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Abstract

Maritime surveillanceis an issueof particular interest and importancefor countriesbordering
on the sea. Monitoring and controlling maritime activities are essentialfor these countries
to asserttheir sovereigntyover their waters. Ship detectionis oneof the most vital elements
of maritime control. Traditional surveillancemethodssu er from narrow coverageand high
costto achievecomprehensivesurveillance. However,Synthetic Aperture Radar (SAR) with
its ability to provide imagescoveringwide geographicareasand acquiredwith a variety of
imaging modes, polarization con gurations, incidenceanglesand resolutions may be con<
sidered as a promising alternative/complement for existing methods. Quad-polarimetric
SAR data has beenused successfullyfor ship detection. However, narrow swath of quad-
polarimetric SAR promotesthe urgent needto explore ship detectorsfor dual-polarimetric
systems.Compact polarimetric (CP) SAR hashigh potential of providing more information
than linear dual-polarimetric SAR. Even wider swathswill be provided in many of the CP
imaging modesof the upcoming Canadian Radarsat Constellation Mission (RCM) SAR to

be launchedin 2018.

In this thesis, the useof CP SAR for ship detection is explored. To ful ll this purpose,
two novel contributions are introduced. The rst is an investigation study of the possibility
and bene ts of using pseudo-quaddata for improved ship detection. This is achievedby
comparing the ship detection performanceof dual-polarized CP and pseudo-quaddata to
linear and circular dual-polarizedSAR. The pseudo-quaddata is generatedby a reconstruc<
tion algorithm that aims to reconstruct someelementsof the quad-pol covariance matrix
from CP data speci cally for maritime applications. This study is applied on Radarsat-2
sceneswith ne resolution and simulated medium and low resolution RCM data . The e ect
of spatial resolution, ship orientation and incidenceangle on the detection performancehas

beenexplored.



The secondcontribution is a new hybrid ship detection algorithm that utilized CP Stokes
parametersand someof their derived parametersfor ship detection. The pre-screenepf the
algorithm mergesthree detection strategiesto declarecandidate shipsand the discriminator
usesa CP decompositiontechnique to discriminate ships from false alarms basedon the
type of scattering mechanism. The proposeddetection algorithm is applied to a number of
simulated RCM sceneswvith medium and low resolutions.

The ndings of this thesissuggestthe usefulnesf CP reconstruction for improved ship
detection. For the hybrid ship detection algorithm, a detection rate of 100%is obtained for

medium resolution data and about 98% for low resolution data.
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Chapterl

Introductionand Literature Review

It is well known [1, [2, 3] that the economicalprosperity of countries overlookingthe seais
intimately linked to the maritime activities taking placewithin their waters. Theseactivities
needto be securedagainstillegal shing, pollution, piracy, and others [2,[3]. This is par<
ticularly important for countrieswith extendedcoastlineswhich may su er from formidable
challengein their quest for maritime security [1I]. Fields of maritime surveillanceinclude:
shery control, pollution control, maritime trac control and others. Fishing activities
should be rigorously monitored becausemany illegal shing ships nd their ways through
oceansfar away from coastauthorities [4]. Unfortunately, the changein earth climate due
to global warming phenomenonhas causedconsiderablevolumes of seaice in the Arctic
waters to melt rapidly and many passagedbecomecompletely openedgiving better chance
for suchillegal shipsto go through it away from governmental supervision[4]. Obviously,
the situation will becomeworseasearth climate getswarmer sincemore Arctic passagesvill
be accessibleyielding the needof more e ective control on maritime activities taking place
at thesepassagesMoreover,a great threatening agentfor oceaniccreaturesto be controlled
is the pollution causedby oil spills from ships. A further important natural problem that
shouldbe detectedand may causea catastrophiccrisisfor shipstraveling in nearpolar waters
is icebergs. All thesepoints and others promote the urgent demandfor e ective maritime

surveillancemethods.

One of the most vital elementsof maritime control is ship detection. Maritime surveil<
lance hasrelied on patrol boats and aircraft, shore-basedadar and cameras.Other surveil<
lance methodswhich are utilized speci cally for monitoring shipsare the VesselMonitoring

System(VMS) [5] and the Automatic Identi cation system(AIS) [6]. VMS is usedin com<
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mercial shing to allow environmentaland sheries regulatory organizationsto monitor the
position, time at a position, courseand speedof shing vessels. The AIS is initially in<
tended to help ships avoid collisions, as well as assistingport authorities to better control
seatrac. However, maritime surveillancewith the aforementionedmethods facesmany
challenges[7, 8]. The vast seaareato be monitored, the limitations of the available su<
pervision tools and the high cost of a comprehensivesurveillance are consideredas major
challenges.Furthermore, while the VMS and the AIS are clearly very e ective ship control
systems[7, 8], someshipswhich are active without carrying transpondersor switching their
transponderso cannot be guarded. Therefore, there has beenrecently growing interest in
maritime surveillancein optical and Synthetic Aperture Radar (SAR) imagery as an alter<
native solution for the problemsor asa complementaryapproachfor the limitations of the

existent surveillancemethods|7, [8].

1.1 Ship Detection from Space

It hasbeenshownin the literature that satellite optical and radar imaging canreadily beused
for maritime surveillancegenerally and ship detection speci cally [8,[9,10]. By considering
optical imaging rst, it hasbeenrelatively clearthat high resolution optical sensorssuchas
Quick-Bird, IKONOS and SPOT-5 are able to produceimagesthat are detailed enoughfor
ship detection. However,thesehigh resolutionsensorssu er from limited swath which makes
them lesssuitable for wide areasurveillance[8]; instead, they are suitable for classifyingships
within a particular areaof interest. Furthermore, optical imagingis a ected by cloud covers,
haze, fog and sun glint [8]. Optical imagesare also restricted to be captured at daytime.
On the other hand, SAR imagesare consideredmore e ective to monitor most maritime
activities such as ships, oil slicks, natural dischargesand icebergs[11, 12, 13]. Imaging
with SAR is not restricted by time of day (as an active sensor)or weather for imagery

acquisition. The greatestvalue of using SAR sensordor maritime surveillanceis the ability
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of these sensorsto image hard targets such as ships in background of oceanclutter. The
large geographiccoverageprovided by someimaging modescomparedto terrestrial methods
alongwith the ability of providing nearreal time serviceand beingcoste ective and e cient

are consideredamongother appealingadvantagesof SAR sensorgd14,15].

