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Abstract

Using a Lévy process we generalize formulas in Bo et al. (2010) to the Esscher transform

parameters for the log-normal distribution which ensures the martingale condition holds for

the discounted foreign exchange rate. We also derive similar results, but in the case when

the dynamics of the FX rate is driven by a general Merton jump-diffusion process.

Using these values of the parameters we find a risk-neural measure and provide new

formulas for the distribution of jumps, the mean jump size, and the Poisson process intensity

with respect to this measure. The formulas for a European call foreign exchange option are

also derived.

We apply these formulas to the case of the log-double exponential and exponential distri-

bution of jumps. We provide numerical simulations for the European call foreign exchange

option prices with different parameters.
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3.2 Characteristic functions of Lévy processes . . . . . . . . . . . . . . . . . . . 22
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Chapter 1

Introduction

The structure of the thesis is as follows:

Chapter 1 gives a brief introduction to the problem of FX currency option pricing with

regime-switching parameters.

Chapter 2 provides an overview of results in the area under consideration. In particular,

we give details of models for pricing foreign currency options incorporating stochastic interest

rates, based on Merton’s (1976, [30]) stochastic interest rate model for pricing equity options.

We discuss pricing contingent claims on foreign currencies under stochastic interest rates

using the Heath et al. (1987, [17]) model of term structure (Amin et al., 1991, [3]). A

model for cross-currency derivatives, such as PRDC (Power-Reverse Dual-Currency) swaps

with calibration to currency options, developed by Piterbarg ( 2005, [35]), is also described

in our overview. We give details of an approximation formula for the valuation of currency

options under a jump-diffusion stochastic volatility processes for spot exchange rates in

a stochastic interest rate environment as proposed by Takahashi et al. (2006, [44]). A

continuous time Markov chain which determines the values of parameters in a modified Cox-

Ingersoll-Ross model was proposed by Goutte et al. (2011, [11]) to study the dynamics of

foreign exchange rates. In our research we use a three state Markov chain. We present a

two-factor Markov modulated stochastic volatility model with the first stochastic volatility

component driven by a log-normal diffusion process and the second independent stochastic

volatility component driven by a continuous-time Markov chain, as proposed by Siu et al.

(2008, [41]). Finally, a Markov modulated jump-diffusion model (including a compound

Poisson process) for currency option pricing as described in Bo et al. (2010, [8]). We should

also mention that option pricing is discussed in the Masters Thesis “Hedging Canadian Oil.
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An Application of Currency Translated Options” by Cliff Kitchen (see [26], 2010). At the

end of Chapter 2 we describe a problem which will be solved in our thesis: generalize results

in [8] to the case when the dynamics of the FX rate are driven by a general Lévy process

([34]).

In Chapter 3 we state all theorems and definitions necessary for our research. In §3.1

we give definitions for a general Lévy process and the most common cases of such processes:

Brownian motion and the compound Poisson process. In §3.2 we give some formulas for

characteristic functions of particular cases of Lévy processes that will be used to derive

a main result. In the next two sections §3.3, 3.4 we give details of basic computational

theorems used in the thesis: Ito’s formula with jumps, Girsanov theorem with jumps.

In Chapter 4 we provide an overview of currency derivatives based on Bjork (1998, [6]).

In §4.1 different types of currency derivatives with several examples are proposed. Basic

foreign currency option pricing formulas are given in §4.2.

In Chapter 5 we formulate main results of our research:

1) In Section §5.1 we generalize formulas in [8] for the Esscher transform parameters which

ensure that the martingale condition for the discounted foreign exchange rate is satisfied

for a general Lévy process (see (5.30)). Using these values of the parameters, (see (5.39),

(5.40)), we proceed to a risk-neutral measure and provide new formulas for the distribution

of jumps, the mean jump size, (see (5.20)), and the Poisson process intensity with respect to

this measure, (see (5.19)). At the end of §5.1 pricing formulas for the European call foreign

exchange option are given (It is similar to those in [8], but the mean jump size and the

Poisson process intensity with respect to the new risk-neutral measure are different).

2) In section §5.2 we apply the formulas (5.19), (5.20), (5.39), (5.40) to the case of

log-double exponential processes (see (5.51)) for jumps (see (5.58)-(5.63)).

3) In Section §5.4 we derive results similar to §5.1 when the amplitude of the jumps is

driven by a Merton jump-diffusion process, (see (5.88)-(5.90), (5.108)-(5.109)).
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4) In Section §5.5 we apply formulas (5.88)-(5.90), (5.108)-(5.109) to a particular case of

an exponential distribution, (see (5.110)) of jumps (see (5.113)-(5.115)).

In Chapter 6 we provide numerical simulations of the European call foreign exchange

option prices for different parameters, (in case of log-double exponential and exponential

distributions of jumps): S/K, where S is an initial spot FX rate, K is a strike FX rate for

a maturity time T ; parameters θ1, θ2 arise in the log-double exponential distribution etc.

The results of Chapters 5-6 are accepted for publication in the Journal Insurance: Math-

ematics and Economics (see [42]) and in the Journal of Mathematical Finance (see [43]).

In the Appendix codes for Matlab functions used in numerical simulations of option prices

are provided.
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Chapter 2

Literature review

Until the early 1990s the existing academic literature on the pricing of foreign currency

options could be divided into two categories. In the first, both domestic and foreign in-

terest rates are assumed to be constant whereas the spot exchange rate is assumed to be

stochastic. See, e.g., Jarrow et al. (1981, [3]). The second class of models for pricing foreign

currency options incorporated stochastic interest rates, and were based on Merton’s 1973,

[31]) stochastic interest rate model for pricing equity options. Let us mention the main

points of the model in [31]. Let the stock price St(or spot FX rate in our case) follow the

dynamics described by the following equation:

dSt
St

= (α− λk)dt+ σdWt + (Zt− − 1)dNt. (2.1)

Here Wt is a Brownian motion, α − λk is a drift,
∫ t

0
(Zs− − 1)dNs is a compound Poisson

process(see Def. 3.3 in Ch. 3 for detail); k is a mean jump size if a jump occurs. In other

words:

dSt
St

= (α− λk)dt+ σdWt, (2.2)

if the Poisson event does not occur, and

dSt
St

= (α− λk)dt+ σdWt + Zt− − 1, (2.3)

if a jump occurs. The solution path for spot FX rate St will be continuous most of the time

with jumps of different signs and amplitudes occurring at discrete points in time.

The option price Π(S, t) can be written as a twice continuously differentiable function

of the stock price and time: namely, Πt = F (S, t). If the stock price yields the dynamics
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defined in (2.1)-(2.3), then the option return dynamics can be written in a similar form as

dΠt

Πt

= (απ − λkπ)dt+ σπdWt + (Zπ − 1)dNt, (2.4)

where απ is the instantaneous expected return on the option Πt; (σπ)2 is the instantaneous

variance of the return, conditional on the Poisson event not occurring; (Zπ − 1)dNt is an

independent compound Poisson process with parameter λ; kπ = E(Zπ − 1).

Using Itô’s theorem (see Ch. 3, § 3.4, for details) we obtain:

απ =
1/2σ2S2Fss(S, t) + (α− λk)SFs(S, t) + Ft + λE(F (SZ, t)− F (S, t))

F (S, t)
, (2.5)

σπ =
Fs(S, t)σS

F (S, t)
, (2.6)

where Fss(S, t), Fs(S, t), Ft(S, t) are partial derivatives.

Let g(S, T ) be the instantaneous expected rate of return on the option when the current

stock price is St and the option expiry date is T . Then the option price F (S, t) yields the

following equation (see (2.5) and [30] for more details):

1/2σ2S2Fss(S, T ) + (α− λk)SFs(S, T )−

Ft(S, T )− g(S, T )F + λE(F (SZ, T )− F (S, T )) = 0, (2.7)

with the following boundary conditions:

F (0, T ) = 0, F (S, 0) = max(0, S −K), (2.8)

where K is a strike price. We shall consider a portfolio strategy which consists of the

stock(FX rate in our case), the option, and the riskless asset with return r. Assume, that

we have zero-beta portfolio. From [55]: “A Zero-beta portfolio is a portfolio constructed to

have zero systematic risk or, in other words, a beta of zero. A zero-beta portfolio would have

the same expected return as the risk-free rate. Such a portfolio would have zero correlation

with market movements, given that its expected return equals the risk-free rate, a low rate
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of return”. In other words the jump component of the stocks return will represent “non-

systematic” risk (see again [30]). Under this assumption and using (2.5)-(2.7) we obtain the

following equation for currency option price:

1/2σ2S2Fss(S, T ) + (r − λk)SFs(S, T )−

Ft(S, T )− rF + λE(F (SZ, T )− F (S, T )) = 0 (2.9)

with the same boundary conditions (2.8). Pricing equation (2.9) is similar to (2.7), but (2.9)

does not depend on either α or g(S, T ). Instead, as in the standard Black-Scholes formula,

the dependence on the interest rate, r appears. Note, that the jump component influences

the equilibrium option price in spite of the fact that it represents non-systematic risk.

The solution to (2.9) for the option price when the current stock price is S and the expiry

time is T can be calculated using the formula (see again [30]):

F (S, T ) =
∞∑
n=0

e−λT (λT )n

n!
E
[
B(SZe−λkT , T ;K, σ2, r)

]
. (2.10)

Here B(SZe−λkT , T ;K, σ2, r) is the Black-Scholes option pricing formula for the no-jump

case (see [7] and Ch. 4, § 4.2 for detail); E is an expectation operator over the distribution

of Z, Z is the distribution of jumps (see (2.1), (2.3).

A similar model can be found in Grabbe (1983, [23]), Adams et al. (1987, [1]). Unfor-

tunately, this pricing approach did not include a full-fledged term structure model into the

valuation framework. Moreover, the Forex market is more complicated can not be adequately

described by the model with the assumption of a zero-beta portfolio.

Amin et al. (1991, [3]), to our best knowledge, were the first to start discussing and

building a general framework to price contingent claims on foreign currencies under stochas-

tic interest rates using the Heath et al. (1987, [17]) model of term structure. We shall

introduce the assumptions underlying the economy as in [3]. The authors specify the evolu-

tion of forward domestic and foreign interest rates, (see the details of forward agreements in
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Ch.4, §4.1.1) in the following way: they consider four sources of uncertainty across the two

economies, (domestic and foreign), defined by four independent standard Brownian motions

(W 1
t ,W

2
t ,W

3
t ,W

4
t ; t ∈ [0, τ ]) on a probability space (Ω,F ,P). The domestic forward inter-

est rate rd(t, T ), (the country’s forward interest rate contracted at time t for instantaneous

borrowing and lending at time T with 0 ≤ t ≤ T ≤ τ) changes over time according to the

following stochastic differential equation (see Assumption 1, [3]):

drd(t, T ) = αd(t, T, ω)dt+
2∑
i=1

σdi(t, T, rd(t, t))dW
i
t (2.11)

for all ω ∈ Ω, t ≤ T ≤ τ .

Note, that the same two independent Brownian motions W 1
t ,W

2
t drive the domestic

forward interest rate. These random shocks can be explained as a short-run and long-run

factor changing different maturity ranges of the term structure.

The domestic bond price in units of the domestic currency can be written (see [3]):

Bd(t, T ) = exp

{
−
∫ T

t

rd(t, u)du

}
. (2.12)

The dynamics of the domestic bond price process is given by the equation:

dBd(t, T ) = [rd(t, t) + bd(t, T )]Bd(t, T )dt+
2∑
i=1

αdi(t, T )Bd(t, T )dW i
t , (2.13)

where

αdi = −
∫ T

t

σdi(t, u, rd(t, u))du, i = 1, 2, (2.14)

bd(t, T ) = −
∫ T

t

αd(t, u, ω)du+
1

2

2∑
i=1

[∫ T

t

σdi(t, u, rd(t, u))du

]2

. (2.15)

A similar assumption holds for the foreign forward interest rate dynamics (see Assumption

2, [3]):

drf (t, T ) = αf (t, T, ω)dt+
2∑
i=1

σfi(t, T, rf (t, t))dW
i
t (2.16)
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for all ω ∈ Ω, t ≤ T ≤ τ ; rf (t, T ) is a forward interest rate contracted at time t for

instantaneous borrowing and lending at time T with 0 ≤ t ≤ T ≤ τ .

The connection between the two markets is the spot exchange rate. The spot rate of

exchange (in units of the domestic currency per foreign currency) is governed by the following

SDE (see see Assumption 3, [3]):

dSt = µtStdt+
4∑
i=1

δdiStdW
i
t . (2.17)

Here µt is a drift part, δdi, i = 1, · · · , 4 are the volatility coefficients.

The spot exchange rate St depends on the same three Brownian motions W 1
t ,W

2
t ,W

3
t

running the domestic and foreign forward interest rates. As a result, there exist corre-

lations between the spot exchange rate St, the domestic rd(t, T ), and the foreign interest

rates rf (t, T ). One independent Brownian motion W 4
t is added to govern the exchange rate

dynamics.

To price options from the domestic perspective, we need to convert all of the securities

to the domestic currency. We assume that a domestic investor has his holdings of foreign

currency only in the form of foreign bonds Bf , or units of the foreign money market account

B̃f . Both holdings are converted to domestic currency according to the formulas:

B∗f = BfSt, (2.18)

B̃∗f = B̃fSt. (2.19)

The stochastic processes describing these securities, denominated in the domestic currency,

are given by (see Appendix, [3]):

dB̃∗f = B̃∗f

[
(µd(t) + rf (t, t))dt+

4∑
i=1

δdi(t)dW
i
t

]
(2.20)

dB∗f = B∗f

[
µ∗f (t)dt+

4∑
i=1

(αfi(t, T ) + δdi(t))dW
i
t

]
(2.21)
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where

µ∗f (t) = rf (t, t) + bf (t, T ) + µd(t) +
4∑
i=1

δdi(t)αfi(t, T ). (2.22)

The pricing formula for the European Call option, with exercise price K and maturity time

T , for this model is also given in [3](see p. 317-318):

C(0, T,K) = E∗max

[
0, Bf (0, T )S0 exp

( 4∑
i=1

∫ T

0

(αfi(t, T ) + δdi(t))dW
i,∗
t −

1/2

∫ T

0

(αfi(t, T ) + δdi(t))
2dt

)
−KBd(0, T )×

exp

(
2∑
i=1

∫ T

0

αdi(t, T )dW i,∗
t − 1/2

2∑
i=1

∫ T

0

α2
di(t, T )dt

)]
. (2.23)

Here E∗ is the mathematical expectation with respect to the risk-neutral measure P ∗. (De-

tails about risk-neutral pricing can be found in Bjork [6] and Shreve [40],V.2). The derivation

of formulas for risk-neutral currency option pricing for several particular cases and general

Lévy process (see Ch. 3, § 3.1) are in the main results of our research (see Ch.5).

Melino et al. (1991, [29]) examined the foreign exchange rate process, (under a determin-

istic interest rate), underlying the observed option prices, and Rumsey (1991, [38]) considered

cross-currency options.

Mikkelsen (2001, [33]) considered cross-currency options with market models of interest

rates and deterministic volatilities of spot exchange rates by simulation. The author uses a

cross-currency arbitrage-free LIBOR market model, (cLMM), for pricing options, (see [33],

[56]), that are evaluated from cross-market dynamics. In [33] the market consists of two

economies, each of which has its own domestic bond market. An investor can invest in two

fixed income markets: his home currency market and a foreign currency denominated market.

To ensure arbitrage free pricing of cross-currency derivatives the spot foreign exchange rate

and arbitrage free foreign exchange rate dynamics are introduced. It was proved that if

LIBORs are modeled as log-normal variables all forward foreign exchange rates cannot be

modeled as log-normal without breaking the arbitrage-free assumption.

Schlogl (2002, [39]) extended market models to a cross-currency framework. He did not
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include stochastic volatilities into the model and focused on cross currency derivatives such

as differential swaps and options on the swaps as applications. He did not consider currency

options.

Piterbarg (2005, [35]) developed a model for cross-currency derivatives, such as PRDC

(Power-Reverse Dual-Currency) swaps, with calibration to currency options; he used neither

market models nor stochastic volatility models. An economy consists of two currencies as

before (see [33]): domestic and foreign. Let P be the domestic risk-neutral measure. Let

Pi(t, T ) , i = d, f be the prices, in their respective currencies, of the domestic and foreign

zero-coupon discount bonds. Also let ri(t) , i = d, f , be the short rates in the two currencies.

