. The general increase in strength with increasing P, was also 

reflected using this model. As a consequence of removing the development equation 

restriction, the effect of a change in anchorage length was not reflected in this model. 

5.43.3 CSA Strut-and-Tie Method without Develop Length Equation and f 
Restriction 

By removing the f restriction and the development length equation and adding a 

limiting compressive stress of O.6•f' for compressive struts, the following results were 

obtained. 
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Table 5.11 CSA Strut-and-Tie Method Predictions without 
Development Equation and f Restriction 

Beam aid P-test 
(kN) 

P-Strut-and-Tie3 
(kN) 

P-test/P-Strut-and-Tie3 

1 3.05 498 592 0.84 

2 2.61 767 660 1.16 

3 3.05 449 592 0.76 

4 2.17 889 728 1.22 

5 2061 586 660 0.89 

6 2.17 662 828 0.8 

7 3.05 609 696 0.88 

8 2.61 782 820 0.95 

9 3.05 484 696 0.7 

10 

- 

2.61 781 820 0.95 

11 2.17 1024 1000 1.02 

12 2.17 1189 996 1.19 

Average = 0.95 

C.O.Y.= 0.18 

This gives many unconservative results but the average P-test/P-Strut-and-Tie3 

was 0.95 and the C.O.V. was 0.18. From Figure 5.3 1, it can be seen that the results are 

very good and match the trend of shear strength variation as it increases with decreasing 

a/d ratios. The compressive strength was also reflected in this model as it predicted higher 

shear strengths for beams with higher concrete compressive strengths. 

Using the strut-and-tie model, one can account for the a/d ratios, anchorage 

lengths and concrete strengths. However the development equation and f  equation are 
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very restrictive and reduce the effectiveness of the model significantly. 

5.5 AC! Predictions 

5.5.1 AC! Predictions using Equations 2.19 and 2.21 

This method refers to the calculation of shear strength based on the addition of the 

simplest V. and V8 terms for the beams with an a/d ratio of 3.05 where Qd >5. The other 

8 beams required special provisions since they were considered to be deep flexural 

members by the ACI code. The results of this method's predictions, are shown in Table 

5.12. 
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Table 5.12 ACI Predictions using Equation 2.19 and 2.21 

Beam a/d P- 
test 
(kN) 

P-Method 1 
(kN) 

P-test/P-Method 1 

1 3.05 498 362.6 1.37 

3 3.05 449 362.6 1.24 

7 3.05 609 483.4 1.26 

9 3.05 484 483.4 1.00 

Average = 1.22 

CON. = 0.13 

Method 1 gave good results with an average P-test/P-Method 1 of 1.22 with a 

C.O.V. of 0.13. 

Fxnmple calculation 

For beam 1, V. was calculated using: 

v = ..ft7bd/6 

and was equal to 110.9 kN based on an = 28.9 MPa, bw = 360 mm, and d = 345 mm. 

V was calculated using: 

V , A, f 7  d 

and was equal to 70.4 kN based on A = 50.7 mm', f =600 MPa, s = 150 mm. Using: 

vu = V0 + V11 

V = 181.3 kN. The other 3 beams were calculated in a similar manner. The theoretical 

moment capacities were not critical in these calculations. 

This method did not take into account the a/d ratio or overhang length. However, 
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only one aid ratio was analyzed using this model. There are essentially 2 predicted values 

of shear strength based on the normal and high strength concrete strengths. The V term is 

identical for each beam since the spacing and size of the stirrups are constant for all 12 test 

beams. In general, increases in beam strength are observed due to decreases in a/d ratio 

which do not appear to be reflected in this model. However, this model seemed 

appropriate for longer span beams. 

5.5.2 ACI Predictions using AC! Equations 2.20 and 2.21 

This method is used when L, >5 and is an alternative to method 1 involving a more 

complicated V. term. The results are shown below in Table 5.13. The other 8 beams 

were considered to have deep shear spans and were analyzed differently. 

Table 5.13 AC! Predictions using Equations 2.20 and 2.21 

Beam a/d P-test 
(kN) 

P-Method 2 
(kN) 

P-test/P-Method 2 

1 3.05 498 301.6 1.65 

3 3.05 449 301.6 1.49 

7 3.05 609 422.4 1.44 

9 3.05 484 422.4 1.15 

Average = 1.43 

C.O.V. = 0.15 

This method gave conservative results with an average P-test/P-Method 2 of 1.43 

with a C.O.V. of 0.15. The V, term was more complicated and has been found to be 

suspect (American Concrete Institute, 1992), but seemed to give reasonable although 



90 

somewhat conservative results. 

