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Abstract

Recently, researchers focused on a new use of the Intaihed Internet of ThinggloT), in
which capable electronic devices can be remotely accessed over the Ifiéraedbund the
world, 10T applications are emerging exponentially with various fanatities in order to
monitor and control the environmeior example, Wemo switch, Philips Hue lidhtlb, Ninja
Blocks and Air Quality Egg are samples tfe existing loT applicationswhich make
environmental dynamicaccessiblevia the InternetEach application is developed based on the
GHYHORSHUTTV GHWhatl redhs tie Kiiml@ oY fréplHetary protoe®igrowing as

the number of 10T devices increasdoreover, 0T devices are intuitivel\neterogeneous in
terms of the hardware cagalities and communication protocolsTherefore, ensuring
interoperability is an important step to integratgiousdevices togetheln this research, we
focus on the communication challenges of the diJectsto make the network suitable far

wide scale ofloT devices.To do this, wamplementopen standards different communication
layerson a resource constraint loT objethe standard protocoldevelopedn this research are
OGC PUCK over Bluetooth, TinySOS (a lightweight profile of the OGGESOS over CoAP,

and OGC SensorThings APITo the best of our knowledge, theseplementationsare the

ZRUOGTV ILUVW FRQWU L E RWhLRII, vieehchiviirikhe BIficieRd bf hE W V

implemented protocolsby a comprehensive performan@nalysis in terms of memory
occupation, request size, response length and response lateney result, by hosting the
aforementionedpen standardprotocolson 10T devices, not only the devices become-self
describable, selfontained, and interoperableut alsoinnovative applicationgan besimply

developed bygtandardized interfaces
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Chapter Onelntroduction
1.1 Background

7KH WHUP 36HQVR WseH By Kévih\Delih th\1997 [1] to describe a wireless sensor
network (WSN) architecture where sensors can cooperate as a wNolsadays, we are
witnessing the increasing number of deploymentd/8NsandSensor Welon the EarthThese
networksconsist ofspatially distributed autonomous sensaach of which is use monitor
thephysical or environmental conditions (e.g., temperatwmidity, sound,motion etc.) and to
cooperatively pass their data through the network to a main lodatidruser)[2]. WSNshave
been involved inmany traditional applications, includig habitats monitoring systems]|[3
environment observation systemdl],[ structure health monitoring system[5], health
applications [, andfire emergency response systens [

Although the traditional monitoring systems (e.g., sensor netwogkg)rovide precise
and accurate measurementse deployment of these systemssusually labourintensive and
challenging[8]. Therefore, a new paradigm call€ttizen Sensingor VdunteeredGeographic
Information(VGI) has been proposed itovolve the general public intdhe monitoring system
[9, 10 11]. With citizens measuringnvironmental propertiegoluntarily, scientistsare able to
observethe environment with a much highepatial and temporal resolution. A key to realize the
above citizen sensing vision is to empower citizens with-dost and easto-use sensor
systems.Similar to the fact thathe affordable andiserfriendly PC denocratized computing
[12], suchcosteffectiveand easyto-use sensor systemauld bewidely used inenvironmental
monitoring.

One of thefundamentalsof the Citizen Sensingision is the Internet connectivity to

provideonlineaccesgo the sensor observations as they are meagtidRecently, esearchers



focused on a new use thfe InternetcalledInternet of ThinggloT), in which capable electronic
devicescanbe remogly accessed over the Intern8tnce the IoT is made of different kinds of
objects,suchdevice heterogeneitwill pose challenges in terms of interoperabilifshus the
goal of this research is to addressititeroperability issues of the I0T.

Among the existing Internetnabled devicesensoris one of the kegnablers irthe 10T
paradigm [13]. For instanceensors allow objects senseéhe environment around them such as
thermometer, water gauges, cameras, etc. Since the loT and sensors are tightly integrated, the
vision oftheloT and theWorld Wde Sensor We[d4] are similarOneimmediate solutioto the
loT interoperability challengeanbe usingthe interoperabl@rotocolsfor the sensor networks
The other solution can lie design anewspecific protocol for the Internet of Things.

This chapter gies a brief presentation of the research topicfiogt introducing the
Internet of Things paradigrand theexisting progress in the IoT applications. Nexg define
interoperability & a research motivatidiollowed by problem definitiorand solutions|t then
states the researb objectivesand our contributions to overcome thetroducedproblem. In
addition this chapter mentionsur development platform, and a brief definition of the terms
used in the next chapters. Lastly, teenainingchaptersareoutlined.

1.2Internet of Things

The Internet annectedservicesare growing rapidly. A greatnumberof people use the Internet
for web surfing multimedia accessingendingand receiving emaiJglaying gamesshopping
social networking and many othaaily tasks.ConsequentlyWorld Wide Web canintuitively be
agoodcandidate tanvolve citizensinto the sensingystems

Therefore, the concept of Internet of Thir{gsl) emergedasa networking infrastructure

to interconnectelectronicobjectsover the medium of the Interndthe primegoal of the IoTis to

2



capture the observatiofi®m sensors, contrdbT devicesandfinally makethose devicesasily
available throughthe Internet As illustrated in Figure 1, all electronic devices which are
capable of Internet connectivitg.g.,sensorsactuators, machineandcomputery can be visited

through the Internet browsems.g.,web browsers and cell phone applications).

(

%

Figure 1.1 The Internet of Things scheme

To technically define dT, we echo the definition provided by International
Telecommunication UnionITU) [15]: "Internet of Thingsis a global infrastructure for the
information society, enabling advanced services by interconnecting (physical and virtual) things
based on existing and evolving interoperable information and communication techriologies
Figure 1.2 depicts this concept byapping the physical world to the digital world across
communication networksAccording to this technical viewpoint, 10T wougrtainly affect on
differentaspects othe SRWHQWLDO XV HU Y Kor@jahtpleaRisedEliMmkgDéehI®R X U

enhancedlearning automation and industrial manufacturingnd intelligent transportation
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systemsare only a few examples of possible applicaseenarios in which the new paradigm

will play aleading role in the near future

Physical world X Information world

- @
=
L

LS e g
S _- i : & D device
a —eommunication,
e o B R R
/ . @ @ physical thing
b// . R, @ virtual thing
s T iennn =, — - _ . . (I‘
|;|¢ ¢ - _D7 - oo ) - —» u)mn'{umm 10n
-——.é,____ . - —»= mapping
i ~© --a-»= communication via gateway

<b-» communication without gateway

<c-» direct communication

Figure 1.2 Technical overview of the 10T [L5]

Referring tothe definition provided byTU, a Thing is alsodescribedas a uniquely
identifiable instance of the physical wodd the information world, which can be integrateth
communication networkslp]. In this researcha Thing denotes a physical device in the physical
world with the mandatory capabilities of communication and the optidealuresof sensing,
actuation, dataapture, data storage and data procgs®ormannet al. [L6] worked within
IETF* analyzed and categorized loT objects into three categavi#s respect to their
communication capabilitiexclassO devices Ke., impossibly limited devices)lassl devices
(i.e.,devices with about 10 Kbytes of RAM ad@0 Kbytes of code space), acldss2 devices
(i.e.,devices with about 50 Kbytes of RAM and 250 Kbytes of code space). Boehahr{l6]

argue that the clag® devicegequireextra help to communicate with other devices; the €lass

Y|ETF: Internet Engineering Task Force



devicescannoteasily communicate with other devices or applications through traditional- XML
data representations and protocols (e.g., HTTP and Transport Layer Security (TLS)); and the
class2 devicesare able to communicate with the traditional transfer protocols artd da
encodings. Based on these argumesmigsfocus on theelatively inexpensive claskloT devices
in this researchThus, this approachllows us toexplore thelower boundof the resources that
are required for loT applicationtn that way, we ensureahour design choicesan deliveran
efficient implementation suitable fabroaderapplication domain.

Here, we identify ana&emphasison two of the major issuesf the Internet of Things.
First, since objestin the loTactindependentlyeachloT objectneed to beselfdescribableand
seltcontainedin order tocommunicatewith other objects or sensorEhat is,a Thingshould be
able to describe and advertise both itself and its capabilities, which in general is the metadata of
the Thing. Second, since objects are develogedsatisfy a particular negtheir communication
protocols and data encodings are usually different from each other. R&isrogeneity
consequently obstructs the communicatand cooperation between objecBesides théwo
aforementioned issues, there are other issues in thesuch as limited power supply, privacy,
and securityconcernsWhile these issues are important, we do not addnesshereas they are
outof the scope of this research.

1.3 Existing 0T Applicati ons

loT projects are dramatically growing in different areas, specifically in energy optimization.

Ericsson andCiscolBSG? predicted there will be 25 billion Internebnnected devices by 2015

2 Internet Business Solutions Group



and more than 50 billion by 202@7, 18]. Some of theavailable 10T projects recently released

to the 10T market arshownin Figure 1.3.

TLLLLT)

g

(d)

Figure 1.3 Existing I0T applications: (a) Wemo switch{http:// blessthisstuff.con); (b) Philips
Hue light bulb (http:// theverge.com);(c) Ninja Blocks (http://ninjablocks.com); (d) Air
Quality Egg (http://airqualityegg.wikispaces.con)
Traditionally, network peripherals have not been easy to install. Recent standards such as

Universal Serial Bu§USB andPlug-and-Play’ have improved the situation so that devices are

? http://lwww.pcguide.com/ref/mbsys/res/pogtml



automatically detected and device drivare automatically installed. Yet, networked devices,
such as Internet gateways and networked printers still require manual setup and configuration.

Wemo switch (Figure 1.3a)) lets electronic devices to be remotely turned onlbf§ an
loT application that follows theUniversal Plug and Play(UPnP) [19] protocol in its
communication. Using UPnRyhen a device is plugged in and turned on, it "just works".
However, the Wemo application has to be installed on an Android or iOS device, in order to
transfer the network settings to the Wemo switch. Furthermore, the Wemo saitobt be
controlledfrom outside the network it exisfse., Internet)

Philips Huelight bulb® (Figure 1.3(b))is a wireless light whictcan display different
tones of white light fromwarm yellow whiteto vibrant blue white. The Hue light bullvorks
similarly by means of a Hue rartas a bridge between the baltd the Hue app. Laten, it is
possible to talk tathe light bulb by Hue bidge across the Internet. Furthermotlee Hue
application and Huerlzlge are required to support the remote communication to the device.

Ninja Blocks$ (Figure 1.3(c))are cloudenabled components including sensors (e.g.,
temperature, humidity, motion, window and door contact) and actuators (e.g., lights, power
sockets) to monitor and control the environment. Ninja Bl@eksnore accessiblthan the two
previous IoT apps by integting the Ninja Block to Ninja clouds on the InterneteThnnection
between the Ninja Block and Ninja cloudsestablishecdutomaticallybased on aPI which
has already hardoded on the Ninja BlocksThe cloud also provides ael interface for the

clients to aggregate sensor data in a repository. However, if a new device is added to the

* http://www.belkin.com
® hitps://www.meethue.com
® http://ninjablocks.com



network, the deviceneeds to follow the Ninja cloud API to be able to interact with the Ninja
server.

Air Quality Egd (Figure 1.3(d))is an airquality monitoring systemwhich provides
onlineaccess to itebservationsThe eggis composed of a sensing device that measures the air
quality in theenvironment and a gatewdlyat shara the collected datan reattime. The Air
Quality Egg immediatelyiploads the collected data to an open ltdaservice namedively
(formerly Cosm and beforthat Pachube)Although Xively provides online access to the sensor
derived datausers can register theigg at the Air Quality Egg portaio visualizethe data oma
map. Similar to the Ninja Blocks, théir Quality Egg follows the robust API provided by
Xively.

Accordingly, IoT is creating innovative applications by assembling the IoT sensing and
controlling capabilities from different sources in effeetivays. However, 10T service providers
are developing their own proprietary software interfaces for their devisesientioned above,
even thesdour instances of 10T applications do not apply the same protocol, application, and
communication style in da exchangeThis means the number of proprietary interfaces is
growing as the number of I0T devices increases. Consequently, an effort is required to
interconnecvariousloT devices with aharednterfaceto be globally accessed on the Internet

1.4 Interoperability

Towards the first issumentioned inSection 1.2devicesshould somehowrovide web services
to advertisethe devicesapabilitiesand informationin the network For the second issue, the

devicesneed tobe interoperablén their communicationsBased onthe IEEE definition[2(],

"http://airqualityegg.com
8https://xively.com
® http://airqualityegg.com/



syntactic interoperability meansthe ability of interoperation andnformation exchange in a
systemthat is, devices shoulie able tanteractivelycommunicatevith a commorprotocoland
data format Beyond the syntactic definition of the IEEE, devicgsould exhibit semantic
interoperability as well. To clarify, semantically interoperable devices can interpret the
exchanged data, and generate meaningful result which is understangablé sidesAlthough
interoperabilityhasa broader scope, we focus on the syntactic and semantic interoperability in
this research.

According to Rodriguez et al2]], Sensor WelandWSNsplay an important role in the
loT. In order to provide global interoperability for all loT devices,poit to theopenstandard
interfaces definedfor WSNs. One of the pioneers ithe standardization of WSNs is ti@pen
Geospatial ConsortiurflOGC). OGChas been supporting geospatial interoperability since 1994.
Among all OGC standards, the Sensor Web Enablement (SWE) is a suite of standards to enable
sensor network interoperability. SWE standards incl0eervations & MeasurementO&M)
[22], Sensor Modl LanguaggSensorMI. [23], Sensor Interface Descriptors (SI[®4], Sensor
Observation Servic€SOS [25], Sensor Planning Servid&P3 [26], and PUCK protocol[27].
As a result, ne possible solution tachieve the interoperable IoT tise developmenbf these
OGC open standardm the 10T devicesTherefore,one of the objectives is to implement the
suitable SWE standards for IoT devices, and then we can evaluate whether the SWE standards
are suitable for IoT devices or not. In additias the SWE stalards arelesignedor scientific
grade sensor systems rather than for resecwostrainedow-costloT devices, heremight bea

need to define a specific standard for the dbjects



1.5 Problem Definition, Motivation and Solutions

The informationcommunicationincluding tasking loT objects an@trieval ofspatietemporal
observationsfrom distributed I0T devicesis a key function in the Internet of Thing§he
traditional interaction modelsn the Internetare based on the request/response communication
style betweemetwork entities.The Internet protocol suites the networking model for the
Internet whichcontainsfour layers: Application layer, Transport layer, Internet layer, and

Link Layer[28] as depited in Figure X.

