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ABSTRACT 

The magnesium alloy Mg-AZ31 and titanium alloy Ti-6Al-4V have physical characteristics and 

mechanical properties that makes it attractive for a wide range of engineering applications in the 

aerospace and automotive industries. However, the differences in melting temperature and 

coefficient of thermal expansion hinder the use of traditional fusion welding techniques.  

Transient liquid phase (TLP) bonding of magnesium alloy Mg-AZ31 and titanium alloy Ti-6Al-

4V was performed and different interlayer types and configurations were used to facilitate joint 

formation. The joining of these alloys using Ni foils was successful at a bonding temperature of 

515
o
C, bonding pressure 0.2 MPa, for bonding time of 5 minutes. At the Ni/Mg-AZ31 bond 

interface, the formation of a eutectic liquid between Mg and Ni was observed. The formation of 

Mg2Ni and Mg3AlNi 2 were identified along the bond interface resulting in an isothermally 

solidified joint. At the Ni/Ti-6Al-4V interface, the solid-state diffusion process results in joint 

formation.  

The use of double Ni-Cu sandwich joint resulted in further enhancement in joint formation and 

this produced joints with greater shear strength values. The configuration of Mg-AZ31/Cu-

Ni/Ti -6Al-4V or Mg-AZ31/Ni-Cu/Ti-6Al-4V influence the mechanism of bonding and the type 

of intermetallics formed within the joint. The application of thin Ni electrodeposited coatings 

resulted in further enhancements of joint quality due to better surface-to-surface contact and a 

reduction in the formation of intermetallics at the joint.  

The effect of Cu nano-particles in the coatings was found to decrease the eutectic zone width and 

this resulted in an increase the shear strength of the joints. The highest shear strength of 69 MPa 

was possible with bonds made using coatings containing Cu nano-particle dispersion. 
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1 CHAPTER ONE: INTRODUCTION  

1.1 Background information 

Magnesium has the highest strength-to-weight ratio of all structural metals and due to its light 

weight it has been an attractive choice for automotive and aerospace industries [1ï3]. Titanium 

has high strength to weight ratio and excellent corrosion resistance; hence it is an attractive 

choice for aerospace industries. However, the cost of titanium compared to other metals (i.e. 

aluminum and steel) limit its use [4,5]. However, structures built using magnesium, titanium and 

aluminum and their combinations is expected to have an increasing impact on future 

developments especially where light weight structures are required in order to reduce fuel 

consumption, greenhouse gases and improve efficiency of energy converting systems [6]. The 

most commonly used alloys of titanium and magnesium include the Ti-6Al-4V and Mg-AZ31 

alloys [7ï9]. The development of joining methods for these two dissimilar alloys will increase 

their potential applications for the aerospace and automotive industries. However, the joining of 

these very dissimilar alloys which have significant differences in physical and mechanical 

characteristics presents a great challenge. A variety of conventional joining techniques such as 

fusion welding, adhesive bonding, soldering and brazing are used in industry but cannot be 

applied to join the Ti-6Al-4V to the Mg-AZ31 alloys. Differences in the melting point and 

composition of the alloys make the application of fusion welding techniques difficult.  

Other methods commonly used for joining dissimilar alloys such as adhesive bonding, soldering 

and brazing offer some potential, but these two light alloys have been designed for use in 

applications in which the temperature could exceed 200
o
C and would be exposed to moisture, 
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alkaline and acidic solutions. Therefore, adhesive bonding would not be suitable and for 

soldering or brazing to be successful, a suitable filler metal is required.  

However, other advanced joining methods such as solid-state diffusion bonding and transient 

liquid phase (TLP) bonding could be suitable for joining these types of alloys because diffusion 

bonding has been successfully applied to advanced metal alloys [10ï14]. In TLP bonding, a thin 

interlayer is used to form a eutectic reaction at the joint region and this result in a metallurgical 

bond. The TLP bonding process can be used to produce high temperature joints and has the 

ability to bond dissimilar metals and complex alloys such as oxide dispersion strengthened 

(ODS) alloys [15]. 

1.2 Research objectives and scientific contributions 

The aim of this study is to investigate the application of diffusion bonding techniques to join the 

Ti-6Al-4V alloy to the Mg-AZ31 alloy. The first objective of this research work is to study the 

effect of bonding parameters (bonding time, bonding pressure, bonding temperature and 

interlayer characteristics) on the microstructural developments and mechanical properties 

(micro-hardness and shear strength) of TLP bonding. A systematic study was undertaken to 

optimize the process parameters in order to minimize microstructural changes within the parent 

metals and achieve optimum joint strength. Second objective was to investigate the effect of 

interlayers and coatings on the mechanism of joint formation, and microstructural development. 

