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Abstract 

This thesis investigates the ability of a hovering bicopter to be self-stabilized in pitch and 

roll without the use of electronic sensors in those directions.  A mathematical model of 

aircraft dynamics is developed in which the non-cyclic proprotors are allowed to precess 

freely as gyroscopes since these are known to embody stabilizing elements.  In the prior 

art of bicopter oblique active tilting (OAT), the proprotors generate gyroscopic control 

moments only when forcibly tilted, and stabilization in pitch and roll requires electronic 

attitude sensors and actuator servos.  A self-stabilized system, however, would reduce 

cost, stresses and energy consumption, and could be scalable without limit.  Through 

analysis of the characteristic equations it is found that aircraft angular positions cannot be 

so stabilized, but their velocities can be, maintaining the benefits listed above. This 

stability is similar to that due the flybar damping system of early Bell helicopters and still 

useful in small models today.  
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Epigraph 

 

 “If I were to build a flying machine I would plan to sustain it by means of a number of 

rapidly revolving inclined planes… Such a machine would rise from the ground as a bird 

rises.  Then I would drive the machine ahead with a propeller.” 

Thomas A. Edison, 1909 

Inventor  

 

“Edison invents, while I discover what is already there to be uncovered.”   

Nikola Tesla, 1891 

Engineer, Inventor  

 

 



 

1 

 

Chapter One: Introduction  

 

1.1 Introduction 

This work concerns the improvement of aircraft called convertiplanes which can 

take off vertically, hover, and then fly horizontally at high speed.  In particular, it is part 

of an ongoing effort directed towards uncovering and developing a convertiplane type 

which inherently belongs to both flight realms, consisting as such of congruous dual-use 

components of minimal number.  

In this thesis a bicopter hover control system normally associated with electronic 

stability augmentation is investigated for its natural stabilization capability.  Using 

linearized mathematical models, pitch stability is proven analytically and roll-yaw 

stability is established for a range of parameter values.  It is found that such a system will 

automatically incorporate dynamic control elements (gyroscopic and momentum wheel) 

in hover – thereby increasing control effectiveness in that mode – and static airplane-like 

elements about the same axes in fast forward flight using the same control components.  

This behaviour can be emulated using electronics so is not restricted to just naturally 

stabilized systems.  It is also found that this dual phase control – termed here biphasic 

control – voids the need for control swapping during transition; roll control in hover is 

obtained by the same device and its operation as roll control in fast forward flight.  The 

same is true of yaw.  So, though natural or self-stabilization may or may not be useful on 

its own, its investigation has produced a control prescription for effective operation in the 

two flight realms. 



 

2 

1.2 Background 

1.2.1 Gyroscopic Bicopters:  Oblique Active Tilting (OAT) 

In 1999 the author began experimenting with electric-powered, radio-controlled 

vertical take-off and landing (VTOL) aircraft models, which – as a challenge – were 

restricted to a configuration of two rigid, laterally displaced and tiltable proprotors (non-

cyclic rotors and propellers will be referred to as proprotors in this thesis).  The attraction 

of these aircraft, called bicopters, is their conduciveness to transitioning to and flying in 

airplane mode.  

 It was obvious that stability of a bicopter was achievable using cyclic helicopter 

rotors (the bicopter essentially becoming two helicopters attached together), but the goal 

was to first explore it without this complication and understand why such aircraft were 

not operational.  Control of these models in hover was initially planned as follows: 

1. pitch via collective longitudinal tilting of the proprotors 

2. yaw via differential longitudinal tilting 

3. altitude via collective speed control of the prop motors 

4. roll via differential speed control 

However, the models were unstable in pitch, even with the assistance of 

proportional and derivative feedback sensors of the model‟s attitude (Gress, 2002, 2007).  

There was no apparent damping, and airframe pitching in an opposite direction to 

proprotor longitudinal tilting dominated the behaviour. 

But in 2001 pitch stability was finally achieved by having the proprotors tilt 

obliquely, that is, in (symmetric) directions part-way between longitudinal and lateral.  In 

conjunction with a proportional pitch sensor, the lateral tilting component introduced a 
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gyroscopic pitching moment which damped the aircraft‟s oscillations. And intentional 

oblique tilting by the pilot increased the control power immensely; it generated 

gyroscopically-amplified pitching moments, adding to the conventional thrust vectored 

ones. 

By eliminating cyclic this new stabilization system – termed oblique active tilting 

(OAT) – greatly simplified the rotor heads.  It also allowed the proprotor diameters to be 

reduced and their speeds increased relative to helicopter rotors, thereby eliminating the 

reduction gearboxes as well.  In terms of the number of parts, the models were now much 

closer to airplanes than helicopters.   

 

1.2.2 Pitch Stabilization in OAT 

The OAT system uses two gyroscopes types to stabilize aircraft pitch.  The first is 

the electronic pitch sensor, generally referred to as a “gyro” in the hobby industry – as it 

will be here – but in reality is an oscillating piezo crystal which generates measurable 

coriolis forces when rotated.  Included with it will be a feedback control algorithm, 

usually derivative or proportional – or a combination of both – by which it sends 

corrective instructions to the tilt servos based on the aircraft pitch rate that it measures 

(and angle that it calculates). 

 The second is the mechanical actuator gyroscope – or control effector – which 

consists collectively of the two proprotor tilt servos which receive the instructions sent by 

the piezo gyro, and the prop-motors and proprotors that they tilt.  However, this 

arrangement is somewhat redundant and perhaps unnecessary, as will be discussed in the 

next section.  
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1.3 Self-Stabilization of Bicopters 

 

1.3.1 The Potential for Self-stabilization 

It is well known that a mechanical gyroscope can act as a sensor as well as an 

actuator.  Forcibly tilt a gyroscope about an axis (perpendicular to its spin axis) and it 

will generate a moment about a third axis perpendicular to the first two.  This is the 

actuator feature of a gyroscope, utilized by several stabilization devices, including OAT.   

 But apply a moment to a gyroscope about an axis perpendicular to its spin axis 

and it will precess or tilt – if it is free to do so – about a third axis which is perpendicular 

to the first two. This is the sensor feature of a gyroscope, the precession in turn 

generating a new moment which opposes the originally applied one.  It is only 

approximated in OAT since the proprotor is never free to tilt on its own. 

It was with this understanding that the author questioned the need for the 

electronic piezo gyro, and whether the spinning proprotors couldn‟t be used as both 

actuators and sensors.  Perhaps the proprotors could tilt by themselves and stabilize the 

aircraft.  In 2009 an OAT model was modified by disconnecting the (roll and pitch) piezo 

gyros and replacing the rigid servo linkages with flexible ones, allowing the proprotors to 

tilt on their own.  Holding the model in hand – with proprotors spinning – a resistance to 

rolling and pitching was observed which increased with proprotor speed.  Though the 

model could not be flown as such (it was difficult to stabilize yaw because of the freely-

tilting proprotors), roll and pitch stabilization were clearly discernable – and the 

ramifications very encouraging. If this behaviour could be harnessed in practice then the 

proprotors would no longer have to be actively tilted for stabilization, and the only tilting 
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would be for intentional, directional control.  Such a change could make the control 

method more suitable for full-size aircraft, and perhaps be even beneficial for hobby 

models; it could eliminate the electronic attitude sensors, and reduce stresses, energy 

consumption and associated costs.  It was with these possibilities in mind that the author 

decided to investigate self-stabilization analytically, and to determine the conditions 

under which it may be utilized and implemented. 

 

1.3.2 Merits of Self-stabilization 

More fully, a self-stabilized system could be: 

1. be free of time delays, making for potentially better flight characteristics. 

 

2. be free of  the large stresses associated with forced, active tilting of rigid 

proprotors. In self-stabilization, by definition, the proprotors tilt by themselves. 

3. be lower in energy consumption. 

 

4. be self-adapting to varying flying conditions such as aircraft weight and air 

density. 

 

5. be lower in cost.  The electronic controller constitutes about half the cost of a 

hobby bicopter such as the Nymbus, with the ratio increasing as the model 

becomes smaller. 

6. be automatically scalable. There are limits to scale reduction with electronics 

because of the higher frequencies involved. 

 

As will be seen in later chapters there are further merits; the self-stabilized system 

is self-decoupling in roll and yaw and is stable in fast forward flight. 
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1.3.3 Parallels to Helicopter with Flybar 

It is worth noting that a conventional R/C helicopter with a Bell-Hiller rotor head 

(Figure 1-1) – usually identified by the presence of a flybar - does not require electronic 

attitude sensors and programmed control algorithms for stabilization in pitch and roll. 

 

 

 

 

 

 

 

 

Figure 1-1.  Bell-Hiller helicopter rotor head showing flybar. (Hirobo) 

 

The flybar does not stabilize pitch and roll of the helicopter, however.  It provides 

damping of their motions, slowing them down such that they become manageable by the 

human pilot (Daughady, 1955, Kim, 2004).  The Bell-Hiller system, therefore, is an 

angular velocity stabilization mechanism (Cunha, 2003, Barczyk 2013), and the human 

pilot is an essential element in the stabilization of the pitch and roll angles. 

Other VTOL UAVs types – such as quadcopters or multicopters with 

unarticulated, non-tilting proprotors – do require active electronic stabilization, even for 

just roll and pitch angular velocities.  So, if there was any stabilization system that could 

be considered passive or “natural”, it would be the helicopter‟s Bell-Hiller mechanism.   
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Its existence was partly the inspiration and benchmark for this thesis.  It was one goal of 

the author to determine if a bicopter – a vehicle more conducive than a helicopter to 

hovering in confined areas and to fast forward flight – could possess at least the 

equivalent natural stability of a helicopter. 

 

1.3.4 Initial Embodiment and Self-stabilization in Pitch 

The self-stabilized bicopter concept‟s basic elements are depicted in Figure 1-2 

and consist of a hypothetical hovering aircraft equipped with rotors which can tilt freely 

about oblique axes. 

  

 

 

 

 

 

Figure 1-2.  Free-tilt aircraft top and underside views. 

 

External pitch disturbances applied to a hovering bicopter will cause its spinning 

proprotors to precess laterally if they are allowed to do so.  In turn, a gyroscopic moment 

is created that opposes the original pitching.  If the proprotors are restricted to tilt in 

oblique directions instead – as they are in Figure 1-2 – they will still precess, but now in 

those oblique directions.     

  

Frictionless 
bearings 
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Applying a nose-up pitching moment to the aircraft as shown in Figure 1-3 

will cause the proprotors to  tilt both inward and forward – for the spin directions shown.   

This not only creates gyroscopic moments which resist the pitch disturbance, but 

complementary thrust and drag-torque moments that do as well. 

 

 

 

 

 

 

 

 

 

Figure 1-3.  Top: Free-tilt aircraft hovering undisturbed with rotors level.  Bottom: 

Rotors precessing inward and consequently forward due to externally applied 

moment.  

 

The gyroscopic resisting moments are generated only during the tilting, whereas 

the thrust and drag-torque moments are functions of the tilt angles. These latter moments 

are here termed the static moments.  For this discussion it is assumed that the aircraft‟s 

center of mass is located below the tilt axes such that the thrust moment is in the proper, 

corrective direction. 
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Mex  

For as long as the disturbance is applied, the rotors will continue to precess until 

the static moments counteract it.  At that point a new equilibrium, with the aircraft 

pitched, will be reached.   

The challenges are to determine if this characteristic can be harnessed to enable 

self-stabilization of the aircraft, and whether the pilot can still effect intentional control 

without interfering with this stabilization.   

 

1.3.5 Self-stabilization in Roll  

Here the sequence of events following a roll disturbance is analyzed, and from it 

roll stability is surmised qualitatively. 

If the aircraft with freely tilting proprotors is suddenly subjected to an external 

rolling moment    the proprotors will respond by tilting (precessing) in the directions 

shown in Figure 1-4.  This tilting of course generates gyroscopic moments on the aircraft 

which tend to resist or oppose the rolling moment.  

 

 

 

 

 

 

 

 

Figure 1-4.  Applied external rolling moment       and resulting proprotor tilting. 
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Q1 

Aircraft mass center 

Mex  

If the aircraft had a conventionally low center of mass, then, in terms of thrust 

vectoring, these tilt directions would be wrong – they would exacerbate the rolling of the 

vehicle.   With the center of mass raised as shown in Figure 1-5, however, the thrust 

vector moments would tend to oppose the original roll disturbance. 

 

 

 

 

 

 

 

Figure 1-5.   Static roll stability requires a raised center of mass, the amount of 

which is reduced by the presence of proprotor drag-torques     (    shown). 

 

In actuality, the requirement for a high mass center is not quite so extreme as it is 

tempered by the presence of the proprotor drag torques   .  Their components about the 

aircraft longitudinal axis both oppose the disturbing moment      – the opposition by    

is readily visualized from Figure 1-5.  Therefore the aircraft mass center does not need to 

be raised above the proprotor tilt axes to enable static stability, and therefore the aircraft 

can still be statically stable in pitch per the previous section. 

As a result of the differential tilting initiated by the roll disturbance, the proprotor 

thrust vectors will also begin to yaw the aircraft in the positive direction as shown in 

Figure 1-6 
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Figure 1-6.   Differential tilting initiated by roll disturbance begins to yaw the 

aircraft.  

 

 

It is assumed here that the bicopter contains an onboard yaw gyro, just as radio-

controlled conventional and coaxial helicopters do.  It is also assumed that the gyro 

operates the proprotor speed controls differentially. Justification for inclusion of the gyro 

while maintaining that the aircraft is self-stabilized will be made Chapter 6.   

The gyro, sensing this yawing of the aircraft, will signal drive-motor 1 to speed up 

and 2 to slow down, thereby increasing    and lowering    .  As intended, the resulting 

net torque opposes the yawing motion.  But a consequence of the ensuing speed 

difference is that proprotor thrust      increases and     decreases, which of course 

opposes the original roll disturbance.  Therefore, one can surmise that, with the aid of the 

electronic yaw gyro, roll can be stabilized. 

In summary, the events following a roll disturbance are: 

1. Differential precession of proprotors and generation of gyroscopic moments 

opposing roll disturbance. (This is the dynamic response). 

Q1 

Mex  
 ψ   

z 

1 

2 
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2. From the above tilting, the generation of thrust vector moments and drag-torque 

components that oppose roll disturbance.  The former require a raised aircraft 

mass center.  (these are static stability response). 

3. Yawing of the aircraft due to differential tilts. 

4. Yaw gyro signaling differential motor speeds, thereby generating a net torque 

repressing the yaw. 

5. Consequent generation of thrust differential, which also opposes roll disturbance. 

 

1.3.6 Sequence of Events Following a Yaw Disturbance 

The events following a positive yaw disturbance would be: 

1. Yaw gyro signalling differential motor speeds, thereby generating a net torque 

opposing the yaw disturbance. 

2. Consequent generation of a thrust differential, which creates a (negative) rolling 

moment. 

3. Differential precession of proprotors (in opposite direction to that shown in 

previous section), caused by and opposing the rolling moment in 2. 

4. From tilting in 3, generation of thrust-vector moments and drag-torque 

components opposing rolling moment in 2. 

5. Also from tilting in 3, creation of yawing moment opposing the original yaw 

disturbance. 
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1.4 Objectives 

The objectives of the research presented in this thesis document are to: investigate 

self-stabilization of bicopters analytically and prove it mathematically wherever possible; 

substantiate these proofs with simulations, and to; determine the conditions under which 

self-stabilization may be utilized and implemented. Of equal importance is determining 

how control of the aircraft by the pilot can be implemented without interfering with – or 

being interfered by – the self-stabilization system.   

 

1.5 Organization 

This dissertation is organized as follows:  Chapter 2 contains a literature review of 

VTOL aircraft control and stabilization, especially in regards to their simplicity and 

effectiveness in the context of convertiplanes (which can transition to fast forward flight).  

It discusses gyroscopics as a means of providing such control and stabilization, and 

contains a background of the author‟s relevant work with OAT.  Chapter 2 also contains a 

description of one other known implementation in history of passive stabilization using 

gyroscopics: the Fieux passive ship stabilizer of the 1930s. 

Chapter 3 develops the mathematical model of a bicopter‟s angular motion in 

three-dimensional (3D) space.  It provides for the free tilting - or any other tilting 

prescription - of the proprotors relative to the airframe.  This model is then linearized so 

that equations of angular motion in one dimension may be extracted – and characteristic 

equations developed - in subsequent chapters. 

Chapter 4 analyzes hover pitch stability of the bicopter through inspection of the 

characteristic equation.  Passive dampers and springs are subsequently added between 
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airframe and proprotor tilting, and a Simulink model is constructed to corroborate the 

mathematical results     A root locus plot (vs. spring constant) of the aircraft response is 

drawn and compared to handling quality boundaries specified for US military VTOL 

aircraft.  A flow chart of this work is shown in Figure 1-7. 

Chapter 5, after having established that the roll and yaw motions are 

interdependent and cannot be separated, analyzes their stability by inspection of the 

characteristic equation.  A Simulink model is run to corroborate the results. These tasks 

are depicted in the flow chart of Figure 1-8. 

In Chapter 6 sample runs from a SimMechanics three-dimensional, non-linear 

model reveal the limitations of linear analysis. 

Chapter 7 contains the Conclusions. 
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                          Figure 1-7.   Flow chart of Chapters 3 and 4    

Chapter 3: Model Formulation 

 

Pod eqn of 
motion 

 

Roll/yaw 
eqns of 
motion 

 

Pitch eqn 
of motion 

 

Linearization 

3D eqns of angular motion 
 

 

 
Equations 

of motion 

 

Simulink 

Model 

3
rd

- order 
Characteristic 

Equation 

Eigenvalue 

matrix 

Reformulation 
in State Space 

Experiment 

Chapter 4: Pitch Stability 

Add dampers, 
springs 

 

Stable? 

yes 

no 

Hover 

simulations, 

with external 

disturbances 

 

Handling 

qualities root 

locus plot 



 

16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     Figure 1-8.   Flow chart of Chapters 3 and 5 
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 Chapter Two:  Literature Review 

 

2.1 Introduction 

This chapter reviews the history and state of the art of convertiplanes, those 

aircraft which can take off and land vertically, hover and then fly horizontally at high 

speed.   It discusses the inherent difficulties such aircraft are faced with, and identifies the 

shortcomings of conventional solutions.  Subsequent sections list the features of a more 

ideal convertiplane and describe in more detail the OAT bicopter and its gyroscopics 

which were developed to furnish some of these features. Other instances of active 

stabilization of vehicles using gyroscopics are also reviewed.  The chapter ends with a 

description of passive and active ship stabilizers, the former being the only other known 

implementation of transport self-stabilization using gyroscopes.   

 

2.2 The Quest for Aircraft that Hover and can fly at High Speed 

In the field of aviation a largely still-unanswered pursuit is the development of a 

convertiplane whose design for operation in the two regimes entails no substantial 

compromises in either regime (DARPA, 2013).  Some examples of such aircraft that do 

have substantial compromises are: 

 Winged quadcopters whose four lift-propellers do not tilt forward for flying in 

airplane mode.  Propulsion in airplane mode is by a fifth propeller, which of 

course is not necessary for hovering.  Examples of  this aircraft type are the 

Hybrid Quadrotor by Latitude Engineering (www.latitudeengineering.net, 2014) 

and the Quadcruiser by Airbus Group (www.airbus-group.com, 2014) 

http://www.airbus-group.com/
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 Tailsitter aircraft which rotate 90 degrees to transition from hover to airplane 

mode.  The  two major compromises here are the perpendicular exposure of the 

wing surface to gusts in hover, and the arduous transition sequence – especially  

the airplane to hover one 

 Tilt rotor aircraft having cyclic rotors.  In hover the downwash of the large rotors 

is partially masked by the wing.  In airplane mode the cyclic controls are locked 

and the aircraft is controlled by deflection of conventional surfaces.   

 

The advent of the helicopter, with its disappointingly low speeds and short ranges, 

was soon followed by the optimistic and prolific development of various alternate VTOL 

aircraft in the 1950s and 1960s, most for the purpose of flying faster than a helicopter 

(Campbell, 1963, McCormick, 1967). 

 

2.2.1 A Matter of Stability and Control (in Hover) 

However, all of the projects suffered problems (Anderson, 1981) and, after 

reviewing historical surveys of VTOL development (Hirschberg, 1997, 2002) , it appears 

that all but a few of the original 60 VTOL aircraft types ultimately failed due to the 

incongruous hover stability and control devices they used - mostly for aircraft pitch.  

Most such devices were either  

 ineffective or lacking in control power 

 too complex and failure-prone, or  

 liabilities in forward flight.   
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Examples were: moveable vanes in the main rotors‟ intake or downwash; the 

powering and control of four lifting propellers (or ducted fans) instead of two, and; a 

vertical-axis exhaust nozzle or propeller at the tail of the aircraft.      

The one rotorcraft convertiplane project which succeeded and led to eventual and 

present production was the Bell XV-3 tilt rotor (1955), distant precursor to the 

experimental XV-15 of 1977, and the Bell-Boeing V-22 Osprey  (Figure 2-1) placed into 

service in 2007 (Whittle, 2010).  Effective attitude control in hover is via helicopter-style 

cyclic and collective blade pitch. Control in airplane mode is by conventional control 

surfaces. 

 

 

 

 

 

                                Figure 2-1.  Production V-22 Osprey Tiltrotor. 

 

A large part of the development difficulty of the V-22 then lay in making these 

rotors congruent with the full task at hand, i.e., more efficient and structurally suitable for 

operation in airplane mode (Martin, 2000).    

 

2.3 Faster, Simpler and More Efficient 

With the promise and successes of the tilt rotor – and the realization of just how 

difficult the field of VTOL was – there was almost no official development of alternate 
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types after the project abandonments in the 1960s.  From then until recently, any new 

concept proposals were met with skepticism by the established players.  However, there 

was a belief by some (Leishman, 2007) that the tilt rotor – with its dual, cyclic, and large-

diameter rotors – was still an overly complex, costly and restrictive solution.   

This heritage is reflected in the aircraft‟s performance.  The Osprey‟s maximum 

forward speed of 262 knots (NAVAIR, 2011) at sea level is considerably greater than a 

helicopter‟s – due to the flow through the rotor no longer being edge-wise – but it is still 

not exceptional considering the installed power (Leishman, 2007).    It is not surprising, 

then, that official dissention has emerged as well.  A recent (2013) US government 

solicitation (see DARPA BAA-13-19) states:  

 

“The current inventory of vertical flight machines … is inadequate for flight at high 

speeds to cover long ranges and hovering under extreme conditions.… “ 

 

The agency also recognized that improved performance can no longer be obtained 

by resorting to convolution, for in the same solicitation it specifies: 

 

“It is highly desirable that simplicity and elegance be incorporated into the design space 

at a fundamental level, and that the technological solutions produced result in increased 

net effectiveness (efficiency), preferably with reduced system complexity..” 

 

It would seem, then, that the future development path must combine higher 

performance with greater simplicity.   The latter quite assuredly implies that most or all of the 

elements of the aircraft provide some benefit in both flight modes.  
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2.3.1 Reducing Proprotor Diameter 

Reducing the proprotor‟s diameter (and increasing its rotational speed) allows it 

to be encased in a protective shroud, which may increase the thrust of the proprotor and 

also develop a thrust itself (McCormick, 1967, pg. 232).  Together with the elimination of 

the tiltrotors‟s wing-masking effect and also some or all of its reduction gearing, these 

will help recover the efficiency lost in hover due to the reduced diameter.  Proprotor 

shrouds or ducts can also produce substantial aerodynamic lift in forward flight 

(Hirschberg, 1997).    

In the past, cyclic-pitch rotors could not be substantially reduced in diameter 

because cyclic was not compatible with the consequent higher rotational speeds (Daley, 

2001).  However, this limitation may be fading, for Augusta Westland‟s experimental 

convertiplane “Project Zero”, a sketch of which is shown in Figure 2-2, has a wingspan 

of approximately 43 ft., cyclic pitch proprotors of 10 ft. diameter, and has successfully 

hovered (Hirschberg, 2013).  Rather than swashplates, it uses electromechanical actuators 

to cyclically vary the blades‟ pitch angles (Wang, 2013), a method similar to those of 

some proposed marine propulsion systems (Wham, 1987).   

 

 

 

 

 

 

Figure 2-2: Sketch of Augusta-Westland ‘Project Zero’ aircraft (2013) 
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 For all of its inherent complexity, cyclic has probably been the most effective 

method of hover control, and to do without it (in rotorcraft) has in the past invited even 

more complexity. Without cyclic the V-22 Osprey and the Project Zero aircraft would 

have needed more proprotors, such as the failed 4-propeller 1963 Curtiss-Wright X-19A 

tilt prop (Figure 2-3) did, with its extensive cross-shafting, gearboxes and drag-inducing 

downwash at the rear wing in forward flight (Borst, 1990).  This aircraft would have 

hovered well except for very poor mechanical control implementation (Anderson, 1981). 