Application Layer

Transport Layer

Internet Layer

Link Layer

Figure 1.4 Internet protocol graph [2§]

Other tharthe Link Layerwhich issignificantlyrelated tohardwaresquipmentsinternet
Protocol (IP) in the Internet hyer, TransmissiornControl Protocol(TCP) in the Transportayer
and Hyper Text Transfer Protoco(HTTP) in the Application layer aremostly used to
communicate between computers on\thherld Wide Web Therefore, gorominent candidattor

the loT would be theVWW protocolsthat arevery scalable, robustand ubiquitous[30].
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However,the existing Internet protocol suitenay not be appropriate fone loT because of the
following reasons

1. Internetaccesgroblem Many loT devicesare not capable of accessing the Intermbts
problemoccuss becausdoT devices do not meet the hardware requirements in order to
connect to the Internet or do not have the stable power supply to be continuously
connected to the networkonsequentlyloT should be flexible in integratinthe Internet
protocolwith other protocok in orderto makethose devicesvailableon the Internet.
Involving new protoco(s) to theavailablenetworkinfrastructuretypically requires new
software andhardwarerequirementge.g.,gateway to facilitate the seamless integration
of those devicewith mobile communication networks or InternBbr examplewhen a
Hue light bulbis going to communicate with eient (e.g., aweb browser)the Hue
bridgeneeds to be installed on thetwork

2. Lack of standard protocol for 10T data representatidfir TP is a foundationof data
communication for the World Wide Wetp transfer hypertext across the Internet
However, data representati@onsiderablydiffers from one device to anothdrecause
there is no standard defining the data representatitimeiloT. For exampleplain text
Hypertext Markup LanguaggHTML), JavaScript Object Notation(JSON, and
Extensible Markup Languag&XML) are possible response formalts.order to supply
interoperable access betweeeterogeneoutoT objects we need todefine a standard
protocolon top or in parallel of HTTP.

3. Constrainedresourcef IoT devicesAs we already mentioned in Section 1.2, we focus
on resourcelimited classl objects in this researcfihe Internet protocol suitdself
might be irappropriate for the constrained network or objects of the Internet of Things
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Therefore, #icient andcompressed datancodingsin terms of computationaksource

consumptior(e.g., memory, CPU, bandwidthre required for these devices

To alleviate the above deficiencies for the existimgrnet protocol®f the World Wide
Web, an alternativestandardprotoco(s) needs to be considere@he protocol(s) shouldbe
effectively compliantwith the requirements dbT participantg(i.e., objects, userspplications,
networks,gateway, proxieg in order tomakethe I0T devicesnteroperablen the networkThe
selectedprotoco(s) can encourage people participatein the 10T by connecting their sensors
and actuators to the netwoltk this caseoT will provide realtime sensor data streams with a
much higher spatial and temporal resolutiéiso, end users can remotely command their daily
devicesby means of wbbrowsers or mobile applications

As OGC SOS is a commonlysed web service interface in the Sensor Web, we first
connect users to loT devices based on that protocol. This connection may be established directly
throughTinySOS protoco[30] which is a comprssed implementation of the OGC SRS] on
the 10T objects. On the other harttie connection protocdb the device can be modified to
OGC PUCK [27] or CoAP [16] which requires intermediary nodeise(, proxy, gateway) for
protocol conversions (Figure 5). The OGC PUCKprovides access to the driver code,
installation procedures, oanunication port configuratignand metadataf the device The
CoAP also employs the basic features of HTTP to the constrained network while maintaining a

low overhead
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Figure 1.5 The placement of PUCK, TinySOS, and CoAP in the loT
In addition to using the existing standards for,ltdi#ere is an ongoing effort of defining a
standardWeb Application Programming InterfaddPl) for the 1oT. This API, namelyDGC
SensorThingsis built on HTTP potocols and applies the widel\ssed Representational State
Transfer(RESY style to access the system's compamnent

1.6 Objective and Contributions

The main objectiveof this research g0 address the 0T interoperability issu&® achievethis
major goal, we first investigatethe current progress onishaspectof the IoT. Then, we
implementfour standard protocols on a clasdoT deviceincluding PUCK over Bluetooth,
TinySOS, SOS over CoAP, and OGC SensorThingmally, we evaluate the four different
protocols.To summarize, thithesismakes the following contributions:
X We implement the OG®UCK on a Bluetootkenabled clasg IoT object To make the
sensor data available on the Internet, we alsegratethe OGC SOS protocatith the

PUCK-enabledoT object
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We implement the heavweight OGC SOS and SensorML standach a resource
constrainedsensor(classl 10T device) In order to ovecome the hardware constraints

we introduce an efficient XML parser algorithm.

To interconnect a CoABnabled 10T object with other sensors on the Webintegrate

this protocol to other standards of the WSNs (e.g., OGC SOS) as an interoperable
infrastructure for the IoT. Therefore, vimplementthe commonlyused SOS standard

over CoAP on a CoAP proxy which has enoggmputationatesources.

We designa specific RESTful protocofor the Internet of Thingscalled OGC
SensorThings APl whicltommurncates withloT objectsbased on their owidefined
protocols

At the end, we complete our contributions by evaluating the performance of the four
aforementioned protocols.€., PUCK over Bluetooth, TinySOS, SOS over CoAP, and
OGC SensorThinggh terms of memory occupation (ROM and RAM), request length,
response size and response latency.

The major contribution of this researchtagsexplorethe possibleapproachgto achieve

interoperability between clagsloT objects. Furthermorgje expecthat the direction addressed

in this research can be a motive to establish a better infrastructure for the future of loT.

1.7 Development Platform

In this researchwe usea sensor compatibl8ingle Board ComputegfSBQ, namelyNetduino

Plus This electronic framework is a leprice (59%) open source hardware platform built by

Secret Labs Compaml]. The board features a &t Atmel microcontroller with 48 MHz

speed, 28 Kbytes main memofye., RAM), and 64 Kbytes code storage. In these, Netduino

Plus belongs to the cladsdevice category in the framework of Bormann etld]. [
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Furthermore, Netduino Plus supports micro SD memory (up to 4 GB) as a permanent
memory to store necessary informatioglsas configuration files, capabiés documentsensor
observationsetc The network connectivity of the board is established by an Ethernet cable, but
its mainboard can support other network alternatives, #igFi, Bluetooth, Zigbee, and GPRS).

As shown in Figurd .6, the mainboard atssupports 20 1/O pins (14 digital and 6 analog) where
sensors and actuators can be simply attached to. From the software viewpoint, codes developed
on this device should be written in C# .Net Micro Framework. Netduino Plus can run the codes

directly withaut any need$or operating systems (OS).

ethernet power 14 digital ifo

potentiometer
sensor

micro power 6 analog inputs
5d (+ digital i/o)

Figure 1.6 Netduino Plus mainboard B1]

1.8 Definition of Terms

For clearer understanding of the terms used in this stedyls and their definitions are as

follows:

Actuator - It refers toatransducer that accepts an electrical signal and converts it into a physical

action[32].
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Feature of Interest This describes feature (so a representation of a-weatld object) that
carries the property which is observed. Than be either a domain featurek(a sampled
feature) such asOLVVLVVLSSL RU Dik¢ BPBWH@JJDHMHWXUHWV OLVVLVV
[33]

Gateway- It refers to a device used to connect two different networks, especially a connection to
the Interet[29].

Observation Offering- It groups collection of observatiomghich are somehow similar such as

the observationproduced by specifigprocedure[25].

Observed Property- Facet or attribute adn object referenced by a namRich is observed by a
procedurdg25].

Phenomenon It is an event in the real world which will be measu&ghenomenon may be a
physical property (such as temperature, length), éclassification (such as species), frequency
or caunt, or an existence indicati$¢84].

Procedure- This involves method, algorithm, instrument, sensor, or system of these which may
be used in making asbservatior{25].

Proxy server In computer networks, proxy servels aserver(a computer system or an
application) that acts as an intewiray for requests froralientsseeking resources from other
servers. A client connects &proxy server, requesting some sergjcich as a file, connection,

web pagepr other resourceavailable from a different servefhen,the proxy server evaluates

the request as a way to simplify and control its complexity. Proxies were invented to add
structure and encaplation to distributed systerfi3g].

Sensor It is an ently that provides information about an observed property as its output. A
sensor uses a combination of physical, chemical or biological means in order to estimate the
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underlying observed property. At the end of the measuring ,chbaotronic devices prodac

signals to b@rocessed25].

Sensor Web Enablement (SWE) - Among the OGC working groups, SWE focuses on
integrating sensors, transducers, and sensor data storages discoverable, accessible and useable
via the Web. The OGS SWE standards include: Se@dmervation Service (SOS), Sensor
Planning Service (SPS), PUCK, Sensor Model Language (SensorML), and Observations &
Measurements (O&M)36].

1.9 Thesis Organization

Chapter 2, 3, 4, and 5 overvigNJCK over Bluetooth, TinySOS, SOS over CoAP, and OGC
SensorThgs AP| respectively Therefore,Chapter 2 to ChapterWwill independently explain a
specific protocqgl each of which containgntroduction, literature review, architecture,
methodologydiscussion, andummarysectiors. Then,Chapter 6 evaluates our implementations
by comparingthe four protocolsin terms of performance analysiBinally, conclusions and

future work are given in Chapter 7.
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Chapter TwoPUCK over Bluetooth
2.1Introduction

Among the large scope of OGC standards, we first choose PUCK which is a simple command
protocol. The PUCK contains a set of standard commands to access the device memory, read the
device metadata, and write data on the mem®ng prime purpose of the OGRUCK is to
provide interoperability for devices connected through serial cables or Ethernet. In order to
enable sensors to be accessibia wireless connectionswe analyz possible radio
communication technologies. The choice of the radio highly madtace it influences either
energy consumption or software design. Comparing to Zigbee and RF transceiver alternatives
applied in WSNs orSensor We$, Bluetooth is more populdrecauseit has been widely
supported by many daily devices (eaell phone andhotebook). In addition, Bluetooth is more
energyefficient in comparison with Wki. Therefore, we integrate the Bluetooth protocols to the
PUCK standard in order to raise the interoperability between various types of sensors and
actuators, namely loT dees.

PUCK standard is efficiently designed to be applwddevices supporting different
protocols. It considers two modeBUCK modefor processing the PUCK commands, and
instrument moddor handling instrumenrspecific operations. Since the PUCK itsbHs no
support for retrieving and publishing the sensor measurements on the Internet, we use other OGC
standards, SID and SOS, to provide users the access to the measurements. The workflow is

shown in Figur@.1 and is elaborated tBection 2.4
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SOS Requests .
ISOS Requests

-PUCK Detector "
-SID Interpreter
B Netduino Plus
‘e (Sensor Compatible Small Computer) \ .

Figure 2.1 The overall workflow of accessing to the sensor measurements

-PUCK
- Sensor Protocol

Bluetooth Modem

To wrap up the first contribution of thighapteris that we initially enable sensors to be
accessible through Bluetooth technology. Thenjntegrate Bluetooth protocol and PUCK as an
open standard wireless protocol to raise the interoperability of 10T devices.

The remainder of this chapter is organized as follows. In Sectiyriterature review
and related works argtated Section2.3 andSection2.4 present the proposed architecture and
implementation, respectivelyn Section 2.5, weliscuss abouthe PUCK over Bluetooth idea
and its consequent issuésnally,a summary about this chapter is offene@&ection2.6.

2.2 Related Works

Bluetooth has already been utilizedSensor Wel)37] to let sensors upload their readings to a
data repository. Leopard et 4B8] achieved this by introducing a tiny Bluetooth stack that

allows TinyOS[39] applications to be executed on Bluetooth eedbdensor nodes. While
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Leopard et al[38] focused on the efficient network processing and system arithiggedesign,
theirresearch did not consider the interoperability issues between various sensors.

Since the Bluetooth radio rangeover a couple of metefd(], the system developed by
Leopard et al[38] does not provide the world wide access to the sensor measurements. To
overcomethis problem, Ferrari et gl41] proposed a new architecture for the sensor networks to
integrate theBluetoothenabled sensors with Interrginnected computers. As a result, these
Bluetoothenabled sensors are essentially connected the Internet. Although this
implementation successfully demonstrated the possibility of combBlmgtooth sensor nodes
to the web interfaces, the communication protocol between sensors and computers was
proprietary and did not consider the interoperability issues.

Nevertheless, to the best of our knowledge, there is no standard protocol based on the
Bluetooth that enablesmbedded sensors and loT devices to be connected in an interoperable
manner. Therefore, we believe that the integration of Bluetooth and OGC standards for loT
devices that thishaptempresentss a pioneer in this field.

2.3 Architecture

Here we brieflyintroduce the OGC PUCK protocol. Next, we explain the sensor protocol for
retrieving sensor observations from the device. Finally, we present thdeh@rarchitecture of
our proposed system.

2.3.10GC PUCK

The PUCK protocol provides access to the driver codallation procedures, communication
port configuration, command protocol, and metadata such as OGC SensorML. In general, this

standard protocol mainly consists of two patsflCK commandsandPUCK memory
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x PUCK commandsThe protocol has a commanesmnse style in which commands are
considered as ASCII strings. Upon successful execution, the device executing PUCK
protocol will return the characters: PUCKRDY<CR>. If the PU@#kabled instrument is
unable to execute a command successfully, it will isssgeaific error.Table2.1 shows
a summary of the PUCK commands.