Example calculation 

For beam 1, V, was calculated using: 

V 

I. (i + 120 Mf bd/7 

and was equal to 148.4 kN based on an f' = 28.9 MPa, p =0.020, bw = 360 mm, 

d = 345 mm and VtdlMf equal to I at the critical section. V was equal to 70.4 kN based 

on A, = 50.7 mm2, f = 600 MPa, s = 150 mm. Therefore V = 218.8 kN. The other 3 

beams were calculated in a similar manner. The theoretical moment capacities were not 

critical in these calculations. 

This method did not take into account the a/d ratio or overhang length. However, 

this model was applied to only one a/d ratio. Although the a/d ratio is included indirectly 

in the M/(Vd) term in the V equation, this term is limited to a value of one for these test 

beams (Clause 12.8.5). There are essentially 2 predicted values of shear strength based on 

the normal and high strength concrete strengths. The V,, term is identical for each beam 

since the stirrup size and spacing are constant. 

5.5.3 AC! Predictions using Equation 2.25 

This method applies when 2 ≤ Q ≤ 5 and involved using the simple V. equation 

which accounts for the beam span. The results of this model's predictions are shown in 

Table 5.14 for beams with a/d ratios of 2.61 and 2.17. 
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Table 5.14 AC! Predictions using Equation 2.25 

Beam aid P-test 
(kN) 

P-Method 3 
(kN) 

P-testlP-Method3 

2 2.61 767 759.7 1.01 

4 2.17 889 905.3 0.98 

5 2.61 586 791.0 0.74 

6 2.17 662 966.3 0.69 

8 2.61 782 814.4 0.96 

10 2.61 781 816.1 0.96 

11 2.17 1024 989.1 1.04 

12 2.17 1189 985.9 1.21 

Average = 0.95 

CON. = 0.17 

Example calculation 

The shear strengths of the beams were calculated using the following equation for 

V: 

= 1 10 + 
njj bd 

For beam 2, V, = 564 kN using an = 1700 mm, bv = 360 mm, d = 345 mm, and 

= 30.2 MPa. The other beams were calculated in a similar manner. However, all the 

predicted values were based on moment failure due to the high predictions by Method 3 

based on the V equation. 

This method gave unconservative predictions with an average P-test/P-Method 3 

of 0.95 and a C.O.V. of 0.17. By observing the equation for V, it can be seen that the 
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predicted shear strength decreases with a decreasing beam span (Figure 5.32) which was 

not the case in the beam tests, nor in general as seen in Table N11.1.2.(b) of the CPCA 

Concrete Design Handbook. The predicted beam strength based on shear failure was less 

for beams 11 and 12 than for beams 8 and 10 which is not correct. It should be noted that 

these beams did not satisfy the ACI code minimum reinforcement requirements. The 

predicted values would have most likely been even more conservative with the required 

amount of reinforcement. 

5.5.4 AC! Predictions using Equations 2.26 and 2.29 

This method is an alternate to the previous method and applies when 2 ≤ 5. It 

was applied to beams with a/d ratios of 2.61 and 2.17. The results of this methods 

prediction are shown below in Table 5.15. 
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Table 5.15 AC! Predictions using Equations 2.26 and 2.29 

Beam P-test 
(kN) 

P-Method 4 
(kN) 

P-test/P-Method 4 

2 767 296.2 2.59 

4 889 281.2 3.16 

5 586 296.0 1.98 

6 662 298.4 2.22 

8 782 412.2 1.90 

10 781 412.1 1.90 

11 1024 402.0 2.55 

12 1189 402.0 2.96 

Average = 2.41 

C.O.V. = 0.20 

This method gave very conservative results with an average P-test/P-Method 4 of 

2.41 with a C.O.V. of 0.2. 

The beam strengths were calculated by adding V, and V. The following equation 

for V, was used: 

V. = /bdI6 

Example calculation 

For beam 2 this gives a V, = 113.3 kN using an P, of 30.2 MPa, bw = 360 mm and 

d = 345 mm. V. was calculated from: 

1 + Q./d) + A,h(  11 - P./d)  1 fd 

12 ) 92 ( 12 
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giving V=34.8 kN for i20= l700 mm, d=345,s= l5O turn and f =600MPa. This 

resulted in a V of 148.1 kN. The other 7 beams were calculated in a similar manner. The 

theoretical moment capacities were not critical in these calculations. 

This V equation did not take the aid ratio into account (Figure 5.33). The V 

equation has a term to account for the clear span Q, but V decreases with a decrease in 

beam span which is the opposite of what was expected. Neither equation accounted for 

anchorage length in calculating shear strength but an increase in strength was predicted for 

increasing f's. 

It should be noted that these beams did not satisfy the ACI code minimum 

reinforcement requirements. The predicted values would have most likely been even more 

conservative with the required amount of reinforeement. 