The literature shows that among different available metallic foils, nickel and copper have been 

successfully used as eutectic formers in TLP diffusion bonding of titanium alloys and 

magnesium alloys [11,14,16ï19]. In earlier stage, three different eutectic forming interlayers 

(nickel, copper and aluminum) have been tested on Ti-6Al-4V and Mg-AZ31 system. 

Preliminary results showed that nickel resulted in higher shear strength and an evident of 
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eutectic formation inside joint region, as a result, eutectic forming thin foils (20 µm) of nickel 

was investigated and the mechanism of joint formation was evaluated. Copper foils resulted in 

eutectic formation with magnesium at a temperature below the eutectic formation temperature of 

nickel with magnesium. Therefore, and in order to take advantage of lower copper-magnesium 

eutectic temperature and to utilize the better joint quality achieved by nickel, a combination of 

copper and nickel sandwich foils were tested. Thinner interlayers are expected to produce 

thinner joint widths and this result in a smaller volume of liquid eutectic and less intermetallic 

formation within the joint region. Therefore, thin nickel electroplated coatings were investigated 

with and without Ni and Cu nano-particle dispersions.   

This research work is a feasibility study in which diffusion bonding processes are used to join 

these dissimilar alloys for the first time. Furthermore, the application of metallic nano-particle 

dispersions in eutectic forming interlayers as a method of controlling the TLP bonding process is 

investigated for the first time for this combination of alloys. The mechanism of joint formation is 

investigated in order to understand the deviation of the bonding mechanism from the traditional 

TLP bonding process.  

1.3 Thesis structure 

In chapter 2 the literature review describes the general properties of the Ti-6Al-4V and Mg-

AZ31 alloys. The various joining techniques that have been applied to these alloys and the 

advantages and disadvantage of each process are also discussed. The TLP bonding process is 

described and the important bonding parameters used in the TLP bonding process are discussed. 

In chapter 3 the materials used in the research and the experimental work are described in detail. 

The preparation of samples for TLP bonding, the electroplating process to form coatings and the 
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microstructural analysis are explained. The metallographic analysis of joints using light and 

scanning electron microscopies (SEM) and mechanical evaluation of joints using shear tests and 

micro-hardness indentation across joints are described. 

The TLP diffusion bonding using nickel foils is discussed in chapter 4. The effect of the bonding 

parameters on joint microstructure, micro-hardness and joint shear strengths is discussed. 

Chapter 5 describes the application of double sandwich foils of nickel and copper, and 

investigates the effect of interlayer arrangement on microstructural developments across the 

joint, micro-hardness and strength, as well the mechanism of joint formation are discussed. 

The applications of thin coatings of pure nickel and nickel/copper nano-particles to facilitate the 

bonding process are discussed in chapter 6 and 7, respectively. In addition to the bonding 

parameters discussed in earlier chapters, the effects of coat thickness on microstructural and 

mechanical property are also presented.   

Finally, the conclusions of this research work and future work recommendations are presented in 

chapter 8.    
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2 CHAPTER TWO: LITERATURE REVIEW  

2.1 Introduction  

Titanium and magnesium alloys have been used in aerospace, marine and automotive industry 

because of their attractive mechanical properties and physical characteristics. However, the 

ability to join dissimilar alloys such titanium to magnesium system may increase its use in 

aerospace, automotive and biomedical applications. Therefore, in this chapter the different types 

of titanium and magnesium alloys are discussed. The possible joining and welding techniques, 

which can be applied to join dissimilar metals and alloys, are discussed showing the ability and 

limitation of each technique to bond this system of titanium and magnesium alloy.    

2.2  Titanium alloys 

2.2.1 Titanium overview 

Titanium and its alloys have a variety of excellent physical and mechanical characteristics, 

which include high strength to weight ratio, corrosion resistance and low thermal conductivity. 

These properties make titanium very attractive for different engineering applications in the 

aerospace, oil and gas industries and biomedical industries. The titanium has been used in 

aircraft manufacturing (high strength to weight ratio), aero-engines (high strength, high creep 

resistance) and chemical industry (corrosion resistance)[20,21].  

Titanium, like iron, can exist in more than one crystalline set up. There are two crystal structures 

of titanium, the closed-packed hexagonal Ŭ-phase at room temperature and pressure, and a body-

centered cubic ɓ-phase which is an allotropic transformation at 885
o 

C and is stable up to the 

melting point, The alloying elements have a great effect on the transformation temperature, and 

some elements (e.g. V, Fe, Cu, and Ni) decrease the transformation temperature and are known 
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as beta stabilizers. On the other hand, elements (e.g. Al, C, O) which increase the transformation 

temperature are called alfa stabilizers [22,23]. 