Table 2.1 Command set of the OGC PUCK

Command | Description

PUCKRM | Read from PUCK memory

PUCKWM | Write to PUCKmemory

PUCKFM End PUCK writesession

PUCKEM | Erase PUCK memory

PUCKGA | Get address of PUCK internal memory point

PUCKSA | Set address of PUCK internal memory point

PUCKSZ | Get the size of PUCK memory

PUCKTY Query PUCK type

PUCKVR | Get PUCK version string

PUCK Null command

PUCKIM Put PUCK into instrument mode

PUCKVB Verify baud rate support

PUCKSB Set PUCKkenabled instrument baud rate
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x PUCK Memory PUCK memory provides a space for device information, ameémory
pointerreferring to the memory address that will be read or written by the relevant PUCK
commandsFigure 22 indicatespartitions ofthe PUCK memorywhich is mainly divided
into two parts:PUCK datasheeand PUCK payload PUCK datasheetontains a small
standard datasheet includingJaiversally Unique ldentifie(UUID), manufacturer ID,

PUCK version, header size, and several device related information such as name, version,
model ID, and serial number. On the other hand, the optionalKPpHyload stores

additional information needed to operate the device such as device driver code,

/ PUCK Datasheet \

SensorML, and so forth.

uuIbD Instrument Version 1D
Manufacture ID Instrument Model ID
PUCK Version Instrument Name
Header Size Instrument Serial Number
PUCK Payload
File Name: PUCKMemory
SensorML, Driver Code, ...

A »

Figure 2.2 PUCK memory

2.3.2Sensor Protocol

The purpose of sensor protocol is to allowenssto simply query sensor capabilities,

observations, and presentations of observed features in the instrument mode. As the device we
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used in this research does not provide any sensor protocol, we define a protocol based on the
concept of OGC SORY] to serve the demonstration purpose. Most of the terms used in this part
follow the terminology in the OGC SOS. Because of the limited resources in 10T instruments,

the command and response formats should be considered as simple as possible. Therefore, unlike
WKH 626 DSSO\LQJ ;0/ DV WKH IRUPDW WKLVWE.GYRWRERO VLP
format requests and responses (Fig28). Similar to the OGC SOS, we define
GETCAPABILITIESoperationin orderto showthe capabilities of the device. Thesponse

includes the unique IDs of the sensors attached to the device, the phenomena IDs which are
measured by the sensors, and the unit of measurements. Next, the other operation,
GETREADING can be sent to retrieve sensor readings. Figdrelepicts tke procedures of the

sensor protocol.

~
—
A Device
/ \
Clie
- GETCAPABILITIES
Drt
GETCAPABILITIES response
<
GETREADING -
Orm
GETREADING response
< - 3
g - - - — @ N
£P COM15 - PuTTY = |

Figure 2.3 Procedures of the sensor protocol
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2.3.3System Architecture

As shown in Figur@ 4, the architecture we proposed for the device follows a layered structure

which haghree major layersCommunicatioriLayer, ServiceLayer, andSensorLayer.

Communication Layer

Command Handler Response Handler

I Strings Messages I

Service Layer

Memory
Management Response Sensor Data
Unit (MMU) Engine Repository

I Raw Sensor Observation I

Sensor Layer

Sensors Sensor Controller

Figure 2.4 The system architecturesupporting PUCK protocol

x Communication LayerThis layer includes the Bluetoothardware and its protocol.
When a request is received, the layer forwards the request string to the service layer for
processing. After the service layer finishes processing the request, a response string is
returned to the communication layer to déackto the client.

x Service LayerThe service layer handles business logic of the system. This layer itself
consists of three modulesensor data repositoryresponse engineand memory
management unfMMU). More details about the service layer are presemeSection

2.4
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X Sensor LayerThe sensor layer consists of the physical sensors and the sensor controller.
The sensor controller tasks sensors to collect sensor observatiexts it sends the
retrievedsensor observations to the sensor data repositahg service layer.

2.4 Implementation

In this section, we explain the service layer in detail. Then, we introduce the required software
components to connect the 10T device to the Internet.

2.4.1Service Layer

In order to parse the commands and compose response messages on the small memory of IoT

devices, we propose the response engine. This unit is equipped buffeang mechanism to

handle the large contents. Blge way,the maximum memory consumption at amye for

reading and writing a documeistequal to the buffer size. In our implementation, the buffer size

is considered 1 KB which is more than enough for the commands of PUCK and sensor protocol.
The highlevel workflow of the service layer ilustratedin Figure2.5. As the response

engine encountered with a carriage return operator, it tries to match the command with-the hard

coded commandsi.€., patterr). After pattern matching, the response engine processes the

request by retrieving necessary imf@mtion from the MMU (if the command relates to PUCK

memory), or the sensor data repository (if the request contributes to the sensor protocol). Finally,

the response engine packages the result in buffers to be sent to the communication layer. The key

feauures in theservicelayer are the bufferingnd pattern matching approachByg these features,

we could successively parse and compose large commands (e.g., 100KB) on devices with limited

resources (e.g., 26B RAM).

25



/ Service Layer \
é[ Command Validator ]
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Response Engine
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Figure 2.5 The high level workflow of the service layer

2.4.2 Additional Software Components

As the proposed IoT devices follow the PUCK open standard, users are able to connect to the
devices using the PUCK commands. For example, users oaglopea PUCK detector
application that establishes Bluetooth connections and sends out RWICKKommand(i.e.,
PUCK<CR>) to discover PUGKnabled devices. After a successful discovery process, the client
can send other PUCK commands to the devices thrBluggtooth.

As PUCK provides access to the data in the PUCK memory, PUCK does not support
communications in the device protocol. Therefore, we apply another OGC standard, SID, to
handle the communications in the device protocol. First, we store a SWhidtd contains the
necessary information about the device protocol, in the PUCK payload for client applications.
Then, a client application can us&H Interpreter[24] to retrieve sensor readings, and upload

the observations to an online SOS (Figaidg.
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2.5Discussion

PUCK over Bluetoottwas presented in this chaptasa Bluetooth protocol allowing physical
sensors to be interoperable in the Bluetooth established network. Although PUCK protocol was
not designed to be hosted on devices with limited regsy we designed and implemented this
standard to host on clagsloT devices. The developed system ld@snonstratedhat it is
feasible to have an interoperable and standard Bluetooth protocol for entire 10T devices. In this
case, theSensor Welran be asily integrated to our daily devices such as mobile phones or
notebooks. In spite of popularity of the Bluetooth radio in our daily electronic devices, there are
several issues for the aforementioned system.

Oneissue is that Bluetooth radio has a shoggjfiency range which clearly confines the
users to be in proximity to the sengerg., 10nm). Although other wireless technologies (eWi;
Fi or RF transceiver) might cover this inconvenience, they lack power conservation, or
compatibility with our daily devices.

Moreover, one of the most challenging issues points to the security and privacy concerns.
This issue can be solved by consideringRYVNH\ RQ WKH VHQVRUfV %OXHWR
requested during the pairing process. Also, secure connection can be achieved by leveraging
existing standard mechanisms. For example, the current Bluetooth modem uses an encrypted
connection to protect theegasage content's integrity and confidentiality.

2.6 Summary

In this chapter, we presented the PUCK over Bluetooth protocol, as a wireless profile of the
OGC PUCK for loT devices. Thereafter, we defined the OGC-B@Sommands to query the

capabilities docunmd, and sensor readings. Furthermore, to address the-wiolddaccess to the
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sensor readings, we proposed the PUCK detector and SOS service developed on the host, which
is able to establish Internet connectivity.

By hosting open standard Bluetooth protoon the IoT devices, not only the devices
become interoperable and easily pluggedplayed, but also the collected observations are
accessible via our daily devices as soon as they are measured. In this case, we can easily make

sensors available whenede ZKHUHYHU OHDGLQJ WR D SDUW RI RXU WRPF
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Chapter ThreeTinySOS
3.1 Introduction

The basic concept of theT is the ubiquitous existence of variotiengs or objectsthat can
communicate and cooperate with each otheoroter to achieve shared goa#?] By giving
objects the possibility to interact with each other, the IoT is attracting a wide range of
applications. For exampl&iusto et al. 42] categorized IoT applications into five categories:
transportation and logistics, healthcare, smart enmisaris, personal and social, and futuristic
applications.

In general, thischapteraddresseshe issues from thdecentralizedand heterogeneous
nature of IoT objects and sensorBhe main ideas basicallyinspired bytwo papes published
by Priyantheaet al. B3] and Bormann et allp]. Priyantha et al.43] proposed diny web service
for sensorsand an applicatiorevel interfacewhich havethree advantages. Firsgt|ach sensor
becomes selflescribable and setfontained by providing web interfaces for applications to
retrieve sensor'sapabilities. Secondsome sort ofprivacy is preserved for device owners by
direct connections to their devicel addition, the sens deployment and maintenaneee
easier with interfaces for updating a sensor's metadata. However, in order to achieve the
interoperability between sensors and applicatiam®e solutionis to use standasdased web
service interfaces anwidely-used data encoding in information communicatianHowever
Priyantha et al[43] definal their own ad-hoc interfaces rather than impleenting existing
standards On the other hand, Bormann et alg] proposedthe Constrained Application
Protocol (CoAP as alightweight transfer protocol for 0T objects. To develodightweight
protocol, theyusedUser Datagram ProtocoUDP) [28] to simplify the informationexchange

between the CoAP nodddDP is an alternative to the Transmission Control Protocol (TCP) [28]
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which keeps track of packet delivery. In order to enable CoAP with this advantage of TCP,
CoAP applies ae-transmission mechanism for lost packétewever, as most web applications

are usng HTTP, an extra proxy that translates HTTP and CoAP is required for applications t
communicate with 10T object€hapter 4horoughlyexplainsthe specification othe CoAPand

its contribution to this research.

According to thetwo above papes, one effective wayto make loT objects self
describable and setfontaineds to implement web services on loT objects. Moreover, the web
services and the communication protocbée tobe lightweight enough to be executed on
objects with limited resoues. Both the tiny web service papéB] and CoAP papdr 6] present
a concrete idea about how to address the decentralized and heterogeneous isSuesd
Sensor WebHowever, we argue that the only drawback of these two papers is thalothey
take advantage of the existing open standards to addreisgetoperabilityissues.

The Open Geospatial Consortium (OGC) establishensor WelkEnablement (SWE) as
a group of open standards related to sensors, sensor data mod&8snsmd\Welservices 44].
Similar to the W3C standards, the OGC SWE specifications are condmsgsopen standards
defined by any individual who is willing to participate. In principle, by following the SWE
standards, we can achieve interoperability forS3easor WebHoweve, the SWE standards are
defined under the concept that web services are intermediaries betwageeagplications and
the sensorsand the SWE web services are based on HTTP and XML data representation.
Lightweight Sensor Webservicesare not in the sope of SWE’. Thus to the best of our

knowledge there is no existing work that evaluates the feasibility of constructing a SWE web

1% A new OGC Standards Working Group (SWG) was formed in June 2012 called the Internet of Things REST API
SWG. It focuses on developing an OGC standard for access to sensors in an 0T environment.
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servicedirectly on an object with limited resources. The reason this evaluation is important is
that if SWE web services gabe hosted on IoT objects, the 10T objects will not only be self
describable and setfontained but alsothey will inherit the comprehensive SWE conceptual
model directly. In this case, the l0T objects can interoperate with each other as well as the
existing OGC SWE applicationsvioreover, some sort ofprivacy might be preserved by
removing the gateways in the path betweeragh@ications and devices.

Among the SWE specifications, we choose the Sensor Observation Serviceé' (SOS)
which defines a web sdce interface for accessing sen®bservations and metadagb]j to be
implemented on a clasis IoT object.Our implementation of the SOS is term&thySOS30]
thatsupports dightweightprofile of OGC SOSsuitable for limited resources I0T objects.

Moreover to address the issue of discovering 0T objects, we implemesgnsor
registry servicethat not only allows a sensor to register and advertise itself, but also lets
consumers (e.g., other 10T objects, sensors, owueadapplications) to seartbr available 10T
resources.

In summary, thishaptemakes the following contributions:

1. We present TinySOS am open standarBiensor Welserviceon the IoT devicesWith
theaim of doing this TinySOS enabkaverage users to deploy leswst sensor sysms
easily.

2. Instead of using the traditional web service container, we develop a tiny web service

whose code size is four times smaller than that of the traditional web service container.

n thisthesis Sensor Observation Service (SOS) referti¢oSOS versiofi.0 [OGC, 2007]
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3. To parse and compose potential large XML documents on an loT dexdejplement
an XML processor unit (XPU) equipped with buffering mechanism to efficienethyl and
write XML documents.Therefore, the TinySOS allows a highly constrained device to
handle very large XML documents.

4. Finally, to address the resource discovery issue, we implement the sensor registry service
that acts not only as a catalog service, but also as a proxy to forward requests and
responses between clients and TinySOSs with dynamic IP addresses.

The remaindeof this chaptelis organized as follows. Secti@®2 reviews the OGC SWE
and the literaturef integrating SWE and IoT. Sectid@3 and Sectior8.4 present the proposed
architecture and implementation, respectively. This is followed by a discussion alpout o
findings and other issues about the IoT in SecB8dn Finally, we this chapterprovides a
summaryin Section3.6.

3.2 Related Works

There have been some existing 10T projects applying proprietary protocols, such as Microsoft's
HomeOS 45|, Xively* (previously known agCosmand before thaPachube), MicroStrain's
SensorClouti, and Wovyrf. Many of them provide a web portal for users to manipulate the data
collected by their sensors. We refer to these web portalsedsT portals Most of the IoT

portals allow users to visualize the tirgeries data collected by sensors or pulihgdata with

their own Application Programmingniterfaces(APls). However, in this case, 10T objects, that
VXSSRUW RQO\ RQH W\SH RI SUR S Uhndt\wteroperétad with dbdgeot®inD 3V LO

other silos. Consequently, the development of various 0T silos obstructs the development of the

https://xively.com
13 http://www.sensorcloud.com/
1 http://www.wovyn.com/
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loT. Therefore, in order to break down these silos and achieve the vision of an open loT
environment, following open standgotbtocols is necessary.