1.2 SAR Polarization Con gurations and Ship Detection

Synthetic aperture radar may o er single polarization (single-pol), dual polarization (dual<
pol) and quadrature polarization (quad-pol) imaging modes [14] as shown in Figure [1.1.
Transmit and receive channel polarization may be linear or circular. In linear quad-pol
radar, polarimetric information is containedin four channels;the return from quad-pol SAR
for each pixel can be written as X = [HH HV HV VV], where X is the complex
scattering vector with its elementsare the scattering components,H denoteshorizontal
polarization and V denotesthe vertical polarization. In eachelementof X, the rst letter
representsthe transmit polarization and the secondletter representsthe receiveone. If
a single polarization is transmitted and two polarizations are received,the radar provides
dual-pol data and if one polarization is transmitted and only one polarization is received,
the radar provides single-poldata. The information content about the imaged sceneis the
largest for the quad-pol data as the relative phasebetweenthe four channelsis preserved
which representsa valuable sourceof information [12]. In contrast, single-pol SAR o ers
only amplitude or intensity data which contains much lessinformation than quad-pol SAR.
In the middle comesthe dual-pol SAR which may provide amplitude-only or amplitude and
phasedata. In the context of maritime surveillance,studies have shownthat quad-pol SAR
yields higher performancethan dual-pol and single-poldata and that dual-pol data performs
better than single-poldata [16,[17,/18]. This is intuitively expectedsincethe the amount of
information extracted from SAR data gradually decrease®y moving from quad-polthrough

single-poldata and from amplitude and phaseto amplitude only data.
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Figure 1.1: SAR polarization con gurations. The rst letter is the transmit polarization and
the secondletter is the receivepolarization; H stands for horizontal, V for vertical, R for
right circular and L for left circular polarization. pi=4 represents45 linear-pol transmission
and H and V polarization reception.

In the context of ship detection, one of the studiesthat comparesthe ship detection per<
formanceusing a number of radar systems(single-pol, dual-pol and quad-pol SARS) is that
of Liu et.al in [18]. The detection performanceof thesesystemswas investigated by estimat<
ing the receiveroperating characteristic (ROC) plots in terms of the probability of missed
detection (PMD) versusthe probability of falsealarm (PFA). Results of this study showed
that quad-pol systemhasbetter performancethan other systemssinceit providesthe lowest
PMD at almost all PFAs over all other single-poland dual-pol con gurations. Moreover,
it was found that the amplitude and phasedual-pol data generally provides better perfor<
mancethan the amplitude only dual-pol and single-pol systems. The HH{VV amplitude
and phase(again provided only from quad-pol radars) is the best dual-pol performer while
the amplitude-only and amplitude and phaseHH{HV and VV{VH dual-pol systemshave
nearly the sameweaker performancedue to the low correlation betweenco-pol and cross

pol-channels.

The advantageof the quad-polsystemin providing the largestinformation content about
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the imagedscenecomesat the expenseof the limited swath width and the high complexity of
the system[20]. In maritime surveillanceapplications, swath width is of critical importance
sinceone of the objectivesof this application is to coveras much areaas possibleto achieve
both reliability and economice ciency. Dual-pol data o ers a balancebetweenswath width
and the addedaccuracythat can often be realizedwith multiple polarization [20]. In other
words, dual-pol SAR provides double the swath width of quad-pol data and at the same
time provides much more information than single-pol SAR. Many studiesin the literature
[12,17,19,21] showthat dual-pol systemsperform better than single-polsystemsin various
applications. For example,in the context of ship and icebergdetection, conclusionsmade
from the study by Howell et. al [17] to detect ships and icebergsusing dual-pol amplitude
and phaseand single-poldata show that dual polarization systemso er improved iceberg
and ship detection over singlepolarization systems. They showthat HH{HV is recommended
for operational ship/iceberg detection since the polarization HH is preferred for detection
and the polarization HV is preferred for discrimination between ships and icebergs. In
another study, Angelliaume et. al [21] comparetarget to clutter ratio using amplitude and
polarimetric coherenceinformation of HH-HV dual-pol data. They evaluate the target to
clutter ratio for each channel separately and then evaluate it for the HH{HV Hermitian
product. They found that the HV channelgivesbetter contrast than co-pol data and that
the HH{HV Hermitian product giveshigher target to clutter ratio which con rms the fact

that dual-pol data may be valuable for maritime surveillance.

Dual-pol SAR can be categorizedinto linear dual-pol (LP) systemsand compact po<
larimetric (CP) systemsaccordingto the type of transmitted signal polarization [2C]. In
conventional linear dual-pol SAR, a linear polarization is transmitted (either H or V) and
a co-pol (HH or VV) and a cross-pol(HV or VH) channelsare received. Compact polari<
metric systemsresemblecoherentlinear dual-pol onesin that they retain the relative phase

betweenthe two receivedchannels.On the other, compactpolarimetric systemsdi er from
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linear dual-pol radar in that the transmitted polarization is not linear horizontal nor ver<
tical polarization, i.e. it may be circular or inclined linear polarization, while the received
polarizations can be either linear or circular. There are currently three CP polarization con<
gurations that have beenreportedin the earth observationliterature [20,22,23]. The =4
mode transmits a linear polarization that is oriented at 45 to the conventional horizontal
and vertical polarizations, and it receivesH and V. The dual circular polarization (DCP)
transmits right or left circular polarization and receivesboth right and left circular polariza<
tions. Finally, the circular transmit- linear receive(CTLR and alsocalledthe hybrid-polarity
con guration), transmits right or left circular polarization and receivesH and V. For the
CTLR SAR in particular, the diversity betweenthe transmitted and receivedpolarizations
o ers the potential for CP data to have a greater amount of information than the linear
dual-pol data. Therefore, in this thesis, the CTLR CP polarization con guration will be
usedfor ship detection in SAR data. In the next section, the advantagesof CP SAR in

generaland of CTLR CP in particular are comparedto linear dual-pol SAR.

1.3 Compact Polarimetric SAR Against Linear Dual-pol SAR

In this section,we expand on the justi cation for selectingthe CP SAR in generaland the
CTLR CP SAR in particular for ship detectionin this researchstudy. Belowis a list of some
disadvantagesof the linear polarization transmissionof conventional dual-pol systemsover

the CP SAR:

1. Linear dual-pol systemsare designedsuchthat the receivingpolarization basis
agreeswith the transmitted one. It followsthat the signallevelin the cross-pol

channelis lessthan the co-polchannelby 7- 10dB [22,23] (Dis.1) .

2. Transmitting alinearly polarizedsignalintroducesa rotational selectivity onto

the observation[23]. In other words, if the transmitted signalis linearly po<
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larized, the receivedsignalis strongerwhenthe object alignment is parallel to
the polarization of the incident wave and weakerif the object is rotated with

respectto the incoming signal (Dis.2).

3. Linear polarization transmissionis highly a ected with the Faraday e ect in

the ionospherewhenthe frequencyof the transmitted signalis low [24] (Dis.3).