Four categories of titanium alloys are recognized [22,24]: 

1. Alfa alloys; non-heat treatable, corrosion resistant, includes neutral alloying elements and 

alfa stabilizers. 

2. Near-alfa alloys; heat treatable, includes 1-2% of beta stabilizers where remaining are 

alfa stabilizers. 

3. Alfa-Beta alloys; heat treatable, stable high strength, includes both alfa and beta 

stabilizers. 

4. Beta alloys; heat treatable, includes beta stabilizers. 

 

Figure  2.1: Unit cell for titanium (a) Ŭ-phase and (b) ɓ-phase [20]. 
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The various titanium alloy grades and their mechanical characteristics are presented in table 2.1: 

 

Table  2.1: Different titanium alloy and its mechanical characteristics [22,25] 

Alloy Category 

Chemical 

composition 

wt% 

Hardness 

(VHN) 

Yield 

Strength 

(MPa) 

Tensile 

Strength 

(MPa) 

Elongati

on % 
Remarks 

Grade 1 Alfa Ti-0.2Fe-0.1O 120 170-310 >240 24 
Corrosion 

resistant 

TIMETAL 

1100 
Near-Alfa 

Ti-6Al-2.7Sn-

4Zr-0.4Mo-

0.4S 

340 900-950 1010-1050 10-16 

High strength 

at elevated 

temperatures 

Ti-6Al -4V Alfa-Beta Ti-6Al-4V 300-400 800-1100 900-1200 13-16 
Universal 

 

Beta III Beta 
Ti-11.5Mo-

6Zr-4.5Sn 
250-450 800-1200 900-1300 8-20 

Cold 

workable 

 

Although titanium and titanium alloys are considered attractive for use in many engineering 

applications, the cost associated with titanium production and market price limit its use to 

critical components or functions in which its use is necessary for the required performance [20]. 

Table  2.2: Comparison between Ti, Fe, Ni, and Al characteristics [20] 
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In general titanium and its alloys are considered weldable, using fusion welding techniques. 

However, the alloying elements appear in titanium alloys such as aluminum and vanadium may 

prevent/hinder or at least affect the quality and the ability to produce a sound joint by fusion 

welding. Another parameter affect the titanium alloy weldability by fusion welding is the 

transition temperature from Ŭ to ɓ phases. The fusion welding of Ŭ-ɓ titanium alloys (i.e. Ti-6Al-

4V) resulted in a discontinuous microstructure, which affects the final mechanical properties of 

the weldments [20,25,26].  The Ŭ-titanium alloys have better weldability characteristics than Ŭ-ɓ 

titanium or ɓ titanium alloys, and research has shown that the Ŭ-ɓ titanium or ɓ titanium alloys 

need a post-weld heat treatment to reduce the brittleness of the joint caused by the phase 

transformation [27]. 
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Figure 2.2: Examples of engineering application for titanium:  (a) GE-90 aero-engine; (b) aircraft engine 

fan disk; (c) bulkhead for a twin engine military aircraft ; (d) Ti -6Al-4V seamless rolled ring 

[20]. 

c 

b a 

d 
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2.2.2 Titanium production 

Titanium is the fourth most abundant metal in the Earthôs crust; after aluminum, iron, and 

magnesium. Rutile (TiO2) and ilmenite (FeTiO3) are the main sources of titanium. The 

production of pure titanium with high ductility was considered difficult to attain due to the 

tendency of titanium to react with atmospheric oxygen. However, a new extraction process was 

invented by Kroll in Germany in 1940, in which a ñtitanium spongeò was produced by the 

reduction of titanium tetrachloride and magnesium in inert gas atmosphere [20]. 

The production of titanium includes the following steps [25,26,28]: 

1. Sponge-pellets-making: Mg-reduction of Ti tetrachloride (TCT);  

2. Melting: Induction, arc melting, and electron beam melting (EBM);  

3. Casting:  high precision process cast as investment casting; 

4. Primary and final processing: powder metallurgy; 

5. Alloying: alpha + beta stabilizers;  

A major component of titanium production is the alloying elements. Alloying elements can be 

classified based on the effect the alloying constituent have on titanium into. The addition of the 

alloys can affect the phase formed and shift in the transformation temperature of phases in 

titanium. Examples of alpha stabilizers are: aluminum, nitrogen, carbon and oxygen. These 

elements result in more Ŭ stable phase and hence increase the transformation temperature above 

882
o
C. Among all Ŭ stabilizers, aluminum and oxygen are widely used in industry, while 

aluminum has a high solubility in Ŭ and ɓ phases, oxygen is widely used in alloying commercial 

titanium.  
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For ɓ stabilizers, vanadium, molybdenum, iron, nickel, copper and silicon is used in industry to 

control ɓ transformation temperature. 