Let St be the spot FX rate. The forward FX rate (the break-even rate for a forward FX

transaction) F (t, T ) satisfies the condition(see [35]):

F (t, T ) =
Pf (t, T )

Pd(t, T )
St (2.24)

following from no-arbitrage arguments. The following model is considered in [35]:

dPd(t, T )

Pd(t, T )
= rd(t)dt+ σd(t, T )dW d

t , (2.25)

dPf (t, T )

Pf (t, T )
= rf (t)dt− ρfSσf (t, T )γ(t, St)dt+ σf (t, T )dW f

t , (2.26)

dSt
St

= (rd(t)− rf (t))dt+ γ(t, St)dW
S
t , (2.27)

where (W d
t ,W

f
t ,W

S
t ) is a three dimensional Brownian motion under P with the correlation

matrix: 
1 ρdf ρdS

ρdf 1 ρfS

ρdS ρfS 1

 . (2.28)

Gaussian dynamics for the rates are given by:

σi(t, T ) = σi(t)

∫ T

t

exp

{
−
∫ s

t

χi(u)du

}
ds, i = d, f, (2.29)

10



where σd(t), σf (t), χd(t), χf (t) are deterministic functions.

A price of a call option on the FX rate with strike K and maturity T is

C(T,K) = E
(

exp

{
−
∫ T

0

rd(s)ds

}
max(0, ST −K)

)
. (2.30)

The forward FX rate F (t, T ) has the following dynamics (see [35], Prop. 5.1):

dF (t, T )

F (t, T )
= σf (t, T )dW T

f (t)− σd(t, T )dW T
d (t) + γ(t, F (t, T )D(t, T ))dW T

S (t). (2.31)

Here
(
W T
d (t),W T

f (t),W T
S (t)

)
is a three-dimensional Brownian motion under the domestic

T -forward measure. Moreover, there exists a Brownian motion dWF (t) under the domestic

T -forward measure P T , such that:

dF (t, T )

F (t, T )
= Λ(t, F (t, T )D(t, T ))dWF (t), (2.32)

where

Λ(t, x) = (a(t) + b(t)γ(t, x) + γ2(t, x))1/2,

a(t) = (σf (t, T ))2 + (σd(t, T ))2− 2ρdSσf (t, T )σd(t, T ),

b(t) = 2ρfSσf (t, T )− 2ρdSσd(t, T ),

D(t, T ) =
Pd(t, T )

Pf (t, T )
. (2.33)

In [35] a Markovian representation for the foreign FX rate is used. Define:

c(t, T,K) = Pd(0, t)ET (F (t, T )−K)+ , (2.34)

where: (x)+ = max(0, x). T > 0 is a the fixed settlement date of the FX forward rate. We

wish to find a function Λ̃(t, x) such that, in the model defined by the equation:

dF (t, T )

F (t, T )
= Λ̃(t, F (t, T )D(t, T ))dWF (t), (2.35)

the values of European options {c(t, T,K)} for all t,K, 0 < t ≤ T, 0 ≤ K < ∞ are equal

to the values of the same options in the initial model (2.25)- (2.28) (or (2.31)-(2.34)). The

answer is given in [35] (see Theorem 6.1).
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The local volatility function Λ̃(t, x), for which the values of all European options {c(t, T,K)}t,K

in the model (2.35) are the same as in the model (2.2), is given by

Λ̃(t, x) = ET
(
Λ2(t, F (t, T )D(t, T ))|F (t, T ) = x

)
. (2.36)

Here ET is a conditional mathematical expectation with respect to measure P T (see (2.31).

In the case of European option pricing, the dynamics of the forward FX rate F (, T ) under

the measure P T are given in Corollary 6.2([35]):

dF (t, T )

F (t, T )
= Λ̃(t, F (t, T )D(t, T ))dWF (t), (2.37)

where

Λ̃(t, x) = (a(t) + b(t)γ̃(t, x) + γ̃2(t, x))1/2. (2.38)

The formulas for γ̃(t, x), r(t) can also be found in this corollary.

V. Piterbarg also derives approximation formulas for the value of options on the FX rate

for a given expiry T and strike K, (see [35], Theorem 7.2).

To value options on the FX rate with maturity T , the forward FX rate can be approxi-

mated by the solution of the following stochastic differential equation:

dF (t, T ) = Λ̃(t, F (0, T ))(δFF (t, T ) + (1− δF )F (0, T ))dWF (t). (2.39)

Here

δF = 1 +

∫ T

0

w(t)
b(t)η(t) + 2γ̃(t, F (0, T ))η(t)

2Λ̃2(t, F (0, T ))
dt, (2.40)

η(t) = γ̃(t, F (0, T ))(1 + r(t))(β(t)− 1), (2.41)

w(t) =
u(t)∫ T

0
u(t)dt

, (2.42)

u(t) = Λ̃2(t, F (0, T ))

∫ t

0

Λ̃2(s, F (0, T ))ds. (2.43)
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The value c(T,K) of the European call option on the FX rate with maturity T and strike

K is equal to:

c(T,K) = Pd(0, T )B(
F (0, T )

δF
, k +

1− δF
δF

F (0, T ), σF δF , T ), (2.44)

δF =

(
1

T

∫ T

0

Λ̃2(t, F (0, T )dt

)1/2

. (2.45)

Here B(F,K, σ, T ) is the Black-Schloes formula for a call option with forward price F , strike

K, (see [6], chapter 17), volatility σ, and time to maturity T .

A similar model and approximations for pricing FX options are given in [26] by Lech

Grzelak and Kees Oosterlee (2010).

In Garman et al. (1983, [6]) and Grabbe (1983, [23]), foreign exchange option valuation

formulas are derived under the assumption that the exchange rate follows a diffusion process

with continuous sample paths.

Takahashi et al. (2006, [44]) proposed a new approximation formula for the valuation

of currency options under jump-diffusion stochastic volatility processes for spot exchange

rates in a stochastic interest rates environment. In particular, they applied market models

developed by Brace et al (1998,[9]), Jamshidian (1997, [20]) and Miltersen et al (1997, [32])

to model the term structure of interest rates. As an application, Takahashi et al. applied

the derived formula to the calibration of volatility smiles in the JPY/USD currency option

market. In [44] the authors suppose, that the variance process of the spot FX rate is governed

by the following dynamics:

dVt = ξ(η − Vt)dt+ θ
√
Vt~υ · d ~W ∗

t . (2.46)

Here ~W ∗
t is a d-dimensional Brownian motion under the domestic risk neutral measure, ξ, η

and θ are positive scalar parameters and ~υ is a d-dimensional constant vector with ‖υ‖ = 1

to represent the correlations between the variance and other factors. The condition 2ξη > θ2

ensures that Vt remains positive if V0 = 0. This stochastic volatility model is introduced by
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Heston in [18](1993). Let F (t, T ) denote a forward exchange rate with maturity T at time

t. Suppose the dynamics of the process F (t, T ) are defined by the equation:

dF (t, T )

F (t, T )
= ~σFt · ~dW d

t , (2.47)

where ~σFt is a deterministic d-dimensional vector-function, and W d
t is a d-dimensional Brow-

nian motion, (see [44], formulas 4-6). In the case of Mertons jump-diffusion ([30], 1976)

equation (2.47) can be presented in the following form:

d(t, T )

(t, T )
= ~σFt · ~dW d

t + Zt−dNt − λkdt, (2.48)

where Zt−dNt is a compound Poisson process with intensity λ and jump size Zt− . (See again

Ch. 3, Def.3.3 or [34] for details). A Fourier transform method for currency call option

pricing is used in [44]:

c(S,K, T )

Bd(0, T )
≈ 1

2π

∫ +∞

−∞
e−iku

ΦX0(u− i)− Φ0(u− i)
iu(1 + iu)

du+
c0(S,K, T )

Bd(0, T )
. (2.49)

Here c(S,K, T ) is an option price with strike price K, maturity time T , and S is an initial

spot exchange rate, Bd(t, T ) is a price of zero coupon bonds with maturity T in domestic

currency;

Φ0(u) = exp

{
−σ

2
0T

2
(u2 + iu)

}
. (2.50)

ΦX0(u) is a first order approximation of the characteristic function of the process (see [44],

formulas 9-15):

Xt = log
F (t, T )

F (0, T )
; (2.51)

c0(S,K, T ) = Bd(0, T )(FN(d+)−KN(d−)), (2.52)

d± =
k ± 1

2
σ2

0T

σ0

√
T

, (2.53)

σ0 - is a constant depending on T, S0, domestic and foreign forward interest rates (see [44],

§ 3); N(x) is a standard normal cumulative distribution function. The first term on the
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right-hand side of the formula (2.49) is the difference between the call price of this model

and the Black-Scholes call price(see [6], Chapter 17).

Also, Ahn et al. (2007, [2]) derived explicit formulas for European foreign exchange call

and put options values when the exchange rate dynamics are governed by jump-diffusion

processes.

Hamilton (1988) was the first to investigate the term structure of interest rates by ra-

tional expectations econometric analysis of changes in regime. Goutte et al. (2011, [11])

studied foreign exchange rate using a modified Cox-Ingersoll-Ross model under a Hamilton

type Markov regime switching framework, where all parameters depend on the value of a

continuous time Markov chain.

Definition 2.1 ([11], Def. 2.1) Let (Xt)t∈[0;T ] be a continuous time Markov chain on finite

space S := {1, · · · , K}. Write FXt := {σ(Xs); 0 ≤ s ≤ t} for the natural filtration generated

by the continuous time Markov chain X. The generator matrix of X will be denoted by ΠX

and given by

ΠX
ij ≥ 0, i 6= j; i, j ∈ S (2.54)

ΠX
ii = −

∑
j 6=i

ΠX
ij (2.55)

otherwise. In our numerical simulations we shall use a slightly different matrix ΠX :

ΠX
ij ≥ 0, i, j ∈ S,

∑
j∈S

ΠX
ij = 1 for any i ∈ S. (2.56)

Note, that ΠX
ij represents probability of the jump from state i to state j. The definition

of a CIR (Cox-Ingersoll-Ross) process with parameters values depending on the value of a

continuous time Markov chain is given in [11]:

Definition 2.2 ([11], Def. 2.2) Let, for all t ∈ [0;T ], (X)t be a continuous time Markov

chain on a finite space S := {e1, e2, · · · , eK} defined as in Def. 2.1. We will call a Regime

switching CIR (in short, RS-CIR) the process (rt) which is the solution of the SDE given by
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drt = (α(Xt)− β(Xt)rt)dt+ σ(Xt)
√
rtdWt. (2.57)

Here for all t ∈ [0;T ], the functions α(Xt), β(Xt), and σ(Xt) are functions such that for

1 ≤ i ≤ K

α(i) ∈ {α(1), · · · , α(K)}, β(i) ∈ {β(1), · · · , β(K)},

and

σ(i) ∈ {σ(1), · · · , σ(K)}.

For all j ∈ {1, · · · , K}: α(j) > 0, 2α(j) ≥ σ(j)2.

In [11] Goutte et al. investigated three state Markov switching regimes. One regime

represents “normal” economic dynamics, the second one is for “crisis” and the last one means

“good” economy. They also study whether more regimes capture better the economic and

financial dynamics or not. The advantages and disadvantages of models with more than three

regimes are discussed and supported by numerical simulations. Three state regime switching

models are important in our research, because they adequately describe movements of the

foreign currency exchange rate in the Forex market. In Forex we have three distinctive

trends: up, down, sideways.

Zhou et al. (2012, [45]) considered an accessible implementation of interest rate models

with regime-switching. Siu et al. (2008, [41]) considered pricing currency options under a

two-factor Markov modulated stochastic volatility model with the first stochastic volatility

component driven by a log-normal diffusion process and the second independent stochastic

volatility component driven by a continuous-time Markov chain:

dSt
St

= µtdt+
√
VtdW

1
t + σtdW

2
t ,

dVt
Vt

= αtdt+ βdW υ
t , (2.58)

Cov(dW υ
t , dW

1
t ) = ρdt.
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Here St is a spot FX rate; W 1 = {W 1
t }t∈T , W 2 = {W 2

t }t∈T are two independent Brownian

motions on (Ω,F , P ); (Ω,F , P ) is a complete probability space; T ⊂ [0,∞) is a time index

set; W υ = {W υ
t }t∈T is a standard Brownian motion on (Ω,F , P ) correlated with W 1 with

coefficient of correlation ρ. In [41] the authors define a continuous-time, finite-state Markov

chain X = {Xt}t∈T on (Ω,F , P ) with state space S = {e1, e2, · · · , en} (similar to [11], Def.

2.1, 2.2). They take the state space S for X to be the set of unit vectors (e1, · · · , en) ∈ Rn

with probability matrix ΠX similarly to (2.54)-(2.56). The parameters σt, µt are modelled

using this finite state Markov chain:

µt :=< µ,Xt >, µ ∈ Rn;

σt :=< σ,Xt >, σ ∈ Rn. (2.59)

Instantaneous market interest rates {rdt }t∈T , {r
f
t }t∈T of the domestic and foreign money

market accounts are also modeled using the finite state Markov chain in [41] by:

rdt :=< rd, Xt >, r
d ∈ Rn;

rft :=< rf , Xt >, r
f ∈ Rn. (2.60)

Let Bd := {Bd
t }t∈T , Bf := {Bf

t }t∈T denote the domestic and foreign money market accounts.

Then their dynamics are given by the following equations (see [41]):

Bd = exp

{∫ t

0

rdudu

}
,

Bf = exp

{∫ t

0

rfudu

}
. (2.61)

Siu et al. consider the European-style and American-style currency option pricing (see [41],

§ 4, 5) and provide numerical simulations for options of both types (see [41], § 6).

Bo et al. (2010, [8]) deals with a Markov-modulated jump-diffusion (modeled by com-

pound Poisson process) for currency option pricing. They use the same finite-state Markov
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chain as in [41] to model coefficients in the equation for FX rate dynamics:

dSt
St

= (α− λk)dt+ σdWt + (eZt− − 1)dNt. (2.62)

Here Wt is a Brownian motion, α−λk is a drift, (eZt−−1)dNt is a compound Poisson process

(see Def. 3.3 in Ch. 3 for detail); k is a mean jump size if a jump occurs. The amplitude

of the jumps Zt− is log-normally distributed. The European call currency option pricing

formulas are also derived (see [8], formulas § 2: 2.18, 2.19; § 3: 3.10-3.16). A random

Esscher transform (see [8], § 2, formula 2.5; [13], [15] for the detailed theory of the Esscher

transform) is used to determine a risk-neutral measure, to find option pricing formulas and

to evaluate the Esscher transform parameters which ensure that the discounted spot FX rate

is a martingale. (See [8], § 2, Theorem 2.1).

Heston (1993, [18]) found a closed-form solution for options having stochastic volatility

with applications to the valuation of currency options. Bo et al. (2010, [8]) used this model

of stochastic volatility and considered the following model of a FX market:

dSt = St−(αt − kλt)dt+ St−
√
VtdWt + St−(eZt− − 1)dNt, (2.63)

dVt = (γ − βVt)dt+ συ
√
VtW

1
t (2.64)

W 1
t = ρW 1

t +
√

1− ρ2W 2
t . (2.65)

Here γ, συ, β > 0, |ρ| < 1; Wt and W 2
t are two independent Brownian motions; St is a spot

FX rate, αt − kλt is a drift; (eZt− − 1)dNt is a compound Poisson process; Vt is a stochastic

volatility. They also provided numerical simulations for the model in [18].

We note that currency derivatives for the domestic and foreign equity market and for

the exchange rate between the domestic currency and a fixed foreign currency with constant

interest rates are discussed in Bjork (1998, [6]). We also mention that currency conversion
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for forward and swap prices with constant domestic and foreign interest rates is discussed in

Benth et al. (2008, [5]).

The main goal of our research is to generalize the results in [8] to the case when the

dynamics of the FX rate are driven by a general Lévy process (See Ch. 3, § 3.1 for the basic

definitions of Lévy processes, or [34] for a complete overview). In other words, jumps in our

model are not necessarily log-normally distributed. In particular, we shall investigate log-

double exponential and exponential distributions of jumps and provide numerical simulations

for European-call options which depend on a wide range of parameters. (See Ch. 5, 6).
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Chapter 3

Lévy Processes

3.1 Lévy processes. Basic definitions and theorems

We shall give a definition of a general Lévy Process. Let (Ω,F , P ) be a filtered probability

space with F = FT , where (Ft)t∈[0,T ] is the filtration on this space.