The compactpolarimetric systemsovercomethesedrawbacksthrough adopting a diver<
sity betweenthe transmitted and receivedpolarizations. Below, we list how CP con gura<

tions help alleviate the problemsconcerninglinear dual-pol disadvantages:

1. The =4 and the CTLR con gurations o ers a solution for Dis.1. In these
con gurations, the meansignallevelsin both receivechannelsare comparable
sincethere is no co-pol and cross-polreceivechannels. As a consequencdgess

crosstalk may occurfrom the strongerchannelon the weakerchannel[23,25].

2. A solution to Dis.2 problemis to transmit a linearly polarizedsignalin which
the orientation of the linear transmissionis suitable to the assumedprevalent
orientation of featuresin the imagedsceng[23,25]. This can be achievedby
adopting the =4 modesincetransmitting a wavewith polarization at 45 with
respectto horizontal is suitable for our world where the mean surfacetends
to be horizontal and many natural and man-madeobjectstend to be vertical

[23,125].

3. Another solution for Dis.2is to usecircular polarization in the transmission(as
in CTLR and DCP schemes)which leadsto rotationally invariant backscatter

with respectto the geometriccharacteristicsof the scene[23,25].

4. Dis.3 can only be alleviated by using circularly transmitted signal which is

applicablefor the CTLR and DCP con gurations.
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Generally, the three CP con gurations are similar in that, in all three, there are advan<
tagesover full polarization in the senseof o ering double the full polarimetry swath width
and reducing the complexity of the radar system. However, the results are lesscomplete
than that from a quad-pol system due to the single transmit polarization [20]. Compact
polarimetry o ers major capabilities abovethose of single-polradar [25]. Among the three
CP con gurations, there are severalsigni cant advantagesenjoyedby a SAR in the CTLR
architecture when comparedto the other alternative CP schemes. These advantagesare

listed as follows:

1. The rotational invariance is guaranteedfor the CTLR schemefor any type
of backscattering geometry [23, 25] due to the circular transmission. This
property may bene t ship detection since ship structure often contains dihe<
drals (from ship superstructureand sea-hullinterface) and the power of their
returned signal dependsmainly on the orientation of the dihedral axis with
respectto the polarization of the incident waveif it is linearly polarized. How<

ever, this is not the caseif the transmitted signalis circularly polarized.

2. The signal levelsin the two receivechannelsof the CTLR SAR are always
comparable. This is clear when we note that both receivingchannelsinclude
the co-pol and cross-polreturns (Eqn. [2.2). This advantage may be useful
for ship detection as well sinceboth channelswould carry information about
the target or the backgroundunlike the cross-polchannelin the samepolar<
ization where the signal level is usually closeto the noise oor (contains no
information). Also, in this schemethe receivedchannelsare correlated and
thus the relative phasebetweenthem may help in distinguishing ships from

the backgroundunlike linear dual-pol systems.

3. The CTLR con guration has beenrecently adopted in the Mini-RF aboard

NASAs Lunar Reconnaissanc®rbiter [26]and the Mini-SAR on India’'s lunar
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Chandrayaan-1satellite [27] to study the lunar surface. This CP con gura<
tion will be alsoadoptedin many imaging modesof the upcoming Canadian
Radarsat Constellation Mission, which is the extensionof the Radarsatspace-
borne SAR, for earth observationapplications. This may be attributed to that

hybrid polarity CP radar hasrelatively simplearchitecture than the end-to-end

DCP designand has a unique self-calibrating property [23,25].

Basedon theseadvantagesfor CP SAR systemsover linear dual-pol alongwith the wider
swath width o ered by thesesystemsover that of quad-pol SAR, the compact polarimetric
systemsis utilized in this researchrather than the linear dual-pol systemsfor investigat<
ing ship detection in SAR images. In particular and due to its advantagesover other CP
con gurations, the CTLR CP con guration is usedin the proposedship detection study.
Approachesusedto detect shipsin CP data are reviewedin Sec.[1.7. However,in order to
maintain consistencyfor the current chapter, the basicsconceptsfor ship detection operation

in SAR data will be rst reviewedin Sec.[I.4to Sec.[L.6.

1.4 Characteristicsof Oceanand Shipsin SAR Images

From the basicsof imaging radars, it is well known that eachpixel in a radar image has
a value that representsthe backscatteredenergyfrom its correspondingspot on earth [14].
The characteristics of re ected backscatter are dependenton radar signal characteristics
(polarization, incidenceangle,frequency)and on the scattering object/surfacecharacteristics
such as the dielectric constant, roughnessand local slope [14]. Scattering from objects
can generally be classi ed into surfacescattering or volume scattering or both. In surface
scattering, wavesare scatteredfrom the interface betweentwo dissimilar mediawhile volume
scattering results from particles within non-homogeneousnedium [14] Generally surface
scattering may be sorted into specularscattering and rough surfacescattering accordingto

the surfaceroughness.In specularscattering, most of the incident wavesare re ected away
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from the radar. On the other, in rough surfacescattering, the incident wavesare scatteredin
all directions and part of the incident wavesis re ected back to the radar antenna. Incident
wave may experiencea number of re ections/bouncesand so, scattering canalsobe classi ed
accordingto the number of re ections to single or multiple (double, odd or even) bounce
scattering.

In the context of ship surveillance,much of the imagescontain mainly openoceandotted
with shipsand land areas. When land appears,it may be excludedby land masking before
applying the detection algorithm. Therefore,in the following discussion,only the nature of

backscatteringfrom oceanand shipsis discussed.

1.4.1 Backscatterfrom OceanSurface

By looking at the type of scattering from the oceansurface,one can concludethat it is due
to the high dielectric constant of water [14]. For an operational radar with an incidence
angleof 15 - 70, backscatteringfrom the oceanis predominantly due to Bragg scattering
[12,128]. Under Bragg scattering, incident wavesare re ected by wind-generatedshort waves
(called capillary waves)whosewavelengthsare given by Eqn. (L.1)). This resultsin strong

backscatteringdue to the coherentaddition of the in-phasere ected waves:

n
2sin

n=1;2;3;;:: (1.2)

B=

where, g isthe Braggwavelength, isthe radar wavelengthand is the radar incidence
angle betweenradar line of sight and the normal to the surface.

Generally, backscatter from oceanis a function of many parameterssuch as the wind
speedand its direction relative to the radar look angleaswell as polarization and incidence
angle. In the absenceof wind, the oceansurfaceis smooth and specularscattering takes
place. Wavesarethen re ected awayfrom the radar and hencethe oceansurfaceappearsdark

in a SAR image. In contrast, higher wind speedsincreasethe surfaceroughnessand more
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Figure 1.2: Scattering mechanismsf a ship. (a) singlebounce(from at sheets),(b) double
bounce(from sea-hulland dihedrals), (c) multiple bounce(from cornerre ectors).

energyis re ected back to the radar forming brighter oceanpixels. Wind direction, aswell,
signi cantly a ects oceanre ections. For instance,an upwind and downwind causehigher
backscatter than a crosswind. Backscattering from the oceandecreasesas the incidence

angle increaseq12,28]. Also backscatteringof VV data is higher than HH and HV data

[12,128].