5.5.5. AC! Predictions using Equations 2.27 and 2.29 

This method applies when 2 ≤ 9. ≤ 5 and is an alternative to the 2 previous 

methods. It involved using a more complicated V, term and a V term in calculating the 

shear strength. This method was applied to beams with aid ratios of 2.61 and 2.17 and the 

results are given in Table 5.16. 
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Table 5.16 ACI Predictions using Equations 2.27 and 2.29 

Beam P-test 
(kN) 

P-Method 5 
(kN) 

P-test/P-Method 5 

2 767 371.2 2.07 

4 889 356.2 2.50 

5 586 370.8 1.58 

6 662 372.8 1.78 

8 782 481.2 1.63 

10 781 481.2 1.62 

11 1024 471.0 2.17 

12 1189 471.0 2.52 

Average = 1.98 

C.O.V. = 0.20 

This method gave conservative results with an average P-test/P-Method 5 of 1.98 

with a C.O.V. of 0.20. 

F.x2mple calculation 

The V as mentioned previously has been found to be suspect and is given as: 

M V 
V VF + 120 p !d b 4/7 

0 W 

r d) 

For beam 2, V = 150.8 kN with V. = 28.6 MPa, p,, = 0.020 and M/Vd limited to one. 

Vs was calculated from: 

V, = 1 + ç/d " A4 11 - j 1 f7d 

12 ) p2" 12 ) 
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and gave a V of 34.8 kN using A.,= 50.7 mm', s ='150 mm, = 1700 mm, A = 0, 

= 600 MPa and d = 345 mm. Therefore V = 185.6 kN. For a beam subjected to a 

point load, the V term does not take the a/d ratio into account since M/Vd is limited to 

one. The V5 term accounts for 4,, but tends to predict the opposite to what happened in 

the tests. For a decreasing Q term, the AC! code predicts a decreasing V. term which is 

not as expected. The model does account for f' in its V equation, but does not account 

for anchorage length as shown in Figure 5.34. The theoretical moment capacities were 

not critical in these calculations. 

It should be noted that the tests beams do not satisfy the AC! code requirements. 

This would have resulted in even more conservative predictions had they been reinforced 

as required. 



97 

Figure 5.1: Beam 1 after failure, aid = 3.05 

Figure 5.2: Beam 2 after failure, aid = 2.61 
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Figure 5.3: Beam 3 after failure, aid = 3.05 

Figure 5.4: Beam 4 after failure, aid = 2.17 
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Figure 5.5: Beam 5 after failure, aid = 2.61 

Figure 5.6: Beam 6 after failure, aid = 2.17 
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Figure 5.7: Beam 7 after failure, aid = 3.05 

Figure 5.8: Beam 8 after failure, aid = 2.61 
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Figure 5.9: Beam 9 after failure, aid = 3.05 

Figure 5.10: Beam 10 after failure, aid = 2.61 
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Figure 5.11: Beam 11 after failure, aid = 2.17 

Figure 5.12: Beam 12 after failure, aid = 2.17 
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Failure load vs. aid ratio 
for 12 test beams 
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Figure 5.13: Failure load versus a/d ratio 
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Beam strength vs. aid ratio 
Shear Friction - Normal Strength 

1200 

.1Ooo - 

800-

600— 

E 400— 
Ca - 

m 200-

I I I 0 I. I I I 

2 2.2 2.4 2.6 2.8 3 3.2 
aid ratio 

Long overhang - test -'- Short overhang - test 
Long overhang - predicted --•- Short overhang - predicted 

Beam strength vs. a/d ratio 
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Figure 5.14: Beam strength vs. aid ratio - shear friction 
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Stress vs. Strain of Stirrup 
Diameter = 5.68 mm 
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Figure 5.17: Stress-strain curve for stirrup 
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Load vs. Strain 
Beam 6: Outer stirrup, leg 1 
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Figure 5.18: Strains in stirrups for beam 6 (outer stirrup) 
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Load vs. Strain 

Beam 6: middle stirrup, leg 1 
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Figure 5.19: Strains in stirrups for beam 6 (middle stirrup) 
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Load vs. Strain 

Beam 6: inner stirrup, leg I 
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Figure 5.20: Strains in stirrups for beam 6 (inner stirrup) 
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Stress vs. Strain 

Longitudinal reinforcement 

700 

600 -

500-
CL 
2 400 

01 300 

co 200 

100 : 