 

 

 

 

 

 

Figure 2-3:  Curtiss-Wright X-19A tilt prop (1963) 

 

 But it is noteworthy that one exception to the project abandonment rule of the 

1960s was the non-cyclic Bell X-22A tilt duct (Figure 2-4), which had four ducted, 

collective-pitch proprotors and hovered better than most helicopters (Marquardi, 1970). 

 

 

 

 

 

Figure 2-4: Side view and operation of the X-22A 
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The X-22A garnered extensive data, remaining operational until 1984, and had 

excellent hover stability out of ground effect (Marquardi, 1970).  Anderson (1981), 

however, had stated that wind effects were considerable because of the side forces on the 

ducts.  Campbell (1963) also noted another adverse characteristic, the upwash between 

the front and rear ducts near the sides of the fuselage.   It could cause large amounts of 

debris to be thrown above the fuselage and re-ingested by the proprotors.  

 

 

2.3.2 Eliminating Cyclic and the Reliance on Thrust Manipulation, and Introducing 

Gyroscopics 

The tilt rotor‟s complexity and cost have relegated it to exclusive markets such as 

the military and commuter airlines, leaving a large VTOL void in general aviation.  

Consequently, over the past couple of decades or so, some individuals and small 

companies have begun exploring alternate VTOL concepts.  Most, like the Moller 

SkyCar 400 (moller.com, 2014) and the Urban Aeronautics AirMule 

(www.urbanaero.com), are variants of the abandoned projects of the 1950s and 1960s, 

and involve manipulation of the proprotors‟ thrusts vectors for attitude (and altitude) 

control in hover.  However, the limitations of those early concepts of course still apply.  

They are best epitomized by Anderson‟s (1981) observation: 

 

“…V/STOL aircraft impose several unique control system requirements beyond those 

associated with conventional aircraft.  The lack of any significant dynamic pressures 

[normally] associated with forward flight precludes any inherent stability” 

 

http://www.urbanaero.com/
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But after many unfruitful experiments attempting to stabilize radio-controlled 

models using similar methods, the author finally achieved success in 2001 using an 

additional, enabling control element:  the gyroscopic moment resulting from forced 

precession of a rigid lift-propeller (Gress, 2002).  Aircraft pitch, for instance, was now 

partly controlled by the lateral component of the precession or tilting.  This is the OAT 

method referred to in the Introduction, which allowed stable hovers with just two airplane 

propellers (or fans), and whose gyroscopic control moments were independent of 

distances to the aircraft center of gravity.  It also allowed the use of propeller shrouds or 

ringed propellers – thereby potentially reducing the X-22A‟s (and the Moller Skycar‟s) 

problematic four-duct configuration to just two.  Before describing this system in more 

detail, it is now possible to conjecture a more ideal convertiplane, which is done in the 

next section. 

 

2.3.3 A More Ideal Convertiplane 

Based on most of the observations garnered in previous sections of this chapter – 

along with a few others which are elicited here –  the author surmised that a faster, 

simpler and more efficient convertiplane, shown in Figure 2-5, is one that: 

 

 has only two proprotors 

 does not mask the efflux of its proprotors (as the wing does in the V-22) 

 is as stable in hover as a helicopter – or better. 

 does not require substantial moment arm lengths to effect control in hover 

 is controlled by the same device(s) in the two flight modes  
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Figure 2-5:  A more ideal convertiplane  

 

2.4 Oblique Active Tilting (OAT) 

 

2.4.1 Gyroscopics in OAT, Orbital Satellite Attitude Control and Ground Vehicle/Ship 

Stabilization 

In work prior to this thesis the author extensively investigated OAT, including 

performing a theoretical analysis of pitch stability and experimentation using radio-

controlled (R/C) models (Gress, 2002, 2003, 2007, 2008).  Figure 2-6 shows the Nymbus 

650 (referred to here as simply the Nymbus), designed in 2011 and which is the latest 

incarnation of aircraft employing OAT.   Its data and specifications, contained in 

Appendix B, will be used extensively in this thesis.  

 

 

 

 

 

 

                          (a)                                           (b)                                       (c) 

Figure 2-6 (a)  Nymbus OAT radio-controlled VTOL model aircraft by the author. 

 
(b) Propeller pod closeup showing how oblique tilting arises from  bent spar-end.  
(c) Canopy removed, showing Arduino electronic attitude sensor/controller. 
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The primary function of the lateral component of oblique tilting is to generate 

gyroscopic pitch-control moments which dynamically assist conventional thrust vectoring 

arising from the longitudinal component. This generation has parallels in the use of 

control moment gyroscopes (CMGs) for the attitude control of orbital satellites, the 

Hubble Space Telescope and the International Space Station (ISS) as shown in Figure 2-

7.   

 

 

 

 

 

Figure 2-7.  Oppositely spinning control moment gyroscopes of orbital satellite. 

 

 

(Jacot, 1966) is a good early description of the use of CMGs for attitude control in 

space.  (Gurrisi, 2010) discusses the practical operation of CMGs aboard the ISS.  Since 

the first appearance of CMGs and up to the present time, there has been considerable 

research on the design of their feedback control laws; some of these are surveyed in 

(Kurokawa, 2007).  Considerable work has also been done regarding the avoidance of 

singularities and saturation in CMGs (e.g., Yoon, 2004).   

CMGs in orbital satellites are a prominent and successful example of the use of 

gyroscopics for attitude control and stabilization of vehicles.  But there have been many 

other proposed and implemented applications, especially in the roll stabilization of mono-

rail trains (Brennan, 1905, Shivoliskii, 1924), two-wheeled ground vehicles (Karnopp, 

     ‟ 
   ‟ 

 

 

M 

Each is tilted towards the other at rate   ’, together generating net moment M 
on vehicle (from Gress, 2007). 
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2002, Spry, 2008), and of ships (Ferry, 1933, Adams, 2005).  In all of the ground 

vehicles, attitude sensing (of the vehicle) has been by means other than the gyroscopes 

themselves, and stabilization is effected by the forced precession of the gyroscopes.  A 

passive stabilization system for these vehicle types is usually not possible because a 

perturbed roll angle from the vertical implies a lower energy state.  Only in the case of 

ships has there been use of gyroscopes in a passive way, where the gyroscope becomes 

both attitude sensor and control effector, these actions usually being moderated by 

springs and dampers.  This is because the vessel is continually receiving energy in the 

form of waves.  Passive ship stabilization will be discussed in more detail in Section 2.4.3 

since it applies directly to the subject of this thesis.  

 

2.4.2 Gyroscopics for Control and Stabilization of Aircraft:  Internal CMGs vs. 

External Propellers 

Research into using internal CMGs to augment the control of aircraft has also 

been conducted.  Of them Lim (2007) stated their useful torque is very transient, and that 

there is no net change in vehicle angular momentum.  Any bias will result in the CMGs 

storing angular momentum, reducing gimbal mobility.  To restore high-frequency control 

the CMGs must be desaturated by applying an external torque, usually through a lower 

frequency aerodynamic control effector. 

In OAT the propellers are both the CMGs and the aerodynamic control effectors, 

constantly interacting with the environment and imparting an external torque. The lateral 

tilt component creates a drag-torque pitching moment, complementing the conventional 

thrust vectoring from the longitudinal component. Figure 2-8 shows how the propellers‟ 
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spin directions and tilt paths must be oriented.   Gyroscopic rolling moments will cancel 

one another when they are tilted equally and collectively in the forward or rearward 

oblique directions.  The same is true of the gyroscopic pitching moments when the 

propellers are tilted equally but differentially. 

 

 

 

 

 

 

Figure 2-8.  Top views of OAT aircraft showing the two possible spin directions 

 

 

The oblique direction of the tilting – usually 45 degrees from either longitudinal 

or lateral – is of course a compromise. For control of aircraft pitch, effective thrust 

vectoring favours purely longitudinal tilting, whereas the gyroscopic and drag-torque 

pitching moments are zero for this direction but maximum for purely lateral tilting.  

 

2.4.3 Active Tilting Baseline for Comparison 

Building upon the concepts developed in OAT by the author (and referenced 

previously), other researchers have investigated propeller gyroscopics for augmenting 

VTOL aircraft control (Kendoul, 2005, Thorne, 2012, Al-Rihani, 2012, Gasco, 2013). In 

all of these and the author‟s prior work, aircraft stability was achieved by the forced 

precession of the propellers using servos commanded by electronic aircraft attitude 

relative to aircraft, and the associated proper tilt directions for generating the 
reinforcing gyroscopic and drag-torque control moments. 
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sensors.  This is the active method of stabilization.  Though this thesis investigates 

passive stabilization in hovering aircraft, the following sections examine the active 

method - specifically OAT - in more detail and represent it mathematically.  This will be 

the baseline with which the passive or self-stabilized system will be compared.   

 

2.4.4 OAT aircraft pitch model 

Figure 2-9 shows the OAT aircraft schematic of Gress (2007) which accompanies 

its formulation of the aircraft pitch model or equation.  The proprotors in this model are 

confined to tilt simultaneously and equally as shown in the figure.  The model assumes 

that electromechanical servos – governed by a pitch feedback algorithm accompanying 

an electronic pitch sensor– exactly prescribe the tilt angle of the proprotors. 

 

 

 

. 

 

 

 

Figure 2-9.  OAT stick aircraft.  Pitch angle    and tilt angles   both shown positive.  

From (Gress, 2007). 

In terms of the symbols used in this thesis, and using the short forms          

and            , this linearized (small angle) model is  
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where    is the proprotor tilt angle from the aircraft vertical (in oblique direction   ),   is 

the aircraft pitch angle.      ,      and      are the airframe, propeller pod and propeller 

mass moment of inertias about the pitch, tilt and spin axes respectively.     is the 

propeller thrust,    its drag torque, and   is the height of the tilt axes above the aircraft 

center of mass. Equation (2.1) applies to a balanced aircraft having no externally applied 

pitching moments.  As expected, it shows that the adverse pod inertial effect – 

represented by the second-order tilt term – is most severe for longitudinal tilting,    , 

and that the beneficial gyroscopic pitching moment (the first-order tilt term) vanishes for 

this tilt direction. 

 

2.4.5 Stabilization of OAT aircraft 

2.4.5.1 P-controller for Pitch 

In Gress (2007) the author uses a simple proportional controller – or P-controller 

– for proprotor tilt as a function of aircraft pitch, without time delay: 

                                                                                 

Equation (2.2) represents an ideal sensor-actuator, or proportional piezo gyro with 

connected tilt servos.  Eliminating   in (2.1) using (2.2) yields the aircraft equation of 

motion solely in terms of pitch   
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(
   

   
     )

   

   
             

  

  
                                           

which is also the system‟s implicit characteristic equation.  Considering its second-order 

coefficient, it is once more evident that pod inertia is a potential destabilizer.   

It is desirable that pitching of the aircraft in hover (say, due to an unspecified 

disturbance) does not cause it to translate horizontally.  For such a condition to be 

satisfied the propeller axes must remain in a vertical plane, which is ensured by the 

following approximate relationship, valid for small angles (see (4.30) and (4.31) of this 

thesis): 

        
 

    
                                                                      

Equating (2.4) and (2.2) specifies the necessary gain for the proportional controller: 

         
 

    
                                                                        

Note that introducing a derivative component into the controller would have 

created a negative third-order term in the equation of motion (2-3) and destabilized the 

aircraft.  Even without this problem, it would have not allowed the vertical-plane 

condition (2.4). 

An integral controller component will cause difficulty as well.  Whereas an 

imbalanced P-controlled aircraft will simply hover at the pitch angle that counteracts the 

imbalance,  an integral controller will continually try to reduce the error and increase the 
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propeller tilt angle further past the vertical, thereby accelerating the aircraft horizontally 

instead. 

 

2.4.5.2 P-controller with time delay: Humans cannot fly present bicopters without 

electronic assistance. 

In practice the control of propeller tilt angle based on the feedback of aircraft 

pitch angle will involve a time delay, which can be attributed to either or both the sensor 

and actuator.   If this delay is constant and represented as   , introducing it into the 

proportional control model (2.2) yields 

                                                                              

Assuming   to be linear over the interval   , the control model can be written as 

          [             ]                                                 

which of course is also a first-order Taylor series approximation if     is not linear.  

Eliminating      in (2.1) using (2.7) yields the new characteristic equation 

   
   

   
     (

   

   
      )

   

   
     [     ]

  

  
                              

where         ,            and               .  The new, negative terms in 

(2.8) demonstrate the destabilizing effect of time delay.  For the coefficients to be 
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positive and the system stable - and assuming the controller is attempting to keep the 

propeller axes in the earth-vertical plane per (2.5) -    must satisfy: 

       

   

   
  

 
         

(
 
       )   

 
                                                   

and 

           
 

 
                                                                        

For the Nymbus data of Appendix B the maximum time delays according to (2.9) and 

(2.10) are 0.114 sec. and 0.229 sec. respectively.  

These conditions are easily satisfied by hobby attitude sensors (gyros) and digital 

actuator servos, which typically have operating frequencies ranging from 50 to 400Hz 

depending on the model.  So (2.9) and (2.10) show that OAT aircraft can be stabilized in 

pitch by electronics, which of course has been confirmed in practice.  

The time delay relations also show that a human pilot cannot control an OAT 

model aircraft without electronic stability augmentation.  Many studies on human 

response times have been performed, and the results are in fair agreement that human 

transport delay (associated with visual observation and mental processing of the 

information) is of the order of 0.2 sec., and that time lag (representing human muscle 

structure‟s inability to respond instantaneously to commands to move) is approximately 

0.1 sec (MIL-F-83300, 1970, Key 1971, Franklin, 2002).  The sum of these two values is 

greater than either of the maximum allowable delays for the Nymbus above.  So, based 

on this analysis and many experimental tests in the past, it is safe to surmise that a human 

operator cannot pilot an OAT model aircraft without assistance. It can also be seen that - 
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upon inspection of (2.9) and (2.10) - this situation cannot be improved much by changing 

the gyroscopic properties of the propellers; raising the value of  , for example, will 

increase one maximum time delay but decrease the other.  There is, therefore, no need to 

investigate further the handling qualities of the unassisted system as such.   

There is one further (Routh-Hurwitz) condition for the stability of a third-order 

system (Franklin, 2010, pg. 133), which is  

                                                                               

for a general third-order polynomial in   written as 

       
                                                                   

Applying this condition to characteristic equation (2.8) gives a maximum 

allowable time delay of 0.102 sec, which is similar to the first two values and therefore 

does not change the deductions above. 

2.4.5.3 Electronic stabilization of roll and yaw in OAT bicopters 

Of the standard control algorithms, the author found PD-control (proportional 

derivative) to be the most effective for stabilizing roll and yaw of OAT bicopters.  In 

those implementations the roll sensor (gyro) sent corrective signals to the propeller speed 

controls to differentially change the thrust magnitudes, and the yaw sensor corrective 

signals to the servos to differentially tilt the propellers.  However, such roll control will 

cause the aircraft to yaw because of the resulting propeller torque differences – and yaw 

control as such will cause the aircraft to roll because of the gyroscopic moments 

generated – and therefore each sub-system must continuously work to compensate the 
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effects of the other.  The net result, surprisingly, is control and stability enhancement, but 

this can be improved further by changing the control strategy as outlined in Section 2.4.8.    

 

2.4.6 Pilot Pitch Control in OAT 

The pilot‟s control of pitch in OAT bicopters is achieved by collectively tilting 

the propellers using the same servos which implement the electronic controller‟s 

stabilization algorithm, the latter allowing “pass-through” of the pilot‟s commands. 

Figure 2-10 shows the bicopter‟s pitch response improving as the tilt-path direction 

becomes more lateral. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10.  Predicted OAT aircraft pitch response to control input      (inset) 
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2.4.7 Fieux passive Ship Stabilizer and Parallels to Aircraft Self-stabilization 

The inactive (or “passive” in present terminology) Fieux ship stabilizer described 

in (Ferry, 1933), and dating to circa 1924, is the only known device that operates in a 

similar fashion to the one proposed in this thesis. Referring to Fig 2-11, it consists of two 

large gyroscopes driven by electric motors in opposite directions about horizontal axes.  

The two gyro casings are able to precess about vertical axes and are geared together so 

that their precession velocities are equal and in opposite direction.  This arrangement 

prevents inadvertent pitching of the ship, and conversely prevents pitching of the ship 

from affecting precession.  Rolling of the ship, on the other hand, causes the gyroscopes 

to precess equally and oppositely – which is allowed by the gearing – thereby generating 

same-direction resisting (stabilizing) moments about the roll axis, 

 

 

 

 

 

 

 

 

 

Figure 2-11.  (a) Ship anti-roll gyroscopes, athwartship view. (b) Top: cutaway view 

of same, revealing ‘hydraulic brakes’ or dampers below the gyroscopes.   Bottom: 

cutaway top view of damper fluid tank, showing vanes therein which rotate when 

the gyroscopes precess.  from (Ferry, 1933). 

 

                                   (a)                                                                    (b) 
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A unique feature of the Fieux stabilizer is the viscous fluid damper used to absorb 

the energy of the ship‟s roll.  Vanes rotate within the damper tank when the gyroscopes 

precess, offering a resisting moment proportional to the rate of precession 

Because the precession of its gyroscopes‟ was roughly in phase with the rolling of 

the ship, the Fieux device did a poor job of minimizing the roll angle.   This 

synchronicity meant that the precession rate – and therefore the gyroscopic resisting 

moment to roll – was greatest when the roll rate was at its maximum, and therefore when 

a substantial roll angle had already been established. 

Such synchronous behaviour is necessary for aircraft stabilization because, as 

discussed previously, the propeller axes need to remain near or in the vertical plane 

during its pitching.  But a ship with internal gyroscopes has no such requirement, and 

therefore improvements over the Fieux system were sought. 

 

2.4.8 Sperry Active Ship Stabilizer and Parallels to OAT 

The Sperry system (Figure 2-12) was comprised primarily of a small control 

gyroscope having three degrees of rotational freedom, a large moment-generator 

gyroscope of two degrees freedom, and a precession motor that could force the latter‟s 

precession.  A slight roll of the ship (by even a small angle) would cause the control gyro 

to precess, closing the precession motor circuit and thereby forcing precession of the 

large gyroscope.  In this way very large control moments could be generated at small roll 

angles, thereby preventing them from increasing further.   
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Parallels with aircraft OAT are obvious in that both systems consist of a control 

gyro and a moment-generator gyro (piezo pitch gyro and propellers, respectively, in  

OAT).  And the precession motor in the Sperry system is simply the tilt servo of 

OAT; each requires or absorbs energy in the forcing or arresting of the moment-generator 

gyro‟s precession. 

 

 

 

 

 

 

 

Figure 2-12.  Sperry active ship stabilizer.  from (Ferry, 1933) 

 

However, by this means the ship-borne system effectively became a derivative or 

rate-type controller – quite different from its passive counterpart – whereas OAT must of 

necessity utilize an essentially proportional controller, thereby emulating the passive, 

self-stabilized system.   There appears, therefore, nothing advantageous about the 

electronic system in terms of the control moments generated and their timing.  On the 

contrary, because of time delays inherent to control electronics, the self-stabilizing 

system would be the preferred one.  
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 Chapter Three: Mathematical Model of Hovering Bicopter  

 

3.1 Introduction 

In this chapter the three-dimensional equations of angular motion of a hovering 

bicopter with freely tilting proprotors are derived in order to determine its attitudinal 

stability.  Its translational equations of motion of the mass center are not derived since 

angles and attitudinal stability are independent of them at low speeds (where 

aerodynamic-surface forces are not prevalent).  

The angular motion equations are then linearized using small perturbation theory, 

and the equation of motion about each of the three major axes is extracted using the 

superposition principle.  In this form the equations are ready to be used in subsequent 

chapters to determine stability about each of the axes independently. 

Concurrently the proprotor pod (see Figure 3-1) equations of tilting motion – 

relative to the airframe – are also derived and similarly prepared here for use in the 

subsequent stability chapters. 

 

3.2 Modelling Assumptions, Conventions and Conditions 

This section defines the assumptions used in constructing the mathematical model 

of the hovering aircraft and the conditions for determining the aircraft‟s hover stability. A 

schematic of the aircraft with component names is shown in Figure 3-1. 

 

 

 



 

40 

 

 

 

 

 

 

 

 

Figure 3-1.  Underside of schematic aircraft showing major elements. 

 

 

3.2.1 Assumptions 

The assumptions used in formulating the model are: 

1. Aircraft stability in hover is synonymous with its attitudinal or angular (or rates 

thereof) stability; any translational motion (of the aircraft centre of mass) is 

ignored and considered not to affect said stability. 

2. The two proprotors spin in opposite directions. 

3. Proprotors are rigid, unarticulated within themselves, and their planes of rotation 

are perpendicular to their respective spin axes. 

4. Proprotor speeds are constant unless controlled otherwise. 

5. Proprotor thrust and drag-torque magnitudes are functions of proprotor rotational 

speed only, calculated in each instance as if in the steady state; their vectors are 

always coincident with the proprotor spin axes.  
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6. Center of masses of pods lie at the intersection of their associated pivot axes and 

proprotor spin axes. 

7. Aircraft center of mass, and inertias about its principle axes, are constant and 

independent of proprotor tilt. 

8. There is no aerodynamic damping of the aircraft angular motion, and there are no 

aerodynamic effects resulting from aircraft motion in general. 

9. There are no transient aerodynamic effects. 

10. Proprotor mass moment of inertia      includes rotating part of drive motor. 

 

3.2.2 Conventions 

The geometry and positive-tilt (about unit axes  ̂  ) conventions of the model are 

shown in Figure 3-2.  

 

 

 

 

 

 

 

 

 

 

Figure 3-2.  Schematic with local coordinates and relevant geometric variables. 
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In conventional aerospace practice the aircraft angular velocity relative to inertial 

space is usually expressed as  

    *
 
 
   

+                                                                                 

However, in this work          represents the rotational speeds of the two 

proprotors, and variables             and        represent the three coefficient groups in the 

equations of motion.  So, instead, the angular velocity of the aircraft frame relative to 

inertial space is written here as 

    [

  

  

    
]                                                                                

 

 

3.2.3 Conditions for Stability 

The determinations of aircraft hover stability in subsequent chapters are made 

only for the linearized system, which is also time-invariant and therefore an LTI (linear 

time-invariant) system.  At various times either bounded-input bounded-output (BIBO) 

stability or zero-input (asymptotic) stability are here investigated, and both are satisfied 

for LTI systems if the roots of the characteristic equation (or transfer function 

denominator polynomial) all have negative real parts (Franklin, 2010, Kuo, 1995).  This 

condition is determined here by applying the Routh-Hurwitz stability criterion (Franklin 

2010, which refers to it as Routh‟s stability criterion). An exception to this condition 

exists if the system is a velocity controller (Kuo, 1995, pg. 332); the system would have 
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root(s) at the origin and would be considered stable.  This exception applies to the aircraft 

with centering springs analyzed in Section 4.6. 

In the Simulink simulations of Chapters 4 and 5 the initial condition for the 

aircraft is it hovering level with zero angular velocity and acceleration in all directions. 

Being a linear system the magnitudes of applied external disturbing moments    are 

arbitrary, but in this analysis they are kept to relatively small values, usually 10% of the 

proprotor drag torque   . 

 

3.3 Inertial Moments due to Spinning Proprotors 

3.3.1 Effect on airframe and on pod tilting 

Referring to Figure 3-3, the unit vectors coinciding with the proprotor axes are: 

 ̂     [
             

          

      

]                                                        

and 

 ̂       [
            

          

      

]                                                         

The angular momentum vectors (expressed in the aircraft reference frame) due to 

spinning of the two proprotors are 

            ̂       [

    

    

    

]                                                                                                      

              ̂       [

    

    

    

]                                               
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Figure 3-3.  Proprotor angular momentum vectors      (relative to airframe). 

 

The time derivative of a vector  , referenced to a frame rotating with angular 

velocity   (relative to inertial space), is 

  

  
   

  

  
                                                                     

where 

  

  
   

   

  
    

   

  
    

   

  
                                                     

Using this relation, the proprotor inertial moment vectors     can then be 

obtained from the proprotors‟ angular momentum rates of change (due to proprotor speed 

and tilt changes, and the aircraft‟s angular motion): 
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Substituting the     coefficients from (3.2) into (3.4): 

       
    

   
         [      

 

  
                                    ]            

      [      
 

  
                                     ]                     

       [ 
 

  
           (             )        ]                            

and 

       
    

   
         [      

 

  
                                   ]           

      [      
 

  
                                    ]                       

     [ 
 

  
           (             )        ]                        

Moments       act on the proprotors‟ respective drive motors and consequently 

their mountings.  In order to determine the individual motions of the rotor pods and 

airframe, these moments need to be divided into orthogonal components, one acting 

about the pivot axis  ̂  of the respective pod (and therefore tending to tilt the pod), and 

the other acting perpendicular to the first and conveyed directly to the airframe. 