1.4.2 Backscatterfrom Ships

Most shipsare typically constructedfrom large at metallic sheetsand often contain super<
structure or deckcon guration onthem. Therefore,strong scattering from a ship may result
from a variety of scattering types as the direct re ection from surfacesperpendicularto a
radar beam (single bouncescattering) or from dihedral re ectors formed by two orthogonal
metallic sheets(double bouncescattering) or trihedral corner re ectors (odd bouncescat<

tering). Also, ship hull and oceantogether may return signi cant backscatterto the radar
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through the double bouncescattering [12,[28] as shownin Fig. [1.4. Therefore, shipsin SAR

imagery appearasa bright localizedregionsand they are usually detectable.

1.5 Ship Detectability in SAR images

There are many factors that comeinto play and a ect the detectability of shipsin SAR
imagery. The rst factor is ship characteristics such as ship superstructure con guration,
orientation of a ship with respectto radar beam, ship size, material from which the ship is
made and others. It is clearthat large sizeshipsfabricated from steelare more likely to be
detectablethan small size, berglass or woodenships[12].

Another factor is the environmental conditions suchasthe state of the sea(wind speed),
the presenceof the seaice, the proximity to the coastline. As the detectability of ships
dependsmainly on the contrast betweenthe ship pixels and the oceanpixels, high wind
speedsmay cause higher backscattering from the oceanwhich decreaseghe ship/ocean
contrast. Also nearshores,shipsmay not be distinguishablefrom small islandsand similarly
near the polar water, ice pieceswith a sizecomparableto ships may be detectedfalsely as
shipsdue to the high back scatter from land and ice [28]. Other important factors are radar
characteristicssuch as polarization, incidenceangle and resolution. It hasbeenreportedin
the literature that ship backscatteris relatively constant with respectto the incidenceangle
in contrast with seaclutter which decreasewith increasingincidenceangle[12,2S]. This
meansthat using high incidenceangle beamsfor ship detection are preferabledue to the
high ship/sea contrast.

Many papersin the literature have discussedhe best polarization for ship detection in
polarimetric SAR data [30]- [33]. The study of Touzi et. al [33] showthat HH has higher
detection performancewhen the incidence angle is larger than 45 while HV has higher
performancefor lower incidenceangles. Similar conclusionswere made in the study of Liu

et. al [18], which showsthe ship detection performance,quanti ed with the ROC curvesfor
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a LRT detector, of a number of singleand dual-pol SAR systems.

The phaseinformation betweenthe four polarimetric channelswas also investigated.
Hawkins et. al [31] argue that the relative phase between polarimetric channelsmay be
useful for ship detection while Touzi et al [32] showthat the co-pol phasedi erence (phase
di erence betweenHH and VV) is more useful for ship detection than the phasedi erence
of the HV and HH or VV. This observationis sensiblebecausethe co-pol phasedi erence
is able to distinguish betweenthe single bounceand double bouncescattering mechanisms
(presumably the former from oceanand the latter from ships) [34].

Resolutionhasan important and signi cant impact on the detectability of shipsin radar
imagery. Therefore,image resolution and how it a ects ship detection is elaboratedin Sec.

151

1.5.1 Radar Image Spatial Resolutionand Ship Detectability

Spatial resolution (or simply resolution) is de ned as the minimum distance betweentwo
points that can be distinguished as separateby the SAR system [14]. Higher resolution
imagesshow more spatial details about the imaged sceneand at the meantime, the area
coveredis relatively small in contrast to low resolution images[15]. Among the various
ship characteristicsthat a ect ship detectability is ship size (particularly ship length). In
high resolution images, long ships normally occupy many pixels; this makesthem more
detectable by detection algorithms or even sometimesvisually by eye. Conversely,in low
resolution images,medium-length or small shipsmay occupy a single pixel. Suchshipsmay
be detectableor may not dependingon the amount of their backscatterpower.
Space-borne&SAR systemso er avariety of beammodes,eachwith a particular resolution
and swath width. So, generally speaking, beam mode selectionfor a certain application,
entails trade-o s betweenthe gain obtained from the high resolution and the reducedareal
coverageassociatedwith it. In ship detection applications, as in any other surveillance

application, swathwidth is of critical importance. However,high detection probability (fewer
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misseddetections) can not be sacri ced. Many studiesin the literature focuson assessing
ship detectability in various beammodesof ERS and Radarsat-1SAR system|[29,35]. The
measureof ship detection performance(ship detectability) in thesestudiesis taken to be the
minimum detectable ship length. The most comprehensivestudy is that of Vachon et. al
[2€]; in this study, the minimum detectableship length (called ship detection gure of merit-
FOM in their paper) for the ERS (C-band, VV polarization) and Radarsat-1(C-band, HH
polarization) SARs s calculatedunder wind speedof 12 m/s. They estimatedthe minimum
detectable ship length (1) from the minimum detectable ship RCS ( ¢hp) by the empirical
relation [29]
n 03=7

lship = OS?)IpS (1.2)

The conclusionsdrawn from this study are [29] :

1. The Radarsat-1beammode Standard-1(Incibenceangle= 23:5) hasship de<
tection performance betterthan ERS-1 SARperformancedueto the decreased

oceanbackscatterin the HH polarization.

2. The ship detection performanceimprovesfor increasingincidenceangledueto

the reduction in oceanbackscatterlevel for increasingincidenceangle.

3. The ship detection performanceis best for the ne beammodesdue to their

large incidenceangle and high resolution.

4. For ScanSAR modes, the detection performanceis best for large incidence
angles,but is worse than the standard beammodesdueto the largerresolution

cell size.

From the results of this study, Vachon et. al concludedthat Radarsat ScanSARwith its

300Km swath, is a good compromisebetweenship detectability and swath coverage[29].
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Another study wasconductedon a smallerscaleby Askari et.al [35]for SACLANT Under
SeaResearchCenter, Italy, using Radarsat-1data only. In this study, Askari et. al useda

modi ed versionof Eqn. [1.2that takesthe incidenceangle( ) into accountasin Eqn. [1.3.

lsnip = Wg’() 3 7; R()=0:78+ 0:11 (1.3)

Askari et. al worked with two types of Radarsat-1imagesacquired by ScanSARand
Standard beam modes. The wind speedin someof the imageswas high and in the others
was moderate. The results of this study con rms most of Vachon et. al observationson
Radarsat data. However, Askari et. al extend their study into the radiometric resolution
of the data and its e ect on ship detectability. Askari arguesthat the 8-bit quantization
scaleof ScanSARdata providesinsu cient dynamic rangefor discriminating betweenbright
targets and seaclutter under high wind speeds.Consequently,he concludedthat ScanSAR
imagery, in spite of its extended swath width (300 Km), is not the recommendedmaging
mode for automatic ship detection due to the poor radiometric resolution. On the other,

Askari [35] agreeswith Vachon [29] that for ScanSARmodes,the detection performanceis

best for large incidenceangles,but is still worsethan the standard beammodes.

