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Abstract

In this paper, monotone Boolean functions are studied using harmonic analysis on the cube.
The main result is that any monotone Boolean function has most of its power spectrum on its
Fourier coe�cients of \degree" at mostO(

p
n) under any product distribution. This is similar to

a result of Linial, Mansour, and Nisan [LMN93] which showed that AC0 functions have almost
all of its power spectrum on the coe�cients of degree at most (logn)O(1) under the uniform
distribution. As a consequence of the main result the following two corollaries are obtained:

� For any � > 0, monotone Boolean functions are PAC learnable with error � under product

distributions in time 2
~O( 1

�

p
n).

� Any monotone Boolean function can be approximated within error � under product dis-

tributions by a non-monotone Boolean circuit of size 2
~O( 1

�

p
n) and depth ~O(1

�

p
n).

The learning algorithm runs in time subexponential as long as the required error is 
(1=(
p
n logn)).

It is shown that this is tight in the sense that for any subexponential time algorithm there is a
monotone Boolean function for which this algorithm cannot approximate with error better than
~O(1=

p
n).

The main result is also applied to other problems in learning and complexity theory. In learn-
ing theory, several polynomial-time algorithms for learning some classes of monotone Boolean
functions, such as Boolean functions with O(log2 n= log logn) relevant variables, are presented.
In complexity theory, some questions regarding monotone NP-complete problems are addressed.
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1 Introduction

In recent years, harmonic analysis on the cube or the discrete Fourier transform of Boolean functions

has emerged as one of the most versatile tools in theoretical computer science. It has found various

applications in areas such as circuit complexity [KKL88, BS92], computational learning theory

[LMN93, FJS91, KM91, AM91, B92, M92, BFJ+, J94], cryptography [CKM93], and others.

Although harmonic analysis on the cube was originally introduced by Kahn, Kalai, and Linial

[KKL88] for the purpose of studying the \in
uence" of variables on Boolean functions, the �rst

paper which introduced the Fourier transform to learning theory was the beautiful paper of Linial,

Mansour, and Nisan [LMN93]. In the latter paper, they proved that AC0 functions have almost all

of its power spectrum on the Fourier coe�cients of Hamming weight (logn)O(1). This result led to

the PAC-learnability ofAC0 functions in time npoly(log n) under the uniform distribution. The impact

of the Fourier transform on learning theory cannot be underestimated judging from the sequence

of papers that followed the paper [LMN93]. This technique alone has made some outstanding

results possible in recent years culminating in Jackson's result [J94] on the PAC learnability of

DNF formulas under the uniform distribution with membership queries.

In this paper, we study monotone Boolean functions using harmonic analysis on the cube. Our

main result is that any monotone Boolean function has most of its power spectrum on its Fourier

coe�cients of degree at most O(
p
n) under any product distribution. Based on our main result we

derive two important implications in learning theory and circuit complexity.

� Given any � > 0, the class of monotone Boolean functions is PAC learnable with error � under

product distributions in time 2
~O( 1

�

p
n).

� Given any � > 0 and any monotone Boolean function f , there exists a non-monotone Boolean

circuit of size 2
~O( 1

�

p
n) and depth ~O(1

�

p
n) that approximates f with error � under product

distributions.

The time complexity of our learning algorithm is subexponential as long as � = 
(1=(
p
n log n)).

We will show that this is the best possible error rate for any subexponential time learning algorithm.

To the best of our knowledge, the above learning result is the �rst subexponential PAC learning

algorithm for monotone Boolean functions (even for monotone Boolean functions which require an

exponential circuit size) and the second result is the the �rst approximation result for monotone

Boolean functions using non-monotone Boolean circuit of subexponential size and sublinear depth.

We also introduce and study a new measure of complexity for probability distributions called

the convex dimension of a distribution. We prove that if a concept class is approximable under a

collection of distributions then it is also approximable under any distribution that belongs to the

convex combination of that collection. The convex dimension cdim(D) of a distribution D is the

minimal number of product distributions such that D is in their convex combination. We note that

our previous results hold also for any distribution D modulo a complexity factor of cdim(D) and

in particular, our algorithm is subexponential for any distribution D with a subexponential convex

dimension.

Further applications of the main result include some improvements on two e�cient, i.e., polyno-

mial time, learning algorithms for monotone Boolean functions. Kearns and Valiant [KV89] proved

that any monotone Boolean function is e�ciently weakly PAC learnable with error 1
2
� 1

2n
under

the uniform distribution. We improve their result by showing that there is an e�cient weak PAC

learning algorithm under the uniform distribution with error 1
2
�
( log

2 n

n
). Our result is based on

a direct application of a result due to Kahn, Kalai, and Linial [KKL88]. Furthermore, under any
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product distribution, we show that there is an e�cient weak PAC learning algorithm with error
1
2
� c

n
, for any constant c.

Our second improvement is on Sakai and Maruoka's [SM94] PAC learnability result of monotone

O(logn)-term DNF under the uniform distribution. We improve their result in two ways. First,

we prove that their result extends to any constant-bounded product distribution, and second, we

give an extension to a more general concept class. In particular, let A(k) be the class of Boolean

functions of the form f(T1; : : : ; Tk) where f is a monotone Boolean function on k inputs and each

Ti is a monotone conjunction or disjunction. Our other results state that there are polynomial time

PAC learning algorithms for A(logn), for A(O(log2 n=(log logn)3)), and for monotone Boolean

functions that depend on O(log
2
n= log logn) relevant variables (the last two results require the

error � to be constant).

