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Abstract

Soil moisture (SM) is widely used in analyzing the interaction of ground and atmosphere.

It has applications in many disciplines including but not limited to weather forecasting and

hydrological modeling. Measuring SM is di�cult. It has been traditionally carried out by

time-consuming �eld work consisting of direct ground-based soil sampling. Remote sensing

seems promising for estimation of SM, because of its unique data gathering speci�cations.

Among di�erent sensors in remote sensing, synthetic aperture radar (SAR) sensors have

attracted considerable attention for SM estimation because of their high resolution, inde-

pendence from weather conditions, and sensitivity to changes in soil dielectric constant,

which can be used to quantify SM.

The relationship between the observations of a SAR system and the dielectric constant

of soil is usually described using a mathematical model known as surface scattering model.

A class of information which can be utilized in post-processing the outputs of these models

to improve their performance include the information about the spatial variability of SM.

Analyzing the spatial variability of SM can help in calibrating the results of the scattering

models. A model may be established for predicting the di�erence between the outputs of a

scattering model and the �eld-measured SM using a set of concurrent SAR data and ground

measurements, which may be generalized to SAR data acquired on other dates.

In this thesis, the spatial variability of SM estimated by the Integral Equation Model

(IEM) is analyzed by the STRAIN multifractal model which is a multi-resolution tool. The

IEM is selected because of its superior inversion pattern which is necessary for multifractal

analysis. We propose a simple calibration model for improving the quality of the results of

the IEM based on the relationship between the parameters of the multifractal model and

ground measurements of SM.

The results of the experiments in this study show that, the proposed calibration model
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is, to some extent, robust when considering SAR images acquired on di�erent dates, and can

usually improve the agreement between ground measurements of SM and SM estimated by

the IEM.
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Chapter 1

Introduction

1.1 Background

Agricultural productivity plays a signi�cant role in the economic development of most coun-

tries, and is highly dependent on availability of water. Thus, management of water resources

at the farm and regional level is a global issue that needs to be addressed. Acquiring precise

information about soil moisture (SM) is a main factor a�ecting preparation of a suitable

water resource management scheme (Heathman et al., 2003). Soil moisture, also known as

soil water content, is usually de�ned as the amount of water contained between soil particles.

It is a quantity widely used in analyzing the interaction of ground and atmosphere (Shang et

al., 2007). SM, at di�erent spatial and temporal scales, has applications in many disciplines

(Quattrochi et al., 2004), including but not limited to climate prediction (e.g., (Ni-Meister

et al., 2005)), weather forecasting (e.g., (Anantharaj et al., 2008)) and hydrological modeling

(e.g., (Houser et al., 1998)). Especially, estimating SM accurately and producing maps of its

spatial and temporal changes and anomalies can improve the quality of monitoring drought

(Shao-E et al., 2010) and �ood risk (Jeyaseelan, 2003) which are serious problems in many

regions of the world.

SM estimation is di�cult. It has been traditionally carried out by �eld work consisting of

direct ground-based soil sampling and water content quanti�cation. This type of measure-

ment is time consuming and expensive. Although modern probes now facilitate the process,

measuring SM using these probes is still time consuming and costly, and still needs calibra-

tion by the direct gravimetric method. Installing permanent probes can help in reducing

the e�ort needed to collect SM information, but this cannot be a practical method for large

areas. Furthermore, an intrinsic weakness is associated with ground measurement of SM:

1



each measurement can represent the status of SM for only a small area, probably a few

centimeters, about the measurement location. Therefore, it is di�cult to create a SM map

using ground measurements.

Given the di�culties involved in traditional measurements of SM, the scienti�c commu-

nity has shown a lot of enthusiasm for using remote sensing (RS) in estimation of surface SM

(Wang et al., 2009). RS seems promising for estimation of surface SM, because of its unique

data gathering speci�cations. The advantages of using RS for the estimation of SM content

(namely speed, regular revision, wide-area coverage and being cost-e�ective) over traditional

�eld-based methods of measurement have been a motivation for extensive research (Bagh-

dadi et al., 2006b). RS measurements are also non-destructive, in that we do not need to

touch the soil to assess it spatially (Anderson et al., 2009). Research on SM using remotely

sensed images started in the 1970s (Laymon et al., 2001)(Schmugge et al., 1974) and it is

still an active �eld of research.

Estimation of SM using RS data has been made possible through a number of models,

which connect the observations of RS sensors to SM. The main problems with establishing

a connection between RS observations and SM is that (Goward et al., 2002):

1. Many objects, for example soil, vegetation cover and woods, contribute to the

�nal response from every single ground pixel received by the sensor. Thus, the

contribution of soil to what sensor has detected is not clear.

2. Many factors, including SM, soil roughness and slope, may a�ect the condition

of the wave which transmits back to the sensor. Therefore the e�ect of each

one must be analyzed separately in order to accurately estimate SM.

3. In many cases, electromagnetic radiation is changed during its travel from data

collection platform or sun to ground surface and/or from ground surface to

platform. Therefore, atmospheric corrections, which usually need theoretical

2



models and considerable amount of ground-based measurements (Katra et al.,

2006), may be necessary while estimating soil surface parameters.

Consequently, there are usually more unknowns than known parameters when we intend to

use RS data for SM estimation, and some simplifying assumptions have to be made during

the modeling.

1.2 Motivation

Di�erent regions of the electromagnetic spectrum have been studied for the purpose of SM

estimation by remotely sensed data. Because of the sensitivity of microwave sensors to

changes in SM content, these sensors are more suitable for estimation of SM. Thus, syn-

thetic aperture radar (SAR) sensors which work in the microwave region of electromagnetic

spectrum, are less a�ected by weather conditions, and can produce high-resolution images

seem suitable in monitoring SM for agricultural purposes. These sensors are able to generate

SM information at �eld scale (about 500-800 m) which is the target scale in this study.

SAR based models usually estimate a physical property of soil called the dielectric con-

stant, and then, another model is used to convert the dielectric constant of soil to SM. In the

case of SAR, the relationship between the observations of the system and the dielectric con-

stant of soil is usually described using a mathematical model known as surface backscattering

model. As is the case with every model describing a natural phenomenon, SAR backscatter-

ing models are not perfect, i.e. they are subject to errors while converting SAR observations

to soil dielectric constant. This can be the result of the interference of the e�ect of soil sur-

face roughness and the vegetation covering the soil surface. In order to improve the accuracy

of the results of the models, researchers have usually tried to either remove the approxima-

tions and simplifying assumptions from the model (Fung et al., 2002)(Wu et al., 2001)(Oh,

2004b), or improve the way roughness and vegetation parameters are handled in the model

(Baghdadi et al., 2006a)(Sikdar et al., 2004).
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Another approach, which has attracted less attention in the SM estimation literature,

is to leave the models as is and try to improve the performance by incorporating ancillary

information in the process of the inversion of the model or as a post-processing step. This

information can include some SM or roughness parameters from ground measurements or

coarse hydrological models (Mattia et al., 2006), or images from optical or passive microwave

sensors (Prakash et al., 2012)(Notarnicola et al., 2001). There are other sources of informa-

tion which can be imagined as constraints in the inversion process. Multi-temporal images

are an example of such sources, which result in construction of temporal constraints, and

have already been successfully used (Mattia et al., 2009). These constraints are based on

the assumption that soil surface roughness does not change much between consecutive image

acquisitions, and thus, the parameters of soil surface roughness can be assumed constant in

the inversion process. This approach can also be seen in recent papers like (Kim et al., 2012),

which uses Maxwell 3D model with simulated and truck-mounted radar data to evaluate a

multi-temporal method.

Another class of information which can be utilized in post processing the outputs of SAR

backscattering models include the information about the spatial variability of SM. SM is

highly variable in space and time. Analyzing the spatial variability of SM and its changes

over a range of scales can help in calibrating the results of the backscattering models, as

we will see in the results of the experiments performed in this study. A model may be

established for predicting the di�erence between the outputs of a backscattering model and

the �eld-measured SM using a set of concurrent SAR data and ground measurements, which

can be, to some degree, generalized to SAR data acquired on other dates. This is the core

approach to improve the quality of SM estimated using SAR backscattering models in this

thesis. To the best knowledge of the author, analyzing the spatial variability of SM has never

been utilized for this purpose in any study before. Our objectives in this research have been:

• to analyze the spatial variability of ground-measured and model-estimated SM
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values by the models commonly used for this purpose

• to investigate the feasibility of using the information obtained from the analysis

of the spatial variability of SM to improve the quality of SM estimation using

SAR backscattering models

1.3 Organization of the Thesis

This thesis is organized as follows: In Chapter 2 we cover the physical properties of soil

and the methods used for measurement and estimation of SM. In Chapter 3 we review the

methods for estimating SM by SAR images, which are the images used in this research, in

detail. Chapter 4 contains a description of the spatial variability of SM and the models

proposed in the literature for explaining this variability in a region. In Chapter 5 Radarsat-

2 satellite images and the �eld measurements of SM we have used to carry out our tests

and analyses will be explained. It also includes a description of the processing steps for

preparing the images, the parameters selected, and the measures used for evaluation of the

performance of implemented models and algorithms. Chapter 6 contains the results of SM

estimation using the models explained in Chapter 3 and analysis of the spatial variability

of SM using the models introduced in Chapter 4. Finally, in Chapter 7 conclusions from

running the experiments and some suggestions for future research will be presented.
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Chapter 2

Soil Moisture and Its Estimation

In this chapter we introduce the physical properties of soil related to estimation of SM, and

brie�y review the methods used for measurement and estimation of SM.

2.1 Soil Mixture Components

Soil can be considered as a collection of natural layers made from a mixture of solid particles

(minerals and organic matter), air and water (Figure 2.1). These components are mixed in

a state that their quantitative separation is di�cult (Behari, 2005). SM is de�ned as the

ratio of the volume (or mass) of the water in soil to the total volume (or mass) of soil. Thus,

volumetric SM is de�ned as

mv =
VW
VT

(2.1)

where VW is the volume of water in soil and VT is the total volume of soil. Usually the

number obtained from this equation is multiplied by 100 and is stated in units of volumetric

percent (vol.%).

Solid particles can be classi�ed using their size (diameter) into sand, silt and clay. Tra-

ditionally, three quantitative ranges have been used to determine the type of soil particles:

• Sand: d > 0.05 mm

• Silt: 0.002 mm < d < 0.05 mm

• Clay: d < 0.002 mm

where d is the particle size. These three types of particles can be evenly distributed in soil,

or the soil may be composed of a high dominance of one particle type and small percentages
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Figure 2.1: Schematic cross section of soil

of others. The texture of soil is classi�ed based on the ratio of these three particle types.

The soil classi�cation triangle depicted in Figure 2.2 can be used to determine the class

of soil texture according to a method devised by United States Department of Agriculture

(Behari, 2005). Soil texture can a�ect the dielectric constant of soil (see section 2.2) and

hence the RS observations of soil. Soils with equal dielectric constant values but di�erent

relative amounts of sand, silt and clay can have di�erent moisture values (Wang et al., 1980).

But, when accurate texture information is not available for the soil under study (as is the

case with our data set) its e�ect is neglected.

2.2 Dielectric Constant of Soil

Electric dipole moment vector for two electric charges +q and −q is de�ned as (Atkins et al.,

2006)

µ = qR (2.2)

where R is the vector of distance between the charges, pointing toward the positive charge.

Molecules with separated centers of positive and negative charges have an electric dipole
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Figure 2.2: Soil classi�cation triangle (adapted from (Soil Survey Division Sta�, 1993)):
Decision about the name of a given soil with known sand, silt and clay percentages can be
made by �nding the location of soil in the triangle. For a given percentage of sand, silt and
clay, �rst, the point corresponding to the percentages should be found on sand, silt and clay
axes. Then, the points are projected inward parallel to silt, clay and sand axes, respectively.
Location of the given soil will be the intersection point of the three projection lines, and
class name is determined from the partition that the intersection point lies. Location of an
example soil with 30% sand, 45% silt and 25% clay is shown in the graph (green point). The
soil is determined as being Loam according to its location.
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(a) Separate charges (b) Molecule of water

Figure 2.3: Electric dipole moment: Figure (a) shows the electric dipole moment vector µ
for two charges +q and −q separated by distance vector R. In �gure (b), direction of dipole
moments µ1 and µ2 for oxygen and hydrogen atoms in a molecule of water is shown. The
overall dipole moment for the molecule, µ, is the result of vector addition of µ1 and µ2.

moment, and those with permanent dipole moments are called polar molecules. If there are

more than one dipole moment in a molecule, the total moment is calculated by adding the

vectors of all dipole moments (Figure 2.3) (Atkins et al., 2006).

When an electric �eld is applied to a material with polar molecules, the dipole moments of

its molecules tend to align with the electric �eld. Dielectric constant or relative permittivity

of a medium shows the ability of its molecules to align their dipole moments along an applied

electric �eld (Behari, 2005). In other words, the dielectric constant shows the ability of the

material in getting polarized when exposed to an electric �eld (Chudinova, 2009). When

time elapses, the electric �eld changes and the dipole moment must align with the electric

�eld again. However, loss of energy in the material causes a phase di�erence between the

applied �eld and the dipole. In other words, the polarization does not happen immediately.

In general, the dielectric constant is treated as a complex number

εr = ε′ − jε′′ (2.3)

to allow representing a phase di�erence. Because, a complex number can be used to show

both an amplitude and a phase. The real part of the dielectric constant, ε′, re�ects the stored

energy in the medium, and the imaginary part, ε′′, is related to the amount of energy loss

(Fannin et al., 2002). Estimation of SM when illuminated by synthetic aperture radar (the

type of sensor we have used in this study; see section 3.1) signals often becomes possible
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via estimation of the soil dielectric constant. Indeed, the quantity obtainable by surface

scattering models (see section 3.2) is the dielectric constant of the soil, which can be later

converted to a volumetric SM value using dielectric mixing models (see section 3.3).

Several studies have shown that the sensitivity of the real part of the dielectric constant

to changes in SM is much higher than the imaginary part (Schmugge, 1985)(Hallikainen

et al., 1985)(Ulaby et al., 1986) (as cited in (Altese et al., 1996)). Thus, for the purpose of

estimation of SM, it can be assumed that the dielectric constant of the soil is a real number.

This assumption will hold throughout this thesis for simplifying the process of inversion of

the backscattering models.

For microwave frequencies dielectric constant of free water is high (about 80) comparing

to the water in soil. The reason is that dipole moments of water molecules can freely align

with an applied electric �eld. Thus, any thing that can restrict the molecule rotation of

molecules of water can decrease the dielectric constant of water. For example, freezing can

reduce the dielectric constant of soil. The water molecules inside a body of soil can also

be bound to soil particles, and may not align with an applied �eld as easily as free water

molecules outside. Thus, the water in soil has a lower dielectric constant.

When soil starts absorbing water, the molecules that �rst enter the soil cannot increase the

dielectric constant of soil much. Because, these molecules are tightly bound to the surface of

solid particles of the soil, and their dipole moments cannot be adjusted to the direction of an

applied �eld unrestrictedly. Thus, the increase in the dielectric constant of soil remains slow

below a transition point. As more water is added to soil, new water molecules become more

distant from the surface of particles, and the binding forces become weaker. Consequently,

water molecules can rotate with less di�culty, and the dielectric constant of the soil increases.

The behavior of soil in response to precipitation can be a�ected by this process.

Binding forces are stronger in clay for which the size of solid particles are smaller, and

hence, the area of their surfaces are larger. In this case, more water needs to penetrate the
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soil before water molecules start to move freely and contribute more in dielectric constant

of soil. This results in a higher transition point for clay than silt and sand (Behari, 2005).

2.3 Soil Surface Roughness

As we will see in section 3.1, in addition to the properties of the wave transmitter and the

dielectric properties of the object, the properties of the wave backscattered from an object

depends on the geometry of the object. In surface backscattering models, geometry of the

object is described using the parameters of the roughness of the soil surface. Therefore,

characterization of the roughness is an important factor in modeling the backscattered wave

from the soil. Soil surface roughness also a�ects the estimation of SM by passive microwave

sensors.

Soil roughness is usually described by three parameters: RMS height, correlation length,

and auto-correlation (correlation) function. These are usually determined by analyzing the

distribution of soil heights (with respect to a known reference) along horizontal soil pro�les

(Verhoest et al., 2008).

The surface correlation function plays a key role in determination of the response of

soil to the SAR signal. Indeed, di�erent correlation functions may result in very di�erent

outputs in models such as the Integral Equation Model (see section 3.2.2.1) which need

the correlation function. Usually the surface is assumed to be isotropic, causing a one-

dimensional correlation function, which can be calculated as (Verhoest et al., 2008)

C(ρ) =

N− ρ
∆x∑

i=1

zizi+ ρ
∆x

N∑
i=1

z2
i

(2.4)

where zi is the ith height observation, N is the number of observations, and ∆x is the

resolution of pro�le. The function can be de�ned using height measurements in the �eld,
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but usually a well-known function is used as the correlation function. The most common

correlation functions in literature are (Verhoest et al., 2008)

• exponential correlation function: C(ρ) = σ2e−( ρ
l
)

• Gaussian correlation function: C(ρ) = σ2e−( ρ
l
)2

where σ is the RMS height and l is the correlation length. A fractal correlation function

C(ρ) = σ2e−( ρ
l
)τ (2.5)

has also been used for describing the relation of surface heights (Baghdadi et al., 2004).

Here, τ = −1.67D + 3.67 and D is the fractal dimension assumed to be approximately

1.4 for agricultural lands. Indeed, the fractal correlation function has been applied because

natural surfaces are often more complicated than what exponential and Gaussian functions

describe, and they are special cases of fractal function for τ = 1 and τ = 2, respectively. It

has been shown that fractal correlation functions have always generated better or about the

same quality results compared to Gaussian and exponential correlation functions (Li et al.,

2002).

RMS height describes the vertical variations of soil surface heights and can be obtained

from �eld observations along a pro�le by (Verhoest et al., 2008)

σ =

√√√√ 1

N

[(
N∑
i=1

z2
i

)
−Nz̄2

]
(2.6)

where z̄ is the mean height

z̄ =
1

N

N∑
i=1

zi (2.7)

The correlation length describes the horizontal variations of the surface heights, and

is de�ned as the horizontal distance over which the correlation of the surface heights is

more than 1/e = 0.368. Unlike its simple de�nition, measuring the correlation length is

complicated (Verhoest et al., 2008). It has been shown that, in order to gain a 10% precision
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in measurement of the correlation length, the length of the pro�le should be at least 200

times the mean correlation length (Oh et al., 1998).

The degree of roughness or smoothness of soil surface depends on wavelength of the wave

which is used to sense the soil and on incidence angle (see section 3.1). A surface can be

rough for a wavelength and smooth for another. Rayleigh's criterion for surface roughness

states that, a surface can be considered as smooth if

σ <
λ

8 cosθ
(2.8)

where λ is the wavelength and θ is the incidence angle (Reddy, 2008). There is also a stricter

criterion called Fraunhofer criterion which is stated as (Ulaby et al., 1982) (as cited in (Pinel

et al., 2010))

σ <
λ

32 cosθ
(2.9)

According to these criteria, waves with longer wavelengths are more tolerant of changes in

surface heights, i.e. sensors using such waves can see surfaces with larger RMS heights as

smooth. Since roughness is a disturbing factor in estimation of SM, microwave sensors with

longer wavelengths, such as L-band sensors, are more suitable for SM estimation. Because of

the dependence of the degree of roughness on wavelength, RMS height and correlation length

are usually scaled by wavenumber (see section 3.1) and expressed as kσ and kl, respectively.

2.4 Penetration Depth

The depth to which an electromagnetic wave can penetrate into soil depends highly on dielec-

tric constant of the soil and wavelength of the electromagnetic wave. As an electromagnetic

wave penetrates into a soil pro�le it attenuates, i.e. its power decreases. Penetration depth,

Pd, is usually de�ned as the depth at which the power of the wave reduces to 1/e of its power

before entering the soil, and can be approximately calculated by (Rees, 2001)

Pd =
λ
√
ε′

2πε′′
(2.10)
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Since the dielectric constant is unitless, Pd and λ have the same units in this equation.

According to this equation, waves with longer wavelengths (lower frequencies) can penetrate

into soil pro�le more, and thus, microwave sensors working in lower frequencies can get

information from deeper layers of soil. Figure 2.4 shows the penetration depth of waves with

frequencies from 1.4 GHz to 18 GHz for a sandy-loam soil (65% sand, 5% clay and 30% silt)

for four di�erent moisture levels (5%, 10%, 15% and 20%). Obviously, penetration depth

decreases as soil becomes wetter, or frequency becomes higher. The blue (dash-dot) line

shows the Radarsat-2 data acquisition frequency. In this frequency the wave can penetrate

into a low moisture soil about 7 cm before its power reduces to 1/e of its original value.

Penetration depth values in Figure 2.4 have been calculated using equation (2.10). An

empirical model1 proposed by Hallikainen et al. (1985) has been used to convert soil moisture

level, mv, to real and imaginary parts of the dielectric constant, ε′ and ε′′:

ε′ or ε′′ = (a0 +a1×S+a2×C) + (b0 + b1×S+ b2×C)mv + (c0 + c1×S+ c2×C)m2
v (2.11)

In this equation, S and C are percentage of sand and clay in soil mixture, respectively. a0,

a1, a2, b0, b1, b2, c0, c1 and c2 are constant coe�cients which depend on frequency, and are

presented in Table 2.1 and Table 2.2. Separate sets of coe�cients are used for calculating ε′

and ε′′.

At the wavelengths used in remote sensing, the physical interaction of an electromagnetic

wave with soil is complex to model, and the penetration depth is usually estimated to be in

the 0-5 cm range (Adams et al., 2013). If the dielectric constant of soil changes smoothly

with depth, the backscattering of an illuminating electromagnetic wave can be assumed to

occur completely at the soil surface. However, discontinuities in the dielectric properties of

soil may result in backscattering within the volume of the soil (Walker, 1999). The scattering

models used for estimation of SM using SAR which will be introduced in section 3.2 assume

that SM is uniformly distributed down to the depth that the sensor can receive signals from.

1This type of model is called dielectric mixing model as explained in section 3.3
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Figure 2.4: Penetration depth of waves with frequencies from 1.4 GHz to 18 GHz into a
sandy-loam soil (65% sand, 5% clay and 30% silt) for four di�erent moisture levels (5%, 10%,
15% and 20%). The blue (dash-dot) line shows the location of Radarsat-2 data frequency
(≈ 5.4 GHz).

Table 2.1: Coe�cients used for ε′ in the empirical model by Hallikainen et al. (1985)
Frequency
(GHz)

a0 a1 a2 b0 b1 b2 c0 c1 c2

1.4 2.862 -0.012 0.001 3.803 0.462 -0.341 119.006 -0.500 0.633
4 2.927 -0.012 -0.001 5.505 0.371 0.062 114.826 -0.389 -0.547
6 1.993 0.002 0.015 38.086 -0.176 -0.633 10.720 1.256 1.522
8 1.997 0.002 0.018 25.579 -0.017 -0.412 39.793 0.723 0.941
10 2.502 -0.003 -0.003 10.101 0.221 -0.004 77.482 -0.061 -0.135
12 2.200 -0.001 0.012 26.473 0.013 -0.523 34.333 0.284 1.062
14 2.301 0.001 0.009 17.918 0.084 -0.282 50.149 0.012 0.387
16 2.237 0.002 0.009 15.505 0.076 -0.217 48.260 0.168 0.289
18 1.912 0.007 0.021 29.123 -0.190 -0.545 6.960 0.822 1.195
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Table 2.2: Coe�cients used for ε′′ in the empirical model by Hallikainen et al. (1985)
Frequency
(GHz)

a0 a1 a2 b0 b1 b2 c0 c1 c2

1.4 0.356 -0.003 -0.008 5.507 0.044 -0.002 17.753 -0.313 0.206
4 0.004 0.001 0.002 0.951 0.005 -0.010 16.759 0.192 0.290
6 -0.123 0.002 0.003 7.502 -0.058 -0.116 2.942 0.452 0.543
8 -0.201 0.003 0.003 11.266 -0.085 -0.155 0.194 0.584 0.581
10 -0.070 0.000 0.001 6.620 0.015 -0.081 21.578 0.293 0.332
12 -0.142 0.001 0.003 11.868 -0.059 -0.225 7.817 0.570 0.801
14 -0.096 0.001 0.002 8.583 -0.005 -0.153 28.707 0.297 0.357
16 -0.027 -0.001 0.003 6.179 0.074 -0.086 34.126 0.143 0.206
18 -0.071 0.000 0.003 6.938 0.029 -0.128 29.945 0.275 0.377

But, this assumption may not correspond to actual conditions of soil. Indeed, it has been

empirically shown that this assumption is only valid for wet soils, while in dry soils SM

increases as the depth increases (Le Morvan et al., 2008). Drier soil in upper layers of soil is

expected because they are exposed more to air and sunlight, and due to in�ltration2 (Adams

et al., 2013).

In order to address this de�ciency in the models, researchers have tried to introduce

variable SM pro�les into the models. For example, Fung et al. (1996) proposed to use

an e�ective dielectric constant in the Integral Equation Model (see section 3.2.2.1) which

was calculated by an exponential dielectric constant transition model for dry soils. This

method was later shown to be only valid for the top 3 mm layer of soil (Walker et al.,

1997). A more recent algorithm for improving the Integral Equation Model was presented

by Le Morvan et al. (2008) in which the soil medium was modelled as a three-layer dielectric.

Their experiments with ground measurements showed that the simulations of backscattering

coe�cient by their proposed method was not di�erent than the simulations of the Integral

Equation Model when the soil was wet. According to (Le Morvan et al., 2008), the studies

with the aim of investigating the e�ect of non-uniform SM pro�les on the backscattered

signal have made, in general, only slight improvements in SAR backscattering modeling.

2In�ltration is the process during which water penetrates into the soil pro�le (Hillel et al., 1998).
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As can be seen in Figure 2.4, the penetration depth of microwave into the soil can be as

small as 1 cm or less. However, the devices used for measuring SM for the purpose of calibra-

tion or validation of SM estimation by remote sensing methods usually yield an integrated

measurement over a much larger depth (e.g., 0-5 cm). The selection of this measurement

depth is because of the geometry of the available measurement devices (Escorihuela et al.,

2010). In Figure 2.5 a schematic representation of the device used for ground measurements

of this study is depicted. This device which is called ThetaProbe has four rods of 6 cm length

and 2 mm diameter (Adams et al., 2013). When the rods are inserted into soil, the device

can yield the value of SM for the soil between the rods. Although it is also possible to use

this device in a horizontal state to measure SM at a smaller depth, this may not be always

possible, and may need some digging into the soil to insert the rods into the soil horizontally.

Thus, it is easier to use the device in a vertical state as shown in Figure 2.5. In the recent ex-

periments of Adams et al. (2013) for estimating the average SM value for 72 �eld sites using

a ThetaProbe at two depths of 3 cm and 6 cm, a strong linear correlation was found between

the average SM of sites calculated at these two depths. However, they found the di�erence

between the distribution of the SM values at these two depths to be statistically signi�cant

for 32% of the sites. It has been suggested by di�erent studies that the di�erence between

the operating depth of the SM measurement device and the microwave observation depth

may result in systematic errors while evaluating the SM estimation algorithms (Escorihuela

et al., 2010)(Bruckler et al., 1988).

The ground measurements used in this study are also carried out for the top 6 cm layer

of the soil, and the penetration depth of the C-band radar waves used in this research may

be di�erent than the depth at which �eld SM has been measured. This mismatch may

cause inaccuracies in evaluation of the algorithms. However, as we will see in Chapter 6, the

calibration model proposed in this study for improving the results of SAR backscattering

models is established using a relationship between the ground measurements and variations of
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Figure 2.5: Schematic representation of a ThetaProbe (Delta-T Device Ltd., Cambridge,
UK) (From (Adams et al., 2013))

the backscattering model outputs. This connection may be able to alleviate the inaccuracies

caused by the depth mismatch.

2.5 Ground-Based Methods for SM Estimation

SM may be measured by three methods: direct gravimetric method, dielectric constant usage

and neutron scatter detection (Schmugge et al., 1980). In the gravimetric method, soil is �rst

sampled and then dried in an oven, so that we can have its weight before and after drying.

The di�erence between the two weights shows the water content and can be further used to

calculate SM percentage as the ratio of water weight to total weight. Given the volume of

soil, one can further calculate volumetric SM. This is a direct destructive approach for SM

estimation. Indirect non-destructive SM measurement is possible by sensing other properties

of the soil, and then computing SM values by relating these properties to SM. Two of these

properties are dielectric constant of the soil and hydrogen content.