Definition 3.1. ([34]) An adapted, real valued stochastic process L = (Lt)0≤t≤T with

L0 = 0 is called a Lévy process if the following conditions are satisfied:

(L1): L has independent increments, i.e. Lt−Ls is independent of Fs for any 0 < s < t < T .

(L2): L has stationary increments, i.e. for any 0 < s, t < T the distribution of Lt+s − Lt

does not depend on t.

(L3): L is stochastically continuous, i.e. for every 0 ≤ t ≤ T and ε > 0:

lim
t→s

P (|Lt − Ls| > ε) = 0.

Examples of Lévy process arising in Mathematical Finance are (linear) drift, a deter-

ministic process, Brownian motion, non-deterministic process with continuous sample paths,

and the Poisson and compound Poisson processes.

Definition 3.2. ([34]) Let (Ω, F, P ) be a probability space. For each ω ∈ Ω, suppose

there is a continuous function Wt (t > 0) that satisfies W0 = 0 and that depends on ω.

Then Wt (t ≥ 0) is a Brownian motion if for all 0 = t0 < t1 < · · · < tm the increments

Wt1 = Wt1 −Wt0 ,Wt2 −Wt1 , ...,Wtm −Wtm−1 are independent and each of these increments

is normally distributed with

E[Wti+1
−Wti ] = 0,

Var[Wti+1
−Wti ] = ti+1 − ti.
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A Brownian motion model requires an assumption of perfectly divisible assets and a

frictionless market, (i.e. there are no taxes and no transaction costs occur either for buying

or selling).However, asset prices in a real market can have jumps which can be described by

a compound Poisson process.

Definition 3.3. ([34]) A compound Poisson process is a continuous-time (random)

stochastic process with jumps. The jumps arrive randomly according to a Poisson process

and the size of the jumps is also random, with a specified probability distribution ν. A

compound Poisson process, defined by a rate λt > 0 and jump size distribution ν, is a

process

Pt =
Nt∑
i=1

Zi, (3.1)

where Zi is an identically distributed random variable, (Nt)0≤t≤T is Poisson process with a

rate λt.

Definition 3.4. ([34]) A compound compensated Poisson process has the form

Pt =
Nt∑
i=1

Zi − E[Z]

∫ t

0

λsds. (3.2)

Note, that a compound compensated Poisson process is a martingale (see [34]).

The sum of a (linear or non-linear, depending on time t) drift, a Brownian motion and a

compound Poisson process is again a Lévy process. It is often called a Lévy “jump-diffusion”

process. Note there exist jump-diffusion processes which are not Lévy processes. This holds,

when the distribution of jumps gives non converging to zero probability of jumps with a big

amplitude, and then the condition (L3) does not hold. We shall give several examples of

these.

We now determine the characteristic functions of all three types of Lévy processes men-

tioned above.
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3.2 Characteristic functions of Lévy processes

The characteristic function of Brownian motion is given at (see for Example [34] for the

derivation of all the results in this chapter):

E
[
eu

∫ t
0 σsdWs

]
= exp

{
1

2
u2

∫ t

0

σ2
sds

}
, (3.3)

where σt is the volatility of a market. The characteristic function of compound Poisson

process, defined by a rate λt > 0 and jump size distribution ν, is:

E
[
eu

∑Nt
k=1 Zk

]
= exp

{∫ t

0

λs

∫
R
(eux − 1)ν(dx)ds

}
. (3.4)

The characteristic function of compound compensated Poisson process, defined by a rate

λt > 0 and jump size distribution ν:

E
[
eu(

∑Nt
k=1 Zk−E[Z]

∫ t
0 λsds)

]
= exp

{∫ t

0

λs

∫
R
(eux − 1− ux)ν(dx)ds

}
. (3.5)

We shall assume that the process L = (Lt)0≤t≤T is a Lévy jump-diffusion, i.e. a Brownian

motion plus a compensated compound Poisson process. The paths of this process can be

described by

Lt =

∫ t

0

µsds+

∫ t

0

σsdWs +
Nt∑
k=1

Zk − E[Z]

∫ t

0

λsds. (3.6)

Note that since Brownian motion and compound compensated Poisson processes are mar-

tingales, a Lévy process Lyt is martingale if and only if µt = 0. Using expressions for

characteristic functions (3.2)-(3.5) we obtain the characteristic function of the Lévy process

Lt:

E
[
euLt

]
= exp

{
u

∫ s

0

µsds+
1

2
u2

∫ t

0

σ2
sds+

∫ t

0

λs

∫
R
(eux − 1− ux)ν(dx)ds

}
. (3.7)

In the case of compound Poisson Process(not compensated):

E
[
euLt

]
= exp

{
u

∫ s

0

µsds+
1

2
u2

∫ t

0

σ2
sds+

∫ t

0

λs

∫
R
(eux − 1)ν(dx)ds

}
. (3.8)
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In the sequel, we shall consider jumps driven by a compound Poisson Process to describe

the spot FX rate movements of currency markets. We also consider sufficient conditions for

Lévy process of such a type to be a martingale.

The following decomposition of the characteristic function of general Lévy process is true

(see [34], p. 12 ):

Theorem 3.1. Consider a triplet (µt, σt, ν) where µt ∈ R, σt ∈ R > 0 and ν is a

measure satisfying ν(0) = 0 and
∫
R(1 ∧ |x|2)ν(dx) < ∞. Then, there exists a probability

space (Ω, F, P ) on which four independent Lévy processes exist, L1, L2, L3, L4 where L1 is

a drift, L2 is a Brownian motion, L3 is a compound Poisson process and L4 is a square

integrable (pure jump) martingale with an a.s. countable number of jumps of magnitude less

than 1 on each finite time interval. Taking Lt = L1 +L2 +L3 +L4, we have that there exists

a probability space on which a Lévy process L = (Lt)0≤t≤T with characteristic function

E
[
euLt

]
= exp

{
u

∫ s

0

µsds+
1

2
u2

∫ t

0

σ2
sds+

∫ t

0

λs

∫
R
(eux − 1− ux1|x|≤1)ν(dx)ds

}
(3.9)

for all u ∈ R, is defined.

To prove the Theorem 3.1 we can use Itô’s formula with jumps. (see the next chapter).

3.3 Itô’s formula with jumps and its applications

In our research shall assume, that the asset price is described by the following stochastic

differential equation:

dSt = St−
(
µtdt+ σtdWt + (eZt− − 1)dNt

)
. (3.10)

Here µt is a drift, σt is a volatility, (eZt− − 1)dNt is the compound Poisson process (Nt is

the Poisson process with intensity λt > 0, eZt− − 1 are the jump sizes, Zt− has arbitrary

distribution ν). The parameters σt, λt are modulated by a finite state Markov chain (ξt)0≤t≤T

in the following way

σt = 〈σ, ξt〉, σ ∈ Rn
+,
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λt = 〈λ, ξt〉, λ ∈ Rn
+.

Using Itô’s formula with jumps, solve (3.10). We state this theorem first, because it will

be used several times in the sequel.

Theorem 3.2. ([36], p. 364-365, [46]). Let a(x, t), b(x, t) be adapted stochastic processes

and f(t,x) be a function for which partial derivatives ft, fx, fxx are defined and continuous.

Let also

dx = a(x−, t)dt+ b(x−, t)dWt + YtdNt. (3.11)

Then the following holds

df(x, t) = [ft + a(x−, t)fx +
1

2
b2(x−, t)fxx]dt+ b(x−, t)fxdWt (3.12)

+[f(x− + Yt, t)− f(x−, t)]dNt.

The solution for (3.10) has the following form St = S0e
Lt , (S0 is a spot FX rate at time

t = 0), where Lt is given by the formula:

Lt =

∫ t

0

(µs − 1/2σ2
s)ds+

∫ t

0

σsdWs +
Nt∑
i=1

Zi. (3.13)

We can consider jumps in (3.10) of a different form Zt− − 1 instead of eZt− − 1. Then

(3.10) takes the form:

dSt = St−
(
µtdt+ σtdWt + (Zt− − 1)dNt

)
. (3.14)

In this case, to apply Itô’s formula we must require Zt− : Zt− > 0. Then we obtain the

following solution for (3.14) St = S0e
L∗
t , where Lt is given by the formula:

L∗t =

∫ t

0

(µs − 1/2σ2
s)ds+

∫ t

0

σsdWs +
Nt∑
i=1

logZi. (3.15)

Note that for most well-known distributions, (normal , double exponential distribution of Zt− ,

etc), L∗t is not a Lévy process, since logZi → −∞ for small Zt− . However, the probability

of jumps with even 0 size is a positive constant, depending on the type of distribution. We

shall consider the solution of the differential equation (3.14) in a separate section later. (see

Ch. §5.4).
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3.4 Girsanov’s theorem with jumps

The primary goal of our research is to derive formulas for currency option pricing. For this

purpose we need to transfer from the initial probability measure with Poisson process inten-

sity λt and density function of jumps ν to a new risk neutral measure with new λ∗t , ν
∗. Note

that this measure is not unique. To calculate these new quantities we shall use Girsanov’s

theorem with jumps (see [36], p. 375-376; [40], p. 502-503 ).

Theorem 3.3. Let Wt, 0 ≤ t ≤ T be a Brownian motion on a probability space (Ω,F , P )

and let Ft, 0 ≤ t ≤ T be a filtration for this Brownian motion. Let Θt, 0 ≤ t ≤ T be an

adapted process; λ∗t , ν
∗ are new Poisson process intensity and density functions for jumps

respectively. Define

Z
(1)
t = exp

{
−
∫ t

0

ΘsdWs − 1/2

∫ t

0

Θ2
sds

}
, (3.16)

Z
(2)
t = exp

{∫ t

0

(λs − λ∗s)ds
}∫ t

0

Nt∏
i=1

λ∗sν
∗(Zi)

λsν(Zi)
ds (3.17)

Zt = Z
(1)
t ∗ Z

(2)
t

W ∗
t = Wt +

∫ t

0

Θsds+ Zt − E[Z]

∫ t

0

λ∗sds (3.18)

and assume that E
∫ T

0
Θ2
sZ

2
sds <∞. Set Z = Z(T ). Then EZ = 1 and under the probability

measure P ∗ given by P ∗(A) =
∫
A
ZωdPω, forallA ∈ Ft, the process W ∗

t , 0 ≤ t ≤ T is a

martingale. Moreover, Wt +
∫ t

0
Θsds – is a standard Brownian motion, Zt − E[Z]

∫ t
0
λ∗sds is

martingale with respect to new measure P ∗.

When λs = λ∗s, Theorem 3.3 coincides with the usual Girsanov theorem for the Brownian

motion.
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Chapter 4

Currency derivatives

4.1 Types of currency derivatives

A foreign exchange derivative is a financial derivative whose payoff depends on the foreign

exchange rate(s) of two (or more) currencies. In this section we shall consider three main

types of foreign exchange derivatives: foreign exchange forwards, currency futures, currency

options (foreign exchange options).

4.1.1 Forward contracts

Following Bjork, (see [6], p. 102) a forward contract on X, made at t, is an agreement which

stipulates that the holder of the contract pays the deterministic amount K at the delivery

date T , and receives the stochastic amount X at T . Nothing is paid or received at the time

t, when the contract is made. Note that forward price K is determined at time t.

Forward contracts are agreements to buy or sell at a certain time in the future, the

maturity time, an asset at a price stipulated in advance. Forwards are a common instrument

used to hedge currency risk, when the investor is expecting to receive or pay a certain

amount of money expressed in foreign currency in the near future. Forward contracts are

binding contracts, (contrary to options) and, therefore, both parties are obliged to exercise

the contract conditions and buy (sell) the asset at agreed price. There are three types of

prices associated with a forward contract. The first is a forward price F0, that is the price

of one unit of the underlying asset to be delivered at a specific time in the future, (t = T ).

The second K is a delivery price, fixed in advance in a contract.The third is the value of a

forward contract f(t), 0 ≤ t ≤ T . The value of F0 is chosen in such a way that f(0) = 0

(K = F0 at the initial moment). There is no initial price to enter such agreements, except
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for bid-ask spread, (see [51]). After the initial time the value of f(t) may vary depending

on variations of the spot price of the underlying asset, the prevailing interest rates, etc (see

[19], Chapter 5,6; [27], Chapter 10 for details of types of currency derivatives). The forward

price F0, t = 0 can be calculated from the formula([19], Chapter 5, p. 107):

F0 = S0e
(r−q)T . (4.1)

Here S is the spot price of the underlying asset, q is a rate of return of investment, r is the

risk free rate, and T is maturity time. At each moment of time, until maturity, the value

of a long forward contract f(t), 0 ≤ t ≤ T (for buy) is calculated by the following formula

([19], Chapter 5, p. 108):

f(t) = (F0 −K)e−(r−q)T . (4.2)

Here F0, K are the current forward price and delivery price (at time T ) respectively (see

[27], p. 273). Because F0 changes with time, the price of a forward contract may have both

positive and negative values, (see (4.2)). It is important for banks, and the finance industry

in general, to value the agreement each day.

In case of forward contracts on foreign currencies the underlying asset is the exchange

rate, or a certain number of units of a foreign currency. Let us write S0 for the spot exchange

rate, (price of 1 unit of foreign currency (EURO for example) in domestic currency, (dollars

for example)), and F0 as the forward price, both expressed in units of the base currency per

unit of foreign currency. Holding the currency gives the investor an interest rates profit at

the risk-free rate prevailing in the respective country. Denote by rd as the domestic risk-free

rate and rf as the risk-free rate in the foreign country. The forward price is then similar to

(4.1), (see [19], Chapter 5, p. 113):

F0 = S0e
(rd−rf )T . (4.3)

Relation (4.3) is the well-known interest rate parity relationship from international finance.

If condition (4.3) does not hold, there are arbitrage opportunities. If F0 > S0e
(rd−rf )T , a

profit could be obtained by:
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a) borrowing F0 = S0e
−rfT in domestic currency at rate rd for time T ;

b) buying e−rfT of the foreign currency and invest this at the rate rf ;

c) short selling a forward contract on one unit of the foreign currency.

At time T , the arbitrageur will get one unit of foreign currency from the deposit, which

he sells at the forward price F0. From this result, he is able to repay the loan S0e
(rd−rf )T

and still obtain a net profit of F0 − S0e
(rd−rf )T (see [51]).

We now list the forward trading steps for the Forex market (see [54]):

1) Choose the buy currency and the sell currency. The exchange rate appears automati-

cally and is called the Spot Rate.

2) Choose the forward date. The Forward Points and the Forward Rate appears auto-

matically.

3) Choose the amount of the contract and the amount you wish to risk. The Stop-Loss

rate appears.

4) Read the “Response Message”. This tells you if you have enough in your account to

make the deal

5) Finish the deal by pressing the “Accept” button. Then your deal is open and running.

4.1.2 Currency futures

Following Bjork, (see [6], p. 103) a futures contract is very close to the corresponding forward

contract in the sense that it is still a contract for the delivery of X at T . The difference is that

all the payments, from the holder of the contract to the underwriter, are no longer made at T .

Let us denote the futures price by F (t;T,X); the payments are delivered continuously over

time, such that the holder of the contract over the time interval [s, t] receives the amount

F (t;T,X) − F (s;T,X) from the underwriter. Finally the holder will receive X, and pay

F (T ;T,X), at the delivery date T . By definition, the (spot) price (at any time) of the entire

futures contract equals zero. Thus the cost of entering or leaving a futures contract is zero,

and the only contractual obligation is the payment stream described above.
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Futures are similar to forward agreements in terms of the end result. A future contract

represents a binding obligation to buy or sell a particular asset at a specified price at a

stipulated date. Futures have, however, specific features. For instance their standardization

and their payoff procedure distinguish them from forwards. For a new contract several terms

need to be specified by the exchange house prior to any transaction, (see [51]):

1) the underlying asset: whether it is a commodity such as corn, or a financial instrument

such as a foreign exchange rate;

2) the size of the contract: the amount of the asset which will be delivered;

3) the delivery date and delivery arrangements;

4) the quoted price.