Sensor WebEnablement (SWE) as an OGC working group defines open standards
related toSensor WebThe prominentstandards in the SWE frameworks are Observations &
Measurements (O&M)Z2], Sensor Model Language (SensorML23], Sensr Observation
Service (SOS)35], Sensor Planning Service (SP2P] and RJICK Protocol Standard (PUCK)

[27]. O&M defines the standard models and XML schema for observations and measurements
collected by sensors. The SensorMpecification includes the standard models and XML
schema for representing the metadata of sensor systems and processes. SOS presents the standard
web service interface for requesting, filtering, and retrieving observations and sensor system
information. An SOS service is the intermediary between a client and sensor observation
repositories. The SPS specification provides the standard web service interface for tasirs to
sensors to make observations. The PUCK stangérch isintroduced in Chapter B a low

level protocol to retrieve SensorML documents, sensor driver codethedinformation from

sensors

The SOS and SPS are the two SWE specifications defining the standard web service
interfaces. For implementing a SWE web service on an IoT object, we choose the SOS in this
chapterdue to the fact that the SPS service requires customized implementatienslidgpon
each sensor's capabilities.

In fact, there have been some initiatives on integrating SWE and loT. For example,

SUHVHQWDWLRQV DQG WD OR VSensoF WeldoW B&Q G MUGEV ,B DG WKH

1536:( DQG ,R7 ~ 0L NH Ifhdvativg Rles@arBAWSWIET adhoc during OGC TC, March 2012.
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30pULQJLQJ ,R7 WR WHKnhatPsBoul aPWDRBWY G DR 3&ROODERUD
GHYHORSPHQW RI RSHQ VWDQGDUGV IRU H[S'Dv@r& ¢giv@gdirHR:HE \
workshops and OGC Technical Committee meetings to discuss the possibility of applying SWE
standards on the 10T. In addition, am®GC working group was formed in June 2012 to define

open standardfor integrating SWE and 10T4p]. Moreover, Broring et al.47] implemented
SenseBagxwhich utilizes the O&M standard in their web service API. However, the web service

on their SenseBoatoes not follow SWE standards. Furthermore, Resch et&ldid implement

SWE standards (including SOS) on an embedded sensing device. However, their sensor
hardware has 512 Mbytes RAM and 32 Mbytes flash memory, which even much more powerful

than the @ss2 device mentioned in Bormann et al6]. Therefore, we argue that it is still
necessary to evaluate the feasibility of implementing SWE standardgelatively inexpensive
class1-like device

3.3 Architecture

In this section, we introduce thHigihtweight profile of SOS £TinySOS. Next, we present the
high-level system architecture of TinySOS for cls$oT objects, and finally discuss our
proposed sensor registry service for loT resource discovery.

3.3.1TinySOS

As mentioned eatrlier, cladsdeviceshave limited resources. In order to host web services on

classl devices, the web service needs to laghtweight enough. Therefore, in this

®36HQVRU :HE 6WDQGDUGY DQG WKH ,R7 ~ 6BFRWW JDLUJULHYH 1RUWKURS
during COM.Geo, 24 May 2011.

30 ULQJILQJ ,R7 WR WW¥hbt hould\a BeblJINGI V8 R"° % HQ 3LUW 3DFKXEH ,R7 :RUN\
November 2011.

83 ROODERUDWLYH 'HYHORSPHQW RI 2SHQ 6WDQGDUGV IRU ([SDQGLQJ
Percivall, OGC, COM.Geo, Expanding GeoWeb to 10T workshop during COM.Geo, 24 May 2011.
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implementationwe only select the mandatory operations of the S(@S the core operations)
for the TinySOS. Tare are three mandatory operations in the SOS, na@ei@apabilities,
DescribeSensoandGetObservation

The GetCapabilitiesoperation provides access to metadata and detailed information
about the available capabilities of the service. GetCapabilitesrequest can be sent either by
HTTP GET or POST request type to retrieve the service metadata as an XMiefijléhé
Capabilities document). The XML file contains metadata about this service, such as unique
sensor identifiers, logical groupings of senobservationd.¢., the ObservationOfferings in the
SWE terminology), and the URIs of physical phenomere, the ObservedProperties) that
sensors are measuring. Users can use the information in the Capabilities document to retrieve the
sensor metada and the observations with the other two core operations.

The DescribeSensooperation allows users to retrieve sensor metadata with a unique
sensor identifier specified in the Capabilities document. IfDbscribeSensorequest is valid
(i.e.,the service has sensor matches the unique identifier), the SOS returns the sensor metadata in
the SensorML format.

The GetObservatioroperation provides access to the observations made by the sensors.
Users can use the ObservationOffering and ObservedRydp theGetObservatiomequest as
criteria in querying sensor observations. According to the criteria specified in the request, the
SOS returns the sensor observations in the O&M format.

3.3.2System Architecture

As we can see from the previous séztionto support the three core operations of SOS, an loT
object needs the functionalities of validating the HTTP request typeQGET, POST), content

type (.e., text/xml), parse th&XML request, ath create the XML responsd&o achieve these
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functionalities,here we present the proposed system architecture of the TinySOS service. There
are three major lays in the TinySOS service (Figurel}. including Communication ayer,

Service layer, andSensorLayer.

Communication Layer

Request Handler Response Handler

Service Layer

XML Processor Response Sensor Data
Unit (XPU) Engine Repository

Sensor Layer

Sensors Sensor Controller

Figure 3.1 The system architecturesupporting TinySOS protocol [30]

1) Communication LayerThe communication layer is responsible for managing the HTTP
requests and responses, including the network related protocols and hardware (e.g.,
Network Interface Card). \Wen a request is received by TanySOS service, the
communication layer forwards the XML request to the service layerfddher
processing. After the service layer finishes the task, an XML response is returned to the
communicatioriayer, and then sent back to the client.

2) Service Layer:The service layer handles the business logic of TinySOS. This laye
consists of three moduleXML processor unifXPU), response enginendsensor data

repository As the XML documentare essentiallyoo large to be stored in the memory
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of classl devices, the TinySOS service needs a new way to parse XML documents.
Therefore, unlikehe traditional XML parsers thabad the whole XML documeninto
memory, we propos¢éhe XML processor uh (XPU) which reads and parses XML
documents buffer by buffer. The XPU not only extracts the request criteria parameters,
but also composes th&etObservationresponses. More details about the XPU are
presentedn Section3.4. The request criteria extrac by the XPU are forwarded to the
response engine. If it is &etCapabilitiesrequest or aDescribeSensorequest, the
response engine retrieves a predefined XML file (e.g., the Capabilities document and the
SensorMLs) from the permanent memory, and fodsat to the communication layer.
Otherwise, ifthe requests a GetObservatioroperation the response engine tasks the
XPU to compose th&etObservatiomesponseccording to the criterjand forwards the
response to the communication layker.addition, as an SOS should have the ability to
return the historical lmservations, the TinySOSores sensameasurements a sensor
data repository. Depending on the device, the sensor data repository could be located in
the main memory (RAM) or the permanent memory (e.g., micro SD card).

3) Sensor LayerThe sensor layer consists of the physical sensors and the sensdterentro
The sensor controllsrclosely work withsensors. For exampla,sensor controller can
task sensors to collect sensor observations and send the collected sensor observations to
the sensor data repository in the service layer. The sensor controlldd pway an
important role in supporting SPS on loT objects.

3.3.3Resource Discovery

For the decentralized environment such as the 10T, resource discovery is always an issue. In our

case, eachesisor has a TinySOS web servigbich allows users to directly coact to sensors.
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However, users still need to know the service's Internet location (e.g., IP address) in the first
place.

In order to address the resource discovery issue, we prepEsesor registry service
Sensor registry service is similar to search engines and catalog sed@tabdt stores the
metadata of web services and allows users to search services with criteria on metadata. However,
in addition to the functionalities of a catalog service, the e sensor registry service is
enhanced to support web services without a static IP address. This is because getting a static
unique IP is not always possible, especially for embedded deswels as I0T objects
Therefore, in order to make a good usdadf objects with dynamic IP address&ge enhance
the TinySOSand the sensor registry service to maintiive connection togethein this case,
the sensor registry service can act as a proxy redirecting requests and responses between users
and TinySOServices.

The overall resource disvery process is shown in Figure 3Rrst, a TinySOS device
with a static IP address registers itself to the sensor registry service by sending its IP address and
service metadata. For a TinySOS device with a dynamic IP address, it not only transmits the
service metadata to the sensor sagi service, but also maintains a live connection with the
sensor registry service. After the registration process, a client can send search requests to the
sensor registry service. If the TinySOS that matches the search criteria has a static IPtledress,
sensor registry service returns the IP address to the client, and then the client can connect to the
TinySOS through the SOS protocol. If the matched TinySOS has a dynamic IP address, the
sensor registry service returns the IP address of itself the.sensor registry service) with a

subpath of the unique identifier of that TinySOS.q., http://IP_of the sensor registry

service/uniqgue 1D of TinySOSIn this case, the client can directly send SOS requests to the
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sensor registry service, and the resfs will be forwarded to the TinySOS. Similarly, the sensor

registry service will redirect the SOS responses from the TinySOS to the client.

Figure 3.2 Resource discovery process80]

3.4 Implementation

In this section, wepoint to a lightweight web server implementation, atater we explairthe
XPU dgorithms in parsing XML documents.

3.4.1Tiny Web Server

As regular web service containers (e.g., Apache web server) would be too heavy for Netduino
Plus, we develoD 37L@0hSHUYHU ™ DV D FRQWDLQHU IRU 7LQ\626 7KL
the basic features of an HTTP server which includes getting redu@st clients and returning
response data streams.

While the classes and libraries in C# .Net Micro Frameworkedatively convenient to

use, they consume a considerable amount of the code storage and memory f66tpHi@nce,
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instead of using the prefileed C# libraries, we develapost functions by ourselves to decrease

the code space and memaryage. For emple, we developnother HTTP request handler to
replace the .NET Micro HTTP libramesulting in35% less code storage occupatidrom 17

KB to 11 KB). At the end, our tiny web servemplementation only takes 12 KB of the code
storage, which is much smaller than a regular SOS server occupying tens of Mbytes of code
spac€. Figure 3.3hows the comparison between the code size of the simple web server and the

three layers of TinySOS (communication layer, servicer|ayed sensor layer).

Simple Web Server vs. TinySOS Server

18
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Figure 3.3 Code size comparisor30]
To clarify more the performance of the TinySOS, the simple web server is not able to

process the requests including contents larger thidB.4Iin contrast, our TinySOS efficiently

19 http://wiki.geocens.ca/sos/Installation, and http://52north.org/communities/sensorweb/sos/
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responds requestgp to82 KB in length. Additionally, the simple web server cannot parse any
XML files due to lack of enough memory.

3.4.2XPU Algorithms

Since the memory of loT objects usually small, the XML requesind response documents
cannot fit into the memory. In order to parse and compose XML documents, we propose the
XML processomunit (XPU) to read and write XML documents by utilizing a buffer mechanism.
A buffer refers toa certain physical memory allocatéadl hold data temporarily. Therefore, by
reading a XML document buffer by buffer, the maximum memory consumption at any time is
equal to the buffer size. In our implementation, the buffer size is consid&®d 1

Figure 34 depicts the highevel workflow of the XPU First, when the XPU receives a
XML request document straight over the sockets, XPUcallsthe buffer reader iterat to read
the document buffer by buffer. Then, in order to extract the information of the request from the
buffer, XPU uses thdata extractorto match the bytes in the buffer between sgmedefined

bytes of patterns.

Buffer Reader
Iterator

Data Extractor

Buffer Cleaner

Figure 3.4 The high-level workflow of the XPU [30]
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SinceSOS defines specific XML elements and attributes for the SOS requests, we can
understand the requests bgarching the predefinedords. For instance, the data extractor
matches tb bytesof WKH EXIIHU ZLWK WKH E\WHV RI WKH IROORZL(
SVHUYLFH’ 3YHUVLRQ’ S*HW&DSDELOLWLHV' S'"HVFULEHGHH!
SSURFHGXUH" S3SREVHUYHG3URSHUWtes obDtiieGredefinetlo Woktss HD W L Q J
patterrs, Algorithm 3.1 shows thenaive approach of how the data extractor searches for these
key words. After finding the location othe predefined XML elements or attributes, we can
extract the values of them by simply loagithe bytes after the elements/attributes.

Algorithm 3.1 Naive pattern matching

Function Match(pattern buffer): matched
m mpatternlength()
n mbuffer.length()
matched mfalse
i mO
FORiton-m
IF pattern [1..m]is equal tobuffer [i+1..i+m] THEN
matched mtrue
END IF
END FOR
0: RETURN matched

BN RWNE

However, although theaiveapproach (Algorithn8.1) works well in many case#,fails
on the case that patterns exist across two buffersovBocomethis problem, we merge the
previous buffer to the current buffer for all iterations. In fact, each buffer except the first and last
buffers is processed twice. Since the predefined rpattare all less than KB, the revised
version of the naive pattern matching approdélgorithm 3.2) can extract all necessary

information.
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Algorithm 3.2 Revised pattern matching

Function Match_Revise@attern buffer_current, buffer _nektmatched
buffer mCONCATENATEbuffer_current, buffer_next)
m mpatternlength()
n mbuffer.length()
matched mfalse
i mO
FORiton-m
IF pattern [1..m] is equal tobuffer [i+1..i+m] THEN
matched mtrue
END IF
END FOR
RETURN matched

RHphooNooRhwhR

o

After the data extractor finishes the matching process on each bufféyftee cleaner
removes the buffer memory and continues the iterations until the whole XML docismead.
On the other hand, the same buffering approach is applied to compose XML responses. For a
TinySOS responding to an SOS request, the XPU iteratively fills thensspmessage into a
buffer. When the buffer is fulifs contenis streamed to the client and then the XPU cleans the
buffer. Consequently, with the buffering and pattern matching approaches, we successively
address the isssef parsing and composing & XML document on devices with limited
resources.