1.6 The Ship Detection System

Ship detection systemis often composedof three stagesas depicted in Figure [1.3. These

stagesare describedbrie y asfollows:

1.6.1 Pre-processing

Pre-processingconsistsof preparing the data and putting it in a compatible form for the
designeddetection algorithm. This includes many operationssuch as extracting calibrated
radar crosssection (RCS) values from imagesdigital numbers (DNs), generation of am-
plitude/intensity imagesfrom single look complex (SLC) images, speckle Itering, spatial

averaging,the conversionof scattering vector to covarianceor coherencymatrices or Stokes
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vector to be usedby the detection algorithm and other operations. Speci ¢ pre-processing

operationsdependmainly on the subsequentdetection stages.

1.6.2 Land Masking

Land maskingis the operation of masking land areasout of the imageto be usedfor ship
detection purposessinceonly shipsin the oceanare of interest. Land maskingis important
becauseship detectorsusually producea large number of falsealarms when applied to land
areas. There are two commonapproacheghat are usedfor land masking. One approachis
to registerthe SAR image with existing geographicmaps and the other approachis to use
automatic coastlinedetection algorithms [12]. The former approachis not perfectdue to in<
accuracyof the recordedcoastline, misregistratiorof SAR imagesand tidal variations [12]. In
contrast, automatic coastline detection algorithms perform better than the geo-registration
method becausethe former method doesn't dependon geographicmaps or satellite orbital

data. Instead it dependson either edgedetection [36] - [38] or segmentation[39,40].

1.6.3 The Detection Algorithm

Basedon the aforementionedbackscatteringcharacteristicsof ships,most ship detectionalgo<
rithms rely on nding imagevaluesthat are high relative to the local imagebackground[12].
The detection processis usually split into two distinct processingstages: (i) pre-screening
and (i) discrimination, which together forms the main mechanismfor distinguishing a ship
from the surrounding seaclutter and are often referred to in the literature as the "ship

detection algorithm".

The Pre-screeningStage
Pre-screeningconsistsof nding candidate detectionsin the image [12]. This is done on
a pixel-basis using a thresholding process. In pre-screeningalgorithms, all image pixels

are examinedwith a high probability of false alarm to distinguish all possibletargets and
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Figure 1.3: Ship detection operationin SAR images.

avoid missingsomeof them [12]. Thus, pre-screeningalgorithms should be relatively simple
with respectto its computational complexity and run time. In the context of pre-screening
algorithms, two types of these algorithms, classi ed accordingto the number of received
radar channels,can be de ned. The rst type is the single channel pre-screenersand the

secondoneis the polarimetric pre-screener§]

One strategy to pre-screena single-pol SAR imageis to test all image pixels against a
xed threshold value. This strategy is called the global thresholding and was taken by Lin
et. al [41];they identi ed shipsby running a moving window of size100by 100pixel through
ERS SAR image. The threshold was setto be 250;the pixel is considereda candidate ship
pixel if its value exceeddhe threshold. In that paper, nodetails wereprovided about how this
threshold was determined. However,the authors recognizethat large number of falsealarms

resultedfrom this step. Another study by Leeet. al [42]aimsto addressship target detection

1For dual-pol data, polarimetric pre-screenerscan be usually adjusted to be applied to dual-pol images

[19], [43].
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in dual-frequencysingle polarization SAR data by using a global thresholding approach.
The correspondingthreshold valueswere determinedfrom the gammadistribution for ocean
clutter intensity at a probability of false alarm of 108 . The parametersof the Gamma
distribution are estimatedfrom an oceanblock of the scene.Thus, the xed threshold used
is appropriate for this regionbut not for the entire scene although no information about the
seastate was given in the text. Sincethe main purposeof this paper [42] wasto compare
ship detection performanceusing dual frequencydata ( C- and L-band data), the authors
do not focusor commenton the detection performanceof their simple global thresholding

detector.

Another single-polpre-screeningstrategy is the adaptive thresholding pre-screening.The
most commonsingle-poladaptive thresholding pre-screeneiis the constant false alarm rate
(CFAR) detector [12,/44]. The basic geometryfor the CFAR pre-screenerconsistsof three
nestedsliding windows; the target window which includesthe pixel under considerationis
surrounded by a guard window and then a background window [44]. The purpose of the
guard window is to prevent leakageof target pixels into the backgroundregion and hence
that the backgroundwindow representsonly the underlying background statistics [12]. At
eachpixel of the image, the intensity value of the pixel in the center of the sliding window
is comparedto a local threshold calculatedto achievea speci ed probability of falsealarm
(PFA). If the pixel value exceedsthe threshold, then the pixel is declareda ship pixel,
otherwise, it is a backgroundpixel. The windows move acrossthe image one pixel at a time
and a new local threshold is calculated using the background statistics at each placement
of the window sothe PFA remainsconstant over the entire image. A suitable oceanclutter
modelneedsto be selectedto denotethe probability density characteristic of the background
echo. After the statistical model of oceanprobability density function (pdf) is determined,
then the parametersof the pdf are estimated and the threshold is determinedat a speci ed

PFA.
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Many con gurations of CFAR detector have been developed[12, /44, 45, 46], however
for ship detection the most commonare the two-parameter CFAR (2P-CFAR) and the cell
averagingCFAR algorithms [12,/45,/4€6].

In the two-parameter CFAR algorithm, the threshold value (T) dependson the mean
( o) and the standard deviation ( ,) of the oceanclutter asin Eqn. (L.4). However,in the
cell averagingCFAR (CA-CFAR) algorithm, the threshold dependsonly on the background
meanvalue [12] asin Eqn. (L.5).

T= o+t (1.4)
T=t, (1.5)

whereT is the threshold, t is called the designparameterwhich controls the PFA [47] and
is determinedeither empirically or by solving Eqn. (L.6) for T; and , and , are estimated
from backgroundpixels. -

1

PFA=  f(x)dx (1.6)
T

where, f (x) is the oceanclutter pdf and PFA is the desiredprobability of falsealarm.

By moving to polarimetric detectors, it has beenfound that there are three strategies
to perform ship detection using fully polarimetric data [12], [48], [49]. Thesestrategiesare
extensively studied and comparedin the work by Sciotti et. al and Lombardo et. al [45] <
[49].