Finally we apply our results to monotone graph properties. We show that there is a Boolean

circuit of size 2
~O(n

�

p
r(n)) and depth ~O(n

�

p
r(n)) that approximates within error � any monotone

graph property with a threshold function of r(n). For example, there is a Boolean circuit of size

nO( 1
�

p
logn) that approximates to within error � the Hamiltonian property on random graphs G(n; p),

for any p. We also discuss the connection of this work with a related result [BFF87].

All of the algorithms considered in this papers fall in the category of a statistical query algorithm,

and hence, by the result of Kearns [K93], are noise-tolerant.

The paper is organized as follows: Section 2 is devoted to a description of the learning models

considered in this paper. Section 3 describes notations and the basic theory of the Fourier transform

for Boolean functions. It also contains some basic facts that will be required in proving some of

the later results. In Section 4, we prove our main spectral characterization of Boolean functions

that is based on in
uence and the average sensitivity. The next section, Sections 5, is devoted to

learning monotone Boolean functions. This section also contains some lower bound results that

shows near optimality of the learning results. Section 6 describes the application of the main

result to the circuit approximation of monotone Boolean functions whereas Section 7 considers the

approximation of monotone graph properties. Finally, Section 8 discusses applications of the main

result in deriving some e�cient learning algorithms.

2 The Learning Model

The learning model considered in this paper is the Probably Approximately Correct (PAC) learning

model introduced by Valiant [V84] and its weak variant introduced by Kearns and Valiant [KV89].

Let Cn be a class of Boolean functions over n variables, let D be a probability distribution over

f0; 1gn, and let f 2 Cn be a target function. The learning algorithm has access to an example

oracle EX(D; f) which generates random labeled examples (a; f(a)), where a 2 f0; 1gn is drawn

according the distribution D. Given any positive � and �, after observing some random examples,

the learning algorithm must output a hypothesis h that satis�es

Pr[D(h4f) � �] � 1� �;

where h4f = fx : h(x) 6= f(x)g. The above probability is taken with respect to the random

examples seen by the algorithm and some internal randomization in the algorithm. The running

time of the learner will depend on n; 1=�; 1=�, and the size s(f) of f (under some predetermined

representation). If there is such a learning algorithm that succeeds for all f 2 Cn then Cn is PAC

learnable under distribution D. We sometimes refer to such a learning algorithm as an (�; �) PAC

learning algorithm. We say that Cn is weakly PAC learnable under distribution D if there is a �xed

polynomial p and a learning algorithm that succeeds for an error � = 1
2
� 1

p(n;s(f))
.
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3 Preliminaries

In this section we review some notation and some standard facts about the discrete Fourier trans-

form of Boolean functions.

When we write log we mean log2. We will use the shorthand [n] for the set f1; 2; : : : ; ng and

the Iversonian I [statement] to mean 1 if the statement is true and 0 otherwise. For a 2 f0; 1gn, let
ai denote the i-th bit of a. The vector ei 2 f0; 1gn denotes the vector with all zeros except for the

i-th bit which is 1. The Hamming weight of a, i.e. the number of ones in a, is denoted by jaj.
Let f : f0; 1gn ! f�1;+1g be a Boolean function. Let D be a product distribution over

f0; 1gn with Pr[xi = 1] = �i. Thus for a 2 f0; 1gn we have the distribution of a is D(a) =Q
ai=1 �i

Q
ai=0(1 � �i). The distribution D is called constant bounded if there exists a constant

c 2 (0; 1) independent of n such that for all i we have �i 2 [c; 1� c]. The standard deviation of xi
is de�ned as

�i =
q
�i(1� �i):

The in
uence of variable xi on f (see [KKL88, HM91]) over a product distribution D is de�ned

as the probability that f(x) di�ers from f(x � ei) when x is chosen according to D. Here x � ei
means x with its i-th bit 
ipped. We will use the notation ID;i(f) to denote the above probability.

Often we will use the restriction notation of functions, f0 = f jxi 0 and f1 = f jxi 1. With this

notation we have that for any Boolean function f

ID;i(f) = ED[I [f(x) 6= f(x� ei)]] =
1

2
ED[jf1 � f0j] =

1

4
ED[(f1 � f0)

2]:

If f is a monotone Boolean function, i.e., f0 � f1 always, then this simpli�es to

ID;i(f) =
1

2
ED[f1 � f0]:

To facilitate stating some of our results we introduce the following notion of in
uence norm ID(f)

of f with respect to a product distribution D:

ID(f) =

vuut nX
i=1

(2�iID;i(f))2:

The sensitivity of f at a point a 2 f0; 1gn, denoted by sa(f), is de�ned as the number of

neighbors of a (in the standard n-cube ordering) whose f -values di�er from f(a). More formally,

sa(f) = jfi 2 [n] : f(a� ei) 6= f(a)gj =
nX
i=1

I [f(a) 6= f(a� ei)]:

The average sensitivity of f with respect to a product distribution D, denoted sD(f), is de�ned as

sD(f) = ED[sx(f)]:

It is well-known that the average sensitivity is equivalent to the sum of the in
uences, as seen from

the following simple derivation:

sD(f) = ED[sx(f)] =
nX
i=1

ED[I [f(x) 6= f(x� ei)]] =
nX
i=1

ID;i(f):
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The Fourier transform of Boolean functions over product distribution is de�ned as follows (see

[FJS91]). First we de�ne the inner product over the 2n-dimensional vector space of all real-valued

functions over f0; 1gn as follows:
(f; g)D =

X
x

D(x)f(x)g(x) = ED[fg]:

Now let zi(x) = (�i � xi)=�i. Note that zi has mean zero and variance one (i.e. it is standard

normal). Next we de�ne the basis function

�a(x) =
Y
ai=1

zi(x):

These basis functions satisfy the following properties.