To sum up the proposed system, we demonstrate that by hosting an SOS service on loT
devices, we can use existing SWE applications to retrieve sdasorfrom the loT devices.
Figure3.5 shows the GeoCENB1] SWE client and the sensor data retrieved from a TinySOS

device.
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Figure 3.5 Using a SWE client to access a TinySOS device

3.5Discussion

The proposed TinySOS system allows physical sensors to be intdstgper the OGC SWE
framework. Although SOS was not designed to be hosted on devices with limited resources, we
design and implement the tiny web service container and XPU to host SOS on IoT devices. The
proposed system hatemonstratedhat it is feasibleto hosta SWE web service on clags
devices. In this case, tf&ensor Welran provide realime sensor data streams with a much
higher spatieiemporal resolution. However, we also observe some potential issues on the
TinySOS system.

The first immediateissue is that each 10T device should have a stable and constant
Internet connection in order to receive requests from clients, which is currently unavailable. One

potential solutioralready discussed in Chapters2to utilize the OGC PUCK standard protbco
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on loT devices. However, the PUCK protocol was not designed to be a web service serving
sensor observations. Additional web interfaces are still needed in this case.

The secondissue is about the update of metadata, such as the SensorML or sensor
location. As these information can be manually stored in the permanent memory (e.g., SD card),
a standard way provided by SOS is the transaction operations. By supporting the transaction
operations of SOS, sensor owners can register SensorMLs into the SOS. Hotgeve
automatically measure sensor locations, attaching a Global Positioning System (GPS) sensor on
the device may be a better choice.

In addition, privacy and security are the important items as well. The privacy issue is
about whether the sensor ownersnivtheir devices to be discoverable or not. In the cat@sof
implementationas the resource discovery is handled by search engines or catalog services such
as the sensor registry service, mechanisms to preserve privacy should be implemented in these
resource discovery services. Information security means protecting information and information
systems from unauthorized access, use, disclosure, disruption, modification, perusal, inspection,
recording or destructiorbp]. This can be achieved by leveragiexisting standard mechanisms.

For example, the current TinySOS implementation uses the Transport Layer Security (TLS) and
Secure Socket Layer (SSL) to protect the message content's integrity and confidentiality.

3.6 Summary

In this chapter we presented th&inySOS service, #ightweight profile of OGC SOS for IoT
devices. In order to host an SOS service on devices with limited resources, we developed a tiny
web service container to handle HTTP requests/responses; and we proposed the XML processor
unit to pase and compose XML documents with small memory consumanhermore to

address the resource discovery issue, we developed the sensor registry service which can serve
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not only as a catalog service, but also as a proxy between clients and devicegnastiic 1P
address.

By hosting open standard web services on IoT devices, not only the devices become self
describable, selfontained, and interoperable, but also the collected observations are accessible
via the Internet as soon as they are measurdflidicase, th&ensor Welzan provide realime
sensor data streams in a much higher sgatigporal resolution, which allows users to observe

phenomena that were previously unobservable.
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Chapter FourSOSover CoAP
4.1 Introduction

loT devices are usually limited power, networkmemoryandprocessing capabilitigd6]. The
aforementionedtandardorotocols PUCK andTinySOS,havenot typically been designed with
power and networlefficiency inmind. In batteryoperated/VSN nodes the radio transceiver is
certainly the most powerconsuming componenf53], so powerefficiency translates into
optimizedradio duty cycling Sincethe IoT and WSNsharesimilar visions the same scenario
exists in the IoTThe naivesolution isenforcingthe batterypowereddeviceto keepits radio off
as much as possibl&nother solution is taninimize the network load by which not only the
bandwidth is dramatically saved, but also the radio transceiver can fulfill its task faster resulting
in more sleepin@54].

To achieve thiswe select the IETFprotocol designed for constraineddes and networks
(e.g., WSNs)andnamedConstrained Applicatiofrotocol (CoAP) [55]. This protocoemploys
the basic features of HTTP to the constrained netwirile maintaining a low overheadl TTP
is based orthe Representational State Transf@®EST style [56]; in which the web resources
are identified by URIsThus, CoAP enablesinteroperabilityin machine to machineM2M)
communicationst the application layer throudkESTfulweb servicesREST only relies on the
HTTP methods such as GET and POBiilike HTTP, CoAP operates over the UDP and applies
an efficient retransmission mechanism insteaccahplicatedcongestion control as used in
standard TCP.

The CoOAP can easily be translated to THT to make the seamlessintegration of

constrained networks with the &v. To do this,CoAP proxies are employegd convertCoAP
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message$o HTTP packets The main interest in making CoAP nodes part of the Internet is to
allow various node$o interact witheach other using the existingelwtechnologies.

Since we have already demonstrated the integration of OGC SOS to the IoT, we combine
this protocol with CoAP in order tmake CoOAP nodesnteroperablgo other loTcomponents.
As we already discussed @hapter 3, SOS is not originally designed for limited resources 0T
objects. On the other hand, CoAP cannot validate SOS requests which are definitely larger than
the CoAP upper bound for the message si28Q byes for IPv@latagram) $5]. Therefore, one
possiblesolution is to combine SOS and CoAP on the CoAdxyprvhich has enough resources.
Therefore the contribution of this chapter is that we are the first to bind the OGC SOS to the
CoAP Proxy denoted asSOS0AP proxy According to Figure 4, the SOSCoAP proxy can
communicate through CoAP regulations to CoAP nodes IpT devices) from one side, and it
can speakthrough the SOS standarfiftom another side.As a result, we achievethe

interoperability while maintaining minimal resource consumption on IoT devices.
! " -

CoAP Server
CoAP Server
CoAP 1
CoAP

)

=y
SOS #

CoAP Client

SOSCoAP Proxy

Figure 4.1 High level view of theSOS over CoAPstrategy
The remaining sections of this chapéee organizel as follows. InSection 42, existing
literature about th€oAP implementation is reviewe&ection4.3 and Sectio.4 present the

proposed architecture and implementation, respectigagtion 45 provides adiscusson about
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the SOS over CoAP strateggnd itschallengs Finally, this chapter idriefly describedin
Section4.6.

4.2 Related Works

CoAP has beealreadyimplemented in the most populaperating systemir WSNssuch as
LibCoap for TinyOS [pb7] and CoaBlip for Contiki [58]. These research effortgnainly
addressethe paossibility of the CoAP on targt platforms with only tens of KRAM and ROM

Later on someresearchimproved the CoAP implementations for WSINs case of
energyconsumption, memory usage andtwork latency[59]. Although CoAPBIip[59] has
been previously included in the TinyOS aa CoAP library,Ludovici et al. p9 introducel
TinyCoAP asa more efficientimplementation of the CoAP for TinyOShe TinyCoAPis
implemented only for the devices supmagt TinyOS which conflicts with the aim of
interoperabilitybetweerall kinds ofloT devices.

There are als@ few efforts to makethe CoAP compliantto the World Wide Web
standardsFor example,Smple Object Access Protocd6OAB standard[60] for the data
exchange of @b services was bound in CoAP[61]. This researcltould successfulljransport
SOAP messagén resource constrained environmemesulting in deployments afieb services
in WSNs. However, there is a negative point in combining SOAP and CloédauseSOAP
messages are encapsulated in the Xidimat which leads tocomplex message processing.
Since the overhead afata transfer betweeBOAPR-basedweb services is significantly higher
than the RESTfulveb services §2] [63], the authorsof [64] focused on the combination of
RESTful CoAP and XML to make it more standardiz€tus, theyproposed CoAP to supply
RESTful communications among applications, and EXI (Efficient XML Interchafme)at

[65] to make their system more standardizatording tothe World Wide Web Consortium
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(W3C) [66]. Theweaknes®f this designis thatthe interoperabilityissueof the 10T objectsvas
nottouchedat all.

Lerche et al[62] give an overview of the current COAP implementations and present the
results of annteroperability meeting organized by the European Telecommunications Standards
Institute(ETSI) [67]. In thisresearch18 CoAP server and 16 CoAP client implementations were
tested against each otheklthough this is a preliminary step towardsthe interoperability
assessmerttetween CoAP nodeshe use of CoAPsolely in the 10T has not beemlefinitely
confirmed yet.

According theabove literaturewe are not the first to argue the bersafit the CoAPand
its implementatiorchallengesbut we areghefirst to demonstrate thategrationof this protocol
to other standardd the WSNs (e.g., OGC SOS) asinteroperablenfrastructure for the IoT.

4.3 Architecture

In this section, theCoAP specification is technically discussed firstThen, the proposed
architecturefor a CoARenabledloT deviceis descibed. At the end we also presentthe
architecture othe SOSCoAP proxy

4.3.1CoAP Specification

The CoAPwasoriginally releasedy theConstrained RESTful EnvironmerE¢RE*° working

group at IETF as a reliable lightveight protocolfor the Internet of ThingsThe CoAP is
lightweight because it keeps the message length as short as possible, and it transmits the packets
over the network by using UDPrhe CoAP specificatiorprovides anupper bound to the

message size. Since theessagedarger than arlP fragment[28] result inundesired packet

2 htp://tools.ietf.org/wg/core/
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fragmentation, £oAP messagshouldfit within a single IP packetie.,avoid IP fragmentation)
andmustfit within a single IP datagramin cases thathe Maximum Transmission UnjMTU)
of a mth is not known for a destination, an IP MTB 1280 bytesis assumedor the CoAP
message sizéf nothing is known about the size of the headanspper bound df152 bytes for
the message size and 1024 bytes for the payloadsigebe considerd85].

In general, he CoAP message composed of headerwith at least 4oyte length a
token severaloptions anda payload To have a better understanding, Figur2 depicts the
format of a CoAP message.The 4byte header includes CoAP version, message Type
(confirmable non-confirmable acknowledgementese), token length, coderéquest success
response client error respnse server erroj, and message ID (for detection of message
duplication). The header is followed by a token value (to correlate request and response), options
(if any), and payload (if any) which are all variatgdagth.

0 1 2 3
0123456789 012345467890122345¢674829°01
e e i e et et e e s
|[ver| T | TKL | Code | Message ID

e e e e A e s
| Token (if any, TKL bytes)

e e et et e it e
| Options (if any)

e e e et s e e s
[1 111111 1] Payload (if any) -

e R e A s

Figure 4.2 CoAP messagéormat [55]

CoAP message may be Confirmable (CON) or Nontconfirmable (NON). In spite of
using UDP in therequest/response interactipn®liability is provided when messages are
labelledas Confirmablehrough endo-end stopandwait retransmissionsiechanisni55]. That
is, a CoAP server receiving a CON request must acknowledge its receipt to the Olirtihtthe

acknowledgementACK) is received by the client, th@eviousrequest will beretransmittedo
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the servewith exponential backff. Sometimes a request might need further processing to be
responded; sohe server sersdan empty ACK toindicatethat the response will be deferred.
Consequently, the client must also acknowledge theaaof theserver'sCON responseOn the
contrary, Non-confirmablemessagesire usedo allow sending requests that does not require
reliability. Figure 43 exemplifies aclientserver interaction for a CON request and a NON

request.

Client

| CON [0xbc20]
| GET /temperature
| (Token 0x71)

I ACK [0xbec90]
| 2.05 Content
| (Token 0x71)
| "22.5 C*"
Figure 4.3 CoAP client-server interaction: (a) CON request (b) NON request[55]
Furthermore, CoAP is able to detect duplicate message by matching requests to
responsesThis isdone by checkinghe message Ibf eachrequestwhich isalreadygenerated
by the client. The detection of duplicated messages is available in CON as well as in NON
messagesFinally, the token value (i.e., request ID)is used fordistinguishing concurrent

requestsThe servermust echo the token value of a client request in any relevant resgonse

that requestFigure 4.4)
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Figure 4.4 Empty ACK because ofresponse déerral

4 .3.2DeviceArchitecture

As depicted in Figurd.5, we have integrated a full protocol stack necessary for addgiCein

order to communicaténroughthe CoAP.

Figure 4.5 The device architecture supporting CoAP protocol
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The sensor layepretty remainedunchangedcomparing toTinySOS and PUCKThe
business logic layer ipartially similar to the service layer of the twarior protocols. The
significant highlight in this layer is the Data Uploadercomponent(i.e., client) in order to
frequentlyuploadthe sensor observatiots apre-definedCoAP proxy. When aCoAP requesis
received in the communication layet is directly forwarded to the response enginkhe
response engineompgaesthe content andpoststhe messagéo the communicatiofayerto be
packaged inthe CoAP message format-urthermore as auser may requeshistorical
observations, theensor readings adynamicallystoredin a sensodata repository.

More importantly, CoAP focuses on efficiency in data transmissign so the
communication layer on the deviretotally modified from thewo previous protocolsThe most
fundamentalchangepoints to the usage of UDP instead TP in the transporiayer with
retransmission mechanism
4.3.3S0S Integration to COAP
The SOSCoAP proxy is a regular eb serviceplaced in the CoAP network infiascture &
illustrated in Figure 41. One of the responsibilities of this proxy ie interconnet CoAP
endpointsto users via the OGC SOS protocéls a result, this proxy should be capabfe
converting the two protocols togethére., CoAP-to-SOS or SOSto-CoAP). As shown in

Figure 46, we proposéhe following architecturéor the SOSCoARroxy.
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Figure 4.6 The architecture of SOSCoAPProxy
The SOSCo0AP proxy consists ofCwAP proxyand aSOS proxyFor the CoAP proxy,
we usgCoAP?! which is an open source Java librahile the CoAP proxy is importanive do
not addressts componentsn this chapter aghey are pretty unchanged mothe CoAP
specificationOn the other handye developghe SOS proxythat consists afhree components:

X XML-to-CoAP Converter This component receives the core SOS requests
(GetCapabilities, DescribeSensor, and GetObservation) from user. Asr¢lgossts are
encoded in XML, they need to be formatted to plain text requests encapsulated in UDP
message

x CoARto-XML Converter This component receives tli@AP messages arit coverts
them tothe SOSresponsesAs the CoAP messageare plain texts, they need to be

encoded irXML formatto be senback tothe user.