One strategy is to apply a single channel detector to each polarimetric channel image
separatelyand then combine the detection results. An example of this detection strategy
is given by Sciotti et. al [48] who usesa segmentation-basedCFAR detection algorithm
developedby Sciotti and Lombardo in [45,/46] astheir single channeldetector. The aim of
Sciotti and Lombardo in developingtheir singlechannelCFAR algorithm in [46] is to solve
the problem of the large number of false alarms su ered by standard CFAR techniquesin
non-homogeneouscean. For this reason,they suggestsegmentingthe imagebeforeapplying

the detection algorithm to identify the regionswith homogeneousharacteristicsand then
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usethe pixels in eachsegmentto determine the appropriate threshold of a cell-averaging
CFAR detector. They usetwo setsor imagery for their analysis: a low resolution and a
high resolution imagery. For low resolution images,the segmentationis done by setting a
hard threshold that splits the imageinto low wind regions(LWR) and normal wind regions
(NWR). However, no details about how this threshold was set is given in the paper. For
high resolution images, where the seasurface showsa large non-homogeneity,they use a
segmentationtechnique basedon simulated annealingthat was especiallydevelopedfor the
analysis of high resolution SAR imagesby Cook et. al in [50]. Thus, the image can be
decomposednto a set of adjacent homogeneousegions. Within eachregion, the pixels are
usedto calculatethe detectionthreshold at a speci ed PFA. Their comparisonof the number
of false alarms when using the standard CA-CFAR and the proposedsegmentation-based
schemeshowsthat their proposedalgorithm givesa very high ship detection capability yield<
ing a controlled number of falsealarmsin the presenceof a uctuating background. Sciotti
et. al in [48] addressthe problem of ship detection againstnon-homogeneoubackgroundin
multi-channel SAR images. Due to the non-homogeneityof oceanbacksactterin the image,
they segmentall polarimetric channelsin the pre-processingtage. The single-poldetection
algorithm is then applied to each polarimetric image (HH, VV, HV) and then the detec<
tion target candidatesare combinedsinceall the candidatesobtained in the three channels
separatelyare consideredas detections. Thus, the polarimetric information is exploited in
the combination of the detection candidates,while the segmentationstageis separatelyper<
formed on the single-channeimages. No absolute assessmenbf this work was given in the
paper sincethe authors introduced other strategiesfor exploiting the polarimetric data and

then built their conclusionson the comparisonbetweenthesestrategies.

The secondstrategy presentedin [48] is to fuse all polarimetric channelsinto a single
image and then apply a single channel detection algorithm to it. Sciotti et al. usedthe

polarimetric whitening Iter (PWF) [51] and the span technique for the fusion of the po<
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larimetric channels. In the span technique [51] the intensity imagesof the HH, HV. VH
and VV channelsare generatedand then summedtogether. After the fusion operation, the
segmentationand detection proceduresare applied to the fuseddata. The 2P-CFAR, the
CA-CFAR and the GaussianGeneralizedLikelihood ratio test (G-GLRT) are usedas the
singlechanneldetectors. The G-GLRT detector belongsto the likelihood ratio test detection
categoryin which the detection decisionis made by comparing the likelihood ratio de ned
in Eqn. (1.7)) to a threshold (T) [52].

In the G-GLRT algorithm, two setsof data are considered.The primary data consistsof
N pixels valuesobtained from a squaretarget window of N pixels. Thesepixels valuesare
arrangedin a vector X. The other data setis the secondarydata which is a backgrounddata
to be usedfor the estimation of parametersof the backgroundpdf. Under the hypothesisH,
clutter echoesare containedin x, while under the hypothesisH,, target echoesare contained
in X. The oceanand target data are all assumedo be extracted from a zeromeanGaussian
random distributions. The likelihood ratio is then obtained by dividing the joint probability

density function (pdf) of primary and secondarydata under the H; to that under the Hy,.

P (xjw+)
P(xjw)

(1.7)

wherex is the data under test, P (xjw.) is the pdf of x giventhat a target is present(under
hypothesisH,), P(xjw.) is the pdf of x giventhat only backgroundclutter is present(under
hypothesisHp) and T is a xed threshold determinedat a speci ed PFA.

Before discussingthe results of thesetwo strategies, a third strategy of exploiting the
polarimetric information in SAR data is pointed. Sciotti et. al in [4S] have introduced
a multi-channel detection algorithm inspired by the G-GLRT algorithm and called it the
Polarimetric G-LRT or PG-LRT. Sciotti et. al extendthe G-GLRT to the multivariate case
sinceeachpixel in the polarimetric data hasfour complexvaluesinstead of onefor the single
channeldata. They assumealso that target and clutter are extracted from a zero mean

Gaussianrandom distribution with polarimetric correlation properties commonto all the
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pixels and given by the covariancematrices of the target and clutter. The likelihood ratio
was formed similarly asin the G-GLRT but for the multivariate case.

The results of comparingthe detection performanceof the three strategiesshowthat the
PG-GLRT algorithm outperformsthe two other detection strategies[48,/49]. For the other
two strategies,the 2P-CFAR detector outperformsthe G-GLRT which performsbetter than
the CA-CFAR for non-segmentedmages. However,the G-GLRT outperforms both CFAR
detectorswhen the segmentationstep is applied before detection. They also reported that
polarimetric fusionusingspan- ltered and PWF- ltered data yieldsequivalentship detection
results sofar [48,49].

The multi-channel strategy was also adopted by Liu et. al in [1€,[19]. Liu et. al useda
LRT basedalgorithm. They substituted in the numerator of the likelihood ratio (Eqn. [1.7)
by the joint pdf of the four polarimetric channelsof the oceanpixels and that of the target
pixels in the denominator. They assumedthat the elementsHH, HV, VH and VV of the
scattering vector X to bejointly Gaussianfor both oceanand target pixels. Therefore X has
a pdf of the form

P(X) = Xp1=2(X ) et (x) (1.8)

1
(2 )n=2jCj1=2
where n is the number of polarimetric channels, is the meanvector, C = EfXX Hgis
the covarianceof the polarimetric feature vector X and H denotesthe complex conjugate

transpose.Note that this detector requiresa priori knowledgeof the target meanvector and

covariancematrix; Thus the detection criterion can be written as
X o) (Co)t (X o) X DMC)T (X ) >T =) target (1.9)

where C, is the covariancematrix of the oceanclutter, C, is the covariancematrix of the
target (ship) backscatterand T is the threshold.