0   

0 0.05 0.1 0.15 0.2 
Strain 

Figure 5.21: Stress-strain curve for longitudinal reinforcement 
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Load vs. Strain 
Beam 6: Gauge near support (outer bar) 
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Figure 5.22: Strains in longitudinal reinforcement for beam 6 (near support) 
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Load vs. Strain 
Beam 6: Gauge at midspan (outer bar) 
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Figure 5.23: Strains in longitudinal reinforcement for beam 6 (at midspan) 
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Beam strength vs. aid ratio 
Extended Shear Friction-Norm. Strength 
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Figure 5.25: Beam strength vs. a/d ratio - extended shear friction 
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Beam strength vs. aid ratio 
Simplified Method - Normal Strength 
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- Figure 5.26: Beam strength vs. aid ratio - CSA A23.3-94 simplified method 
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Beam strength vs. aid ratio 
General Method - Normal Strength 
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Figure 5.27: Beam strength vs. a/d ratio - CSA A23.3-94 general method 
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Figure 5.28: Strut-and-tie model of test beam 
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Beam strength vs. aid ratio 
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Figure 5.29: Beam strength vs. a/d ratio - strut-and-tie using code equations 
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Beam strength vs. aid ratio 
Strut-&-Tie Method 2- Normal Strength 
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Figure 5.30: Beam strength vs. a/d ratio - strut-and-tie without development eqn. 
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Beam strength vs. aid ratio 

Strut&Tle Method 3 - Normal Strength 
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Beam strength vs. aid ratio 
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Figure 5.31: Beam strength vs. a/d ratio - strut-and-lie without f2max restriction 
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Beam strength vs. aid ratio 
ACI Method 3- Normal Strength 
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Figure 5.32: Beam strength vs. aid ratio - AC! method using Eqn. 2.25 
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Beam strength vs. aid ratio 
ACI Method 4 - Normal Strength 
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Beam strength vs. aid ratio 
ACI Method 5 - Normal Strength 
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Figure 5.34: Beam strength vs. aid ratio - ACI method using Eqn. 2.27 
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6. CONCLUSIONS 

The following conclusions were made based on the analyses of test results by Kani, 

Clark, Sarsam and Al-Musawi as well as from the 12 beams tested. 

1. Longer end anchorages, higher concrete compressive strengths, and shorter a/d 

ratios usually resulted in a stronger beam. 

2. The stirrup diameter of 5.68 mm and spacing of 150 mm satisfied crack width 

limitations according to CSA A23.3-94 under service loads and assuming interior 

exposure, based on the crack widths at 60% of the predicted failure loads by the 

CSA A23.3-94 simplified method. The crack widths also satisfied crack width 

limitations based on the predicted loads given by the general and strut-and-tie 

methods as well as all ACI methods except for the ACI method based on equation 

2.25. 

3. The strut-and-tie model contains very restrictive equations for f2 and e, but 

potentially is a good model since it can take f, a/d ratio and anchorage length-into 

account which appear to be important factors in determining shear strength. 

4 The CSA A23.3-94 standard contains restrictive development length equations. 

The rate of force development in the longitudinal reinforcement of the test beams 

was higher than that based on the equations in the CSA A23.3-94 standard. 

5. The shear friction model accounts for a/d ratio, end anchorage, concrete 

compressive strength, reinforcement ratio, stirrup size and spacing when 

calculating the shear strength of the test beams. 

6. Based on the coefficient of variation for the predictions using the various models, 
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the shear friction, simplified and general method all gave similar predictions. The 

predictions using the strut-and-tie were not as good as these other methods based 

on the coefficient of variation and on the average P-test/P-predicted. The shear 

friction method had the lowest average of P-test/P-predicted equal to 1.24. 

7. Based on the coefficient of variation for test beams 1, 3,7 and 9 (aId = 3.05), the 

shear friction model gave slightly better predictions with a CON. of 0.10 than 

the corresponding AC! methods. For the remaining beams, the shear friction 

model gave similar predictions to those based on the corresponding AC! methods. 
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7. RECOMMENDATIONS 

7.1 Current Codes 

It is recommended that the f and el equations used in the strut-and-tie model 

and general method be investigated further. The CSA development equation for 

longitudinal reinforcement should be investigated further as it seems to be too 

conservative. 

7.2 Future Research 

The following research is recommended: 

1. Further investigation using the shear friction model on beams is suggested to 

determine its range of applicability. 

2. Different types of beams should be tested including continuous, cantilever, 

prestressed and T-beams with point loads and distributed loads. Beams with a 

large range of reinforcement ratios, a/d ratios, stirrup spacings and sizes should be 

tested. 

3. The model should be improved by determining the effects of compression zone 

reinforcement 

4. More investigation is needed into the distribution of normal and shear stresses 

along the inclined plane, the length of contact providing shear friction, and the 

development of forces in the longitudinal reinforcement and stirrups. 

5. Beams with concrete strengths greater than 80 MPa should be tested with 

different aggregate sizes and shapes. 
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