At the maturity time the price of the futures contract converges to the spot price of the

underlying asset. If this does not hold, arbitrage opportunities would arise, thus forcing,

from the action of agents in the market, the price of the futures to go up or down.

We now explain the main differences between Forward and Futures interest rates contracts

for the EURO/USD currency pair. The most popular interest rate futures contract in the

United States is the 3 months Eurodollar interest rate futures contract, (see [19], [52]) traded

on the Chicago Mercantile Exchange. The Eurodollar currency futures contract is similar to

a forward rate agreement because it locks in an interest rate for a future period. For short

maturities (less than 1 year) the two contracts seem to be the same and the Eurodollar futures

interest rate can be treated the same as the corresponding forward interest rate. For longer

maturities the differences between contracts are very important. Let us compare a Eurodollar

futures contract on an interest rate for the period of time [T1, T2] with a Forward agreement

for the same period. The Eurodollar futures contract is settled daily, (the difference in the

prior agreed-upon price and the daily futures price is settled daily). The final settlement

is at time T1 and reflects the realized interest rate between times T1, T2. On the contrary,

the forward agreement is not settled daily and the final settlement, reflecting the changes in
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interest rates between T1, T2 is made at time T2. So, the main difference would be on the

cash-flows processes associated with forwards, (which occur only at delivery date) and with

futures, which occur every trading day (see [19], Chapter 4, Section, 4.7; Chapter 6, Section

6.3 for detail). This is called “mark to market”. There are several main differences between

forward agreements and futures contracts (see [19]):

Forwards Futures

Private contract Traded on an exchange
Not standardized Standardized

Limited range of delivery dates Wide range of delivery dates
Settled at maturity date Settled daily

Final cash settlement Closed out before mature

4.1.3 Currency options

In our research our main emphasis is on currency options and pricing them. In contrast to

forwards, (futures) contracts, an option is the right, but not the obligation, to buy (or sell)

an asset under specified terms (see [27], Chapter 12 for details). In the currency market

(the Forex market for example) it means the right to buy (or sell) some amount of foreign

currency at a fixed moment of time in future at a previously stipulated exchange rate.

A foreign exchange option, (commonly shortened to just FX option), is a derivative

where the owner has the right but not the obligation to exchange money denominated in one

currency into another currency at a pre-agreed exchange rate on a specified date (see [53]).

The option that gives you a right to purchase something is called call option, to sell

something is a put option. There are two main types of options: European options and

American options. A holder of American option can exercise the option at any time before

the expiration date. An owner of European option can exercise only at the expiration time.

Options have an advantage over forward (futures) contracts: while protecting against a

downside risk (if the trend goes against you, the investor does not exercise the option), they
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do not stop the investor from profiting from unexpected upward movements of the foreign

exchange rates. In other words, the investor who buys a call option anticipates that asset

price will increase, for example, in the Forex market that the EURO/USD exchange rate

will go up, so that at the expiration date he/she can buy the asset at the strike price K and

sell it at the spot price S. His/her gain is then max(0,S-K). If the spot price decreases to

less than the strike price K, the option is not exercised.

The person who buys a put option expects that asset price will decrease (or for example in

Forex market EURO/USD exchange rate goes down), so that at the expiration date he/she

can sell the asset at the strike price K and buy it at the spot price S. His/her gain is then

max(0,K-S). If the spot price increases to more than the strike price K, the option is not

exercised.

4.2 Pure currency contracts

Suppose there are two currencies: the domestic currency (say US dollars), and the foreign

currency (EUROs). Denote the spot exchange rate at time t by St. By definition St is quoted

as:

Spot exchange rate St =
Units of domestic currency

Unit of foreign currency
.

We assume now that the domestic and foreign interest rates rd, rf are deterministic

constants; Bd
t , B

f
t are the riskless asset prices in domestic and foreign currencies respectively.

We model the spot exchange rateusing geometric Brownian motion. Then we have the

following dynamics for St:

dSt = StαSdt+ StσSdWt. (4.4)

Here Wt is a Brownian motion under the objective probability measure P ; αS, σS are deter-
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ministic constants. The dynamics of Bd
t , B

f
t are given by

dBd
t = rdB

d
t dt, (4.5)

dBf
t = rfB

f
t dt. (4.6)

A T-claim ( a financial derivative) is any stochastic variable Z = Φ(S(T )), where Φ is a

some given deterministic function.

A European call option is an example of T-claim and allows the holder to exercise the

option, (i.e., to buy), only on the option expiration date T . It has the following value at

time T:

Z = max(ST −K, 0). (4.7)

The foreign currency plays the same role as a domestic stock with a continuous dividend.

We shall prove this below.

We shall use the following assumption: all markets are frictionless and liquid. All holdings

of the foreign currency are invested in the foreign riskless asset, i.e. they will evolve according

to the dynamics (4.6), (see [6], Chapter 17).

Using the standard theory of derivatives we have the following risk neutral valuation

formula

Π(t, Z) = e−rd(T−t)EQ
t,S[Φ(S(T ))], (4.8)

where Q is a risk-neutral martingale measure.

The solution to the SDE (4.4) is

St = S0e
(αS−1/2σ2

S)t+σSWt . (4.9)

The possibility of buying the foreign currency and investing it at the foreign short rate of

interest, is equivalent to the possibility of investing in a domestic asset with a price process
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B̃f
t = Bf

t St, where the dynamics of B̃f
t are given by

dB̃f
t = B̃f

t (αt + rft )dt+ B̃f
t σtdWt. (4.10)

Using the Girsanov theorem with

θt =
αS + rf − rd

σS

the risk neutral Q-dynamics of B̃f
t are given by

dB̃f
t = rdB̃fdt+ B̃fσSdW

∗
t , (4.11)

where W ∗ is a is a Q-Wiener process.

Using (4.5) and (4.11), Itô’s formula (see Theorem 3.2) and the fact that

St =
B̃f

Bf

we have the following dynamics for St under Q:

dSt = St(rd − rf ) + StσSdW
∗
t . (4.12)

Theorem 4.1 (see [6], Chapter 17). The arbitrage free price Π(t,Φ) for the T-claim

Z = Φ(ST ) is given by Π(t,Φ) = F (t, St) where

F (t, s) = e−rd(T−t)EQ
t,s[Φ(ST )], (4.13)

where Q-dynamics of St are given by (4.12) and St = s is the initial condition.

This result follows directly from the fact that ST e
−rd(T−t) is a martingale (see Girsanov’s

theorem, Theorem 3.3 ).

Alternatively, F (t, s) can be obtained as the solution to the boundary value problem

∂F

∂t
+ s(rd − rf )

∂F

∂s
+

1

2
s2σ2

S

∂2F

∂s2
− rdF = 0; (4.14)

with the boundary condition F (T, s) = Φ(s).
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As a result, foreign currency can be treated exactly as a stock with a continuous dividend.

So, the price of the European call, Z = max[ST −K, 0], on the foreign currency, is given by

the modified Black-Scholes formula (see [6], Chapter 17):

F (t, s) = se−rf (T−t)K[d1]− e−rd(T−t)K[d2], (4.15)

where

d1(t, x) =
1

σS
√
T − t

{
log
( x
K

)
+

(
rd − rf +

1

2
σ2
S

)
(T − t)

}
, (4.16)

d2(t, s) = d1(t, s)− σS
√
T − t. (4.17)

In this section the market also includes a domestic equity with price Sdt , and a foreign

equity with a price Sft . We shall model the equity dynamics using geometric Brownian

motion. Now, there are three risky assets in our market: St, S
f
t , S

d
t . As a result a three-

dimensional Brownian motion is used to model the market:

The dynamic model of the entire economy, under the objective measure P, is as follows

(see [6], Chapter 17):

dSt = StαSdt+ StσSdWt, (4.18)

dSdt = Sdt αddt+ Sdt σddWt, (4.19)

dSft = Sft αfdt+ Sft σfdWt, (4.20)

dBd
t = rdB

d
t dt (4.21)

dBf
t = rfB

f
t dt. (4.22)
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Here Wt = [W 1
t W 2

t W 3
t ]T is a a three-dimensional Wiener process, consisting of three

independent Brownian motions; σ is a 3× 3 matrix of the following form:

σ =


σS

σd

σf

 =


σS1 σS2 σS3

σd1 σd2 σd3

σf1 σf2 σf3

 (4.23)

and is invertible. There are the following types of T -contracts (see [6], Chapter 17):

1) A European foreign equity call, struck in the foreign currency, i.e. an option to buy

one unit of the foreign equity at the strike price of K units of the foreign currency. The

value of this claim at the date of expiration is, expressed in the foreign currency, is

Zf = max[SfT −K, 0]. (4.24)

Expressed in terms of the domestic currency the value of the claim at T is:

Zd = STmax[SfT −K, 0]. (4.25)

2) A European foreign equity call, struck in domestic currency, i.e. a European option

to buy one unit of the foreign equity at time T , by paying K units of the domestic currency.

Expressed in domestic terms the price of this claim is given by

Zd = max[STS
f
T −K, 0]. (4.26)

3) An exchange option, which gives the right to exchange one unit of the domestic equity

for one unit of the foreign equity. The corresponding claim, expressed in terms of the

domestic currency, is

Zd = max[STS
f
T − S

d
T , 0]. (4.27)

In the general case, a T-claim has the following form

Z = Φ
(
ST , S

d
T , S

f
T

)
,
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where Z is measured in the domestic currency.

Similarly to (4.13) we shall use the following risk-neutral valuation formula:

F (t, s, sd, sf ) = e−rd(T−t)EQ
t,s,sd,sf

[Φ(ST )], (4.28)

where Sdt = sd, Sft = sf is an initial condition.

The market defined in (4.18)-(4.22) is equivalent to a market consisting of the components

Sd, S̃f , B̃f , Bd, where

B̃f
t = Bf

t St, (4.29)

S̃ft = Sft St. (4.30)

Using (4.29), (4.30) we can derive from (4.18)-(4.22) the following equivalent equations

modeling the FX market (see [6],Chapter 17):

dSdt = Sdt αddt+ Sdt σddWt, (4.31)

dS̃ft = S̃ft (αf + αS + σfσ
T
S )dt+ S̃ft (σf + σS)dWt, (4.32)

dB̃f
t = B̃f

t (αS + rf )dt+ B̃f
t σSdWt (4.33)

dBd
t = rdB

d
t dt. (4.34)

Sdt , S
f
t , B

f
t can be interpreted as the prices of domestically traded assets. Similarly to

(4.10), (4.11) we can proceed to the risk-neutral measure in (4.31)-(4.34), (see [6], Chapter

17):

dSdt = Sdt rddt+ Sdt σddW
∗
t , (4.35)
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dS̃ft = S̃ft rddt+ S̃ft (σf + σS)dW ∗
t , (4.36)

dB̃f
t = B̃f

t rddt+ B̃f
t σSdW

∗
t , (4.37)

dSt = St(rd − rf )dt+ StσSdW
∗
t , (4.38)

dSft = Sft (rf − σfσTs )dt+ Sft σfdW
∗
t . (4.39)

Theorem 4.2 (see [6], Chapter 17). The arbitrage free price Π(t,Φ) for the T -claim

Z = Φ(ST , S
d
T , S̃

f
T )

is given by Π(t,Φ) = F (t, s, sd, sf ) where

F (t, s, sd, sf ) = e−rd(T−t)EQ
t,s,sd,sf

[Φ(ST , S
d
T , S̃

f
T )], (4.40)

where the Q-dynamics are given by (4.35)-(4.39).

Alternatively F (t, s, sd, sf ) can be obtained as a solution to the boundary value problem

∂F

∂t
+ s(rd − rf )

∂F

∂s
+ sdrd

∂F

∂sd
+ s̃frd

∂F

∂s̃f
+

1

2

{
s2‖σS‖2∂

2F

∂s2
+ (sd)2‖σd‖2 ∂2F

∂(sd)2
+ (s̃f )2

(
‖σf‖2 + ‖σS‖2 + 2σfσ

T
S

) ∂2F

∂(s̃f )2

}
+

sdsσdσ
T
S

∂2F

∂s̃d∂s
+ s̃fs(σfσ

T
S + ‖σS‖2)

∂2F

∂s̃f∂s
+

sds̃f (σdσ
T
f + σdσ

T
S )

∂2F

∂s̃d∂s̃f
− rdF = 0; (4.41)

with a boundary condition F (T, s, sd, sf ) = Φ(s, sd, s̃f ).

Theorem 4.3 (see [6], Chapter 17). The arbitrage free price Π(t,Φ) for the T -claim

Z = Φ(ST , S
d
T , S

f
T )
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is given by Π(t,Φ) = F (t, s, sd, sf ) where

F (t, s, sd, sf ) = e−rd(T−t)EQ
t,s,sd,sf

[Φ(ST , S
d
T , S

f
T )], (4.42)

where the Q-dynamics are given by (4.35)-(4.39).

Alternatively F (t, s, sd, sf ) can be obtained as a solution of the boundary value problem

∂F

∂t
+ s(rd − rf )

∂F

∂s
+ sdrd

∂F

∂sd
+ sf (rf − σfσTS )

∂F

∂sf
+

1

2

{
s2‖σS‖2∂

2F

∂s2
+ (sd)2‖σd‖2 ∂2F

∂(sd)2
+ (sf )2 ∂2F

∂(sf )2

}
+

sdsσdσ
T
S

∂2F

∂sd∂s
+ sfsσfσ

T
S

∂2F

∂sf∂s
+ sdsfσdσ

T
f

∂2F

∂sd∂sf
− rdF = 0; (4.43)

with a boundary condition F (T, s, sd, sf ) = Φ(s, sd, sf ).
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Chapter 5

Currency option pricing. Main results

5.1 Currency option pricing for general Lévy processes

Let (Ω,F ,P) be a complete probability space with a probability measure P. Consider a

continuous-time, finite-state Markov chain ξ = {ξt}0≤t≤T on (Ω,F ,P) with a state space S,

the set of unit vectors (e1, · · · , en) ∈ Rn with a rate matrix Π1. The dynamics of the chain

are given by:

ξt = ξ0 +

∫ t

0

Πξudu+Mt ∈ Rn, (5.1)

where M = {Mt, t ≥ 0} is a Rn-valued martingale with respect to (F ξt )0≤t≤T , the P-

augmentation of the natural filtration (Ft)0≤t≤T , generated by the Markov chain ξ. Consider

a Markov-modulated Merton jump-diffusion which models the dynamics of the spot FX rate,

given by the following stochastic differential equation (in the sequel SDE, see [8]):

dSt = St−
(
µtdt+ σtdWt + (eZt− − 1)dNt

)
. (5.2)

Here µt is drift parameter; Wt is a Brownian motion, σt is the volatility; Nt is a Poisson

Process with intensity λt, e
Zt−−1 is the amplitude of the jumps, given the jump arrival time.

The distribution of Zt has a density ν(x), x ∈ R. The parameters µt, σt, λt are modeled using

the finite state Markov chain:

µt :=< µ, ξt >, µ ∈ Rn
+;

σt :=< σ, ξt >, σ ∈ Rn
+;

λt :=< λ, ξt >, λ ∈ Rn
+. (5.3)

1In our numerical simulations we consider three-state Markov chain and calculate elements in Π using
Forex market EURO/USD currency pair
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The solution of (5.74) is St = S0e
Lt , (where S0 is the spot FX rate at time t = 0). Here Lt

is given by the formula:

Lt =

∫ t

0

(µs − 1/2σ2
s)ds+

∫ t

0

σsdWs +

∫ t

0

Zs−dNs. (5.4)

There is more than one equivalent martingale measure for this market driven by a Markov-

modulated jump-diffusion model. We shall define the regime-switching generalized Esscher

transform to determine a specific equivalent martingale measure.

Using Itô’s formula we can derive a stochastic differential equation for the discounted

spot FX rate. To define the discounted spot FX rate we need to introduce domestic and

foreign riskless interest rates for bonds in the domestic and foreign currency.

The domestic and foreign interest rates (rdt )0≤t≤T , (rft )0≤t≤T are defined using the Markov

chain (ξt)0≤t≤T (see [8]):

rdt = 〈rd, ξt〉, rd ∈ Rn
+,

rft = 〈rf , ξt〉, rf ∈ Rn
+.