1. decomposable : �ab(xy) = �a(x)�b(y), where xy is the concatenation of strings x and y

(possibly of di�erent lengths).

2. orthonormal :

(�a; �b)D =

(
1 if a 6= b

0 otherwise

Given the orthonormality of these �a's we get the Fourier representation of any Boolean function

f as

f =
X
a

~f (a)�a;

where ~f (a) = (f; �a)D = ED[f�a]. Also because of orthonormality we have Parseval's equation:

1 = ED[f
2] =

X
a

~f2(a):

Finally note ~f(0n) = ED[f ], where 0n is the n-bit all-zero vector.

For the case of D being the uniform distribution, the following notations are used: �a in place

of �a and f̂ (a) in place of ~f(a). Note that in this case, �i = �i = 1=2, for all i 2 [n].

In most cases we will appeal to the following version of Cherno�-Hoe�ding bounds (see [HR89,

M95]).

Theorem 3.1 (Cherno�-Hoe�ding bounds)

Let x1; : : : ; xm be independent identically distributed random variables with E[xi] = p, jxij � B,

and let sm = x1 + : : :+ xm. Then

m � 2B2

�2
ln

2

�
implies Pr

�����smm � p

���� > �

�
� �:

4 Spectral Lemmas

We are now ready to a lemma which relates the in
uence and the Fourier transform of Boolean

functions. The next lemma is a folklore result whose proof we include for completeness.

Lemma 1 For any Boolean function f , for any product distribution D and for any i 2 [n],

4�2
i ID;i(f) =

X
a:ai=1

~f2(a):
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Proof Without loss of generality, let i = 1. First recall that ID;1(f) =
1
4
ED[(f0 � f1)

2]. Applying

Parseval to the right hand side gives

ID;1(f) =
1

4

X
b2f0;1gn�1

g(f0 � f1)
2

(b) =
1

4

X
b2f0;1gn�1

( ~f0(b)� ~f1(b))
2:

We now �nd some relation for ~f0 and ~f1. Recall that

f(x) =
X
a

~f(a)�a(x) =
X
0b

~f(0b)�b(y) +
X
1b

~f(1b)�b(y)
�1� x1

�1
:

The last step uses the decomposable property of �a. From this we will get

f0 � f jx1 0 =
X
b

�
~f(0b) +

�1

�1
~f(1b)

�
�b(y);

and

f1 � f jx1 1 =
X
b

�
~f(0b)� (1� �1)

�1
~f(1b)

�
�b(y):

This implies

~f0(b) = ~f(0b) +
�1

�1
~f(1b); and ~f1(b) = ~f (0b)� (1� �1)

�1
~f(1b):

So continuing with ID;1(f).

ID;1(f) =
1

4

X
b

( ~f0(b)� ~f1(b))
2

=
1

4

X
b

�
~f(0b) +

�1

�1
~f(1b)� ~f (0b)+

(1� �1)

�1
~f(1b)

�2

=
1

4

X
b

�
�1 + (1� �1)

�1

�2

~f2(1b) =
X
b

 
~f(1b)

2�1

!2

:

2

The following de�nition extends the de�nition of Hamming weight of a Boolean vector to the case

of product distributions.

De�nition 1 (Hamming weight)

Let D be a product distribution. We de�ne the weight of a 2 f0; 1gn under D to be

jjajjD = log
Y
ai=1

1

�i
:

Note that jjajjD � jaj for any product distribution, and equality is attained precisely when D is the

uniform distribution. When the context is clear we will drop the subscript D from jjajjD and just

write jjajj.
Theorem 4.1 (Main Theorem)

For any product distribution D, for any Boolean function f , for all positive integer k,

X
jjajj�k

~f2(a) � 2

k
ID(f)

vuut nX
i=1

�
�i log

1

�i

�2

� 1:062

p
n

k
ID(f):
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Proof Note that from Lemma 1

nX
i=1

4�2
i ID;i(f) log �

�1
i =

nX
i=1

X
a:ai=1

log ��1i
~f2(a)

=
X

a2f0;1gn
~f2(a)

X
i:ai=1

log ��1i

=
X

a2f0;1gn
jjajj ~f2(a):

Recall that the Cauchy-Schwartz inequality is

 
nX
i=1

aibi

!2

�
 

nX
i=1

a2i

! 
nX
i=1

b2i

!
:

Now we let ai = 2�iID;i(f) and bi = 2�i log �
�1
i to get

ID(f)
2 =

nX
i=1

4�2
i ID;i(f)

2

�
�Pn

i=1 4�
2
i ID;i(f) log�

�1
i

�2
4
Pn

i=1

�
�i log �

�1
i

�2 ; by Cauchy-Schwartz

=
1

4
Pn

i=1

�
�i log �

�1
i

�2
 X

a

jjajj ~f2(a)
!2

� 1

4
Pn

i=1

�
�i log �

�1
i

�2
0
@k X

jjajj�k

~f2(a)

1
A

2

for any positive integer k, which proves the �rst inequality. The second inequality can be seen

using simple calculus since (x log x�1)
2 � e�2 log2 e � 0:2817, for all x 2 [0; 1=2] (simply note that

2
p
0:2817 = 1:062). 2

An alternative way of viewing and deriving the above result is via the notion of average sensi-

tivity. On occassion we will drop the subscript D from sD(f) when the product distribution D is

clear from context.