The projection of a vector     onto another vector     is:  

        ̂                                                                         

where   ̂  is the unit vector in the direction of    , and      is a scalar given by the dot 
product: 
 

        ̂                                                                        
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Defining      as the (scalar) magnitude of       in the direction of (i.e., about) 

tilt axis  ̂  , from (3.7) it is: 

           ̂                                                                    

The unit tilt axis vectors are: 

 ̂   [
     
    

 
]         ̂   [

      
     

 
]                                                  

or, in generalized form: 

 ̂   [
      

           
 

]                                                               

Inserting (3.5) and (3.9) into (3.8), the proprotor inertial moments      acting on the 

pods about their respective tilt axes are then: 

              [(             )               ]                                   

             [(             )               ]                              

Figure 3-4 shows moment       tending to tilt pod 1 about its pivot axis. 

 

 

 

 

 

Figure 3-4.        acting on pod 1 about its pivot axis. 
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From geometry      , the component of       perpendicular to   ̂  , is just      

minus the parallel component: 

                   ̂                                                        

Moments       act on the airframe (through radial forces on the pivot bearings) 

only, i.e., they cannot tilt the rotor pods.  Expanding (3.11) for the two pods gives: 
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3.3.2 Effect of Tilting and Aircraft Motion on Proprotor Spins 

Any moment acting to change the spin speed of a proprotor itself can be obtained 

by projecting       onto the respective shaft axis.  Using an “s” subscript to denote action 

about the shaft, this moment is 

           ̂                                                                           

which, for pod 1, upon substitution of (3.1) and (3.5a), becomes 
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which shows there is only an inertial moment acting on the proprotor about its axis if it is 

accelerating about that axis; there are no other such moments due to rotor tilting or 

aircraft motion.  This result shows that       is perpendicular to both the tilt and spin 

axes.  The same result, of course, is obtained for rotor 2. 

 

3.4 Inertial Moments due to Tilting Pods 

When the pods are tilting they possess angular momentum relative to the aircraft 

frame of reference.  As shown in Fig. 3-5 the corresponding angular momentum vectors 

    are coincident with the respective tilt axes  ̂  , and are given by 

      
   

  
 ̂                                                                  

 

 

 

 

 

 

 

 

 

 

Figure 3-5.  Relative angular momentum vectors      due to pod tilting. 

0 

1 

z1 

1 

HP1 

  

z2  2 

HP2 2 

x  x 

 y 

 z 

z 

y  𝐮̂  

 𝐮̂  



 

49 

Substituting  ̂  in (3.13) with (3.9c) gives: 

   |           
   

  
[

        
           

  
 ]       [

    

    

    

]                                          

Following the method of section 3.2, the pod inertial moments      are obtained from 

their rates of change of angular momentum: 
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Similar to that derived in the previous section, the components        of       about the 

pivot axes  ̂  are simply the dot products of      and   ̂  , giving 

            
    

   
                                                             

Figure 3-6 shows      shows acting on pod 1. 

 

 

 

 

 

Figure 3-6.       acting on pod 1 about its pivot axis. 
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As in the method of Section 3.2, the components of      perpendicular to the pivot axes 

are     minus the parallel component:  

            
   

  
[

             
       

                     

]                                         

These are gyroscopic moments acting on the aircraft, not due to tilting of spinning 

propellers, but to tilting of pods in conjunction with airframe rotation.  The pod inertia    

about the pivot axis will include that of the rotor.  

 

3.5 Airframe Inertial Moments 

Referring to Figure 3-7, if the aircraft is assumed to be symmetrical about the 0xz 

plane, then its products of inertia,        and       , become zero (Etkin, 1996, pg. 102).  

Also, if the 0x and 0z axes are coincident with the principal axes of the aircraft then the 

remaining product of inertia,      , vanishes as well.  In the following derivation it is also 

assumed that the principal inertias of the airframe are constant and independent of pod 

tilt. 

 

 

 

 

 

 

Figure 3-7.  Aircraft principal axes and angular velocities, and 

location of pod center P1 relative to aircraft center of mass 0. 
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With these simplifications the aircraft inertial moment derives from its rate of 

change of angular momentum in the world reference as 

        
   

  
      [

       (       )    

                     

         (       )     

 ]                                         

Equation (3.18) does not account for moments generated by the spinning of 

proprotors and tilting of pods.  These moments are dealt with in Sections 3.2 and 3.3.  

However, (3.18) does include the masses and inertias of these items.  Because of the 

latter there will be moments acting on the pods resulting from aircraft motion, tending to 

tilt them about their pivot axes.   Since it will be necessary to eventually sum all the 

moments that cause the pods to tilt (Section 3.8), equation (3.18) must be separated into 

components which act directly upon the rigid airframe and those pod moments which act 

about their pivot axes. 

It is assumed that a pod‟s inertia    about its pivot axis is also the moment of 

inertias about its local orthogonal axes     ,      and       (and the value being 

independent of the pod tilt angle,   ).  The moment      acting on each pod due to 

motion of the aircraft is then 

                                      
     

  
|
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which, because of the assumption of the same pod inertia about all axes,  is considerably 

simpler than (3.18). Using the methods of Section 3.2, the projection of these on the 

respective pivot axes are 

 
     

  
|
     

                                                               

which, of course, are the inertial moments acting to tilt the rotor pods.  In vector form in 

the aircraft frame of reference, they are  

     

  
|
     

         
     

  
  ̂                                                       

Using (3.9c) and (3.20), in full they become 

     

  
|
     

       [

        
                     

                           
   

 

]                         

Since these moments act to tilt the rotor pods about their frictionless bearings, 

they cannot be acting on the remainder of the airframe (except through the control 

system, which is accounted for in the formulation of that system). Therefore they must be 

subtracted from the aircraft moment in (3.18) in order to determine the moment on the 

airframe. Summing the pod tilting moments in (3.22) gives 

 

  
∑     

 

   

       [
       

    

       
   

 

]                                             
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The net inertial airframe moment is then 

           ∑      
 
                                                      

which, from (3.18) and (3.23), is written in full as 

           [

       (       )    

                     

         (       )     

 ]         [
       

    

       
   

 

]                 

Using an alternate convention of writing each of the aircraft principal inertias 

               as the sum of the respective airframe inertia                    and pod 

inertias (about their own local axes), gives 

                                                                                          

                                                                                    

                                                                                           

Note, however, that the airframe inertias still include the pods as point masses. 

For reference, from Figure 3-7, the airframe inertias can be broken down further, to 
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where                  are the inertias of the aircraft structure without pods, and    is the 

mass of a pod.  However, for purposes of this chapter, (3.26) will suffice.  Chapters 4 and 

5 will introduce  another simplifying convention for representing aircraft inertias. 

Substituting (3.26) into (3.25) then puts the aircraft inertial moment in terms of airframe 

inertias 

           [

       (       )    

                     

         (       )     

 ]        [

       
    

       
   

    

]                 

 

3.6 Moments due to Propeller Thrusts and Drag Torques 

3.6.1 General Thrusts and Drag Torques 

General moment relations due to the proprotor thrusts and drag torques can be 

written for the aircraft without requiring knowledge of how they are generated or what 

their relationship is to one another.  For the aircraft under investigation these are 

specified in the next sub-section.  Referring to Figure 3-8, the proprotor thrust vectors    

are assumed to be collinear with their respective spin axes, therefore intersecting the 

pivot axes and not causing the proprotor pods to tilt.  But they do act radially through 

their respective pivot bearings to generate a net moment on the aircraft.  Writing the 

thrust vectors in terms of thrust magnitudes    and pod tilt angles   , this moment is: 

     |              [

                             

                   

              

]                                   
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Figure 3-8.  Proprotor thrust and drag-torque vectors 

 

The proprotor drag-torque vectors are treated in the exact same way.  The aircraft 

moment due to them is: 

    |     
             [

             

                       

              

]                                            

 

3.6.2 Thrusts and Drag Torques as Linearized Functions of Prop Rotor Speeds 

The aircraft under investigation uses fixed-pitch proprotors whose speeds are 

changed to vary their thrusts.  The thrust and the drag torque of a given proprotor    in 

OGE (out of ground effect) hover can be written in terms of its variation from the 

nominal rotational speed    as 
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where     and      are the nominal thrust and aerodynamic drag torque, respectively, 

measured at the nominal speed    (usually the hover speed).  These relations can be 

approximated by linear ones by noting that the first two terms of a Taylor series 

representation of   (
  

  
)  (

  

  
)
 

 about the nominal value 1 is:  

        
     

  
( 
  

  
  )       

  

  
                                                        

The linear approximations of relations (3.31) then are 

   ( 
  

  
  )        ( 

  

  
  )                                            

 

 

3.7 External Disturbance 

  Referring to Figure 3-9, disturbing moment     represents any unbalance due to 

external elements, such as wind gusts, and is given by  

          [

   

   

     
 ]                                                                 

 

 

 

 

 

 

 

Figure 3-9.  External disturbing moment’s three orthogonal components. 
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There can also be external disturbing moments acting on the pods (and tending to 

tilt them).  These are formally added to the pitch equations in Chapter 4. 

 

3.8 Pod Equations of Motion about their Pivot Axes 

The sum of the moments obtained from previous sections of this chapter about 

each pod axis – along with an as-yet-unspecified corrective or control moment    – is: 

                                                                                  

Letting          and          and writing (A6.1) in full for each pod: 

  
    

   
   (            )       [(          )               ]       

(3.35a) 

  
    

   
   (            )        [(           )               ]       

(3.35b) 

Assuming small proprotor tilt angles such that            and          , these 

simplify to  

  
    

   
     (            )        [                ]                        

 

  
    

   
     (            )        [                  ]                       
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3.9 Airframe 3D Equation of Angular Motion and its Linearization/Simplification 

3.9.1 Complete Non-linear Equation 

To obtain the equation of motion of the aircraft, the moments acting on it and 

derived in previous sections are summed and the result equated to zero: 

     ∑ (                      )
 
                                      

where   is the airframe moment subject to and opposing the pod correction/control 

moments    of section 3.7, and is given by 

       ̂      ̂                                                                           

      [
     
    

 
]    [

      
     

 
]                                  

         [
         

         
 

]                                                            

Abbreviating the trigonometric functions in    as           and          , and 

referencing the relevant previous sections in this chapter, (3.39) written in full is 

[

       (       )    

                     

         (       )     

]     [

      
  

     
 

    

]    [
         

         
 

]    [
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  *
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]   [
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3.9.2 Simplified and Linearized Equation 

The first step in simplifying (3.41) is to assume small propeller tilt angles such 

that            and          .  Substituting these approximations into (3.41) gives 

[ 

       (       )    

                     

         (       )     

]     [

      
  

     
 

    

]  [
         

         
 

]     [
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[
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 [
 

  
                                      ]   

 
 

  
                                          ]

 
 
 
 
 

 

  [

                           

                          

                          
]    [

               

                  
           

]    [

   

   

     
]             

The equation of motion can be simplified further using small disturbance theory, 

which assumes that the aircraft angular velocities are small, so that their squares and 

products are negligible compared to first-order quantities (Etkin, 1996).  

This theory can be directly applied to the airframe gyroscopics of the first matrix 

in (3.42), thereby eliminating all of its    products.  However, rather than applying this 

theory to the remainder of the equation indiscriminately, it is necessary to determine 

which terms in (3.42) should be eliminated through an understanding of the processes 

they represent. 
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Of first note is that the sum of the proprotor speeds       will be roughly 

constant for hovering flight and approximately equal to    , where    is the nominal 

hover proprotor speed.  Therefore the sum       can be replaced by      wherever it 

occurs in (3.42). 

In comparison to their sum, the proprotor speed difference         is small, and 

can assumed to be zero wherever it forms a product with an aircraft angular velocity    in 

(3.42). 

The gyroscopic pod terms of the fourth matrix will be substantially smaller than 

the gyroscopic propeller terms of the fifth matrix since        .  Also, during 

predominantly rolling motion the two proprotor tilt angles will be approximately equal in 

magnitude and of the same sign, and therefore the first- and third-row roll terms of the 

fourth matrix will vanish.  Similarly, during predominantly pitching motion the tilt angles 

will be nearly equal but of opposite sign, and therefore the second- and third-row pitch 

terms will disappear. With all the above arguments it is justifiable to eliminate the fourth 

matrix in (3.42) for the stability analysis.  

In the case of sums of products involving   such as             or       

     , it is assumed that during normal maneuvers    and    deviate from    only 

relatively slightly, and that the variance in these sums will be largely due to variations in 

   and   .  With this assumption the speeds can be safely replaced by the nominal    . 

However, the small disturbance theory is applied directly to – and sets to zero - 

any such sum which results in a product of tilt angle    and airframe angular velocity   

(which would otherwise create a non-linear situation of a product in two unknowns). 

With the above changes the equation of motion becomes 
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     [ 

          
     

(         
 )   

             

]        [
         

         
 

]          [

     [                   ]   

    [                 ]

          

]  

  [

                           

                          

                          
]    [

               

                  
           

]    [

   

   

     
]               

 

3.9.3 Linearized equation with rotor speed-thrust model 

For thrust and aerodynamic torques that are a function only of the proprotor 

speeds, replacing    and    in (3.43) with their linear   -functions (3.32) – and treating 

the resulting products of     and      as before – gives: 

          [

          
     

(         
 )   

             

]   [
         

         
 

]      [

     [                   ]

    [                 ]

          

]  

    [  

                        

                      

                      
]     [

          

            

             

]  [

   

   

     
]         

 

3.10 Euler Angles 

In the aircraft reference frame aligned with its principal axes, the aircraft roll, 

pitch and yaw rates are then, respectively (Etkin, 1996, pg. 104): 

  

  
            (             )                                            

  

  
                                                                                      

  

  
      (             )                                                          

These angles will be used extensively in the following Chapters. 
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3.11 Conclusion 

This chapter has developed the linearized and separated equations of angular 

motion (3.44) for the airframe, and for the pods relative to the airframe (3.36).  The latter 

equations will be necessary for both of the following stability chapters. The highlighted 

line in (3.44) is the pitch equation of motion.  It will be used in Chapter 4 to determine 

aircraft pitch stability while legitimately ignoring (setting to zero) motion of the aircraft 

in the other directions.   

The line above the highlighted one in (3.44) is the roll equation of motion, and the 

one below it is the yaw equation of motion.  They will be used simultaneously in Chapter 

5 to determine the coupled stability of the aircraft in these directions while justifiably 

ignoring pitch. 
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 Chapter Four: Pitch Stability 

 

4.1 Introduction 

The equations derived in the previous chapter are used here to analytically 

determine whether a hovering bicopter with freely (or semi-freely) tilting proprotors can 

be self-stabilized in pitch. 

4.1.1 Parameter Constraints and Pitch-only Equations of Motion 

The moments on the airframe about the pitch axis are highlighted in (3.44).  

Because of the use of the small disturbance theorem, there are no rolling or yawing 

motion terms in this line.  It is also apparent from (3.44) that the means by which roll and 

yaw are controlled, namely differential tilting (       ) and differential speed changes 

(        ), have no effect on aircraft pitch.   

These facts mean that, for the linearized system, pitching motion – and, more 

specifically, pitch stability – is independent of yaw and roll.  Therefore, the pitch stability 

of this system can be legitimately investigated while specifying that roll and yaw remain 

zero, that proprotor tilting is equal and collective only, and that proprotor speeds are 

equal and constant.  Consistent with the superposition principle for linear systems, the 

results can then be superimposed upon the case of general motion.  Using         , 

its operation will be symmetric about the x-z plane and have the following constraints: 

                                                                             

 

Since the proprotor speeds are fixed at their nominal value, their thrusts and drag 

torques will also be constant at their nominal hover values      and    respectively.   
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From Section 3.9 the pitch rate of the aircraft is  
  

  
     .  These constraints are 

depicted in Figure 4-1. Substituting them into the pitch portion of (3.44) yields: 

    
   

   
        (  

  

  
 

  

  
)                     

 

 
                       

where       
 

 
        

   . Substituting the constraints into either pod equation (3.36a) 

or (3.36b) with         , and including an external disturbing moment     for 

both, results in the same single equation: 
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Figure 4-1.  Pitch-only schematic showing constraints on proprotor variables.  

Rotors always tilt collectively by same amount.  Rotor speeds are equal and constant 

and therefore so are thrusts and drag torques. 
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Equations (4.2) and (4.3) fully describe the system in pitch, and determine the pod 

tilt angle   and aircraft pitch angle   as functions of time  .   

 

4.1.2 Equations of motion in terms of non-dimensional time   

To make the analysis universal it will be convenient to express the equations of 

motion non-dimensionally. The first step in this direction is to define a non-dimensional 

time        and replace   with       in the equations, yielding: 

     
 
   

   
        

   (  
  

  
 

  

  
)                                            

    
   

   

   
         

 
   

   
          

   
  

  
                                         

The use of    in this fashion is not arbitrary; as Appendix A shows,    and the 

aircraft‟s natural frequency of oscillation change in the same proportion as the scale of 

the aircraft is changed.  Therefore, with this transformation, geometrically similar aircraft 

of different sizes will have the same  -response. The transformation also allows the 

remaining coefficients to be properly non-dimensionalized in subsequent sections.  
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4.2 State-space Eigenvalues: Unstable Aircraft with Freely Tilting Pods. 

Stability of the system is determined here using the natural frequency approach of 

state-space analysis (Franklin, 2010, pp. 438-439).  External disturbances     and      

are set to zero and, though doing so allows the rotor pods to freely rotate without 

restraint, control/corrective input   is made zero for now as well.   Coupled equations 

(4.2) and (4.3) can then be written in the state-space form as 

                                                                                   

Assuming some initial conditions        , and that the resulting responses of 

the entire system are at the same natural frequency, the state can then be written as  

                                                                                  

where the coefficients     are to be determined.  Differentiating (4.5) and substituting it 

and the result into (4.4) yields 

   
                                                                               

or 

                                                                                 

Equation (4.7) can be rewritten as 
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which constitutes the conventional eigenvalue problem.  For a non-zero    , (4.8) has a 

solution if and only if  

                                                                                

which is a polynomial in the eigenvalues   , known as the characteristic equation.  The 

system unknowns can be written in state-space form as: 

                                                                                  

                                                                              

        ̈                                                                           

                                                                                   

        ̈                                                                           

where it is noted that the pitch angle     is not represented since only its derivatives 

appear in equations of motion (4.2‟) and (4.3‟).  This means that only the stability of the 

pitch rate can be established in this analysis, and not that of the pitch angle.  Substituting 

definitions (4.10) into the equations of motion, with      and            , yields 

                                                                                  

                    
  

   
                                                               

where 
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Note that all of these new variables are independent of scale.  That is, they will have the 

same values for geometrically similar aircraft of different size.  

 Eliminating     between (4.11) and (4.12) gives a state equation in derivative       alone: 

                         (  
  

 

   
)                                              

Collecting and writing state equations (4.10b), (4.11) and (4.14) in the matrix form of 

(4.4) produces 

[

    

    

   

]    [

   

                 (  
  

 

   
)

            

] [

  

  

  

]                                

 

                                                                     A  
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Therefore, from (4.9), the characteristic equation is obtained from the solution of 

   [

     

                   (  
  

 

   
)

                   

]                                     

which is 

        [
(    )

 

  
      

]      
      

  
                                           

According to the Routh-Hurwitz stability criterion (Franklin, 2010, pp. 132-134), 

all coefficients of the characteristic equation must be positive and therefore they must 

exist.  However, the second-order term in (4.17) is missing and therefore the system as 

defined is unstable. This is supported by the Simulink model of Section 4.7; in it the 

amplitude of the pitch oscillations increases continuously with time after a pulse or step 

pitch disturbance. 

  

4.3 Dampers between pods and airframe 

The fact that moment   was set to zero for the analysis, thereby allowing the 

proprotor pods to tilt freely without restraint, offers a clue to the cause of this instability.  

The pitch disturbing moment causes tilting of the proprotors which, in turn, provides 

resistance to that moment.  But at some point the motion must be abated and energy 

absorbed.  

With nothing in the system as defined so far which accomplished this, it was 

surmised by the author that viscous dampers might be suitable.  This choice was later 



 

70 

substantiated by knowledge of the ship anti-roll device shown in Section 2.2.3.  Such 

dampers, illustrated in Figure 4-2, were therefore installed between the pods and airframe 

in the mathematical model.  The interface moment   is then given by: 

      

  

  
            (      

  

  
)                                                  

where    is an as-yet unspecified damping coefficient.  Equation (4.18) typically 

represents a rotary viscous fluid-type damper with internal rotor and stator (Fig. 4-2a), 

but also can be used to approximate a linear damper connected to a control arm (Fig. 4-

2b).  The introduction of a damper also provides a means by which the pilot can control 

the tilting of the pods while still allowing self-stabilization, as shown in Fig. 4-2c. 

 

 

 

 

 

 

 

Figure 4-2.  a) Aircraft underside with rotational dampers (yellow) installed 

between rotor pods and airframe.  b) Alternate design using linear damper (one of 

two shown).  Free end is fixed to airframe.  c)  Means by which the pilot can control 

pod while still allowing self-stabilization.  In the case of the linear damper the pilot 

would control the motion of the damper end. 

Control 
arm 

 

Linear 
damper 

 

Fixed 
 

Control motor 
–  rotates damper 

outer casing 
 

Damper 
containing 

viscous fluid 
and rotor 

Spar – attached 
 to damper rotor 

                                                                   (c) 

 
                                    (a)                                                       (b) 



 

71 

4.3.1 New characteristic equation 

Substituting this new definition for   into equations of motion (4.2‟) and (4.3‟), 

and applying the state-space methods of the preceding section to them yields the new 

condition 

   

[
 
 
 
 

    

                  
 (  

  
 

  
)          (  

  
 

  
)

            
             ]

 
 
 
 

                       

where 

   
       

  

      
                                                                       

The solution of (4.19) yields the new characteristic equation 

         
 (

 

  
   

 )        [
(    )

 

  
      

]      
      

  
                           

with the rotational damper providing the missing second-order term, and therefore the 

system can be stable since all coefficients are now positive. 

There are further requirements for the system to be stable, but before investigating 

these it is worth noting that (4.21) immediately shows the system to be unstable if: 

1. the tilting is purely longitudinal (      ).  

2. the proprotor is massless or has no inertia (    ). 

3. there are no proprotor aerodynamic vectoring components (    ). 
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Upon multiplication of (4.21) by   , it is also readily apparent that the 

characteristic equation is third-order solely because of pod inertia.  However, unlike for 

non-proportionally controlled OAT bicopters (Section 2.1.3.1), the third-order term here 

is not destabilizing. 

 

4.3.2 Further Routh-Hurwitz criteria for stability 

The additional Routh-Hurwitz condition for stability of a third-order system, 

introduced in Section 2.3.5.2, is repeated here, where the polynomial  

       
                                                                     

must satisfy 

                                                                                  

Applying this condition to the characteristic equation (4.21) shows that     
   must be 

greater than a certain positive value for stability, the marginal-stability value     
 :  

   
          

      

(       
 ) [

(    )
 

  
      

]

            
                                     

The Simulink model responses of Section 4.7 confirm this result, with oscillations at 

constant amplitude for    
      

  .  From Appendix B data,      
  for the Nymbus is 

0.000902.  For the case of purely lateral tilting,       degrees, (4.24) reduces to 
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4.3.3 Steady-state Tilt Angle   and Pitch Angle   after a Step Disturbance 

Here only the effect of the airframe disturbing moment     is considered.  If it is 

constant after its initial application (and therefore a step disturbance), then for a steady 

state to exist the thrust and drag-torque vectors must exactly counter that disturbing 

moment. Setting all of the derivatives in (4.2) to zero uniquely determines the rotor tilt 

angle tilt angle in the steady state: 

          
     

          
           

   
 

   
                                               

where  

   
       

   

      
              

To find the corresponding steady-state pitch angle of the aircraft, equation (4.3) 

can be integrated (after replacing   with (4.18) and ignoring the integration constant, i.e., 

assuming the initial values are zero), yielding: 

    
  

  
                       

  

  
       

  

  
                                              

or 
  

  
      

    
    

          
 

  
[
  

  
 

  

    
 ]                                          

Setting the derivatives in (4.27) to zero gives the steady-state pitch angle: 

           
  

      
             

   
 

    
                                                 

Eliminating     in (4.28) using (4.26) gives the steady-state pitch angle in terms of    
  : 
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4.3.4 Proprotor Axes in Vertical Plane in Steady-state (but not during transient) 

Generally, for the aircraft not to translate horizontally during pitching, it is 

desirable that the proprotor axes remain in the vertical plane.  From geometry, the angle 

relationship ensuring this is 

                                                                              

which, for small    and   , can be approximated as: 

                                                                                

Comparing (4.31) with (4.28) produces the relations that make the prop axes 

coincident with the vertical plane in the steady state  as shown in Figure 4-3: 

                         
 

 
                                                       

or 

   
        

 

 
                   

                                                      

 

 

 

 

 

 

 

 

Figure 4-3.  Stead-state proprotor axes can lie in vertical plane per (4.32) 
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However, satisfying this condition does not mean that the proprotor axes will stay 

in the vertical plane during the transient part of the response. This would require (4.31) to 

be satisfied for all times  , which of course not only implies synchronous tilting – i.e., the 

tilt angle being in phase with the pitch angle (actually 180 degrees out of phase because 

they are of opposite sign) – but also that the tilting is of sufficient magnitude.  Satisfying 

both conditions is physically impossible with the present system, as is shown in the next 

section. 