As mentioned earlier, dielectric constant, also known as relative permittivity, is a pa-

rameter describing how a dielectric material acts when exposed to an electrical �eld. This

parameter is measured in two major ways for soil: Time Domain Re�ectometry (TDR) and

Frequency Domain Re�ectometry (FDR). TDR works by transmitting electromagnetic waves
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through soil. Wave velocity is calculated by measuring the length of time required for the

wave to propagate in soil. The velocity is related to dielectric constant of the soil, which

in turn depends on volumetric soil water content (Dalton et al., 1986). Faster transit time

means less humidity of soil. FDR is based on calculating the capacitance of soil, which is

arranged to be part of a circuit (Dean et al., 1987). Soil capacitance is a property which

shows how soil can keep electrical charge and is a function of dielectric constant. Therefore,

detecting the amount of capacitance can yield the amount of SM.

Another class of SM sensors exists that is based on neutron scattering phenomenon. High-

energy neutrons sent out by special radioactive material, like radium-beryllium (Wormald

et al., 1969), are slowed down as a result of collision with hydrogen atoms, and make a

neutron cloud. Density of this cloud, which is sensed in the device, is associated with the

amount of hydrogen, or water, in soil (Chanasyk et al., 1996).

Although ground-based methods are the most accurate techniques for SM measurement,

they are time consuming and their spatial coverage is limited.

2.6 Remote Sensing Methods for SM Estimation

Three di�erent regions of electromagnetic spectrum have been investigated for estimation of

SM: visible and near infrared, thermal infrared and microwave wavelengths (Carlson et al.,

1995). The models used in these regions will be explained in the following sections.

2.6.1 Optical Sensors

The range of wavelengths covered by optical sensors is from visible to thermal infrared (0.7mm

to 13mm). Therefore, they can yield information about the near-surface SM. According

to (Haubrock et al., 2008), when dealing with high spectral resolution optical data, SM

estimation with these data can also be used in improving the results of classi�cation of these

data. Because, SM can a�ect the background re�ectance, and this annoying e�ect can be
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reduced by identifying SM values.

Re�ectance from visible and near-infrared (VNIR) is generally not suitable for SM esti-

mation in outdoor applications (Mekonnen, 2009). Haubrock et al. (2008) review a number of

approaches under three categories: single-band approaches (e.g., Relative Re�ectance (Wei-

dong et al., 2002)), multi-band approaches (e.g., WISOIL index (Whalley et al., 1991)(Bryant

et al., 2003)) and spectral modeling approaches (e.g., Soil Moisture Gaussian Model (SMGM)

(Whiting et al., 2004)). Most of the these methods have been developed under laboratory

conditions where atmospheric errors have been eliminated, but are still sensitive to soil type.

Use of thermal infrared (TIR) data has produced more bene�cial results compared to

VNIR activities (Mekonnen, 2009). Physical principles are described in (Price, 1982) where

it is shown how diurnal soil surface temperature, obtainable from airborne/spaceborne ob-

servations, is related to thermal inertia and water content of soil. The limitation of the

methods which employ thermal inertia is that they are very sensitive to vegetation cover of

the soil, thereby being only applicable on bare lands or lands with little vegetation (Wang

et al., 2009).

Another method using both VNIR and TIR wavelengths exists that is based on calcu-

lation of surface radiative temperature (Ts) and spectral vegetation indices like Normalized

Di�erence Vegetation Index (NDVI) (Moran et al., 2004). The two factors are dependent

on SM via a complex relationship (Chauhan et al., 2003), and for estimating SM, a scatter

plot of surface temperature versus the Vegetation Index (VI) for image pixels is created.

The method is usually called Triangle Method, because the scatter plot, if su�ciently large

number of image pixels are considered, will be similar to a triangle, called universal triangle,

or a truncated trapezoid (Carlson, 2007). Universal triangle is depicted in Figure 2.6. In

this �gure, horizontal and vertical axes show radiative temperature and NDVI respectively,

and O and S indices are for their minimum and maximum values.
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Figure 2.6: Universal triangle (adapted from (Chauhan et al., 2003))

If T and NDVI are scaled by

T ∗ =
T − TO
TS − TO

(2.12)

NDV I∗ =
NDV I −NDV IO
NDV IS −NDV IO

(2.13)

SM can be written as a third order polynomial (Carlson, 2007)

mv =
3∑
i=0

3∑
j=0

aij T
∗i NDV I∗

j

(2.14)

where aij needs to be calculated using �eld measurements. The most important problem

with the triangle method is that interpretation of the scatter plot is subjective, it needs a

large number of image pixels and it is di�cult to identify the shape of the triangle (Carlson,

2007).

Optical RS has seen less improvements in the �eld of SM estimation in recent years

compared to microwave RS (Anderson et al., 2009). Since the �nal spatial resolution of SM

map can be much better than what microwave methods can generate, it seems that more

research work is required on this area.
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2.6.2 Passive Microwave

Passive microwave has been a greatly successful and progressive part of RS in estimation

of SM (Moran et al., 2004). The quantity measured by passive microwave sensors is the

intensity of microwave emission that is proportional to brightness temperature TB (Wang et

al., 2009). The brightness temperature, when only related to soil surface, equals the product

of soil physical temperature and its emissivity (Bindlish, 2000):

TB = e.T (2.15)

where e is emissivity, unity for a blackbody, and T is the true temperature of the soil in

Kelvins (Njoku et al., 1996). According to Kircho�'s reciprocity theorem (Njoku et al.,

1996):

e = 1− r (2.16)

with r being re�ectivity of soil. For a smooth unvegetated soil, re�ectivity can be related to

dielectric constant through Fresnel equations (Engman et al., 1995)(Zheng et al., 2010):

RH =
cos θ −

√
εr − sin2 θ

cos θ −
√
εr + sin2 θ

(2.17)

RV =
εr cos θ −

√
εr − sin2 θ

εr cos θ −
√
εr + sin2 θ

(2.18)

where RH and RV are re�ectivity in horizontal and vertical polarization, εr is the dielec-

tric constant and θ is incidence angle (Wang, 2008). Although according to these simple

equations, given the large signal to noise ratio of passive microwave radiometers and large

di�erence in emissivity of wet and dry soil, SM should be estimated with accuracies better

than 2 vol.%, this is not possible in practice (Njoku et al., 1996). The reason is the exis-

tence of many disturbing factors like surface roughness, vegetation cover, soil heterogeneity,

topography (Mätzler et al., 2000), soil texture and temperature variability. Di�erent ways

have been suggested to alleviate the e�ect of the parameters which contribute to emission
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from soil (Wigneron et al., 2003); however, surface roughness and vegetation correction are

the only two corrections which are usually applied (Jackson, 1993) (Wang et al., 2009).

The most-widely used model for roughness correction is simple Q/H model (Wang et al.,

2009) proposed by Choudhury et al. (1979) using nadir observations and then generalized

for any arbitrary incidence angle in (Wang et al., 1981). When working with wavelengths

longer than 5 cm (Bindlish, 2000) or in large-scale SM mapping (Wigneron et al., 2003),

the magnitude of error caused by roughness is negligible as well and can be left out. But,

before re�ectivity values from above mentioned model can be used in Fresnel equations,

the e�ect of vegetation should be removed as well, and this in turn needs the vegetation

temperature. Obtaining the physical temperatures of soil and/or vegetation layer is possible

using concurrent satellite thermal infrared image acquisitions (Jackson, 1993).

Some of the currently-available passive microwave sensors aboard earth observation satel-

lites are listed in Table 2.3. As seen in the table, the spatial resolution of these sensors is

usually in the order of a few kilometers and this makes them more useful for global and

regional hydrological purposes.

2.6.3 Synthetic Aperture Radar (SAR)

SAR sensors seem suitable for large scale SM estimation, because of their high resolution,

independence upon weather conditions, and sensitivity to the SM. As a microwave sensor,

SAR is sensitive to the changes in dielectric constant of the soil, and the dielectric constant

of a dry soil (about 5) is very di�erent than the dielectric constant of water (about 80). The

value of the dielectric constant itself can be converted to the SM value using a dielectric

mixing model. Thus, quantifying the level of the SM seems to be more accurate by SAR (as

a microwave sensor) than an optical sensor.

In SAR remote sensing of SM, di�erences in the electromagnetic dielectric properties

23



Table 2.3: Available passive microwave radiometers (Njoku et al., 2003)(Viltard et al.,
2006)(Dente et al., 2012)(Hollinger et al., 1990)

Sensor Satellite
Spatial

Resolution
(km)

Frequencies
(GHz)

AMSR-E
(The Advanced Microwave
Scanning Radiometer on
Earth Observing System)

Aqua
76× 44, 49× 28,
28× 16, 31× 18,
14× 8 and 6× 4

6.92, 10.65,
18.7, 23.8, 36.5

and 89.0

TMI
(TRMM Microwave

Imager)

TRMM
(Tropical
Rainfall
Measuring
Mission)

7× 5 (85.5
GHz) to 37× 63

(10.7 GHz)

10.65, 19.35,
21.3, 37.0, 85.5

MIRAS
(Microwave Imaging

Radiometer using Aperture
Synthesis)

SMOS
(Soil Moisture
and Ocean
Salinity)

35 to 50 1.4

SSM/I
(Special Sensor

Microwave/Imager)

DMSP
(Defense

Meteorological
Satellite
Program)
satellites

69× 43, 60× 40,
37× 28 and

15× 13

19.35, 22.235,
37.0 and 85.5

of soil is used for quantifying di�erent levels of moisture. The ground surface a�ects the

signal emitted by sensor depending on the amount of SM. This changes the amplitude of

the backscattering coe�cient, σ◦, and the amount of change is related to, among other

parameters, the dielectric properties of the soil. The backscattering coe�cient of a surface

can be shown as the product of two functions: (Sun et al., 2009)

σ◦(θ) = fn(εr, θ) fs(ρ, θ) (2.19)

where θ is the local incidence angle, fn(εr, θ) is the dielectric function which depends on the

relative dielectric constant of the surface, εr, and fs(ρ, θ) is the roughness function which

depends on surface roughness ρ. εr, in turn, depends on the volumetric moisture content

of the soil. Thus, having the backscattering coe�cient and surface roughness information,
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or having the backscattering coe�cient in di�erent polarizations, the dielectric constant will

be obtainable. The SAR signal can also be attenuated and scattered by the vegetation

on the soil. Thus, the vegetation cover can degrade the quality of estimation of SM, and

best accuracies in SM estimation can be obtained for bare or thinly-vegetated soils (Behari,

2005). The methods proposed for alleviating the e�ect of vegetation on SM estimation by

SAR include using target decomposition techniques (e.g. (Hajnsek et al., 2009)) and using

multi-incidence-angle SAR data (e.g. (Srivastava et al., 2009)) to segregate the contribution

of soil and vegetation to the backscattered signal. The data set used in this study has been

collected from bare soils. Thus, in this study, we focus on the methods used in estimation

of SM for such soils.

Since SAR images are the remotely sensed images used in this study, the exact procedures

and di�erent methods of estimating SM by SAR will be the subject of a whole upcoming

chapter, and here it is su�ced to the above brief explanation.

2.6.4 Real Aperture Radar (RAR)

RAR sensors are active sensors which work in the microwave region of the electromagnetic

spectrum, but unlike SAR sensors, their �nal observation of a target is not formed by combin-

ing multiple observations of the target. These sensors, which are also called scatterometers,

have also been used in estimation of near-surface SM. Although, they have not been originally

designed for this application.

Since the models proposed for estimation of SM using SAR sensors are based on the

operation of radars, theoretically, they should be usable for scatterometers as well. Scat-

terometer systems generally have weaker spatial resolution than SAR systems, but provide

better temporal resolution (Scipal, 2002). This temporal resolution along with speci�c image

acquisition characteristics has been utilized in estimation of SM by these sensors.

In scatterometry researchers have concentrated most of their e�ort on the use of empirical

models (Scipal, 2002). For example, in (Magagi et al., 2001) an algorithm is proposed which
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uses a modi�cation of the Oh empirical model (see section 3.2.3.1) to estimate SM with

ERS-13 wind scatterometer (WSC) data. The ERS-1 WSC was a C-band scatterometer

with spatial resolution of about 50 km originally designed for estimating the speed and

direction of wind over oceans. The WSC had three antennas (fore-beam, mid-beam and aft-

beam) which measured the backscattering coe�cient of a target at two di�erent incidence

angles4 and three di�erent azimuth angles. The above-mentioned algorithm �rst separates

the contribution of soil and vegetation to the backscattering coe�cient, and then models the

contribution of soil to obtain SM value. It is assumed that the total backscattering of a pixel

can be written as (Magagi et al., 2001)

σ◦(θ) = (1− Cv)σ◦soil(θ) + Cv
(
σ◦veg(θ) + γ2(θ)σ◦soil(θ)

)
(2.20)

where θ is the incidence angle, Cv is the proportion of the vegetation in the pixel obtained

from NOAA/AVHRR5 data, γ2 is the vegetation two-way transmitting factor, and σ◦veg is the

contribution of vegetation obtained using a separate empirical model. Given the contribution

of soil in backscattering coe�cient, the algorithm then proceeds to estimating the dielectric

constant of soil by coupling the Oh model and a linear relationship.

Another empirical algorithm which has been successfully used for scatterometers aboard

ERS-1, ERS-2 and METOP-A satellites is called TU-Wien model(Naeimi et al., 2009). This

algorithm, which was originally proposed by Wagner et al. (Wagner et al., 1999), exploits

both the multi-incidence angle property of these scatterometers and their high temporal

resolution. In TU-Wein model, �rst, the backscattering coe�cients measured for a pixel at

di�erent incidence angles are normalized to a reference incidence angle selected as 40◦ using

σ◦(40, t) = σ◦(θ, t)− σ′(40, t)(θ − 40)− 1

2
σ′′(40, t)(θ − 40)2 (2.21)

3European Remote Sensing Satellite 1
4The aft and fore antennas had close incidence angles, but their incidence angles were di�erent than the

mid antenna.
5National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer
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where σ◦(40, t) is the normalized backscattering coe�cient, σ◦(θ, t) is the backscattering

coe�cient measured at time t and incidence angle θ, and σ′ and σ′′ represent the slope and

curvature of σ◦, respectively. The values of the slope and the curvature have been calculated

for di�erent days of the year using a large database of historical images acquired by the

senor. In the next step, the value of the normalized backscattering coe�cient is compared

to its highest (σ◦wet(40, t)) and lowest values (σ◦dry(40, t)) ever calculated, and the degree of

saturation of soil is obtained by

Θs(t) =
σ◦(40, t)− σ◦dry(40, t)

σ◦wet(40, t)− σ◦dry(40, t)
(2.22)

This algorithm has been used in production of the �rst remotely sensed global SM data set

(Naeimi et al., 2009).

We conclude this chapter by presenting Table 2.4 which summarizes the advantages and

disadvantages of the methods discussed in this chapter. As shown in this table, SAR has

promising properties for large-scale estimation of the SM. Although the algorithms developed

for the passive microwave and RAR sensors are more mature than SAR methods, their low

spatial resolution is far from su�cient for many �eld-scale applications, which are the ones

considered in this research.
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Table 2.4: Comparison of SM estimation methods
Method Advantage Disadvantage

Ground-Based
Very accurate (specially in terms

of relative accuracy)

Small measurement volume
Time and labour consuming

Small area coverage

Optical Data
Large area coverage

High spatial resolution
Availability of several satellites

Weak physical dependence (for
VNIR)

Location dependence
Requires meteorological and
atmospheric information

Requires �eld SM measurements
Small penetration in soil

Passive
Microwave Data

Large area coverage
Less a�ected by roughness
Not a�ected by atmosphere

(Except for rainfall)
Less sensitive to topography

Mature algorithms
Relatively deep penetration in

soil

Coarse resolution
Needs ancillary information

(surface temperature, land cover
and vegetation type)

Synthetic
Aperture Radar

Strong physical dependence
High spatial resolution

Relatively deep penetration in
soil

A�ected by roughness and
vegetation

Medium data availability
A�ected by topography

Limitation in swath width

Real Aperture
Radar

Strong physical dependence
Mature algorithms

High temporal resolution
Relatively deep penetration in

soil

Coarse spatial resolution
A�ected by vegetation

Current operational algorithms
need historical data
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Chapter 3

Soil Moisture Estimation Models for Synthetic Aperture

Radar

As mentioned earlier, the data used in this study for estimation of SM is from SAR sensors.

The estimation is carried out through a number of surface backscattering models. In this

chapter, it is aimed to explain how these models can be utilized for our purpose. Before we

can discuss the mathematical details of the models, introducing some fundamental concepts

of SAR is necessary.

3.1 Synthetic Aperture Radar (SAR)

An active sensor in RS is a sensor that does not rely on the natural emissions from objects.

Instead, it illuminates the objects and then measures the re�ected wave. Synthetic aperture

radar is an active sensor which emits radio frequency pulses onto the surface of the earth and

collects the backscattered signal. It then synthesizes a two-dimensional image by processing

the collected signals (Lee et al., 2009). The distinctive characteristic of SAR compared

to other radars is that its �nal observation of a target is formed by combining multiple

observations of the target. These observations are made possible by mounting the SAR

antenna on a moving platform. SAR works in a side-looking manner as shown in Figure 3.1.

The SAR system in this �gure is moving along the velocity vector VSAR at height H. The

direction of VSAR is called azimuth direction, and the direction perpendicular to it in which

SAR looks is range direction. The incidence angle θO is the angle that the antenna beam

makes with the vertical direction at the sensor. The angle that the antenna beam makes

with the local vertical direction at the target (incidence surface) is called local incidence
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Figure 3.1: SAR geometry (adapted from (Lee et al., 2009))

angle. The area illuminated by the antenna beam is called the antenna footprint. ∆X and

∆Y are range swath and azimuth swath, respectively. The notation of equations presented

in this section will mainly follow the book by Lee and Pottier (Lee et al., 2009).

The electric �eld vector of a monochromatic1 plane electromagnetic wave with constant

amplitude E0 propagating in the direction z of an orthogonal three-dimensional coordinate

system can be expressed as

E(z, t) =


E0xcos(ωt− kz + δx)

E0ycos(ωt− kz + δy)

0

 (3.1)

where ω is the angular frequency, k = 2π
λ
is the wavenumber (λ being the wavelength), and δx

and δy show the phase di�erence. The locus of the tip of this vector in a plane perpendicular

to the direction of propagation is, in general, an ellipse which is called polarization ellipse,

and is depicted in Figure 3.2. The shape of the polarization ellipse can be fully described by

three parameters:

• Ellipse amplitude A:

A =
√
E2

0x + E2
0y (3.2)

1A monochromatic wave is a wave with constant frequency.
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Figure 3.2: Polarization ellipse (from (Lee et al., 2009))

• Orientation angle φ ∈
[
−π

2
, π

2

]
:

tan(2φ) = 2
E0xE0y

E2
0x − E2

0y

cos(δy − δx) (3.3)

• Ellipticity angle τ ∈
[
−π

4
, π

4

]
:

|sin 2τ | = 2
E0xE0y

E2
0x + E2

0y

|sin(δy − δx)| (3.4)

These parameters are shown in Figure 3.2.

If δy− δx is a multiple of π then the ellipse reduces to a line, and the wave is said to have

linear polarization. In case δy − δx = π
2

+ kπ and E0x = E0y, the ellipse has equal semi-axes,

and the polarization is circular. When the wave has neither linear nor circular polarization, it

is said to have elliptic polarization. When the polarization is linear, horizontal and vertical

polarization can be de�ned using the orientation angle. The linear horizontal and linear

vertical polarization happen when φ = 0 and φ = π
2
, respectively. In other words, if the tip

of the electric vector �eld traverses a horizontal line in the plane orthogonal to the direction

of wave propagation, the wave has horizontal polarization, and if the tip traverses a vertical

line, the state of the polarization is vertical.

The state of the polarization of such an electric �eld can be equivalently represented
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using the so-called Jones vector, which is de�ned as

E =

 Ex

Ey

 =

 E0xe
jδx

E0ye
jδy

 (3.5)

This is a complex vector containing both phase and amplitude information. The Jones vector

can only describe the polarization of wave if the wave is fully-polarized, i.e. the tip of its

electric vector �eld can be described by parameters of the polarization ellipse. If this is not

the case, the Jones vector changes with time. If this changes can be associated with random

processes, the wave is called partially-polarized (Huynen, 1970).

When a polarized electromagnetic wave reaches a target, the target absorbs part of the

energy that the wave carries, and the rest is emitted as another wave. The part of the emitted

wave which is backscattered towards the SAR receiving antenna can be depolarized. This

can happen because the target can be a distributed target. A distributed target is composed

of a set of point targets for which the backscattered wave is received by the receiving antenna

in di�erent times (Lee et al., 2009). This can happen because of the changes in position of

sensor or target (Huynen, 1970). The backscattered waves from a distributed target are

generally partially-polarized.

The state of the polarization of a partially-polarize wave can be described by the so-called

Stokes vector :

g
E

=



g0

g1

g2

g3


=



|Ex|2 + |Ey|2

|Ex|2 − |Ey|2

2Re
{
ExE

∗
y

}
−2Im

{
ExE

∗
y

}


(3.6)

where ∗ and |.| show the complex conjugate and the absolute value, respectively. The elements

of this vector are real and the vector can be constructed using power measurements alone

(Lee et al., 2009). Using this vector, the degree of polarization of the wave can be obtained

as

DoP =

√
g2

1 + g2
2 + g2

3

g0

(3.7)
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For a fully-polarized wave DoP = 1, whereas in case of a partially-polarized wave 0 < DoP <

1. Since the SAR data used in this study are in complex domain, we do not use Stokes vector

in this thesis.

When a target is illuminated by SAR signals it changes the polarization properties of the

incident wave in return. Using the Jones vectors of the incident and scattered waves, EI and

ES, we can write

ES =
ejkrR

rR
SEI =

ejkrR

rR

 S11 S12

S21 S22

EI (3.8)

in which S is called the scattering matrix, and shows how the incident wave is a�ected by a

point scatterer . rR is the distance between the object and the receiver in meters. The SAR

data used in this study have been acquired in horizontal and vertical polarizations, i.e. the

images contain hh, vv, hv and vh channels. Thus, the scattering matrix can be stated as

[S] =

 Shh Shv

Svh Svv

 (3.9)

SAR images are complex images containing both amplitude and phase information, i.e. a

complex number is provided for each pixel in each channel of the image. In case of the

Radarsat-2 data in this study, a lookup table (LUT) is provided along with the image data

by which complex numbers in each image can be converted to the scattering matrix for each

pixel.

In case of a distributed target, the statistical properties of the scattering matrix can be

analyzed using polarimetric coherency matrix, which is a second-order scattering statistic of

surface scatterers, and is calculated as

[T ] =
1

2


〈
|Shh + Svv|2

〉
〈(Shh + Svv)(Shh − Svv)∗〉 2 〈(Shh + Svv)S

∗
hv〉

〈(Shh + Svv)(Shh − Svv)∗〉
〈
|Shh − Svv|2

〉
2 〈(Shh − Svv)S∗hv〉

2 〈(Shh + Svv)S
∗
hv〉 2 〈(Shh + Svv)S

∗
hv〉 4

〈
|Shv|2

〉

(3.10)
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where 〈.〉 is the averaging operator. This matrix is obtained from the outer product of Pauli

scattering vector de�ned as

kp =
1√
2


Shh + Svv

Shh − Svv

2Shv

 (3.11)

i.e.

[T ] =
〈
kpk

∗T
p

〉
(3.12)

The coherency matrix is directly used only in one of the scattering models (X-Bragg) intro-

duced in this chapter. The rest of the models use the concept of backscattering coe�cient

which will be explained in the following.

The properties of the backscattered wave depend not only on the properties of the wave

transmitter (frequency, polarization, incidence angle and azimuth angle), but also on the

dielectric properties of the object and its geometrical structure (Lee et al., 2009). This

interaction for radar is quanti�ed using the radar equation expressed as

PR =
PTGT

4πr2
T

σ
AER
4πr2

R

(3.13)

The elements of this equation are as follows:

• PR: the power received by radar in watts

• PT : the power transmitted by radar in watts

• GT : gain of the transmitting antenna

• AER: the e�ective aperture of the receiving antenna in squared meters

• rT : the distance between transmitter and the object in meters

• rR2: the distance between the object and the receiver in meters

2In case of a monostatic radar, for which the transmitter and receiver are at the same location, rT = rR.
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• σ: the Radar Cross Section (RCS) in squared meters

The RCS is the parameter which determines how the object a�ects the wave. It is de�ned

as the cross section of an equivalent isotropic scatterer that produces the same amount of

power density as the object. Mathematically, it can be de�ned as the ratio of total power

scattered by an equivalent isotropic scatterer to the power density incident on the object

(Fung, 1994):

σ = 4πr2
R

|ES|2

|EI |2
(3.14)

where ES and EI are the scattered and incident �elds, respectively. The equation 3.13 can

be used for a single scatterer; however, if the object is area-extensive, it can be assumed to

be composed of multiple scatterers. In this case, the �nal scattered �eld is the result of all

the single �elds summed over the illuminated area A0:

PR =

¨

A0

PTGT

4πr2
T

σ◦
AER
4πr2

R

ds (3.15)

σ◦ is the backscattering coe�cient de�ned as the average radar cross section per unit area:

σ◦ =
〈σ〉
A0

=
4πr2

R 〈σ〉
A0

〈
|ES|2

〉
|EI |2

(3.16)

The backscattering coe�cient is the quantity employed as the SAR observation in most of

the SAR-based scattering models.

As mentioned before, the RCS, and thus, the backscattering coe�cient depends on the

polarization of the incident and backscattered wave. Therefore, equation (3.16) can be re-

written as

σ◦qp =
4πr2

R 〈σ〉
A0

〈∣∣ESq

∣∣2〉∣∣EIp

∣∣2 (3.17)

where p and q denote the polarization state of the incident and scattered �elds, respectively.

The elements of the scattering matrix are related to backscattering coe�cient as

σ◦qp = 4π |Sqp| (3.18)
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3.2 Surface Scattering Models

The relationship between the moisture of a typical soil and SAR observations (e.g. σ◦) is

usually established through a mathematical model. Many models have been used in the

literature which have been categorized by di�erent authors by di�erent naming conventions,

but the major categories which can be recognized are:

• Statistical models (e.g. (Pultz et al., 2002)(Biftu et al., 1999))

• Physical models (e.g. (Fung et al., 1992)(Fung et al., 1996)(Biftu et al., 1999))

• Empirical (semi-empirical) models (e.g. (Oh et al., 1992)(Dubois et al., 1995))

3.2.1 Statistical Models

These models indeed form the simplest set of methods for inverting the backscattering co-

e�cient to SM or dielectric constant. While statistical methods are relatively easily imple-

mented, they are not reusable for the �elds and images other than those for which they

were developed (Pietroniro et al., 2005). As an example, Pultz et al. (2002) use the lin-

ear equations σ◦ = −8.49 − 9.46mv and σ◦ = 15.76 + 7.72mv − 1.04θ to relate Radarsat-1

backscattering coe�cients to moisture and incidence angle.

3.2.2 Physical Models

Physical models are based on theoretical aspects of wave-soil interaction. They predict the

radar backscattering coe�cient from radar system parameters and soil properties. Although

these models have limitations in dielectric constant and roughness range, they are indepen-

dent of the �eld they are utilized for.

3.2.2.1 Integral Equation Model (IEM)

The Integral Equation Model is one of the most rigorous models used for estimation of surface

parameters from measurements and parameters of a polarimetric SAR system. For the
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special case of soil, the IEM is commonly used to retrieve the SM and roughness parameters

(RMS height and correlation length). IEM was �rst proposed by Fung et al. (1992), and then

further modi�ed by other researchers and original inventors. Unlike other physical models,

e.g. Small Perturbation Model (SPM), Physical Optics Model (POM) and Geometrical

Optics Model (GOM), IEM is not limited to either a smooth or rough surface or a speci�c

frequency range and thus, it seems to be suitable for agricultural soils (Alvarez-Mozos et al.,

2007).