Theorem 4.2 (Alternative Main Theorem)

For any Boolean function f and any product distribution DX
a

f ~f(a)2 : jjajjD � (6=5)sD(f)=�g � �:

Proof We start with the identity

X
a

jjajj ~f(a)2 =
X
i

4�i(�i log
1

�i
)ID;i(f);

and use the fact � � 1=2 and x log 1
x
� 3=5 (not the best), for x 2 [0; 1], to get

X
a

jjajj ~f(a)2 � 6

5
s(f)
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(since s(f) =
P

i ID;i(f)). But the left-hand side is bounded from below by k
P

a:jjajj�k ~f(a)2 for

any k. So in particular choose k = 6
5
s(f)=�. 2

The following lemma states a key link between the Fourier spectrum and the in
uences in

monotone Boolean functions.

Lemma 2 For any monotone Boolean function f , for any product distribution D, and for any

i 2 [n]
~f(ei) = �2�iID;i(f):

Proof Let Di be the induced distribution over all the variables except xi. We have the following

derivation.

~f(ei) = ED[f�ei ]

= EDi
Exi [fzi]

= EDi

�
(1� �i)

�i

�i
f0 + �i

�i � 1

�i
f1

�

= EDi

�
�i(1� �i)

�i
(f0 � f1)

�
= �iEDi

[f0 � f1]:

Now recall that for monotone Boolean functions ID;i(f) =
1
2
EDi

[f1 � f0]. 2

5 Learning Monotone Boolean Functions

The main results of this section are a subexponential time PAC learning algorithm for any mono-

tone Boolean function and some nearly matching lower bounds on the error rate and some other

parameters. But �rst we review the connections between Fourier transform and PAC learning that

were �rst given in [LMN93, BFJ+] (see also Mansour's excellent survey [M94]).

Fact 1 (PAC Learning and Fourier Spectrum)

Let D be a product distribution, let f 2 f�1;+1g be a Boolean function, and let A � f0; 1gn be a

set of assignments. The real-valued function g(x) =
P

a2A ~f(a)�a(x) satis�es

Pr
D
[f 6= sgn(g)] � ED[(f � g)2] =

X
a=2A

~f2(a);

where sgn(g)(x) = (�1)I[g(x)<0] returns the sign of g(x).

Given g, the randomized Boolean function h de�ned as (see [BFJ+])

h(x) =

(
�1 with probability p(x)

+1 with probability 1� p(x)

where p(x) = (1�g(x))2
2(1+g2(x))

, satis�es a slightly better error bound

Pr
D
[f 6= h] � 1

2
ED[(f � g)2] =

1

2

X
a=2A

~f2(a):
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Using this fact, Boolean functions can be learned by collecting the Fourier coe�cients ~f(a) for

all a 2 A. This can be done by �nding an approximation ha of ED[f�a] = ~f(a) that satis�es���ha � ~f(a)
��� �q�=(2jAj)

with con�dence 1 � �=jAj, for every a 2 A. Then we de�ne the hypothesis h =
P

a2A ha�a. This
hypothesis will be an approximation of f that satis�es

Pr
D
[f(x) 6= h(x)] �

X
a=2A

~f2(a) +
�

2

with probability at least 1� �. Now if
P

a=2A ~f2(a) � �=2 then the hypothesis h will satisfy

Pr
D
[f(x) 6= h(x)] � �:

To approximate the Fourier coe�cients we use sampling to �nd ED[f�a] for all a 2 A. By the

Cherno�-Hoe�ding bounds (Theorem 3.1), if jf�aj = j�aj � B then we will need a sample of size

at least
4B2jAj

�
ln
jAj
�
: (1)

When A is the set of all assignments of Hamming weight less than or equal to k, the above

algorithm is called the k-lowdegree Fourier algorithm. In this case the number of coe�cients that

the algorithm must estimate is

jAj =
kX
i=0

 
n

i

!
�
�
ne

k

�k
= 2k log(ne=k): (2)

So exp(k log(ne=k)) will dictate the running time of the k-lowdegree Fourier algorithm.

5.1 A Subexponential Time Algorithm

The following theorems will show that monotone Boolean functions are PAC learnable under prod-

uct distributions in subexponential time. For ease of analysis we will assume that the learner knows

the product distribution, i.e., the parameters �i is exactly known, for all i 2 [n]. Later in a separate

subsection we will discuss the case when the learner does not know the distribution and show that

this only incurs a logn blow up in the exponent of the time complexity. Since in most cases, we

deal with k = !(logn), the time complexity is still 2
~O(k).

Theorem 5.1 For any �; � > 0, any monotone Boolean function is PAC learnable under any

product distribution with error � and con�dence 1� � in time

2O( 1
�

p
n log(�

p
n)):

Proof We will use the k-lowdegree Fourier algorithm with

k = 1:062ID(f)

p
n

(�=2)

and with the hypothesis set to h =
P
jjajj�k ha�a. By Theorem 4.1, h is an (�=2)-approximation of

f . Since jjajj � jaj, we have that

fa : jjajj � kg � fa : jaj � kg

9



and hence the k-lowdegree Fourier algorithm only need to collect (estimate) the Fourier coee�cients

of Hamming weight at most k. From the de�nitions of jjajj and �a, if jjajj � k we get that

j�aj =
�����
Y
ai=1

�i � xi

�i

����� = 2jjajj
�����
Y
ai=1

(�i � xi)

����� � 2k;

since j�i � xij � 1. Now by (1),(2) and the above, the algorithm outputs a hypothesis that is an

approximation of f to within error � with sample size and time complexity of

2
O
�p

nID(f)

�
ln

p
n�

ID(f)

�
log

1

�
: (3)

By Lemma 2, we note that ID(f) � 1, for any monotone function f , because

ID(f)
2 =

X
i

(2�iID;i(f))
2 =

X
i

~f(ei)
2 � 1

by Parseval's. Thus we have ID(f) log
1

ID(f)
� 1, and therefore

ID(f) log
�
p
n

ID(f)
= ID(f) log

1

ID(f)
+ ID(f) log(�

p
n) = O(log(�

p
n)):

This analysis proves the time complexity stated in the theorem. 2

Remark. Note that using the above algorithm with subexponential time, the best achievable error

rate is � = 1p
n
. In the next subsection we show that this is the best possible error rate up to a

O(logn) factor.