The transformation between Ŭ (HCP) phase and ɓ (BCC) phase can occur either martensitically 

or by diffusion and nucleation growth depending on the cooling rate. However, the hardening 

mechanism (i.e. precipitation hardening, solid solution hardening, dislocation, and boundary 

hardening)  can be seen in commercially alloyed titanium due to the transformation from Ŭ to ɓ 

phases [20]. 

 

 

 

 

 

 

 

 

 

Figure  2.3: Sponge-making production of titanium (low magnification) [20]. 
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Figure  2.4: Diffusion coefficients for  different elements in titanium  [20]. 

 

Figure 2.4 shows the diffusion coefficient rates of ɓ self-diffusion is much higher than Ŭ self-

diffusion. The literature survey indicate that substitutional diffusing elements (e.g. aluminum 

vanadium, oxygen), are slower than interstitial elements (e.g. nickel, iron, and cobalt) for both Ŭ 

and ɓ phases [20,29]. 
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2.2.3 Titanium alloy: Ti-6Al-4V  

Although there are over 100 different titanium alloys that have been developed, only 20 ï 30% 

have been commercially available and the dominant titanium alloy, Ti-6Al-4V occupies about 

50% of the total usage in the aerospace industry. 

 

Figure  2.5: Usage of titanium alloy by type in USA market in 1998 [20]. 

 

The chemical composition of this alloy includes aluminum as Ŭ-stabilizer, as well as vanadium a 

ɓ-stabilizer.  This combination leads to a great effect on the characteristics of the alloy based on 

the percent fraction of each phase.  The ductility of Ŭ-phase is less than the ɓ-phase based on the 

fact that the body centered cubic is less dense than hexagonal packed and hexagonal packed 

planes allow more plastic deformation as it has more slip plan system. An example of this effect 

was given by Leyens and Peters (2003) that the addition of aluminum (Ŭ-stabilizers, BCC crystal 

structure) deteriorates the ductility even it enhances the creep resistance and the corrosion 

resistance, furthermore, this effect was also expected due to diffusion coefficient of the Ŭ-phase 

is two orders less than that of ɓ-phase [22]. 

The Ti-6Al-4V alloy plays a significant role in a wide range of applications, including the 

biomedical, aerospace, chemical, marine industries.  This is due the excellent properties of this 
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alloy such as biocompatibility, corrosion resistance, high strength to weight ratio, superplastic 

formability [24,30]. However, the frame of Boeing 777 contains at least 10% titanium, where Ti-

6Al-4V is the dominant[20].  

 

Table  2.3:  Some physical characteristics for structural metal and Ti-6Al-4V [20]. 

Physical property Ti-6Al-4V Al  Ni 

Linear coefficient of  thermal expansion (10
-6

K
-1

) 9 23.1 13.4 

Thermal conductivity (W M
-1

K
-1

) 7 237 90 

Specific heat capacity (Jkg
-1

K
-1

) 530 900 440 

Electrical resistivity (ÕÝm) 1.67 0.03 0.07 

 

Comparing the Ti-6Al-4V alloy with aluminum and nickel, it can be seen the titanium alloy has 

less thermal expansion coefficient and thermal conductivity, hence Ti-6Al-4V is considered a 

good candidate for applications need high strength to low thermal conductivity. On the other 

hand, the high value of electrical heat resistivity hinders the application of Ti-6Al-4V in 

electrical applications. 
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2.3 Magnesium alloys  

2.3.1 Magnesium overview 

Magnesium is the lightest of all structural metals [8] and has some attractive properties over 

other metals such as a low density, high specific strength, good formability, and corrosion 

resistance. But on the other hand, there are few properties of magnesium that limits its 

application, such as low strength at moderate temperatures, high chemical reactivity with water 

and oxygen,  and low toughness [8]. 

 However, recently magnesium and its alloys have received an increased attention for use of the 

alloy in the automotive, aerospace and electrical applications where weight reduction is very 

important in parallel with high specific strength [8,9,31]. Furthermore, there is an interest in the 

automotive industry to increase fuel efficiency and to reduce emissions to the environment [9]. 

Magnesium crystal structure has a lattice ratio of 1.6236 which is close to an ideal value of 

1.633. Therefore, magnesium is considered as a perfect hexagonal close packed structure as 

shown in figure 2.6 [32]. 

 

 

 

 

 

 

Figure 2.6: Magnesium unit cell [32]. 
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Table  2.4: Physical properties and mechanical characteristics of magnesium [9,32]. 