The discounted spot FX rate is:

Sdt = exp

(∫ t

0

(rds − rfs )ds

)
St, 0 ≤ t ≤ T. (5.5)

Using (5.76), the differentiation formula, see Elliott et al. (1982, [12]) and the stochastic

differential equation for the spot FX rate (5.74) we find the stochastic differential equation

for the discounted discounted spot FX rate:

dSdt− = Sdt−(rdt − r
f
t + µt)dt+ Sdt−σtdWt + Sdt−(eZt− − 1)dNt. (5.6)

To derive the main results consider the log spot FX rate

Yt = log

(
St
S0

)
.

Using the differentiation formula:
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Yt = Ct + Jt,

where Ct, Jt are the continuous and jump part of Yt. They are given in (5.78), (5.79):

Ct =

∫ t

0

(
rds − rfs + µs

)
ds+

∫ t

0

σsdWs, (5.7)

Jt =

∫ t

0

Zs−dNs. (5.8)

Let (FYt )0≤t≤T denote the P-augmentation of the natural filtration (Ft)0≤t≤T , generated

by Y . For each t ∈ [0, T ] set Ht = FYt ∨ F
ξ
T . Let us also define two families of regime

switching parameters

(θcs)0≤t≤T , (θJs )0≤t≤T : θmt =< θm, ξt >, θm = (θm1 , ..., θ
m
n ) ⊂ Rn, m = {c, J}.

Define a random Esscher transform Qθc,θJ ∼ P on Ht using these families of parameters

(θcs)0≤t≤T , (θJs )0≤t≤T (see [8], [13], [15] for details):

Lθ
c,θJ

t =
dQθc,θJ

dP

∣∣∣∣
Ht

=: (5.9)

exp
(∫ t

0
θcsdCs +

∫ t
0
θJs−dJs

)
E
[
exp

(∫ t
0
θcsdCs +

∫ t
0
θJs−dJs

) ∣∣∣∣F ξt ] .
The explicit formula for the density Lθ

c,θJ

t of the Esscher transform is given in the following

theorem. A similar statement is proven for the log-normal distribution in [8]. The formula

below can be obtained by another approach, considered by Elliott and Osakwe ([14]).

Theorem 5.1. For 0 ≤ t ≤ T the density Lθ
c,θJ

t of Esscher transform defined in (5.9) is

given by

Lθ
c,θJ

t = exp

(∫ t

0

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
× (5.10)

exp

(∫ t

0

θJs−Zs−dNs −
∫ t

0

λs

(∫
R
eθ
J
s xν(dx)− 1

)
ds

)
.
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In addition,the random Esscher transform density Lθ
c,θJ

t (see (5.9), (5.10)) is an expo-

nential (Ht)0≤t≤T martingale and satisfies the following SDE:

dLθ
c,θJ

t

Lθ
c,θJ

t−

= θctσtdWt + (e
θJt−Zt− − 1)dNt − λt

(∫
R
eθ
J
t xν(dx)− 1

)
dt. (5.11)

Proof of Theorem 5.1. The compound Poisson Process, driving the jumps∑Nt
0 (eZs− − 1) and the Brownian motion Wt are independent processes. Consequently:

E
[
exp

(∫ t

0

θcsdCs +

∫ t

0

θJs−dJs

) ∣∣∣∣F ξt ]=

E
[
exp

(∫ t

0

θcs(µs − 1/2σ2
s)ds+

∫ t

0

θcsσsdWs)

)∣∣∣∣F ξt ]E [exp

(∫ t

0

θJs−Zs−dNs

)∣∣∣∣F ξt ] . (5.12)

Let us calculate:

E
[
exp

(∫ t

0

θJs−Zs−dNs

)∣∣∣∣F ξt ] .
Write

Γt := exp

(∫ t

0

αs−dNs

)
, αs = θJsZs.

Using the differentiation rule (see [12]) we obtain the following representation of Γt:

Γt = Γ0 +MJ
t +

∫
]0,t]

Γs

∫
R
(eαs − 1)ν(dx)λsds, (5.13)

where

MJ
t =

∫
]0,t]

Γs−(eαs − 1)dNs−
∫

]0,t]

Γs

∫
R
(eαs − 1)ν(dx)λsds

is a martingale with respect to F ξt . Using this fact and (5.83) we obtain:

E
[
exp

(∫ t

0

θJsZs−dNs

)∣∣∣∣F ξt ] = exp

(∫ t

0

λs

(∫
R
eθ
J
s xν(dx)− 1.

)
ds

)
(5.14)

We have from the differentiation rule:

E
[
eu

∫ t
0 σsdWs

]
= exp

{
1

2
u2

∫ t

0

σ2
sds

}
, (5.15)

where σt is the volatility of a market.
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Substituting (5.14) and (5.15) into (5.12) we obtain:

E
[
exp

(∫ t

0

θcsdCs +

∫ t

0

θJs−dJs

) ∣∣∣∣F ξt ]=

exp

(∫ t

0

θcs(µs − 1/2σ2
s)ds+

1

2

∫ t

0

(θcsσs)
2ds)

)
exp

(∫ t

0

λs

(∫
R
eθ
J
s xν(dx)− 1

)
ds

)
. (5.16)

Substituting (5.16) into the expression for Lθ
c,θJ

t in (5.9) we obtain:

Lθ
c,θJ

t = exp

(∫ t

0

θcs(µs − 1/2σ2
s)ds+

∫ t

0

θcsσsdWs)

)
exp

(∫ t

0

θJs−Zs−dNs

)
× (5.17)[

exp

(∫ t

0

θcs(µs − 1/2σ2
s)ds+

1

2

∫ t

0

(θcsσs)
2ds)

)
exp

(∫ t

0

λs

(∫
R
eθ
J
s xν(dx)− 1

)
ds

)]−1

=

exp

(∫ t

0

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
×

exp

(∫ t

0

θJs−Zs−dNs −
∫ t

0

λs

(∫
R
eθ
J
s xν(dx)− 1

)
ds

)
.

If we represent Lθ
c,θJ

t in the form Lθ
c,θJ

t = eXt (see (5.17)) and apply differentiation rule

we obtain (5.11). It follows from (5.11) that Lθ
c,θJ

t is a martingale. �

We shall derive the following condition for the discounted spot FX rate ((5.76)) to be

martingale. These conditions will be used to calculate the risk-neutral Esscher transform

parameters (θc,∗s )0≤t≤T , (θJ,∗s )0≤t≤T and give to the measure Q. Then we shall use these values

to find the no-arbitrage price of European call currency derivatives.

Theorem 5.2. Let the random Esscher transform be defined by (5.9). Then the mar-

tingale condition (for Sdt , see (5.76)) holds if and only if the Markov modulated parameters

(θct , θ
J
t , 0 ≤ t ≤ T ) satisfy for all 0 ≤ t ≤ T the condition:

rft − rdt + µt + θctσ
2
t + λθ,Jt kθ,Jt = 0. (5.18)

Here the random Esscher transform intensity λθ,Jt of the Poisson Process and the main

percentage jump size kθ,Jt are, respectively, given by

λθ,Jt = λt

∫
R
eθ
J
s xν(dx), (5.19)
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kθ,Jt =

∫
R e

(θJt +1)xν(dx)∫
R e

θJt xν(dx)
− 1, (5.20)

as long as
∫
R e

θJt xν(dx) < +∞,
∫
R e

(θJt +1)xν(dx) < +∞.

Proof of Theorem 5.2. The martingale condition for the discounted spot FX rate Sdt

is

Eθc,θJ [Sdt |Hu] = Sdu, t ≥ u. (5.21)

To derive this condition a Bayes’ formula is used:

Eθc,θJ [Sdt |Hu] =
E[Lθ

c,θJ

t Sdt |Hu]

E[Lθ
c,θJ

t |Hu]
, (5.22)

taking into account that Lθ
c,θJ

t is a martingale with respect to Hu, so:

E
[
Lθ

c,θJ

t

∣∣∣∣Hu

]
= Lθ

c,θJ

u . (5.23)

Using formula (5.76) for the solution of the SDE for the spot FX rate, we obtain an

expression for the discounted spot FX rate in the following form:

Sdt = Sdu exp

(∫ t

u

(rfs − rds + µs − 1/2σ2
s)ds+

∫ t

u

σsdWs +

∫ t

u

Zs−dNs

)
, t ≥ u. (5.24)

Then, using (5.10), (5.24) we can rewrite(5.93) as:

E
[
Lθ

c,θJ

t

Lθ
c,θJ
u

Sdt

∣∣∣∣Hu

]
= Sdu E

[
exp

(∫ t

u

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
× (5.25)

exp

(∫ t

u

θJs−Zs−dNs −
∫ t

u

λs

(∫
R
eθ
J
s xν(dx)− 1

)
ds

)
×

exp

(∫ t

u

(rfs − rds + µs − 1/2σ2
s)ds+

∫ t

u

σsdWs +

∫ t

u

Zs−dNs

)
|Hu

]
=

Sdu E
[
exp

(∫ t

u

(θcs + 1)σsdWs − 1/2

∫ t

u

((θcs + 1)σs)
2ds

)
× (5.26)

exp

(∫ t

u

(rFs − rDs + µs + θcsσ
2
s)ds

)
exp

(∫ t

u

λs
(∫

R
eθ
J
s xν(dx)− 1

)
ds

)
|Hu

]
×
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E
[
exp

(∫ t

u

(θcs + 1)Zs−dNs

)
|Hu

]
.

Using the expression for the characteristic function of Brownian motion (see (5.15)) we

obtain:

E
[
exp

(∫ t

u

(θcs + 1)σsdWs − 1/2

∫ t

u

((θcs + 1)σs)
2ds

)
|Hu

]
= 1. (5.27)

From (5.14) we obtain:

E
[
exp

(∫ t

u

(θcs + 1)Zs−dNs

)
|Hu

]
= exp

(∫ t

0

λs

(∫
R
e(θJs +1)xν(dx)− 1

)
ds

)
. (5.28)

Substituting (5.27), (5.28) into (5.26) we obtain finally:

E
[
Lθ

c,θJ

t

Lθ
c,θJ
u

Sdt

∣∣∣∣Hu

]
= Sdu exp

(∫ t

u

(rfs − rds + µs + θcsσ
2
s)ds

)
× (5.29)

exp

(
−
∫ t

u

λs
(∫

R
eθ
J
s xν(dx)− 1

)
ds

)
exp

(∫ t

u

λs
(∫

R
e(θJs +1)xν(dx)− 1

)
ds

)
.

From (5.29) we obtain the martingale condition for discounted spot FX rate:

rft − rdt + µt + θctσ
2
t + λt

[∫
R
e(θJs +1)xν(dx)−

∫
R
eθ
J
s xν(dx)

]
= 0. (5.30)

We now prove, that under the Esscher transform the new Poisson process intensity and mean

jump size are given by (5.19), (5.20).

Note that LJt =
∫ t

0
Zs−dNs is the jump part of Lévy process in the formula (5.75) for the

solution of SDE for spot FX rate. We have:

EQ

[
eL

J
t

]
=

∫
Ω

exp

(∫ t

0

Zs−dNs

)
Lθ

c,∗,θJ,∗

t (ω)dP (ω), (5.31)

where P is the initial probability measure and Q is the new risk-neutral measure. Substi-

tuting the density of Esscher transform (5.10) into (5.31) we have (see also [14]):

EQ

[
eL

J
t

]
= EP

[
exp

(∫ t

0

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
− (5.32)

∫ t

0

λs

(∫
R
eθ
J
s xν(dx)− 1

)
ds

)]
EP

[
exp

(∫ t

0

(θJs + 1)Zs−dNs

)]
.
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Using (5.14) we obtain:

EP

[
exp

(∫ t

0

(θJs + 1)Zs−dNs

)]
= exp

(∫ t

0

λs

(∫
R
e(θJs +1)xν(dx)− 1

)
ds

)
. (5.33)

Substitute (5.33) into (5.32) and taking into account the characteristic function of Brownian

motion (see (5.15)) we obtain:

EQ

[
eL

J
t

]
= exp

(∫ t

0

λs

(∫
R
eθ
J
s xν(dx)

[∫
R e

(θJs +1)xν(dx)∫
R e

θJs xν(dx)
− 1

])
ds

)
. (5.34)

Returning to the initial measure P, but with different λθ,Jt , kθ,Jt ,we have:

Eλ̃,ν̃
[
eL

J
t

]
= exp

(∫ t

0

λθ,Js

(∫
R
exν̃(dx)− 1

)
ds

)
. (5.35)

Formula (5.19) for the new intensity λθ,Jt of Poisson process follows directly from (5.34),

(5.35). The new density of jumps ν̃ is defined from (5.35) by the following formula:∫
R e

(θJt +1)xν(dx)∫
R e

θJt xν(dx)
=

∫
R
exν̃(dx). (5.36)

We now calculate the new mean jump size given the jump arrival with respect to the new

measure Q:

kθ,Jt =

∫
Ω

(eZ(ω)−1)dν̃(ω) =

∫
R
(ex−1)ν̃(dx) =

∫
R
exν̃(dx)−1 =

∫
R e

(θJt +1)xν(dx)∫
R e

θJt xν(dx)
−1, (5.37)

where the new measure ν̃(dx) is defined by the formula (5.36).

We can rewrite the martingale condition (5.30) for the discounted spot FX rate in the

following form:

rft − rdt + µt + θctσ
2
t + λθ,Jt kθ,Jt = 0, (5.38)

where λθ,Jt , kθ,Jt are given by (5.19), (5.20) respectively. �

If we put kθ,Jt = 0, we obtain the following formulas for the regime switching Esscher

transform parameters yielding the martingale condition (5.38):

θc,∗t =
rdt − r

f
t − µt
σ2
t

, (5.39)
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θJ,∗t :

∫
R e

(θJ,∗t +1)xν(dx)∫
R e

θJ,∗t xν(dx)
= 1. (5.40)

In the next section we shall apply these formulas (5.39), (5.40) to the log-double exponential

distribution of jumps.

We now proceed to the general formulas for European calls (see [8], [30]). For the

European call currency options with a strike price K and the time of expiration T the

price at time zero is given by:

Π0(S,K, T, ξ) = Eθc,∗,θJ,∗
[
e−

∫ T
0 (rDs −rFs )ds(ST −K)+ | F ξt

]
. (5.41)

Let Ji(t, T ) denote the occupation time of ξ in state ei over the period [t, T ], t < T . We

introduce several new quantities that will be used in future calculations:

Rt,T =
1

T − t

∫ T

0

(rds − rfs )ds =
1

T − t

n∑
i=1

(rdi − r
f
i )Ji(t, T ), (5.42)

where Ji(t, T ) :=
∫ T
t
< ξs, ei > ds;

Ut,T =
1

T − t

∫ T

t

σ2
sds =

1

T − t

n∑
i=1

σ2
i Ji(t, T ); (5.43)

λθ
∗J
t,T =

1

T − t

n∑
i=1

λθ
∗J
i Ji(t, T ); (5.44)

λθ
∗

t,T =
1

T − t

∫ T

t

(1 + kθ
∗J
s )λθ

∗J
s ds =

1

T − t

n∑
i=1

(1 + kθ
∗J
i )λθ

∗J
i Ji(t, T ); (5.45)

V 2
t,T,m = Ut,T +

mσ2
J

T − t
, (5.46)

where σ2
J is the variance of the distribution of the jumps.

Rt,T,m = Rt,T −
1

T − t

∫ T

t

λθ
∗J
s kθ

∗J
s ds+

1

T − t

∫ T

0

log(1 + kθ
∗J
s )

T − t
ds = (5.47)
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Rt,T −
1

T − t

n∑
i=1

λθ
∗J
i kθ

∗J
i +

m

T − t

n∑
i=1

log(1 + kθ
∗J
i )

T − t
Ji(t, T ),

where m is the number of jumps in the interval [t, T ], n is the number of states of the Markov

chain ξ.

Note, that in our considerations all these general formulas (5.42)-(5.47) mentioned above

are simplified by the fact that: kθ
∗J
t = 0 with respect to the new risk-neutral measure Q with

Esscher transform parameters given by (5.39), (5.40). From the pricing formula in Merton

(1976, [30]) let us define (see [8])

Π0(S,K, T ;R0,T , U0,T , λ
θ∗

0,T ) =
∞∑
m=0

e−Tλ
θ∗,J
0,T (Tλθ

∗
0,T )m

m!
× (5.48)

BS0(S,K, T, V 2
0,T,m, R0,T,m)

where BS0(S,K, T, V 2
0,T,m, R0,T,m) is the standard Black-Scholes price formula (see [6]) with

initial spot FX rate S, strike price K, risk-free rate r, volatility square σ2 and time T to

maturity.