We can alternatively derive the above theorem using the average sensitivity instead of the

in
uence norm, i.e., apply Theorem 4.2 instead of Theorem 4.1. Note that in this case, sD(f) �
p
n,

for any monotone Boolean function f .

5.2 Learning when the Product Distribution is Unknown

In this subsection we address the issue of learning when the parameters of the product distribution,

i.e., the �i's, are unknown. First we argue that we may ignore all �i's that are less than n�2 or

greater than 1� n�2 since this will add only an additive factor of n�1 to the �nal error. Formally,
let A � f0; 1gn be the set of all good assignments x,i.e., ones that satisfy xi = 0, for all �i < n�2,
and xi = 1, for all �i > 1 � n�2. Note that the probability of an example x being good is at least

1 � n�1. Suppose that h is a hypothesis that approximates the target f quite well on examples

from A. Then

Pr
D
[h(x) 6= f(x)] � Pr[h(x) 6= f(x)jx good] + Pr[x not good] � �+ n�1:

So we may assume that n�2 < �i < 1� n�2, for all i 2 [n].

We will estimate each �i up to an error of M�(logn+4) (using Cherno�-Hoe�ding bounds this

takes only poly(M logn) time), where, setting k = O(
p
n=�),

M = 2k = 2O(
p
n=�):

We will consider three quantities

hA =
X
a2S

ED[f�
0
a]�
0
a; hB =

X
a2S

ED0 [f�0a]�
0
a; hC =

X
a2R

ED[f�a]�a;

10



where D0 is the estimated distribution (using the estimated �i's) and �0a's are the basis functions
according to D0, and R and S are the sets of assignments for which the algorithm needs to estimate

the �a's and �
0
a's, respectively. Notice that from the proof of Theorem 5.1 and since ID(f) � 1, for

all monotone Boolean function f , we have

j�0aj �M:

We wanted to learn hC but because only an approximation of �i can be found we will try to

learn hB. Now since the example oracle gives the examples according to the distribution D and not

D0 we will instead learn hA. Since the learning parameters (the number of coe�cients) are done

for D0 we have
ED0 [(hB � f)2] � �:

Suppose �i + �i is the estimation for �i, where j�ij <M�(logn+4). Notice that

D0(x)

D(x)
=

Y
xi=1

�
1 +

�i

�i

� Y
xi=0

�
1� �i

1� �i

�

=

�
1 +O

�
n2

M logn+4

��n

= 1 +O

�
1

M logn+3

�
:

Now

ED[(hB � f)2] = ED0

�
D

D0
(hB � f)2

�

� ED0 [(hB � f)2] max
D

D0

� �

�
1 +O

�
1

M logn+3

��

� �+O

�
�

M logn+3

�
:

Therefore hB is also a good approximation of f with respect to the distribution D. Now we show

that hA is good enough. We have

jhA � hB j =

�����
X
a2S

ED[f�
0
a]�
0
a �

X
a2S

ED0 [f�0a]�
0
a

�����
=

�����
X
a2S

ED

�
f�0a

�
1� D0

D

��
�0a

�����
� jSjM2

����1�min
D0

D

����
� O

�
1

M

�
;

because

jSj �
kX
i=0

 
n

i

!
� nk = 2k logn =M logn:

11



Therefore

ED[(hA � f)2] � 2ED[(hA � hB)
2 + (hB � f)2]

= 2ED[(hA � hB)
2] + 2ED[(hB � f)2]

� 2�+O

�
1

M

�
:

This completes the analysis for learning when the product distribution is unknown.

5.3 Lower bounds

In this subsection we give several lower bounds showing that our algorithm is nearly optimal in

terms of running time complexity and error rate. The following theorem shows that the error rate

achieved in our algorithm is the best possible for a subexponential time algorithm.

Theorem 5.2 Any learning algorithm which PAC-learns any monotone Boolean function under

the uniform distribution and which runs in subexponential time (even with time 2cn, for any c < 1)

will output an approximation with an error of at least 

�

1p
n logn

�
.

Proof There are at least m(n) = 2(
n

n=2) � 2d2
n
p
n, monotone Boolean functions over n variables, for

some constant d < 1 (see [W87]). Suppose A is the �-approximation algorithm for any monotone

Boolean function. If A outputs a hypothesis h then h can �-approximate at most

k(n) =
X
i��2n

 
2n

i

!
� 22

n� log(e=�)

Boolean functions. Assuming A runs in time 2cn, for some constant c < 1, then A can output at

most 22
cn

possible hypotheses. Therefore we must have 22
cn

k(n) �m(n) which implies

2cn + �2n log
e

�
� d2np

n
:

This implies � = 

�

1p
n logn

�
. 2

The next corollary gives a lower bound for the error rate of any learning algorithm that runs in

time bounded by 2
p
n.

Corollary 1 Any learning algorithm for monotone Boolean functions under the uniform distribu-

tion with a running time bounded by 2
p
n cannot achieve an error smaller than




�
1

n1=4 logn

�
:

Proof Let A be an algorithm that runs in time 2
p
n and achieves error �(n), for any n. We will

construct an algorithm B that learns any monotone Boolean function over n variables in time 2cn,

for some c < 1, and achieves an error of 2�((cn)2). Now since by Theorem 5.2

2�((cn)2) = 


�
1p

n logn

�

12



we get the result of the corollary.