Property Magnesium Aluminum  Iron  

Crystal structure HCP FCC BCC 

Density at 20
o
C (g/cm

3
) 1.74 2.7 7.86 

Coefficient of thermal expansion 20ï100°C 

(×10
6
/
o
C) 

25.2 23.6 11.7 

Elastic Modulus (MPa) 44.126 68.947 206.842 

Tensile strength (MPa) 240 for AZ91D 320 (for A380) 350 

Melting point (
o
C) 650 660 1536 

 

Magnesium has a density of 1.74 g/cm
3
 and when compared to titanium or aluminum, (density 

4.51 g/cm
3
,
 
2.7 g/cm

3
, respectively) it is 61% lighter than titanium and 35% lighter than 

aluminum. Furthermore, when it comes to specific strength (strength to weight ratio) magnesium 

has excellent characteristics over aluminum and iron [9,33]. 

Since magnesium crystal structure is uniaxial, the diffusion rates take different values based on 

the direction, i.e. if the diffusion is parallel or perpendicular to the c axis (see figure 2.6) [32]. 

Table 2.5 shows the self-diffusion coefficient at different directions. 

Table  2.5: Self-diffusion coefficients in different direction for magnisum [32]. 

Purity D0|| [cm
2
/s] D0ƍ [cm

2
/s] Q|| [kJ/mol]  Qƍ [kJ/mol]  

99.9% 1.5 1.0 136.1 134.8 
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 The weldability of magnesium and its alloys have been investigated since 1924. Tungstenïarc 

inert gas (TIG), metal-arc inert gas (MIG), diffusion bonding (DB), and laser welding (LW) 

have been used successfully to weld magnesium. However, limitations still exist where the 

formation of cracks inside welds, oxide films at the joint interface, cavities within weld pool, and 

broad melting interval of magnesium (420-620 
o
C) resulted in research towards alternative 

welding techniques for magnesium and its alloys [32,34]. Recently TIG and MIG techniques 

have been used to weld magnesium alloys. However, both techniques resulted in changes in 

microstructure and mechanical properties, heat affect zone and residual stress[34]. Furthermore, 

the differences in thermal conductivity, melting energy, and thermal expansion between 

magnesium and aluminum makes the comparison between magnesium welding to aluminum 

welding not possible, as an example; only 60% of the energy is required to melt the same 

volume of Mg compared to Al, furthermore, only 1/3 the required energy for welding Mg is 

required to weld the same amount of Al as a result of lower thermal conductivity of Mg 

compared to Al [32] (thermal conductivity of Mg is equal to 156 W·m
ī1

·K
ī1

, and for Al is equal 

to 237 W·m
ī1

·K
ī1

). 

 

Figure  2.7: Distribution of magnesium applications [32]. 
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Figure 2.8: Engineering component made of magnesium alloys: (a) engine box; (b) seat frame (c) door 

frame; (d) oil pan and (e) wheel drive [9]. 
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Figure 2.9: Application of magnesium in engineering structural component (a) all Mg aircraft (b) 

Missile with 100Kg Mg in sheet and casted (c) tail of satellite rocket (d) Mg in 

automotive VW car [32]. 

a 

d 

b 

c 
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2.3.2 Magnesium production 

Magnesium is considered as the sixth most abundant element found in the Earthôs crust [31]. The 

main source of magnesium are  magnesite (MgCO3), dolomite (MgCo3.CaCO3) and sea water 

[9]. Each one cubic meter of sea water contains 1.3 kg of magnesium [35]. Magnesium can be 

produced by reduction of magnesium oxide using silicon (metallothermic) or from sea water 

using magnesium chloride (electrolysis) [9].  The mechanical property of magnesium is affected 

by the production method; table 2.6 shows the effect of production method on mechanical 

properties of pure magnesium (99.9%). 

Table  2.6: Effect of production methods on pure magnesium (99.9%) mechanical   

properties [32]. 

Production 

type 

Tensile 

strength 

MPa 

Tensile 

yield strength 

MPa 

Compressive 

yield stress 

MPa 

Elongation  

% 

 

Brinell 

hardness 

BHN 

Sand cast 90 21 21 2-6 30 

Extrusion 165-206 69-105 34-55 5-8 35 

Hard rolled 

sheet 
180-220 115-140 105-115 2-10 45-47 

Annealed 

sheet 
160-195 90-105 69-83 3-15 40-41 
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The alloying of magnesium is often necessary before it is used in any engineering application; as 

a result of the chemical reactivity of Mg , However, ten elements are commonly used as alloys in 

magnesium  [32].  

The addition of aluminum, zinc and rare earth elements (i.e. Thorium, Yttrium and Zirconium) 

can be used to enhance the mechanical characteristics and extend the use of magnesium alloy for 

industrial applications. Recently, magnesium alloys have replaced steels, aluminum and copper 

alloys in many engineering components especially in the automotive industry  [9,33,36]. 