Then, the European style call option pricing formula takes the form (see [8]):

Π0(S,K, T ) =

∫
[0,t]n

Π0(S,K, T ;R0,T , U0,T , λ
Θ∗,J

0,T )× (5.49)

ψ(J1, J2, ..., Jn)dJ1...dJn,

where ψ(J1, J2, ..., Jn) is the joint probability distribution density for the occupation time,

which is determined by the following characteristic function (See [14]):

E
[
exp
{
〈u, J(t, T )〉

}]
= 〈exp{(Π + diag(u))(T − t)} · E[ξ0], 1〉, (5.50)

where 1 ∈ Rn is a vector of ones, u = (u1, ..., un) is a vector of transform variables, J(t, T ) :=

{J1(t, T ), ..., Jn(t, T )}.

5.2 Currency option pricing for log-double exponential processes

The log-double exponential distribution for Zt− (eZt− − 1 are the jumps in (5.74)), plays a

fundamental role in mathematical finance, describing the spot FX rate movements over long
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period of time. It is defined by the following formula of the density function:

ν(x) = pθ1e
−θ1x

∣∣∣∣
x≥0

+(1− p)θ2e
θ2x

∣∣∣∣
x<0

. (5.51)

The mean value of this distribution is:

mean(θ1, θ2, p) =
p

θ1

− 1− p
θ2

. (5.52)

The variance of this distribution is:

var(θ1, θ2, p) =
2p

θ2
1

+
2(1− p)

θ2
2

−
(
p

θ1

− 1− p
θ2

)2

. (5.53)

The double-exponential distribution was first investigated by Kou in [25]. He also gave

economic reasons to use such a type of distribution in Mathematical Finance. The double

exponential distribution has two interesting properties: the leptokurtic feature (see [22], §3;

[25] ) and the memoryless property (the probability distribution of X is memoryless if for

any non-negative real numbers t and s, we have Pr(X > t + s|X > t) = Pr(X > s), see for

example [48]). The last property is inherited from the exponential distribution.

A statistical distribution has the leptokurtic feature if there is a higher peak (higher

kurtosis) than in a normal distribution. This high peak and the corresponding fat tails mean

the distribution is more concentrated around the mean than a normal distribution, and it

has a smaller standard deviation. See details for fat-tail distributions and their applications

to Mathematical Finance in [47]. A leptokurtic distribution means that small changes have

less probability because historical values are centered by the mean. However, this also means

that large fluctuations have greater probabilities within the fat tails.

In [28] this distribution is applied to model asset pricing under fuzzy environments.

Several advantages of models including log-double exponential distributed jumps over other

models described by Lévy processes (see [25]) include:

1) The model describes properly some important empirical results from stock and foreign

currency markets. The double exponential jump-diffusion model is able to reflect the lep-

tokurtic feature of the return distribution. Moreover, the empirical tests performed in [37]
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Figure 5.1: Double-exponential distribution (green) vs. normal distribution (red), mean=0,
dev=2

suggest that the log-double exponential jump-diffusion model fits stock data better than the

log-normal jump-diffusion model.

2) The model gives explicit solutions for convenience of computations.

3) The model has an economical interpretation.

4) It has been suggested from extensive empirical studies that markets tend to have both

overreaction and underreaction to good or bad news. The jump part of the model can be

considered as the market response to outside news. In the absence of outside news the asset

price (or spot FX rate) changes in time as a geometric Brownian motion. Good or bad news

(outer strikes for the FX market in our case) arrive according to a Poisson process, and the

spot FX rate changes in response according to the jump size distribution. Since the double

exponential distribution has both a high peak and heavy tails, it can be applied to model

both the overreaction (describing the heavy tails) and underreaction (describing the high

peak) to outside news.

5) The log double exponential model is self-consistent. In Mathematical Finance, it

means that a model is arbitrage-free.

The family of regime switching Esscher transform parameters is defined by (5.39), (5.40).
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Let us define θJ,∗t , (the first parameter θc,∗t has the same formula as in general case) by:∫
R
e(θJs +1)x

(
pθ1e

−θ1x
∣∣∣∣
x≥0

+(1− p)θ2e
θ2x

∣∣∣∣
x<0

)
dx = (5.54)

∫
R
eθ
J
s x

(
pθ1e

−θ1x
∣∣∣∣
x≥0

+(1− p)θ2e
θ2x

∣∣∣∣
x<0

)
dx.

We require an additional restriction for the convergence of the integrals in (5.54):

−θ2 < θJt < θ1. (5.55)

Then (5.54) can be rewritten in the following form:

pθ1

θ1 − θJt − 1
+

(1− p)θ2

θ2 + θJt + 1
=

pθ1

θ1 − θJt
+

(1− p)θ2

θ2 + θJt
. (5.56)

Solving (5.56) we arrive at the quadratic equation:

(θJt )2(pθ1 − (1− p)θ2) + θJt (pθ1 + 2θ1θ2 − (1− p)θ2)+ (5.57)

pθ1θ
2
2 + pθ2θ

2
1 − θ2θ

2
1 + θ1θ2 = 0.

If pθ1 − (1− p)θ2 6= 0 we have two solutions and one of them satisfies restriction (5.55):

θJt = −pθ1 + 2θ1θ2 − (1− p)θ2

2(pθ1 − (1− p)θ2)
± (5.58)

√
(pθ1 + 2θ1θ2 − (1− p)θ2)2 − 4(pθ1 − (1− p)θ2)(pθ1θ2

2 + pθ2θ2
1 − θ2θ2

1 + θ1θ2)

2(pθ1 − (1− p)θ2)
.

Then the Poisson process intensity (see (5.19)) is:

λθ,Jt = λt

(
pθ1

θ1 − θJt
+

(1− p)θ2

θ2 + θJt

)
. (5.59)

The new mean jump size (see (5.20)) is:

kθ,Jt = 0 (5.60)

as in the general case.
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When we proceed to a new risk-neutral measure Q we have a new density of jumps ν

ν̃(x) = p̃θ1e
−θ1x

∣∣∣∣
x≥0

+(1− p̃)θ2e
θ2x

∣∣∣∣
x<0

. (5.61)

The new probability p̃ can be calculated using (5.36):

pθ1
θ1−θJt −1

+ (1−p)θ2
θ2+θJt +1

pθ1
θ1−θJt

+ (1−p)θ2
θ2+θJt

=
p̃θ1

θ1 − 1
+

(1− p̃θ2)

θ2 + 1
. (5.62)

From (5.62) we obtain an explicit formula for p̃:

p̃ =

pθ1
θ1−θJt −1

+
(1−p)θ2
θ2+θ

J
t +1

pθ1
θ1−θJt

+
(1−p)θ2
θ2+θ

J
t

− θ2
θ2+1

θ1
θ1−1
− θ2

θ2+1

. (5.63)

5.3 Currency option pricing for log-normal processes

Log-normal distribution of jumps with µJ the mean, σJ the deviation (see [49]), and its

applications to currency option pricing was investigated in [8]. More details of these distri-

butions and other distributions applicable for the Forex market can be found in [50]. We give

here a sketch of results from [8] to compare them with the case of the log-double exponential

distribution of jumps discussed in this article. The main goal of our paper is a generalization

of this result for arbitrary Lévy processes. The results, provided in [8] are as follows:

Theorem 5.3. For 0 ≤ t ≤ T the density Lθ
c,θJ

t of the Esscher transform defined in

(5.9) is given by

Lθ
c,θJ

t = exp

(∫ t

0

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
× (5.64)

exp

(∫ t

0

θJs−Zs−dNs −
∫ t

0

λs

(
eθ
J
s µJ+1/2(θJs σJ )2 − 1

)
ds

)
,

where µJ , σJ are the mean value and deviation of jumps, respectively. In addition, the random

Esscher transform density Lθ
c,θJ

t , (see (5.9), (5.10)), is an exponential (Ht)0≤t≤T martingale

and satisfies the following SDE

dLθ
c,θJ

t

Lθ
c,θJ

t−

= θctσtdWt + (e
θJt−Zt− − 1)dNt − λt

(
eθ
J
t µJ+1/2(θJt σJ )2 − 1

)
dt. (5.65)
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Theorem 5.4. Let the random Esscher transform be defined by (5.9). Then the mar-

tingale condition (for Sdt , see (5.76)) holds if and only if the Markov modulated parameters

(θct , θ
J
t , 0 ≤ t ≤ T ) satisfy for all 0 ≤ t ≤ T the condition:

rfi − rdi + µi + θciσ
2
i + λθ,Ji kθ,Ji = 0 for all i, 1 ≤ i ≤ Λ (5.66)

where the random Esscher transform intensity λθ,Ji of the Poisson Process and the mean

percentage jump size kθ,Ji are respectively given by

λθ,Ji = λie
θJi µJ+1/2(θJi σJ )2 , (5.67)

kθ,Ji = eµJ+1/2σ2
J+θJi σ

2
J − 1 for all i. (5.68)

The regime switching parameters satisfying the martingale condition (5.66) are given by the

following formulas: θc,∗i is the same as in (5.39),

θJ,∗i = −µJ + 1/2σ2
J

σ2
J

for all i. (5.69)

With such a value of a parameter θJ,∗i :

kθ
∗,J
i = 0, λθ

∗,J
i = λi

(
− µJ

2σ2
J

+
σ2
J

8

)
for all i. (5.70)

Note, that these formulas (5.67)-(5.70) follow directly from our formulas for the case of

general Lévy process, (see (5.19),(5.20), (5.40)). In particular, the fact that kθ
∗,J
i = 0 by

substituting (5.40) into the expression for kθ,Ji in (5.20). From (5.40) we derive:∫
R e

(θJ,∗i +1)xν(dx)∫
R e

θJ,∗i xν(dx)
= 1 (5.71)

As ∫
R
eθ
J,∗
i xν(dx) =

1√
2πσ2

J

∫
R
eθ
J,∗
i xe

− (x−µJ )2

2σ2
J dx = e

1
2

(σJθ
J,∗
i )2+θJ,∗i µJ (5.72)

we obtain from (5.71) the following equality:

e
1
2

(σJ (θJ,∗i +1))2+(θJ,∗i +1)µJ = e
1
2

(σJθ
J,∗
i )2+θJ,∗i µJ . (5.73)
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The expression for the value of the Esscher transform parameter θJ,∗i in (5.69) follows im-

mediately from (5.73). Inserting this value of θJ,∗i into the expression for λθ,Ji in (5.19) we

obtain the formula (5.70).

In the numerical simulations, we assume that the hidden Markov chain has three states:

up, down, side-way, and the corresponding rate matrix is calculated using real Forex data

for the thirteen-year period: from January 3, 2000 to November 2013. To calculate all

probabilities we use the Matlab script (see the Appendix).

5.4 Currency option pricing for Merton jump-diffusion processes

Consider a Markov-modulated Merton jump-diffusion which models the dynamics of the spot

FX rate, given by the following stochastic differential equation (in the sequel SDE, see [8]):

dSt = St−
(
µtdt+ σtdWt + (Zt− − 1)dNt

)
, Zt > 0. (5.74)

Here µt is the drift parameter; Wt is a Brownian motion, σt is the volatility; Nt is a Poisson

Process with intensity λt, Zt−−1 is the amplitude of the jumps, given the jump arrival time.

The distribution of Zt has a density ν(x), x ∈ R.

The solution of (5.74) is St = S0e
Lt , (where S0 is the spot FX rate at time t = 0). Here

Lt is given by the formula:

Lt =

∫ t

0

(µs − 1/2σ2
s)ds+

∫ t

0

σsdWs +

∫ t

0

logZs−dNs. (5.75)

Note, that for the most of well-known distributions (normal, exponential distribution

of Zt, etc) Lt is not a Lévy process (see definition of Lévy process in [34], the condition

L3), since logZt− → −∞ for small Zt, but probability of jumps with even 0 amplitude is a

positive constant, depending on a type of distribution. We call the process (5.75) as Merton

jump-diffusion process (see [30], Section 2, formulas 2, 3)

There is more than one equivalent martingale measure for this market driven by a Markov-

modulated jump-diffusion model. We shall define the regime-switching generalized Esscher
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transform to determine a specific equivalent martingale measure.

Using Ito’s formula we can derive a stochastic differential equation for the discounted

spot FX rate. To define the discounted spot FX rate we need to introduce domestic and

foreign riskless interest rates for bonds in the domestic and foreign currency.

The discounted spot FX rate is:

Sdt = exp

(∫ t

0

(rds − rfs )ds

)
St, 0 ≤ t ≤ T. (5.76)

Using (5.76), the differentiation formula, see Elliott et al. (1982, [12]) and the stochastic

differential equation for the spot FX rate (5.74) we find the stochastic differential equation

for the discounted discounted spot FX rate:

dSdt− = Sdt−(rdt − r
f
t + µt)dt+ Sdt−σtdWt + Sdt−(Zt− − 1)dNt. (5.77)

To derive the main results consider the log spot FX rate

Yt = log

(
St
S0

)
.

Using the differentiation formula:

Yt = Ct + Jt,

where Ct, Jt are the continuous and diffusion part of Yt. They are given in (5.78), (5.79):

Ct =

∫ t

0

(
rds − rfs + µs

)
ds+

∫ t

0

σsdWs, (5.78)

Jt =

∫ t

0

logZs−dNs. (5.79)

The similar to the Theorem 5.1 statement is true in this case.

Theorem 5.5. For 0 ≤ t ≤ T density Lθ
c,θJ

t of Esscher transform defined in (5.9) is

given by

Lθ
c,θJ

t = exp

(∫ t

0

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
× (5.80)
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exp

(∫ t

0

θJs− logZs−dNs −
∫ t

0

λs

(∫
R+

xθ
J
s ν(dx)− 1

)
ds

)
.

In addition, the random Esscher transform density Lθ
c,θJ

t (see (5.9), (5.80)) is an expo-

nential (Ht)0≤t≤T martingale and admits the following SDE

dLθ
c,θJ

t

Lθ
c,θJ

t−

= θctσtdWt + (Z
θJt−
t− − 1)dNt − λt

(∫
R+

xθ
J
t ν(dx)− 1

)
dt. (5.81)

Proof of Theorem 5.5. The compound Poisson Process, driving jumps
∑Nt

0 (Zi − 1), and

the Brownian motion Wt are independent processes. As a result:

E
[
exp

(∫ t

0

θcsdCs +

∫ t

0

θJs−dJs

) ∣∣∣∣F ξt ]=

E
[
exp

(∫ t

0

θcs(µs − 1/2σ2
s)ds+

∫ t

0

θcsσsdWs)

)∣∣∣∣F ξt ]E [exp

(∫ t

0

θJs− logZs−dNs

)∣∣∣∣F ξt ] .
(5.82)

Let us calculate:

E
[
exp

(∫ t

0

θJs− logZs−dNs

)∣∣∣∣F ξt ] .
Write

Γt := exp

(∫ t

0

αs−dNs

)
, αs = θJs logZs.

Using the differentiation rule (see [12]) we obtain the following representation of Γt:

Γt = Γ0 +MJ
t +

∫
]0,t]

Γs

∫
R
(eαs − 1)ν(dx)λsds, (5.83)

where

MJ
t =

∫
]0,t]

Γs−(eαs − 1)dNs−
∫

]0,t]

Γs

∫
R
(eαs − 1)ν(dx)λsds

is a martingale with respect to F ξt . Using this fact and (5.83) we obtain:

E
[
exp

(∫ t

0

θJs logZs−dNs

)∣∣∣∣F ξt ] = exp

(∫ t

0

λs

(∫
R
xθ

J
s ν(dx)− 1

)
ds

)
. (5.84)

56



We have from the differentiation rule:

E
[
eu

∫ t
0 σsdWs

]
= exp

{
1

2
u2

∫ t

0

σ2
sds

}
(5.85)

where σt is the volatility of a market. Substituting (5.84) and (5.85) into (5.82) we obtain:

E
[
exp

(∫ t

0

θcsdCs +

∫ t

0

θJs−dJs

) ∣∣∣∣F ξt ]=

exp

(∫ t

0

θcs(µs − 1/2σ2
s)ds+

1

2

∫ t

0

(θcsσs)
2ds)

)
exp

(∫ t

0

λs

(∫
R+

xθ
J
s ν(dx)− 1

)
ds

)
(5.86)

Substituting (5.86) to the expression for Lθ
c,θJ

t in (5.9) we have:

Lθ
c,θJ

t = exp

(∫ t

0

θcs(µs − 1/2σ2
s)ds+

∫ t

0

θcsσsdWs)

)
exp

(∫ t

0

θJs− logZs−dNs

)
× (5.87)

[
exp

(∫ t

0

θcs(µs − 1/2σ2
s)ds+

1

2

∫ t

0

(θcsσs)
2ds)

)
exp

(∫ t

0

λs

(∫
R+

xθ
J
s ν(dx)− 1

)
ds

)]−1

=

exp

(∫ t

0

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
×

exp

(∫ t

0

θJs− logZs−dNs −
∫ t

0

λs

(∫
R+

xθ
J
s ν(dx)− 1

)
ds

)
.