IEM establishes a relation between radar backscattering coe�cients, dielectric constant

and roughness parameters of the surface, and the local incidence angle. The co-polarized

backscattering coe�cient in general form of IEM is expressed as (Fung et al., 2004)

σ◦pp =
k2

4π
exp(−2k2σ2cos2θ)

+∞∑
n=1

∣∣Inpp∣∣2 W (n)(2k sinθ, 0)

n!
(3.19)

where

Inpp = (2 k σ cosθ) fpp exp(−k2σ2cos2θ) + (k σ cosθ)n Fpp (3.20)

σ◦pp is the backscattering coe�cient of pp polarization (hh or vv), k is wavenumber (k = 2π
λ
,

λ is the wave length) which is 1.132 cm-1 for Radarsat-2, θ is the local incidence angle, σ is

surface RMS height, W (n) is the Fourier transform of the nth power of the surface correlation

function, which will be described shortly, and fhh, fvv, Fhh and Fvv are approximated by

fhh =
−2Rh

cosθ
(3.21)

fvv =
2Rv

cosθ
(3.22)

Fhh = 2
sin2θ

cosθ

[
4Rh −

(
1− 1

εr

)
(1 +Rh)

2

]
(3.23)

Fvv = 2
sin2θ

cosθ

[(
1− εrcos

2θ

εr − sin2θ

)
(1−Rv)

2 −
(

1− 1

εr

)
(1 +Rv)

2

]
(3.24)

Here, Rh and Rv are the horizontally and vertically polarized Fresnel re�ection coe�cients,

respectively, de�ned as

Rh =
cosθ −

√
εr − sin2θ

cosθ +
√
εr − sin2θ

(3.25)
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Rv =
εrcosθ −

√
εr − sin2θ

εrcosθ +
√
εr − sin2θ

. (3.26)

and εr is the dielectric constant. A relative magnetic permeability parameter (µr) also exists

in the original equations which has been deleted here, because we intend to use the IEM to

estimate the moisture of soil whose relative magnetic permeability is assumed to be unity.

This simpli�es the equations to the form mentioned in equations (3.23) to (3.26).

Given the correlation function, C(ρ), the surface power spectrum,W (n) in equation (3.19),

can be calculated by taking its Fourier transform or equivalently using (Nesti et al., 1997)

W (n)(K) =

ˆ ρ=+∞

ρ=0

Cn(ρ) � ρ � J0(Kρ)dρ (3.27)

where J0 is the Bessel function of the zeroth order. This can be readily carried out analytically

for both Gaussian and exponential functions, but for fractal functions the only solution is

to take Fourier transform numerically (Li et al., 2002). Hence, a generalized power law

spectrum has been introduced by Li et al. (2002) which generates Gaussian, exponential

or an intermediate shape based on the value of its parameter, power index. The proposed

spectrum is

W (K) =
σ2l√
4π

�
1

bp

[
1 +

(
ap
bp

)2
K2l2

4

]−p
(3.28)

where ap = Γ(p−0.5)
Γ(p)

and bp is computed by solving equation[
2bp
ap

]p−0.5

Kp−0.5

(
2bp
ap

)
= 2p−1.5Γ(p− 0.5) e−1 (3.29)

where Kp−0.5(.) is modi�ed Bessel function of second kind, Γ(.) is gamma function, and p

is the power index, which is a real number greater than or equal to 1. The corresponding

correlation function of this spectrum is analytically derived as

C(ρ) =
σ2

2p−1.5Γ(p− 0.5)

[
2bp
ap

�
ρ

l

]p−0.5

Kp−0.5

(
2bp
ap

�
ρ

l

)
(3.30)

Here, when power index goes to in�nity, we have Gaussian power spectrum, and when power

index is equal to 1, we get exponential one. Other values yield intermediate spectra. Given
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the spectrum in (3.28), the nth power of the surface power spectrum is approximated by

W (n)(K) ' 0.5(
l

nfp
)(p− 1)

(
ap
bp

)2
[

1 +

(
ap
bp

)2 K2( l
nfp

)

4

]−p
(3.31)

where

fp = 0.5

[
1 +

(
1.5

p

)2
]

(3.32)

The IEM has been modi�ed by other researchers since it was originally introduced by

Fung et al. (1992). The changes have been usually applied to remove approximations made

in the original IEM. For example, Hsieh et al. (1997) proposed IIEM, in which an assumption

about Green's function in the IEM was removed to improve modeling multiple scattering.

Álvarez-Pérez (2001) introduced IEM2M to make the IEM reduce to SPM for small roughness

values. Advanced IEM (AIEM) was also created to remove some approximations about

Green's function (Chen et al., 2003). However, the original version of the model is the one

that is used most often (Baghdadi et al., 2006b). Furthermore, the calibration procedure

proposed by Baghdadi et al. (2006a), which we use in this study for decreasing the number

of unknowns in the IEM, and will be introduced in the few next paragraphs, was developed

using the original version of the IEM. Therefore, we have adopted the original version of the

IEM in this thesis for the purpose of our study.

Unfortunately, with the IEM, it is not possible to calculate the dielectric constant and

roughness parameters separately, as there is no closed form equation for these unknowns.

Thus, inversion of the IEM, i.e. solving the IEM equations for soil surface parameters, is not

possible using analytical methods as is possible with models such as the Dubois model (see

section 3.2.3). When using co-polarized backscattering coe�cients in the IEM, we have two

equations and three unknowns. In order to solve this under-determined problem, we have to

either have a-priori knowledge about an unknown (roughness in case we intend to calculate

the dielectric constant), or add some relevant equations to the system of equations.

The surface correlation length of soil is di�cult to measure. Furthermore, its �eld mea-

surements depend on the selected pro�le length and they are reported to have a large amount
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of error with pro�le lengths usually used (1 m or 2 m) (Baghdadi et al., 2004). Baghdadi

et al. (2002) state that although the RMS height and correlation length of the soil are mea-

sured independently, correlation length can depend on the RMS height. They present an

equation which expresses the correlation length as a function of the RMS height, incidence

angle and polarization. The equation is further modi�ed in a series of publications on the

topic of calibration of IEM (Baghdadi et al., 2004)(Baghdadi et al., 2006a)(Baghdadi et al.,

2011). The �nal form for use with co-polarized C-band data is (Baghdadi et al., 2006a)

Lopt(σ, θ, pp) = δpp(sin θ)
µpp σ(ηppθ+ξpp) (3.33)

where Lopt is the adjusted correlation length, pp is the polarization, and δ, ξ, µ and η are

constants:

δhh = 4.026 , δvv = 3.289 (3.34)

ξhh = 1.551 , ξvv = 1.222 (3.35)

µhh = µvv = −1.744 (3.36)

ηhh = ηvv = −0.0025 (3.37)

After using equation (3.33), the correlation length is deleted from equations and one can

solve the IEM for the dielectric constant and the RMS height, as there are two equations

in these two unknowns. Indeed, the only part of the model which needs to be changed is

the de�nition of the nth power of the surface power spectrum. Since, we use the generalized

power law spectrum proposed by Li et al. (2002) in this study, we only need to replace l by

Lopt in equation (3.31) to obtain

W (n)(K) ' 0.5(
Lopt
nfp

)(p− 1)

(
ap
bp

)2
[

1 +

(
ap
bp

)2 K2(Lopt
nfp

)

4

]−p
(3.38)
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As mentioned earlier, inversion of the IEM is not possible using analytical methods. Thus,

a number of methods have been proposed in the literature to invert the equations in order

to obtain surface parameters given the the radar imaging parameters and the backscattering

coe�cient. These include lookup tables, neural networks, Bayesian methods and minimiza-

tion techniques (Barrett et al., 2009). In particular, dynamic learning neural networks have

been successfully applied to invert the IEM with acceptable results with respect to both the

time spent on training the network and accuracy (Chen et al., 1995).

3.2.2.2 X-Bragg Model

Another physical model, which is relatively new and is an extension to the Bragg limited

model, is X-Bragg. Hajnsek has introduced this in her PhD dissertation which contains

comparisons of Oh and Dubois empirical models and her own model (Hajnsek, 2001). The

main characteristics of this method is that it

1. makes use of full polarimetric measurements, including both amplitude and

phase information.

2. enables us to calculate SM and roughness independently.

The model's task is accomplished by investigation of the coherency matrix and obtaining

three parameters from it. Bragg scattering, also used in the SPM, is the base scattering

mechanism for X-Bragg. The polarimetric scattering matrix for a Bragg surface is

[S] = ms

 Rh(θ, εr) 0

0 Rv(θ, εr)

 (3.39)

where ms is the backscattering amplitude. SPM has two main limitations: small validity

range for surface roughness(ks < 0.3), and low sensitivity to SM content above 20% (Hajnsek

et al., 2003). In order to improve the SPM, use of a rotated Bragg coherency matrix in the

form of
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[T ] =
1

2


C1 C2sinc(2β1) 0

C2sinc(2β1) C3(1 + sinc(4β1)) 0

0 0 C3(1− sinc(4β1))

 (3.40)

is proposed, where

C1 = |Rh +Rv|2 (3.41)

C2 = (Rh +Rv)(R
∗
h −R∗v) (3.42)

C3 =
1

2
|Rh +Rv|2 (3.43)

and β1 is the rotation angle.

Any coherency matrix can be diagonalized by transformation (Cloude et al., 1996)

[T ] = [U3][Λ][U3]−1 (3.44)

where

[Λ] =


λ1 0 0

0 λ2 0

0 0 λ3

 (3.45)

[U3] =

[
e1 e2 e3

]T
(3.46)

and λ1, λ2, λ3 are eigenvalues, and e1, e2, e3 are eigenvectors of [T ]. Three physical features

are calculated directly from the diagonalization of the coherency matrix. Two of them are

H = −
∑

pi log3 pi (3.47)

A =
p2 − p3

p2 + p3

(3.48)
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respectively polarimetric scattering entropy and the scattering anisotropy. Here pi is a

normalized eigenvalue equal to

pi =
λi

λ1 + λ2 + λ3

(3.49)

The third physical parameter is calculated by

α = p1α1 + p2α2 + p3α3 (3.50)

where

αi = arccos((ei)1) (3.51)

and (ei)1 shows the �rst element of ith eigenvector of [T ]. In X-Bragg, soil dielectric constant

is calculated by mapping the space of physical parameters H, A and α, to the space of

scattering parameters εr, σ and β1. This algorithm has been tested using fully polarimetric

laboratory measurements as well as airborne L-band SAR. The method is claimed to allow

accurate estimations up to moisture level 35%.

For each pixel, or group of pixels with similar incidence angle, a LUT is created using

(3.47) and (3.50), which holds values of H and α corresponding to a wide range of εr and β1.

Thus, given a (H,α) pair, the corresponding (εr,β1) pair can be determined by searching for

the closest value to (H,α) in the LUT. For the third unknown, the surface roughness RMS

height, a simple linear equation

σ =
1− A
k

(3.52)

has been proposed (Hajnsek, 2001) in which A is the anisotropy calculated by (3.48). Before

starting the inversion process, all the pixels for which H > 0.5 or α > 45◦ need to be �ltered

out. This �ltering is for selecting only surface scatterers, as the model is used for bare

surfaces. It has been shown that H > 0.5 and α > 45◦ are related to double-bounce or
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volume scattering mechanisms3 which correspond to vegetation-covered surfaces (Hajnsek,

2001).

3.2.3 Empirical Models

Empirical models have been suggested for SM estimation to handle data acquired from

natural surfaces (Dubois et al., 1995), and because more generic models like the IEM are

complex. For an empirical model to be developed, it is necessary to gather a large number of

experimental measurements to cover various soil parameters and radar con�gurations. Thus,

these models are usually valid only for speci�c soil conditions (Baghdadi et al., 2006b). The

Oh model and the Dubois model are the two empirical models which are widely used for SM

estimation in the RS community.

3.2.3.1 Oh Model

The Oh model is proposed based on scatterometer measurements at three frequencies (1.5,

4.5 and 9.5 GHz) at incidence angles from 10◦ to 70◦ (Hajnsek, 2001). In this model which

has been developed by Oh et al. (Oh et al., 1992), co- and cross-polarized backscatter ratios

are written as

p =
σ◦hh
σ◦vv

=

1−
(

2θ

π

)[
1

3Γ0

]
exp(−kσ)

2

(3.53)

q =
σ◦hv
σ◦vv

= 0.23
√

Γ0(1− e−kσ) (3.54)

where θ is the local incidence angle, k is the wavenumber, and σ is the RMS height of the

surface. Γ0 is the Fresnel re�ection coe�cient at nadir de�ned as
3Single (or surface) scattering is a scattering mechanism during which the radar signal hits a surface and

then is re�ected back to the sensor, such as the scattering from surface of a bare soil. The mechanism which

describes scattering from a canopy-like scatterer is volume scattering. The case in which scattered wave from

the soil surface hits a vertical part of vegetation, and then scatters back to radar sensor is an instance of

double-bounce (or dihedral) scattering.
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Γ0 =

∣∣∣∣∣1−
√
ε′

1 +
√
ε′

∣∣∣∣∣
2

(3.55)

where ε′ is the real part of the surface dielectric constant. It has been shown that large

values of the co-polarized ratio and the cross-polarized ratio can represent high soil surface

roughness and signi�cant amount of vegetation, respectively (Dubois et al., 1995). For bare

soils the Oh model shows good agreement with ground observations when 0.1 ≤ kσ ≤ 6,

2.5 ≤ kl ≤ 20 and 0.09 ≤ mv ≤ 0.31 (mv being the volumetric moisture content in percents,

and l being correlation length of the surface). This model was further revised in (Oh et al.,

1994), (Oh et al., 2002) and (Oh, 2004b). In (Oh et al., 2002) the equations directly handle

volumetric SM instead of the dielectric constant.

Equations (3.53) and (3.54), can be solved for exp(−kσ) and then equated resulting in

(
2θ

π

) 1
3Γ0

[
1− q

0.23
√

Γ0

]
+
√
p− 1 = 0 (3.56)

which does not contain the roughness parameter. This equation can not be solved for Γ0

analytically. Thus, a two-step procedure has been used in our study to �nd the value of Γ0

given p and q. After de�ning the parameters

x =
1√
Γ0

, a =
2θ

π
, b =

q

0.23
, c =

√
p− 1 (3.57)

equation (3.56) can be rewritten as

f(x) = a
x2

3 (1− bx) + c = 0 (3.58)

One can �nd the solution to this equation using Newton's method of solving equations,

although it needs to be initialized by a good approximation. Therefore, in the �rst step, an

approximate solution for x is obtained using a LUT. This LUT is produced so that it contains

all possible x values in a certain range, with a pre-de�ned step, and their corresponding f(x)

values. Once we �nd this approximate value, a more accurate solution is obtained using
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Newton's method in the second step. From x, we can have the real part of the dielectric

constant and surface roughness by

Γ0 =

(
1

x

)2

(3.59)

ε′ =

∣∣∣∣1 +
√

Γ0

1−
√

Γ0

∣∣∣∣2 (3.60)

kσ = −ln

−√p− 1(
2θ
π

) 1
3Γ0

 (3.61)

However, this is not the only option for inverting the model. For example, the genetic

algorithm has also been used to invert the Oh model using multi-polarized radar observations

(Oh, 2004a). LUT-Newton combination has been employed in this study for its simplicity

and speed. Note that the Oh model is valid only for pixels with p < 1. Thus, before starting

the inversion process, pixels which do not satisfy this prerequisite must be �ltered out. Also,

it has been suggested that, since the model is mainly created for bare soils, the restriction on

cross-polarized ratio, which is mentioned for the Dubois model, be applied to the Oh model

as well (Hajnsek, 2001).

3.2.3.2 Dubois Model

Dubois et al. (1995) propose to use

σ◦hh = 10−2.75 cos
1.5θ

sinθ
100.028ε′tanθ(kσ sin1.4θ)λ0.7 (3.62)

σ◦vv = 10−2.35 cos
3θ

sinθ
100.046ε′tanθ(kσ sin3θ)1.1λ0.7 (3.63)

with θ being the local incidence angle, σ the RMS height of the surface, k the wavenumber

and λ the wavelength. The model was originally developed using scatterometer data, and

then further applied to SAR data for demonstrating the robustness (Hajnsek, 2001). The two

relationships are claimed by the developers to give best results when kσ < 2.5, θ > 30◦ and
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mv < 35%, and the RMS error in the SM estimate is claimed to be less than 4.2% (Dubois

et al., 1995). For C-band data we have used in this study, for which k = 1.132 cm−1, the

RMS height should be σ < 2.5
1.132

= 2.21 cm.

Since the model is not e�cient in vegetated areas, such areas are �rstly excluded from

calculations in (Dubois et al., 1995) using the cross-polarized backscatter ratio, as a vege-

tation index. For this purpose, all pixels with q =
σ◦hv
σ◦vv

> −11 dB are masked out before

inverting the model. Also, it has been recommended by the creators of the model to apply

the model only on data with p < 1 to avoid processing the data with surface roughness out

of the validity range of the model (Dubois et al., 1995).

Inversion of the Dubois model is straightforward. Using equations (3.62) and (3.63) one

can obtain closed form equations for calculation of ε′ and kσ as (Hajnsek, 2001)

ε′ =
10−0.19 λ0.15 log10

(
σ◦hh

0.7857

σ◦vv

)
cos1.82 (θ) sin0.93 (θ)

−0.024 tan (θ)
(3.64)

kσ =
10

2.75
1.4 σ◦hh

1
1.4 sin (θ)2.57 λ−0.5

100.02 ε′ tan(θ) cos (θ)1.07 (3.65)

and the unknowns are calculated directly.

3.3 Dielectric Mixing Models

Most of the models mentioned before use dielectric constant as one of their unknown param-

eters. When volumetric SM is desired, we have to use a dielectric mixing model to convert

dielectric constant values to volumetric SM values (Barrett et al., 2009). Two of the most

commonly used models are by Topp et al. (1980) and Dobson et al. (1985). The model by

Dobson et al. requires some knowledge about soil texture and other parameters, while the

model proposed by Topp et al. relates the dielectric constant directly to soil water content
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via a third order polynomial:

mv = −5.3× 10−2 + 2.92× 10−2ε′ − 5.5× 10−4ε′
2

+ 4.3× 10−6ε′
3

(3.66)

in which ε′ is the real part of the dielectric constant of the soil and mv is the volumetric

SM value. This advantage makes the latter model more widely used, because detailed soil

properties are not always available. Since this is also the case with our data, we have

adopted the model by Topp et al. in our experiments. The performance of this model has

been evaluated for a large set of mineral soils and SM conditions, and the model is believed

to have satisfactory accuracy for the majority of applications (Altese et al., 1996).

In this chapter, the three main categories of surface scattering models used for SAR data

were explained, and the details of the IEM, X-Bragg, Oh and Dubois models, along with

their inversion methods were presented. Our proposed method for improving the quality of

SM estimated using these models is based on study of the spatial variability of SM which

will be discussed in the next chapter.
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Chapter 4

Models for Explaining the Spatial Variability of Soil

Moisture

Generally speaking, the methods proposed for re�ning the results of SM estimated by SAR

surface scattering models can be classi�ed, based on the stage of estimation at which the

method is used, as follows:

• Manipulation of the mathematical formulation of surface scattering model,

e.g. (Fung et al., 2002) and (Wu et al., 2001) which propose corrections to the

original IEM

• Processing the data before it is fed into the model, e.g. (Hajnsek, 2001) and

(Hajnsek et al., 2009) which decompose the coherency matrix of the data and

take single scattering and double-bounce scattering components to be used by

the model

• Constraining the process of the inversion of the model by employing additional

information, e.g. (Mattia et al., 2009) and (Kim et al., 2012) which make use

of multi-temporal images

The method we propose in this study for improving the results of a backscattering model

does not �t in any of the above-mentioned categories, in that it tries to calibrate the results of

the backscattering model after the inversion is completed. This is carried out by employing

a calibration model which transforms the results of the backscattering model in order to

increase their agreement with the ground measurements. The calibration model is established

by investigating the spatial variability of SM obtained from ground measurements and the

backscattering model. In other words, the model tries to make a connection between the
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spatial variability of the outputs of the backscattering model with ground measurements

of SM. Thus, establishing the model needs at least one epoch of concurrent ground and

remotely sensed data. However, as will be shown in Chapter 6, after the parameters of the

model are estimated using these data, the model may be generalized to other epochs of data

acquisition.

In this chapter we look at the di�erent models proposed in literature for modeling the

spatial variability of SM. Then, in Chapter 6 the results from applying this type of modeling

on our data set will be presented, which will lead to an empirical calibration model for

improving the results of SAR backscattering models.

4.1 Spatial Variability of SM

Physical properties of soil vary considerably (Heuvelink et al., 2001). Their variability is

caused by �ve forming factors of soil: climate, organisms, relief, parent material and time

(Mzuku et al., 2005). These factors generate variations in global, regional, �eld, and even

ingredient scale (Adamchuk et al., 2010). Spatial variability of SM and heterogeneity of

surface SM patterns have been reported by many researchers (see, for example, (Brocca et

al., 2009), (Cantón et al., 2004), (Hébrard et al., 2006) and studies cited therein). According

to investigations based on �eld observations, this variability depends mainly on slope angle,

slope orientation (aspect), soil surface cover and vegetation type, soil texture, and organic

matter content (Hébrard et al., 2006).

Spatial variability of SM is a key factor in modeling land surface processes and study-

ing soil water dynamics (Giorgi et al., 1997)(Hu et al., 2011). Understanding this spatial

variability can, for example, be helpful in planning ground measurement campaigns for eval-

uation of remote sensing SM products (Famiglietti et al., 2008). The ground measurements

are assumed to be point measurements, and to compare the areal image-based SM values

with their corresponding ground measurements it is necessary to calculate the average of
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ground measurements over a sampling site. The number of the samples required for obtain-

ing a certain level of uncertainty when calculating the average can be determined using an

analysis of the spatial variability of SM (Brocca et al., 2010). Due to SM spatio-temporal

variations, a limited number of measurements cannot provide a perfect SM map. Therefore,

a model is usually used to predict the behavior of soil in space and time.

There has been a large number of studies on the characterization of this variability

and identifying a regional or global model to describe the variability by di�erent scientists

(Bell et al., 1980)(Owe et al., 1982)(Rodríguez-Iturbe et al., 2006)(Famiglietti et al., 2008).

The source of data for these studies is usually remote sensing products or direct ground

measurements. In addition to the above-mentioned applications, information about SM

spatial variations can assist in improving the accuracy of low-quality SM maps generated

using satellite or airborne images. Although this type of information can be fairly easily

used to adjust SM values coming out of SAR-based models, to the best knowledge of the

author, there has not been any instance of utilizing this information in the SM estimation

literature. The feasibility of using SM spatial variability models for our data set, and their

actual e�ect on outputs of the backscattering models will be discussed in Chapter 6. In this

chapter, three commonly used models of this type will be reviewed.

Before we move forward in presenting di�erent relationships suggested to explain the

spatial variability in SM, we need to de�ne the di�erent types of scale used for this purpose.

The variability of SM changes with scale (Western et al., 1999), and we are ultimately going

to see if these changes can be used in improving the outputs of SAR backscattering models.

The scale at which measurements or modeling are performed can be described by a scale

triplet including spacing, extent and support (Bloschl et al., 1995). Figure 4.1 depicts a

schematic representation of the three scale types. Spacing is the distance between measure-

ments. Extent scale is de�ned as the overall area covered by the whole set of measurements.

Support, which is also called resolution in this context, is used to delineate the measurement
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Figure 4.1: Scale triplet (From (Western et al., 1999))

integration area (or volume), i.e. part of space which a measurement represents (Western

et al., 1999). For instance, in the case of SM measurements in our study area, the spacing

scale is about 30 m, the extent of each site is about 100 m × 100 m, and the support scale

is the volume of a cylinder with a height of 6 cm and radius of a few centimeters.

4.2 Probability Density Function

The spatial variability of SM can be characterized using a probability density function (PDF),

and the parameters de�ning its shape. Di�erent types of probability distributions have been

observed, or considered for this purpose, in the literature (Famiglietti et al., 2008):

• Gaussian distribution (Li et al., 1994)(Famiglietti et al., 1999)

• log-normal distribution (Li et al., 1994)

• gamma distribution (Entekhabi et al., 1989)(Famiglietti et al., 1999)

• beta distribution (Li et al., 1994)(Famiglietti et al., 1999)

Since there is no commonly-accepted PDF for the distribution of SM, any result obtained

by assuming a speci�c type of distribution for SM data may be speci�c to the data set used

for running the experiments.
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4.3 Exponential Law and Power Law

Information about spatial variation of SM can also be presented in terms of the statistics

of the PDF without considering its shape. These statistics may include standard deviation,

mean, coe�cient of variation and skewness. A widely-accepted empirical formulation is in

the form of an exponential law between the SM mean and standard deviation or coe�cient

of variation (Famiglietti et al., 2008)(Bell et al., 1980)(Jacobs et al., 2004)(Brocca et al.,

2007) which has been observed in di�erent regions. Speci�cally, Famiglietti et al. (2008)

reported good �t of ground data for these relationships by analyzing more than 36,000 SM

ground measurements collected in SGP97, SGP99, SMEX02 and SMEX03 campaigns. They

explored six extent scales ranging from 2.5 m to 1.6 km and obtained similar results for

them. Their analysis of extensive ground measurements showed that the standard deviation

of SM in a region is dependent on the mean SM in that region. This dependence has been

modelled as (Famiglietti et al., 2008)

σθ = k1 · µθ · exp(−k2µθ) (4.1)

where σθ is the standard deviation of the SM, µθ is the average SM in the working region,

and k1 and k2 are parameters of the model which depend on the region. Equation (4.1) can

also be written as

CVθ = k1 · exp(−k2µθ) (4.2)

where CVθ is the coe�cient of variation de�ned as

CVθ =
σθ
µθ

(4.3)

One possibility for improving the output of SAR backscattering models using a spatial

variability model, is to force the outputs of the backscattering model to follow the variability

model using an optimization procedure. In case the variability model can be empirically

calibrated and its parameters (e.g. k1 and k2 in the exponential law) calculated from a
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reasonable number of ground measurements, then the statistical or physical characteristics

of ground measurements may be reproduced in the output of the backscattering model. As

a result, the output of backscattering model will be in a better agreement with ground

measurements. For the case of the exponential law we need to alter the SM values calculated

for pixels of image corresponding to a ground site, so that they ultimately conform to equation

(4.1). An issue with this optimization problem is that, in the best case where both k1 and

k2 are known in advance (for example using ground measurements or modeling) we can

construct a weak constraint which is not able to change the original SM values signi�cantly to

conform to equation (4.1). Therefore, a stronger constraint consisting a number of equations

comparable to the number of unknowns involved in the optimization process is required to

improve the original results produced by backscattering models.

Another model which has been suggested for characterizing the variations of SM is a power

law between the SM variance and the extent scale (Rodriguez-Iturbe et al., 1995)(Manfreda

et al., 2007). Empirical studies of ground measurements and remotely sensed SM have

shown that variance of SM values increase as a power of the extent scale of measurements

(Famiglietti et al., 2008):

σ2
θ = C · SD (4.4)

where C and D are parameters, and S is the area covered by the measurements. In other

words, log variance changes linearly with log extent scale. This is in fact very similar to

fractality attribute of SM which we will discuss shortly in this chapter.

A powerful mathematical tool for analyzing the variations of a complex variable which

has received great attention in soil science and other disciplines is fractal analysis. In the

rest of this chapter we will focus on the materials required for this type of analysis, which is

the primary technique used in this study to improve SM estimation by SAR backscattering

models. Because of its multi-resolution nature, when dealing with images, the algorithm

used for fractal analysis can be better explained using the concept of image pyramids. Thus,
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we �rst present a brief review of the idea and theory of image pyramids, and then explain

how this can be used in the fractal analysis of a SM image.

4.4 Image Pyramids

An image pyramid is a computationally-e�cient coarse-to-�ne structure to represent an

image at multiple scales (Neskovic et al., 1993), which has found many applications in image

processing, computer vision and remote sensing including image registration (Thevenaz et

al., 1998), pattern matching (Adelson et al., 1984), surface reconstruction (Samadzadegan

et al., 2002) and image classi�cation (Iikura et al., 1995). An image pyramid is generated by

consecutive aggregation of blocks of image pixels to create multiple levels of image details.

The aggregation is achieved using weighted averaging of the pixels. Weights can be selected

so that di�erent types of pyramids, e.g. Gaussian or Laplacian pyramids (Burt et al., 1983),

be generated. When all the weights are equal the pyramid is a mean pyramid, which is the

type used here for analyzing the fractality in SM values. Given an image I0 of size 2n × 2n

pixels, each image I1, I2, ..., IN at level 1, 2, ..., N of the pyramid has a lower resolution

(larger pixel size) than its ancestors. Usually the pyramid is dyadic, i.e. each image Ik has

pixels with sizes twice the size of pixels in image Ik−1(see Figure 4.2a). The procedure of

creating pixels of an image in a pyramid from pixels of a predecessor (lower) image is called

reduction. The inverse procedure, i.e. estimating the pixels of an image in pyramid from

a higher level image is called expansion. Expansion usually requires extra information or

assumptions about the distribution or pattern of pixel values.