Magnesium is chemically very active, and the addition of alloying elements modifies its 

characteristics by changing its chemical affinity and reactivity which lead to stable compounds. 

However, the addition of alloying elements can result in the formation of intermetallic 

compounds. The main mechanisms for increasing the strength of  magnesium is by solid-

solution and precipitation hardening [31]. Although many elements are used to alloy with 

magnesium, aluminum and zinc are the most preferable choices. The addition of aluminum to 

magnesium up to 6 wt. % or less enhances the mechanical properties of magnesium (i.e. tensile 

strength and hardness). The use of aluminum also enhances the castability and heat treatment of 

magnesium. The formation of Mg17Al12 was observed when aluminum was used as an alloying 

element for magnesium [32]. The addition of zinc when used with other alloying elements such 

as aluminum or iron can further enhance when compared to the single elements addition. The 

addition of zinc with aluminum resulted in enhancement of strength while maintaining the 

ductility of the magnesium alloy. The addition of zinc with iron, enhance the corrosion 

resistance characteristics of the magnesium alloy [31,37] . The addition of zinc to magnesium 

aluminum alloy resulted in transformation of Mg17Al 12 to Mg32(AlZn)49 when the ratio of zinc to 

aluminum is more than 1 to 3 [32]. 
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Addition of nickel and copper to magnesium results in the formation of hard intermetallic 

compounds such as Mg2Ni and Mg2Cu. However, the addition of nickel enhances the strength of 

the magnesium alloy at room temperature, while the addition of copper enhances the strength 

both at room and elevated temperatures (above 175
o
C). Addition of nickel and copper can also 

deteriorate the ductility and corrosion characteristics of magnesium alloys [31,37ï39].   

Table  2.7: Different magnesium alloys and its mechanical characteristics [31,32,37]. 

Alloy  

Basic 

alloying 

elements 

Tensile 

strength 

(MPa) 

Elongation 

% 

Shear 

strength 

(MPa) 

Hardness 

(HRB) 

AZ31 Al, Zn 260 15 130 49 

AZ61 Al, Zn 310 16 140 60 

AZ80 Al, Zn 380 7 165 82 

HM31 Th, Mn 290 10 150 - 

ZC 71 Zn, Cu 360 5 - 70-80 

Zk40 Zn, Zr 275 4 - - 
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2.3.3 Magnesium alloy: Mg-AZ31  

The magnesium alloy Mg-AZ31 contains both aluminum and zinc in order to enhance the 

mechanical properties of the magnesium at room temperature [9]. The Mg-Al -Zn system has 

received the most attention in automobile industry because the alloy can be cast or formed by 

extrusion, and the tensile strength and yield strength increased with addition of Al and Zn 

[40,41]. Recently, automobile manufacturers such as Volkswagen have used light-weight 

magnesium alloys Mg-AZ21 and Mg-AZ31 in the production of various parts by deep drawing 

[42]. 

The attractive strength to weight ratio of Mg-AZ31 alloy in addition to its modulus of elasticity 

which is comparable to the human bone modulus of elasticity (40-57 GPa) as well its ability to 

be a biocompatible implement, all of this makes it a very attractive choice for various biomedical 

applications e.g. dental prosthetics. Furthermore, magnesium is not harmful to human body and 

it could be used as a healing for bone tissue [43].  

Recently, Jin and Khan (2012) successfully applied TLP bonding to join Mg-AZ31 alloy using 

pure nickel interlayers. A eutectic was formed between the Mg and Ni and on joint formation a 

maximum shear strength of 36 MPa was reported for a bonding time of 60 minutes [16]. 

Table 2.8 shows the basic mechanical properties for alloys used in automobile production, it 

include Mg-AZ31, Aluminum (AlMg4.5Mn0.4) and cold rolled steel (DC04). 

 

 

 



24 

 

 

 

 

Table  2.8: Mechanical properties of sheet Mg-AZ31 at room temperture compared to 

aluminum and cold rolled steel [32,44]. 

Properties Symbol Unit 
AZ31 

Annealed 

AZ31 

Work-

hardened 

AZ31 

Experimental 

AZ31 

Commercial 

AlMg 

4.5Mn0.4 
DC04 

Tensile 

strength 
Rm MPa 221-275 269 230-280 220-290 279 306 

Yield 

strength 
RP 0.2 MPa -- 200 130-200 125-220 146 160 

Uniform 

elongation 
Ag % -- -- 10-18 -- -- -- 

Elongation 

at rupture 
A80 % 12 6 10-23 8-21 26 40 
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2.4 Joining of titanium and magnesium alloys  

2.4.1 Introduction to joining techniques 

The integration of joining technology in the manufacturing process offers flexibility in 

fabrication and production of engineering components. However, the need to join dissimilar 

alloys and metals in any engineering system requires a careful selection of joining techniques. 