 

4.3.5 Synchronous tilting 

From inspection of (4.27 and (4.27‟), synchronous or in-phase tilting can only 

occur when either       or  

    
  

       
  

  
                                                                  

with the latter being the more realistic condition.  Rearranging it gives 

              

  
  

                                                               

   
          

  
  

                  
                                                  

From (4.27‟) the resulting proportional relationship between pitch and tilt for this 

damping coefficient is: 

          
 

  
                                                                 

which gives a magnitude for tilt angle that is less than that required for vertical-plane 

proprotor axes, given by (4.31).   
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4.3.6 Effect of Increasing Payload Mass on Aircraft Stability 

Adding a point mass payload at the aircraft center of mass will not increase the 

airframe inertia    , and so the parameters    ,     and    defined in (4.13) will not 

change either.  The characteristic equation (4.21) will then remain unchanged if the non-

dimensional damping coefficient    
  is kept constant (by maintaining ratio 

  

  
 ), and the 

aircraft will have the same hover stability characteristics as before. 

However, in a more realistic scenario, the payload will have dimensions and not 

be located at the aircraft center of mass.  In the general case, then,       and    will both 

increase with added payload.  Multiplying (4.21) through by      gives 

    
        

 (       
 )      *(    )

 
        

+                                   

The two lowest order coefficients of (4.21‟) will decrease in magnitude with 

increasing   
 , indicating reduced relative effectiveness of the gyroscopic and thrust-

torque terms.   However,    
   predominates the second-order coefficient and, for a 

given    , it decreases with increasing      .   Whether or not        increases faster than 

   
   (and therefore whether    increases faster than   ) will depend on how the additional 

payload is distributed in the aircraft.  If they increase at the same rate then the system 

behaviour in non-dimensional time - except for third-order effects due to (non-dim.) pod 

inertia     - will be independent of payload mass.   

 In any case the coefficients of (4.21‟) will always remain positive when 

increasing payload mass, but it is the additional third-order stability requirement (4.24) 

that raises the lower limit for     as     and     are increased. 
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4.3.7 Comparison to Stability of OAT Aircraft for Zero Pod Inertia 

Rewriting the equation of pitching motion (2.3) for an OAT aircraft equipped 

with proportional controller (without time delay), and using  

 non-dimensional time,       , and parameter definitions (4.13) 

 controller gain     from (2.5) 

    in place of      , using (3.26) and the definition following (4.2) 

 a solution for   of     
   

it becomes the explicit characteristic equation 

   (       
 )                                                                        

which, for zero pod inertia (     ),  becomes  

    
                                                                                 

Setting       in the passive system‟s characteristic equation gives 

 
    

 

     
                                                                               

From (4.32‟), for the proprotor spin axes to be in the vertical plane,     
  

          .    Substituting this into (4.21‟‟) yields 

    
                                                                                     

which is exactly the OAT characteristic equation (2.3”) for        .  Of course the OAT 

system will, in practice, have a time delay and not be as stable (equation (2.8)) as 

indicated here.  However, the pod contains the proprotor, and it will be seen in Chapter 6 

that a very large proprotor inertia     is required to stabilize the passive system.  
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4.4 MATLAB/Simulink Model and Disturbance Response Simulations 

A Simulink model for a pitching-only aircraft, based on the equations of motion 

(4.2‟) and (4.3‟), was constructed to corroborate and visualize the analytical findings of 

the previous sections in this chapter.  Data used was that of the Nymbus aircraft in 

Appendix B.  The full code and further details of this model are contained in Appendix 

C.1. 

A tilt path angle of       degrees was chosen for all simulation runs, partly 

because the effects of changing    – at least for an OAT vehicle – have been studied 

before (reproduced in Fig. 2-10), and because the intention was to consider roll stability 

in the same manner as pitch.   That is, just as gyroscopic pitching moments arise from 

collective tilting of the proprotors, rolling moments result from their differential tilting.  

These rolling and pitching moments, then, will be equal if the tilt paths are oblique with 

     degrees. 

Figures (4-5b,c) plot the aircraft‟s automatic tilt and pitch responses to the 

moderate step disturbing moment of    
        

   shown in (4-5a) for values of     
  

ranging from 0 to that for vertical steady-state proprotor axes  (     
        , from 

(4.32‟)).  Note that actual time   rather than non-dimensional time   has been used in the 

abscissa of these plots (by dividing   by    , 520 sec
-1

). 

Equation (4.24) predicts a minimum     
   of 0.0009 (=      

 ) for stability of a 

free-tilt Nymbus.  This is confirmed from the Simulink plots, wherein the oscillation 

magnitude is constant for this    
 .  The steady-state tilt and pitch angles predicted by 

(4.26) and (4.29) are confirmed as well.  The tilt-angle curves either converge toward or 
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oscillate about the predicted     of -1.64 degrees.   And, as predicted, the steady-state 

pitch angle    – unlike    – is a function of    
 ; this is because tilting slows with 

increasing    
 , allowing the aircraft time to pitch further before equilibrium is reached. 

Figures (4-6a, b) show aircraft responses for       
        .    From them it is 

apparent there is no advantage to going to high    
  values; the tilt responses are slowed 

down excessively and the corresponding steady-state pitch angles are unnecessarily large.  

Inspecting the automatic tilt responses of Figures (4-5b) to (4-6a), it appears that the ideal 

rotary damper coefficient     
  is just slightly less than the vertical-plane value      

  (= 

0.0080) - as a compromise between short response time and a low number of oscillations.  

This ideal or optimal     
  will derived in the next section.   

Figures (4-7b-g) show the aircraft pitch responses to a pulse disturbance for the 

same     
  values as the step-disturbance plots.    As expected, they show temporary pitch 

excursions when    
  is greater than the minimum stability value of 0.0009.  

Figures 4-8 and 4-9 respectively show the effects of changing proprotor inertia    

and of reducing height   on the aircraft‟s response to a step pitch disturbance.  
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

(c) 

Figure 4-5.  Simulation results using Simulink pitch-only model and Nymbus data.  

 

  

(a) Step pitch disturbance  𝑴𝒆𝒚
   𝟎 𝟏𝟎𝑸𝟎

 . (b) Resulting automatic tilting of 

proprotors for various damping coefficients 𝒌𝒅𝒚
 ≤ 

𝟏

𝟐
𝒓𝒚  𝟎 𝟎𝟎𝟖𝟎    (kd in legend).  

(c)  Corresponding pitching of aircraft. 

kd= 0 
0.0009 (= kds)  
0.0025 
0.0080 (= kdv)   

kd= 0 
0.0009 (= kds)  
0.0025 
0.0080 (= kdv)   
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0.0080 (= kdv)  
0.0150 
0.0250  

 

 

 

.   

 

 

 

 

 

 

                                                                     (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         

 

(b) 

Figure 4-6.   Response to step disturbance for     
          

 

0.0080 (= kdv)  
0.0150 
0.0250  
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  (a)  Pulse disturbance     
        

           

                            

                                                                                                 (b)      
     

 

 

 

             (c)      
              

                   

                                                                                                                                               

                                                                                            (d)      
          

 

                                                                                                                                                         

                    (e)      
          

 

 

 

 

            (f)      
              

                                     (g)      
         

 Figure 4-7.  Pulse disturbance  (a) and pitch responses   (deg) for various damper 

coefficients    
 . 
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Figure 4-8.  Effect of changing proprotor inertia    , with      
       

 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9.  Effect of reducing height   to zero 

 

  𝜃 

  𝜏 

 𝑟𝑦 = 0.008 

0.016 

0.024 

  𝜃 

  𝜏 

  = 0.06 ft. (std Nymbus) 
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4.5 Adding a pod centering spring: stabilization of pitch-rate only 

4.5.1 The need for a centering spring 

Though the damper introduced in Section 4.3 does stabilize the aircraft 

theoretically, in practice it is inadequate by itself because it cannot prevent drift of the 

pod tilt angle.  A test-stand bicopter, shown in Figure 4.10, was constructed to observe 

the behaviour of the system developed so far.  Though this bicopter resisted pitch 

disturbances as expected, the pods rotated for other reasons as well, listed here: 

 

1. Construction/assembly tolerances.  Proprotor spin axis must exactly intersect the 

pod tilt axis, otherwise a tilting moment will be generated by the offset thrust. 

2. Aerodynamic imbalance.  Items such as wires in the proprotor downwash will 

create drag forces that tend to tilt the pod. 

3. Bias due to vibration. Tilting motion in one direction may be favoured over the 

other during operation, with the result that the pod cannot return to center. 

 

 

 

 

 

 

 

 

Figure 4-10.  Experimental test-stand bicopter with close-up of dampers 
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End fixed 
 

Control arm 
 

Before the construction of this stand it was believed that drift – if any – could be 

corrected for by the pilot‟s control of the damper, but this was quickly dispelled during 

testing. It was concluded that a passive centering device such as a spring could be a 

possible remedy.  In this section such a spring is incorporated into the mathematical 

model and its effects on the system analyzed.   

Figure 4-11 shows the spring installed in parallel to a linear damper, which – 

because of the simplicity and ubiquity of this combination – is now the preferred type.  

The interface moment    between pod and airframe, previously given by (4.18), now 

becomes 

      

  

  
              (      

  

  
     )                                    

where     accounts for the spring constant and length of the control arm.  The spring – 

and consequently the spring-damper assembly – is bi-directional in that it can be 

compressed or extended from an equilibrium length which corresponds to zero tilt of the 

pod. 

 

 

 

 

 

 

Figure 4-11.  Bi-directional centering spring in parallel with linear damper 
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4.5.2 New characteristic equation 

With this new definition for  , the state-space         matrix of Sections 4.2 

and 4.3 becomes:  

[

    

          
                 

             

      
            

                

]                          

where 

   
       

  

      
                                                                  

       
  

 

  
                                                                   

Setting the determinant of (4.51) to zero yields the new characteristic equation for the 

system: 

          
         [

(    )
 

  
      

     
  ]      

      

  
                           

from which it is seen that the spring is not destabilizing.  However, it must be 

remembered that all the characteristic equations derived in this chapter, including (4.53), 

pertain to the pitch rate, and not the pitch angle; the state-space relations (4.10) do not 

contain a   term (though the tilt angle   is of course represented). So (4.53) can only be 

indicative of pitch-rate stability.  That the pitch angle was also stabilized until now was 

somewhat fortuitous - as the next section shows. 
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4.5.3 Effect of spring on aircraft response to step disturbance 

Figure 4-12 shows the result of adding a spring to the Simulink model studied in 

Figure 4-5 (for    
       

        ) and subject to a step pitch disturbance.  There is 

no  

 

 

 

 

 

 

 Figure 4-12.  Effect of pod spring on aircraft response to step pitch disturbance.   

 

 

no effect on the steady state value of the proprotor tilt angle, and very little effect on its 

transient.  But it causes the aircraft to pitch continuously – at a constant rate – after the 

transient. 

This is in effect a precession of the proprotors, the rate (of pitching) governed by 

gyroscopics, and the moments produced exactly balancing the external disturbing 

moment.  They also counter the internal spring moment, allowing the tilt angle to remain 

constant even though the springs exert restoring moments tending to center the pods. 

This tilt angle and pitch-rate can be predicted by redefining the steady-state to 

include rotation at constant angular velocity.   Setting to zero, then, all the second-order 

terms (and    ) in the pitch equations of motion (4.2‟) and (4.3‟) gives: 

  𝛾   𝜃 

  𝜏   𝜏 

  
 𝑘𝑠𝑦

    

increasing  𝑘𝑠𝑦
  

Same Simulink aircraft model as for Fig. 4-5, with 𝒌𝒅𝒚
   𝒌𝒅𝒚𝒗

  𝟎 𝟎𝟎𝟖𝟎.   

 



 

88 

      
   [  

  

  
 

  

  
]
 

                      
  

  
|
 

        
   

 
       

and 

         
   

  

  
|
 
        

  

  
|
 

                                                   

Note that, by definition of a step disturbance,           in (4.54).  Eliminating terms 

in (4.54) using (4.55) yields 

      
   

  

  
|
 

                       
   

 
                                       

The steady-state tilt rate must be zero, however.  If it were a constant and    then 

   would have to be infinite, which would contravene (4.56).  Setting it to zero then 

gives the steady-state tilt angle: 

          
   

             
            

   
 

   
                                       

which is independent of     and identical to the steady-state tilt angle derived previously 

(4.26).   From (4.55) the steady-state pitch rate then is 

     
  

  
|
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4.5.4 Effect of Spring on Aircraft Response to Pulse Disturbance 

Even under a temporary or pulse disturbance, a bicopter with centering springs 

will become permanently disturbed.  Equation (4.57) still applies in this case, with 

            and therefore      .  From (4.55) the steady-state pitch rate also 

becomes zero, and    is now the unknown.  To find it (4.2‟) and (4.3‟) need to be 

integrated, but first the finite pulse disturbance must be defined. 

Disturbance         is here considered to be arbitrary but finite in profile, 

operating over the finite interval         , with          for       and       .  

Therefore the semi-infinite integral of the disturbance becomes 

∫    

 

 

            ∫  
  

 

    ∫    

  

  

    ∫  
 

  

            ∫    

  

  

                  

which must, by definition, be finite too.  Integrating (4.2‟) and (4.3‟), setting   and all 

remaining derivatives to zero, yields  

      
                         ∫  

 

 

        
 

 
∫    

  

  

                   

and 

         
           ∫  

 

 

                                                           

Eliminating the  -integral between (4.60) and (4.61) gives 

           
     

                 
   

∫    

  

  

                                           

              
   

    
 

       
∫    
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Figure 4-13 shows these effects of the centering springs on the aircraft when it is subject 

to a temporary pitch disturbance. 

 

 

 

 

  

 

 

Figure 4-13.  Effect of pod spring on aircraft’s response to pulse  disturbance. 

 

The permanent pitch resulting from the disturbance implies that the aircraft will 

accelerate horizontally even after the disturbance has passed.   

 

4.6 Adding a Pilot to Stabilize Aircraft Pitch 

4.6.1 Modeling Aircraft Response to Pilot Input:  Handling Qualities 

That the aircraft under investigation is not stabilized in pitch (and roll) is very 

similar to the first production helicopters of the 1940‟s, where mechanical stabilizers 

such as the Bell flybar or the Hiller control rotor were really dampers, and only stabilized 

the pitch and roll angular velocities.  These dampers effectively increased the period of 

helicopter oscillation to within a range that was manageable by the pilot.  Therefore the 

pilot was an essential stabilizing element in these aircraft types.  A combination of the 

two systems, the Bell-Hiller flybar referenced in Section 2.4, is still used today in R/C 

model aircraft.   

  𝛾 

  𝜏   𝜏 

  𝜃 

   𝑘𝑠𝑦
 = 0 

  0.000005 

increasing  𝑘𝑠𝑦
  

Same Simulink model as in Fig. 4-7, with 𝒌𝒅𝒚
  𝒌𝒅𝒚𝒗

  𝟎 𝟎𝟎𝟖𝟎. 
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In this section the response of the aircraft with spring and damper – from pilot 

input to the aircraft‟s output in pitch – is modeled and compared to the handling qualities 

standards established for full-size VTOL aircraft.  Pilot control input   here is the 

rotation angle of a servo arm which axially displaces the spring-damper‟s free-end as 

shown in Figure 4-14.  The unseen servo is fixed to the airframe and the length   of its 

arm is the same as the pod‟s control arm.   The input is positive when it tends to tilt the 

proprotor rearwards, i.e., when it tends to make   positive as well.  With these 

conventions the interface moment between pod and airframe is now:  

      (
  

  
 

  

  
)                                                         

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14.  Aircraft underside showing pilot’s servo control input   and 

corresponding axial displacement of spring-damper end.  Servo not shown. 

 

𝑙 

𝑙 

𝛿 

𝛾 
Axial displacement 

of damper end  
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If   is eliminated between the airframe and pod equations of motion ((4.2) and 

(4.3) respectively), and therefore without specifying what   is, the result is exactly the 

airframe equation of motion (2.1) for a general, unspecified  , and which is repeated 

here: 

         
  

   

   
           

   

   
             

  

  
                                     

where         
         (definition from (4.2) and (3.26)).  In transfer function form 

the airframe is represented as  

             
L{    }

L{     }
         

      

      
                                                                   

   
                                      

         
     

                          

Substituting (4.63) into (4.3) (with       ) yields the new pod relation, now having 

two inputs,   and  , and one output,  : 

    
   

   
            

  

  
     

   

   
      (

  

  
 

  

  
)                             

Representing it in transfer function form requires separation into two parallel parts, one 

for each of the inputs (Aziz, 2013).  If the complete pod is     , then the two parts are 

           
L{     }

L{    }
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and 

           
       

       
      

                         

              
                         

where  

                                                                            

The corresponding transfer function diagram of the complete pitch system, 

including a block representing the human pilot (operating the aircraft by radio control) is 

shown in Figure 4-15. 

 

 

 

 

 

 

 

 

 

The open loop transfer function, from pilot input   to airframe output  , is  

      

    
    

            

            
                                                         

 

𝑃𝛿  𝑠  

  

  

𝜃 

 

𝑃𝜃  𝑠  

𝐻 𝑠  

𝛿 

    
 

R = 0 

Figure 4-15.  Aircraft pitch represented in transfer function form 
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The corresponding non-dimensional characteristic equation - using (4.65), (4.67), 

       , and definitions (4.13) -  is 

 {          
         [

(    )
 

  
      

     
  ]       

      

  
}                       

which of course is just the spring and damper aircraft characteristic equation (4.53) with 

an additional root at zero.  This root signifies that the aircraft on its own cannot stabilize 

the pitch angle. 

 

4.6.2 Root Locus vs. Spring Constant:  Comparison to Roots recommended by military 

specifications and to those of OAT bicopters with electronic controllers. 

The root locus of characteristic equation (4.70) is plotted in Figure 4-16 as a 

function of spring constant     
 , using the Nymbus data from Appendix B.  Note that the 

non-dimensional roots      of (4.70) are multiplied by    (= 520 rad/sec) to obtain actual 

frequencies in the figure.   

Included in the plot are the boundaries for Level 1 and 2 flying qualities defined 

by the US Military (MIL-F-83300, 1970, Key, 1971).  The characteristic roots must fall 

to the left of the identified boundary to satisfy that level‟s requirements.  It can be seen 

that the zero root, representing neutral stability without oscillations, does not violate any 

boundaries and therefore is allowable.  It is also evident that the handling qualities of the 

self-stabilized system are acceptable for increasing values of spring constant     
  until it 

becomes 0.00156.  At this value the root locus passes through the Level 1 boundary, and 

remains within the boundary thereafter.  A rigid, conventional linkage between servo and 
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pod – represented by a    
   approaching infinity - therefore produces woefully 

unacceptable handling qualities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16.  Predicted characteristic root locus (in red) of self-stabilized Nymbus 

 

 

 

 

aircraft for various spring constants  𝑘𝑠𝑦
  (eqn. (4.70)), along with US Military Level 

1 and 2 flying quality boundaries.  Also plotted is estimated root locus (in blue) of 

OAT Nymbus with proportional controller having various time delays (eqn. 2.8). 

additional 

pole at origin 
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It is clear from the foregoing that a flexible system (in the form of spring and 

damper) can be beneficial.  Lowering the spring constant below 0.00156 reduces the 

natural frequencies of the system, to values either manageable by the pilot or to those 

which are damped quickly enough to be of no consequence. 

For reference Figure 4-16 also includes the characteristic root locus of the 

proportionally-controlled OAT aircraft in Section 2.1.3.2 for various time delays.  Since 

it has no zero roots, this system is completely stabilized in pitch at the typically high 

commercial frequencies of 50 to 400Hz (time delays of 0.02 to .0025 seconds 

respectively).  Based on the plot, the pilot does not need to actively attend to pitch control 

during hover with so-equipped aircraft, a characteristic which has been observed in 

practice. 

 

4.6.3 Scale and time delay; one benefit of the self-stabilized system 

For a time delay of about 0.095 seconds – which could represent a very low 

quality electronic controller or no controller at all – the OAT root locus passes through 

the Level 1 boundary.  At this point the flying qualities become unacceptable to the pilot, 

manifested in the workload becoming excessive. And, at just over 0.10 seconds time 

delay, the system becomes physically unstable and impossible to fly.  At Nymbus scales 

and with normally good electronic controllers, this is not a real issue.  But as the size of 

the aircraft gets smaller, time delays can become critical - but more so for the OAT rather 

than the self-stabilized system.  Repeating the OAT characteristic equation (2.8) here: 
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     (

   

   
      )

   

   
     [     ]

  

  
                              

Non-dimensionalizing, using           (eqn. (2.5)) and      deg. to simplify, 

yields: 

         
   *  

  

 
         +  

   [   √         ]    √                

Equation (4.71) is completely non-dimensional, and so one could deduce at first 

glance that it should be invariant for geometrically similar aircraft of different size – just 

as (4.70) describing the self-stabilizing system is.  However, this is incorrect.  Proprotor 

speed     will increase (with the inverse square root of the scale) as the aircraft becomes 

smaller, but the time delay – representative of the control electronics – will remain 

relatively constant.  This means that the negative terms in the coefficients of (4.71) will 

get larger as the aircraft decreases in size, and at some scale the aircraft will become 

unstable.  There will be a practical limit to how fast the electronics can be made to 

operate, and therefore there will be a limit to the size of OAT aircraft.  This is not true of 

self-stabilized bicopters, as the invariance of (4.70) attests. 

 

4.6.4 Sub-miniature aircraft and hybrid mechanical-electronic controllers 

Based on the above observations, for very small aircraft it would be advantageous 

to combine the mechanical self-stabilizing and electronic systems.  This hybrid system 

would be manifested by the control diagram of Fig. 4-15 if the pilot were replaced by the 

electronic proportional controller described by (2.7), its output now  : 
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or, in transfer function form: 

         
     

 
                                                               

The characteristic equation determining the stability of the system would now include the 

electronic “pilot” and be obtained from the closed loop transfer function of Fig. 4-13: 

      

 
     

                

  [                 ]    
                                      

 

4.6.5 Converting      
  to a spring specification 

The rotary spring coefficient     
  used in the previous analyses needs to be 

converted to the equivalent linear spring constant so that a suitable spring can be selected.  

Referring to Fig. 4-17, the effects of the damper are ignored and the servo arm (and 

consequently the damper body) is assumed to be fixed and at zero rotation (   ).  The 

moment acting upon the pod by the spring due to the former‟s tilting   is, from (4.63), 

simply 

                                                                               

The axial force on the spring-damper due to this rotation and consequent moment will be 

approximately 
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Figure 4-17.  Converting rotational spring coefficient to a linear spring constant. 

 

 

From geometry the approximate displacement of the spring-damper end (attached to the 

pod control arm) is 

                                                                               

Combining (4.75) to (4.77) yields the force-per-unit-displacement – or spring constant – 

of the linear spring: 

  
  

      
  

  
                                                                       

or, using the non-dimensional spring coefficient    
 : 

  
  

         
 
   

 

  
                                                               

𝑙 

𝐹𝑥  𝛾 

 𝑥 

Rotation 𝜸 of pod generates axial spring force  𝑭𝒙 . 
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Using (4.76‟) with the Nymbus‟   –value of 5/8-in (  0.05 ft.) and Nymbus data 

from Appendix B, Table 4-1 lists linear spring constant values for various coefficients 

which appear on the root locus plot of Fig 4-16. 

Table 4-1.  Linear spring constant vs. rotational spring coefficient 

 

 

 

 

 

 

 

 

The table contains a range of values which appears reasonable in terms of stabilization of 

the aircraft.  However, there are other requirements as well: 

 the pods must resist aerodynamic tilting moments incurred in forward flight 

 the aircraft must exhibit a satisfactory rate of response to the pilot‟s control input 

 

4.7 Provisional Testing 

Springs having a spring constant of 5 lb/in were installed along with fluid 

dampers in the Nymbus bicopter‟s pods, but their restorative forces were found to be 

woefully inadequate in overcoming the following resisting moments (to pod tilting) that 

were not mathematically modelled: 

Root locus 

index 

(Fig. 4-14) 

   
  

 

Linear spring  

constant 

           
  

  
 (lb/in) 

0 0 0 

1 0.00001 1.25 

2 0.00002 2.50 

3 0.00003 3.75 

4 0.00004 5.00 

5 0.00005 6.25 

10 0.00010 12.50 
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 Bushing friction (between pod and spar) 

 Linkage friction 

 Stiffness of electrical wires. 