The value of the pixel at location (i, j) at level l of a mean pyramid can be calculated

from the pixel values at level l − 1 as

Il(i, j) =
1

4

0∑
p=−1

0∑
q=−1

Il−1(2i+ p, 2j + q) (4.5)

55



This can also be obtained from the original image, I0, by

Il(i, j) =
1

22l

r2∑
r=r1

c2∑
c=c1

I0(r, c) (4.6)

where

r1 = (i− 1)× 2l + 1 (4.7)

r2 = r1 + 2l − 1 (4.8)

c1 = (j − 1)× 2l + 1 (4.9)

c2 = c1 + 2l − 1 (4.10)

In Figure 4.2b links between pixels of two consecutive layers in a dyadic mean image

pyramid is displayed. Blocks of four adjacent pixels in image Il are reduced to single pixels

in image Il+1 through an averaging operation.

Figure 4.3 shows �ve layers of an image pyramid generated from a 16 × 16 pixel SM

grayscale map. The map is created using the SAR backscattering model IEM applied on an

image window of our data set. The pixels for which the model has not been able to calculate

the dielectric constant of soil have been replaced by the average SM value of the �rst layer in

this representation. This is to avoid displaying missing data in the map. The image at level

0 has a ground resolution of 10 meters, while for the image at the highest level the ground

resolution is 160 meters. As seen in this �gure, by moving toward the higher levels details

of the spatial pattern of SM gradually disappear.

4.5 Fractal Analysis

Fractal analysis has been used in several studies in remote sensing, medical image processing,

geophysics, soil science and other disciplines. Interest in fractal techniques in remote sensing

is mainly due to the fact that, in addition to spectral and spatial complexity, remotely sensed

images show similarities at di�erent spatial scales (Sun et al., 2006). Fractal measures have
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(a) General structure of a four-level image pyramid: The base of
the pyramid is the original image (8× 8 in this example), and the
highest level consists of a single pixel with a value equal to the
mean value of pixels in the original image.

(b) Pixel links in a mean image pyramid: Each pixel in image Il+1 is linked
to four pixels in image Il through an averaging operation.

Figure 4.2: Mean image pyramid
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Figure 4.3: Soil moisture image pyramid

usually been utilized for the creation of textural features to identify land surface patterns

in remotely sensed imagery. For example, Myint (2003) used three di�erent approaches to

extract textural features to distinguish between residential, commercial, woodland, agricul-

ture, and water body land cover classes. Li et al. (2003) proposed a multi-parameter and

multi-scale textural feature set based on fractal analysis, and compared its performance with

several other fractal-based and wavelet-based features for classi�cation of SPOT images into

habitation, �eld and mixed classes. Fractals have also been employed in data mining and

change detection of remotely sensed images. For example, Emerson et al. (2004) introduce

a NASA1 project for indexing the content of images and facilitating searches in imagery

databases. Because of their capacity for transferring information over scales and summa-

rizing statistical properties of images, fractals have found applications in satellite image

compression as well. It has been shown that a fractal-based compressor can achieve higher

compression rates than a JPEG compressor while minimizing information loss (Ghosh et al.,

2008). Similar applications have been explored in medical image analysis, for instance, for

segmentation, characterization and abnormality detection (Lopes et al., 2009).

Characterization of processes related to atmosphere and terrestrial processes, which are

among the geophysical phenomena of interest to geoscientists, needs complex models which

1National Aeronautics and Space Administration
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usually deal with the scale invariance property of fractals. The relationship between size and

frequency of islands, earthquakes, ore deposits and oil �elds often exhibit fractal behavior

(Turcotte, 1989). Since fractals can also be used for temporal analysis of processes, they can

improve the spatial and temporal understanding and the quality of prediction of geophysical

phenomena at di�erent scales (Daya Sagar et al., 2004). With the development of remote

sensing as a tool for acquiring information about soil at spatial and temporal scales that

were not accessible before, understanding the relationship between traditional measurement

scales and modern measurement or modeling scales has turned into an important issue in soil

science. The objective of studies on upscaling and downscaling2 soil properties such as soil

carbon dioxide e�ux (e.g. (Graf et al., 2011)) and soil moisture (e.g. (Merlin et al., 2012))

is usually to satisfy this need. Fractal analysis, with its scaling capabilities, seems to be a

suitable means of connecting di�erent levels of measurements and modeling for soil. Fractals

have also been used for quanti�cation of soil physical properties such as soil structure. For

example, Eghball et al. (1993) utilized fractal analysis to distinguish between di�erent tillage

and crop sequences by investigating the values of fractal dimension. (Perfect et al., 1995)

includes a detailed review and classi�cation of applications of fractals in soil science.

Fractal behavior of SM has already been reported for both ground measurements and

remotely sensed data (Oleschko et al., 2008)(Biswas et al., 2012a). In addition to general

analysis of SM variability, fractal theory has been used in downscaling SM obtained from

satellite images. For example, Kim et al. (2002) used a fractal-based algorithm for downscal-

ing SM maps produced from ESTAR3 data at a spatial resolution of 800 m by incorporating

ancillary �eld data. Fractals have even been utilized in estimation of soil water content for

ground samples by investigating the relationship between the volume and mass of samples

(Jadoski et al., 2009).

2Upscaling is predicting coarse resolution data from �ne resolution data, and downscaling is the reverse

action.
3Electronically Scanned Thinned Array Radiometer
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In this study, we analyze the fractal properties of the �eld measurements of SM, and SM

values generated by SAR backscattering models, and examine the possibility of using these

properties in improving the accuracy of the output of the backscattering models. To the

best knowledge of the author, this is the �rst time fractal theory is being used to improve

the results of these models.

The strength of fractal analysis is two-fold:

1. It is a multi-resolution analysis, which means it can be used to study a variable

over a range of scales.

2. It is not based on any parametrization or assumption of homogeneity and

statistical probability distribution (Schertzer et al., 1997), which makes it a

well-suited tool for investigating variables with irregularly high and low values

such as SM.

The word �fractal� was �rst coined by Benoit Mandelbrot, who o�cially de�ned a fractal4 and

established a mathematical framework for fractal analysis (Mandelbrot, 1983). The exact

de�nitions and rigorous theory of fractals is beyond the scope of this work, and here we focus

more on how the statistical properties of fractals can bene�t the study of variability in SM. A

fractal shape can be de�ned as a rough shape which can be partitioned recursively to parts,

each of which has statistical properties similar to the original shape (Aouit et al., 2009).

Fractals can be fully explained using scaling laws, therefore, their statistical information

can be transferred from one scale to another. Associated with each fractal is one or more

fractal dimensions. Fractal dimension is an index which shows the amount of irregularity and

complexity of a fractal. There are di�erent types of fractal dimensions, but the one that is

widely used in the literature is Hausdor�-Besicovitch dimension (Sun et al., 2013). Di�erent

methods have been proposed for calculating the fractal dimension of a fractal (Lopes et al.,

4Mandelbrot de�ned a fractal as �a set for which the Hausdor�-Besicovitch dimension strictly exceeds the

topological dimension�.
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2009). Here, we use method of moments (Turiel et al., 2006), which has been successfully

used for analyzing SM data (Mascaro et al., 2010).

4.5.1 Method of Moments

Although the algorithms for calculating the fractal dimension are di�erent, they all consist

of three main steps (Lopes et al., 2009):

1. Calculate a function of the variable under study using di�erent step sizes

2. Creating a plot of log(function) vs. log(step size) and �tting a straight line

through the points in the plot

3. Calculating the fractal dimension using the slope of the straight line

In the method of moments, the above-mentioned function is the moment at di�erent scales.

Moments of di�erent orders are standard tools for statistical analysis of variability: mean

(�rst raw moment), variance (second central moment), skewness (third central moment) and

kurtosis (fourth central moment). However in fractal analysis by method of moments, the

behavior of moments of di�erent orders in di�erent scales are investigated.

Assume that we have a 2n × 2n SM image I0 with a resolution λ0. Also assume that

we create a mean image pyramid from this image which contains images I0, ..., In with

resolutions λ0, ..., λn. For each resolution λ a partition function Sq(λ) is de�ned as (Mascaro

et al., 2010)

Sq(λ) =
1

N(λ)2

N(λ)∑
i=1

N(λ)∑
j=1

[
θ(i,j)(λ)

]q
(4.11)

where θ(i,j)(λ) is the value of SM at location (i, j) of the layer in the mean image pyramid

which has resolution λ, and N(λ) is the number of rows (or columns, as the image forms a

square) of that layer in the pyramid. In case SM is not available at some of the locations,

these locations are ignored, i.e. they are not considered in calculation of the moments. Thus,
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equation (4.11) changes to

Sq(λ) =
1N(λ)∑

i=1

N(λ)∑
j=1

δ(i,j)

2

N(λ)∑
i=1

N(λ)∑
j=1

[
θ′(i,j)(λ)

]q
(4.12)

where

δ(i,j) =


1 if θ(i,j) is available

0 otherwise

(4.13)

θ′(i,j) =


θ(i,j) if θ(i,j) is available

0 otherwise

(4.14)

SM is said to be scale invariant for a range of scales if

Sq(λ) ∼ λτ(q) (4.15)

holds for that range of scales, where∼ shows proportionality, and τ(q) is calledmass exponent

or scaling function of order q. A log transform of the both sides in equation (4.15) yields

log(Sq(λ)) ∼ τ(q) log λ (4.16)

Therefore, scale invariance can be revealed by examining the linearity of log(Sq(λ)) vs. log λ.

if the linearity condition is satis�ed, then τ(q) is the slope of the line. Note that, τ(q) does

not depend on λ, which means the statistical properties of SM can be transferred from one

scale to another if τ(q) is known. The mass exponent spectrum can fully de�ne the fractal,

but fractals are sometimes also represented by two alternative spectra called singularity

spectrum (Telesca et al., 2003):

f(α) = qα(q)− τ(q) (4.17)

and generalized dimension spectrum:

D(q) =
τ(q)

1− q
(4.18)
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where

α(q) =
dτ(q)

dq
(4.19)

is called the Holder exponent. In this work we use the mass exponent, τ(q), to study the

fractal behavior of SM data. A fractal is called a monofractal when τ(q) is linear, i.e. a

single Holder exponent describes the fractal. When τ(q) has a nonlinear relationship with

q the fractal is a multifractal. Positive values of q amplify the e�ect of large values of the

variable under study in the partition function and reduce the e�ect of small values. On the

other hand, negative values of q amplify the e�ect of small values and reduce the e�ect of

large values (Biswas et al., 2012b). Indeed, the shape of τ(q) is an indicator of the degree of

complexity and irregularity of the variable under study. It has been shown that τ(q) forms

a downward convex curve (Lovejoy et al., 2008); however, if this was the only thing we knew

about the mass exponent function, it would be barely applicable in analysis and prediction.

Because, in this case, one would need to determine a large number of parameters to link

information in di�erent scales (Lovejoy et al., 2008). A two-parameter model called the

Universal Multifractal has been proposed for τ(q) (Schertzer et al., 1989) which has found

applications in geophysics (Seuront et al., 1999), and is expressed as
τ(q) = C1

α−1
(qα − q) α 6= 1

τ(q) = C1q log(q) α = 1

(4.20)

where C1 and α are the parameters of the model.

A similar two-parameter multifractal model called the STRAIN (Space Time RAINfall)

model was also proposed by Roberto Deidda in his PhD thesis ((Deidda, 1997) as cited in

(Deidda et al., 1999)) in order to understand the scaling properties and statistical charac-

teristics of rainfall and downscaling coarse rainfall data. The model can be expressed as

(Mascaro et al., 2010)

τ(q) = −cq(1− β)− (1− βq)
log 2

, q > 1 (4.21)
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where c and β are parameters of the model which together control the degree of variability

of the rainfall �eld. The parameter c is related to the linearity of τ(q), and the parameter β

causes the nonlinearity in it. Thus, c can be related to monofractality and β can represent

the degree of multifractality in the STRAIN model.

As mentioned earlier, SM changes are a�ected by di�erent factors with complex behaviors.

Hence, as already reported in literature (Biswas et al., 2012a)(Kim et al., 2002), its variability

cannot be explained by a monofractal. In order to describe the variability of SM values

using multifractals, the STRAIN model (equation (4.21)) was applied in some studies on SM

images generated from remotely sensed data in regions with di�erent climates. In all of the

study areas the parameter β found to exhibit the same behavior, i.e. it was rather constant.

Mascaro et al. (2010) used the model for the data from SGP97 campaign (humid subtropical

and subhumid climate), and calculated mean β as 0.85 for the region, while Mascaro et al.

(2011) found mean β to be 0.89 and 0.71 for SMEX02 (subhumid climate) and SMEX04

(semiarid climate) campaigns, respectively. As we will see in Chapter 6, our experiments

with ground measurements in our study area show moderately small variations in β.

4.5.2 Multifractal Analysis Procedure

The algorithm used in this research for multifractal analysis of a SM image can be summa-

rized as below:

1. Create a mean image pyramid from the SM image under analysis

2. Calculate partition function Sq(λ) for all layers of the pyramid for a range of

moments of order q1, ..., qm using equation (4.12)

3. Examine the scale invariance in the SM image by examining the linearity of

log(Sq(λ)) vs. log(λ) for every q ∈ {q1, ..., qm}

4. Calculate τ(q) the slope of each line obtained in previous step for q ∈ {q1, ..., qm}
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5. Fit the STRAIN model to the pairs of (q,τ(q)) for q ∈ {q1, ..., qm}, and cal-

culate β and c parameters

In this study, we use the multifractal model (4.21) to analyze both the ground measure-

ments of SM and SM estimated from output of a SAR backscattering model to examine the

feasibility of improving the backscattering model output using the multifractal analysis. As

mentioned above, in multifractal analysis using the STRAIN model, estimation of the two

parameters of the model, β and c, is necessary. This is done by �tting the STRAIN model

to values of mass exponent, τ(q), obtained from a SM image.

Assume that we have a SM image of size 2n × 2n pixels which has fractal properties and

obeys the model (4.21). In order to calculate β and c for this image, we �rst estimate the

values of τi, the slopes obtained from �tting a line to log(Sq(λ))-log(λ) plot, for qi where

i ∈ {1, 2, ..., m}. Then, we create the pairs (q1, τ1), (q2, τ2), ..., (qm, τm) and minimize the

norm of residuals of the �t of the STRAIN model to (q, τ) pairs. Thus, the minimization

problem can be de�ned as

Minimize
β,c

√√√√ m∑
i=1

(τ(qi)− τi)2 (4.22)

This minimization problem can be solved using a nonlinear optimization algorithm. The

algorithm we have used in this study is the sequential quadratic programming. This algo-

rithm along with some necessary prerequisite material will be covered in the next section. A

Matlab function for the calculation of β and c parameters of the STRAIN model, given the

data and resolution, is presented in Appendix B.

4.6 Mathematical Optimization

Optimization is the process of making a decision about the parameters of a system in an

optimal manner. The three steps required for making this decision are (Wilde et al., 1967)

(as cited in (Diwekar, 2008)) :
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1. Identifying the system

2. Developing a suitable measure of performance

3. Minimizing or maximizing the measure of performance

Identifying the system consists of modeling the relationship between elements of the system

and translating them into constraints. The measure of performance demonstrates the quality

of the modeling in terms of closeness to real phenomenon being analyzed. For the minimiza-

tion/maximization step above, �rst, possible solutions are sought, and the most desirable

solution is selected. Then, we try to �nd a better solution, and the procedure is repeated

until no better solution is encountered (Deb, 2001). Since minimization and maximization

operations can be easily converted to each other, an optimization problem, in general form,

can be expressed as

Minimize
x

f(x)

subject to ci(x) = 0 ∀i ∈ E (4.23)

ci(x) ≥ 0 ∀i ∈ I

Here, x is the vector of parameters (decision variables) we are trying to estimate. f(x),

which is the measure of performance, is called an objective function. ci(x) are the equality

constraints when i ∈ E , and is used to introduce inequality constraints into the optimization

process when i ∈ I. E and I are the sets containing indices of equality and inequality

constraints. If ci(x) is not de�ned, i.e. E and I are empty sets, the problem is called

an unconstrained optimization; otherwise it is a constrained optimization problem. If f(x)

and all ci(x) constraints are linear functions, the problem is called a linear optimization

(linear programming) problem, otherwise it is called a non-linear optimization problem. The

parameter domain can be continuous or integer. In the case of integer decision variables,
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Figure 4.4: Typical one-dimensional optimization

the problem will be an integer programming problem. A special case happens when f(x)

is a vector, i.e. there are more than a single objective. In such a situation we will have a

multi-objective optimization problem.

Optimization algorithms have also been categorized based on their range of operation.

Figure 4.4 includes a typical representation of a one-dimensional optimization problem. As

demonstrated, function f(x) has a local minimum at x1. If the optimization algorithm gets

stuck in the valley around this point, it will not be able to yield the correct minimum value

of the function over its whole domain, as the correct one occurs at x2. The optimization

algorithms designed to search for the optimum value of the objective function over its whole

domain are called global optimization algorithms, and the algorithms which may not be able

to locate the global optimum are known as local optimization algorithms. Local optimization

methods need to be provided with an initial value of the decision variable that is close to the

optimum. In other words, if we can execute a local algorithm by a su�ciently large number

of set of initial values, we should be able to select the optimum among the answers obtained.

Several algorithms have been proposed to solve global optimization problems, for exam-

ple multi-start algorithm (Oldenhuis, 2010), simulated annealing (Kirkpatrick et al., 1983),

evolutionary algorithms (such as genetic algorithm (Whitley, 1994) and di�erential evolu-

tion (Storn et al., 1997)), and swarm-based algorithms (such as particle swarm optimization

(PSO) (Kennedy et al., 1995) and ant colony optimization (ACO) (Dorigo et al., 1996)).
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The general approach in global optimization algorithms is to start from an initial popula-

tion of candidates as the best values of decision variables, selecting new candidates in the

neighborhood of the initial ones, replacing the initial candidates by the new ones if the new

ones are better (in terms of minimizing the cost function), and repeating the selection of

new candidates and replacement until no better candidate can be found.

Global algorithms are time consuming algorithms, and the processing time increases as

the number of decision variables increases. The emphasis in these type of algorithms is

more on investigating the whole range of decision variable values which may lead to a global

solution of the problem, not on �nding the answer quickly. In order to improve the SM

estimated from the SAR backscattering models by means of multifractal analysis, the pa-

rameters of the STRAIN model, β and c, must be estimated using an optimization procedure.

For creating a full SM map with dimensions of a satellite image, the optimization process

has to be performed many times. For example, for a SAR image of 2048x2048 pixels if

we use 16x16 windows5 in multifractal analysis, then the optimization procedure needs to

be performed 16,384 times, which can take a long time if a global optimization algorithm

is used. Thus, in this study, we have used an algorithm called sequential quadratic pro-

gramming (SQP) which is a local algorithm, but can achieve global convergence6 by using

a suitable merit function (Boggs et al., 1995). The SQP was originally designed for con-

strained nonlinear optimization, but can also be used for unconstrained optimization if we

simply de�ne a range for unknowns, which converts the problem to a constrained optimiza-

tion problem. Sequential quadratic programming is one of the most powerful methods for

constrained nonlinear programming (Nocedal et al., 2006). The main idea behind SQP is to

replace the Lagrangian function (see De�nition 4.3) with a quadratic approximation, and the

5This is the smallest 2n×2n window which covers a ground measurement site (10×10 pixels) in our data

set.
6A global convergent algorithm is an algorithm which can �nd the global optimum from any starting

point.
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constraints by a linearized version of theirs. In this study, we used the Matlab Optimization

Toolbox implementation of the SQP to estimate parameters β and c of the STRAIN model

for ground measurements and SM images.

The SQP tries to solve a constrained nonlinear optimization problem by generating a

sequence of quadratic programming (QP) sub-problems, and that is where its name comes

from. Before we can discuss the QP and the SQP, we need to present some de�nitions and

theorems from Nocedal et al. (2006).

De�nition 4.1 Given the optimization problem (4.23), at a point x within the feasible re-

gion, a constraint ci(x) with index i ∈ E ∪ I is called active if ci(x) = 0. Otherwise it is

called an inactive constraint. Clearly all the equality constraints are active.

The active set for any point in the feasible region is de�ned as the the set of indices of

all of active constraints:

A(x) = E ∪ {i ∈ I | ci(x) = 0} (4.24)

De�nition 4.2 Given the optimization problem (4.23), point x and the active set A(x), it

is said that the linear independence constraint quali�cation (LICQ) holds if at the point x

the gradients of active constraints, ∇ci(x), i ∈ A(x), are linearly independent.

De�nition 4.3 The Lagrangian function for the optimization problem (4.23) is de�ned as

L(x, λ) = f(x) +
∑
i∈E∪I

λici(x) (4.25)

Theorem 4.1 If we assume that x∗ is a local minimizer of the problem (4.23), and f and

ci are continuously di�erentiable, and the LICQ applies to x∗, then there is a vector of
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Lagrangian multipliers, λ∗ made up of members λ∗i , i ∈ E ∪ I, so that we have

∇xL(x∗, λ∗) = 0

ci(x
∗) = 0 ∀i ∈ E

ci(x
∗) ≥ 0 ∀i ∈ I (4.26)

λ∗i ≥ 0 ∀i ∈ I

λ∗i ci(x
∗) = 0 ∀i ∈ E ∪ I

This set of conditions is known as the �rst-order necessary conditions for optimality, or

Karush-Kuhn-Tucker (KKT) conditions (Nocedal et al., 2006) for the names of its inventors

(Karush, 1939)(Kuhn et al., 1950) (as cited in (Kjeldsen, 2000)). KKT conditions are the

basis for solving many of the constrained nonlinear optimization problems.

4.6.1 Quadratic Programming (QP)

The general structure of a QP problem can be expressed as

Minimize
x

q(x) =
1

2
xTGx + xT c

subject to aTi x = bi, i ∈ E

aTi x ≥ bi, i ∈ I

(4.27)

where G is a symmetric square matrix, and ai and bi are vectors (Nocedal et al., 2006). If

we assume the special case that the problem includes only equality constraints, then (4.27)

reduces to

Minimize
p

q(x) =
1

2
xTGx + xTc

subject to Ax = b

(4.28)

The KKT conditions state that, if x∗ is a solution to the latter problem, there must be a λ∗

vector such that  G −AT

A 0


 x∗

λ∗

 =

 −c
b

 (4.29)
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This equation results in the minimizer of the problem (4.27) (Nocedal et al., 2006). For

the general case of the problems including both equality and inequality constraints, the

MATLAB Optimization Toolbox uses an active-set method. This algorithm tries to �nd the

optimal active set, which is the active set for the optimal point x∗, by starting from an initial

active set and improving it iteratively. In each iteration, some of the inequality constraints

plus all equality constraints are considered, all as equalities. This way the problem (4.27) is

converted to a series of less complex problems with format (4.28), which can be solved using

KKT conditions. The interested reader can refer to (Gill et al., 1984) and (MathWorks, n.d.)

for the details of this speci�c implementation of the algorithm.

4.6.2 Sequential Quadratic Programming (SQP)

Optimization techniques are iterative procedures. Starting from initial values for the decision

variables, which are usually provided by the user, the algorithm tries to improve it step by

step. In each step the current value of the decision variable xk is updated to xk+1 using

information from the objective function, and steps are repeated until a satisfactory optimum

is reached or no more progress has been observed for a while.

The SQP tries to solve a constrained nonlinear optimization problem by generating a

sequence of QP sub-problems, and that is where its name comes from. The SQP contains

two loops, an outer loop and an inner one. The outer loop makes the QP sub-problem,

and, based on the results from the sub-problem, moves the current point xk to an improved

position xk+1. The main duty of the inner loop is to solve the QP sub-problem provided

by the outer loop. The speci�c version of the SQP implemented by the library used in our

research can be stated in the following processing steps (MathWorks, n.d.):

1. Select an initial value for (x0,λ0). Set k to zero.

2. Convert the original optimization problem in (4.23) to a QP sub-problem by

Taylor-series expansion of the Lagrangian function (4.25), and linearizing the
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constraints. Taylor-series expansion of f(x) around xk is

f(xk + p) = fk +∇fTk p +
1

2
pTBkp (4.30)

where fk is the objective function assessed at xk and∇ is the gradient operator

de�ned as

∇f =

[
∂f

∂x1

∂f

∂x2

· · · ∂f

∂xn

]T
(4.31)

Bk can be the Hessian of f at xk or an approximate value for the Hessian. The

Hessian matrix is the matrix of second order partial derivatives of a function:

∇2f =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2
n


(4.32)

The QP sub-problem in the SQP can be expressed as

Minimize
p

f(x)∇fTk p +
1

2
pT∇

xxLkp

subject to ∇cTi (xk)p + ci(xk) = 0, i ∈ E

∇cTi (xk)p + ci(xk) ≥ 0, i ∈ I

(4.33)

3. Solve the QP sub-problem using the method explained in section 4.6.1 to

obtain the best p, which shows the direction of search.

4. Update x using xk+1 = xk + αp, where α shows the distance we can proceed

along the direction p. A merit function

Ψ(x) = f(x) +
∑
i∈E

ri ci(x) +
∑
i∈I

rimax {0, ci(x)} (4.34)

where

(rk+1)i = max
i

{
λi,

(rk)i + λi
2

}
, i ∈ E ∪ I (4.35)
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(r0)i =
‖∇f(x)‖
‖∇ci(x)‖

(4.36)

is used in determining α. α should be calculated in a way that makes su�cient

decrease in the merit function. The merit function (4.34) has been adopted

from (Powell, 1978).

5. If a su�cient change in x has not happened, or a pre-set number of function

calls has reached, quit. Otherwise continue from step 2.

The Hessian matrix Hk = ∇
xxLk, containing the second-order partial derivatives of the La-

grangian function, can be evaluated directly, but its calculation in all iterations is time

consuming. To alleviate this problem, a class of methods called quasi-Newton methods

have been proposed, which use only the �rst-order derivatives (gradient). In this imple-

mentation of the SQP, a quasi-Newton algorithm called BFGS, named after its inventors

Broyden, Fletcher, Goldfarb and Shanno, has been used, which updates the Hessian matrix

by (MathWorks, n.d.)

Hk+1 = Hk +
qkq

T
k

qTk sk
− HT

k s
T
k skHk

sTkHksk
(4.37)

where

sk = xk+1 − xk (4.38)

qk =

(
∇f(xk+1) +

∑
i∈E∪I

λi∇ci(xk+1)

)
−

(
∇f(xk) +

∑
i∈E∪I

λi∇ci(xk)

)
(4.39)

In this chapter, commonly-used models proposed to explain and model the variations

of SM were reviewed. In Chapter 6, the applicability of these models to the ground mea-

surements of SM in our study area will be discussed, and the results of the analysis of the

spatial variability in ground measurements and outputs of SAR backscattering models will

be presented.
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Chapter 5

Implementation

In this chapter we will explain the data and methods used for evaluation of the models and

analyzing the spatial variability of SM. The parameters used and the criteria by which the

performance of models are measured will be described in the following sections.

5.1 Study Area and Data

The area under study in this research is a bare agricultural area located in Carman, about

50 km southwest of Winnipeg, Manitoba, Canada. It has a level topography which helps

in processing SAR images without using a digital elevation model (DEM). According to the

slope maps of Canadian Digital Surface Model (CDSM) from Natural Resources Canada,

the region has an average slope of 0.56 degrees. The climate of the area is classi�ed as

subhumid to humid continental, and most of the precipitation happens in summer in this

area (Merzouki et al., 2010). The models were implemented using three single look complex

(SLC) Radarsat-2 images of the area acquired in �ne quad-polarization mode from 22 April

2008 to 16 May 2008. Acquisition parameters of each image are mentioned in Table 5.1. The

temporal di�erences between the images are 17 and 7 days. As presented in the table, the

second image has a di�erent incidence angle than the other two, which causes a di�erence

in the original pixel size.

Figure 5.1 shows the location of the study area and the measurement sites covered by the

SAR image of Epoch 1. Concurrent with every epoch of image acquisition SM measurements

were carried out in the �eld for the top 6 cm of soil using ThetaProbe (Delta-T Device Ltd.,

Cambridge, UK) sensors by Agriculture and Agri-Food Canada (AAFC). In order to remove

the e�ect of vegetation cover, only bare �elds were selected for ground measurements. In
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Table 5.1: Satellite images used in this study: Dates and times are local.