The algorithm B with input f(x1; : : : ; xn) will pretend that the input is over (cn)2 variables

and runs the algorithm A to learn the function f . The error rate achievable by this algorithm is

� = �((cn)2). This algorithm outputs a hypothesis h that satis�es

Ex1;:::;x(cn)2
[f 6= h] < �:

This does not imply that h is a good approximation to f under the original domain fx1; : : : ; xng. We

now proceed by randomly and uniformly choosing values x0n+1; : : : ; x
0
(cn)2 and return the hypothesis

h(x1; : : : ; xn; x
0
n+1; : : : ; x

0
(cn)2):

Since the expectation is over the uniform distribution we have

Ex1;:::;x(cn)2
[f 6= h] = Exn+1;:::;x(cn)2

Ex1;:::;xn [f 6= h] < �;

and therefore with probability at least 1=2 (by Markov's inequality) a random x0n+1; : : : ; x
0
(cn)2 gives

a 2� = 2�((cn)2) approximation to f . 2

We now investigate the best error rate of the low-degree algorithm. The �rst theorem shows

that there exists a monotone Boolean function such that to approximate this function within error

� using its low-degree Fourier coe�cients, for � = n�1=2, we need to collect all coe�cients of weight

less or equal to cn, for some constant c < 1. The second theorem shows that to approximate the

majority function with the same error we need to collect all of its Fourier coe�cients of weight up

to O(
p
n).

Theorem 5.3 For any constant c < 1 there is a monotone Boolean function f which satis�es

X
jaj�cn

f̂2(a) � 


�
1p

n logn

�
:

Proof Assume for contradiction that there is some constant c < 1 such that for any monotone

function f X
jaj�cn

f̂2(a) � O

�
1p

n log n

�
:

But this implies that the low-degree algorithm which searches all coe�cients of degree at most

cn will approximate f within an error of O(1=(
p
n logn)). This contradicts Theorem 5.2 modulo

constant factors. 2

Theorem 5.4 The majority function f satis�es
P
jaj�
(pn) f̂

2(a) � 
(1=
p
n).

Proof Let f(x) =MAJ(x) = I [
Pn

i=1 xi � n=2]. Since f is a symmetric function, the in
uence of

all variables are equal. From the �rst equality in the proof of Theorem 4.1 we have

X
a

jajf̂2(a) =
nX
i=1

Ii(f) = nI1(f):

13



To get a bound on I1(MAJ), note that I1(MAJ) � 2�n
�
n

n=2

� � cp
n
, for some constant c. Thus

c
p
n �

X
a

jajf̂(a)2 =
X

jaj� c

2

p
n

jajf̂(a)2 +
X

jaj< c

2

p
n

jajf̂(a)2

� n
X

jaj� c

2

p
n

f̂(a)2 +
c

2

p
n:

This implies that X
jaj� c

2

p
n

f̂ (a)2 � c

2
p
n
:

2

We now use the Vapnik-Chernovenkis dimension to �nd lower bounds on the sample size. Kearns

[K] had also observed that the VC dimension can be used to prove negative learning results for

monotone Boolean functions. Recall that if C is a class of Boolean functions then C shatters

A � f0; 1gn if for every Boolean function g : A ! f0; 1g there exists a Boolean function f 2 C

such that f jA = g. The Vapnik-Chernovenkis dimension of C, VCdim(C), is the cardinality of the

largest subset A which is shattered by C. Ehrenfeucht et al. [EHKV88] proved a sample complexity

lower bound of




�
1

�
ln
1

�
+
1

�
V Cdim(C)

�

for PAC learning any class C with error � and con�dence �. It is easy to see that the VC-dimension

of monotone functions is at least
�
n

n=2

� � 2n=
p
n. Hence we get the following easy corollary.

Corollary 2 Any PAC learning algorithm for all monotone Boolean functions under an arbi-

trary distribution with error � and con�dence � (for su�ciently small � and �) requires at least



�

2n

�
p
n
+ 1

�
ln 1

�

�
examples.

6 Circuit Approximations of Monotone Boolean Functions

We study the circuit complexity of approximating monotone Boolean functions using Boolean

circuits (non-monotone). We prove that any monotone Boolean function can be approximated

by a non-monotone Boolean circuit of subexponential size and sublinear depth. This result is a

consequence of Theorem 4.1.

Theorem 6.1 For any monotone Boolean function f on n variables and for any constant � > 0,

there is a Boolean circuit of size

2O( 1
�

p
n logn)

and depth

O

�
1

�

p
n logn

�

which approximates f to within � under the uniform distribution.

Proof Note that the low-degree algorithm outputs a hypothesis

h(x) =
X

jaj�O( 1
�

p
n)

ca�a(x);

14



where ca � E[f�a]. Note that each ca can be at most 2O( 1
�

p
n logn) bits. So essentially we need

to add m number each being m bits, where m(n) = 2O( 1
�

p
n logn). This problem is known to be in

NC1 (Boolean functions computable by a bounded fan-in, logarithmic depth, and polynomial size

Boolean circuit). 2

In the next section we will investigate the circuit approximation of monotone graph properties.

For this we will need the following theorem.

Theorem 6.2 For any product distribution D with �i = �, for all i, any monotone Boolean func-

tion f on n variables and any constant � > 0, there is a Boolean circuit of size

2O(�
�

p
n log( �

p
n

� ))

and depth

O

�
1

�
�
p
n log(�

p
n=�)

�

which approximates f to within �.

Proof (Sketch) We have jjajj = jaj log 1
�
, where � =

p
�(1� �). By Theorem 4.1,

X
jaj�k

~f(a)2 � 2�

k
ID(f)

p
n:

To get an error � we need k � 2�
�
ID(f)

p
n. Recall that for monotone Boolean functions, ID(f) � 1.