If we present Lθ
c,θJ

t in the form Lθ
c,θJ

t = eXt (see (5.87)) and and apply differentiation

rule we obtain SDE (5.81). It follows from (5.81) that Lθ
c,θJ

t is a martingale. �

We shall derive the following condition for the discounted spot FX rate ((5.76)) to be

martingale. These conditions will be used to calculate the risk-neutral Esscher transform

parameters (θc,∗t )0≤t≤T , (θJ,∗t )0≤t≤T and give to the measure Q. Then we shall use these values

to find the no-arbitrage price of European call currency derivatives.

Theorem 5.6. Let the random Esscher transform be defined by (5.9). Then the mar-

tingale condition (for Sdt , see (5.76)) holds if and only if Markov modulated parameters

(θct , θ
J
t , 0 ≤ t ≤ T ) satisfy for all 0 ≤ t ≤ T the condition:

rft − rdt + µt + θctσ
2
t + λθ,Jt kθ,Jt = 0 (5.88)
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where the random Esscher transform intensity λθ,Jt of the Poisson Process and the main

percentage jump size kθ,Jt are respectively given by

λθ,Jt = λt

∫
R+

xθ
J
s ν(dx), (5.89)

kθ,Jt =

∫
R+
x(θJt +1)ν(dx)∫

R+
xθ

J
t ν(dx)

− 1 (5.90)

as long as
∫
R+
xθ

J
t +1ν(dx) < +∞.

Proof of Theorem 5.6. The martingale condition for the discounted spot FX rate Sdt

Eθc,θJ [Sdt |Hu] = Sdu, t ≥ u. (5.91)

To derive such a condition Bayes formula is used:

Eθc,θJ [Sdt |Hu] =
E[Lθ

c,θJ

t Sdt |Hu]

E[Lθ
c,θJ

t |Hu]
, (5.92)

taking into account that Lθ
c,θJ

t is a martingale with respect to Hu, so:

E
[
Lθ

c,θJ

t

∣∣∣∣Hu

]
= Lθ

c,θJ

u . (5.93)

Using formula (5.76) for the solution of the SDE for the spot FX rate, we obtain an

expression for the discounted spot FX rate in the following form:

Sdt = Sdu exp

(∫ t

u

(rfs − rds + µs − 1/2σ2
s)ds+

∫ t

u

σsdWs +

∫ t

u

logZs−dNs

)
, t ≥ u. (5.94)

Then, using (5.80), (5.94) we can rewrite(5.93) in the following form:

E
[
Lθ

c,θJ

t

Lθ
c,θJ
u

Sdt

∣∣∣∣Hu

]
= Sdu E

[
exp

(∫ t

u

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
× (5.95)

exp

(∫ t

u

θJs− logZs−dNs −
∫ t

u

λs

(∫
R+

xθ
J
s ν(dx)− 1

)
ds

)
×

exp

(∫ t

u

(rfs − rds + µs − 1/2σ2
s)ds+

∫ t

u

σsdWs +

∫ t

u

logZs−dNs

)
|Hu

]
=
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Sdu E
[
exp

(∫ t

u

(θcs + 1)σsdWs − 1/2

∫ t

u

((θcs + 1)σs)
2ds

)
× (5.96)

exp

(∫ t

u

(rfs − rds + µs + θcsσ
2
s)ds

)
exp

(∫ t

u

λs
(∫

R
eθ
J
s xν(dx)− 1

)
ds

)
|Hu

]
×

E
[
exp

(∫ t

u

(θcs + 1) logZs−dNs

)
|Hu

]
.

Using expression for characteristic function of Brownian motion (see (5.85)) we obtain:

E
[
exp

(∫ t

u

(θcs + 1)σsdWs − 1/2

∫ t

u

((θcs + 1)σs)
2ds

)
|Hu

]
= 1. (5.97)

Using (5.84) we have:

E
[
exp

(∫ t

u

(θcs + 1) logZs−dNs

)
|Hu

]
= exp

(∫ t

0

λs

(∫
R+

x(θJs +1)ν(dx)− 1

)
ds

)
. (5.98)

Substituting (5.97), (5.98) into (5.96) we obtain finally:

E
[
Lθ

c,θJ

t

Lθ
c,θJ
u

Sdt

∣∣∣∣Hu

]
= Sdu exp

(∫ t

u

(rfs − rds + µs + θcsσ
2
s)ds

)
× (5.99)

exp

(
−
∫ t

u

λs
(∫

R+

xθ
J
s ν(dx)− 1

)
ds

)
exp

(∫ t

u

λs
(∫

R+

x(θJs +1)ν(dx)− 1
)
ds

)
.

From (5.99) we get the martingale condition for the discounted spot FX rate:

rft − rdt + µt + θctσ
2
t + λt

[∫
R+

x(θJs +1)ν(dx)−
∫
R+

xθ
J
s ν(dx)

]
= 0. (5.100)

Prove now, that under the Esscher transform the new Poisson process intensity and the mean

jump size are given by (5.89), (5.90).

Note that LJt =
∫ t

0
logZs−dNs is the jump part of Lévy process in the formula (5.75) for

the solution of SDE for spot FX rate. We have:

EQ

[
eL

J
t

]
=

∫
Ω

exp

(∫ t

0

logZs−dNs

)
Lθ

c,θJ

t (ω)dP(ω), (5.101)

where P is the initial probability measure, Q is a new risk-neutral measure. Substituting

the density of the Esscher transform (5.80) into (5.101) we have:

EQ

[
eL

J
t

]
= EP

[
exp

(∫ t

0

θcsσsdWs − 1/2

∫ t

0

(θcsσs)
2ds

)
− (5.102)
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∫ t

0

λs

(∫
R+

xθ
J
s ν(dx)− 1

)
ds

)]
EP

[
exp

(∫ t

0

(θJs + 1) logZs−dNs

)]
.

Using (5.84) we obtain:

EP

[
exp

(∫ t

0

(θJs + 1) logZs−dNs

)]
= exp

(∫ t

0

λs

(∫
R+

x(θJs +1)ν(dx)− 1

)
ds

)
. (5.103)

Putting (5.103) to (5.102) and taking into account characteristic function of Brownian motion

(see (5.85)) we have:

EQ

[
eL

J
t

]
= exp

(∫ t

0

λs

(∫
R+

xθ
J
s ν(dx)

[∫
R+
x(θJs +1)ν(dx)∫

R+
xθJs ν(dx)

− 1

])
ds

)
. (5.104)

Return to the initial measure P, but with different λθ,Jt , kθ,Jt . We obtain:

Eλ̃,ν̃
[
eL

J
t

]
= exp

(∫ t

0

λθ,Js

(∫
R+

xν̃(dx)− 1

)
ds

)
. (5.105)

Formula (5.89) for the new intensity λθ,Jt of the Poisson process follows directly from (5.104),

(5.105). The new density of jumps ν̃ is defined from (5.104), (5.105) by the following formula:

∫
R+
x(θJt +1)ν(dx)∫

R+
xθ

J
t ν(dx)

=

∫
R+

xν̃(dx). (5.106)

Calculate now the new mean jump size given jump arrival with respect to the new measure

Q:

kθ,Jt =

∫
Ω

(Z(ω)− 1)dν̃(ω) =

∫
R+

(x− 1)ν̃(dx) =

∫
+

xν̃(dx)− 1 =

∫
R+
x(θJt +1)ν(dx)∫

R+
xθ

J
t ν(dx)

− 1. (5.107)

So, we can rewrite martingale condition for the discounted spot FX rate in the form in (5.88),

where λθ,Jt , kθ,Jt are given by (5.89), (5.90) respectively. �

Using (5.100) we have the following formulas for the families of the regime switching

parameters satisfying the martingale condition (5.88):

θc,∗t =
K0 + rdt − r

f
t − µt

σ2
t

, (5.108)
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θJ,∗t :

∫
R+

x(θJ,∗t +1)ν(dx)−
∫
R+

xθ
J,∗
t ν(dx) =

K0

λt
, (5.109)

where K0 is any constant. Note again, that the choice for these parameters is not unique.

In the next section we shall apply these formulas (5.108), (5.109) to the exponential

distribution of jumps.

5.5 Currency option pricing for exponential processes

Because of the restriction Zs− > 0 we can not consider a double-exponential distribution of

jumps (see [25], [28]) in
∫ t

0
logZs−dNs. Let us consider exponential distribution instead. It

is defined by the following formula of density function:

ν(x) = θe−θx
∣∣∣∣
x≥0

. (5.110)

The mean value of this distribution is:

mean(θ) =
1

θ
. (5.111)

The variance of this distribution is:

var(θ) =
1

θ2
. (5.112)

The exponential distribution like the double-exponential distribution has also memoryless-

ness property.

Let us derive the martingale condition and formulas for the regime-switching Esscher

transform parameters in case of jumps driven by the exponential distribution. Using the

martingale condition for discounted spot FX rate (5.100) we obtain:

rft − rdt + µt + θctσ
2
t + λt

[
Γ(θJt + 2)

θθ
J
t +1

− Γ(θJt + 1)

θθ
J
t

]
= 0, (5.113)

where we have such a restriction (and in the sequel): θJt > −1.
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Using (5.89), (5.90) the random Esscher transform intensity λθ,Jt of the Poisson Process

and the main percentage jump size kθ,Jt are respectively given by

λθ,Jt = λt
Γ(θJt + 1)

θθ
J
t

, (5.114)

kθ,Jt =
θJt + 1

θ
− 1. (5.115)

Using (5.109) we have the following formula for the families of regime switching Esscher

transform parameters satisfying martingale condition (5.113):

θJ,∗t :

[
Γ(θJ,∗t + 2)

θθ
J,∗
t +1

− Γ(θJ,∗t + 1)

θθ
J,∗
t

]
=
K0

λt
. (5.116)

Let us simplify (5.116):

θJ,∗t :
Γ(θJ,∗t + 1)

θθ
J,∗
t

(
θJ,∗t + 1

θ
− 1

)
=
K0

λt
. (5.117)

The formula for θc,∗t in this case is the same as in (5.108).

With respect to to such values of the regime switching Esscher transform parameters we

have from (5.114), (5.115), (5.117):

kJ,∗t = K0/λ
J,∗
t . (5.118)

When we proceed to a new risk-neutral measure Q we have the new θ̃ in (5.110). Using

(5.106) we obtain:

θ̃ =
θ

θJt + 1
. (5.119)

From (5.119) we arrive at an interesting conclusion: θ̃ depends on time t. So, now

the distribution of jumps changes depending on time (it was not the case before for the log

double-exponential distribution, where θ̃ was actually a constant, see [8]). So, the compound

Poisson Process depends not only on a number of jumps, but on moments of time when they

arrive in this case. The same statement is true for the mean jump size in (5.115). But the

pricing formulas (5.41)-(5.49) are applicable to this case as well.
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Chapter 6

Numerical Results

In the numerical simulations, we assume that the hidden Markov chain has three states: up,

down, side-way, and corresponding probability matrix is calculated using real Forex data for

a thirteen-year period: from January 3, 2000 to November 2013. To calculate all probabilities

we use Matlab script:

Probab_matrix_calc1(candles_back_up,candles_back_down, delta_back_up,

delta_back_down,candles_up,candles_down, delta_up, delta_down )

(see Appendix for details).

6.1 Log-double exponential distribution

In the Figures 6.1-6.3 we shall provide numerical simulations for the case when the amplitude

of jumps is described by a log-double exponential distribution. These three graphs show a

dependence of the European-call option price against S/K, where S is the initial spot FX

rate, K is the strike FX rate for a different maturity time T in years: 0.5, 1, 1.2. We use

the following function in Matlab:

Draw( S_0,T,approx_num,steps_num, teta_1,teta_2,p,mean_normal,sigma_normal)

to draw these graphs1. The arguments of this function are: S0 is the starting spot FX

rate to define first point in S/K ratio, T is the maturity time, approx num describes

the number of attempts to calculate the mean for the integral in the European call option

pricing formula (see Section 2, (5.49)), steps num denotes the number of time subintervals

1Matlab scripts for all plots are available upon request
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to calculate the integral in (5.49); teta 1, teta 2, p are θ1, θ2, p parameters in the log-

double-exponential distribution (see Section 3, (5.51)). mean normal, sigma normal are the

mean and deviation for the log-normal distribution (see Section 4). In these three graphs:

θ1 = 10, θ2 = 10, p = 0.5; mean normal = 0, sigma normal = 0.1.

Blue line denotes the log-double exponential, green line denotes the log-normal, red-line

denotes the plot without jumps. The S/K ratio ranges from 0.8 to 1.25 with a step 0.05; the

option price ranges from 0 to 1 with a step 0.1. The number of time intervals: num =10.

From these three plots we conclude that it is important to incorporate jump risk into the

spot FX rate models. Described by Black-Scholes equations without jumps, red line on a plot

is significantly below both blue and green lines which stand for the log-double exponential

and the log-normal distributions of jumps, respectively.

All three plots have the same mean value 0 and approximately equal deviations for both

types of jumps: log-normal and log-double exponential. We investigate the case when it does

not hold (see Figures 6.4-6.6).

As we can see, the log-double exponential curve moves up in comparison with the log-

normal and without jumps option prices.

If we fix the value of the θ2 parameter in the log-double exponential distribution with

S/K = 1 the corresponding plot is given in Figure 6.7.

Figure 6.8 represents a plot of the dependence of the European-call option price against

values of the parameters θ1, θ2 in a log-double exponential distribution, again S/K = 1.
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Figure 6.1: S0 = 1, T = 0.5, θ1 = 10, θ2 = 10, p = 0.5,mean normal = 0, sigma normal = 0.1

Figure 6.2: S0 = 1, T = 1.0, θ1 = 10, θ2 = 10, p = 0.5,mean normal = 0, sigma normal = 0.1

65



Figure 6.3: S0 = 1, T = 1.2, θ1 = 10, θ2 = 10, p = 0.5,mean normal = 0, sigma normal = 0.1

Figure 6.4: S0 = 1, T = 0.5, θ1 = 5, θ2 = 10, p = 0.5,mean normal = 0, sigma normal = 0.1
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Figure 6.5: S0 = 1, T = 1.0, θ1 = 5, θ2 = 10, p = 0.5,mean normal = 0, sigma normal = 0.1

Figure 6.6: S0 = 1, T = 1.2, θ1 = 5, θ2 = 10, p = 0.5,mean normal = 0, sigma normal = 0.1
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Figure 6.7: S0 = 1, T = 0.5, θ2 = 10, p = 0.5

Figure 6.8: Option price of European Call: S0 = 1, T = 0.5, p = 0.5
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6.2 Exponential distribution

In the following figures we shall provide numerical simulations for the case when amplitude

of jumps is described by the exponential distribution. These plots show the dependence of

a European-call option price on S/K, where S is the initial spot FX rate (S = 1 in our

simulations), K is a strike FX rate for various maturity times T : 0.5, 1, 1.5 in years and

various values of a parameter θ : 2.5, 3.5, 5 in the exponential distribution. The blue line

stands for the exponential distribution of jumps, the red-line is for the dynamics without

jumps. From these plots we can make a conclusion that it is important to incorporate a

jump risk into the spot FX rate models (described by the Black-Scholes equation without

jumps red line on a plot is below the blue line standing for the exponential distributions of

jumps).