Epoch
Date of

Acquisition
Time of

Acquisition
Beam Mode

Incidence
Angle

Orbit

Nominal
Pixel
Size

(m×m)
Epoch 1 22 April 2008 19:15:41 FQ11 31◦ Ascending 9× 6
Epoch 2 9 May 2008 19:19:51 FQ15 35◦ Ascending 8× 5
Epoch 3 16 May 2008 19:15:41 FQ11 31◦ Ascending 9× 6

addition, the selected sites were homogeneous with respect to soil type, slope and soil sur-

face roughness. For each test �eld, data were collected in an approximately 150 m×150 m

site over a grid of 16 sampling points, and each point was sampled 4 times, resulting in 64

measurements in each site. In addition to SM, surface roughness RMS height and correla-

tion length were estimated for selected �elds using the measurements of a one-meter needle

pro�ler which consisted of a camera to take ground pro�le photographs. The photographs

were processed by AAFC to extract RMS height and correlation length. For each site, �ve

sampling points, representative of the sampling site, were selected which were at least 5 m

apart, and the roughness measurements were carried out in the look direction of Radarsat-2

sensor (Merzouki et al., 2010).

Figure 5.2 shows a typical site of �eld measurements carried out by AAFC. The bound-

aries of each site in AAFC maps are de�ned by four points which are shown by circles in this

�gure. For the site displayed in the �gure, this makes an area consisting of 272 SAR image

pixels. The dimensions of each pixel are 10 m × 10 m, as we will describe later in section

5.3. However, as mentioned above, the SM data in each site was collected on a grid of 16×16

points, which are displayed by triangles in the grey area. Thus, no ground measurement

of SM is available for the white pixels in Figure 5.2. Measuring SM for each pixel in the

�eld is not practical, and, the average SM for each site needs to be compared to the average

SM values estimated by the scattering model in the same site when evaluating the models.

However, given the high spatial variability of SM, it does not seem reasonable to assume

that the average SM value calculated for the grey area, which covers only 100 pixels, can
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(a) Map of Carman Site (b) Radarsat-2 image of the study area ac-
quired in Epoch 1, and location of �elds
used for ground measurement of SM and
roughness covered by this image.

Figure 5.1: Study area near Carman, Manitoba, Canada

represent the status of SM for the whole area de�ned by circles in Figure 5.2. Therefore,

in this study, for the purpose of evaluation of the backscattering models, we compare the

average SM value of the pixels covering the measurement grid in each site, i.e. only pixels

in the grey area, with the average value of ground measurements of SM in that site.

Using Monte Carlo simulations, it has been shown that in order to have a 10% precision

in measuring RMS height and correlation length of the surface roughness, it is necessary

to have surface pro�les of length at least 40 l̄ and 200 l̄, respectively (Oh et al., 1998),

where l̄ is the average correlation length. The average correlation length measured in the

Carman experiment has been 10.58 cm. Therefore, the length of the pro�les needed to be, at

least, 4 m to have a 10% precision in RMS height measurements. Furthermore, for natural

surfaces, it has been shown that in order to extract valuable roughness information (5%-13%

precision for RMS height and 10%-40% precision for correlation length) the length of the

pro�les used for calculations should be at least 10 m (Baghdadi et al., 2000). Since the

ground measurements of surface roughness for Carman area have been carried out using a

1 m pro�ler, these measurements do not seem to be reliable and suitable for comparison
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Figure 5.2: A typical ground measurement grid in Carman study area: Triangles show the
location of ground measurements of SM. The circles represent the four points which have
been used in AAFC maps to de�ne site boundaries. Each small square depicts a pixel of size
10 m × 10 m.

with RMS height estimations from the models. Moreover, in this study, we intended to

estimate SM without using any ancillary �eld measurements. Thus, the information about

soil surface roughness are not used in the inversion process in our study. Furthermore, the

calibration process that will be proposed for SM is not related to and does not produce

roughness parameters.

According to AAFC publications that have used these data for estimation of SM, me-

teorological constraints were considered so that ground measurements and satellite image

acquisitions were not carried out during extreme rainfall or long freezing periods (Merzouki

et al., 2010). Table 5.2a and Table 5.2b show temperature and precipitation data for Carman

study area during April and May 2008 (Environment Canada, 2013). According to these

tables, for Epoch 1 and Epoch 2 of data collection the minimum temperature has been be-

low zero, which may have caused freezing of SM. This may result in errors in SM estimation

using SAR backscattering models. The dielectric mixing model does not take into account
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the change in the dielectric constant because of freezing when estimating SM values from the

dielectric constant of soil. Furthermore, there was some precipitation on the day the data

for Epoch 1 was collected and a few days before that. This may also a�ect the performance

of SM estimation by backscattering models.

In tables 5.3 to 5.5 a summary of the SM information provided by AAFC for the three

epochs of data collection in Carman study area is presented. In these tables, mean value

of 64 ground measurements for each site, 95% con�dence interval for the mean value, and

the range of SM values around the mean value covered by the 95% con�dence interval are

presented. The 95% range is calculated by subtracting the mean SM value of each site from

the lower and upper bounds of the con�dence interval of the mean for that site. Averaging

the 95% range values suggests that, on average, the mean SM value has been measured with

about 1.27 vol.% precision. This precision will later be used in Chapter 6 to help in assessing

the performance of the models. The con�dence intervals are estimated using a nonparametric

method called bootstrapping (using 1000 iterations) which is explained in Appendix A. Note

that, the SAR images do not cover all of the sites.

5.2 Pre-processing

As the very �rst step, the original Radarsat-2 SLC images were converted1 to coherency

matrix format (using σ◦ LUT). The rest of operations were carried out using this format.

This is mainly because we intend to compare the results of the four scattering models before

analyzing the spatial variability of SM. The X-Bragg model needs the coherency matrix for

calculating H/A/α parameters in order to invert the soil surface parameters. Thus, for

the sake of consistency in data used with all models, speckle �ltering was performed on

the coherency matrix, and backscattering coe�cients for the Oh, the Dubois and the IEM

models were calculated using the coherency matrix elements:

1using PolSARpro v4.2 (European Space Agency, 2011) software
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Table 5.2: Daily climate data for Carman study area for April and May 2008: The rows
corresponding to dates of data collection for the three epochs of the data are marked in the
tables.

(a) April 2008

Day
Max
Temp.
(◦C)

Min
Temp.
(◦C)

Mean
Temp.
(◦C)

Total
Precip.
(mm)

01 4.1 -6.8 -1.4 0
02 7.6 -3.9 1.9 0.7
03 11 -2.2 4.4 0
04 5.2 -4.3 0.5 1.3
05 -0.3 -15.1 -7.7 0
06 2.8 -7.6 -2.4 0
07 7.4 -6.3 0.6 0.6
08 10.5 -4.8 2.9 0
09 6.5 -3.3 1.6 0
10 10.9 -1.7 4.6 0
11 8 -0.4 3.8 0
12 8.8 -5.6 1.6 0
13 14.1 -7.6 3.3 0.7
14 19.2 0.6 9.9 0.7
15 15.7 4.2 10 0
16 14.8 2.8 8.8 0
17 15.6 -2.8 6.4 0.6
18 20.5 -1.1 9.7 0.8
19 19.9 -0.9 9.5 0.6
20 16.9 2.2 9.6 0.6
21 9.3 -4.1 2.6 4.3
22 13 -5.8 3.6 0.7
23 8.1 -3 2.6 2.4
24 0.4 -2.2 -0.9 7.5
25 1.5 -4.3 -1.4 0
26 4.4 -2.1 1.2 0.6
27 6.4 -5.3 0.6 0
28 9.6 -7.2 1.2 0
29 16.4 -1.7 7.4 0
30 16.9 -1.4 7.8 0

(b) May 2008

Day
Max
Temp.
(◦C)

Min
Temp.
(◦C)

Mean
Temp.
(◦C)

Total
Precip.
(mm)

01 14 2.1 8.1 0
02 8.6 -1.6 3.5 0
03 11.4 -4.3 3.6 0
04 5.9 -5.9 0 0
05 16.8 -7.3 4.8 0
06 16.1 2 9.1 0
07 11.3 -1.2 5.1 0
08 13.1 -5.8 3.7 0
09 8.9 -1 4 0
10 9.4 -3.6 2.9 0
11 17.3 -5.7 5.8 0
12 11.1 4.2 7.7 15.4
13 13.8 3.6 8.7 2.6
14 19.5 3.3 11.4 0.8
15 21.1 3.1 12.1 0
16 23.2 6.6 14.9 0
17 19 5.3 12.2 0
18 16.9 1.7 9.3 0
19 12.3 4.8 8.6 6.4
20 14.2 2.1 8.2 0
21 17.3 1.8 9.6 0
22 17.9 4.1 11 0
23 22.6 6.1 14.4 0
24 25.7 5.1 15.4 0.2
25 17.4 3.8 10.6 4.4
26 12.7 3 7.9 1.6
27 17.8 -1.2 8.3 0
28 21.9 2.7 12.3 M
29 20.8 4.9 12.9 0
30 18.7 8.9 13.8 2.2
31 21.7 8.8 15.3 0
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Table 5.3: Ground measurements of Epoch 1 in Carman study area: Mean value of 64
ground measurements, 95% con�dence interval for the mean value, and the range of SM
values around the mean value covered by the 95% con�dence interval are presented for each
site.

Site
Mean SM
(vol.%)

95% Con�dence
Interval (vol.%)

95% Range
(vol.%)

1 17.36 (16.01,18.72) (-1.35,1.36)
2 20.08 (18.56,21.56) (-1.51,1.49)
3 19.34 (17.96,20.73) (-1.38,1.39)
8 19.56 (18.43,20.81) (-1.13,1.24)
9 8.45 (8.02,8.88) (-0.43,0.42)
10 10.82 (10.05,11.50) (-0.77,0.68)
11 10.79 (10.16,11.44) (-0.63,0.65)
12 7.26 (6.84,7.75) (-0.43,0.48)
13 10.11 (9.02,11.37) (-1.09,1.26)
14 17.79 (16.18,19.33) (-1.61,1.54)
15 9.13 (8.61,9.68) (-0.51,0.56)
16 16.15 (15.07,17.18) (-1.07,1.03)
17 12.71 (11.54,13.99) (-1.17,1.28)
18 11.66 (11.07,12.30) (-0.59,0.64)
19 13.67 (11.84,15.51) (-1.82,1.85)
22 13.56 (12.41,14.75) (-1.15,1.19)
23 11.39 (10.06,12.92) (-1.33,1.54)
24 10.97 (9.70,12.46) (-1.27,1.49)
25 9.50 (8.55,10.44) (-0.95,0.94)
26 7.16 (6.38,7.95) (-0.78,0.79)
27 12.21 (11.38,13.15) (-0.83,0.94)
28 14.78 (12.81,16.60) (-1.98,1.81)
29 8.92 (7.60,10.35) (-1.32,1.43)
30 7.94 (6.70,9.18) (-1.24,1.24)
31 8.32 (7.32,9.42) (-1.01,1.10)
32 12.17 (11.46,13.01) (-0.71,0.84)
33 13.10 (12.08,14.26) (-1.02,1.15)
34 16.63 (15.48,17.85) (-1.16,1.22)
35 20.45 (19.29,21.67) (-1.16,1.22)
36 19.25 (18.14,20.36) (-1.12,1.10)
37 16.69 (14.88,18.50) (-1.81,1.81)
38 15.96 (14.97,17.01) (-0.99,1.05)
39 15.00 (14.23,15.88) (-0.78,0.88)
40 16.08 (15.04,17.13) (-1.04,1.05)
43 13.55 (12.39,14.63) (-1.16,1.08)
44 20.32 (17.83,22.83) (-2.49,2.51)
45 13.01 (12.02,14.02) (-0.99,1.01)
46 12.76 (11.85,13.65) (-0.91,0.89)
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Table 5.4: Ground measurements of Epoch 2 in Carman study area: See Table 5.3 for an
explanation of the columns.

Site
Mean SM
(vol.%)

95% Con�dence
Interval (vol.%)

95% Range
(vol.%)

1 14.91 (13.18,16.55) (-1.73,1.64)
2 18.67 (16.88,20.43) (-1.79,1.76)
4 20.60 (18.47,22.76) (-2.13,2.16)
5 25.15 (23.49,26.88) (-1.66,1.73)
6 24.32 (22.67,26.07) (-1.65,1.76)
7 19.74 (17.66,21.89) (-2.08,2.15)
8 17.47 (15.56,19.25) (-1.91,1.78)
9 1.46 (1.16,1.77) (-0.29,0.31)
10 11.55 (10.33,12.71) (-1.22,1.16)
11 7.60 (6.77,8.48) (-0.83,0.88)
12 1.21 (0.98,1.47) (-0.23,0.26)
13 2.68 (2.21,3.22) (-0.47,0.54)
14 7.51 (6.32,8.72) (-1.20,1.21)
15 2.40 (1.89,2.98) (-0.51,0.58)
16 10.00 (9.10,10.94) (-0.90,0.94)
17 12.61 (10.93,14.41) (-1.67,1.80)
18 18.65 (16.75,20.57) (-1.91,1.92)
19 14.13 (12.57,15.72) (-1.56,1.59)
20 16.85 (14.82,19.02) (-2.03,2.16)
21 14.96 (13.22,16.81) (-1.74,1.85)
22 14.65 (12.87,16.52) (-1.78,1.87)
23 14.20 (12.70,15.82) (-1.50,1.62)
24 11.12 (9.84,12.52) (-1.28,1.40)
25 4.69 (3.72,5.71) (-0.96,1.02)
26 2.73 (2.27,3.20) (-0.46,0.47)
27 8.36 (7.26,9.49) (-1.10,1.13)
28 13.62 (11.70,15.36) (-1.92,1.75)
29 8.29 (6.86,9.63) (-1.42,1.35)
30 8.97 (7.52,10.49) (-1.46,1.51)
31 9.61 (8.30,11.03) (-1.31,1.42)
33 7.97 (7.14,8.83) (-0.84,0.86)
34 10.76 (9.48,12.11) (-1.28,1.35)
38 7.89 (6.43,9.51) (-1.46,1.62)
39 9.50 (7.72,11.20) (-1.78,1.71)
40 11.72 (9.40,13.78) (-2.32,2.06)
42 11.92 (10.32,13.57) (-1.60,1.65)
43 8.76 (7.64,9.93) (-1.12,1.16)
44 15.96 (13.68,18.18) (-2.28,2.22)
45 7.91 (7.02,8.79) (-0.89,0.88)
46 6.54 (5.80,7.35) (-0.75,0.81)
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Table 5.5: Ground measurements of Epoch 3 in Carman study area: See Table 5.3 for an
explanation of the columns.

Site
Mean
SM
(vol.%)

95%
Con�dence
Interval
(vol.%)

95% Range
(vol.%)

1 20.35 (18.96,21.79) (-1.39,1.43)
2 22.15 (20.86,23.56) (-1.29,1.41)
3 21.75 (20.20,23.25) (-1.55,1.50)
4 27.72 (26.00,29.76) (-1.72,2.03)
5 34.07 (32.78,35.48) (-1.29,1.41)
6 31.30 (29.69,32.96) (-1.61,1.66)
7 24.09 (21.85,26.41) (-2.24,2.32)
8 19.02 (17.72,20.29) (-1.30,1.27)
9 10.02 (9.38,10.67) (-0.64,0.66)
10 20.70 (19.80,21.56) (-0.91,0.85)
11 12.60 (12.11,13.17) (-0.49,0.56)
12 7.19 (6.79,7.65) (-0.41,0.46)
13 11.23 (10.71,11.72) (-0.52,0.49)
14 16.25 (15.03,17.46) (-1.22,1.21)
15 9.01 (8.47,9.51) (-0.54,0.50)
16 14.32 (13.32,15.32) (-1.01,1.00)
17 20.38 (19.03,21.84) (-1.35,1.46)
18 22.94 (21.60,24.23) (-1.34,1.29)
19 20.29 (18.77,21.95) (-1.51,1.66)
20 22.80 (21.16,24.48) (-1.64,1.68)
21 25.91 (24.16,27.63) (-1.75,1.72)
22 22.11 (20.39,23.62) (-1.73,1.51)

Site
Mean
SM
(vol.%)

95%
Con�dence
Interval
(vol.%)

95% Range
(vol.%)

23 23.83 (22.26,25.43) (-1.58,1.60)
24 18.15 (16.87,19.47) (-1.28,1.31)
25 14.95 (13.69,16.19) (-1.26,1.24)
26 8.89 (8.16,9.60) (-0.73,0.71)
27 16.60 (15.50,17.77) (-1.10,1.17)
28 21.50 (19.89,23.03) (-1.61,1.53)
29 13.02 (12.24,13.86) (-0.78,0.84)
30 17.89 (16.75,19.23) (-1.14,1.34)
31 14.47 (13.52,15.37) (-0.95,0.90)
33 10.12 (9.41,10.84) (-0.71,0.72)
34 17.15 (15.74,18.52) (-1.41,1.37)
35 16.54 (15.64,17.46) (-0.90,0.92)
36 15.92 (14.83,17.06) (-1.09,1.14)
37 17.08 (15.88,18.41) (-1.20,1.33)
38 17.37 (15.54,19.11) (-1.83,1.75)
39 17.33 (15.64,19.18) (-1.68,1.86)
40 16.92 (15.16,18.81) (-1.75,1.89)
42 21.94 (20.09,23.76) (-1.85,1.82)
43 13.64 (12.55,14.60) (-1.09,0.96)
44 25.45 (23.51,27.34) (-1.93,1.90)
45 10.84 (10.14,11.63) (-0.70,0.79)
46 7.97 (7.34,8.58) (-0.63,0.61)
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σ◦hh =
|T11 + T12 −= (T12) 2i|2

2 |T11|
(5.1)

σ◦vv =
|T11 − T12 −= (T12) 2i|2

2 |T11|
(5.2)

σ◦hv =
T33

2
(5.3)

where Tij shows the element at row i and column j of the coherency matrix.

Given the level topography of the study area, the incidence angle for each pixel was

calculated as

θ = arcsin

{
(β◦)2

(σ◦)2

}
(5.4)

where β◦ and σ◦ can be obtained from the two LUTs in the meta-data delivered with

Radarsat-2 images. In an experiment with the purpose of assessing the e�ect of changes

of incidence angle in estimated SM value by the IEM, it was revealed that changing the

local incidence angle from 30.2572◦ (the minimum incidence angle of the image in Epoch 1)

to 31.9678◦ (the maximum incidence angle of the image in Epoch 1), when considering the

average backscattering coe�cients of the image in Epoch 1, could change the estimated SM

value by 1.96 vol.%. This change is slightly bigger than the precision of mean SM from the

ground measurements with which the model estimates should be compared. Therefore, the

local incidence angle could not be assumed constant for the whole image, and it was assumed

constant only within each site. Also, it was revealed that a change in the local incidence

angle equal to the average slope of the study area can cause about 0.49 vol.% change in

estimated SM value. Thus, as mentioned before, the slope was neglected in processing of the

SAR images.

In order to reduce the e�ect of speckle, the coherency matrix image was �ltered with a

Lee re�ned �lter (Lee, 1981) with a 7× 7 sliding window, which has been reported to yield

good results (Lee et al., 1994).
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5.3 Geo-referencing

Since our ground measurements are provided in the ground coordinate system (NAD 1983

UTM Zone 14N), in order for them to be compared with output of a model, it was necessary

to either geo-reference the original image and do the calculations in geo-referenced image

domain, or transfer the ground measurements to image domain and compare them to model

outputs after doing calculations in the raw image domain. Processing in raw image domain

can be faster if we need to calculate the local incidence angles for each pixel. Because

the local incidence angles in �at areas are constant along the azimuth direction, which is

usually the vertical direction (along columns) on the raw image. Therefore, by working on

the original image domain, one can probably use the same local incidence angle values for

a large subset of model input calculations when generating full SM maps. However, in this

study, we have assumed that local incidence angle is constant within each site, because its

changes is very small for the small dimensions of a site. Furthermore, only pixels within sites

(not all of the pixels in the image) have been processed to speed up the algorithms.

Since working in the geo-referenced image domain makes implementing the models easier,

in this study we performed our calculations in this domain. The images were geo-referenced

using a second order polynomial transformation
x = a1X

2 + b1Y
2 + c1XY + d1X + e1Y + f1

y = a2X
2 + b2Y

2 + c2XY + d2X + e2Y + f2

(5.5)

where x and y are the coordinates in image system, and X and Y are the coordinates in

ground system. The coe�cients in the above equations are calculated using a number of

ground control points acquired from previously geo-referenced SPOT images, i.e. an image-

to-image registration was performed. The RMSE values for the transformation of images

of the three epochs were 0.69, 0.77 and 0.68 pixels, respectively. In order not to change

the original values of backscattering coe�cient and coherency matrix, a nearest neighbor

resampling was used for geo-referencing, and the resampled pixels were 10 m × 10 m.
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5.4 Inversion of the Models and Multifractal Analysis

The Oh model and the Dubois model can be easily inverted analytically according to equa-

tions (3.58) to (3.61) and (3.64) to (3.65). For inverting the IEM and the X-Bragg models, a

LUT has been utilized in this study, because it is fast and easy to implement. The LUT is,

indeed, a rectangular grid of regularly-spaced values of the two unknown parameters of the

model over a reasonable domain of theses parameters. For each node in the grid, the surface

scattering model is executed to simulate the backscattering coe�cients, in case of the IEM,

and H and α, in case of the X-Bragg.

For the IEM, the unknown parameters are the dielectric constant of the soil and the

surface RMS height. For the ranges of the parameters Loew et al. (2006) and Kim et al.

(2012) suggest to use 5 < εr < 35 for the dielectric constant, and 0.5 cm < σ < 5 cm for the

RMS height. In this study, we decreased the lower bound of the dielectric constant to cover

even some negative numbers of SM values, i.e. we selected 0.1 < εr < 35. The purpose was

to check if the model estimates any negative SM values. Although the negative SM values

estimated by the model were rare, they were deleted from the outputs of the model, i.e. they

were assumed as missing data. It should be mentioned that, according to the Topp dielectric

mixing model, εr = 35 is equivalent to mv = 48 vol.%, and the maximum SM value measured

in the �eld in our study area is 43.6 vol.%. Thus, the selected upper bound of εr is consistent

with the ground measurements. Also, the minimum and maximum RMS height observed in

the �eld for our study area are 0.52 cm and 3.81 cm, respectively, which both are within the

range 0.5 cm < σ < 5 cm selected in this study. For the X-Bragg, the unknown parameters

are the dielectric constant of the soil and the β1 angle. The possible range of values for the

angle is 0◦ < β1 < 90◦ (Hajnsek, 2001). Sample spacing for εr, σ and β1 were 0.1, 0.01 cm

and 0.1◦, respectively.

Before the IEM can simulate the backscattering coe�cients, it is also necessary to set

the value of the power index parameter for constructing the nth power of the surface power
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spectrum, i.e. equation (3.31). In order to �nd the best value for power index, p , multiple

values were used in the IEM simulation module. The results of this experiment will be

presented in Chapter 6. It is worth mentioning that, in the process of the IEM simulation,

bp parameter in (3.28) was approximated by

bp = 0.9993 p (0.1083 + p)−1 (5.6)

suggested by Loew et al. (2006). As mentioned earlier, the models were only executed for

pixels inside the ground measurement sites, and the incidence angle for all pixels inside a

single site was assumed constant and equal to the average of the incidence angle values inside

the site for the sake of speeding the inversion process up. In �gure 5.3 a �owchart of the

steps for implementing the IEM is displayed. As we will see in the next chapter, the IEM

is the model selected for multifractal analysis of SM values because of its high inversion

rates. It should be mentioned that, after obtaining the dielectric constant values form the

SAR backscattering models, they were converted to volumetric SM values using the Topp

dielectric mixing model.

In the optimization procedure for �tting the STRAIN model to data, the range of param-

eter β was set to 0 < β < 1 as this is the possible range in the model (Deidda et al., 1999).

There is not a prede�ned range for parameter c, thus, in this study it was set to 0 < c < 50

to cover a wide range. In producing the �nal results and estimating the parameters of the

calibration model, as we will see in Chapter 6, all the estimated values for the parameter

c are less than 20 when β is �xed. The initial values for these two parameters were set to

0 in the SQP optimization procedure. The moment order, q, was changed in the range 2-6

(integer numbers) following (Mascaro et al., 2010).

All the processing steps except for reading the raw SLC images, speckle �ltering, and

producing H/A/α images (which were carried out using PolSARpro) were executed in the

Matlab R2012a programming environment. PolSARpro software includes modules for ex-

ecuting the same version of the Oh and the Dubois model implemented in this study. In
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Figure 5.3: Flowchart of the IEM
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order to validate the outputs of our implementation of these two models against the outputs

of PolSARpro, average of SM values calculated for the �eld sites of Epoch 1 using our im-

plementation and PolSARpro implementation where compared. The correlation coe�cient

between the two sets of SM values were 0.98 and 0.97 for the Oh and Dubois models, respec-

tively. Since the exact same equations have been used for both implementations, the slight

di�erence in the results may be associated with rounding and di�erence in programming

languages. There is also a module in PolSARpro for executing a model called X-Bragg2008.

Unfortunately, no documentation of this model was found in the package. Thus, it could not

be used for validation of our implementation of X-Bragg. However, as mentioned in section

6.2.1, the results of X-Bragg2008 in PolSARpro exhibited very low inversion rates similar to

what obtained from the results of our implementation of X-Bragg.

5.5 Evaluation of the Algorithms

Validation of the results of the SM estimation algorithms against ground measurements of

SM is di�cult. The reason is that, while output of such algorithms is a continuous areal

estimate for the average SM over a pixel or group of pixels, the ground measurements are

discontinuous point or areal measurements with a limited spatial domain (Sharma, 2009).

Therefore, it is necessary to compare the average value of SM values from model estimations

and ground measurements over the same geographical extent. The extent can be the area

of a pixel (in case ground measurements within every pixel can be identi�ed), a �eld, a

catchment, or even a larger area depending on the resolution of the data used and the

number and sparsity of SM measurements. An issue with comparing the averages is that, as

we will see in Chapter 6, some of the models generate patchy outputs with large connected

inverted and uninverted pixels. In this case, the average SM value estimated by the model

may not be a good representative for the selected geographic extent for which it is calculated.

Therefore, comparing the average value of the ground measurements and the average value of
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the model outputs may not be reasonable. However, unless there is plenty of images obtained

in di�erent dates, there is not much one can do about �lling the large gaps in estimated SM

values.

There has not been much research work on performance metrics for SM estimation using

RS (Entekhabi et al., 2010). Researchers often use the two well-known measures namely the

correlation coe�cient (or its square, coe�cient of determination) and the Root Mean Square

Error (RMSE) (Hajnsek, 2001)(Alvarez-Mozos et al., 2007)(Oh et al., 1992)(Dubois et al.,

1995). In this study, for evaluating the agreement of the SM estimated from the models

and ground measurements, we use these two measures along with the average value of the

residuals, r̄, as an indicator of bias in the model.

For evaluation of linear �ts, in this study, the correlation coe�cient and p-value of F-test

is considered. The p-value can show the signi�cance of the �t. For example a p-value less

than 0.05 shows that the �t is signi�cant at a 95% signi�cance level. Since the F-test can

only be performed when residuals of the �t are normally distributed, the p-value is reported

only when Kolmogorov-Smirnov test (Massey, 1951) fails to reject the null hypothesis (that

the distribution of the residuals is normal) at 5% signi�cance level.

Kvalseth (1985) compares 8 di�erent versions of the correlation coe�cient used in liter-

ature, and concludes that if the correlation coe�cient is de�ned as

R =

√√√√√√√√√1−

N∑
i=1

(Oi − Pi)2

N∑
i=1

(Oi − Ō)2

(5.7)

it can be used for both linear and nonlinear �ts. In this equation, Oi is the ith observed value

for the dependent variable, Pi is the �tted value corresponding to Oi, Ō is the average of

Oi's, and N is the number of data points. Kvalseth (1985) also suggests that in addition to

the correlation coe�cient, RMSE be reported for the �t. Following (Kvalseth, 1985), in this

thesis, we report the correlation coe�cient de�ned in (5.7) and the RMSE when assessing
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nonlinear �ts.
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Chapter 6

Experimental Results

The backscattering models introduced in Chapter 3 were implemented and applied in esti-

mation of surface SM using three Radarsat-2 images. In order to assess the performance of

these models, the outputs of the models (after converting to volumetric SM values using the

Topp model) were then compared to three epochs of ground measurements concurrent with

image acquisitions explained in Chapter 5. As will be shown in the following sections, the

RMSE obtained by comparing the outputs of the models with �eld measurements are large

in comparison to the con�dence intervals calculated for mean ground-measured SM of �eld

sites. This suggests that the RMSE values are signi�cant, and the models need improvement.