Notice that we can truncate the �i's and �i's while only incurring a polynomial blow-up in error.

When these are truncated, �a(x) can be computed in polynomial time and therefore there is a

polynomial size circuit that computes them. Now we proceed as in Theorem 6.1. 2

6.1 Circuit Approximation of Monotone Graph Properties

We consider some monotone graph properties on the random graph G(n; p), where n is the number

of vertices of G and p is the edge existence probability. Some well-known graph properties are

monotone: the clique function CLIQUEn
k which is one if and only if the graph has a clique of size

at least k, the hamiltonicity function HAMn which is one if and only if the graph has a Hamiltonian

cycle, the planarity function PLANARn which is one if and only if the graph is planar etc. We

investigate the problem of approximating these monotone graph-theoretic functions.

We adopt the probabilistic model of the random graph on n vertices (see [S94] for other models).

The random graph G = G(n; p) is a probability distribution on the edges of the complete graph Kn

on n vertices, where each edge exists independently with probability p 2 [0; 1]. A Boolean function

f on the edge set E(G) is called a monotone graph property if f is a monotone (or antimonotone)

Boolean function over E(G). Any monotone graph property exhibits a threshold phenomena (see

[B85, S94]). Let f be a monotone graph property on G(n; p). A function r(n) is called a threshold

function for f if it satis�es

1. if limn!1
p(n)

r(n)
= 0 then limn!1 Pr[f(G(n; p)) = 1] = 0.

2. if limn!1
r(n)

p(n)
= 0 then limn!1 Pr[f(G(n; p)) = 1] = 1.
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De�nition 2 (�-G(n; p) circuit)

For a graph property A, for �xed � > 0 and p 2 [0; 1], and random inputs drawn from G(n; p),

we call a Boolean circuit an �-G(n; p) circuit if it outputs a correct answer to the property A with

probability at least 1� �. Here the probability is with respect to the distribution G(n; p) on the input

graphs.

Theorem 6.3 Let f be a monotone graph property with a threshold function r(n) (the number of

inputs to f is m =
�
n

2

�
). Then for any �xed � > 0, p 2 [0; 1], there is an �-G(n; p) circuit which

approximates f with respect to the distribution G(n; p) of size

2
O

�p
nr(n)

�
log �

p
np

r(n)

�
:

Proof Fix �; p > 0. By (1),(2) there exists a constant c > 1 such that for p � cr(n) we have

Pr[f(G(n; p)) = 1] � 1 � � and for p � r(n)=c we have Pr[f(G(n; p)) = 0] � 1 � �. Therefore for

p � cr(n) we build the constant circuit 1 and for p � r(n)=c we build the constant circuit 0. For

p in the range (r(n)=c; cr(n)) we build the circuit in Theorem 6.2 with � = p and error �=c. This

circuit has the required size and depth. 2

Next we consider twomonotone graph properties that areNP-complete: CLIQUEn
k andHAMn.

The clique function has a threshold of r(n) = n�2=(k�1) and the Hamiltonicity function has a

threshold of r(n) = ln n=n. Our approach failed to give an interesting bound for the clique function.

For the Hamiltonicity function we have the following.

Corollary 3 For any � and a �xed p, there is a Boolean circuit that approximates HAMn to within

error � and has size

2O( 1
�

p
n log1:5 n)

and depth

O

�
1

�

p
n log1:5 n

�
:

Proof Apply Theorem 6.3 with r(n) = lnn=n.2

Remark. The above results can be contrasted with several works on solving the search versions of

NP-hard problems on random graphs. For example, Bollob�as, Fenner, and Frieze [BFF87] described

a expected polynomial time algorithm for �nding Hamiltonian cycles in the random graph G(n;m)

with n vertices and

m = n logn=2 + n log log n=2 + cnn

edges, where cn is some sequence of integers. Their model of the random graph G(n;m) is a

uniform distribution on undirected graphs with n vertices and m edges. They proved that the

success probability of their algorithm equals to that of the existence of such Hamiltonian cycles.

Their result di�ers from ours in several ways. First, our result only concerns the approximation of

the decision problem, and second, we don't need to impose any restriction on the number of edges

in our random graph (also our random graph model is slightly di�erent than theirs, i.e., G(n; p) vs.

G(n;m)), but third, their algorithm runs in expected polynomial time whereas our algorithm runs

in subexponential time.
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7 Approximating over a Convex Mixture of Distributions

The result in this section states that approximability over a collection of distributions fDig implies
the approximability over any distribution in the convex space of fDig. First, we need to introduce

a notion of convex dimension of a probability distribution.

De�nition 3 (Convex Dimension of a Distribution)

Let I be some index set. Let D = fDigi2I be the set of all product distributions over f0; 1gn.
Consider a distribution D of the form

D =
X
i2I

�iDi;

where �i 2 [0; 1], for each i 2 I, and
P

i2I �i = 1. We call D the convex linear combination of

distributions fDi : i 2 Ig. The convex dimension cdim(D) of D is the least m such that D can be

represented as a convex linear combination of m product distributions.

Lemma 3 Let �1; : : : ; �m 2 f�1; 1g and let d1; : : : ; dm be positive real numbers. If
Pm

i=1 di�i < 0

then X
�i=�1

di � 1

2

mX
i=1

di:

Proof If
Pm

i=1 di�i < 0 then
P

i:�i=1 di <
P

i:�i=�1 di. Thus
Pm

i=1 di < 2
P

i:�i=�1 di. 2

Theorem 7.1 Let f be a Boolean function that can be approximated over each Di from the set

fDigmi=1 of distributions. Then f can be approximated over any distribution D that is a convex

linear combination of the Di's, say D =
Pm

i=1 �iDi, provided that the �i's are known and each

distribution Di is known and is polynomial time computable.