 Damper stickiness 

Only springs with a spring constant of about 5 times the originals‟ were sufficient 

to restore the pods to center. These are shown in Figure 4-18.  However, this change 

adversely affects handling characteristics. At speeds close to take-off values, the 

gyroscopic moments generated by the commercial 13-in. diameter propellers when 

pitching the aircraft (by hand) could not overcome the strength of the new springs; the 

pods remained centered in spite of aggressive pitching at high rate (higher than that 

observed of the OAT-equipped Nymbus). 

 

 

 

 

 

 

 

 

 

 

       Figure 4-18.  Dampers and centering springs on Nymbus bicopter. 
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The most direct remedy to this problem is to increase the inertias of the proprotors.  This 

was provisionally done in the lab by installing rings around the proprotors (Figure 4-19), 

which increased their moment of inertias (about the proprotor spin axis) by about tenfold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 4-19.  Styrene rings around Nymbus proprotors to increase their inertia. 

 

These rings were cut from commercially available styrene dishware, and were 

simply stretched over the proprotor blade tips.  In order to do this each blade had to be 

reduced in length by 0.5 in.  The rings also masked another 0.5 in. of the remaining blade 

length, and therefore each proprotor was effectively reduced in diameterby a total of 2 

inches. 

This together with the fact styrene is not a high strength material did not allow the 

aircraft to be flown, but proprotor speeds within the 20% of the 520 rad/sec take-off 
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nominal were attainable.  At these speeds, with the rings installed, the proprotors now 

visibly tilted (in the opposite direction to the pitching) when the aircraft was pitched. 

In future work, account must be made of friction in the equations of motion in 

order to determine the proper spring specifications and proprotor inertias.  It also appears 

that a viable self-stabilized bicopter will require a new type of proprotor, one which most 

probably has an integral ring. 

 

4.8 Conclusions 

The linearized pitching and related proprotor tilting behaviours of a hovering 

bicopter can be represented by a single, third-order characteristic equation.  From it the 

system is found to be self-stabilizing if the pod tilting is rotationally damped relative to 

the airframe.  Therefore, a bicopter with damped and obliquely tilting proprotors has here 

been mathematically proven to be self-stabilizing in pitch. 

With proper choices of the design parameters, including the damping coefficient, 

the proprotor axes can reside in the vertical plane after the application of a step pitch 

disturbance.  However, they will not remain in the vertical plane during oscillations or 

transients.  

Simulations using the same mathematical pitch model corroborated the 

characteristic equation stability predictions. 

In practice, pod centering springs are required since any imbalances will tend to 

tilt the pods inadvertently.  Installing springs into the mathematical model causes the 

system to degrade from its original pitch-angle stability to a pitch-rate stability, making it 

equivalent to a conventional helicopter with mechanical flybar.  This implies that a pilot 
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(human or electronic) must be present in the system, operating the tilt control and 

keeping the pitch angle stabilized.  The lowered frequency of pitch oscillation due the 

rate-stabilization greatly reduces the difficulty of this task.  Theoretically, the aircraft‟s 

hovering qualities in pitch will be acceptable to a human pilot according to military 

standards, and this characteristic is scale invariant.  This is not true of OAT bicopters, 

which require faster electronics as their size becomes smaller. 

Mechanical friction, which opposes tilting of the pods, must be included in future 

analyses.  As well, bicopters require proprotors that have considerably higher mass-

moment of inertias than those currently available commercially.  This probably entails 

proprotors with integral rings. 
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 Chapter Five: Roll and Yaw Stability 

 

5.1 Parameter constraints and roll-yaw equations of motion 

The roll and yaw lines in (3.44) do not contain pitching motion terms.  As well, 

they are not affected by collective tilting (        ) - the primary means by which 

pitch is controlled, and the type of tilting which results exclusively from aircraft pitching 

according to (3.44).  Nor are roll and yaw affected by collective proprotor speed changes 

(       ).  Therefore, the converse of the state outlined in Chapter 4 is also true, that 

rolling and yawing motion are independent of pitching motion and control in our 

linearized system; that roll and yaw behavior of the aircraft can be thoroughly 

investigated using purely differential tilt and speed changes only (        and  

        ). 

However, since roll and yaw are both direct functions of differential tilting and 

speeds (and vice versa), they are not independent of one another.  Therefore any motion 

study of one must consider the other simultaneously.  This condition has no effect on 

their non-relationship to pitch, so roll and yaw stability can still be legitimately 

investigated while specifying that pitch remain zero.  The results can then be 

superimposed onto the case of general motion.  Therefore, the aircraft operation can be 

initialized and maintained as having no pitching (      ) with the following 

constraints: 
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With this specification of equal but opposite speed changes of the proprotors – 

now defined in terms of a single unknown speed parameter   –  their thrust and drag 

torques are defined as well.  From their linear approximations in Section 3.5.2, they are:  

                                                                                       
(5.2) 

                                                                                       

From the definitions in Section 3.9, with      the roll and yaw rates are simplified to:  

  

  
      

  

  
                                                            

where the actual roll angle    is assumed to be small (< 15 deg.).  All the constraints 

above are depicted in Figure 5-1.  Substituting (5.1) and (5.3) into the roll and yaw 

portions of the equation of motion (3.44) yields 

   
   

   
         (  

  

  
 

  

  
)                             

 

 
                

 

    
   

   
         

  

  
                     

 

 
                                   

where       
 

 
        

    and       
 

 
        Substituting (5.1) and (5.3) into 

either pod equation (3.36a) or (3.36b) with     , and applying the small disturbance 

theory once more to eliminate products of the unknown variables, again results in a same 

single equation: 
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Figure 5-1.  Roll and yaw model showing constraints on proprotor variables. 

 

 

Writing the equations of motion in terms of non-dimensional time           : 

     
 
   

   
       

   (  
  

  
 

  

  
)                           

 

 
            

      
 
   

   
       

 
  

  
                     

 

 
                                      

      
   

   

   
         

 
   

   
          

   
  

  
                                               

  in (5.4) and (5.6) has already been defined in the previous chapter.  For simplicity it is 

assumed that – as was the result for the pitch stability analysis – the centering springs do 

z1 

  

z2 

x 

z 

y 

b 

h b 
0 

1 =  

 2  =   

T1 = T0(1+2) 

1 = 0(1+) 

 

       

2 = 0(1–) 

 

Q1 = Q0(1+2) 

Q2 = Q0(1–2) 

T2 = T0(1–2) 

ϕ   

ψ   

 

 

Mez  

Mex  

C2= C 

C1=C 

Tilting of the two proprotors is always equal but in opposite directions.  So are 

proprotor speed changes.  Linearized thrusts and drag torques vary 

accordingly.  
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not adversely affect the stability of aircraft angular velocities.  Therefore only the rotary 

damper relation (4.18) is used for   , which is repeated here: 

      

  

  
            (      

  

  
)                                                 

Even with    specified, however, there are only three equations - (5.4‟) through (5.6‟) - 

describing the system, but there are four unknowns:          and    .   

  

5.2 Yaw gyro 

5.2.1 The need for a yaw gyro 

Thus far there is no control of proprotor speeds; specifically, no means of 

controlling   has been prescribed.  As shown in Section 3.2.2, unlike tilt angle   , the 

proprotors‟ speeds will not change on their own due to motion of the aircraft  (i.e., there 

are no inertial moments generated about their spin axes).  As Table 5-1 shows, however, 

leaving the speeds constant and at their nominal values – i.e., setting      – would 

make    entirely a function of    and      (equation (5.4)).  Since the latter two parameters 

depend only on each other in this case – and not on    – there could be no automatic 

feedback correction to   .  This means that the aircraft could spin inadvertently once 

perturbed.   

 

 

 

 

Table 5-1. Variables in equations of motion 

Equation Variables 

(5.4)                        γ       ( ) 

(5.5)       ψ               γ        ( ) 

(5.6)                        γ  
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This leads to the conclusion that some extra device must be incorporated into the 

system, one that senses yawing     (or     ) of the aircraft and corrects for it by effecting 

control of another parameter.  Since, as we have seen,   cannot be zero (or arbitrary), the 

device must effect control of     in order to correct errors in   . 

The necessity of an extra device for stabilizing yaw in the aircraft is not surprising 

when one considers that nearly all VTOL aircraft require one.  Model R/C helicopters 

with either fully articulated main rotors or with flybars, such as the one shown in Figure 

5-2, are inherently stable in pitch and roll but require electronic stabilization in yaw.  In a 

typical model, an onboard piezo gyro senses unwanted yawing motion and sends a 

corrective control signal to a servo, which in turn changes the pitch of the tail rotor blades 

an appropriate amount through a control linkage. 

Similarly, coaxial R/C helicopters (Figure 5-3), though extremely inherently 

stable in pitch and roll, also require electronic stabilization of yaw.  In this case the piezo 

yaw gyro controls the speed differential of the two motors driving the co-axial rotors, 

slowing one down and speeding the other up to generate a net yawing moment while 

maintaining the model‟s altitude.   

 

 

 

 

 

 

Figure 5-2.  Conventional R/C helicopter, with electronic yaw stabilization 

 

1 2 

3 4 

consisting of: 1-yaw gyro; 2-servo; 3-control rod; 4-tail rotor pitch arm.  

(Source: www.skyartec.com, 2014) 
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Figure 5-3.  Coaxial R/C helicopter, with electronic yaw stabilization 

 

 

In terms of increasing performance and cost, typical commercial yaw gyros range 

from rate- or derivative-type (D) to angle or proportional (P), and on to a combination of 

the two (PD).  Some of the higher-end ones will even contain proprietary control 

algorithms.  For a conventional R/C helicopter, the gyro outputs a PWM (pulse width 

modulation) signal to the tail rotor servo, which in turn changes the angles of the tail 

rotor‟s blades – and therefore its thrust – by an amount according to the algorithm. 

For a coaxial helicopter the yaw gyro output is again a PWM signal, but in this 

case it is sent to the rotor speed controllers, which in turn change the voltages of the drive 

motors and consequently their torques and speeds.   

In this thesis a similar approach is used; initially, a D-type yaw gyro/speed 

controller system specifies speed changes of the proprotor drive-motors to keep the 

aircraft from yawing inadvertently (a P-type controller will be added in a subsequent 

section).  It is actually the motor torques that are of primary importance in yaw 

prevention, but speed changes will of course ensue as well; in a later section it will be 

shown how they and automatic tilting of the proprotors work together to stabilize both 

yaw and roll simultaneously. 

consisting of yaw gyro connected to differential speed control of the two 

rotors. (Source: www.traxxas.com, 2014) 
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5.2.2 Drive Motor and Yaw gyro models give needed fourth equation 

Assuming the proprotors are driven by brushless motors, their governing electrical 

equations are (Franklin, 2010): 

                                                                                                         

       
 

  
             

   
  

                                                        

where     is the electromagnetic torque of the armature,    and    are the armature 

current and voltage respectively,     and     are motor constants, and     and    are  the  

resistance and inductance of the armature winding respectively.  Concerning the 

inductance, Franklin (2010, pg. 48) states 

“In many cases the relative effect of the inductance is 

negligible compared with the mechanical motion and can 

be neglected.”  

Several papers on quadrotor dynamics (Hoffmann, 2007, Bangura, 2012) consider the 

inductance to be negligible as well, so this assumption is adopted here.  Setting    to zero 

in (5.8) and eliminating the    –term using (5.7) yields: 

         
 

  
     

  

  
                                                                  

where, as before, the   -subscript represents the proprotor number 1 or 2.   

Ignoring friction of the motor bearings but including the proprotor drag torque   , 

the equation of motion of the motor and its attached proprotor is: 
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Eliminating     between (5.9) and (5.10) gives 

     
   

  
       

  

    
               

  

   
                                               

We can find the nominal voltage      (i.e., that required to hover) by setting the 

derivative term in (5.11) to zero: 

      
  

    
              

  

   
                                                         

or 

      
 

  
      

  

  
                                                                     

Recalling (5.1) and (5.2): 

                                                                         

                                                                          

and writing voltages as a difference     from the nominal voltage    : 
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equation (5.11) for the two proprotors becomes the same single equation 

       

  

  
                       

  

   
                                             

where    represents the nominal back-EMF effective torque coefficient, given by 

        
  

    
                                                                    

From inspection of Figure 5-1, if the aircraft was yawing inadvertently in the 

positive direction, the yaw gyro should increase the speed of proprotor 1 and decrease the 

speed of proprotor 2 in order to counter the yawing.  Therefore the D-type yaw model, 

which changes motor voltages according to the aircraft‟s yaw rate, would normally take 

the form (assuming no time delay) 

            

  

  
                                                                        

where    is the gyro gain.  However, in order to simplify the equations,   can be 

arbitrarily redefined  to include the motor parameters:  

  

   
            

  

  
                                                              

Equating (5.16) to (5.14) produces then the fourth equation of motion for the system: 

       

  

  
                         

  

  
                                         

Using non-dimensional time, this is 
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Table 5-2 once more shows the list of variables, now with those of (5.17) included. 

Table 5-2.  Variables in equations of motion, including (5.17) 

Equation Variables 

(5.4)                         γ        

(5.5)       ψ                γ         

(5.6)                         γ  

(5.17)       ψ                          

 

 

5.3 State Space and the Eigenvalue Matrix 

Using the same method taken in the Chapter 4 for determining pitch stability, the 

system variables in state space form are:  

                                                                                          

                                                                                      

          ̈                                                                                  

                                                                                          

                                                                                      

                                                                                            

           ̈                                                                                  

                                                                                           

          ̈                                                                                  
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Substituting these into equations of motion (5.4) to (5.6), with   obtained from (4.18) 

and      , yields 

                             
                                                       

                                                                                   

                   
  
  

       
   

 

  
                                                      

              
                  

                                                     

where the coefficient definitions are 
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Eliminating     between (5.19) and (5.21) produces a state equation with     as the sole 

derivative: 

          (  
  

 

  
)      [          

 (  
  

 

  
)]                                

And eliminating between (5.20) and (5.22) yields another, with       as the lone derivative: 

                       
         

                                                

As was done in Section 4.2, the eigenvalue matrix          can be obtained from the 

system state equations, in this case (5.18), (5.19), (5.22), (5.24) and (5.25):  

 

[
 
 
 
 
 
 
 

      

               
 (  

  
 

  
)           (  

  
 

  
)  

   
 

  
    

        
   
 

  

           
                

   

 
 

   
 

 
  

   
 

 
  ]

 
 
 
 
 
 
 

          (5.26) 
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5.4 Characteristic Equation for    = 45 degrees 

Setting the determinant of (5.26) to zero yields the characteristic equation for the 

system, which was performed using MATLAB for tilt-path angle   = 45 degrees.  The 

program code and its output are contained in Appendix D.1.  From them it is observed 

that the yaw-inertial term   (e in the program) and the yaw-gyro gain    
  only appear 

together, in the ratio  
   
 

 
 , which is now defined as     

  .  With this change the 

coefficients of the various powers of the eigenvalues in the characteristic equation are 

                                                                                                                                                      

            [
 

  
    

         
 ]         

 (
 

 
 

 

  
)                                                                

        
 [

 

  
    

         
 ] (

 

 
 

 

  
)     

 

 
(√    

  
 

  
)      
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 ] (√    
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)  

√     
   

          

       
√   

   

    
           

 
 

  
(√    

  
 

  
)      

 (
  

  
 

√     
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5.5 Conditions for Stability 

One condition for stability, of course, is that all the coefficients      in the fifth-

order characteristic equation, written here as 

         
     

       
                                                        

are positive.  For a fifth-order equation there are three further Routh-Hurwitz conditions 

(Franklin 2010, pg133), where the      are here termed Routh sums: 

                                                                              

 

                                                                                             
 

                                                                              

                                                     

                                                                                              

                 
                                                            

                                                                                             

5.5.1 Special Case of      (and also    ) 

Upon inspection of (5.27), it is evident that all coefficients except the   
 one 

(5.27a4) are guaranteed to be positive when        (      ).  The   
-coefficient is 

positive under this constraint only when 

   
 (

   
  

     
  

  
)                                                                  

or, assuming yaw-gyro gain    
  is positive and using definitions (5.23), when 
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√
  

  
                                                                     

This would specify a maximum span   of 0.90 ft. for the Nymbus (compared to an actual  

1.25 ft.) if the height    was reduced from 0.25 to 0.13 ft. such that     was zero. 

A MATLAB symbolic program was written to express the Routh sums in terms of 

the aircraft design parameters.  It and its output for        are contained in Appendix 

sections D.2.2 and D.2.3 respectively.   From the latter it is apparent that, of the three 

Routh sums, only    and    are guaranteed to be positive when     .   The convoluted 

     sum, on the other hand, contains many negative terms; without further simplification 

it appears impossible to discern under what conditions     might be positive.  One such 

simplification can be obtained by going to design extremes.  Appendix section D.2.3 

shows that the     expression is always positive for the unrealistic case of        

and     , the latter condition of course inferring that the two proprotors occupy the 

same location at the centre of the aircraft.  

 

5.5.2 General Case of       and     : Pseudo-proof Plot 

Though unrealistic, the case of      aids the understanding of the general 

system. Since coefficients    and the Routh sums    are continuous functions of the 

aircraft design parameters, stability cannot be confined to just special cases, and therefore 

ranges of the parameter values for which the aircraft is stable must exist.  However, as we 

have seen, it is difficult to discern those ranges in a wholly algebraic or analytic manner 

for the more general cases.  Though it may be possible to find some simple, non-
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exhaustive parameter ranges that guarantee positivity of the     coefficients (the same can 

be done for      and     ), the last Routh sum      cannot be reduced so easily.  

Instead, a pseudo-proof of stability is developed here, in which the Routh sums 

are simplified by assigning typical (or nominal) values to some of the aircraft design 

parameters.  Using definitions (5.23) and Appendix B.1 data, one hypothetical set of 

assignments corresponding to massive pods and low propeller drag-torques is chosen 

as:         

                                                                                

 

  
                                                                                                                                    

    
               

                                                                                                             

   
                         

          (arbitrarily chosen) 

   
 

   
                                                             

 

Another set, with values closer to those of the actual Nymbus, is:  

 

                                                                                

 

  
                                                                                                                                     

    
              

      
 

 
                                                                                                   

   
                     

                 (reduced to improve stability boundary) 
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The powers of the divisor     were chosen such that    could be factored out of the 

Routh stability boundary equations of Appendix D.3.2.  

 For commercial proprotors, drive-motors and tilt-servos there will be little actual 

variability in the values of the first two parameters in  (5.34b).  Of far more flexibility 

and at the discretion of the designer are 
  

  
   and  

 

  
  . These parameters represent the 

aircraft geometry through their contained height   and span   variables respectively.   

MATLAB programs in Appendix D.3 find the stability boundaries – as functions 

of this geometry and for values of the other parameters given by (5.34).  From these it is 

apparent that – with some minor and impractical exceptions (the extreme geometries 

indicated by the      and     boundary locations) – satisfying the        condition is 

sufficient to ensure stability of the system.  This simplified stability boundary, adapted 

from Appendix D.3.4 – and corresponding to the (5.34a) data set – is depicted in Figure 

5-4a. 

 

 

 

 

 

 

 

 

 

     Figure 5-4a.  Roll-yaw stability boundary for data of (5.34a). 
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Figure 5-4b shows the stability boundary plot for the (5.34b) or Nymbus data set. 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 5-4b.  Roll-yaw stability boundary for data of (5.34b). 

 

The figure shows that a stable aircraft requires that   ≤   , which primarily 

means that the aircraft centre of mass cannot be far below the pod tilt axes.  Considering 

that oblique-tilting bicopters use the    torque vector to complement the     thrust-

vector for static pitch stability, low center of masses are not necessary in the first place.  

Indeed, Figure 4.9 showed the effect on pitch stability of reducing   to zero, which was 

just to increase the steady-state pitch angle somewhat.  

It also appears that reducing the span   will improve the stability margin of the 

self-stabilized aircraft, which is quite the opposite of conventional OAT aircraft.  In the 

𝜌
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latter, where roll is primarily controlled by differential throttle changes, advantage is had 

by increasing the span   (and hence the roll control moments).   

Finally, it is noted that     
  and    

  have roughly the same but opposite effect on 

the location of the stability boundary. Increasing     
  will essentially be the same as 

decreasing    
  (and vice versa), both in the limit driving the boundary to become the 

vertical line     .  (the        condition does not allow    
    , however).  Why 

this should be is readily apparent when one considers the yaw-gyro equation in either of 

its forms (5.17) or (5.22).   

 

5.6 Effect of Increasing Proprotor Inertia    (or    ) 

Though both axes of Figures 5.4 are divided by    
  a change in    will 

nonetheless shift the stability boundary because  
 

  
   and 

   
 

  
  also change.  Increasing 

proprotor inertia    (and therefore   ) by a factor of 10 – but just doubling the pod inertia   

   (which is feasible per Appendix B) –  changes the (5.34b) parameter values to 

                                                        (previously 0.05) 

   
 

  
                                                                                                                            

       
              

      
 

 
                                                                                           

      
                  

                                                                     

   
    

 

   
                                                                 

The resulting stability boundary plot is shown in Figure 5-5, with the Nymbus 

geometry point now being 
   

  
            and  

 

  
       .     
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Figure 5-5.  Effect of increasing proprotor inertia by 10x.  Compare to Fig. 5-4b. 

 

5.7 Simulink Modeling and Simulation 

5.7.1 Model 

A Simulink roll-yaw model based on the equations of motion at the beginning of 

this chapter was constructed to corroborate the stability analysis and is shown Appendix 

C.2.  It consists of the three main components of airframe, tilting proprotor pods, and yaw 

gyro/prop motors.  As in the pitch-only Simulink model of the previous chapter, the 

airframe and proprotor pods are connected by a viscous damper block representing 

Eqn.4-18).  

 

5.7.2 Basic Simulation:  Corroborating the effects of gyro gain 

To coordinate the output of this model with the stability boundary plot of Figure 

5-4a, data used is per (5.34a) in slightly different form:  
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                                                         , for  
 

  
             

                                                       , for  
  

  
             

External moment magnitudes, in either pulse or step form, are: 

|   
       

 |       
|        | 

     
          

    

     
                                 

As shown in Figure 5-9, a small pulse disturbance in roll is used in the model to 

corroborate the stability results of Section 5.5.  Using the Nymbus‟ proprotor speed of 

520 rad/sec the non-dimensional time of 2500 corresponds to approximately 5 seconds of 

real time.   

 

 

 

Figure 5-7.   Applied external roll disturbance in Simulink 

 

 As noted in Section 5.5, reducing the value for       
 raises the stability boundary, 

and is an alternative to reducing the span   to gain stability as Figure 5-8 shows.  

 

  𝑀𝑒𝑥
  

  𝜏 
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Figure 5-8a.  Disturbance response with gyro gain of      
             

 . 

 

 

 

 

 

 

Figure 5-8b.  Less oscillation with     
             

 , but greater heading change 

 

However, this entails an increasingly large heading change in response to roll 

disturbances, which is in keeping with the characteristic equation signifying stability of 

angular velocities, not angles.  Defying it by using    
    (      in (5.27)) gives the 

lowest roll angle response but also a continuously yawing aircraft, as Figure 5-9 attests. 

 

 

 

 

 

 

Figure 5-9.  Continuous spinning of aircraft in response to pulse roll disturbance 

when rate gyro gain     
   . 

      

      

   

  𝜏 

   

  𝜏 
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In contrast, when    
    , the proprotors‟ torque differences will eventually 

abate the yawing of the aircraft, and it will come to rest at a new heading. Any yawing 

energy the vehicle possessed will have been absorbed by the commanded aerodynamic 

torque differences of the proprotors.  Such damping, represented by (5.17), is equivalent 

to that of the rotational viscous dampers of Chapter 4 and defined by (4.18). 

 

5.7.3 Heading change after a finite roll or yaw disturbance 

Using the same steady-state analysis method used Chapter 4, it is possible to 

analytically predict the heading the aircraft will converge to after a finite disturbance 

such as a pulse.  Assuming the system to be stable, then the steady-state condition is that 

in which the derivatives in the equations of motion (5.4) to (5.6) become zero.  This 

occurs at an infinite time after such a disturbance has subsided.  Applying this condition 

to (5.4) and (5.5) gives: 

                                                                                        
                                                                                        

Integrating (5.6‟), and substituting the above end-values and steady-state 

conditions into it results in  
 

     .  And, from (5.17‟), one obtains           . 