Because of its dense pattern of inversion, the IEM was selected for exploring the feasibility

of using the spatial variability analysis introduced in Chapter 4 for improving the outputs

of this backscattering model. On the other hand, examining the �eld measurements by

these analysis tools shows that the fractal analysis is more suitable for our data set. Thus,

both ground measurements and output of the IEM were studied for scale invariance and

multifractality according to the STRAIN model. The results of this investigation along with

our �ndings about improving the quality of SM estimation using the fractal analysis are

presented in this chapter. We �rst start by examining the performance of the backscattering

models, and then look at the results of spatial variability analysis.

6.1 Power Index Experiment for the IEM

The shape of the power law spectrum in equation (3.28) has to be selected when using this

generalized form in the IEM. To select the shape, it is needed to determine the best value

for the power index parameter p for our data set. For this purpose, the IEM was run on
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Table 6.1: Summary of the performance of the IEM in all epochs using di�erent values of
power index

p = 1.5 p = 2 p = 3 p = 5 p = 10 p = 20

E
p
oc
h
1 RMSE (vol.%) 17.45 5.83 9.57 7.83 8.16 9.48

R -0.13 -0.11 -0.37 -0.32 -0.32 -0.32

E
p
oc
h
2 RMSE (vol.%) 24.13 7.88 9.8 12.85 14.81 13.40

R -0.05 0.19 0.07 0.03 0.00 0.05

E
p
oc
h
3 RMSE (vol.%) 15.83 9.57 14.14 12.23 12.15 13.06

R -0.35 -0.23 -0.19 -0.13 -0.21 -0.24

SAR images of all epochs using multiple values of the power index. The scatter plots of the

results for Epoch 1 are presented in Figure 6.1. In this �gure each point (black circle) in a

graph depicts a �eld site for which the model has calculated SM values. The abscissa and

ordinate of each site represents the average of SM values measured on the ground and the

average of SM values estimated by the model in that �eld, respectively. The 1:1 line is also

displayed on each graph to show the location were perfect matches between ground-measured

and model-calculated SM could happen.

For p = 1, which corresponds to an exponential correlation function, the model did not

generate any results. According to scatter plots in Figure 6.1, the model almost constantly

overestimates SM when power index is set to 1.5. In contrast, p = 3 makes the model

underestimate SM for most of the sites. It should be mentioned that negative correlation

coe�cients calculated for all p values in Epoch 1 show a weak performance of the IEM for

all cases in this epoch. However, p = 2 seems to generate better results than other cases

according to both RMSE (5.83 vol.%) and correlation coe�cient (-0.11) measures. The

values of p have been selected so that they cover a wide range of power index values from 1

to 20. The reason for selecting p = 3 and p = 1.5 is to check the results for values around

p = 2, for which the IEM performs usually better for our data.

Table 6.1 summarizes the values of performance measures for the IEM when applied on
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Figure 6.1: Performance of the IEM for Epoch 1 using di�erent values of power index
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all epochs of data using the same set of p values. For Epoch 2, p = 2 again yields the highest

correlation coe�cient and lowest RMSE. This epoch is indeed the only epoch for which the

IEM has positive correlation coe�cients for some of the power index values. For data in

Epoch 3 the best correlation coe�cient is not associated with p = 2, but selecting this power

index results again in the lowest RMSE for this epoch. As per the results of this experiment,

a surface correlation function close to exponential, i.e. a generalized correlation function

with p = 2 (see equation (3.30)), was selected as the most suitable one among the tested

surface correlation functions for our data set to be used in this research.

6.2 Comparison of SAR Backscattering Models

6.2.1 X-Bragg

The X-Bragg model was able to invert a very limited number of pixels in the whole area, i.e.

its inversion rate was negligible. For example, for the Radarsat-2 image of Epoch 1 it could

only invert 9 pixels (out of 100 pixels) in Site 29 and 4 pixels in Site 31. By comparing the

site-based average value of these pixels to the average ground measurements of SM in the

sites, the RMSE for this inversion process was calculated as 26.68 vol.% which is a very high

value compared to other models.

The problem of X-Bragg in inversion of the surface parameters for our data may be

illustrated using scatter plots of entropy (H) vs. α parameter simulated by X-Bragg for a

few ranges of the dielectric constant (ε), β1 parameter of the model, and incidence angle (θ),

which are shown in Figure 6.2. In all of the plots of this �gure the value of the dielectric

constant is constant along each curve, i.e. each curve is an iso-ε contour. But the value of

β1 angle changes from 0◦ to 30◦ along each contour. Contours start with the one generated

for ε = 2, and go up to the one with ε = 40. The arrows in Figure 6.2a show the direction of

increase in ε and β1. If all the above-mentioned contours are plotted in Figure 6.2a, the area

formed between the vertical axis of the plot and the arrows is the area for which the model
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can invert pixels. In other words, if we create a lookup table by X-Bragg for 2 < ε < 40,

0◦ < β1 < 10◦ and θ = 31◦, only pixels whose H and α values fall within the bounds of the

above-mentioned area can be inverted using the lookup table. For example, if the values of

H and α are calculated as 0.05 and 0.15, respectively, for a speci�c pixel of the SAR image,

its ε and β1 values can be obtained using a lookup table created with the above ranges of ε

and β1 parameters. But a pixel with H = 0.1 and α = 0.15 cannot be inverted using this

con�guration of lookup table, because the pixel is located outside of the area.

Increasing the upper limit of β1 can expand the area, as shown in Figure 6.2b, which

enables the lookup table to invert pixels with higher H values. However, as it is clear from

comparing Figure 6.2a and Figure 6.2b, increasing the upper boundary of β1 also increases

the slope of iso-ε contours. The rate of this increase in the slope is related to the incidence

angle of the SAR image as can be observed by comparing �gures 6.2b, 6.2c, and 6.2d. For

smaller incidence angle values the slope increases faster. Therefore, a narrower range of H

values can be covered by the lookup table when processing images with smaller incidence

angles.

As for the dielectric constant, the range of ε values should be selected in a way that it

re�ects the range of possible SM values. The range considered in Figure 6.2 corresponds to

SM values between 0.32 vol.% and 51.02 vol.% (according to Topp dielectric mixing model,

see section 3.3), which cover a wider range than that of our data set. In addition, increasing

the values of ε beyond 40 does not increase the maximum values of H and α much, because

as ε grows, the contours become denser.

As a result, the maximum value of H which can be covered by a lookup table with

con�guration of Figure 6.2b, which has similar conditions to data of Epoch 1 and Epoch 3,

is less than 0.25, i.e. the pixels with H values greater than 0.25 cannot be inverted by a

lookup table created using X-Bragg for θ = 31◦ for our data. Figure 6.2c corresponds to

a lookup table generated by X-Bragg for θ = 35◦ which is the incidence angle of the SAR
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image in Epoch 2. Larger values of H can be covered by the model in this case; however,

even with this incidence angle, pixels with H > 0.35 cannot be inverted. For the sake of

comparison, the results of X-Bragg simulation with the same settings but for a much larger

incidence angle (θ = 50◦) is presented in 6.2d. In this case, the model can handle entropy

values of up to about 0.6.

Figure 6.3 shows the histograms of entropy values calculated for images of the three

epochs used in this study. Considering the pixels which have to be �ltered out to satisfy

the original H < 0.5 condition of the model (see section 3.2.2.2), from the histograms it can

be concluded that only a very small portion of pixels in each image of our data set can be

inverted using X-Bragg. A similar behavior was observed in the outputs of the X-Bragg2008

model generated by PolSARpro software. Because of this very low inversion rate, the outputs

from the X-Bragg model are not presented here.

6.2.2 Oh and Dubois Models

The Oh and Dubois models were also executed using the images of the three epochs. The

scatter plots generated for comparing the ground measurements and estimation by these two

models are shown in Figure 6.4, and summary statistics are presented in Table 6.2. This

table also contains is a copy of the statistics for the IEM with p = 2 from Table 6.1, to make

the comparison of the three models easier.

The Dubois model exhibits overestimation of SM for all of the sites of the �rst two epochs,

and for most of the sites of the third epoch. This behavior is identical to what was reported

in (Hajnsek, 2001) for part of their data. The RMSE values for the Dubois model are better

than the average RMSE reported by Hajnsek (2001), i.e. 25 vol.%, but much higher than

the overall RMSE (4.2 vol.%) reported in the original paper by Dubois (Dubois et al., 1995).

Other studies such as (Neusch et al., 1999) have also reported similar weak performance for

the Dubois model (RMSE = 7.4 vol.% in C-band, RMSE=14 vol.% in L-band). The overall

performance of the model can be assessed as weak for the data used in this study, as the
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(a) 2 < ε < 40, 0◦ < β1 < 10◦, θ = 31◦ (b) 2 < ε < 40, 0◦ < β1 < 30◦, θ = 31◦

(c) 2 < ε < 40, 0◦ < β1 < 30◦, θ = 35◦ (d) 2 < ε < 40, 0◦ < β1 < 30◦, θ = 50◦

Figure 6.2: Corresponding H and α values simulated by the X-Bragg model for dielectric
constants (ε) between 2 and 40, β1 angle between 0◦ and 30◦, and incidence angles (θ) of 31◦,
35◦ and 50◦. α is in radians.: In the inversion process of X-Bragg ε and β1 are calculated
given the values of H and α for each pixel. In case the incidence angle be low and H and
α be large for a pixel, the model cannot cover those H and α values, and hence, it cannot
yield the dielectric constant for that speci�c pixel.
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(a) Epoch 1 (b) Epoch 2

(c) Epoch 3

Figure 6.3: Histogram of entropy for the images of all three epochs: The dashed lines in (a)
and (c) correspond to the largest H value shown on the horizontal axis in Figure 6.2b, i.e.
0.25 . The line in (b) corresponds to the largest H value shown on the horizontal axis in
Figure 6.2c, i.e. 0.35. For each of the �gures above, if we show the area of the grey region to
the left of the dashed line by AL, and the area of the grey region to the right of the dashed
line by AR, then the inversion rate of X-Bragg for that �gure is less than AL

AL+AR
× 100.
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Table 6.2: The results of execution of the Oh and the Dubois models for all epochs of data
Epoch 1 Epoch 2 Epoch 3

Oh Dubois IEM Oh Dubois IEM Oh Dubois IEM
RMSE (vol.%) 4.34 15.71 5.83 5.11 16.15 7.88 8.74 15.60 9.57

R 0.28 -0.23 -0.11 -0.09 -0.05 0.19 -0.10 -0.33 -0.23

correlation coe�cients are always negative for this model and the RMSE values are at least

twice the RMSE values for the Oh model.

The Oh model has the most accurate SM estimations among the models indicated by

the highest correlation coe�cient, 0.28, and the lowest RMSE of 4.34 vol.%, obtained using

the image of Epoch 1. For other images, the performance is not as strong, but its RMSE is

always better than the Dubois and the IEM models. In Epoch 3 the correlation coe�cient

of the Oh model is also the highest one. The results for the Oh model are considerably more

accurate than those reported by Hajnsek (2001) (18 vol.% for the 0-4 cm soil depth and

about 25 vol.% for the 4-8 cm soil depth), and, for Epoch 1, have about the same RMSE

(4.0 vol.%) reported by Oh in his original paper (Oh et al., 1992).

6.2.3 IEM

The IEM performance is weaker than the Oh model in Epoch 1 and Epoch 3, but its correla-

tion coe�cient is about 28% better than that of the Oh model in Epoch 2. The IEM always

outperforms the Dubois model for our data according to both the RMSE and the correlation

coe�cient measures. The RMSE of the IEM in this study is higher than the RMSE (5.37

vol.%) reported by McNairn et al. (2010) who studied the same area. This may be because

they made averaging according to soil texture classes, not based on sites. Another recent

study (Lievens et al., 2011) has also reported about the same accuracy (RMSE= 4 vol.%

- 6.5 vol.%) when using �e�ective roughness parameters� with a large data set consisting

of L-band (ALOS and airborne E-SAR) and C-band (ENVISAT, Radarsat-1 and ERS-1/2)

data.

An important aspect of the inversion process which, to the best knowledge of the author,
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Figure 6.4: The results of execution of the Oh and the Dubois models for all epochs of data:
Rows from top to bottom show Epoch 1, Epoch 2 and Epoch 3
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has never been considered in any other similar study before, is the spatial pattern of inversion.

The importance of the inversion pattern is because of the special method usually used for

evaluation of the results of a SAR backscattering model using �eld measurements. As already

discussed, since the ground measurements of SM are point measurements, the output of

the models are areal estimations, and these two may have di�erent sampling characteristics,

usually the averages of them over a common geographic extent (site) are compared to evaluate

the performance of the models. Field measurements of SM for the purpose of validation or

calibration of the remote sensing products are generally carried out in regular grids which

cover the ground site with a reasonable sample spacing. Thus, assuming that their average

value can approximately represent the conditions of SM in the whole site is not unreasonable.

However, in case the number of pixels inverted by the model is small compared to the total

number of the pixels which cover a ground site, i.e. the inversion rate of the model is low,

the pattern of inversion should be investigated as well. In this case, randomly scattered

inverted pixels over the �eld can still be acceptable for making the averages. But, an uneven

distribution of pixels over the �eld may make the average value biased, and such an average

value may not represent the SM conditions of the whole site to be compared with ground

measurements.

Table 6.3 contains the inversion rates for the three models discussed above for each site

in three epochs of data. The inversion rates of the Oh and the Dubois model are identical

because the same �ltering conditions are applied to them prior to inversion, and this �ltering

is the main source of changes in their inversion rates. For the IEM, no �ltering is used prior

to inversion, but some pixels may be masked out because either the lookup table cannot

�nd an answer for the inversion problem, or the dielectric constant calculated by the lookup

table is so low that the dielectric mixing model yields negative values of SM for those pixels,

which is not physically possible. According to the tables, the IEM clearly inverts many more

pixels than the other two models. Low inversion rates for the Oh and the Dubois models
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have already been reported in other studies (Wang et al., 1997)(Hajnsek, 2001).

Figures 6.5 to 6.7 are schematic representations of the inversion pattern of the Oh and the

Dubois models for each �eld site for each of the three epochs. Each small square in each site

represents a 10 m x 10 m image pixel, and each site is consisted of 10x10 pixels. The black

squares represent the inverted pixels and the white ones are the pixels for which these two

models cannot generate an output. As clearly seen in these �gures, the inversion patterns are

patchy and the sites exhibit large connected groups of inverted or uninverted pixels. In order

to estimate the value of uninverted pixels, some �spatio-temporal gap �lling� algorithms,

including Data INterpolating Empirical Orthogonal Functions (DINEOF) (Alvera-Azcárate

et al., 2005) and Robust Spline Smoothing (Garcia, 2010) were applied on the outputs of the

models, but they were not successful in reconstructing the data.

6.3 Probability Density Function of the Field Measurements

The histograms of SM values measured for each site for the three epochs of ground mea-

surements in our study area are shown in �gures 6.8 to 6.10. Each histogram represents a

single site, and is created using the complete set of measurements (64 measurements) for

that site. In Figure 6.11 four PDF types proposed by other studies for SM values (see section

4.2) are presented for reference and comparison with the histograms of ground SM values in

our study area. Each PDF has been generated using three sets of parameters to cover some

di�erent possible shapes of the PDF type. The parameters can be seen in the legend of each

graph. Visual inspection can easily reveal that, although a number of the histograms roughly

resemble Gaussian (e.g., site 30 in Epoch 3) or beta (e.g., site 25 in Epoch 2) distribution,

the ground measurements of SM (each site considered separately) in the data set used for

this study do not seem to conform to a single particular probability distribution from the

distributions mentioned in section 4.2. For many of the sites shown in �gures 6.8 to 6.10 the

histograms are bimodal or multimodal, for example sites 2 and 44 in Epoch 1, sites 28 and
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Table 6.3: Inversion rates of the Oh, Dubois and IEM models for three epochs: The right
column in each table contains the inversion rates of �eld measurement sites for the IEM,
and the middle column contains the inversion rates of the sites for the Oh and the Dubois
models. The last row in each table shows the average inversion rates for the epoch.

Epoch 1
Site Oh &

Dubois
(%)

IEM
(%)

19 34 97
22 38 100
23 45 98
24 62 98
25 15 100
26 65 100
27 20 97
28 30 100
29 49 96
30 30 100
31 24 100
32 58 100
33 51 95
34 42 100
35 43 98
36 66 97
37 7 100
38 33 100
39 69 98
40 73 95
43 62 99
44 27 100
45 49 99
46 68 100

Average:44.2 98.6

Epoch 2
Site Oh &

Dubois
(%)

IEM
(%)

22 61 99
23 52 100
24 70 100
25 9 98
26 58 98
27 17 96
28 33 99
29 21 99
30 44 100
31 57 99
33 64 98
34 22 99
38 35 97
39 19 96
40 29 95
42 31 98
43 36 99
44 42 98
45 34 99
46 69 98

Average:40.2 98.3

Epoch 3
Site Oh &

Dubois
(%)

IEM
(%)

15 56 97
16 38 97
19 40 93
20 52 96
21 35 100
22 66 100
23 48 99
24 35 100
25 22 100
26 49 99
27 40 98
28 46 100
29 7 78
30 30 99
31 32 99
33 31 100
34 58 98
35 47 99
36 45 100
37 24 100
38 28 100
39 50 95
40 31 97
42 35 98
43 39 100
44 29 100
45 35 91
46 26 100

Average:38.4 97.6
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31 in Epoch 2, and sites 22 and 43 in Epoch 3. As a result, a �xed PDF of one of the types

mentioned in section 4.2 does not seem to be useful in explaining the spatial variability of

ground measurements of our data set.

6.4 Exponential Law in the Field Measurements

Figure 6.12a contains a scatter plot of SM mean vs. standard deviation of each site for the

ground measurements of the �rst epoch in our study area. Each point in the plot represents

a single site. As mentioned in section 5.1, each node in the 4× 4 grid of �eld measurements

in each site has 4 replicates. One way to get a single SM value for each node is to average

the 4 replicates. The mean and standard deviation values in Figure 6.12a are calculated

using this method for each site. However, the di�erence between the replicates is usually

large compared to the measurement values, and averaging smooths the values of standard

deviations. Thus, Famiglietti et al. (2008) suggest a random selection scheme for calculation

of the standard deviation of SM in each grid (site). In this scheme, for each node of a

ground measurement grid, �rst, one of the 4 replicates of the node is selected randomly. By

this selection, we obtain 16 measurements for the site. Assume that we call the standard

deviation of these 16 measurements σ1. The procedure of random selection of replicates

and calculation of the standard deviations is repeated N times, so that we obtain σ1 to σN .

The average value of σ1 to σN is considered as the �nal standard deviation of the site, and

the whole procedure is repeated for all ground measurement sites. Figure 6.12b contains a

scatter plot created using the random selection scheme with N = 1000. Another possibility

is to use all of the 64 measurements of a site to calculate the standard deviation of SM in

that site. The result of this type of calculation of standard deviation can be seen in Figure

6.12c.

In Figure 6.12 the curves are generated by �tting equation (4.1) to the points, and

calculating the parameters k1 and k2. Values of the parameters along with RMSE and
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Figure 6.11: Gaussian, log-normal, gamma and beta probability density functions: µ and σ
are mean and standard deviation of Gaussian and log-normal distributions, k and θ are shape
parameter and scale parameter of gamma distribution, and α and β are shape parameters
of beta distribution.
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correlation coe�cient of the �t are presented beneath each graph. Random selection seems

to improve the �t in terms of correlation coe�cient, but the �t has about the same quality

when using random selection and full measurements. k1 and k2 are close in all of the cases,

but they are di�erent than that reported in (Famiglietti et al., 2008). They have reported

k1 = 0.8941 and k2 = 8.0774 for the extent scale of 100 m in their study area, which is close

to the extent scale of the measurements in each site in our study area. The RMSE calculated

by them is also about half of the RMSE obtained here. Indeed, for the ground measurements

in our study area the curves are close to being straight lines. This happens because as k2

decreases, the term exp(−k2µθ) tends to unity, and (4.1) tends to a linear equation of the

form σθ = k1 · µθ.

In Figure 6.13 the results of using the same model for ground measurements of Epoch

2 and Epoch 3 with standard deviations calculated from all measurements of each site are

presented. According to correlation coe�cients, the quality of �t is better for these epochs.

However, the values of parameters in the three epochs are not compatible. Because of the

observed di�erences in the shape of the model in three epochs of our data and the one

reported by Famiglietti et al. (2008), which has used extensive �eld work in estimation of

the parameters of the model, and because of the di�culties, explained in section 4.3, in

implementing a spatial constraint using this model, we did not �nd this model very useful in

improving the results of SAR backscattering models. In order to obtain a more informative

model to describe the variability of SM, the rest of this chapter will focus on multifractal

analysis.

6.5 Multifractal Analysis of the Field Measurements

To perform the multifractal analysis on �eld measurements of our data set using the proce-

dure explained in section 4.5.2, SM ground measurements in each �eld site need to be treated

as a SM image. Thus, the 4 point by 4 point grid of ground measurements in each site was
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Figure 6.12: Investigating exponential law in ground measurements of Epoch 1: Each point
represents a �eld site.
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(b) Epoch 3: k1 = 0.3895, k2 = 0.01537,
RMSE=1.08(vol.%), R=0.80

Figure 6.13: Investigating exponential law in ground measurements of Epoch 2 and Epoch
3 using all measurements of each site for calculation of standard deviation: Each point
represents a �eld site.

assumed as a 4 pixel by 4 pixel image of resolution 30 m, which is the approximate distance

between two neighboring measurements in the �eld. The value of each pixel was set to the

average value of the 4 replicates on each node of the measurement grid.

For each 4x4 image, i.e. for each site, then, an image pyramid was produced as per

the instructions in section 4.4. Unfortunately, using a base 4x4 image only 3 levels of

details for the image pyramid can be generated. This small number can result in poor

estimation of multifractal parameters, but as we will see later in the estimation of STRAIN

parameters, even using this small number of scales the parameters obtained from our ground

measurements are consistent with what other studies have obtained from passive microwave

SM images using more scales.

In order to examine the scale invariance in ground measurements, partition functions

(Sq(λ)) were calculated for λ =30 m, 60 m and 120 m, and q =2, 3, 4, 5 and 6 for each �eld

site. The resolution values (λ) are associated with three levels of the image pyramid, and the

exponent values (q) are selected following Mascaro et al. (2010). The scale invariance can be

revealed by examining the linearity of log λ−logSq(λ) plots. Two of these plots are presented

in Figure 6.14a and Figure 6.14c for Site 1 and Site 23 in Epoch 1, respectively. Site 1 was

114



selected for comparatively low correlation (R=-0.901) between log λ and logSq(λ), and Site

23 is selected for a high correlation (R=-1.000). The negative correlation coe�cients show

negative slopes of the �tted line. The log λ − logSq(λ) plots for the same sites in Epoch 2

and Epoch 3 are also presented in �gures 6.15a, 6.15c, 6.16a and 6.16c.

There is no speci�c threshold for correlation coe�cient for accepting or rejecting the

scale invariance in data, and di�erent studies have used di�erent numbers as threshold. For

example Mascaro et al. (2010) set 0.9 as the threshold for absolute value of the correlation

coe�cient, but in (Deidda et al., 1999) a more stringent threshold of 0.995 is considered. The

reason for selection of a speci�c threshold is not mentioned. This can be because probably

scale invariance is not an absolute property of data, i.e. di�erent levels of linearity of the

log λ − logSq(λ) plot can show di�erent degrees of scale invariance; the higher the linear

correlation between log λ and logSq(λ), the higher the degree of scale invariance in data.

In this study, in addition to the correlation coe�cient of �t, we report the p-value of the

F-test which can be used to �nd the con�dence level at which the linear �t is statistically

signi�cant. The correlation coe�cients and p-values for all sites are reported in tables 6.4

to 6.6 for the highest exponent, q = 6, in Epoch 1, Epoch 2 and Epoch 3, respectively. The

correlation coe�cients for di�erent exponent values for the same site are close, as shown for

the �rst 10 sites of Epoch 1 in Table 6.7. According to tables 6.4 to 6.6, the maximum p-value

is 0.32 and the worst correlation coe�cient is -0.880. The maximum p-value shows that the

linear �ts are statistically signi�cant at at least a 68% con�dence interval. This may suggest

that at least a weak scale invariance is observed in the ground measurements. As mentioned

above, the small number of scales does not allow to execute a more rigorous analysis of

scale invariance, however, since multiple other studies, e.g. (Biswas et al., 2012a)(Kim et

al., 2002)(Mascaro et al., 2010)(Mascaro et al., 2011), have reported the scale invariance

behavior in SM values, and given that our ground measurements exhibit at least a weak

scale invariance, we proceed to analyzing the variability in ground measurements using the
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Table 6.4: Results of �tting a line to log λ−logSq(λ) plots for q = 6 for ground measurements
of all sites in Epoch 1 for examining the scale invariance: For each site the correlation
coe�cient and the p-value of F-test of the �t are reported. Sites with R values closer to -1
exhibit stronger scale invariance.

Epoch 1
Site ID R p-value Site ID R p-value

1 -0.901 0.29 26 -0.950 0.20
2 -0.908 0.28 27 -0.897 0.29
3 -0.991 0.08 28 -0.983 0.12
8 -0.909 0.27 29 -0.959 0.18
9 -0.993 0.07 30 -0.891 0.30
10 -0.945 0.21 31 -0.907 0.28
11 -0.890 0.30 32 -0.970 0.16
12 -0.901 0.29 33 -0.959 0.18
13 -0.926 0.25 34 -0.957 0.19
14 -0.916 0.26 35 -0.934 0.23
15 -0.964 0.17 36 -0.961 0.18
16 -0.908 0.28 37 -0.900 0.29
17 -0.969 0.16 38 -0.944 0.21
18 -0.891 0.30 39 -0.924 0.25
19 -0.996 0.06 40 -0.953 0.20
22 -0.944 0.21 43 -0.976 0.14
23 -1.000 0.01 44 -0.884 0.31
24 -0.960 0.18 45 -0.980 0.13
25 -0.998 0.04 46 -0.898 0.29

STRAIN model.

The slope of the line in each of the log λ− logSq(λ) plots, that can be created for a �xed

q, is called τ(q), which can be modeled using the STRAIN model. Thus, the STRAIN model

was �tted to the pairs of (q,τ(q)), obtained in previous stage of the analysis, for each �eld

site using the SQP optimization algorithm explained in section 4.6. In other words, we, �rst,

determined the slope of a straight line which can describe the relationship between log λ and

logSq(λ) when we keep q constant, and change λ from 30 m to 120 m. Then, we changed q

from 2 to 6 and calculated the slope, τ(q), for each q to obtain pairs of (q,τ(q)). Then, we

used these pairs to �nd parameters β and c of the STRAIN model by �tting the model to

the pairs as data points. Therefore, for each site one β and one c is obtained which together

describe the multifractal properties of the ground measurements in that site. In other words,
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Table 6.5: Results of �tting a line to log λ−logSq(λ) plots for q = 6 for ground measurements
of all sites in Epoch 2 for examining the scale invariance: For each site the correlation
coe�cient and the p-value of F-test of the �t are reported. Sites with R values closer to -1
exhibit stronger scale invariance.

Epoch 2
Site ID R p-value Site ID R p-value

1 -0.954 0.19 22 -0.928 0.24
2 -0.914 0.27 23 -0.940 0.22
4 -0.995 0.06 24 -0.896 0.29
5 -0.902 0.28 25 -0.970 0.16
6 -0.885 0.31 26 -0.934 0.23
7 -0.979 0.13 27 -0.903 0.28
8 -0.904 0.28 28 -0.999 0.02
9 -0.935 0.23 29 -0.897 0.29
10 -0.996 0.05 30 -0.910 0.27
11 -0.989 0.09 31 -1.000 0.00
12 -0.994 0.07 33 -0.914 0.27
13 -0.917 0.26 34 -1.000 0.01
14 -0.943 0.22 38 -0.963 0.17
15 -0.971 0.15 39 -0.976 0.14
16 -0.889 0.30 40 -0.911 0.27
17 -0.971 0.15 42 -1.000 0.00
18 -0.930 0.24 43 -1.000 0.01
19 -0.943 0.22 44 -0.943 0.22
20 -0.968 0.16 45 -0.924 0.25
21 -0.925 0.25 46 -0.920 0.26
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Table 6.6: Results of �tting a line to log λ−logSq(λ) plots for q = 6 for ground measurements
of all sites in Epoch 3 for examining the scale invariance: For each site the correlation
coe�cient and the p-value of F-test of the �t are reported. Sites with R values closer to -1
exhibit stronger scale invariance.