Liu et. al [16,[19] assumedhat both ship targets and oceanbackscatterhave zeromean.
They also assumedthat the elementsof the covariancematrix of ship samplesare much

larger in magnitude than those of oceansamples. Therefore, , and ; are setto zeroand
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C: is neglectedin Eqn. [1.9resulting in a detector that assumeshat the oceanbackscatter
is Gaussianin relatively high resolution SLC data (airborne data) and doesn't take ship

statistics into considerationin the decisioncriterion as shownin Eqgn. [1.10.
XHCEX>T =) target (1.10)

Liu et. al did not comparetheir detection algorithm with other detectorssincethe aim of
their work was to quantify the extent to which additional polarimetric data channelscan
aid in ship detection by comparing the detection performanceof quad-pol data to that of
various combinations of dual-pol and single-pol data [18,[1S8]. Theseresults are discussed
later on in this document.

It is worth mentioning that a large number of false alarms result from the pre-screening
stage. Therefore, pre-screeningalgorithms are usually followed by a discrimination stageto
eliminate the majority of falsealarmswhile at the sametime maintaining a high probability

of detection.

The Discrimination Stage

In the discrimination stage,the candidate trgets from the pre-screeningalgorithms are pro<
cessedo make more discerningdecisionsabout the likelihood of a candidate being a target
of interest at certain probability of false alarm. Usually the design of the discrimination
algorithm dependson the pre-screenewoutput, image pixel spacingand the target measure<
ments such as the ship size[12]. This in turn usually makesit valid for speci c data types
and not applicablefor other types. One approachfor discrimination is to reject clusterswith
sizeslessthan a real ship size. This approachis taken by Lin et. al [41] sincethey reject
detected clusterswith sizelessthan 25 pixels in ERS image of 62.5m pixel spacing. Also,
in the shing vesseldetection study of Kourti et. al [53]using SAR imagesof 50to 70 meter
resolution, detectionswith more than 5 pixels in a row or column are separatedout. This
discrimination approachcan be implemented using a moving window in which the pixel of

interest is placedin the centre of a sliding window, and then a rule is set on the neighboring
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pixels[54]. For instance,Jiang et. al [55]usea7 7 movingwindow and setthe rule: if 7 out
of the 48 window pixels are ship pixels (detectedby a CFAR detector), then the center pixel
belongsto a ship otherwiseit is not. Lin et. al [41]usealsoa3 3 window and examinethe
8 neighboring pixels. If more than 3 neighboring pixels are possibleship pixels, the centre
pixel is consideredas a true ship pixel. Another discrimination approach dependson the
superviseddiscrimination of shipsin which the the decisionabout rejecting false alarms is

speci ed by the user[12].

1.7 Useof Compact Polarimetry For Ship Detection

At the presenttime, there is a shortagein the CP data provided by operational spaceborne
CP SAR for earth observation. This is becausethere is only one satellite with CP SAR
on board that hasbeenrecently launchedin 2012 (Risat-1) [56]. However,CP data can be
simulated using quad-pol data [23,57]. The advantagesof CP data over that of linear dual-
pol and its usefulnessover quad-pol data in terms of swath width and system complexity,
promote severalearth observationstudiesto be investigatedusing CP data [22,57,58]. The
mayjority of applications of CP SAR data have beenterrestrial including crop classi cation
[22,5€], soil moisture estimation [60], vegetation characterization [61, [62] and land cover
mapping [57,52]. The preliminary results obtained from thesestudiesby using CP data are
found to be comparableto those from quad-pol data.

In order to analyze CP data, there are two possibleapproacheg20]. Theseapproaches

are describedas follows:

1.7.1 First Approach : Reconstructionof Quad-pol data

In this approachthe 2 2 covariancematrix of compact polarimetric dual-pol data is ex<
pandedto a3 3 pseudo-covariancenatrix under certain symmetry assumptions.In other

words, the CP data are to be usedto estimate componentsof the quad-polarizedcovariance
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matrix to usethesereconstructedquad-poldata (termed pseudo-quadpr PQ, data) in exist<
ing quad-pol algorithms. This hasbeenthe approachtaken by Souyriset. al [22] and Nord
et. al [57]in two paperspresenting quad-pol reconstruction algorithms. Thesealgorithms
have beendevelopedin the context of terrestrial imaging. In order to estimate the quad-pol
3 3 covariancematrix, onemust estimate nine unknowns: the amplitude of all three chan<
nelsand the three Hermitian product of the receivedchannelswhich are complexquantities.
The CP data provide only four equationsfrom the CP modecovariancematrix. An assump<
tion is madeto reducethe number of unknowns. This assumptionis the re ection symmetry
which is consistentwith many terrestrial imaging scenariog63,/64]. Under this assumption,
there is complete decorrelation of the co-polarizedand cross-polarizedbackscattering coef<
cients, hS4 Syvi = hSv Syyi = 0; whereS; is the complex backscatter coe cient
with i transmit and j receivepolarization. Thus, there are now only ve unknowns: Sy |,
JSvv], and jSyy j which arereal, and Sy S/, Which is complex. Thus, another assumption
is required to bring the number of unknowns down to four or to increasethe number of
eguationsto ve.

Souyris et. al [22] proposedthe following model that relates the ratio of the cross-pol

intensity to the meanof the co-polintensity to the magnitude of the co-pol coherence

< [Shvj?> (1 jJ)
= 1.11
< [Shnj?> + < [Syvj?> N (41
where,jj is the co-polcoherencanagnitude de ned as
jj e Svl (1.12)

" Shn AiSvi?

Souyris et. al substituted by 4 into N in [1.13. This value is derived assumingdominant
volume scattering from vegetation in the scenethey used. Equation is modi ed by
Nord et. al in [57] to compensatefor the double bounce backscatter dominated from the
buildings of the urban areain the imagethey use foranalysis. Nord et. al plot the right-hand

side (RHS) of [1.1] against the left-hand side (LHS) and observethat the value of 4 in the
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denominatorof[I.13is alowerlimit. Their data suggestghat this constantof proportionality
shouldgenerallyhavehighervalues. They then replacedthe proportionality constantN with
the ratio of doublebouncebackscatter(jSyy Sy vj?) to volumebackscatter(jSyy j?) [57,65]
asin [1.13.

N = Smn Swii®
JjShv j2

(1.13)
In both the Souyris and Nord models, equations[1.11 and [1.12 are iteratively solved to
estimate jSyy j? and the linear co-pol coherence( ). The other pseudoco-pol components
(Sun s Svv) intensities and their relative phase(Suy :S, ) are estimated directly from the
covariancematrix elementsof the CP modeand the estimatedjSyy j? value aswill be shown
in Chapter|[2.