% hitps://code.google.com/pljcoap/
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x Communication HandlerThe communication handlehecks the user requests in terms
of compatibility to the SOS operations$f the request is validated, the relevant SOS
response is sei the user.

4.4 Implementation

The CoAP implementation itsei$ straight forward on our development platform. The CoAP
part of the SOSCoARroxy is also provided from jCoOAP libraryThus, this section mainly
highlights thedata exchangkeetween aiseranda CoAP node through the SOSCoAP proxy
4.4.1SOSRequest ta CoAP Server

In our implementation, we onlgonsiderthe three core SOS operations: GetCapabilities,
DescribeSensor, and GetObservatieinst, he SOS part of the SOSCO0AP proxy retrieé4L -
encoded SOSequest through the Internet Since the XML body requires a complex and
expensive message processib§]] the request iencodedto a simpler format according to
Table4.1. Then, the SOS part packages the mapped request for the CoAP part of thetproxy
sendthe simplified requegb theCoAP servefloT device)

Table 4.1 Mapping SOS operations to CoOAP requests

SOSrequest (XML) | CoAP request(plain text)

GetCapabilitieq...} Get /capabilities

DescribeSensdr..} Get/describeSnsoPprocedureprodecureValue

GetObservatiok...} | Get
/observatioffobservedPropertyobservedPropertyValue&fering=offer
ingValue

When oneof the three requests of Tablel4s received on the CoAP servge., 0T
object) the relevant response generate@ccording toTable 42. The rest ishe same aSoAP

messag@rocessingvhich is not thecontribution of this research.
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Table 4.2 CoAP responses to SOS requests

SOS requestconverted to | COAP responsecontent (plain text)
CoAP messagéplain text)

Get /capabilities offering: offeringValue, obse/edProperty:

observedPropertydue, procedure: predure\alue
Get HescribeSensar. sensoriD: URN, unitOfMasuremenunitValue
Get /observation. sensorID URN, observation(s):

resultValue 1|observationTime_1#resuliMue 2|
observationTime_1#...

4.4.2CoAP Request taa SOSServer

Although the sensor measurements are slightly cashed on the limited data repositoBoéiRhe
server the data uploaderomponentan be tasked to subntite datato the proxy for historical
record. The content of such request is similar to the respmrgentof the get bservation
request (Table .2). Later on, the CoAP proxyf SOSCoAP pmey will convert the requests to
HTTP messages accepted by the SOS componfeOSCoAP proxyIn addition to data
uploading on the CoAP server, the SOSCo0AP pisxgapable otonveyng the sensodatato a
predefined SO8louds(e.g., GeoCENSHI]) through standard SOS requedtse configuration

of these clouds are recorded in the communication handler component of the SOSCoAP proxy.

4 5Discussion

The SOS over CoAP protocisl considereds a simplebut efficiently integratedrotocol for the
loT. Although the SOS standasdoverkill for resource constraint devices, its implementation on
the CoAP proxy does not cause any difficultidpart from common issues with the previous
protocols such as power supply, Internet connectivity, and metadata ,ugmtate otheissues
existas follows.

First, the connection betweerach IoT deviceand the rest of the Internet would be

indirectly through a proxyAlthough the proxy carave amore stable ad constant Internet
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connection, thesingle point of failure(SPOF) [68] issue should be highlightedhe SPOF is
referred to asystem componerthatits failure affects the entire systei@ince the proxy is the

only interface between users and 0T objects, it should be equipped enough to guarantee a
constant conneanto all IoT devicest relates.

Moreover,a request passdeur levels to be delivered ta user: CoAP server, CoAP
proxy, SOS proxyandclient If the number of requests increasm a single SOSCoAP proxy,
the response time mde affectedOne potential solution for this problecanbe deployment of
multiple cloud servicedor 10T devices The cloud services6f] involve a large number of
computers connected through théernet In the other words,loud servicesrely on sharinghe
computational resources tdfer a utility over a networkwhich can solve the aforementioned
problem in an efficient way.

4.6 Summary

In this chapter, weountedsome of the strengths of the Internet Engineering Task Force (IETF)
approach. To this enthe resource efficienCoAPwas implementedn our classl development
platform.Then,the interoperability issue for the newborn CoA®&s challenged.

In order b have the potential of popularity of OGC SOS, and the efficiency mechanisms
of CoAP, we detailed the realization of simple but powerful SOSCoAP proxy for the loT
applications. The SOSCoAP proxy was supposed testdlish a connectionbetween CoAP
networkthrough CoAP messagesd the rest of thenternetthroughthe OGCSOSstandard

By combining thdightweight CoAP protocol and popular OGC SOS in the 10T network,

a great range of devices cée interoperable togethers TinySOS devicesPUCK-enabled

instrumentsand SOS services.
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Chapter FiveOGC SensorThingsAPI
5.1 Introduction

In the previoushapters, w significantlydemonstrated thale existing protocolef Sensor Web
and WSNs can be implemented on resource constraint 10T objéatsile these efforts are
moving thelnternet of Thingstoward greater interoperabilitghey do not fit well in the 10T
devices in case of processing laadnterconnection with the other Internet nodesan attempt
to address bothleficiencies of the previous protocothere is an ongoing effort of defining a
standardNVeb Application Programing InterfacgAPI) for the IoT.

This APl namelyOGC SensorThingss an OGC candidate standard for monitoring and
controlling 10T devices (sensors and actuators) over the Web. The ABtilison HTTP
protocols and applieshewidely-usedRepresentational State Trans{&EST) architecturaktyle
[56] to access a systéesrcomponentsREST considers the system as a black box weithigh
level view regardless of the component details and their functionalities. REST only focuses on
the status of the components and their relationship to each Stedr.services complying with
the REST principles are called RESTflib exemplify, a camera device hadight sensor and
also a LED actuator. When the camera is being accessed thraugBSTul protocol, the
camera, light sensor and LED are considered as thensygimponents in whicthe LED and
light sensor are attached to the caneenraponent

This API interconnestloT services and applications over the WehroughJava Script
Object Notation (JSON data format.The JSONis one of the text formats designed for
representing simple data structures, data collections, and of course data exvleargeetwork
connection. Thereforeas an alternative tohe heavy Extensible Markup Languag&ML)

format, we usethe simple JSONormatto efficiently present the data on the serv@mnce our
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ultimate goal in defining this standard is an etsyse and easto-implement for global IoT
devices, we use plain text in the devssgverinteractions.

The OGCSensorThingservice interface differs from the existing OGC web services in
case of RESTful interface and JSON data encodiifgs API is essentiallyinspired by the
OASIS Open Data Protocol (ODatg) which defines a generplrpose RESTful service
interface. Besides the OData, the RESTful service interface also leverages the existing and

widely-implemented OGC standards. For example, the capabilities part oARheservice

interface adaptseveralelements from the GetCapabilitiessponse defined [the OGC Wé

Service (OWS Common Standard [70] by converting the XML encoding into the JSON

encoding.

The SensorThingdPI was mainly developed by a group of researchers in University of
Calgary including Dr. Steve H. L. Lian@r. Chih & Huang, Tania Khalafbeigi and me. | was
involved in the design and implementatiari the deviceside protocolthat covers the
interactonsbetween o T objects andhe loT RESTful serviceThe rest of this protocol focuses
on the users anthe IoT server communications which can be found from hbtg://oge
iot.github.io/ogeiot-apil.

5.2 Related Works

Linking the Web and physical objects is not a new idea. As we can see, three protocols have
been discussed in the previous chapters. The key idbas®protocolswasto provide a virtual
counterpart of the physical objects on theb. With advances inomputing technologymost

devicesare enabled with tiny @b service$43, 71, 72]. However, the interoperability problem

2 hitps://www.oasisopen.org/committees/tc_home.php?wg_abbrev=odata
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still exists in most of them because lack of a specific standard in the loT for cocatmn
protocol anddata representation

Severasystems for integration of sensor systems with the Internet begn proposed
such as SenseBd®¥7] and Xively, which offer a platform for people to skaheir sensory
readings using @b servicesThis sharing is performed kyansmiting thedata onto an online
repository Unlike the OGC SensorThingsthese approachesxclusively supportthe sensing
profile, and devices are considered as passive actors only able to push data.

Kindberg et al. [7Bdeveloped Cooltown projeethich associateweb pages and URIs to
people, places anthings. Kindberg et al.also implementedcenarios where this information
could bephysically discovered by scanning infrared tagshm environment. We would like to
go a step further to truly makeT objectspart of the Web so that they proactively serve their
functionalityin an interoperable manner

Similar to our RESTfulveb interfaceT. Luckenbach et al. ff and W. Drytkiewicz et
al. [75] consider the use ®REST-like architectures fosensor networkddowever, to make the
API interoperable, wextend the model with the use atherstandard (e.g., OGC SOSOGC
SPSand OData

In essencethe OGC SensorThinggovides eRESTfulweb interfaceallowing users and
application developers tapply a commonAPI to retrieve thethingsprofiles, and sensor
observationsThis protocolwill facilitate a generic adaptdor integrationof devices to the loT

server sointeroperability betweethingswill become simpler.
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5.3 Architecture

In this section, we first elaborate the ABdmponentsand its ecosystem. Then, we present the
data modebf this open standardrinally, we describe the system architecture like the previous
chapters.

5.3.1API Componentsaand Ecosystem

The SensorThingsAPI follows a RESTful web service interface® access the registered
resources on the servé&ach resources assignea uniquelyidentification (UID) by the server.

The API supports the four basic operations of the persistent storage, aRENTE, READ,
UPDATE, and DELETE (CRUD) to amesources othe serviceThe APlalsoconsists of two

major profiles:Sensing ProfilendTasking Profile TheSensing Profiles designed based dine

OGC Sensor Observation Service (SOS) specificatorwhich defines an interoperable
framework to manage and access sensors and observatiorisaskiteg Profilas based othe

OGC Sensor Planning Service (SPS) specification, in which defines an interoperable way to

submit tasks to control sensors and actsakdgure 51 depicts the ecosystem of this API.

Figure 5.1 Ecosystem of the OGCSensorThingsAPI
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To address the resourcege ddine the protocol of retrieving theapabilitiesdocument
which includes theservice metadata about a specific service instaBgethis document, the
service advertises the supported functions and anyragrtston using these functiarifter a
client retrieves the capabilities documemt/sheunderstanslhow to perform CRUD actions to
thetarget resourde) through URI. There are three major URI components used in this API: the
service root URItheResource Pathand theQuery OptionsThe service root URI is theddress
of the IoT RESTful service. By aithing the resource path after the service root URI, users can
address different resourcésg, collectionor specificentity). In order to facilitate information
retrieval for the READ actiornysers can apply query optiottstheresource pathsuch asorting

by properties and filtering with criteri&igure 52 demonstrates the URI components.

Figure 5.2 URI Components

5.3.2Data Model

The OGCSensorThing#\PI describes a data model for the resources and their conrsegsion
shown in Figure 3. The core of the data model is a Thing. Since the geographical positions of
loT objects may dynamically change, we record multiple locations in place and timeclfor ea

Thing. As we mentioned in Chapter 5.3.1, the 10T data model consisSenfsing Profilenda

Tasking Profile The|Sensing Profileallows 10T cvices and applications to perform CRUD

operations on the gathered data from sensors. On the other hand, Tasking Profile provides the
functions to control IoT devices and actuators. According to the data oseatedin Figure

5.3, each Thing can al¢@mve several Datastreams and Tasking Capabilities, which form the core
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of the Sensing Profile and Tasking Profile respectively. Datastream relates to observed
properties, and also sensor observations. Each instance of the observation entity is altw linked
a specific sensor. Since sensor observations can be performed in a location different from the
Thing location, Features of Interest is also considered to record the place that observation
occurred. On the other hand, Tasking Capabilities is linkedctimator metadata, and tasks

triggered from client.

Figure 5.3 Data Model
Since more explanation of the data model isaduhe scope of this Chapter, wkip to
thesystem architecturehich is related tohe 10T devicestructure.

5.3.3System Architecture

Like the former chaptersjevicessupporting the OGGCSensorThingsAPI follow a system
architecture to process requests and respolrséisis section, we descrilibe proposed system
architecture ofloT devicesdisplayedin Figure 54. In this architecture, you can see tieee
commonlayers includingCommunication hyer, Business Logid.ayer, and SensofActuator

Layer.
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Figure 5.4 The device architecture supporting OGCSensorThingsAPI

1) Communication Layer:Similar to the previous protocolshd communication layer
contributes indevice interactios over thenetwork Unlike the TinySOS which uses
heavy XML, and CoAPmessagethat is included into UDP packet the OGC
SensorThingsAPI appliesplain textin all communications excegdbr its registration
When aThing is registeringitself on the server, the requests &oemattedin JSON
which arealready KDUGFRGHG LQ G IDWMrLAPHS& JPONPiGtraadtonly for
the registration requestfdom the devicein order totransmita bunch of data to the
RESTful data servicdn other cases, the communication is based on the plain text format

thatis more comfortabléor l0T devicego process plain texts with no need to a parser.
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2)

3)

Business Logitayer. The business logidayer can have the function of bottient and
server simultaneouslyrhe dient role is because a Thirdemang to interactwith loT
server in order toegister itself andto uploadsensor observation3he data uploader
unit plays the client role once for the registration steps, and frequentbhubdishing the
sensor measurementBo accept dsking requestérom clients, he Thing should also
contain a servewhich is named tle response engineomponentin this architecture
Similar to the TinySOS and CoAkhe response engirreadsHTTP requestduffer by
buffer. After processing the requests, the tasight be sent to the sensor/actuator layer,
and therelevantresponseis forwarded to the communication laye3ince in OGC
SensorThing®\PIl a Thing is always connected to a data sertfeeThing doesnot need
to record the sensor readings on its own memory. Therafoli&e the other protocols,
on the device architecturef this API (Figure 54), the "sensor data repository"
component was removed

SensofActuator Layer: The sensdactuator layer conssts of the physical sensors
actuatorsand theircontrolles. The sensor controllananageshe sensorand actuators
For example, the sensor controller cammandsensors to collect sensmeasuremenis

or task actuators to do an action.