Epoch 3
Site ID R p-value Site ID R p-value

1 -0.916 0.26 23 -0.998 0.04
2 -0.929 0.24 24 -0.915 0.26
3 -1.000 0.01 25 -0.975 0.14
4 -0.921 0.25 26 -0.992 0.08
5 -0.998 0.04 27 -0.997 0.05
6 -0.999 0.03 28 -0.999 0.03
7 -0.999 0.02 29 -0.957 0.19
8 -1.000 0.00 30 -0.936 0.23
9 -0.888 0.30 31 -0.993 0.08
10 -0.998 0.04 33 -0.984 0.12
11 -0.922 0.25 34 -0.984 0.11
12 -0.933 0.24 35 -0.973 0.15
13 -0.973 0.15 36 -0.988 0.10
14 -0.941 0.22 37 -0.884 0.31
15 -0.999 0.03 38 -0.985 0.11
16 -0.904 0.28 39 -0.922 0.25
17 -0.985 0.11 40 -0.880 0.32
18 -0.917 0.26 42 -0.987 0.10
19 -0.973 0.15 43 -0.945 0.21
20 -0.963 0.17 44 -0.952 0.20
21 -0.968 0.16 45 -0.910 0.27
22 -0.888 0.30 46 -0.999 0.03

Table 6.7: The correlation coe�cients of �tting a line to log λ− logSq(λ) plots for q=2 to 6
for ground measurements of the �rst 10 sites in Epoch 1 for examining the scale invariance:
The values of the correlation coe�cient are close for di�erent q's in each site.

Site ID q=2 q=3 q=4 q=5 q=6
1 -0.898 -0.899 -0.900 -0.900 -0.901
2 -0.900 -0.902 -0.904 -0.906 -0.908
3 -0.994 -0.994 -0.993 -0.992 -0.991
8 -0.907 -0.908 -0.908 -0.909 -0.909
9 -0.990 -0.990 -0.991 -0.992 -0.993
10 -0.942 -0.943 -0.944 -0.944 -0.945
11 -0.892 -0.891 -0.891 -0.890 -0.890
12 -0.908 -0.905 -0.903 -0.902 -0.901
13 -0.935 -0.931 -0.928 -0.927 -0.926
14 -0.907 -0.909 -0.911 -0.913 -0.916
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Table 6.8: Parameters and accuracy of �tting the STRAIN model to ground measurements
of Epoch 1

Epoch 1
Site β c R RMSE
1 0.8979 4.0033 1.00000 0.00068
2 0.8180 1.1853 1.00000 0.00025
3 0.8794 0.9846 1.00000 0.00012
8 0.9452 5.4288 1.00000 0.00016
9 0.9328 2.3666 1.00000 0.00014
10 0.9816 50.0000 0.99995 0.00120
11 0.9816 50.0000 0.99982 0.00228
12 0.9743 50.0000 0.99876 0.01187
13 0.8473 4.2071 0.99991 0.00770
14 0.8736 3.4355 0.99996 0.00284
15 0.8673 1.0006 1.00000 0.00013
16 0.9843 50.0000 0.99894 0.00415
17 0.9781 50.0000 0.99994 0.00189
18 0.9491 4.2749 1.00000 0.00008
19 0.6757 0.9453 0.99998 0.00268
22 0.9258 4.0846 0.99999 0.00064
23 0.8742 3.6178 0.99996 0.00320
24 0.8766 3.2783 0.99997 0.00238
25 0.9144 4.4919 0.99999 0.00096

Epoch 1
Site β c R RMSE
26 0.8122 1.7014 1.00000 0.00043
27 0.8946 1.7516 1.00000 0.00037
28 0.6042 0.6233 0.99999 0.00164
29 0.7285 1.4843 0.99996 0.00478
30 0.9780 49.9979 0.99999 0.00088
31 0.9773 44.6018 0.99999 0.00058
32 0.9091 1.2759 1.00000 0.00005
33 0.9820 50.0000 0.99993 0.00140
34 0.9827 35.9291 0.99995 0.00075
35 0.9076 1.1175 1.00000 0.00009
36 0.9768 27.2982 0.99999 0.00047
37 0.9079 1.2835 1.00000 0.00008
38 0.9827 50.0000 0.99913 0.00452
39 0.9843 46.2875 0.99993 0.00097
40 0.9062 3.0869 0.99997 0.00130
43 0.8167 0.7249 1.00000 0.00042
44 0.9812 46.0703 0.99997 0.00083
45 0.8801 0.9095 1.00000 0.00016
46 0.9390 7.1232 1.00000 0.00038

the spatial variability of SM within each �eld site is described by values of β and c for that

site.

In �gures 6.14b, 6.14d, 6.15b, 6.15d, 6.16b, and 6.16d the �tted curves are presented for

Site 1 and Site 23 of Epoch 1, Epoch 2 and Epoch 3. In these �gures, each point represents

a (q,τ(q)) pair, and the curve shows the �tted STRAIN model to the data points. In the

legend of each plot the parameters of the �t, β and c, are shown. The values of parameters

β and c for these sites along with other sites in the three epochs are presented in tables 6.8

to 6.10. Also presented in these tables are the correlation coe�cient and RMSE of the �t

for each site.

The correlation coe�cients of the �ts are very high and the RMSE values are usually low

compared to the typical values of τ(q) shown in Figure 6.14 to Figure 6.16. This suggests

that the STRAIN model has been successful in modeling the SM variations in the three
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Table 6.9: Parameters and accuracy of �tting the STRAIN model to ground measurements
of Epoch 2

Epoch 2
Site β c R RMSE
1 0.8012 0.8524 0.99999 0.00068
2 0.9045 2.7769 1.00000 0.00039
4 0.9797 50.0000 0.99993 0.00177
5 0.9802 7.0979 0.99998 0.00012
6 0.8314 0.1840 1.00000 0.00001
7 0.9202 1.7020 1.00000 0.00014
8 0.8522 0.9326 1.00000 0.00009
9 0.6261 0.7387 1.00000 0.00072
10 0.8076 0.6019 1.00000 0.00003
11 0.8306 2.3868 1.00000 0.00122
12 0.8058 2.8350 1.00000 0.00146
13 0.5774 0.8399 0.99998 0.00351
14 0.5908 0.6817 1.00000 0.00102
15 0.7575 1.6095 1.00000 0.00023
16 0.9809 33.1879 0.99998 0.00056
17 0.7999 1.5299 0.99999 0.00180
18 0.8952 1.6988 1.00000 0.00020
19 0.9089 3.3471 1.00000 0.00031
20 0.6918 0.5756 1.00000 0.00023
21 0.8628 3.3682 0.99991 0.00502

Epoch 2
Site β c R RMSE
22 0.9226 3.4034 0.99999 0.00054
23 0.7194 0.6992 1.00000 0.00030
24 0.8868 5.1007 0.99996 0.00379
25 0.8135 2.1078 1.00000 0.00090
26 0.7309 0.6376 1.00000 0.00029
27 0.9288 11.2249 0.99994 0.00425
28 0.8271 1.1242 1.00000 0.00031
29 0.7468 1.2309 0.99998 0.00276
30 0.8788 2.5144 0.99997 0.00165
31 0.8990 2.0137 1.00000 0.00035
33 0.9349 6.2263 0.99999 0.00056
34 0.9430 13.6848 0.99999 0.00104
38 0.7810 0.6236 1.00000 0.00038
39 0.8703 2.2758 0.99999 0.00113
40 0.9696 50.0000 0.99953 0.01006
42 0.7427 0.5961 1.00000 0.00036
43 0.4926 0.3488 0.99999 0.00139
44 0.8826 2.3199 0.99999 0.00103
45 0.9677 50.0000 0.99990 0.00528
46 0.9099 6.3580 0.99999 0.00134
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Table 6.10: Parameters and accuracy of �tting the STRAIN model to ground measurements
of Epoch 3

Epoch 3
Site β c R RMSE
1 0.9773 50.0000 0.99861 0.00986
2 0.9534 4.0282 1.00000 0.00008
3 0.8804 0.4943 1.00000 0.00003
4 0.9817 36.5965 0.99996 0.00077
5 0.9527 1.2264 1.00000 0.00000
6 0.9774 8.3400 0.99999 0.00012
7 0.9806 18.7854 0.99998 0.00034
8 0.9812 27.4378 0.99996 0.00063
9 0.9850 13.0059 0.99989 0.00031
10 0.8756 0.5463 1.00000 0.00009
11 0.9836 50.0000 0.99834 0.00569
12 0.9832 50.0000 0.99969 0.00254
13 0.9418 2.6879 1.00000 0.00010
14 0.8353 1.3410 1.00000 0.00064
15 0.9112 1.6641 1.00000 0.00006
16 0.9757 26.7654 1.00000 0.00029
17 0.9808 50.0000 0.99991 0.00177
18 0.9393 3.2991 0.99999 0.00029
19 0.9318 6.0249 1.00000 0.00054
20 0.9695 15.9035 0.99999 0.00041
21 0.8222 0.3459 1.00000 0.00008
22 0.9605 6.4124 1.00000 0.00018

Epoch 3
Site β c R RMSE
23 0.8249 0.4681 1.00000 0.00003
24 0.9723 28.2158 0.99998 0.00092
25 0.8751 1.4002 1.00000 0.00024
26 0.8805 1.8058 0.99999 0.00052
27 0.9478 3.8966 1.00000 0.00006
28 0.8736 1.1207 1.00000 0.00015
29 0.9670 6.5683 1.00000 0.00005
30 0.9375 1.9284 1.00000 0.00005
31 0.9835 50.0000 0.99985 0.00169
33 0.9312 1.1222 1.00000 0.00002
34 0.7931 0.7600 1.00000 0.00009
35 0.9779 26.6877 1.00000 0.00028
36 0.8859 0.9347 1.00000 0.00015
37 0.9314 1.4624 1.00000 0.00000
38 0.9262 5.3960 1.00000 0.00051
39 0.8277 0.7710 1.00000 0.00029
40 0.8022 0.7501 1.00000 0.00048
42 0.9803 43.5142 0.99998 0.00077
43 0.8344 0.9256 1.00000 0.00014
44 0.9701 12.9425 1.00000 0.00022
45 0.9850 40.9245 0.99990 0.00094
46 0.8641 0.5905 1.00000 0.00007
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scales of ground measurements studied here.

In Table 6.11 the average value of β and c for each epoch can be seen. These values are

calculated by averaging β and c over all sites in an epoch of measurements. The standard

deviation of the two parameters are also presented in the table. The average and standard

deviation values discussed here are presented in the table under �Free β�.

Obviously, the values of parameter c have a large spread, and in all cases their standard

deviation is larger than their mean. This can be better observed in the histograms of c values

for each epoch plotted in Figure 6.17. In this �gure, the bar on top of each histogram shows

the standard deviation of c, and the circle on the bar shows the location of mean c.

In contrast, the distribution of β for each epoch is characterized by small standard devi-

ation compared to its mean. Interestingly, the values of mean β and its standard deviation

are close to what Mascaro et al. (2010) and Mascaro et al. (2011) reported for some di�erent

regions. Considering the range of standard deviations of β in the three epochs, even the

values of mean β in the three epochs are not very di�erent. Therefore, it seems reasonable

to try to use a uniform β, as a regional value, for the whole data set. This means assuming

a constant β in the process of �tting the STRAIN model to (q,τ(q)) pairs. Working with a

�xed β gives us the opportunity to study the behavior of a single parameter, c, with changes

of SM around the study area. Thus, following what Mascaro et al. (2010) and Mascaro et al.

(2011) suggested, we assume that β is constant and equal to the mean β value for Epoch 1.

Indeed, a more appropriate value for a regional β would be the average of β over all

epochs of data. However, because of two reasons, for now, we set the constant β to the

average of β in Epoch 1. First, we are trying to use as little ancillary information as possible

for improving the results of SAR backscattering models. Second, the values of mean β in

the three epochs are not very di�erent. When presenting the �nal results, we will consider

selecting the regional value of β from other two epochs.

In tables 6.12 to 6.14 the results of using the STRAIN model with �xed β=0.9034 is
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Table 6.11: Summary statistics for the parameters of the STRAIN model in three epochs
using free β, and after setting β=0.9034, which is the average β of Epoch 1

Free β Fixed β=0.9034
Mean β StDev β Mean c StDev c Mean c StDev c

Epoch 1 0.9034 0.0881 17.4887 21.3758 3.2191 2.4026
Epoch 2 0.8313 0.1175 6.9859 13.6047 4.6096 2.6423
Epoch 3 0.9262 0.0594 13.7975 17.5502 1.6029 0.8428
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Figure 6.17: Distribution of parameter c when the STRAIN model is used with free β for
three epochs of ground measurements
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Table 6.12: Accuracy of �tting the STRAIN model to ground measurements of Epoch 1, and
calculated values for parameter c by assuming a �xed β=0.9034

Epoch 1
Site c R RMSE
1 4.4447 0.99999 0.00094
2 3.8252 0.99921 0.00869
3 1.4934 0.99994 0.00097
8 1.8280 0.99982 0.00208
9 1.1835 0.99991 0.00095
10 1.9876 0.99900 0.00540
11 1.9748 0.99858 0.00643
12 3.8278 0.99678 0.01915
13 9.8679 0.99957 0.01675
14 5.6873 0.99987 0.00537
15 1.8118 0.99986 0.00175
16 1.4484 0.99671 0.00732
17 2.7977 0.99903 0.00750
18 1.2512 0.99978 0.00155
19 8.3053 0.99417 0.04923
22 2.4696 0.99994 0.00163
23 5.9312 0.99987 0.00565
24 5.1894 0.99989 0.00443
25 3.5696 0.99998 0.00144

Epoch 1
Site c R RMSE
26 5.8089 0.99910 0.01407
27 2.0643 0.99999 0.00061
28 7.5727 0.98982 0.05789
29 9.6709 0.99657 0.04479
30 2.8209 0.99934 0.00620
31 2.6780 0.99936 0.00577
32 1.1365 1.00000 0.00018
33 1.8982 0.99892 0.00537
34 1.2589 0.99898 0.00345
35 1.0277 1.00000 0.00015
36 1.7158 0.99936 0.00370
37 1.1718 1.00000 0.00016
38 1.7498 0.99708 0.00828
39 1.3405 0.99886 0.00389
40 2.9182 0.99997 0.00132
43 2.3690 0.99919 0.00548
44 1.9128 0.99917 0.00471
45 1.3634 0.99994 0.00086
46 2.9524 0.99987 0.00288

presented. According to values of correlation coe�cient and RMSE, the model can still

explain the changes of τ(q) with q accurately. The histogram of the values of parameter c in

each epoch is shown in Figure 6.18. Also, the summary statistics of c for each epoch can be

found in Table 6.11 under �Fixed β=0.9034� columns. Obviously, parameter c is spread over

a much narrower range than what it was before setting β to a constant value. The standard

deviation of c for each epoch is also less than its mean, and large gaps do not exist in the

histograms.

It has been suggested by other studies (Mascaro et al., 2010)(Mascaro et al., 2011) that

the new value of parameter c for each site is related to the mean SM in that site through an

exponential relationship of the form

c = c∞ + ae−γ〈θ〉 (6.1)

where 〈θ〉 is the mean SM value of the site, and c∞, a and γ are parameters. The same
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Table 6.13: Accuracy of �tting the STRAIN model to ground measurements of Epoch 2, and
calculated values for parameter c by assuming a �xed β=0.9034

Epoch 2
Site c R RMSE
1 3.2215 0.99886 0.00877
2 2.7138 1.00000 0.00040
4 2.4141 0.99896 0.00669
5 0.3239 0.99919 0.00079
6 0.5170 0.99945 0.00099
7 1.1823 0.99997 0.00056
8 2.0603 0.99972 0.00281
9 8.1941 0.99130 0.05827
10 2.1445 0.99901 0.00545
11 6.7633 0.99943 0.01318
12 10.2727 0.99897 0.02666
13 11.3207 0.98793 0.09306
14 8.7306 0.98891 0.06919
15 8.6314 0.99767 0.03314
16 1.4158 0.99917 0.00350
17 5.8505 0.99882 0.01620
18 1.9799 0.99999 0.00048
19 2.9950 1.00000 0.00055
20 4.6474 0.99501 0.02557
21 6.4856 0.99974 0.00868

Epoch 2
Site c R RMSE
22 2.2303 0.99995 0.00128
23 4.8189 0.99625 0.02319
24 6.8699 0.99993 0.00488
25 7.1059 0.99913 0.01696
26 4.0913 0.99672 0.01847
27 6.2798 0.99987 0.00607
28 3.3069 0.99937 0.00673
29 7.1108 0.99727 0.02950
30 3.8458 0.99991 0.00303
31 2.1879 0.99999 0.00043
33 2.9281 0.99989 0.00256
34 4.9755 0.99983 0.00545
38 2.7973 0.99837 0.00907
39 3.9484 0.99987 0.00368
40 5.3224 0.99829 0.01916
42 3.5401 0.99716 0.01495
43 6.2268 0.98067 0.06301
44 3.3449 0.99994 0.00213
45 6.0253 0.99919 0.01475
46 5.5632 0.99999 0.00167
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Table 6.14: Accuracy of �tting the STRAIN model to ground measurements of Epoch 3, and
calculated values for parameter c by assuming a �xed β=0.9034

Epoch 3
Site c R RMSE
1 2.9948 0.99640 0.01585
2 0.9896 0.99974 0.00135
3 0.7384 0.99994 0.00046
4 1.4362 0.99905 0.00379
5 0.3111 0.99975 0.00042
6 0.4946 0.99932 0.00110
7 0.8291 0.99915 0.00207
8 1.1336 0.99904 0.00302
9 0.3431 0.99869 0.00107
10 0.8773 0.99992 0.00066
11 1.5718 0.99574 0.00910
12 1.6508 0.99818 0.00611
13 1.0199 0.99985 0.00107
14 3.6103 0.99950 0.00659
15 1.4171 0.99999 0.00031
16 1.8396 0.99939 0.00387
17 2.1631 0.99887 0.00625
18 1.3575 0.99986 0.00135
19 3.1004 0.99991 0.00245
20 1.7053 0.99954 0.00311
21 1.0698 0.99929 0.00231
22 1.1451 0.99966 0.00179

Epoch 3
Site c R RMSE
23 1.4084 0.99934 0.00294
24 2.5060 0.99949 0.00481
25 2.2664 0.99991 0.00173
26 2.6934 0.99994 0.00174
27 1.1949 0.99980 0.00144
28 1.8544 0.99991 0.00149
29 0.8229 0.99958 0.00143
30 0.8378 0.99988 0.00078
31 1.5922 0.99860 0.00514
33 0.5870 0.99992 0.00044
34 3.0836 0.99868 0.00900
35 1.5203 0.99937 0.00325
36 1.2780 0.99997 0.00062
37 0.7603 0.99992 0.00058
38 3.2289 0.99994 0.00206
39 2.2537 0.99938 0.00455
40 2.8091 0.99889 0.00756
42 1.9817 0.99923 0.00472
43 2.5183 0.99949 0.00463
44 1.3363 0.99954 0.00244
45 1.0772 0.99872 0.00332
46 1.1173 0.99984 0.00117
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Figure 6.18: Distribution of parameter c when the STRAIN model is used with �xed
β=0.9034 for three epochs of ground measurements
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relationship has also been observed when studying rain rates using the STRAIN model

(Deidda, 2000)(Deidda et al., 2004). In order to examine this relationship in our study area,

scatter plots of mean SM of the sites vs. their estimated c were created for the three epochs.

These scatter plots are presented in 6.19. In contrast to what other studies have reported, an

exponential equation of type 6.1 does not seem to be always able to explain the relationship

between 〈θ〉 and c. Indeed, in case of the data in Epoch 2, a simple linear relationship seems

to be able to model most of the changes of c with respect to 〈θ〉.

Several features were examined in an attempt to �nd a relationship between the parameter

c and a predictable quantity in our study area. The features included:

• several moments of �eld measurements

• coe�cient of variation of �eld measurements

• descriptors for the shape of the distribution of �eld measurements (e.g. Har-

tigan descriptor of unimodality (Hartigan et al., 1985))

• Haralick's image texture features based on Grey Level Co-occurrence Matrix

(contrast, correlation, energy, homogeneity) (Haralick et al., 1973) applied on

�eld measurements

Interestingly, the coe�cient of variation (CV) of the SM values of the base layer of the image

pyramid used in the initial stage of the multifractal analysis found to be strongly related

to the parameter c. As mentioned before, the base layer is obtained by averaging the four

replicates at each node of a ground measurement grid. The scatter plots of CV vs. c for

the three epochs are displayed in Figure 6.20 along with a line �tted to data points in each

plot. The equation for each epoch is shown in the legend of the scatter plot. The correlation

coe�cient of �ts demonstrate very high correlation between c and CV. It can be seen that

the �tted lines in Epoch 1 and Epoch 2 have closer slopes and intercepts.
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Figure 6.19: Scatter plot of mean SM vs. c of each site for �eld measurements of Epoch 1,
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Although it is beyond the scope of this thesis, given that SM values in the ground

measurements of each epoch cover a wide range of moisture conditions, a linear model for

CV-c can be useful in downscaling the ground measurements to better resolutions than the

original resolution of �eld campaign as per the algorithm described in (Mascaro et al., 2010).

To the best knowledge of the author, this type of relationship between CV and c has not

been reported by other studies, thus, it may be speci�c to the conditions of soil and climate

in our study area.

Even though a relationship between statistical properties of ground measurements in

di�erent scales can be useful in downscaling the ground measurements, it does not seem to

be useful in optimizing the SM values estimated by the SAR backscattering models. Instead,

a relationship between ground measurements and remotely-measured SM is required to make

SM estimates from backscattering models correspond more closely to �eld measurements.

In order to examine this relationship we need to execute a multifractal analysis on outputs

of the backscattering models. One issue in applying multifractal analysis on the outputs

of these models is that, accurate calculation of mass exponent, τ(q), needs a dense initial

SM image. Using a simulation with the purpose of quantifying the e�ect of missing data

on the accuracy of τ(q), Mascaro et al. (2010) showed that 3% of missing pixels caused an

error of about 1% in estimation of τ(q). Obviously, the low inversion rate of the Oh and the

Dubois models, with, on average, at least 55% of the pixels missing for sites in our data set,

can result in high levels of error in the multifractal analysis procedure. Therefore, we will

perform multifractal analysis only on the outputs of the IEM.

6.6 Multifractal Analysis of the IEM Outputs

The dielectric constants of soil were �rst estimated by the IEM, and then converted to SM

values using the Topp dielectric mixing model for every pixel in a 16x16 window (256 pixels)

covering each �eld site. Each site in the study area corresponds to a 10x10 image window
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Figure 6.20: Coe�cient of variation of SM vs. c in �eld measurements of Epoch 1, Epoch2
and Epoch 3: Coe�cient of variation is calculated by averaging the four replicates at each
node of a ground measurement grid. A high correlation can be seen in each plot. The
equation of the line for each plot is displayed in the legend of the plot.
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(100 pixels) on the georeferenced Radarsat-2 images. However, since multifractal analysis

needs a 2n × 2n image, a 16x16 window covering each site was selected for the analysis.

Similar to what explained for the ground measurements, an image pyramid was constructed

for each of the 16x16 images. This image size will produce 5 levels in each pyramid, resulting

in a better analysis than performed for the ground measurements with 3 level pyramids. The

scale invariance was again examined by investigating the linearity in log-log plots of λ vs.

Sq(λ). The values of moment order, q, were set to 2, 3, 4, 5 and 6, and the resolution,

λ, was set to 10 m, 20 m, 40 m, 80 m and 160 m, as enforced by the dyadic structure of

the image pyramid. The results of this procedure in presented in Table 6.15 for q=6. The

values of correlation coe�cients and p-values for other moment orders are close to the values

mentioned in this table for q=6. The SM values estimated by IEM seem to exhibit more

scale invariance than what we observed for the ground measurements, as the correlation

coe�cients are high, and according to the F-test p-values, the linear �ts are almost always

statistically signi�cant at a 99% level.

As the next step in multifractal analysis, the STRAIN model was �tted to the data points

(q, τ(q)) for each site, where τ(q) was calculated in the previous step for q =2 to 6. This was

done by keeping β constant and equal to the value calculated from ground measurements

of Epoch 1, β=0.9034. This resulted in estimation of the c parameter for each site in each

epoch. The c values for each site along with the correlation coe�cient and the RMSE of the

�t are shown in Table 6.16 to Table 6.18. The minimum and maximum values of τ(q) for

each site is also mentioned in the tables for the sake of comparison with the magnitude of

the RMSE values. The minimum values of τ(q) are associated with q = 6, and the maximum

values are associated with q = 2. The performance of the STRAIN model is not identical in

di�erent sites. For example, in Site 44 of Epoch 3, the RMSE is about 6% of |τ(6)|, whereas

in Site 31 of the same epoch the RMSE is as small as about 0.7% of |τ(6)|.

In Figure 6.21, the histograms of calculated c values for the three epochs of SAR image
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Table 6.15: Scale invariance analysis (for q=6) for 16x16 image windows of Radarsat-2 data
covering each site in Carman study area: Note that, only the sites covered by the Radarsat-2
image in each epoch can be analyzed, and are presented in the table.