T = 0.5, θ = 5 T = 1.0, θ = 5 T = 1.5, θ = 5

Figure 6.9: Option price of European Call: θ = 5

T = 0.5, θ = 3.5 T = 1.0, θ = 3.5 T = 1.5, θ = 3.5

Figure 6.10: Option price of European Call: θ = 3.5
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T = 0.5, θ = 2.5 T = 1.0, θ = 2.5 T = 1.5, θ = 2.5

Figure 6.11: Option price of European Call: θ = 2.5
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Chapter 7

Apendix

Matlab functions for numerical simulations of currency option pricing:

Markov_chain.m

function [ alpha_m, sigma_m, lambda_m, int_rate_d_m, int_rate_f_m, time_matrix ]

=Markov_chain( steps_num)

alpha_state=[0.05 0.02 0.03];

sigma_state=[0.2 0.6 0.2];

lambda_state=[10 20 30];

int_rate_d_state=[0.05 0.03 0.02];

int_rate_f_state= [0.04 0.02 0.01];

trans=[0.5 0.3 0.2;0.25 0.5 0.25; 0.2 0.3 0.5 ];

emis_matrix=1/3*ones(3, 3);

[seq,states] = hmmgenerate(steps_num,trans,emis_matrix);

time_matrix=zeros(3,1);

for i=1:steps_num

time_matrix(states(i))=time_matrix(states(i))+1;

end

for i=1:3

time_matrix(i)= time_matrix(i)/steps_num;

end

for i=1:steps_num

alpha_m(i)=alpha_state(states(i));
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sigma_m(i)=sigma_state(states(i));

lambda_m(i)=lambda_state(states(i));

int_rate_d_m(i)=int_rate_d_state(states(i));

int_rate_f_m(i)=int_rate_f_state(states(i));

end

end

Additional_Param_double_exp.m

function [V, R,Price_normal, Price,Price_no_jumps] =

Additional_Param_double_exp(step_num, time_matrix, teta_1,

teta_2, p,mean_normal,sigma_normal, S, K, T )

A=p*teta_1-(1-p)*teta_2;

B=p*teta_1+2*teta_1*teta_2-(1-p)*teta_2;

C=p*teta_1*teta_2^2+p*teta_2*teta_1^2-teta_2*teta_1^2+teta_2*teta_1;

discrimin=B^2-4*A*C;

if A==0

teta_jump=-C/B;

else

temp=(-B-sqrt(discrimin))/(2*A);

if (temp>-teta_2)&&(temp<teta_1);

teta_jump=temp;

else

temp=(-B+sqrt(discrimin))/(2*A);

teta_jump=temp;
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end

end

%teta_jump=-0.5;

%teta_jump=round(teta_jump*10000)/10000;

sigma_state=[0.2 0.6 0.2];

lambda_state=[10 20 30];

int_rate_d_state=[0.05 0.03 0.02];

int_rate_f_state= [0.04 0.02 0.01];

lambda_m_new=

lambda_state*(p*teta_1/(teta_1-teta_jump)+(1-p)*teta_2/(teta_2+teta_jump));

lambda_m_new_normal=

lambda_state*exp(-mean_normal^2/sigma_normal^2+sigma_normal^2/8);

time_matrix_trans=time_matrix’;

R_T=sum((int_rate_d_state- int_rate_f_state).*time_matrix_trans);

U_T=sum(sigma_state.^2.*time_matrix_trans);

lambda_T=sum(lambda_m_new.*time_matrix_trans);

lambda_T_normal=sum(lambda_m_new_normal.*time_matrix_trans);

%calculate mean and variance for jump with double exponential disribution

mean_jump=p/teta_1-(1-p)/teta_2;

var_jump=2*p/teta_1^2+2*(1-p)/teta_2^2-mean_jump^2;

for i=1:200

V(i)=U_T+(i-1)*var_jump/T;

V_normal(i)=U_T+(i-1)*sigma_normal^2/T;
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R(i)=R_T;

end;

[Call1, Put]=blsprice(S, K, R(1), T, V(1));

Price_no_jumps=Call1;

Price=0;

Price_normal=0;

for m=0:199

[Call, Put] = blsprice(S, K, R(m+1), T, V(m+1));

[Call_normal, Put_normal] = blsprice(S, K, R(m+1), T, V_normal(m+1));

Price=Price+exp(-T*lambda_T)*(T*lambda_T)^m/factorial(m)*Call;

Price_normal=Price_normal+

exp(-T*lambda_T_normal)*(T*lambda_T_normal)^m/factorial(m)*Call_normal;

end

end

Price_real_double_exponential.m

function [Price_Real_normal, Price_Real, Price_Real_no_jumps ] =

Price_real_double_exponential(S, K, T, approx_num,

steps_num, teta_1, teta_2, p)

Price_Real_normal=0;

Price_Real=0;

Price_Real_no_jumps=0;

trans=[0.5 0.3 0.2;0.25 0.5 0.25; 0.2 0.3 0.5 ];

for j=1:approx_num

[ alpha_m, sigma_m, lambda_m, int_rate_d_m, int_rate_f_m, time_matrix] =
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Markov_chain(steps_num);

[V, R, lambda_m_new,Price_normal, Price, Price_no_jumps] =

Additional_Param_double_exp(10, time_matrix, teta_1, teta_2, p, S,K,T );

Price_Real_normal=Price_Real_normal+

Price_Real=Price_Real+Price;

Price_Real_no_jumps= Price_Real_no_jumps+Price_no_jumps;

end

Price_Real=Price_Real/approx_num;

Price_Real_no_jumps=Price_Real_no_jumps/approx_num;

end

Draw.m

function [ output_args ] =

Draw( S,T,approx_num,steps_num, teta_1,teta_2,p,mean_normal,sigma_normal)

points_num=20;

K_array=S*ones(1,points_num);

for i=1:points_num

K_array(i)=K_array(i)*(1.2-i/50);

end;

Price_array_normal=S*ones(1,points_num);

Price_array=S*ones(1,points_num);

Price_array_no_jumps=S*ones(1,points_num);

for i=1:points_num

[Price_Real_normal,Price_Real, Price_Real_no_jumps]=

Price_real_double_exponential(S, K_array(i),
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T,approx_num,steps_num, teta_1, teta_2, p,mean_normal,sigma_normal);

Price_array_normal(i)=Price_Real_normal;

Price_array(i)=Price_Real;

Price_array_no_jumps(i)=Price_Real_no_jumps;

end;

inv_array=ones(1,points_num);

for i=1:points_num

inv_array(i)=S/K_array(i);

end;

hold on;

plot1=plot(inv_array,Price_array_normal,’g-’,’LineWidth’,2);

plot2=plot(inv_array,Price_array,’b-’,’LineWidth’,2);

plot3=plot(inv_array,Price_array_no_jumps,’r-’,’LineWidth’,2);

ylim([0 3]);

hold off;

title(’Option Price of European Call’,’FontWeight’,’bold’);

xlabel(’S/K ratio’,’FontWeight’,’bold’);

ylabel(’Price’,’FontWeight’,’bold’);

end

Draw_teta_1.m

function [ output_args ] = Draw_teta_1( S,T,approx_num,steps_num,

teta_1, teta_2,p,mean_normal,sigma_normal)

points_num=20;

step_teta_1=2;
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K_array=S*ones(1,points_num);

teta_array=S*ones(1,points_num);

for i=1:points_num

teta_array(i)=teta_1+step_teta_1*(i-1);

end

Price_array=S*ones(1,points_num);

for i=1:points_num

[Price_Real_normal,Price_Real, Price_Real_no_jumps]=

Price_real_double_exponential(S, K_array(i),

T,approx_num,steps_num, teta_1+step_teta_1*(i-1),

teta_2, p,mean_normal,sigma_normal);

Price_array(i)=Price_Real;

end;

plot2=plot(teta_array,Price_array,’b-’,’LineWidth’,2);

ylim([0 1]);

title(’Option Price of European Call’,’FontWeight’,’bold’);

xlabel(’teta_1’,’FontWeight’,’bold’);

ylabel(’Price’,’FontWeight’,’bold’);

end

Draw_teta_1_3d.m
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function [ X, Y,Price_array ] =

Draw_teta_1_3d( S,T,approx_num,steps_num,teta_1, teta_2,p,mean_normal,sigma_normal)

points_num=20;

step_teta_1=2;

step_teta_2=2;

K_array=S*ones(1,points_num);

for i=1:points_num

teta_1_array(i)=teta_1+step_teta_1*(i-1);

teta_2_array(i)=teta_2+step_teta_2*(i-1);

end

Price_array=S*ones(points_num,points_num);

for i=1:points_num

for j=1:points_num

[Price_Real_normal,Price_Real, Price_Real_no_jumps]=

Price_real_double_exponential(S, K_array(i), T,

approx_num,steps_num, teta_1+step_teta_1*(i-1),

teta_2+step_teta_2*(j-1), p,mean_normal,sigma_normal);

Price_array(i,j)=Price_Real;

end

end;

[X Y]=meshgrid( teta_1_array, teta_2_array);

plot2=surfl(X,Y,Price_array);
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xlabel(’teta_1’,’FontWeight’,’bold’);

ylabel(’teta_2’,’FontWeight’,’bold’);

zlabel(’Price’,’FontWeight’,’bold’);

shading interp

colormap(blue);

title(’Option Price of European Call’,’FontWeight’,’bold’);

end

Draw_teta.m

function [ teta_array, Price_array] = Draw_teta( S,T,approx_num,steps_num, teta,K_0)

points_num=40;

K_array=S*ones(1,points_num);

Price_array=S*ones(1,points_num);

for i=1:points_num

[Price_Real, Price_Real_no_jumps, teta_exp_real]=

Price_real_double_exponential_teta(S, K_array(i), T,approx_num,steps_num, teta,K_0);

Price_array(i)=Price_Real;

teta_array(i)=teta_exp_real;

end;

for i = 2:points_num

key = teta_array(i);

key1=Price_array(i);

j = i - 1;

while j >= 1&& teta_array(j) > key

teta_array(j+1)= teta_array(j);
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Price_array(j+1)=Price_array(j);

j = j - 1;

end

teta_array(j+1)= key;

Price_array(j+1)=key1;

end

plot2=plot(teta_array, Price_array,’b-’,’LineWidth’,2);

ylim([0 0.1]);

title(’Option Price of European Call’,’FontWeight’,’bold’);

xlabel(’Mean Esscher transform theta’,’FontWeight’,’bold’);

ylabel(’Price’,’FontWeight’,’bold’);

end

Additional Functions used in this script Draw_teta.m

Price_real_double_exponential_teta.m

function [ Price_Real, Price_Real_no_jumps, teta_exp_real ] =

Price_real_double_exponential_teta(S, K, T, approx_num,steps_num, teta, K_0)

Price_Real=0;

Price_Real_no_jumps=0;
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teta_exp_real=0;

trans=[0.5 0.3 0.2;0.25 0.5 0.25; 0.2 0.3 0.5 ];

for j=1:approx_num

[ alpha_m, sigma_m, lambda_m, int_rate_d_m, int_rate_f_m, time_matrix] =

Markov_chain(steps_num);

[V, R, Price, Price_no_jumps, teta_exp] =

Additional_Param_double_exp_teta(10, time_matrix, teta, K_0, S, K, T);

Price_Real=Price_Real+Price;

Price_Real_no_jumps= Price_Real_no_jumps+Price_no_jumps;

teta_exp_real=teta_exp_real+teta_exp;

end

Price_Real=Price_Real/approx_num;

Price_Real_no_jumps=Price_Real_no_jumps/approx_num;

teta_exp_real=teta_exp_real/approx_num;

end

Additional_Param_double_exp_teta.m

function [V, R, Price,Price_no_jumps,teta_exp] =

Additional_Param_double_exp_teta(step_num, time_matrix, teta, K_0, S, K, T )

sigma_state=[0.2 0.6 0.2];

lambda_state=[10 20 30];

int_rate_d_state=[0.05 0.03 0.02];

int_rate_f_state= [0.04 0.02 0.01];

syms x;

for i=1:3

86



teta_J(i)=double(solve(gamma(x+1)/(teta^x)*((x+1)/teta-1)-K_0/lambda_state(i), x));

k_new(i)=(teta_J(i)+1)/teta-1;

lambda_m_new(i)=K_0/((teta_J(i)+1)/teta-1);

end;

time_matrix_trans=time_matrix’;

teta_exp=sum(teta_J.*time_matrix_trans);

R_T=sum((int_rate_d_state- int_rate_f_state).*time_matrix_trans);

U_T=sum(sigma_state.^2.*time_matrix_trans);

lambda_T=sum(lambda_m_new.*time_matrix_trans);

lambda_T_neutral=sum(lambda_m_new.*(k_new+1).*time_matrix_trans);

%calculate mean and variance for jump with exponential disribution

mean_jump=1/teta;

var_jump=1/teta^2;

for i=1:200

V(i)=U_T+(i-1)*var_jump/T;

R(i)=R_T-K_0+(i-1)*sum(log(1+k_new).*time_matrix_trans);

end;

[Call1, Put]=blsprice(S, K, R(1), T, V(1));

Price_no_jumps=Call1;

Price=0;

for m=0:199

[Call, Put] = blsprice(S, K, R(m+1), T, V(m+1));

Price=Price+exp(-T*lambda_T_neutral)*(T*lambda_T_neutral)^m/factorial(m)*Call;

end

end
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Matlab function to calculate probability matrix for Markov chain modeling

cross rates of currency pairs in Forex market.

We assume that Markov chain has only three states: ”trend up”, ”trend down”, ”trend

sideway”. Such choice of states is justified by numerous articles for FX market(see www.mql5.com).

In a file MaxDataFile open.CSV there are open prices of EURO/ESD currency pair of

japanese candles over 13 year period. This file was generated in the platform MT5 using

MQL5 programming language.

function [ Probab_matrix ] =Probab_matrix_calc1(candles_back_up, candles_back_down,

delta_back_up, delta_back_down, candles_up,candles_down, delta_up, delta_down )

Probab_matrix=zeros(3,3);

m_open=csvread(’MaxDataFile_open.CSV’);

[size_open temp]=size(m_open);

m_before=zeros(1,size_open);

upper_border=size_open-max(candles_up, candles_down);

delta_up=delta_up/10000;

delta_down=delta_down/10000;

count_up=0;

count_down=0;

count_sideway=0;

beforeborder=max(candles_back_up, candles_back_down)+1;

for i=beforeborder:size_open

if (m_open(i)-m_open(i-candles_back_up)>=delta_up)

m_before(i)=1;

end

if (m_open(i-candles_back_down)-m_open(i)>=delta_down)
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m_before(i)=-1;

end

end;

for i=1:upper_border

if(m_before(i)==1)

if(m_open(i+candles_up)-m_open(i)>=delta_up)

Probab_matrix(1,1)= Probab_matrix(1,1)+1;

else

if(m_open(i)-m_open(i+candles_down)>=delta_down)

Probab_matrix(1,2)= Probab_matrix(1,2)+1;

else

Probab_matrix(1,3)= Probab_matrix(1,3)+1;

end

end

end

if(m_before(i)==-1)

if(m_open(i+candles_up)-m_open(i)>=delta_up)

Probab_matrix(2,1)= Probab_matrix(2,1)+1;

else

if(m_open(i)-m_open(i+candles_down)>=delta_down)

Probab_matrix(2,2)= Probab_matrix(2,2)+1;

else

Probab_matrix(2,3)= Probab_matrix(2,3)+1;

end

end

end
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if(m_before(i)==0)

if(m_open(i+candles_up)-m_open(i)>=delta_up)

Probab_matrix(3,1)= Probab_matrix(3,1)+1;

else

if(m_open(i)-m_open(i+candles_down)>=delta_down)

Probab_matrix(3,2)= Probab_matrix(3,2)+1;

else

Probab_matrix(3,3)= Probab_matrix(3,3)+1;

end

end

end

end

count_up=sum(Probab_matrix(1,:));

count_down=sum(Probab_matrix(2,:));

count_sideway=sum(Probab_matrix(3,:));

for j=1:3

Probab_matrix(1,j)= Probab_matrix(1,j)/count_up;

Probab_matrix(2,j)= Probab_matrix(2,j)/count_down;

Probab_matrix(3,j)= Probab_matrix(3,j)/count_sideway

end

end

For example run in Matlab:

[ Probab_matrix ] = Probab_matrix_calc1(30, 30, 10, 10, 30, 30, 10, 10);

Probability matrix is as follows:
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

up down sideway

0.4408 0.4527 0.1065

0.4818 0.4149 0.1033

0.4820 0.4119 0.1061


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