The factors that can affect the type of joining method chosen are shown in figure 2.10.  

 

 

 

Figure  2.10: Selection criteria for joining process [32]. 
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2.4.2 Fusion welding  

Fusion welding is considered as one of the most commonly used welding techniques in 

manufacturing [45]. The fusion process brings about joint formation by melting and then 

solidification. The joint region consists of different zones namely, weld pool with a cast 

structure, a chill zone, and heat affected zone. During fusion welding there is a steep temperature 

gradient from a molten weld pool to the colder section of the parent metal which results in a 

change in the joint microstructure and phase structure. The weld pool temperature is above the 

melting point of the metal being joined and shielding is used to protect it and this is either in 

gaseous or a solid flux. The fusion process includes gas welding, stick welding, submerged arc 

welding, gas metal arc welding, tungsten inert gas welding, electron beam welding, and laser 

welding. 

Balasubramanian et al. (2011) suggest that gas tungsten arc welding (GTAW) is the preferred 

technique to join reactive metals and alloys such as Ti-6Al-4V because it is easy to apply and it 

is not expensive compared to other joining techniques such as laser welding or electron beam 

welding. However, the GTAW technique also results in the coarsening of microstructure of the 

Ti-alloy which deteriorates the strength of the alloy [46]. 

Liu and Dong (2006) studied the autogeneous fusion welding of Mg-AZ31 alloy, using GTAW 

with and without the aid of filler metal composed of Mg-AZ61 wire. The results showed that the 

grain size of the heat affected zone (HAZ) and fusion zone (FZ) varied significantly when the 

filler metal wire used. Such that the grain size varied from 6-23µm when GTAW applied 

without filler wire and from 13-18 µm with filler wire. This change in grain size resulted in 

different strength and fracture location after tensile testing. Adding a filler metal of Mg-AZ61 



27 

 

 

 

wire resulted in enhancement in tensile strength and fracture location,  94% strength of base 

alloy was achieved with filler wire compared to 90% without the filler wire [47]. 

Sun and Karppi (1996) studied the application of electron beam welding for the joining of 

dissimilar metals, the high density of energy and the high control of beam size and location 

make this process very attractive, and the process shows great potential for joining dissimilar 

metals. 

Balasubramanian et al. (2011) suggested the applications of electron beam welding and laser 

beam welding methods are considered more appropriate to join Ti-alloy, although these are 

expensive alternatives. The literature shows a great interest in joining Ti-6Al-4V alloy using 

electron beam welding, and the results show that higher tensile strengths at the joint is achieved 

when compared with other welding techniques such as laser welding or gas tungsten arc welding 

[46]. 

Scintilla et al. (2010) discussed the welding of Mg-AZ31 alloy sheet with thickness of 3.3 mm 

using the YAG laser under the presence of helium and argon inert gases. Three values for power 

input were investigated; 1750W, 1875W, and 2000W. The lower heat input resulted with the 

highest ultimate tensile strength (UTS) about 95% of base alloy strength. The weld bead showed 

less defects in case of 1750W, where surface defects appeared on the bead surface for higher 

power inputs with less deep penetration [48]. 

Quan et al. (2008) discussed the use of CO2 laser for joining three dissimilar magnesium alloys 

namely; Mg-AZ31, AM60 and ZK60. The tensile strength value was very close for those values 

of parent metal alloys (90% of base metal alloys). Higher welding speed of 3.5mm/min resulted 

in shorter weld bead compared to welding speed of 2mm/min. Furthermore, heat affected zone 
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was wider when welding AM60 and ZK60 compared to Mg-AZ31. The hardness tests indicate a 

sudden decrease at the heat affected zone (HAZ) compared to the base metal alloy [49]. 

In fusion welding the high heat input affects the parent metal microstructure i.e. coarsening of 

the grain size, deterioration in the mechanical strength, micro-voids and hot cracks inside joint 

zone [50ï52]. The main concern about the application of fusion welding to the joining  Ti-6Al-

4V and Mg-AZ31 is the difference in the melting point between these two alloys (i.e. liquidus 

point for Mg AZ31 is 628
o
C [17], where the melting point of Ti-6Al-4V is 1600

o
C). This 

difference in melting points makes fusion welding process not applicable for joining these two 

dissimilar alloys. In regards to joining dissimilar metals and alloys, other joining techniques 

include diffusion bonding, brazing, and adhesive joining is mainly used in order to overcome the 

difficulties faced in fusion welding techniques. This is because melting of the parent alloy is 

avoided and the parent metal microstructure remains in solid-state format. Diffusion bonding is 

considered superior for dissimilar metal joining and is still the highest in publications among 

other joining techniques [45]. 
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2.4.3 Adhesive bonding  