Integrating equations of motion (5.4) and (5.5), setting their remaining derivatives to zero 

and applying the above end-conditions yields: 

    ∫     
 

 

                     ∫     
 

 

             
 

 
∫       

 

 

                   

and 
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        ∫     
 

 

          ∫     
 

 

           
 

 
∫       

 

 

                              

Doing the same with yaw gyro/drive-motor torque relation (5.17) gives 

            ∫     
 

 

             
                                                        

Substituting this relation for ∫  
 

 
  into (5.36) and (5.37), and eliminating ∫  

 

 
 between 

them produces the relation for heading change  
 

 in terms of the design parameters and 

external moments which, for      degrees, is: 

 
 

         
        

   
 [
   ∫      

 

 
             ∫      

 

 

                   
]                       

Equation (5.39a) confirms that there can be no steady-state yaw angle when the 

yaw gyro gain    is zero.  However, obtaining a real value for  
 

 from (5.39a) is not an 

indicator of stability; it may well be the yaw angle about which the aircraft oscillates. 

For a disturbance    in the form of a rectangular pulse starting at time     , ending at 

time      , and having amplitude  | |  , its integral expression can be written as 

∫    
 

 

       | |∫   
     

   

        | |                                           

Using this for the roll disturbance while setting the yaw disturbance to zero, (4.39) 

becomes: 
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|
   

         
        

   
 *

   |   |    

                   
+                           

In non-dimensional form this is: 

 
 
|
   

          
    

     

      
 

 *
 |   

 |    

          
+                                         

which correctly predicts a steady-state yaw of 0.8223 rad (47.12 degrees) for the aircraft 

condition of Figure 5-13c.  See (5-35) and Appendix B.2 for data used. 

The span   that minimizes heading change  
 

 can be found by taking the partial 

derivative of (5.39b), setting it to zero: 

  
 

  
             

 

  
[

  

                   
]                                

and solving the result for  , giving 

        √(
  

  
)
 

    
  

  
                                                          

which shows that larger spans   favor negative values for height  .   

 

5.7.4 Step disturbances and the need for a yaw gyro with proportional component 

Up until now the disturbances used have been the temporary pulse-type, which 

have allowed stable aircraft to return to a steady state for     
   .  Without further 

remedy, however, infinite duration step disturbances (Figure 5-10) will cause continuous 
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  𝜏 

   

  𝜏 

spinning (yawing) of the aircraft when    
    , just as pulse disturbances do 

when     
   .  Figures 5-11 shows the response to a step roll disturbance of an aircraft 

having exactly the same parameter values as that in Figure 5-8b  

 

 

 

 

 

Figure 5-10.  External step disturbance 

 

 

 

 

 

 

 

Figure 5-11.  Continuous spinning using a rate-type yaw gyro (   
             

 ). 

 

In an attempt to remedy this, a proportional component is introduced directly into 

the yaw gyro relation, without redeveloping the system characteristic equation to check 

for stability.  With the original derivative gain    now written as     and the new, 

proportional gain as     , (5.17) becomes: 

       

  

  
                                       

  

  
                              

  𝑀𝑒𝑥
  

  𝜏 
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  𝜏 

   

  𝜏 

or, in non-dimensional form 

     
  

  
          

                  
             

 
  

  
                            

where     
  

   

     
  and, as before,      

     
   

     
 . 

With this change there can be a permanent speed difference between the 

proprotors without movement of the aircraft. Using the same value of      
              

  

as in Figure 5-16, Figure 5-12 shows spinning of the aircraft being abated with a positive 

proportional gain      
   (in this case  =              

 ). 

 

 

 

Figure 5-12.  Response with derivative and proportional yaw gyro components. 

 

It is evident that this abatement comes at the expense of the proportional gyro 

reducing the stability of the aircraft in roll.  Lowering the proportional gain will improve 

the roll stability, but this will increase the steady-state yaw angle  
 

.  When selecting the 

proportional gain, therefore, there will be a trade-off between roll stability and the steady-

state yaw angle, a situation exactly analogous to that of the derivative gain with respect to 

pulse disturbances. 
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However, a secondary benefit of the proportional gyro is in fact its ability to 

return a pulse-disturbed aircraft to its original heading, so this previous limitation no 

longer exists.  Figure 5-13 shows how the proportional control above completely nullifies 

the aircraft‟s heading change of Figure 5-8b when it is subjected to a pulse disturbance. 

 

 

 

 

 

 

Figure 5-13.  Response to pulse roll-disturbance with rate (     
              

 ) and 

proportional (     
               

 ) yaw gyro components.  Compare to Fig. 5-8b. 

5.7.5 Heading change after a step disturbance 

Just as was done for pulse disturbances and derivative yaw gyros in Section 5.7.4, 

it is possible to analytically predict the heading the aircraft will converge to during an 

infinitely long-duration disturbance of constant amplitude (i.e., a step disturbance).  

During such a disturbance the derivatives of all the parameters should converge to zero: 

 
 
                                                                                 

 
 
                                                                                 

                                                                                    

                                                                                    

Generally, the parameters themselves will converge to non-zero values.  Setting all the 

derivatives in (5.4) and (5.5) to zero and replacing the parameters with  end-values yields: 

                                     
 

 
                                         

and 

   

  𝜏 

   

  𝜏 
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Doing the same with yaw gyro/prop-motor torque relation (5.43) gives 

                            
                                                     

Substituting this relation for      into (5.44) and (5.45), and eliminating     

between them produces the relation for heading change  
 

 in terms of the design 

parameters and external moments which, for      degrees, is: 

 
 

         
        

    
 *
                        

                   
+                               

Note that (5.47) is identical in form to (5.39a), and as such the results of the optimization 

performed on the latter will apply to it as well. 

 

 

5.8 Conclusions 

The bicopter requires a yaw gyro just as conventional and coaxial helicopters do.  

This gyro must control the differential proprotor torques (and subsequent speeds) as is 

done in small electric coaxial helicopters. 

With this addition the linearized rolling, yawing and related proprotor tilting 

behaviours of the hovering bicopter can be represented by a single fifth-order 

characteristic equation.  However, the complexity of this equation‟s coefficients prevents 

stability from being determined analytically as it was for pitch in Chapter 4.  In this case, 

some of the parameter values, such as (non-dimensional) pod inertia and proprotor drag 
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torque, must be first specified.  Then stability can be ascertained for ranges of the 

remaining parameters in the form of stability boundary plots. 

Using this method, the system is found to be stable for parameter values typical of 

aircraft such as the Nymbus model bicopter, whose center of mass is relatively high and 

span between proprotors relatively short. 

Simulations using the same mathematical roll and yaw models corroborated the 

characteristic equation stability predictions. 

With just a rate-type yaw gyro, it was found that a step roll disturbance caused 

continuous spinning (yawing) of the aircraft.  The addition of a proportional yaw gyro 

abates this spinning and causes the aircraft heading (yaw angle, relative to initial) to 

converge to a finite value.  The proportional yaw gyro will also cause a pulse-disturbed 

aircraft to return to its original heading.  However, this gyro will reduce the roll stability 

of the aircraft, so a trade-off must be accepted. 
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 Chapter Six:  Non-Linear 3D SimMechanics Model 

 

6.1 Introduction 

The construction of a more realistic SimMechanics model of the hovering 

bicopters is briefly described and some of the simulation results that bear upon accuracy 

of the linear analysis of Chapters Four and Five are discussed.  The model does not use 

the linearized equations of motion formulated in Chapter Three, but is based instead upon 

the non-linear, three-dimensional dynamics internal to the SimMechanics simulation 

environment.  Each simulation represents the behaviour of a specific physical aircraft; a 

single numerical value must be entered for each of the design variables in order to run the 

program.  As such the program cannot be used to categorically prove or disprove stability 

of a concept or configuration, but rather only that of particular aircraft on a case by case 

basis.  Nevertheless, it can be used to indicate the degree of correctness of the linear 

stability predictions for a particular design point, and this is its purpose here. 

 

6.2 Brief Description of Model 

A diagram of the SimMechanics self-stabilized bicopter model constructed by the 

author is shown in Figure 7-1.  The airframe has six degrees of freedom and can move 

horizontally and vertically depending on the magnitudes and directions of the proprotor 

thrust vectors.  At the beginning of a simulation, the aircraft is suspended motionless by 

the balance of forces in its nominal condition.  It is subsequently subjected to a disturbing 

moment in the form of a rectangular pulse about the roll axis.  Disturbances about the 

other axes could be applied, either separately or simultaneously.  However, these are not 
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attempted in this brief linear versus non-linear results comparison, for a roll disturbance 

will incur coupling and the associated non-linearities on its own. 

For the sake of further simplicity in this comparison, there are just rotational 

dampers and no springs between the pods and airframe.  Similarly, the yaw gyro – which 

directs the (differential) torques of the proprotor drive motors – is a rate type, not a 

proportional one. 

 

6.3 Simulation Results 

The aircraft parameter values used for the simulations are from the Nymbus 

dimensional data in Appendix B,.  The damping coefficient and gyro gain calculated 

from the non-dimensional values (5.34b) are 

                                                              ft-lb/(rad/sec)  or ft-lb-sec 

                                                                 ft-lb-sec 

and are included in the SimMechanics model.   

Figure 6-2 shows the aircraft attitude results of running the simulation with a 

pulse roll disturbance of 0.0035 ft-lb and 1 second duration.  Figure 6-3 shows the linear 

Simulink reults for the exact same data.  There is fairly good agreement between the 

linear and non-linear responses, except that the latter shows a permanent roll offset of 

about -0.4 degrees.  The non-linear response indicates as well a slight but stable pitching 

motion, which of course is non-existent by definition in the two-dimensional Simulink 

response. 
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Figure 6-1.  SimMechanics model of hovering bicopter. 
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Figure 6-2. SimMechanics bicopter response to pulse roll disturbance of 0.0035 ft-lb. 

 

 

 

 

 

 

 

 

Figure 6-3.  Simulink linear response to same pulse roll disturbance of 0.0035 ft-lb 

 

When the magnitude of the pulse roll disturbance is increased ten-fold (to 0.035 ft-lb) the 

similarities disappear, as a comparison of Figures 6-4 and 6-5 shows.  This roll 

disturbance, equal in magnitude to just      , is not large.  However, it is sufficient in 

magnitude for non-linear characteristics to become predominant and overwhelm the 

(angles in degrees and time 𝑡 in seconds (𝜏     𝑡)).  Compare to linear Simulink 

response of Fig. 6-3. 

   

  𝑡 

  𝜽 

  𝑡 

   

  𝑡 

   

  𝜏   𝜏 
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system, and, as a result, completely destabilize it.  The prevalent effect appears to be 

extreme pitching of the vehicle, which the proprotors are unable to correct as they also 

deal with its rolling and yawing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4. SimMechanics bicopter response to pulse roll disturbance of 0.035 ft-lb. 

 

 

 

 

 

 

 

Figure 6-5.  Simulink linear response to same pulse roll disturbance of 0.035 ft-lb. 

 

Compare to linear Simulink response of Fig. 6-5. 

  𝜽 

  𝑡 

  𝑡 

   

  𝑡 

   

   

  𝜏   𝜏 
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Figures 6-6 and 6-7 show the substantial increase (50x and 100x) in proprotor 

inertia required to stabilize the non-linear system for the        disturbance.  It appears 

that the only way to achieve this to incorporate integral rings about the proprotors. 

 

 

 

 

 

 

 

 

 

Figure 6-6.  SimMechanics bicopter response to same disturbance as in Figure 6-4, 

but with proprotor inertia     , damper coefficient    , and yaw gyro gain     all 

increased by a factor of 50. 

 

 

 

 

 

 

 

 

 

Figure 6-7.  SimMechanics bicopter response to same disturbance as in Figure 6-4, 

but with proprotor inertia     , damper coefficient    , and yaw gyro gain     all 

increased by a factor of 100.  
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  𝑡 

   

  𝑡 

   

  𝜽 

  𝑡 

  𝑡 

   

  𝑡 

   



 

141 

 Chapter Seven: Conclusions                

 

7.1 Pitch Stability 

The linearized bicopter pitching and related proprotor tilting behaviours can be 

represented by a single, third-order characteristic equation.  From it stability of the pitch 

angle can be mathematically proven and conditions on the parameters specified.  

Stabilization requires the use of dampers between the pods and airframe.  Centering 

springs are also required to overcome imbalances.  Their use degrades the system from 

that of angular stability to angular velocity stability, which is similar to that of a 

conventional helicopter with flybar.  A pilot (human or electronic) is therefore required to 

stabilize the pitch angle.  However, the lowered frequency of pitch oscillation due the 

rate-stabilization greatly reduces the difficulty of this task. 

Mechanical friction, not included in the mathematical analysis, requires the use of 

much stiffer springs than those theoretically determined, which in turn necessitates the 

incorporation of proprotors having mass moment of inertias much higher than those of 

commercially available propellers. 

 

7.2 Roll Stability 

The bicopter requires a yaw gyro just as conventional and coaxial helicopters do.  

With it the linearized rolling and yawing behaviours – and associated proprotor tilting – 

can be represented by a single, fifth-order characteristic equation.  From this equation 

stability can only be established when some parameter values are specified explicitly and 

the remainder fall within specified ranges.  With this method it is found that the angular 
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roll and yaw velocities of bicopters such as the Nymbus, whose center of mass is 

relatively high and whose span between proprotors is relatively short, can be self-

stabilized.  Again, this roll characteristic is similar to that of conventional helicopters 

with flybars. 

The yaw gyro should be at least a proportional-derivative (PD) type in order to 

abate the continuous spinning caused by step roll disturbances. 

 

7.3 Limitations to Linear Analysis 

Three-dimensional, non-linear simulations (using SimMechanics) reveal that the 

linear predictions may be overly optimistic, and that a bicopter with commercially 

available airplane propellers (such as the Nymbus aircraft of Appendix B) may be 

passively stable only when subjected to unusually small disturbances. Only by greatly 

increasing the proprotor inertia      (by 50 to 100 times, based on Nymbus data), can the 

non-linear system represented by the SimMechanics model be stable through the       

roll disturbance moments used in the linear analysis. 

While linear analysis can identify geometries which are potentially stable, actual 

aircraft design must include more accurate non-linear simulation or methods. 

 

7.4 Contributions 

This thesis has made the following contributions in the field of aviation: 

1. It formulates a non-cyclic VTOL aircraft configuration which has 

passively stable pitch and roll angular velocities. This configuration is a 

bicopter with laterally spaced proprotors having high inertias about their 
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spin axes, and whose oblique tilting is moderated with springs and 

dampers.  As with conventional and coaxial helicopters, this bicopter does 

require stability augmentation about the yaw axis, usually in the form of 

an electronic yaw gyro commanding differential torques – and 

consequently speeds – of the proprotor drive motors. 

2. It achieves simultaneous control of proprotor tilting by the pilot. 

 

 

7.5 Items for Future Investigation 

1. Component friction (include in mathematical models). 

2. Aerodynamic effects (including forward motion and transient effects) on 

system behaviour.  

3. Effect of payload weight and distribution on roll-yaw stability 

4. (Further investigation into) effects of large proprotor inertias.  Is there an 

optimum value?  

5. (Further investigation into) effects of damper coefficient, spring stiffness, 

and yaw gyro gains. 

6. Quantify potential benefits, such as time delay reduction, self-

adaptiveness, and stress and energy reduction. 

 

 

  



 

144 

References 

 

Adams, J. D. and McKenney, S. W. (2005). Gyroscopic Roll Stabilizer for Boats.  US 

Patent No. 6.973,847 

 

Al-Rihani, Y. (2012).  Development of a Dual-axis Tilt Rotorcraft UAV: Design, 

Prototyping and Control. MSc. Thesis, Cranfield University, UK 

 

Anderson, S. B. (1981). Historical Overview of V/STOL Aircraft Technology.  NASA-

TM-280.  Ames Research Center.  NASA 

 

Aziz, M. M. (2013).  Transfer Functions and Block Diagrams: Multiple inputs. ECM2105 

Control Engineering Lecture note no. 4. University of Exeter, College of 

Engineering, Mathematics and Physical Sciences. pg. 11 

 

Bangura, M. and Mahony R. (2012).  Nonlinear Dynamic Modelling for High 

Performance Control of a Quadrotor.  Proceedings of Australian Conference on 

Robotics and Automation, December 3-5.  Victoria University of Wellington, 

New Zealand 

 

Barczyk, M., and Lynch, A. F. (2013).  Control-oriented Modeling of a Helicopter UAV 

with a Bell-Hiller Stabilizer mechanism.  2013 American Control Conference 

(ACC), Washington, DC. 978-1-4799-0178-4   

 



 

145 

Borst, H. (1990).  The Curtiss-Wright X-19 Experimental Aircraft – Lessons Learned.  

AIAA 90-3206.  AIAA/AHS/ASEE Aircraft Design, Systems and Operations 

Conference.  September 17-19, 1990. Dayton, OH. 

 

Benson, L. A. (1909). Edison‟s Picture of the Future of the Aeroplane.  The New York 

Times. August 1, 1909.  Section Part 5, Magazine Section. pg. SM5 

 

Brennan, L. (1905).  Means for Imparting Stability to Unstable Bodies.” US Patent No. 

796,893 

 

Campbell, J. P. (1963). Status of V/STOL Research and Development in the United 

States.  AIAA/CASI/RAeS  9
th

 Anglo-American Conference.  Oct 16-18, M.I.T., 

Cambridge, MA and Oct 21-24, Queen Elizabeth Hotel, Montreal, Canada 

 

Chalk, C. R., Key, D. L., Kroll, J., Jr., Wasserman, R., and Radford, R. C. (1971).  

Background Information and User Guide for MIL-F-83300, Military 

Specification-flying Qualities of Piloted V/STOL Aircraft.  US Air Force Flight 

Dynamics Lab., AFFDL-TR-70-88, Wright-Patterson AFB, OH. 

 

Cunha, R. and Silvestre, C.  (2003). Dynamic Modeling and Stability Analysis of Model-

scale Helicopters with Bell-Hiller Stabilizing Bar.  AIAA Guidance, Navigation 

and Control Conference. Austin, TX.  978-1-62410-090-1  

 

Daley, D. (2001).  A Big Future for Micro Air Vehicles.  Vertiflite, Fall/Winter 2001, 

Vol. 47, No. 4.  American Helicopter Institute.  pg. 32 



 

146 

 

DARPA-BAA-13-19.  (2013). Vertical Take-Off and Landing Experimental Aircraft 

(VTOL X-Plane).  DARPA Broad Agency Announcement.   Tactical Technology 

Office (TTO). 

 

Daughady, H. and DuWaldt. F.A. (1955).  Helicopter Handling Qualities Investigation, 

Phase II:  Analysis of Helicopter Stabilization and Control Problems.  Part C: 

Characteristics and Comparison of Existing Helicopter Stabilizing Devices. 

Cornell Aeronautical Laboratory, Inc., Buffalo, NY.  Report no. TB-707-S-2.   

 

Etkin, B. and Reid, L. D. (1996). Dynamics of flight: Stability and control.  3
rd

 ed. John 

Wiley & Sons Inc.  

 

Farley, J. (2006).  A V/STOL Flight Control Journey Enabled by RAE Scientists.  The 

RAF Harrier Story.  The Royal Air Force Historical Society.  Advance Book. UK. 

pp. 121-122 

 

Ferry, E. S.  (1933). Applied Gyrodynamics: For students, Engineers and Users of 

Gyroscopic Apparatus. 1
st
 revised ed.  John Wiley & Sons, Inc. NY.  pp. 131-161 

 

Franklin, G. F., Powell, J. D. and Emami-Naeini, A. (2010). Feedback Control of 

Dynamic Systems. 6
th

 ed. Prentice-Hall/Pearson Higher Education.  pp. 438-439    

 

Franklin, J. A. (2002).  Dynamics, Control and Flying Qualities of V/STOL Aircraft.  

AIAA Education Series.  Reston, VA 

 



 

147 

Gabriel, D. L., Meyer, J. and du Plessis, F. (2011).  Brushless DC Motor Characterization 

and Selection for a Fixed Wing UAV.  IEEE Africon Conference.  978-1-61284-

993-5/11 

 

Gasco, P. S., Al-Rihani, Y., Shin, H., and Savvaris, A. (2013).  A Novel Actuation 

Concept for a Multi Rotor UAV.  J. of Intelligent Robotic Systems.  DOI 

10.1007/s10846-013-9987-3  

 

Gress, G. R. (2002).  Using Dual Propellers as Gyroscopes for Tilt-Prop Hover Control.  

AIAA 2002 Biennial Powered Lift Conference, Nov. 5-7, 2002. Williamsburg, VA 

 

Gress, G. R. (2003).  A Dual-Fan VTOL Aircraft using Opposed Lateral Tilting for Pitch 

Control.  American Helicopter Society 59
th

 Annual Forum, May 6-8, 2003.  

Phoenix, AZ 

 

Gress, G. R. (2007).  Lift Fans as Gyroscopes for Controlling Compact VTOL Air 

Vehicles:  Overview and Development Status of Oblique Active Tilting.  

American Helicopter Society 63
rd

 Annual Forum, May 1-3, 2007.  Virginia 

Beach, VA 

 

Gress, G. R. (2008).  VTOL Air Vehicles with High Flight Speeds and 3D Mobility 

within Helicopter-Impenetrable Environments.  American Helicopter Society, 

Next Generation Vertical Lift Technologies, Southwest Region Specialists 

Meeting, October 15-17, 2008.  Dallas, TX 

 



 

148 

Gress, G. R. (2012).  Bicopter Roll-Yaw Decoupling and Dynamic Control 

Augmentation.  Unpublished notes.  

  

Gurrisi, C. et al (2010).  Space Station Control Moment Gyroscope Lessons Learned. 

Proceedings of the 40
th

 Aerospace Mechanisms Symposium, NASA Kennedy 

Space Center, May 12-14, 2010.  NASA/CP-2010-216272 

 

Hirschberg, M. J. (1997).  V/STOL: The First Half-Century.  Vertiflite, Vol. 43, No. 2.  

The American Helicopter Society.  pp. 34-54 

 

Hirschberg, M. J. (2000).  An Overview of the History of Vertical and/or Short Take-Off 

and Landing (V/STOL) Aircraft.  CENTRA Technology, Inc.  (www.vstol.org) 

 

Hirschberg, M. J. (2013).  Project Zero.  Vertiflite, Vol. 59, No. 3  The American 

Helicopter Society.  pp. 10-14  

 

Hoffmann, G. M., Huang, H., Waslander, S. L. and Tomlin, C. J.  (2007). Quadrotor 

Helicopter Flight Dynamics and Control:  Theory and Experiment.  AIAA 

Guidance, Navigation and Control Conference and Exhibit.  August  20-23.  

Hilton Head, South Carolina.  AIAA 2007-6461 company 

 

Hoh, R. H., and Ashkenas, I. L. (1979). Development of VTOL Flying Qualities Criteria 

for Low Speed and Hover.  Systems Technology, Inc., Hawthorne, CA and Naval 

Air Development Center, Warminster, PA. NADC-77052-30.   

 

http://www.vstol.org/


 

149 

Jacot, A. D., and Liska, D. J. (1966),  Control Moment Gyros in Attitude Control. Journal 

of Spacecraft and Rockets, Vol. 3, No. 9.  pp. 1313-1320.  DOI: 10.2514/3.28653 

 

Karnopp, D. (2202).  Tilt Control for Gyro-stabilized Two-Wheeled Vehicles.  Vehicle 

System Dynamics, Vol. 37, No. 2. pp. 145-156 

 

Kelley, B. (1945).  Helicopter Stability with Young‟s Lifting Rotor.  SAE Journal 

(Transactions) Vol. 53, No. 12.  Presented at meeting of Peoria Section of SAE 

and Central Illinois Section of ASME, Peoria, IL.  March 19, 1945.   

 

Kendoul, F., Fantoni, I., and Lozano, R. (2005).  Modelling and Control of a Small 

Autonomous Aircraft having Two Tilting Rotors. 44
th

 IEEE Conference on 

Decision and Control, and 2005 European Control Conference, CDC-ECC‟05, pp. 

8144-8149 

 

Key, D. L. (1971).  The Generation of a Military Specification for Flying Qualities of 

Piloted V/STOL Aircraft – MIL-F-83300.  Flight Research Dept. of Cornell 

Aeronautical Laboratory, Inc. Buffalo, NY, and US Air Force Flight Dynamics 

Lab., Wright-Patterson AFB, OH.  AFFDL-TR-70-88 

 

Kim, S. K., and Tilbury, D. M. (2004).  Mathematical Modeling and Experimental 

Identification of an Unmanned Helicopter Robot with Flybar Dynamics.  J. of 

Robotic Systems. 21(3).  Wiley Periodicals, Inc. pp. 95-116  

 

Kuo, B. C. (1995).  Automatic Control Systems.  Prentice Hall, 7
th

 ed. pp. 330-332 



 

150 

Kurokawa, H. (2007). "Survey of Theory and Steering Laws of Single-Gimbal Control 

Moment Gyros" Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5.  

pp. 1331-1340. DOI: 10.2514/1.27316 

 

Leishman, J. (2007).  Is there a Case for the Tiltrotor? RUSI Defence Systems, Oct 2007.  