Proof Suppose
Pm

i=1 �i = 1 and D =
Pm

i=1 �iDi. Let hi be a hypothesis over distribution Di

satisfying EDi
[hi 6= f ] � �=2. De�ne the hypothesis H over D to be

H(x) = sgn

 
mX
i=1

�iDi(x)hi(x)

!
:

Then

ED[H 6= f ] = ED[�1D1h1f + � � �+ �mDmhmf < 0]:

Using Lemma 3, if �1D1h1f + � � �+ �mDmhmf < 0 for some x then

X
i:hi(x)f(x)=�1

�iDi �
�1D1 + � � �+ �mDm

2
:

Therefore we have the following.

ED[H 6= f ] =
X

x0:H(x0)6=f(x0)

X
i

�iDi(x0)

� 2
X

x0:H(x0)6=f(x0)

X
i:hi(x0)6=f(x0)

�iDi(x0); Lemma 3

� 2
X
x0

X
i:hi(x0)6=f(x0)

�iDi(x0)

= 2
X
i

�iEDi
[hi 6= f ] � �:

2
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8 Learning in Polynomial Time

In this section we describe some polynomial time learning results on some subclasses of monotone

Boolean functions.

8.1 Weak Learning

Kearns and Valiant [KV89] proved that monotone Boolean functions are weakly learnable under the

uniform distribution with error 1=2� 1=(2n), In the following we improve their result slightly. In

particular, there is a weak learner with error 1=2�
(log2 n=n) under the uniform distribution and

there are weak learners with error 1=2� c=n, for any constant c, under any product distribution.

For learning under the uniform distribution we will use the following result of Kahn, Kalai and

Linial [KKL88] on the lower bound of the sum of the squares of the in
uences of variables.

Lemma 4 [KKL88] Let f 2 f0; 1g be a Boolean function with p = Pr[f(x) = 1] � 1=2. Then

nX
i=1

Ii(f)
2 � p2

5

(logn)2

n
:

Theorem 8.1 There is a polynomial time weak PAC learning algorithm with error � = 1
2
�


�
log2 n
n

�
for any monotone Boolean function under the uniform distribution.

Proof We will assume that without loss of generality that p = Pr[f(x) = 1] � 1=2, since we can

take :f(:x1; : : : ;:xn). This transformation does not e�ect the in
uences.

If p < 1=4 we already have a weak learning using the all-zero hypothesis, otherwise since

Ii(f)
2 = f̂2(ei) and using Lemma 4,

Pn
i=1 f̂

2(ei) � p2 log2 n=(5n) � log2 n=80n. Combining this

with Fact 1 with A = fei : i 2 [n]g, we get a weak learner with the claimed accuracy. 2

Theorem 8.2 For any constant k there is a polynomial time weak PAC learning algorithm with

error � = 1
2
� k

n
for monotone Boolean functions under any product distribution.

Proof By Fact 1, if
P
jjajj�k ~f2(a) � 1=2 then we get a 1=4-approximator by the standard low-

degree algorithm (using again the fact that jjajj � jaj). Otherwise by Theorem 4.1, we have

1:062
p
n

k
ID(f) � 1

2
and hence

P
i
~f2(ei) � k2

4(1:062)2n
. 2

8.2 Strong Learning

Sakai and Maruoka [SM94] proved that monotone O(logn)-term DNF is PAC learnable under the

uniform distribution. We improve their result in two ways. First we extend the class to a larger

subclass of the monotone Boolean functions and second we extend the distribution to constant-

bounded product distributions.

A variable xi is relevant for f if there are a; b 2 f0; 1gn with a = b� ei and f(a) 6= f(b). Note

that xi is relevant if and only if Ii(f) > 0.

De�nition 4 (The concept class A(k))

Let A(k) be the class of Boolean functions of the form f(T1; : : : ; Tk), where f is an arbitrary mono-

tone Boolean function on k inputs and each Ti is a monotone conjunction or a disjunction over n

variables.
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Theorem 8.3 The class A(logn) is PAC learnable under constant bounded product distributions.

Proof From Lemma 1, the in
uence of a variable is

ID;i(f) =
1

4�2
i

X
a:ai=1

~f(a)2:

Since the product distribution is constant-bounded, �i is a constant and therefore if the in
uence

is small then we may assume that xi is not relevant since this incur only a small additional error to

the hypothesis. Now the divide-conquer learning algorithm presented in [B95] can be used in the

same way.2

Theorem 8.4 For any constant �, the class of monotone functions which depend on O
�

log2 n

log2 logn

�
variables is PAC learnable with error � under constant bounded product distributions.

Proof By the assumption, there are at most m(n) = log2 n

log2 logn
variables having nonzero in
uence.

Note that we may ignore all the variables with very small in
uence since we are dealing with

constant bounded product distributions. So we can apply the low-degree algorithm which will run

in time 2
p

m(n) logm(n) = nO(1). 2

Theorem 8.5 For any constant �, the class A
�

log2 n
log3 logn

�
is PAC learnable with error � under

constant bounded product distributions.

Proof First, we claim that any term with size 
(log logn) may be ignored without incurring an error

of more than O(1). Now observe that with this simpli�cation, there are at most log2 n=(log logn)2

variables. This problem reduces to Theorem 8.4. 2

Remark. The learning algorithms discussed so far �t into the statistical query learning model intro-

duced by Kearns [K93]. Hence by Kearns' results, these algorithms are robust against classi�cation

noise in the example oracle.
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