5.4 Implementation

One of the mainadvantagesof the SensorThingsAPI is simplicity in case ofnetwork
communication anddevice computation According to Figure 8, this API definesthree
different types of interactions betweenoT object and IoT RESTfulkervice 1) device
registration 2) observation uploadingand 3)actuator taskingln this section, we describe the

implementation of tése interactions oa classl 10T device
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5.4.1DeviceRegistration

As we have alreadydescribedthe data model of the OG8ensorThingsAPI, the loT server

should containoT devices' informationTo do this when a Thing is coratted to the Internet, it
automaticallyregistes its resources and propertien the 10T servethough the sequences
shown in Table 3.

Table 5.1 Device registrationprocedres

Procedure | Response code Definition

1 Thing Description

2 Datastreams Thing ID, Description

3 Tasking Capabilities Thing ID, Description, Tasking Parameters (Paramet

ID, Necessity, Definition, Input Type, Unit, and Rang
Protocol (HTTP Method, Resource Path, and Messa

Body)
Sensors Metadata
Actuators Tasking Capability ID, Mtadata

Observed Propertie{ Datastream ID, Unit of Masurement, URN
Feature ofnternets | Description, Geometry (Type, and@dination)
Location Thing ID, Time, Geometry (Type, andd@rdination)

oo|N|oO|O b~

Despite of XML and JSON which amidely usedencoding data formats for human and
computerthe SensorThing&\PI usesplain textfor the requests sent &oThing. Thus,the Thing
does not require any parser or complicated processiiog the incoming message®n the
contrary, the loT server interacts with usdrng JSON standardAs the IoT device can
convenientlyencapsulate JSON requests imtining values, we force the device to send its
registration requests to the server in the JSON for@iatiously, there is no processing load on
the device because those requémstge been previouslyavedon the devics code storagas
string variables.Figure 5.5 describes an example where JSON is usedreate a Tasking

Capability resource on the 10T service.
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Figure 5.5 An example of registration request
However the responses of thogequests arstill in plain textformatincluding resource
ID, and resourcelocation on the loT RESTful server.q, URL). Figure 56 representsa

response to dasking Capabilityegistratiorrequest

Figure 5.6 An example of loT service response
To prevent an loT object from repetitive registratom all its poweringwe recordthe

retrievedresourceDs andURLSs on the device permanent memory (In our implementation, we
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used amicro SD).Therefore at the time of powering uphe devicechecks its regisation status
to decide about the next steffsall IDs areavailable there is no need forew registratioron the
service

According to the device architecture (Figurd)5the data uploader compongmovides
the aforementioned requests, forwards them toctivamunication layerand finally receives
responses from the communication layer.

5.4.20bservations Uploading

Not only doesthe data uploadeperformthe registratioroperationsbut alsoit cooperatsin the

sensing profile Therefore, the data uploadt#rat plays the role of a client isesponsible to
dynamically collect sensorreadings and upload them to the IoT servibased on a peet

frequency(savedon the device)Similar to the registration requestshe sensor observation
request is in JSON formabo. The observatiomequestarriesdatastream IDsensor 1D feature

of interes, observation time, result valuand also result types(g, measurg Accordingly, the

data service acknowledges the request by messaging the location (URL) odctinded

observation on the data servidé.that responsedoes nbt contain any location value, the
observatiorrequest will be immediatelge-submitted to théoT service

5.4.3Actuator Tasking

Tasking requests amaostly triggered from users to IoT servicAs shown in Figure 3, that
request is encoded in JSON based on the spmoin of the SensorThingaPl. The tasking
request containtasking capability Ito retrieve thalevicedefinedprotoco), input parameters

and trigger timéwhenthe taskshould be sent to thaevice).
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Figure 5.7 Tasking requesttriggered from user to loT service

During device registration the tasking capability request introduces the device
communication protocol to the data serviEggure 5.5) The device protocol is hidden from the
public accessaind application developers which enables some sort of seamdtyprivacyfor
controlling the device Additionally, accordingto the simplicity approach of th®ensorThings
API, the IoT servicecan effectively convertthe user request from JSON smmething simpler
(e.g.,plain tex) to follow the device protocolin theregistration requesshown in Figure 5, the
request totask the lamp actuatoshould be sent tthe specifiedresource pathncluding the
required message body B\ TP POSTmethod

Unlike the sensing profile, the tasking profileerely acts as asimple web server
implementedon an IoT device. Tasking requestdelivered by the communication layare
forwarded to the response engiftg further processingAs we have already mentioned, all

requests to a Thingrein the form of plain text (Figure.).
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Figure 5.8 Workflow of the response engine
Based orFigure 58, thetasking request is sent to tHata extractocomponento extract
the tasking @pability ID, parameter name, and parameter valligen, therequest validator
module examines the retrieygalues with the device actuators in case of resource availability,
parameter validation, and also request type. After validation process is perftnmadtuator
might be taskedandthe relevantesponse @deis deliveredto the communication layeirhe
responseodes of the response engine are listed in TaBle 5

Table 5.2 Responsecodes of the response engine

Response code Definition

600 Confirmed

610 Resource is busy

620 Parameters are missing
630 Out of range parameters
640 Invalid parameters

650 Invalid actuator

660 Invalid request type
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Depending on the request paramgtéine appropriateresponse in JSONNcoding is
forwardedto thecommunication layerAs a server should always remain onlineg tiesponse
enginedoesnot sleep at aih orderto listen to incoming messages

5.5Discussion

The OGC SensorThingsAPI establishes an eas$g-develop and eastp-use protocol for the
resource constraint 10T devices. This protocol was mainly inspired from OData, and OGC SWE
standards (SOS, and SPB)spite of simplicity demonstrated in this API, there would be several
issues listed as follows

The first immediate issue is that each loT device should have a stable and constant
Internet connection in order to receitasksfrom outside and to uplod sensor readings to the
server Obviously, there is no obligation for a Thing to upload its sensor readings to the loT
service.On contrary, the server side of the Thing is expected to be abwhiye. One wtential
solution for this is taconsider the 10T service as a forward proxywsen user and 10T device.

By the way the proxy cartheck the device availability on the network before any interactibns.
theThingis detectedut of the network, the proxgan notifythe user from this situation.

The second issue of the proposkll is that it forces thdimited resourcedevices to
interact through HTTP standardnd TCP packets.As we illustrated in CoAP, UDP s
significantlymore efficient than TCP in packet transmissidnsrder to address this issue, one
potential solution iso combine partially the CoAP and OG&&nsorThing#Pl. In other words,

a bit changérom TCP to UDHN SensorThing&\PI will catch a large achievemeint the future.

Since the 10T RESTful service is an intermediary node between user and IoT device, the

privacy is strongly supplied by the IoT servig@n the other hand, the security issue is still

remained because trategy is considered for the data transmissiorovEocomethis problem,
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we can simply define a bidirectional rules for the message encryption/decryption to guarantee
message integrity and confidentiality.

5.6 Summary

In this chapterthe OGCSensorThing&\PIl was elaborated asprospectiveopen standard for the
Internet of Thingsln this protocalwe reduced the complexity on the devicesbyplifying the
message format, and lessening message 3ike. transactionsvere basically established
thoroughJSONIlanguageexcept the ones sent to tlod device so the device does no¢edany
resource consumingarserLikewise, he loT device transmits the requests to the serviearid
codedJSON formabnly because JSON moresuitablefor the IoT RESTful service.

By hostingthe simple open standardPI on the loT devices, not onky great range of
devicescan apply that protocolbut alsoinnovative applications can be developed more

conveniently by means of a standard interface
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Chapter SixEvaluation and Results
6.1 Introduction

The objective of this chapter is a®llows: (1) to benchmark the efficiency of theiplemented
protocols on a clask 10T object (2) to provide a quantitative guideline for developers to choose
the interoperable protocthat issuitable to their applicationth general, his chapteevaluates
the four standard protocols developed in this reseaifd.assesshe performanceof those
protocols on a clask 10T object.By performancewe meanthe measurement of the degree to
which a system accomplishes its functions within given comssrauch a€PU speed, memory,
bandwidth,and so fortH{76].

In our test environment, we choose Netduino Plus introduced in Seciloas bur
development platfornasa classl IoT object.In order to demonstrateow different components
work together multiple meteorologicalsensors (temperature, humidity, carbon monoxide,
hydrogen monoxide, and dust), sound pressure sensor and LED actuatonrageted taur

Netduino PlugFigure 6.1)

Figure 6.1 Different components of our development @tform
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Although more powerfuloT objectsexist they are also more expensivicne reason we
focused on theonstrained nodda this researcks because they amore costeffective and will
be more widely deployed ireal world By using the resoureeonstrained and cesffective
nodes, itallows us to explore thelower boundof the resources thadre required for IoT
applications In that way, we ensure that rowesign choices can delivem aefficient
implementation suitable fa broadeapplication domain.

6.2 Performance Evaluation

This sectionevaluateseach protocol using service prototypdi.e., server) a gateway(where
applicable) anda client. The metrics selectddr this evaluatiorareas follows: (1)code storage
(EEPROM?) occupation(2) mainmemory(RAM) usage (3) request lengtiof anoperation (4)
response sizef an operationand (5) response latencyn all cases excedensorThings, the
tests are carried out using a Netduino Plus as the server and a PC as th&hdidnwio are
connected via Ethernet cable to the Internet.

6.2.1Memory Occupation

The first experimentis aboutmemory occupatior{i.e, ROM and RAM usage The results
REWDLQHG LQ WKLV H[SHULPHQW GHPRQVWUDWH PHPRU\ PDC
consumptionWe alsoinclude a HTTP web server in our tesis a referenceThe HTTP web

server ismplemented on Netduino Plus and responds in plagtricturedtext format. This web

servicecan be a referendaecause it igpurely developed by using C# HTTP libraries with no

enhancement on the code efficiency.

% Electronically Erasable Programmable Read Only Memory
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First, we measurdghe occupied code space after code deployment finendevelopment
environment (e.g., a PA@p the EEPROM of the Netduino PIuBhe occupation of ROM can
VHUYH DV DQ LQGLFDWRU RI WKH UHTXLUHG FRGHTV FRPSOH
accordingto Table 6.1, the OGC SensorThings API and S@& €oAPneedmore ROM in
comparison to the othamplementationsbecauseboth not only needto handle serverside
operationsbut alsoshould supportlient-side functions The simple web service is in the third
place of FOM usageas theclasses and librees in the C# .Net Micro Framewodonsume a
considerable amount of code storage [SDdmparingto the simple web server, TinySOS is
more efficientbecause oflWZR UHDVRQV UDWKHU WKDQ XVLQJ WKH
libraries, we implemented our own HTTP libraries; (2) we recorded the XML responses on the
micro SD card instead of ROMhe OGCPUCK s the most efficienprotocol in terms of ROM
usage bemuse PUCKspecificationdoes not requirany heavyparser (e.g., XMLparser, JSON
parser), retransmigs mechanism (e.g., CoAPo-HTTP), and data uploadercomponent
Althoughthe OGC PUCKrequires PUCK memorgensorML andriver code we are able to
usethe device'permanent memor§micro SDcarg to keepthose necessary data

Moreover, Table 6.1 shows the amount of RAM allocated at compile time for each
implementation A code witha small memory footprint would allow addirextra capabilities
such as reources that the serveould provide to clientsAlthough PUCK occupies the least
code space, this protocol is highly inefficient in RAM usage. It is postilslethe memory
management unior data transeiver of the Bluetooth module requissmore memory in
comparison with other components of this protoadtier the OGC PUCKTinySOSconsumes
lot of RAM likely due tothe XML parserand requestalidator unis. SOS over CoAP and OGC
SensorThings are similan terms of RAM usageOn the othehand, the simp web server es
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better than others ithis experimensince it is simple in case of request validation and response

generation.
Table 6.1 RAM and ROM memory occupation
Simple Web | PUCK over SOS over OGC
TinySOS
Service Bluetooth CoAP SensorThings
ROM (kB) 16.08 8.48 11.72 29.13 26.11
RAM (kB) 9.54 13.15 11.33 10.36 10.2

6.2.2RequesSize

Both 10T devices and the network thage are highly constrained [16]. And that means the
payloadpacket size is very importario identify the efficiency othe abovestandardrotocols,
we recordthe requessize generatedor a specificuse casdi.e., get one sensor measurement)
that is possibly most widely usetio do this, weuseWireshark?, a network protocol analyzer
softwarefor all tests except PUCKThat isWireshark is unable to monitor ttserial portsthat
are the communication ports of the PUCHKius, b measure the PUCkKquest sizewe simply
count the characters dfs plain textrequest.According to Figure6.2, PUCK generates the
smallest request since the requesimiade ofa short string of characters with no header,
description or complicated formaAlso, CoAP request is at least 67% smallarcomparison
with other Internebasedprotocok. This efficiency is because of using UDP instead of Ti@P
the transport layewhich makes théheader sizeextremelysmaller The simple web service

communcates through HTTP GET requesith no requestcontent. Thereforegnly the header

% http://www.wireshark.org
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features of the HTTP GET request (350 bytes} calculated for the simple web servidéhe
OGC SensorThings requgeeveral parameters embedded inrfdguesbodybesideghe header
features.Therefore SensorThings isanked after théiTTP protocolin this experimentOn the
contrary, he requests dhe SOS protocol arat least47% large than other protocolsince they
are packaged in XML formatn order toensure thathe tested SO3equest is compatibleith

the OGC SOS standardve used a teslient tool developed by 52 North S&S

Request Size for Get Observation Operatic

1000
900
800
700
600
500
400
300
200
100

Request Size (B

HTTP PUCK SOS CoAP SensorThings

Figure 6.2 Request size evaluation fothe get doservation request
6.2.3Responsé.ength

Apart from the requestomparisoramong the standard protocolge also evaluatihe response
length generatedby our implementationsFigure 6.3 depicts the respontngth trend of
differentimplementationwersus the number gensor readingequestedfrom 1 to 100) Since

the specification of OGC SensorThingsnveys the sensor related requests to a RESTful data

service, we send thget observationrequest to that data servifda regularPC) instead of

% htp://sensorweb.demo.52north.org/52nSOSv3.2.1/
% http://demo.student.geocens.ca:8080/SensorThings_V1.0
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Netduino Plus.According to Figure 6.30GC SensorThings and TinySOS provide larger
responses in comparisanth other protocols. One possibiliof this differencecan be the output
formatting which is in JSON and XMLrespectivelyAfter looking at the responsggneratedy
OGC SensorThings data service, we fasederalJSONattributevalue pairge.g., observation
ID, request typefeature ofinterest,sensor profileanddata stream informatiomgpeatedn all
sensor readirgAppendix A). Based on the capabilities of the SensorThings data service, we are
able to retrieve only the sensoneasurment and the observation timein JSON format
(Appendix A) As a resultthe response length would be 7186s in averageomparing to the
previous responsef the SensorThings APOnN the other hand, TinySOS follows ©&C SOS
specificationfor the response generation by embedding the observatidues and time in the
existingresponse file. Accordingly, the response size will not be as large as QGGr'Bangs
protocol with repetitive attributevalue pairs As a tradeoff, end uses can simply pase the
SensorThings responses by a JSON pavkde for the TinySOS responsesnew parser needs

to be developed textractthe required data from the XML file.