Royal United Services Institute.  pp. 52-55 

 

Lim, K. B., Shin, J. Y., Moerder, D. D. (2004). Variable Speed CMG Control of a Dual-

spin Stabilized Unconventional VTOL Air Vehicle.  AIAA 3
rd

 Unmanned 

Unlimited Technical Conference, Workshop and Exhibit, September 20-23. 

Citeseer, Chicago, IL  AIAA Paper 2004-6537. 

 

Lim, K. B., Shin, J. Y., Moerder, D. D. (2006). “A feasibility study on the control of a 

generic air vehicle using control moment gyros,” AIAA Guidance, Navigation, & 

Control Conference, August 21-24, Keystone, CO, AIAA Paper 2006-6313. 

 

Lim, K. B., Shin, J. Y., Moerder, D. D. (2007). “CMG-augmented control of a hovering 

VTOL platform.” AIAA Navigation, Guidance and Control Conference and 

Exhibit.  Hilton Head, SC 

 

Marquardi, H. C. (1970).  X-22A Progress Report No. 73.  Bell Aerospace Company 

Report No. 2127-933073 under contract to U.S. Navy.   

 



 

151 

Martin, D. M., Giulianetti, D. J., and Dugan, D. C. (2000).  The History of the XV-15 Tilt 

Rotor Research Aircraft.  NASA History Division.  NASA SP-2000-4517.  

Washington, D. C. 

 

McCormick, B. W. (1967).  Aerodynamics of V/STOL flight.  Academic Press. NY. 

 

Model Motors (2103). Axi Products Catalogue. CZ. , www.modelmotors.cz  

 

MIL-F-83300 (1970). US Military Specification: Flying Qualities of Piloted V/STOL 

Aircraft 

 

NAVAIR (2011). V-22 Osprey Guidebook 2011/2012.  Naval Air Systems Command.  

NAVAIR  PMA-275. Control Number 11-607 

 

Shilovskii, P. P. (1924).  The Gyroscope: its Practical Construction and Application.  

Spon and Chamberlain. NY 

 

Spry, S. C. and Girard, A. R. (2008).  Gyroscopic Stabilization of Unstable Vehicles: 

Configurations, Dynamics and Control. Vehicle System Dynamics, Volume 46, 

Issue S1, pp.247-260, DOI: 10.1080/00423110801935863 

 

Thorne, C. E. and Yim, M. (2012), Design and Analysis of a Gyroscopically Controlled 

Micro Air Vehicle.  J. of Robotic Systems. 65:417-435 

 

Wang, J. (2013). Convertiplane.  European Patent Specification EP 2 551 190 B1.  

Assignee: Augusta-Westland 

 



 

152 

Wham, J. L., et al. (1987).  Propeller System with Electronically Controlled Cyclic and 

Collective Blade Pitch.  US Patent 4,648,345 

 

Whittle, J. R. (2010).  The Dream Machine:  The Untold History of the Notorious V-22 

Osprey.  Simon & Schuster, NY  

 

Yoon, H. and Tsiotras, P. (2004). "Singularity Analysis of Variable Speed Control 

Moment Gyros", Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 

pp. 374-386. 

  



 

153 

APPENDIX A: SCALE INVARIANCE AND NON-DIMENSIONAL TIME  

 

 

The following shows that the aircraft‟s proprotor speed   can be considered the 

representative time element in the aircraft‟s operation, and with it the actual time can be 

non-dimensionalized. 

 

A.1. Proprotor speeds and drag-torques of geometrically similar aircraft 

Assume there are two aircraft of different size.  Aircraft #2 is S times the size of 

aircraft #1 (based on some representative length), but otherwise the two are geometrically 

similar.  The relationship between their weights,  , would then be: 

                                                                                

If these aircraft are hovering then the relationship between their proprotors‟ thrusts  , 

diameters   and rotational speeds   – from dimensional analysis – is  

  

  
   

         
  

  
   

                                                                  

The proprotor diameters will be related by the scale factor   .  Also, since the 

aircraft are hovering, the proprotor thrusts are equal to (half) the aircraft weight and (A.1) 

applies, giving the relationship between proprotor rotational speed and scale:  
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→        
  

  
         

 

√ 
                                                                     

This allows the relationship between the proprotor drag-torques   to be determined.  

Again, using dimensional analysis 

  

  
   

         
  

  
   

                                                                        

→        
  

  
                                                                                  

A.2. Natural frequency of OAT aircraft pitch as a function of scale 

The equation of pitching motion of an OAT aircraft with proportional controller 

(without time delay) is given by (2.3).  Using         for the controller gain, the 

definition (3.26) for     and   =45 degrees, the equation simplifies to: 

   

 

   

   
            

  

  
                                                                  

where here    =      .  From it the natural frequency of aircraft #2‟s pitch oscillation 

is: 

           √(
   

    
  )

 

  
   

    
                                                                 

Writing this in terms of aircraft #1 parameters and the scale factor   gives: 
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which is the same relationship as between the propproprotor speeds given by (A.3).  This 

means that all geometrically similar aircraft can be considered to behave identically if 

their time scales are multiplied by  .  Replacing   in (A.5) with     , where     is the 

non-dimensional time, gives  

     
 
   

   
            

 
  

  
                                                                  

→     
   

   
      (

  
    

)
  

  
     (

 

      
)                                              

which remains the same regardless of aircraft size, i.e., it is scale-invariant.  

 

A.3. Non-scalable Phenomenon 

Care must be taken not to attempt extension of this invariance to phenomenon 

which truly do not scale.  One example is wind gusts, whose velocities do not decrease as 

the aircraft decreases in size, and whose effects could have been included on the RHS of 

aircraft pitch equation (A.5) or (A.8) as an external disturbance. 
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The only aircraft element that a gust directly interacts with is surface area, which, 

together with the associated arm length, produces the pitching moment.   Their product 

varies only as    , but the divisor      
   in (A.8) varies with    , which means that the 

effect of the gust becomes more prominent as the aircraft gets smaller.   

Therefore, the scale-invariant equation of motion may not remain so when real 

life effects such as gusts are included – it is a well-known fact that smaller aircraft are 

more susceptible to them – but it can be a useful tool when investigating inherent 

dynamic behavior such as stability. 

It is interesting to note, however, how the gust velocity would have to vary (with 

aircraft size) if the system was to remain scale-invariant.  Aerodynamic drag and lift both 

vary with velocity squared, but the gust-moment is only deficient by a single  -term.  

Therefore, one can only deduce that the velocity should vary as √ .   With this change it 

should be impossible to tell the two different-sized systems apart. 

To check this, for simplicity assume that the gust travels the length of the aircraft 

in one unit of time, which here is taken to be the aircraft‟s period of oscillation (   times 

the inverse of frequency given by (B.6)).  Now consider a second aircraft,   times larger 

than the first. The corresponding time period for the gust traverse would now be larger, 

by √   (according to (B.7)).  But the second aircraft is   times longer.  Therefore, for the 

second system to appear as the first, the gust velocity would have to increase by  

  

√ 
    √                                                                               
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APPENDIX B: NYMBUS AIRCRAFT DATA  

 

 

 

 

 

 

 

 

B.1. Nymbus physical data 

Iay     = 0.0284    ft-lb-sec
2
     (4.09 slug-in

2
) 

     =        0.0150    ft-lb-sec
2
     ( 

 

 
        

  ) 

Iax      =  0.0850  ft-lb-sec
2
 

       =      0.0434  ft-lb-sec
2
 ( 

 

 
         

  ) 

                      
  

  
                          

IP        =  0.00180  ft-lb-sec
2
    

IR        =   0.00024  ft-lb-sec
2
   

0       = 520   rad/sec      (4967 RPM) 

   = 6.5  in.  (propeller tip radius)   

T0        = 3.25   lb. 

Q0        = 0.35   ft-lb  (from         , 3-bl MA props)   

h         = 0.06   ft.             (3/4”) 

b    = 1.08   ft.   (13”) 

      =       45   deg.  
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B.2.  Reduced Nymbus Data 

 

B.2.1. Pitch parameters 

                             
  

     
                           

                   
           

      
                      

                             
  

    
                             

      

    
                                                                           

 

 

B.2.2. Roll-yaw parameters  
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B.3. eVader Motor Data – used in place of unknown Nymbus motor data 

 

 

 

 

 

 

The only known parameter value for the Nymbus Turnigy 50-55 drive-motor is its 

   of 400 RPM/Volt.  Data and motor constants for a somewhat larger motor, the AXI 

5320/34 were found in (Gabriel, 2011) and are used here instead.  In that paper the 

electrical resistance     of 0.14 (ohms) is the combined resistance of the motor windings 

and the electronic speed controller (ESC).  For reference, the motor winding resistance is 

0.084 ohms (Model Motors, 2013).  All of the relevant motor data then is:  

                                                                                            

                                                                                   

      
        

  
                                                                                  

                                                                                            

                                                                                   

The values for the    -term in its various forms then are 
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APPENDIX C: SIMULINK MODELS  

 

C.1. Simulink Pitch Stability Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 3 2 

 

 function gam_dd   = fcn(ry,theta_dd,theta_d,my) 

  

 del=45;s=sind(del);c=cosd(del); 

%ry           = Ir/(I_theta/2) = 0.0161 eVader 

 py  = 0.12;% = Ip/(I_theta/2) = 0.121  eVader 

  

%pod equation of motion: 

 gam_dd = -c*theta_dd –(ry/py)*s*theta_d -my/py; 

 

 

1    Rotor Pods 
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The Simulink solver used was ode4 (Runge Kutta).  The step size when using real 

time is typically 0.0001.  Here, non-dimensional time is approximately 500 (   ) times 

larger numerically than real time, so the step size was correspondingly increased to 0.05.  

Pulse disturbance lengths were increased accordingly as well. 

  

 

 function theta_dd   = fcn(mext,ry,gam,gam_d,my,theta_d) 

  

 del   = 45;c=cosd(del);s=sind(del); 

 qy    = 0.00010;%(h*T*c+Q*s)/(0.5*I_theta*wo^2)=0.0000954 eVader 

%mext  = Mext/(0.5*I_theta*wo^2) 

  

%airframe eqn of motion: 

 theta_dd  =  ry*s*(gam_d+c*theta_d) + qy*gam + c*my + 0.5*mext; 

 

 

3     Airframe 

 

 function my = fcn(gam_d,ry) 

  

 kdy = ry/2;     %= kd/(I_theta*wo) 

                %= ry/2 usually                          

 my  = kdy*gam_d;%= (damper moment)  

                %/(0.5*I_theta*wo^2) 

%gam_d is in non-dim time tau =wo*t 

 

 

2    Viscous Dampers 
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C.2. Simulink Roll-Yaw Stability Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1 2 3 4 

 

function gam_dd   = fcn(rx,phi_dd,phi_d,mx) 

  

del=45;s=sind(del);c=cosd(del);                     

%rx                 = Ir/(I_phi/2)     =  0.0110  eVader; 

px      =  0.10; %  = Ip/(I_phi/2)     =  0.0822  eVader   

  

%pod equation of motion: 

gam_dd  = -s*phi_dd + c*(rx/px)*phi_d - mx/px; 

 

1     Rotor Pods 

 

function mx   = fcn(gam_d,rx) 

  

kdx    =  rx/2;           %= kd/(I_phi*wo)    

                          %= rx/2 usually   

mx     =  kdx*gam_d;      %(damper moment) 

                          %/(0.5*I_phi*wo^2) 

%gam_d is in non-dimensional time tau =wo*t 

 

2     Viscous Dampers            
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function [phi_dd,psi_dd]  = fcn(mx_ext,mz_ext,rx,gam,gam_d,mx,phi_d,u_d,u) 

del           =  45; s=sind(del);c=cosd(del); 

  

%                             I2    =  0.5*I_phi*wo^2  

qx            = -0.0000214;    %    = (h*To*s-Qo*c)/I2  = + 0.00002 eVader 

b             =  0.000221;     %    =  b*To/I2          =   0.00030 eVader 

Qx            =  0.00003025;   %    =  Qo/I2            =   0.000032eVader 

axz           =  0.75   ;      %    =  I_phi/I_psi      =   0.75    eVader 

  

%Common values (Fig. 5-4): 

%qx/rx^2      =  0.00002/0.011^2    =  0.16                 original eVader 

%b /rx^2      =  0.00030/0.011^2    =  2.47                  original & pt1  

%Qx/rx^2      =  0.00003025/0.011^2 =  0.25 

%qx(h=0)      = -0.7071*0.00003025  = -0.0000214 

%qx(h=0)/rx^2 = -0.0000214/0.011^2  = -0.177                     pts 1 to 4  

%b(pt.2)      =  0.000221 ->b/rx^2  =  1.826              (pt. 2 mid-point) 

%b(pt.3)      =  0.0001337->b/rx^2  =  1.105         neutr stab @ h=0 (pt3) 

%b(pt.4)      =  0.000100 ->b/rx^2  =  0.8264 

  

%mx_ext       =  Mex/I2   (ext roll disturb) 

%mz_ext       =  Mez/I2   (ext yaw  disturb) 

  

%airframe eqns of motion: 

phi_dd        = -rx*c*(s*phi_d+gam_d) - 2*b*u + qx*gam + s*mx + mx_ext/2; 

psi_dd        =(-rx*u_d + b*c*gam - 2*Qx*u + mz_ext/2)*axz; 

 

3     Airframe 

 

function u_d   = fcn(psi,psi_d,rx,u) 

  

del   =  45; s=sind(del); c=cosd(del); 

kqpz  =  0.000025*rx;%= kqp/(0.5*I_psi*wo^2)  gyro gain, P 

kqdz  =  0.025*rx;   %= kqd/(0.5*I_psi*wo)    gyro gain, D (0.25*rx, Fig 5-4) 

vox   =  0.0003025;  %= vo /(0.5*I_phi*wo^2)= 0.000277   actual eVader 

Qx    =  0.00003025; %= Qo /(0.5*I_phi*wo^2)= 0.00003    actual eVader 

  

%vox/rx^2 = 0.0003025/0.011^2  = 2.5  

%Qx /rx^2 = 0.00003025/0.011^2 = 0.25 

  

axz   =  0.75;       %=  I_phi/I_psi        = 0.75       eVader 

kqpx  =  kqpz/axz; 

kqdx  =  kqdz/axz; 

  

%prop-motor accel equation: 

u_d   =  (-(vox+2*Qx)*u + kqdx*psi_d + kqpx*psi)/rx;        

 

 

4     Yaw Gyro – Prop Motors 
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APPENDIX D: DETERMINING ROLL-YAW STABILITY USING MATLAB 

SYMBOLIC VARIABLES  

 

D.1. Roll-Yaw Characteristic Equation  

D.1.1. Program code: 

%CHARACTERISTIC EQUATION FROM ROLL-YAW EIGENVALUE MATRIX 
clear all;close all 

  
%Symbolic Varaiable Assignment: 
%tilt path angle (del) = 45 deg here. 
%'non-dim0' means division by            [0.5*I_phi] 
%'non-dim1' means division by            [0.5*I_phi*wo] 
%'non-dim2' means division by            [0.5*I_phi*wo^2] 
syms p     % non-dim0 pod inertia        Ip  

syms q     % non-dim2 aerodynamic        [.7071*(h*T0-Q0)] for del=45  
syms r     % non-dim0 gyroscopic         Ir    
syms kd    % non-dim1 damping coeff      kd 
syms kq    % non-dim1 yaw gyro gain      kq 
syms v     % non-dim2 motor param        v0 
syms b     % non-dim2 thrust moment      b*T0 
syms c     % non-dim2 torque             Q0 
syms e     % non-dim0 z-inertia ratio    0.5*I_psi 
% Matrix Coefficients: 
s2      =  1/sqrt(2); % = 0.7071 
A       =  sym(zeros(5,5)); % 
A(1,2)  =  1; 
A(2,1)  = -q*s2;                                                      
A(2,2)  =  0.5*r-kd*(0.5+1/p);                                               
A(2,3)  =  2*b*s2;    
A(2,4)  =  r*s2*(0.5+1/p);                                      
A(3,3)  = -(v+2*c)/r;                                      
A(3,5)  =  kq/r;                      
A(4,1)  =  q;                        
A(4,2)  = -r*s2+kd*s2; 
A(4,3)  = -2*b; 
A(4,4)  = -0.5*r; 
A(5,1)  =  b*s2/e; 
A(5,3)  =  v/e; 
A(5,5)  = -kq/e; 
P = charpoly(A);        %Coeffs of characteristic polynomial, 

det(lambda*I-A) 
P = expand(P); 
P = simplify(P); 
simplify(P, 'Steps', 10) 
simplify(P, 'Steps', 30) 
simplify(P, 'Steps', 50) 
syms x 
P = collect(P,x) 
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D.1.2. Program  Output: Symbolic coefficients of characteristic equation 

 

 

z^5 : 1 

 

z^4 :  kd/2 + kq/e + (2*c)/r + v/r + (kd)/p 

 

z^3 :  (e*r^3 + 4*c*e*kd + 4*c*kq*p + 2*e*kd*v + 2*kd*kq*r + 2*c*e*kd*p +  

           e*kd*p*v + kd*kq*p*r + 2^(1/2)*e*p*q*r)/(2*e*p*r),  

 

z^2 :  (kq*r^3 + e*r^2*v + 4*c*kd*kq + 2*c*e*r^2 + 2*c*kd*kq*p - 2^(1/2)*e*q*r^2 +  

           2*2^(1/2)*c*e*p*q + 2^(1/2)*e*p*q*v + 2^(1/2)*kq*p*q*r)/(2*e*p*r), 

 

z^1 :  -(2*b^2*kq*p - 2*c*kq*r^2 + 2^(1/2)*kq*q*r^2 + 2*2^(1/2)*c*e*q*r –  

            2*2^(1/2)*c*kq*p*q + 2^(1/2)*e*q*r*v)/(2*e*p*r) 

 

z^0 :   (kq*(b^2 - 2^(1/2)*c*q))/(e*p) 
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D.2. Symbolic expression of roll-yaw Routh sums       

D.2.1. Program 

s1 = sqrt(2); % = 1.4142 

 
%Symbolic Varaiable Assignment: 
%tilt path angle (del) = 45 deg here. 
%'non-dim0' means division by            [0.5*I_phi] 
%'non-dim1' means division by            [0.5*I_phi*wo] 
%'non-dim2' means division by            [0.5*I_phi*wo^2] 
syms p     % non-dim0 pod inertia        Ip  

syms q     % non-dim2 aerodynamic        (h*T0-Q0)/s1 for del=45  
syms r     % non-dim0 gyroscopic         Ir    
syms kd    % non-dim1 damping coeff      kd 
syms kq    % non-dim1 yaw gyro gain      kq 
syms v     % non-dim2 motor param        v0 
syms b     % non-dim2 thrust moment      b*T0 
syms c     % non-dim2 torque             Q0 
 

q  =  0; 

 
syms b1;syms b2;syms b3;syms b4;syms b5;syms b6 
b1 = (v+2*c)/r; 
b2 = b1+kz; 
b3 = kd*(0.5+1/p);  
b4 = 0.5*(s1*q+r^2/p); 
b5 = 2*c*kz/r; 
b6 = 0.5*s1*q*r/p; 

  
syms a1; syms a2; syms a3; syms a4; syms a5 
a1 = b2 + b3; 
a2 = b2*b3 + b4+ b5; 
a3 = b2*b4 + b5*b3 - b6; 
a4 =-b1*b6 + b5*b4 - kz*(b^2/r+b6); 
a5 = kz*(b^2-s1*q*c)/p; 

  
%S = a1*a2 - a3;                                %1st condition, S1 > 0 
%S = a1*a2*a3 - a3^2 - a1^2*a4 + a1*a5;         %2nd condition, P2 > 0 
S = a3*(a1*a4-a5)*(a1*a2-a3)-a1*(a1*a4-a5)^2-a5*(a1*a2-a3)^2;  %P3 > 0 

  
S = expand(S); 
S = simplify(S); 
%S = factor(S) 
simplify(S, 'Steps', 100) 
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D.2.2. Output: Routh sums      for special case of    = 0  (       ) 

   : 

 ((2*c + v + kz*r)*(4*c*kd + 8*c*kz + 2*kd*v + kd^2*r + 2*kd*kz*r))/(4*r^2) + 

(kd*(r^3 + 2*kd*kz*r + 4*c*kd + 2*kd*v))/(2*p^2*r) + (kd*(16*c^2 + 16*c*kz*r + 

8*kd*c*r + 16*c*v + 4*kz^2*r^2 + 4*kd*kz*r^2 + 8*kz*r*v + r^4 + 4*kd*r*v + 

4*v^2))/(4*p*r^2) 

 

   : 

  (32*b^2*c^2*kz*p^3 + 16*b^2*c*kd*kz*p^3*r + 32*b^2*c*kd*kz*p^2*r + 

32*b^2*c*kz^2*p^3*r + 32*b^2*c*kz*p^3*v + 16*b^2*c*kz*p^2*r^2 + 

2*b^2*kd^2*kz*p^3*r^2 + 8*b^2*kd^2*kz*p^2*r^2 + 8*b^2*kd^2*kz*p*r^2 + 

8*b^2*kd*kz^2*p^3*r^2 + 16*b^2*kd*kz^2*p^2*r^2 + 8*b^2*kd*kz*p^3*r*v + 

4*b^2*kd*kz*p^2*r^3 + 16*b^2*kd*kz*p^2*r*v + 8*b^2*kd*kz*p*r^3 + 

8*b^2*kz^3*p^3*r^2 + 16*b^2*kz^2*p^3*r*v + 8*b^2*kz^2*p^2*r^3 + 

8*b^2*kz*p^3*v^2 + 8*b^2*kz*p^2*r^2*v + 16*c^3*kd^2*kz*p^3 + 

64*c^3*kd^2*kz*p^2 + 64*c^3*kd^2*kz*p + 32*c^3*kd*kz^2*p^3 + 

64*c^3*kd*kz^2*p^2 + 16*c^3*kd*p^2*r^2 + 32*c^3*kd*p*r^2 + 

4*c^2*kd^3*kz*p^3*r + 24*c^2*kd^3*kz*p^2*r + 48*c^2*kd^3*kz*p*r + 

32*c^2*kd^3*kz*r + 16*c^2*kd^2*kz^2*p^3*r + 64*c^2*kd^2*kz^2*p^2*r + 

64*c^2*kd^2*kz^2*p*r + 16*c^2*kd^2*kz*p^3*v + 64*c^2*kd^2*kz*p^2*v + 

64*c^2*kd^2*kz*p*v + 4*c^2*kd^2*p^2*r^3 + 16*c^2*kd^2*p*r^3 + 

16*c^2*kd^2*r^3 + 16*c^2*kd*kz^3*p^3*r + 32*c^2*kd*kz^3*p^2*r + 

16*c^2*kd*kz^2*p^3*v + 32*c^2*kd*kz^2*p^2*v + 8*c^2*kd*kz*p^2*r^3 + 

16*c^2*kd*kz*p*r^3 + 24*c^2*kd*p^2*r^2*v + 48*c^2*kd*p*r^2*v + 

2*c*kd^3*kz^2*p^3*r^2 + 12*c*kd^3*kz^2*p^2*r^2 + 24*c*kd^3*kz^2*p*r^2 + 

16*c*kd^3*kz^2*r^2 + 2*c*kd^3*kz*p^3*r*v + 12*c*kd^3*kz*p^2*r*v + 

24*c*kd^3*kz*p*r*v + 16*c*kd^3*kz*r*v + 4*c*kd^2*kz^3*p^3*r^2 + 

16*c*kd^2*kz^3*p^2*r^2 + 16*c*kd^2*kz^3*p*r^2 + 8*c*kd^2*kz^2*p^3*r*v + 

32*c*kd^2*kz^2*p^2*r*v + 32*c*kd^2*kz^2*p*r*v + 4*c*kd^2*kz*p^3*v^2 + 

4*c*kd^2*kz*p^2*r^4 + 16*c*kd^2*kz*p^2*v^2 + 16*c*kd^2*kz*p*r^4 + 

16*c*kd^2*kz*p*v^2 + 16*c*kd^2*kz*r^4 + 4*c*kd^2*p^2*r^3*v + 

16*c*kd^2*p*r^3*v + 16*c*kd^2*r^3*v + 4*c*kd*kz^2*p^2*r^4 + 8*c*kd*kz^2*p*r^4 

+ 16*c*kd*kz*p^2*r^3*v + 32*c*kd*kz*p*r^3*v + 12*c*kd*p^2*r^2*v^2 + 

2*c*kd*p*r^6 + 24*c*kd*p*r^2*v^2 + 4*c*kd*r^6 + kd^2*kz^2*p^2*r^5 + 

4*kd^2*kz^2*p*r^5 + 4*kd^2*kz^2*r^5 + 2*kd^2*kz*p^2*r^4*v + 8*kd^2*kz*p*r^4*v 

+ 8*kd^2*kz*r^4*v + kd^2*p^2*r^3*v^2 + 4*kd^2*p*r^3*v^2 + 4*kd^2*r^3*v^2 + 

2*kd*kz^3*p^2*r^5 + 4*kd*kz^3*p*r^5 + 6*kd*kz^2*p^2*r^4*v + 

12*kd*kz^2*p*r^4*v + 6*kd*kz*p^2*r^3*v^2 + kd*kz*p*r^7 + 12*kd*kz*p*r^3*v^2 + 
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2*kd*kz*r^7 + 2*kd*p^2*r^2*v^3 + kd*p*r^6*v + 4*kd*p*r^2*v^3 + 