Epoch1 Epoch 2 Epoch 3
Site R p-value Site R p-value Site R p-value
19 -0.9688 0.00659 22 -0.9847 0.00227 15 -0.9815 0.00302
22 -0.9788 0.00371 23 -0.9903 0.00114 16 -0.9798 0.00344
23 -0.9806 0.00324 24 -0.9941 0.00054 19 -0.9834 0.00255
24 -0.9632 0.00844 25 -0.9965 0.00025 20 -0.9884 0.00149
25 -0.9293 0.02231 26 -0.9722 0.00553 21 -0.976 0.00445
26 -0.9871 0.00175 27 -0.9693 0.00643 22 -0.9976 0.00014
27 -0.9793 0.00356 28 -0.9253 0.02421 23 -0.9794 0.00355
28 -0.977 0.00417 29 -0.9926 0.00077 24 -0.9653 0.00773
29 -0.9563 0.01091 30 -0.9908 0.00105 25 -0.9859 0.00201
30 -0.9886 0.00145 31 -0.9757 0.00453 26 -0.9553 0.01126
31 -0.9979 0.00012 33 -0.9485 0.01394 27 -0.9817 0.00296
32 -0.9854 0.00211 34 -0.9944 0.0005 28 -0.9863 0.00193
33 -0.9909 0.00104 38 -0.9887 0.00145 29 -0.8859 0.04548
34 -0.9964 0.00026 39 -0.9842 0.00238 30 -0.9874 0.0017
35 -0.9803 0.00331 40 -0.9597 0.00966 31 -0.9871 0.00175
36 -0.9918 0.0009 42 -0.9794 0.00355 33 -0.9396 0.01764
37 -0.9764 0.00434 43 -0.9485 0.01391 34 -0.9865 0.00189
38 -0.9528 0.01222 44 -0.9879 0.0016 35 -0.9569 0.01067
39 -0.9738 0.00506 45 -0.9569 0.01067 36 -0.9895 0.0013
40 -0.9618 0.00891 46 -0.9684 0.00672 37 -0.9951 0.00041
43 -0.9782 0.00384 38 -0.9894 0.0013
44 -0.9811 0.0031 39 -0.9499 0.01337
45 -0.9938 0.00058 40 -0.9873 0.00172
46 -0.9925 0.00078 42 -0.973 0.00531

43 -0.9619 0.00887
44 -0.977 0.00417
45 -0.9818 0.00294
46 -0.9725 0.00547
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Table 6.16: Accuracy of �tting the STRAIN model to SM calculated from outputs of the
IEM in Epoch 1, and calculated values for parameter c by assuming a �xed β=0.9034

Epoch 1
Site c R Min τ(q) Max τ(q) RMSE
19 10.8450 0.9938 -1.9287 -0.1461 0.0662
22 10.3989 0.9933 -1.8493 -0.1401 0.0656
23 8.6579 0.9998 -1.5397 -0.1166 0.0090
24 9.7070 0.9953 -1.7263 -0.1308 0.0522
25 10.6284 0.9933 -1.8901 -0.1432 0.0671
26 10.2535 0.9956 -1.8235 -0.1381 0.0536
27 9.8049 0.9887 -1.7437 -0.1321 0.0786
28 12.2951 0.9918 -2.1865 -0.1656 0.0852
29 10.3343 0.9996 -1.8378 -0.1392 0.0180
30 11.3322 0.9994 -2.0153 -0.1526 0.0222
31 6.4716 0.9981 -1.1509 -0.0872 0.0224
32 11.0821 0.9847 -1.9708 -0.1493 0.1016
33 12.6312 0.9785 -2.2463 -0.1701 0.1343
34 12.4967 0.9856 -2.2224 -0.1683 0.1115
35 10.9676 0.9807 -1.9505 -0.1477 0.1107
36 11.7408 0.9894 -2.0880 -0.1582 0.0915
37 10.7020 0.9932 -1.9032 -0.1442 0.0683
38 14.4089 0.9936 -2.5625 -0.1941 0.0899
39 10.4737 0.9904 -1.8626 -0.1411 0.0779
40 9.3154 0.9921 -1.6566 -0.1255 0.0632
43 6.9814 0.9929 -1.2416 -0.0940 0.0455
44 9.9954 0.9887 -1.7776 -0.1346 0.0800
45 11.9105 0.9925 -2.1182 -0.1604 0.0794
46 7.3584 0.9962 -1.3086 -0.0991 0.0355
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Table 6.17: Accuracy of �tting the STRAIN model to SM calculated from outputs of the
IEM in Epoch 2, and calculated values for parameter c by assuming a �xed β=0.9034

Epoch 2
Site c R Min τ(q) Max τ(q) RMSE
22 7.0463 0.9958 -1.2531 -0.0949 0.0357
23 10.1647 0.9944 -1.8077 -0.1369 0.0595
24 8.2724 0.9877 -1.4712 -0.1114 0.0689
25 8.3277 0.9937 -1.4810 -0.1122 0.0512
26 7.8096 0.9971 -1.3888 -0.1052 0.0334
27 11.5405 0.9917 -2.0523 -0.1555 0.0804
28 4.6917 0.9884 -0.8344 -0.0632 0.0380
29 4.4254 0.9945 -0.7870 -0.0596 0.0254
30 3.2172 0.9975 -0.5721 -0.0433 0.0129
31 3.0939 0.9999 -0.5502 -0.0417 0.0019
33 8.8540 0.9934 -1.5746 -0.1193 0.0556
34 5.9880 0.9905 -1.0649 -0.0807 0.0444
38 8.3882 0.9931 -1.4917 -0.1130 0.0535
39 12.1936 0.9868 -2.1685 -0.1643 0.1048
40 8.2003 0.9980 -1.4583 -0.1105 0.0293
42 9.0164 0.9940 -1.6035 -0.1215 0.0543
43 7.8624 0.9974 -1.3982 -0.1059 0.0321
44 9.5862 0.9947 -1.7048 -0.1291 0.0547
45 8.6414 0.9983 -1.5368 -0.1164 0.0288
46 6.6061 0.9959 -1.1748 -0.0890 0.0332
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Table 6.18: Accuracy of �tting the STRAIN model to SM calculated from outputs of the
IEM in Epoch 3, and calculated values for parameter c by assuming a �xed β=0.9034

Epoch 3
Site c R Min τ(q) Max τ(q) RMSE
15 11.2617 0.9837 -2.0028 -0.1517 0.1060
16 11.8762 0.9913 -2.1120 -0.1600 0.0845
19 17.8554 0.9785 -3.1754 -0.2405 0.1902
20 13.5207 0.9793 -2.4045 -0.1821 0.1415
21 14.7636 0.9960 -2.6255 -0.1989 0.0733
22 11.8575 0.9943 -2.1087 -0.1597 0.0695
23 13.3875 0.9851 -2.3808 -0.1803 0.1214
24 13.2625 0.9961 -2.3586 -0.1787 0.0649
25 11.6577 0.9978 -2.0732 -0.1570 0.0439
26 5.4186 0.9989 -0.9636 -0.0730 0.0143
27 9.9299 0.9889 -1.7659 -0.1338 0.0790
28 7.4075 0.9952 -1.3173 -0.0998 0.0400
29 4.8081 0.9869 -0.8551 -0.0648 0.0414
30 4.0146 0.9949 -0.7139 -0.0541 0.0222
31 4.4411 0.9998 -0.7898 -0.0598 0.0057
33 10.9649 0.9954 -1.9500 -0.1477 0.0585
34 10.5784 0.9882 -1.8813 -0.1425 0.0865
35 9.0740 0.9976 -1.6137 -0.1222 0.0350
36 9.4900 0.9953 -1.6877 -0.1278 0.0508
37 10.1346 0.9947 -1.8023 -0.1365 0.0575
38 12.9980 0.9907 -2.3116 -0.1751 0.0956
39 12.9301 0.9847 -2.2995 -0.1742 0.1188
40 15.1507 0.9911 -2.6944 -0.2041 0.1093
42 13.0388 0.9782 -2.3188 -0.1756 0.1395
43 7.6218 0.9999 -1.3554 -0.1027 0.0071
44 16.0964 0.9750 -2.8626 -0.2168 0.1824
45 10.5649 0.9886 -1.8788 -0.1423 0.0850
46 12.7291 0.9898 -2.2637 -0.1715 0.0977
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Figure 6.21: Distribution of parameter c when the STRAIN model is used with �xed
β=0.9034 for three epochs of SM values calculated from outputs of the IEM

acquisition are displayed. Similar to what observed in fractal analysis of ground measure-

ments with �xed β, the standard deviation of parameter c is small compared to its mean,

and large gaps do not exist in the histograms.

As mentioned before, if parameter c can be predicted without using the STRAIN model,

then the STRAIN model can be used in transferring statistical properties of SM over scales

and downscaling the SM information as per the algorithm explained in (Mascaro et al., 2010).

The strong linear relationship between the coe�cient of variation and c was demonstrated

in Figure 6.20 for ground measurements of all epochs. Obviously, downscaling SM images

obtained from remotely sensed data is also valuable, as usually the pixel sizes of such images
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are larger than needed. Therefore, we examined the relationship between c and the coe�cient

of variation calculated for the �eld sites on our SAR images. In Figure 6.22 three scatter

plots of values of the parameter c vs. the coe�cient of variation of SM calculated from the

outputs of the IEM are depicted. Each point in a plot corresponds to a site in the study area.

According to these plots, the correlation of c and CV are not as strong as what observed for

ground measurements, but changes in c can still describe a good amount of the changes of

CV. The linear relationship is stronger in Epoch 2 and Epoch 3 than Epoch 1. This may be

because of the precipitation which has possibly happened concurrent with the acquisition of

the SAR image of Epoch 1, which may have caused irregularities in the output of the IEM.

But, a linear relationship with R=0.7 (Epoch 1) may still be useful in predicting the values

of the parameter c from the values of the coe�cient of variation, and assist in transferring

the statistical properties of SM images over scales.

As mentioned earlier, in order to improve the outputs of the IEM, we need to establish a

connection between the parameter c and a quantity estimated from ground measurements.

In an attempt to �nd such a connection, it was observed that, quite interestingly, the value

of c for a site is correlated with the value of the residual, r, calculated as

r = θ̄model − θ̄ground (6.2)

where θ̄model is the average of SM estimated by the IEM output in the site, and θ̄ground is

the average of ground measurements of SM for the site. The relationship between c and r

is demonstrated in Figure 6.23 for the three epochs of data using a regional value of 0.9034

for β. As seen in the plots of this �gure, as c increases, usually r decreases. The smallest

residuals are usually obtained for the sites that their c is about 10. However, this is not true

for all the sites, as, for example, there are sites which their c values are close to 10 in Figure

6.23a, but are located close to the horizontal axis, and the absolute value of their residuals

are as large as 10 vol.% or more. However the �tted lines in all three plots have fairly good

correlation coe�cients.
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Figure 6.22: Relationship between c and CV for SM values obtained from IEM outputs.
β=0.9034.
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An important aspect of the linear relationship between c and residuals obtained here

is that the slope of the �tted lines in all epochs are close. This suggests the possibility

of calculating the parameters of the line using a single epoch of data, and then using the

parameters as approximate values of the parameters for other epochs. In Figure 6.24 the

three sets of data points and �tted lines for the three epochs are plotted together for the

sake of comparison of the lines. The slope and intercept of each line is mentioned in the

legend of the plot. The equation of the line corresponding to each epoch is under the item

showing the data points of the epoch in the legend. The regional β is calculated from the

ground measurements of Epoch 1 and is equal to 0.9034.

Another important aspect is that, although changing the regional value of β changes

the range of values of c, it has little e�ect on the relative location of the �tted lines. In

other words, the �tted lines are fairly stable with respect to each other when β is changed.

This gives us the opportunity to use the ground measurements in any of the epochs to

estimate the parameters of the �tted line; hence, using only information from a single epoch

of measurements and image acquisition. This can be seen in Figure 6.25 and Figure 6.26

which present the same information as Figure 6.24, but by setting the regional β to the

average of β calculated from �tting the STRAIN model to ground measurements of Epoch

2 and Epoch 3, respectively.

The linear relationship between the parameter c and the residuals can be used as a

calibration model to improve the quality of SM estimation using the IEM at site level.

Assume that the relationship between c and a residual, r, for each site can be approximately

modeled as

r = θ̄IEM − θ̄ground = A× c+B (6.3)

where θ̄IEM is the average SM of a site estimated by the IEM, and θ̄ground is the average

SM value measured on the ground for the same site. Thus a calibrated SM value can be
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Figure 6.23: The relationship between parameter c of the STRAIN model and the residuals:
The residual for each site is calculated as the di�erence between the average of SM estimated
by the IEM output in the site and the average of ground measurements of SM for the site.
β=0.9034.
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Figure 6.24: The relationship between parameter c of the STRAIN model and the residuals
for the three epochs of data in our study area: β=0.9034 is calculated using the ground
measurements of Epoch 1. The equation of the line corresponding to each epoch is under
the item showing the data points of the epoch in the legend.
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measurements of Epoch 2. The equation of the line corresponding to each epoch is under
the item showing the data points of the epoch in the legend.
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measurements of Epoch 3. The equation of the line corresponding to each epoch is under
the item showing the data points of the epoch in the legend.
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calculated for the site by

θ̂ = θ̄IEM − (A× c+B) (6.4)

In this equation, the values of c and θ̄IEM are calculated from the SM values obtained from

outputs of the IEM. The parameters of the calibration model, A and B can be estimated by

�tting a line to values of c and r obtained from an epoch of concurrent image and ground

measurements. If the calibration model could completely explain the relationship between c

and r, then (6.4) could convert θ̄IEM to θ̄ground. The correlation coe�cients show that the

calibration model cannot completely describe the changes in r using c. However, because of

the fairly high correlation coe�cients between c and r, it seems reasonable to expect that

calibrating the SM estimated using the IEM for a site, θ̄IEM , using equation (6.4) can on

average improve θ̄IEM .

In order to examine the e�ect of calibrating the SM estimated by the IEM using the

above-mentioned calibration model, these SM values were transformed using equation 6.4

and then compared to the ground measurements. For this purpose, Epoch 1 was selected

as the reference epoch, and the parameters A, and B were calculated using the ground

measurements and SAR image in this epoch. The results of this calibration are presented in

Figure 6.27. In this �gure the left column shows the performance of the IEM, i.e. agreement

of SM values estimated by the IEM outputs with the ground measurements, before applying

the calibration model. The right column shows the agreement of the calibrated SM values

with ground measurements. According to the plots in this �gure, the calibration model

obtained using Epoch 1 as the reference epoch always decreases the RMSE and increases the

correlation coe�cient of SM estimation.

The calibration model is expected to have the most in�uence on the results of Epoch

1. Because the calibration parameters have been calculated using the information from this

Epoch. Since we are assuming that the ground measurements are available for this epoch to

estimate the parameters of the calibration model, the data in this epoch cannot be used to
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assess the improvement that the calibration model can make. The results of applying the

calibration model in Epoch 1 are presented to see the changes it makes on data points. For

this epoch, the calibration model increases the correlation coe�cient by 0.25 and decreases

the RMSE by 1.35 vol.%. For Epoch 2, the calibration model almost doubles the correlation

coe�cient and decreases the RMSE by 1.99 vol.%. For the data in Epoch 3, the calibration

model makes 0.42 increase in R and 3.08 vol.% improvement in the RMSE. For Epoch

2 and Epoch 3, the IEM has a strong overestimation and underestimation of SM before

calibration. Although the calibration model improves the distribution of the data points

along the 1:1 line for Epoch 2 and Epoch 3, but it has a slight e�ect on the overestimation

and underestimation problems. The e�ect of applying the calibration model in the three

epochs can also be seen in Figure 6.28 where histograms of residuals are presented before

and after calibration. According to the values of r̄, the average of residuals, the calibration

model removes almost all of the systematic error in Epoch 1, as expected. For the other two

epochs, although the calibration model alleviates the systematic error of the SM estimation

by the IEM, systematic error still exists after the calibration.

It should be mentioned that, the calibration model tries to calibrate the average SM

value estimated using the IEM for each site. Thus, it can not operate on individual pixels

of the SM image generated by the IEM. This results in increasing the pixel size of the �nal

SM map to 160 m if we use 16×16 pixel windows in multifractal analysis. However, the

resolution is still better than the resolution considered as �eld-scale resolution which is the

target resolution in this study.

In �gures 6.29 to 6.32 the results of the calibration procedure for the three epochs of

data, when using data in Epoch 2 and Epoch 3 for estimation of the calibration parameters,

are presented. A summary of the results of di�erent combinations of calibration-evaluation

is shown in Table 6.19. In this table, reference epoch is the epoch that using its ground

measurements and SAR image the calibration coe�cients, A and B in equation (6.4), are
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Figure 6.27: Comparison of the agreement of the SM estimated by the IEM and the ground
measurements before and after calibration using the proposed calibration model. Data in
Epoch 1 is used to estimate the calibration parameters. RMSE is in vol.%.
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Figure 6.28: Comparison of the histograms of residuals before and after calibration using the
proposed calibration model. Data in Epoch 1 is used to estimate the calibration parameters.
r̄ is the average residual in vol.%.
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calculated. Evaluation epoch shows the epoch that the SM values calculated by the IEM for

it have been calibrated using the reference epoch. r̄ is the average residual, which represents

the systematic error in prediction.

According to �gures 6.29 to 6.32, and Table 6.19, the calibration model always improves

the correlation coe�cient by at least 0.16. When Epoch 3 is the reference epoch, similar

results to what explained for Epoch 1 as reference is observed, i.e. RMSE is always improved.

However, r̄ is increased for Epoch 2 when Epoch 3 is the reference epoch.

The weakest performance of the calibration model is observed when the ground mea-

surements and SAR image of Epoch 2 are used for establishing the model. In this case,

the RMSE for Epoch1 is increased after calibration, and the bias is increased for Epoch 3

after calibration. This suggests that the calibration model established by data in Epoch 2 is

not performing as well as the calibration models established using data in other two epochs.

However, this may not be because of the di�erence in dates of data collection and image

acquisition, as the temporal distance between Epoch 1 and Epoch 3 is more than that of

Epoch 2 and the other two epochs. This can suggest that the calibration procedure is robust

in time. The weak performance of the calibration model established by Epoch 2 data may

be because the IEM has not been able to model the e�ect of incidence angle. In this case,

the di�erence in incidence angle of Epoch 2 image with the other two images may a�ect the

outputs of IEM and calculation of c.

When Epoch 1 is used as reference, the improvements in RMSEs for other two epochs

are larger than the precision of the average ground-measured SM values. This suggests that

observing the improvement made by the calibration model in this case is not because of the

uncertainty in ground measurements, and the improvement is meaningful.

The calibration model proposed above is an empirical model which seems useful in im-

proving the outputs of the IEM for our study area. The physical or mathematical reason

behind the correlation between the parameter c and the residuals of the IEM does not seem
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Figure 6.29: Comparison of the agreement of the SM estimated by the IEM and the ground
measurements before and after calibration using the proposed calibration model. Data in
Epoch 2 is used to estimate the calibration parameters. RMSE is in vol.%.
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Figure 6.30: Comparison of the histograms of residuals before and after calibration using the
proposed calibration model. Data in Epoch 2 is used to estimate the calibration parameters.
r̄ is the average residual in vol.%.
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Figure 6.31: Comparison of the agreement of the SM estimated by the IEM and the ground
measurements before and after calibration using the proposed calibration model. Data in
Epoch 3 is used to estimate the calibration parameters. RMSE is in vol.%.
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Figure 6.32: Comparison of the histograms of residuals before and after calibration using the
proposed calibration model. Data in Epoch 3 is used to estimate the calibration parameters.
r̄ is the average residual in vol.%.
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clear. Our experiments with di�erent regional β values reveal that the improvements made

by the calibration model in �nal results do not depend on the value of the regional β. Even

for β = 0, which is the lower bound of β, very similar results to what presented in Table

6.19 are obtained. For β = 0, the STRAIN model converts to a monofractal model. We

already saw that c was related to the coe�cient of variation. Since for a �xed β the lines

�tted to the values of c and residuals are moderately close (see �gures 6.24 to 6.26), it seems

that a �xed level of variability, i.e. a �xed c, may be expected for all the sites in the area.

So that, as c calculated from the outputs of the IEM approaches this �xed c, the di�erence

between the SM estimated by the IEM and the one observed in the �eld vanishes. However,

determining the physical or mathematical bases for the relationship between the values of c

and the residuals needs more investigation, and can be the subject of a future study.

It should be noted that �ltering the images for decreasing speckle a�ects the variability

of the backscattering coe�cient. Thus, the variability observed for the outputs of the IEM

are connected to both the variability of SM and the e�ect of speckle �ltering. In other words,

the parameter c calculated for each site re�ects the combined fractal properties of SM values

and speckle �ltering. Therefore, changing the size of the window used in speckle �ltering

can, in general, change the parameters of the calibration model proposed here. Separating

the e�ect of variations in SM and speckle �ltering, and investigating the e�ect of size of

speckle �lter window on the parameters of the calibration model does not seem trivial, and

can be the subject of a future study.

We conclude this chapter by mentioning some of the factors that can cause inaccuracies

in the performance of the calibration model:

• The size of the image windows used for multifractal analysis in this study was

16×16 pixels. The dimensions of the windows were selected based on the fact

that a 16×16 pixel window is the smallest window of size 2n × 2n which can

cover a 10×10 pixel �eld site. Thus, the values of parameter c were estimated
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for the 16×16 pixel windows, whereas the size of �eld sites was 10×10 pixels.

The di�erence in the size of the analysis windows and �eld sites was inevitable

in our study, as the analysis window has to be 2n×2n pixels for our multifractal

analysis. Since the c values calculated for the 16×16 pixel windows are then

used to calibrate the SM values of 10×10 pixel sites, this can cause inaccuracies

in the calibration model.

• Any environmental factor a�ecting the estimation of SM by the IEM, such as

freeze and precipitation at the time of image acquisition, can result in changes

in parameter c, and, thus, in estimation of the parameters of the calibration

model.

• Possible low inversion rate of the IEM for some of the sites can a�ect the

accuracy of estimation of the parameters of the STRAIN model. Because,

as already mentioned, 3% of missing pixels can cause an error of about 1%

in estimation of the mass exponent function in the fractal analysis, and this

function is later used in estimation of the parameter c.

• Di�erences in the times of ground measurements and image acquisition can

cause inaccuracies in comparison of the ground measurements to SM estimated

by the IEM. This can result in errors in �tting a line to values of c and residuals.
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Chapter 7

Conclusions

Four SAR surface scattering models (X-Bragg, Oh, Dubois and IEM) were implemented

using three epochs of Radarsat-2 C-band data for estimation of SM, and their outputs

were compared with �eld measurements of SM over bare soil surfaces in Manitoba, Canada,

collected concurrent with the image acquisitions. We compared the site averaged model

predictions with site averaged measurements and assessed the performance of the models

using correlation coe�cient and RMSE measures which show the prediction-observation

agreement. The percentage of pixels inverted by the X-Bragg, Oh and Dubois models were

low compared to the IEM. Because of the very low inversion rate of the X-Bragg model for

our data set, it was di�cult to compare its outputs with the ground measurements. The

Oh model had the best performance in terms of the RMSE measure. However, both the

Oh and the Dubois models produce patchy outputs with large gaps, which makes it di�cult

to interpret performance measures for them. The IEM could, on average, invert more than

97% of pixels in each site. A power index of 2, among the power indices examined, was also

determined to generate the best surface correlation function for using with the IEM in our

study area.

Our main objective was to study the feasibility of using the spatial variability analysis

of ground measurements and SAR backscattering model outputs to improve the quality of

the outputs of these models. Multifractal analysis, which is a multi-scale method, was found

useful for investigating the spatial variability of the data. However, since this type of analysis

does not perform well in presence of missing data, it could only be used for analyzing the

outputs of the IEM.

Multifractal analysis of the ground measurements using the STRAIN model yielded two
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parameters, β and c, for each site. Parameter β had less variations compared to the param-

eter c. Thus, a regional �xed value was assumed for β which gave us the opportunity to

characterize the variability of SM in each site using a single parameter c.

Analyzing the output of the IEM by the STRAIN model using the regional value of β

revealed that there was good correlation between the values estimated for the parameter

c for SM estimated by the IEM in each site, and the residuals of the model calculated by

comparing the IEM outputs with ground measurements of that site. This correlation was

used to establish a linear calibration model to alleviate the error in the outputs of the IEM

for each site.

The proposed model is an empirical model which can be used in a post-processing step

for increasing the agreement between model-estimated and ground-measured SM, i.e. it can

be used after the inversion procedure of the IEM is complete and average values of SM for

2n×2n image windows are calculated. The two parameters of the linear calibration model has

to be estimated using a comparison of SAR backscattering model outputs for a SAR image

and ground measurements coincident with the acquisition of the SAR image. Therefore, it

needs at least one epoch of concurrent image acquisition and �eld data collection. However,

according to our experiments, the calibration model is, to some degree, independent of the

data used for estimating its parameters.

Comparing the performance measures before and after calibration showed that the pro-

posed calibration model could always improve the correlation coe�cient for our data set.

The RMSE and bias were not always improved, but when Epoch 1 was used as the refer-

ence epoch for estimating the parameters of calibration model, improvements in RMSE were

larger than the precision of �eld-measured SM averages, suggesting that the improvement

was meaningful. The data in Epoch 2 were found to establish the least useful calibration

model.

One disadvantage of using the proposed calibration model is that, it increases the pixel
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size of the outputs of the IEM. For example, if a 16×16 pixel window is used in the mul-

tifractal analysis of the outputs of the IEM, the outputs of the calibration model will have

pixel dimensions 16 times the original pixel dimensions of the SAR image. However, using

a fairly strong correlation observed between the parameter c and the coe�cient of variation

of SM estimated by the IEM in each site, the SM values upscaled by the calibration model

may be downscaled by the algorithms available in the literature such as the one explained in

(Mascaro et al., 2010). Processing the image using overlapping 2n×2n windows and applying

constraints based on the relative location of these windows may also help in improving the

results of the calibration model.

Unfortunately, the data used in this study were limited to three epochs of data for a

single study area. Thus, a comprehensive analysis of the calibration model for di�erent dates,

locations and soil conditions was not possible. The calibration model may be extensible to

other study areas, but, much more concurrent ground measurements and SAR images are

needed to examine the reliability of the proposed calibration model and its extensibility to

other regions of the world. Also, speckle �ltering and change of incidence angle are two

factors which may a�ect the calibration parameters, and quantifying their e�ect on the

calibration model needs more investigation.

The calibration model proposed in this study is a simple linear model which was �t to

a small number of data points. More complex models established by, for example, Support

Vector Machines may be used for this purpose if more data is available.
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Appendix A

Bootstrapping for Estimation of Con�dence Interval of

Mean

Bootstrapping is a method for estimation of the sampling distribution of a statistic de�ned

on a random sample (Efron, 1979). Bootstrapping is a nonparametric method which makes

it applicable for samples from unknown probability distributions. The method can be used

to estimate the con�dence interval of, for example, mean value of measurements of a random

variable (Efron, 1981). There are several types of bootstrapping techniques for estimating a

con�dence interval (Efron et al., 1994), but the one used in this study is the basic percentile

method, which is easy to implement and fast to run.

Assume that we have N samples, X1, X2, ..., XN , of a random variable R with an un-

known probability distribution. Also, assume that we calculate θ̂ the sample statistic of

statistic θ, and that estimating the 100(1 − 2α)% con�dence interval for θ̂ is desired. Ac-

cording to basic percentile bootstrapping method, the steps for calculation of the con�dence

interval are (Efron, 1981):

1. Sample with replacement N of Xi's:

θ∗ = (X∗1 , X
∗
2 , ..., X

∗
N) (A.1)

This is called a bootstrap sample.

2. Calculate θ̂∗ using the bootstrap sample created in previous step:

θ̂∗ = θ̂(X∗1 , X
∗
2 , ..., X

∗
N) (A.2)

3. Repeat the previous steps B times independently to obtain θ̂∗1, θ̂
∗
2, ..., θ̂

∗
B.
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4. Let ĈDF (t) be the cumulative distribution function of θ̂∗b 's, formed by B

bootstrap samples:

ĈDF (t) = Prob{θ̂∗ < t} =
#{θ̂∗b < t}

B
(A.3)

where #{θ̂∗b < t} is the number of all θ̂∗b 's that are less than t. Then the

100(1− 2α)% con�dence interval for θ̂ is calculated as

θ̂ ∈
[
ĈDF

−1
(α), ĈDF

−1
(1− α)

]
(A.4)

B is set to a large number, for example 1000. As mentioned above, this is a basic bootstraping

technique for estimation of con�dence intervals. For other types of bootstrapping techniques

proposed for this purpose, for example bias-corrected percentile method, reader can refer to

(Efron et al., 1994).
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Appendix B

Matlab Code for Calculation of the Parameters of The

STRAIN Multifractal Model

STRAIN two-parameter multifractal model is the primary tool used in this study to analyze

SM �eld measurements and outputs of SAR backscattering models. Function STRAIN in

Listing B.1 shows how parameters β and c of this model can be estimated using Matlab.

The function accepts two parameters, Data and Resolution, which are the working image

and it's resolution, and outputs the parameters of the STRAIN model �tted to Data.

Listing B.1: The function used to calculate parameters β and c in the STRAIN multifractal

model for soil moisture

1

2 function [Beta , c] = STRAIN(Data , Resolution)

3 WinSize = size(Data , 1);

4 NoLevels = log2(WinSize )+1;

5 CurveData = [];

6

7 for q = 2 : 6 % Loop over all exponents

8 LineData = [];

9 for Level = 1 : NoLevels % Loop over all pyramid levels

10 Scale = 2^(Level -1);

11 MaxCoord = WinSize / Scale;

12 Lambda = Resolution * Scale;

13 LogLambda = log(Lambda );

14 Sq = 0;

15 cnt = 0;
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16

17 % Create partition function

18 for r=1: MaxCoord

19 for c=1: MaxCoord

20 r1 = (r-1)* Scale +1; r2 = r1+Scale -1;

21 c1 = (c-1)* Scale +1; c2 = c1+Scale -1;

22

23 % Create pixel (r,c) in current pyramid level

24 CoarsePix = Data(r1:r2,c1:c2);

25 aux = mean(CoarsePix (~isnan(CoarsePix )));

26 if isnan(aux)

27 continue;

28 end

29 Sq = Sq + aux ^ q;

30 cnt = cnt+1;

31 end

32 end

33 Sq = Sq / cnt;

34 LineData = [LineData; LogLambda , log(Sq)];

35 end

36 p = polyfit(LineData (:,1), LineData (:,2), 1);

37 CurveData = [CurveData; q, p(1), p(2)];

38 end

39

40 % Run SQP to fit STRAIN model to data

41 options = optimset('Display ', 'off ', ...

42 'MaxFunEvals ', 1000, ...

43 'Algorithm ', 'sqp ');
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44

45 [OptimX , fval] = fmincon(@Cost_Func , [0 0], ...

46 [], [], [], [], ...

47 [0 0], [1 50], [], options );

48

49 Beta = OptimX (1); c = OptimX (2);

50 return

51

52 function Cost = Cost_Func(X)

53 Cost =[];

54 for ii=1: size(CurveData ,1)

55 Cost = [Cost;

56 abs((-X(2) * (CurveData(ii ,1)*(1 -X(1))- ...

57 (1-X(1)^ CurveData(ii ,1))), ...

58 / log (2)) - CurveData(ii ,2))];

59 end

60 Cost = norm(Cost);

61 end % End of Cost_Func

62

63 end % End of main function
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