Response Size vs. Number of Sensor Readings Reque
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Figure 6.3 Response size vs. the number eénsor readings
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To better understandhe trends of other implementations we remove the OGC
SensorThings trenoh Figure 6.4.The SOS over CoAP and PUCK over Bluetofihow each
other closelysince the protocols defined to retrieve the sensor readings are dwnilaoth
According to the CoAP specification elaborated in Section 4.3.1, CoAP messages should not
exceed 124 bytes[55]. That explains why thgreenline representing SOS over CBAn Figure
6.4 has no gone any further than poiB0 in which the response size w#}l9 bytes However,
the required response header of CaABkes theCoAP response siza bit largerthanthe one

outputted byPUCK for caseswith equal number of sensmradings.

Response Size vs. Number of Sensor Readings Reque
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Figure 6.4 Response size vs. the number of sensor readings (removed the OGC
SensorThingstrend)
According to Figure 6.4, TinySOS and OGC SensorThings APl generate the same
response size for fortyenor observation®ue to the fact that the observation values and time

are the samdor the two protocols, we can conclude that the size of Xslgs of the SOS
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responses equal to thetotal length of the JSON attributevalue pairsof the SensorThings
responséi.e., SWLPH"~ 3UHVXOWLYMNOXH" 3VHOI

6.2.4Response Latency

To wrap upour performanceevaluation we record the endto-end response latency. The
experiment is conductedy a PC clientto retrievesensor data from a Netduino Rlased
senice or from a PGbased loT data sdce. We define latency as the time elapsed from the
moment the PC client sends a request until the moment it receives the response. Fsoes.
the latency trend based on our experiments. Each point on Figuepfesents the latency value
of successful request/response transactidonmber of sensor readinganges fromil to 100. In
this way, the differences between the other implementations can be better appreciated. Low
latency values can notablynprove the user experience and benefit the implementations that
work in reattime.

TinySOS behaves worse than others in this experim@ntts communica&ns are in
XML data encodingThus, the Netduino Plusserverhas toparse the XML requestead the
XML responsdile from themicro SDcard embed the sensor reading(s) into the respbodg
andforward the XML file to the clientAll these functions are performexh a devicewith 48

MHz CPU speed and 28 KiBemoryleading tohigh latency.

27 Appendix A provides a sample of such response.
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Figure 6.5 Response latency vs. the number of sensor readings

Figure 6.6 removes the TinySQf&nd in orderto determinethe behaviourof other
implementations The SOS over CoAPhas more latencthan PUCK sincethe CoAP
communicatesverthe World Wide Web As we explained in Section 6.2.3, COAP stops at point
30 because of the CoAP limitation for the message Bige.to the fact that the SensorThings
data service is a regular PC, if we ignore this protocol, the PUCK over Bluetooth is the most
efficient implementation in this experimerfor the PUCK evaluation, we applied Device
Monitoring Studio softwar® in order to monitor the serial port of tHC. Since PUCK over
Bluetooth is a wireless protocol, the distance between the pairs affects the response latency. In
our experiments, the Netduino Plus (server) and the notebook (client) were placed close to each

other (less than 1 meter).

2 hitp://lwww.hhdsoftware.com/devigaonitoringstudio
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Figure 6.6 Response latency vs. the number of sensor readingemoved TinySOS)

6.3 Summary

We demonstrate the effectiveness of our approashby a comprehensive performance
evaluation.To conduct a comparative study on the applied protocols, we compared the test
results togethein terms ofcode storageccupationmemory usageequest size, response size,

and finally response latency
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Chapter SeverConclusionsand Future Works
7.1 Introduction

We conclude this research in the final cteapby summarizing theesearchwork that ha been
carried outand outlining he conclusions drawn out of the resuit also comments on the
limitations and proposes areas for the future work.

This research has coiftuted in the interoperability approach of the Internet of Things by
adapting exisng standards defined for tifeensor Wel{PUCK and SOS), implementing the
newly introduced protocol for the Internet of Things (CoAP), and eventually designing a specific
RESTful protocol for the Internet of Things(OGC SensorThings)Besides a reaktime
meteorologicakystem has beettevelopedn this research as a proof of concept to evaluate the
adequacy and efficiency of the interaction.

In general, ar contributionscould overcome the three problems mentiome@hapter 1.

For the Internet access problem, we applied PUCK over Bluetooth protdsml.also
implemented the four standard protocol$o solve the lack of standardization in data
representation As a solution dr the third problem we demonstratedthe possibility of
implementing open standards aresourceconstrained loT object.

To summarize, Chapter 1 provided a brief introductregardingthe topic of this
research, development platform and outlirtkd research problem and the key objectives.
Chapter 2 presented PUCK over Bluetooth as a wireless standard protocol for the Internet of
Things.Chapter3 described TinySOS as a lighgight profile of the OGC SOS suitable for 10T
devices. Chapter 4 also dissed about the possibilities of combining CoAP which is mainly
designed for the Internet of Things, and OGC SOS whiclcoimmonly usedin WSNs.

Moreover, Chapter 5 introduced odefined protocol under the OGC license supporting REST
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and JSON,namely OGC SensorThings Finally, Chapter 6 presentedeveral scenarios to
evaluatehe performance of the implemented protocols@tassl I0T object

7.2 Conclusions

All around the world, e IoT applications areemerging exponentially with various
functionalities Each application is developed based ondiéxeelopel] Wesire of the devic& hat
means the number of proprietary protodslgrowing as the number of 10T devices increases.
Consequently standardized interfaceare required to interconnect different lodevices for
innovative applications.

In this research, we presented our contribution in the interoperability aspect of the
Internet of Things bylevelopingPUCK over Bluetooth, TinySOS, SOS over CoAP, and finally
the OGC SensorThing@\Pl. Our implementations wette ZRUOG YV ILUVW FRQWULEXW
objects.

At the beginning, wechosea classl 10T object as categorized in the framework of
Bormann et al.14] for our development platfornkirst, we equipped the cladsloT devie with
a Bluetoothtransceivein orderto establish wirelessetworkin a limited rangeWe standardized
its connection by means of OGC PUUBue to the fact thdhternet access iskey requirement
for 10T objects, we applied additional software componentartber enhancéhis functionality
for the Bluetootkenabled PUCK instrument.

In the second stage, we removed ititermediarygateway in the path betwedme user
and IoT object by developing web service oa Thing itself. Since different devicewnersor
manufacturers might have their own design for the data representation, we introduced a
lightweight version of the OGC SOS, TinySOSs a result, the sensor measurements could be

accessedemotely in a standardized waynply through a web browser.
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According to thecomplicated nature of the OGC SOS for resource constraint 10T gbjects
we proposed another approach which is more suitabbadmiassl 10T devices. Thus, the third
contributon of this research was integrating CoAP irtee OGC SOS The point of
differentiationbetween this approach and the previous effort (Tiny3i@$in the connection of
thedevice to thenetwork In the previous approach, the deweas requiredo tolerate the huge
load of SOS requests/respon$asnatted in XML In the new approach, the device supported
CoAP which is a constrained application protofmi the lIoT. Moreover the SOS operations
were processedon the CoAP proxy whichs essentially aregular computer with enough
computational resources.

Due to the UDP transmissionCoAP could notestablish a direct connection to the
Internet componentsithout the deployment of CoAP proxieés theloT will eventuallyfollow
the Internetprotocol suite model it is recommendedo adjustthe connectionsompatible with
the Internet standard protocols. Moreovtre I0T infrastructure needs a specific standard
protocol. As a result, we designed our own standard application programming intatiade
OGC SensorThings APIThe use caseof this APIstared with 10T deviceregistrationsto the
service. For the sensing devicesgistration information containethe phenomenon thatas
observedAfter registration, sensing devices could start uploading tieservations to thdata
service.From the tasking point of view, actuatarsuld also register and publish their tasking
capabilities to thelataservice.As a resultuserswvere able taccess those observations and also
send controlling tasks to the devices through the service. ABdhemunicationsvith the data
servicefollowedthe RESTful architecture.

Finally, the four implementations on Netduino Plus wassessedomparatively. Talo
so, eachimplementationwas evaluatedaccording tomemory occupation (RAM and ROWM)
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request sizeresponsdength and responséatency As a case studywe embeddedmultiple
meteorologicakensorssound pressure sensord LED actuatoto ourNetduinoPlusin order to
demonstratéow different components wotkgether.

In the following sectionwe will discuss our future woslon the loT. Several challenges
in the context of IoT will be discussed and a future road map will be presented.

7.3 Future Works

This thesis takea practicalapproach to the interoperability in the Internet of Thifidsere are
severalways in which this research can be improved and extended. In this section, some of the
majorissueghat can be later investigated aguldelines othe future work is addressed.

First of all, he aforementionedinteroperable protocoldollow the clientserver
architectural stylevhich has the single point of failu(POF)issue[77]. In order to address this
issue, one potential solution is to design a fiegreer (P2P) architecture as it has been proven
reliable and effective. In this case, devices can form an overlay network to discover resources
and forward requestso a centraked component such as the sensor registry ser@doédP
proxy andloT RESTful servewould be no longer needed.

In this research, Bluetooth and Ethernet were considered asethwrk enablement
technologies for 10T devices$ince WiFi is being dominanin network communicationfr8],
the studyon Wi-Fi communicationsn the loTis highly suggestedOneimmediateissuein Wi-

Fi connectioremerges laouttransmission of network configuration to the IoT dewd&ch has
no display equipmergndinput peripheral

In addition to WiFi as wirelessenablement fothe 10T, another research should be
startedto improveenergy saving on the loT objeciBhe first assumption in this research was

that loT devices having unlimited power resoundgle this assmption may not be true in many
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cases. Some sensor nodes will be batgsrated $2], so energy is perhaps timeost notable
constraint for the IoT devices. Furthermore, achievement wFiVdbnnection of IoT objects
leads to removing wires and cords from devic€kerefore, their battery charge must be
efficiently conserved to extend the life of the individual sensor nodec@mskquetly the entire
loT network.

More potential future work pertainprivacy and securityor loT devices We efficiently
implemented existing security and privacy mechanisms of the informé&cmology and
computer networks on clads IoT devices[79]. Although an acceptable level of secure
connection in loTcan be achievablewe believe loTwould require specific rules and
mechanisms fathe successful implementationtbfs approach.

This research mainlgoncentrated othe way thedatais transfered from inexpensive
classl loT objecs. However, we do not know how reliable thetrieveddata is.According to
the IEEE Standard Computer Dictiona0], reliability is defined as theapabilityof a sensor
to performits measurements undeattd condition$or a specific time periady this definition,
we can intuitively link a sensor's reliability #ccuracyand precision Accuracy denotes the
closeness of a measurement to the actual value, and precision characterizes the reproducibility of
the generated value. In order to achieve the reliabiitthe IoT, both precision and accuracy
should be considered. For future ditens, we believe that dataliability is an important and

interesting approach for the 10T that is worth to be further investigated.
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Appendix A
A.1 Sample requestaind responsesised inSection 6.2

In this section, requests and responses of the get observation opdoatieach of the four
implemented protocolare presentedn addition to the message contents, the screenshots of the
Wiresharksoftware and messagammaryarealso provided to daonstrate the network analysis

of those requests.

A.1.1Simple Web Server

Figure A.LL1HTTP GET request to the simple web server

Figure A.1.2 Wireshark screenshotto analyze the requestsent to the simple web service
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A.1.2 PUCKover Bluetooth

Figure A.1.3 GETREADING request and its response to a PUCKenabled Netduino Plus

through Bluetooth

Figure A.1.4 Statistics of the GETREADING request
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A.1.3 TinySOS

Figure A.1.5 GetObservation request to TinySOSy using 52North test client tool

Figure A.1.6 Wireshark screenshotto analyze the requestsent to TinySOS
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A.1.4S0S over CoAP

Figure A.1.7 GetObservation request to the SOSCoAP proxy

Figure A.1.8 Get observation request sent to a CoAP server.€., Netduino Plus)
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Figure A.1.9 Wireshark screenshotto analyze the requestsent tothe CoAP server

Figure A.1.10 Details of the get observationrequest sent to the CoAP server

103



A.15 OGC SensorThings API

Figure A.1.11HTTP GET request/response to the OGC SensorThings

Figure A.1.12 Wireshark screenshot to analyze the request sent to the SensorThings service
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Figure A.1.13 Response of the SensorThings to multiple readings request
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Figure A.1.14 Summarized response of theSensorThings
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