2*kd*r^6*v)/(8*p^3*r^3) 

 

  : 

-(kz*(4*c*p + 2*kd*r + 2*p*v + kd*p*r + 2*kz*p*r)*(32*b^4*c^2*kz*p^4 + 

16*b^4*c*kd*kz*p^4*r + 32*b^4*c*kd*kz*p^3*r + 32*b^4*c*kz^2*p^4*r + 

32*b^4*c*kz*p^4*v + 32*b^4*c*kz*p^3*r^2 + 2*b^4*kd^2*kz*p^4*r^2 + 

8*b^4*kd^2*kz*p^3*r^2 + 8*b^4*kd^2*kz*p^2*r^2 + 8*b^4*kd*kz^2*p^4*r^2 + 

16*b^4*kd*kz^2*p^3*r^2 + 8*b^4*kd*kz*p^4*r*v + 8*b^4*kd*kz*p^3*r^3 + 

16*b^4*kd*kz*p^3*r*v + 16*b^4*kd*kz*p^2*r^3 + 8*b^4*kz^3*p^4*r^2 + 

16*b^4*kz^2*p^4*r*v + 16*b^4*kz^2*p^3*r^3 + 8*b^4*kz*p^4*v^2 + 

16*b^4*kz*p^3*r^2*v + 8*b^4*kz*p^2*r^4 + 16*b^2*c^3*kd^2*kz*p^4 + 

64*b^2*c^3*kd^2*kz*p^3 + 64*b^2*c^3*kd^2*kz*p^2 + 16*b^2*c^3*kd^2*p^3*r + 

64*b^2*c^3*kd^2*p^2*r + 64*b^2*c^3*kd^2*p*r + 32*b^2*c^3*kd*kz^2*p^4 + 

64*b^2*c^3*kd*kz^2*p^3 + 64*b^2*c^3*kd*kz*p^3*r + 128*b^2*c^3*kd*kz*p^2*r + 

16*b^2*c^3*kd*p^3*r^2 + 32*b^2*c^3*kd*p^2*r^2 + 64*b^2*c^3*kz^2*p^3*r - 

32*b^2*c^3*kz*p^3*r^2 + 4*b^2*c^2*kd^3*kz*p^4*r + 24*b^2*c^2*kd^3*kz*p^3*r + 

48*b^2*c^2*kd^3*kz*p^2*r + 32*b^2*c^2*kd^3*kz*p*r + 4*b^2*c^2*kd^3*p^3*r^2 + 

24*b^2*c^2*kd^3*p^2*r^2 + 48*b^2*c^2*kd^3*p*r^2 + 32*b^2*c^2*kd^3*r^2 + 

16*b^2*c^2*kd^2*kz^2*p^4*r + 64*b^2*c^2*kd^2*kz^2*p^3*r + 

64*b^2*c^2*kd^2*kz^2*p^2*r + 16*b^2*c^2*kd^2*kz*p^4*v + 

32*b^2*c^2*kd^2*kz*p^3*r^2 + 64*b^2*c^2*kd^2*kz*p^3*v + 

128*b^2*c^2*kd^2*kz*p^2*r^2 + 64*b^2*c^2*kd^2*kz*p^2*v + 

128*b^2*c^2*kd^2*kz*p*r^2 + 4*b^2*c^2*kd^2*p^3*r^3 + 

24*b^2*c^2*kd^2*p^3*r*v + 16*b^2*c^2*kd^2*p^2*r^3 + 96*b^2*c^2*kd^2*p^2*r*v 

+ 16*b^2*c^2*kd^2*p*r^3 + 96*b^2*c^2*kd^2*p*r*v + 16*b^2*c^2*kd*kz^3*p^4*r + 

32*b^2*c^2*kd*kz^3*p^3*r + 16*b^2*c^2*kd*kz^2*p^4*v + 

64*b^2*c^2*kd*kz^2*p^3*r^2 + 32*b^2*c^2*kd*kz^2*p^3*v + 

128*b^2*c^2*kd*kz^2*p^2*r^2 - 8*b^2*c^2*kd*kz*p^3*r^3 + 

64*b^2*c^2*kd*kz*p^3*r*v - 16*b^2*c^2*kd*kz*p^2*r^3 + 

128*b^2*c^2*kd*kz*p^2*r*v + 24*b^2*c^2*kd*p^3*r^2*v + 8*b^2*c^2*kd*p^2*r^4 + 

48*b^2*c^2*kd*p^2*r^2*v + 16*b^2*c^2*kd*p*r^4 + 32*b^2*c^2*kz^3*p^3*r^2 - 

32*b^2*c^2*kz^2*p^3*r^3 + 32*b^2*c^2*kz^2*p^3*r*v - 32*b^2*c^2*kz*p^3*r^2*v - 

16*b^2*c^2*kz*p^2*r^4 + 2*b^2*c*kd^3*kz^2*p^4*r^2 + 

12*b^2*c*kd^3*kz^2*p^3*r^2 + 24*b^2*c*kd^3*kz^2*p^2*r^2 + 

16*b^2*c*kd^3*kz^2*p*r^2 + 2*b^2*c*kd^3*kz*p^4*r*v + 4*b^2*c*kd^3*kz*p^3*r^3 

+ 12*b^2*c*kd^3*kz*p^3*r*v + 24*b^2*c*kd^3*kz*p^2*r^3 + 

24*b^2*c*kd^3*kz*p^2*r*v + 48*b^2*c*kd^3*kz*p*r^3 + 16*b^2*c*kd^3*kz*p*r*v + 

32*b^2*c*kd^3*kz*r^3 + 4*b^2*c*kd^3*p^3*r^2*v + 24*b^2*c*kd^3*p^2*r^2*v + 
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48*b^2*c*kd^3*p*r^2*v + 32*b^2*c*kd^3*r^2*v + 4*b^2*c*kd^2*kz^3*p^4*r^2 + 

16*b^2*c*kd^2*kz^3*p^3*r^2 + 16*b^2*c*kd^2*kz^3*p^2*r^2 + 

8*b^2*c*kd^2*kz^2*p^4*r*v + 16*b^2*c*kd^2*kz^2*p^3*r^3 + 

32*b^2*c*kd^2*kz^2*p^3*r*v + 64*b^2*c*kd^2*kz^2*p^2*r^3 + 

32*b^2*c*kd^2*kz^2*p^2*r*v + 64*b^2*c*kd^2*kz^2*p*r^3 + 

4*b^2*c*kd^2*kz*p^4*v^2 + 2*b^2*c*kd^2*kz*p^3*r^4 + 

28*b^2*c*kd^2*kz*p^3*r^2*v + 16*b^2*c*kd^2*kz*p^3*v^2 + 

8*b^2*c*kd^2*kz*p^2*r^4 + 112*b^2*c*kd^2*kz*p^2*r^2*v + 

16*b^2*c*kd^2*kz*p^2*v^2 + 8*b^2*c*kd^2*kz*p*r^4 + 

112*b^2*c*kd^2*kz*p*r^2*v + 4*b^2*c*kd^2*p^3*r^3*v + 

12*b^2*c*kd^2*p^3*r*v^2 + 4*b^2*c*kd^2*p^2*r^5 + 16*b^2*c*kd^2*p^2*r^3*v + 

48*b^2*c*kd^2*p^2*r*v^2 + 16*b^2*c*kd^2*p*r^5 + 16*b^2*c*kd^2*p*r^3*v + 

48*b^2*c*kd^2*p*r*v^2 + 16*b^2*c*kd^2*r^5 + 16*b^2*c*kd*kz^3*p^3*r^3 + 

32*b^2*c*kd*kz^3*p^2*r^3 - 4*b^2*c*kd*kz^2*p^3*r^4 + 

32*b^2*c*kd*kz^2*p^3*r^2*v - 8*b^2*c*kd*kz^2*p^2*r^4 + 

64*b^2*c*kd*kz^2*p^2*r^2*v + 8*b^2*c*kd*kz*p^3*r^3*v + 

16*b^2*c*kd*kz*p^3*r*v^2 + 4*b^2*c*kd*kz*p^2*r^5 + 16*b^2*c*kd*kz*p^2*r^3*v 

+ 32*b^2*c*kd*kz*p^2*r*v^2 + 8*b^2*c*kd*kz*p*r^5 + 12*b^2*c*kd*p^3*r^2*v^2 + 

2*b^2*c*kd*p^2*r^6 + 8*b^2*c*kd*p^2*r^4*v + 24*b^2*c*kd*p^2*r^2*v^2 + 

4*b^2*c*kd*p*r^6 + 16*b^2*c*kd*p*r^4*v - 8*b^2*c*kz^3*p^3*r^4 - 

16*b^2*c*kz^2*p^3*r^3*v - 8*b^2*c*kz^2*p^2*r^5 - 8*b^2*c*kz*p^3*r^2*v^2 - 

8*b^2*c*kz*p^2*r^4*v + b^2*kd^3*kz^2*p^3*r^4 + 6*b^2*kd^3*kz^2*p^2*r^4 + 

12*b^2*kd^3*kz^2*p*r^4 + 8*b^2*kd^3*kz^2*r^4 + 2*b^2*kd^3*kz*p^3*r^3*v + 

12*b^2*kd^3*kz*p^2*r^3*v + 24*b^2*kd^3*kz*p*r^3*v + 16*b^2*kd^3*kz*r^3*v + 

b^2*kd^3*p^3*r^2*v^2 + 6*b^2*kd^3*p^2*r^2*v^2 + 12*b^2*kd^3*p*r^2*v^2 + 

8*b^2*kd^3*r^2*v^2 + 2*b^2*kd^2*kz^3*p^3*r^4 + 8*b^2*kd^2*kz^3*p^2*r^4 + 

8*b^2*kd^2*kz^3*p*r^4 + b^2*kd^2*kz^2*p^3*r^5 + 6*b^2*kd^2*kz^2*p^3*r^3*v + 

4*b^2*kd^2*kz^2*p^2*r^5 + 24*b^2*kd^2*kz^2*p^2*r^3*v + 

4*b^2*kd^2*kz^2*p*r^5 + 24*b^2*kd^2*kz^2*p*r^3*v + 2*b^2*kd^2*kz*p^3*r^4*v + 

6*b^2*kd^2*kz*p^3*r^2*v^2 + 2*b^2*kd^2*kz*p^2*r^6 + 8*b^2*kd^2*kz*p^2*r^4*v 

+ 24*b^2*kd^2*kz*p^2*r^2*v^2 + 8*b^2*kd^2*kz*p*r^6 + 8*b^2*kd^2*kz*p*r^4*v + 

24*b^2*kd^2*kz*p*r^2*v^2 + 8*b^2*kd^2*kz*r^6 + b^2*kd^2*p^3*r^3*v^2 + 

2*b^2*kd^2*p^3*r*v^3 + 2*b^2*kd^2*p^2*r^5*v + 4*b^2*kd^2*p^2*r^3*v^2 + 

8*b^2*kd^2*p^2*r*v^3 + 8*b^2*kd^2*p*r^5*v + 4*b^2*kd^2*p*r^3*v^2 + 

8*b^2*kd^2*p*r*v^3 + 8*b^2*kd^2*r^5*v + 2*b^2*kd*kz^3*p^3*r^5 + 

4*b^2*kd*kz^3*p^2*r^5 + 6*b^2*kd*kz^2*p^3*r^4*v + 2*b^2*kd*kz^2*p^2*r^6 + 

12*b^2*kd*kz^2*p^2*r^4*v + 4*b^2*kd*kz^2*p*r^6 + 6*b^2*kd*kz*p^3*r^3*v^2 + 

b^2*kd*kz*p^2*r^7 + 4*b^2*kd*kz*p^2*r^5*v + 12*b^2*kd*kz*p^2*r^3*v^2 + 

2*b^2*kd*kz*p*r^7 + 8*b^2*kd*kz*p*r^5*v + 2*b^2*kd*p^3*r^2*v^3 + 
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b^2*kd*p^2*r^6*v + 2*b^2*kd*p^2*r^4*v^2 + 4*b^2*kd*p^2*r^2*v^3 + 

b^2*kd*p*r^8 + 2*b^2*kd*p*r^6*v + 4*b^2*kd*p*r^4*v^2 + 2*b^2*kd*r^8 - 

16*c^4*kd^2*kz*p^3*r^2 - 64*c^4*kd^2*kz*p^2*r^2 - 64*c^4*kd^2*kz*p*r^2 - 

32*c^4*kd*kz^2*p^3*r^2 - 64*c^4*kd*kz^2*p^2*r^2 - 16*c^4*kd*p^2*r^4 - 

32*c^4*kd*p*r^4 - 4*c^3*kd^3*kz*p^3*r^3 - 24*c^3*kd^3*kz*p^2*r^3 - 

48*c^3*kd^3*kz*p*r^3 - 32*c^3*kd^3*kz*r^3 - 16*c^3*kd^2*kz^2*p^3*r^3 - 

64*c^3*kd^2*kz^2*p^2*r^3 - 64*c^3*kd^2*kz^2*p*r^3 - 16*c^3*kd^2*kz*p^3*r^2*v 

- 64*c^3*kd^2*kz*p^2*r^2*v - 64*c^3*kd^2*kz*p*r^2*v - 4*c^3*kd^2*p^2*r^5 - 

16*c^3*kd^2*p*r^5 - 16*c^3*kd^2*r^5 - 16*c^3*kd*kz^3*p^3*r^3 - 

32*c^3*kd*kz^3*p^2*r^3 - 16*c^3*kd*kz^2*p^3*r^2*v - 32*c^3*kd*kz^2*p^2*r^2*v 

- 8*c^3*kd*kz*p^2*r^5 - 16*c^3*kd*kz*p*r^5 - 24*c^3*kd*p^2*r^4*v - 

48*c^3*kd*p*r^4*v - 2*c^2*kd^3*kz^2*p^3*r^4 - 12*c^2*kd^3*kz^2*p^2*r^4 - 

24*c^2*kd^3*kz^2*p*r^4 - 16*c^2*kd^3*kz^2*r^4 - 2*c^2*kd^3*kz*p^3*r^3*v - 

12*c^2*kd^3*kz*p^2*r^3*v - 24*c^2*kd^3*kz*p*r^3*v - 16*c^2*kd^3*kz*r^3*v - 

4*c^2*kd^2*kz^3*p^3*r^4 - 16*c^2*kd^2*kz^3*p^2*r^4 - 16*c^2*kd^2*kz^3*p*r^4 - 

8*c^2*kd^2*kz^2*p^3*r^3*v - 32*c^2*kd^2*kz^2*p^2*r^3*v - 

32*c^2*kd^2*kz^2*p*r^3*v - 4*c^2*kd^2*kz*p^3*r^2*v^2 - 4*c^2*kd^2*kz*p^2*r^6 

- 16*c^2*kd^2*kz*p^2*r^2*v^2 - 16*c^2*kd^2*kz*p*r^6 - 

16*c^2*kd^2*kz*p*r^2*v^2 - 16*c^2*kd^2*kz*r^6 - 4*c^2*kd^2*p^2*r^5*v - 

16*c^2*kd^2*p*r^5*v - 16*c^2*kd^2*r^5*v - 4*c^2*kd*kz^2*p^2*r^6 - 

8*c^2*kd*kz^2*p*r^6 - 16*c^2*kd*kz*p^2*r^5*v - 32*c^2*kd*kz*p*r^5*v - 

12*c^2*kd*p^2*r^4*v^2 - 2*c^2*kd*p*r^8 - 24*c^2*kd*p*r^4*v^2 - 4*c^2*kd*r^8 - 

c*kd^2*kz^2*p^2*r^7 - 4*c*kd^2*kz^2*p*r^7 - 4*c*kd^2*kz^2*r^7 - 

2*c*kd^2*kz*p^2*r^6*v - 8*c*kd^2*kz*p*r^6*v - 8*c*kd^2*kz*r^6*v - 

c*kd^2*p^2*r^5*v^2 - 4*c*kd^2*p*r^5*v^2 - 4*c*kd^2*r^5*v^2 - 

2*c*kd*kz^3*p^2*r^7 - 4*c*kd*kz^3*p*r^7 - 6*c*kd*kz^2*p^2*r^6*v - 

12*c*kd*kz^2*p*r^6*v - 6*c*kd*kz*p^2*r^5*v^2 - c*kd*kz*p*r^9 - 

12*c*kd*kz*p*r^5*v^2 - 2*c*kd*kz*r^9 - 2*c*kd*p^2*r^4*v^3 - c*kd*p*r^8*v - 

4*c*kd*p*r^4*v^3 - 2*c*kd*r^8*v))/(16*p^5*r^5) 

 

 

D.2.3. Output:      for        and      

(c*kd*kz*(p + 2)*(2*c + v + kz*r)*(4*c*p + 2*kd*r + 2*p*v + kd*p*r + 

2*kz*p*r)*(8*c^2*kd*kz*p^2 + 16*c^2*kd*kz*p + 16*c^2*kz^2*p^2 + 8*c^2*p*r^2 + 

2*c*kd^2*kz*p^2*r + 8*c*kd^2*kz*p*r + 8*c*kd^2*kz*r + 4*c*kd*kz^2*p^2*r + 

8*c*kd*kz^2*p*r + 4*c*kd*kz*p^2*v + 8*c*kd*kz*p*v + 2*c*kd*p*r^3 + 4*c*kd*r^3 

+ 8*c*p*r^2*v + kd*kz*p*r^4 + 2*kd*kz*r^4 + kd*p*r^3*v + 2*kd*r^3*v + 

2*kz^2*p*r^4 + 4*kz*p*r^3*v + 2*p*r^2*v^2 + r^6))/(16*p^5*r^3) 
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D.3. Generating and plotting two-dimensional stability curves     

D.3.1. Stability boundary function program 

s1 = sqrt(2); % = 1.4142  
%Symbolic Variable Assignment: 
%'non-dim0' means division by          [0.5*I_phi] 
%'non-dim1' means division by          [0.5*I_phi*wo] 
%'non-dim2' means division by          [0.5*I_phi*wo^2] 
syms p     % non-dim0 pod inertia      Ip  
syms q     % non-dim2 aerodynamic      (h*T0-Q0)/s1      for del=45 deg 
syms r     % non-dim0 gyroscopic       Ir    
syms kd    % non-dim1 damping coeff    kd 
syms kz    % non-dim1 yaw gyro gain    kq        (here,div by I_psi*wo) 
syms v     % non-dim2 motor param      v0 
syms b     % non-dim2 thrust moment    b*T0 
syms c     % non-dim2 torque           Q0 
syms X     % plotting abscissa, =      q/r^2 
syms Y     % plotting ordinate, =      b/r^2 

  
%Numerical and relationship assignments: 
kd = 0.5*r; 
kz = 0.5*kd; 
p  = 0.10; 
c  = 0.25*r^2; 
v  = 2.5*r^2; 
%q and b put in terms of plotting variables X and Y: 
q = X*r^2; 
b = Y*r^2; 

  
%Characteristic eqn coefficients: 
syms b1;syms b2;syms b3;syms b4;syms b5;syms b6 
b1 = (v+2*c)/r; 
b2 = b1+kz; 
b3 = kd*(0.5+1/p);  
b4 = 0.5*(s1*q+r^2/p); 
b5 = 2*c*kz/r; 
b6 = 0.5*s1*q*r/p; 
syms a1; syms a2; syms a3; syms a4; syms a5 
a1 = b2 + b3;                         %% 
a2 = b2*b3 + b4+ b5;                  %%           
a3 = b2*b4 + b5*b3 - b6;              %% 
a4 =-b1*b6 + b5*b4 - kz*(b^2/r+b6);   %% 
a5 = kz*(b^2-s1*q*c)/p; 

  
%Routh sums: 
%S = a1*a2 - a3;                                 %1st condition, S1 > 0 
%S = a1*a2*a3 - a3^2 - a1^2*a4 + a1*a5;          %2nd condition, S2 > 0 
S = a3*(a1*a4-a5)*(a1*a2-a3)-a1*(a1*a4-a5)^2-a5*(a1*a2-a3)^2;  %3rd, S3 

  
%Output: 
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S = expand(S); 
S = simplify(S); 
simplify(S, 'Steps', 100) 

D.3.2. Stability boundary functions: 

These sample symbolic expressions (using    
         

 ) were copied and 

pasted from the MATLAB command window after execution of the program in D.3.1 

Setting each expression equal to zero gives the stability boundary curve Y vs. X (where 

  
  

    
  and    

   

    
 ) for the corresponding coefficient or sum:  

 

         (17*r)/2                                                                     ( always positive) 

        (r^2*(8*2^(1/2)*X + 355))/16                                   ( positive when X > - 31.4) 

        -(r^3*(108*X - 541))/32                                            ( positive when X < + 3.5)   

        -(r^4*(4*Y^2 + 259*2^(1/2)*X - 10))/16                 ( see plot in E4.2.2) 

        -(5*r^5*(- 4*Y^2 + X))/8                                          ( see plot in E4.2.2) 

         (r^3*(122*2^(1/2)*X + 2747))/16                            ( positive when X > -15.9) 

         (r^6*(- 26352*X^2 + 365414*2^(1/2)*X + 20128*Y^2 + 1463007))/512 

         -(17*r^11*(- 6864208*2^(1/2)*X^3 + 50752*X^2*Y^2 + 185533972*X^2 +  

            14679128*2^(1/2)*X*Y^2 + 355788173*2^(1/2)*X + 175232*Y^4 + 

            83556748*Y^2 - 14630070))/16384 

 

After their r^<i> terms have been extracted, these expressions are inserted into the 

function plot program of D.3.3 for subsequent plotting of the stability boundaries in 

D.3.4. 
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D.3.3. Function Plot Program: 

syms X Y 

  
% %p  = 0.1 
% %kd = 0.5*r 
% %c  = 0.25*r^2 
% %v  = 2.5*r^2 

  
%a4: 
%kz =  0.5*kd 
f = -4*Y^2 - 259*2^(1/2)*X + 10;                           
figure; h=ezplot(f,[-0.5,0.5,0,3]);set(h,'Color',[0 0 0]) 

  
%kz =  5.0*kd 
f = -4*Y^2 - 43*2^(1/2)*X + 10; 
hold all; h=ezplot(f,[-0.5,0.5,0,3]); set(h,'Color',[0 0 0]) 

  

  
%a5: (boundary loc indep of kz) 
f = 4*Y^2 - 2^(1/2)*X; 
figure; h=ezplot(f,[-0.5,0.5,0,3]);set(h,'Color',[0 0 0]) 

  

  
%S2: 
%kz = 0.5*kd 
f = - 26352*X^2 + 365414*2^(1/2)*X + 20128*Y^2 + 1463007; 
figure; h=ezplot(f,[-8,0,0,3]); set(h,'Color',[0 0 0]) 

  
%kz = 5*kd 
f = - 17568*X^2 + 1292972*2^(1/2)*X + 285520*Y^2 + 5621385; 
hold all; h=ezplot(f,[-8,0,0,3]); set(h,'Color',[0 0 0]) 

  

  
%S3: 
%kz = 0.5*kd 
f = 6864208*2^(1/2)*X^3 - 50752*X^2*Y^2 - 185533972*X^2 ... 
  - 14679128*2^(1/2)*X*Y^2 - 355788173*2^(1/2)*X - 175232*Y^4 ... 
  - 83556748*Y^2 + 14630070; 
figure; h=ezplot(f,[-0.5,0.5,0,3]); set(h,'Color',[0 0 0]) 

  
%kz = 5*kd 
f = 794464*2^(1/2)*X^3 - 85888*X^2*Y^2 - 103975432*X^2 ... 
  - 31975328*2^(1/2)*X*Y^2 - 167353175*2^(1/2)*X - 2204480*Y^4 ... 
  - 265376980*Y^2 + 56213850; 
hold all; h=ezplot(f,[-0.5,0.5,0,3]); set(h,'Color',[0 0 0])  
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D.3.4. Stability boundary plots: 

Below are the stability boundary plots based on the characteristic coefficient and 

Routh sum outputs of Appendix D3.3 and plotted by the MATLAB boundary plot 

program of Appendix E4.2.1. (  
  

      and    
   

     ) 

The number beside each boundary curve is yaw-gyro gain    
  value relative to 

the damping coefficient    
  .  For example,    

      
 .  Boundary location for     

coefficient is independent of     
  (and also of prop-motor coefficient    

 ).    is not 

shown since it is always positive for X > -15.9 
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