The use of adhesive bonding as another alternative to join dissimilar metals has been 

documented in the literature [53]. Materials used for adhesive bonding can be classified either as 

thermoplastic (which is water soluble and melt with heating) or thermosetting (which is not 

water soluble and burn with heating). The advantage of using adhesives includes no weight gain, 

uniform distribution of stress, and provides bonding over irregular surfaces, as well the 

application to complex shapes which reduces the amount of machining after joining. The process 

includes surface preparation of the bonding metals and applying the adhesive in the form of a 

liquid, and curing the adhesive to achieve full joint strength [54]. 

Joining metal to metal or metal to polymer is possible using adhesive bonding. The use of 

adhesive have an advantage of reducing the weight of the bonding components, also it does not 

distort the joint region as in fusion welding. The process include some limitations such as safety 

because the adhesive material is flammable, emission is not controlled and time consuming for 

curing [55].   

The main disadvantage of adhesives is that the joint cannot be used in service temperatures 

above 300
o 

C and is sensitive to environmental conditions (e.g. water moisture and humidity). 

Joint design is critical for the success of adhesive joints and joint design which uses shear for 

adhesive applications must be encouraged [53]. 

 

 



30 

 

 

 

2.4.4 Soldering and Brazing  

Soldering and brazing processes involve joining using metal interlayer placed between two 

parent metal surfaces and the process includes heating the filler metal until it melts. The main 

difference between soldering and brazing is the joining temperature, such that in soldering the 

applied process temperature is less than 450
o
C, where in brazing the applied process temperature 

is greater than 450
o
C. Three steps can explain the mechanism of joining and involves surface 

wetting, alloying with the surface and spreading through capillary action. The brazing process 

can be carried out in vacuum or in air. 

Soldering and brazing is considered as a possible joining technique to solve the joining problem 

faced in fusion welding since the parent metals remain in the solid state. Brazing is considered as 

one of the most widely acceptable techniques for joining dissimilar metals and alloys [56,57]. 

Chan and Shiue (2003) reported the brazing of Ti-6Al-4V to a molybdenum alloy (T2M) using 

pure silver as an interlayer, and sound joints were achieved at 1000
o
C [56]. 

Liu et al. (2002) studied the process of brazing Ti-6Al-4V to 304 stainless steel using three 

different silver based alloys as interlayers. The Ti-6Al-4V suffered from phase separation at a 

brazing temperature of 860
o
C. It was suggested that the use of silver as braze material with 

titanium based alloys, such that the formation of TiAg intermetallics enhanced the toughness of 

the joint. The advantage of using silver as braze interlayer was that the melting point of silver 

was less than the transition temperature from Ŭ to ɓ [57]. 

In both soldering and brazing the service temperature of the joint must be below the melting 

point of the soldering or brazing materials. 
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2.4.5 Solid-state Diffusion Bonding 

In the solid-state diffusion bonding process, the surface of the metals to be joined are brought 

together and this intimate contact allows for interdiffusion of elements across the bond interface 

and allows for micro-plastic deformation which together form the bond [58]. The parameters 

involved in solid-state bonding includes: bonding time, bonding temperature, contact pressure, 

and surface roughness. It is suggested that the bonding time and bonding temperature are the 

most critical parameters that can affect joint shear strengths [59]. Furthermore, in solid-state 

diffusion bonding, an interlayer can be used to facilitate the joint formation [60ï62]. The 

bonding process takes place at a temperature between 60%-80% of the melting temperature of 

the parent metal or the interlayer. Interdiffusion occurs between the parent metal and the 

interlayer, high pressure is required to achieve a sound joint [63].  

Applying solid-state diffusion bonding at elevated bonding temperature and bonding pressure 

resulted in change in the microstructure within in the bonding zone and at the joint interface 

[64]. These changes affect the properties of the joint and can result in either the enhancement or 

deterioration of the joint strength. Dissimilar metals can be successfully joined together using 

diffusion bonding with minimum effect on the joint region and interface. The bonding process is 

performed so that the bonding temperature is less than the solidus temperature of the parent 

metals in a dissimilar joining system. 

The solid-state bonding of two dissimilar metals; Cu and Fe has been studied under elevated 

temperature (above 800
o
C) and high bonding pressure (1.15 to 3.85 MPa). It was noticed that the 

microstructure near the bond interface has changed. The mechanism controlled the bond 

formation is assumed to be the interdiffusion across the bond interface between Cu and Fe which 

also decided the final joint properties. Two processes was also noticed; solid-state precipitation 






































































































































































































































































































































































































































































