The useof the reconstruction of CP data approachfor ship detection purposeis reported
by Yin et. al [66]. Yin re nes the Souyris reconstruction algorithm by consideringthe
helix scattering componentin the reconstruction proceduresto deal with the casewhen
re ection symmetry doesnot hold. He tests his reconstruction algorithm by comparing
the ship detection performanceof the original quad-pol data, PQ data using the original
Souyris algorithm and his own algorithm and the raw CTLR dual-pol data. Yin et al.
[66] presenttwo ROC curves, for two dierent data sources: JPL AIRSAR and SIR-C,
presumably basedon two individual ships (this information was not indicated). His ROC
curves show the detection performanceof the original quad-pol data, PQ data basedon
his re ned algorithm, PQ data basedon the original Souyris algorithm and the compact
polarimetry data (in his casehe simulated =4 data). His results for the two ships he
used show that the raw CP data outperforms the reconstructed data generatedby their
proposedalgorithm and the latter outperforms the pseudo-quaddata generatedusing the
original Souyrisalgorithm. He concludeghat the compactpolarimetry is a reasonablechoice
whenfully polarimetric data is not available [66]. Neverthelessthis work could be criticized

from two perspectives. The rst is that, although their interest is the reconstruction of
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CP data for ship detection which meansthat they mainly deal with open oceanimages,
they didn't test the re ection symmetry assumptionto refuseit nor validate their helical
scattering assumptionfor oceanpixels. However,sincethe surfacescatteringdominatesfrom
the oceansurface,the helical scattering assumptionmight be violated for oceanpixels. The
other perspectiveis that they did not provide any reconstruction performanceassessmenin
which the reconstructeddata is comparedto the original quad-pol oneto prove the validity
of their proposedalgorithm. Therefore, it is essentialto developa reconstruction algorithm
speci ¢ for maritime applications which provideshigh reconstruction performancefor ocean
data. In orderto ful ll this purpose,a new reconstruction algorithm speci ¢ for maritime
applicationsis developedn a collaborationwith a researchteam at the U of C and published

in [65]. This algorithm is called hereafteras Collins reconstruction algorithm.

Collins et. al [65] developeda new modelto reconstruct quad-poldata from CP data for
oceanpixels to be usedfor maritime applications. This reconstruction algorithm usesthe
four elementsof the CTLR CP covariancematrix to generatethe amplitude of the two co<
pol components(jSy j; jSvv]), their relative phaseand the cross-polamplitude (jShy j). In
order to do that, re ection symmetry wasassumedafter it wasveri ed and demonstratedas
valid for oceandata [65]. Another assumptionthat wasincorporatedis the polarization state
interpolation originally developedby Souyriset al. [22] and then modi ed by Nord [57] as
de ned in Eqn. [1.1]. This assumptionwasdemonstratedasinvalid for oceandata [65]. This
meansthat neither Souyrismodelnor Nord modelare valid to reconstructthe C-band ocean
data. Therefore,a new experimentally-basednodelis developedto estimatethe constant of
proportionality in the Souyrisassumption(Eqn. [1.11) which is requiredto reconstructocean
guad-pol data. Incidence angle of imaging mode beam is taken into considerationin this
model to improve reconstruction performance[65]. More details are presentedabout this
algorithm in Chapter 3. The reconstruction performanceof Collins algorithm is assessedty

reporting the median and standard deviation of the di erences betweenthe reconstructed
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and the observedquantities as a function of incidenceangle. The algorithm performanceis
comparedto that of the Souyris and Nord algorithms. Moreover, the signi cance between
Collins algorithm and thesealgorithms is tested. Resultsof this study showthat the accuracy
of the Collins algorithm stays approximately constant with the incidenceangle and yields
the most accurate reconstruction results for oceandata and the lowest variability [65]. In
contrast, both Souyris model and Nord model accuracy deteriorate as the incidenceangle
increases. Moreover, the signi cance test suggeststhat the di erence betweenthe Collins

algorithm and the other algorithms is signi cant for all reconstructedcomponents.

1.7.2 SecondApproach : Stokesand Child Parameters

In a dual-pol radar system,the receivedsignalstake the form of the the two-elementscatter<
ing vector X =[Sy, Sy,] whereS is the scattering component,t denotesthe transmitted
polarization and rq;r, denote the receiving polarizations in the rst and secondchannels
respectively. These scattering componentsare complexin the SLC images. A useful rep<
resentation of the information carried by coherentdual-pol systemsis the Stokesvector as
in Eqns.{1.14{1.17). The four-real parametersof the Stokesvector capture all of the infor<
mation inherent to the dual-polarizedbackscatteredsignals[58]. Stokesparametersare real
guantities composedrom the intensity images(powers) and the crossproduct betweenthe
SLC imagesof the two receivechannels[58]. The right-hand set of equationscorresponds
to linear polarization basiswhile the left-hand set correspondsto the circular polarization
basis. The equality betweenthe Stokesparametersof both polarization basesholds only

when the transmitted polarization is the samein both caseq5€].

So= hjSuj?+jSwi%i = hiSLj?+ [Swj’i (1.14)
S = hjSuj? jS wijli = h2R(Sy Sg)i (1.15)
S,= h2R(SySy)i = h21(Sy Sp)i (1.16)
Se=  haA(SwSy)i = (hiSLi? JS wi%) (1.17)
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whereS; is the complexbackscatteringcoe cient andi is the receivepolarization which
can be H for linear horizontal, V for linear vertical, R for right-handed circular or L for
left-handed circular polarization while the subscriptt is the transmitted polarization which
is R for the current study. R and| arethe real and imaginary parts of the complexquantity
respectively, isthe complexconjugateand the triangular bracketsare the spatial averaging

operator.

Although theseparametershave real values, the phaseinformation betweenthe receive
channelsis retained in them. This property makesthem very useful in enhancingthe de<
tectability of targetsin dual-pol images. Another advantageof the Stokesparametersis that

severaluseful "child parameters" can be derived from them such as the degreeof polariza<

1=2
m = (§7483:53)

tion ( <

), degreeof depolarization(DODP = 1 m), linear polarization ratio

(LPR = 23{3), circular polarization ratio (CPR = g53)), degreeof circular polarization

(DCP = %ﬁ)), and other parameters[58]. The importance of these "derived parameters”
emergedrom their relation to the type of scattering mechanismsof the scattering medium.
Put di erently, theseparametersconveyinformation accordingto the characteristicsof the
scene primarily its geometricshape,roughnessgdielectric properties, density, or electromag<
netic penetrability [67]. Thus, the Stokesparameter values provide invaluable insight into
the geophysicalproperties of the surface. This in turn aids in better interpretation of the
imagedscene.A third advantageof usingthe Stokesvector is that, unlike the reconstruction
approach,there is no needto makeany assumptionsthroughout the analysisabout the data,

e.g. re ection symmetry assumption.

The Stokesvector and the derived parametershave beenusedwith CP data for planetary
imagingapplications[20,l67,68]. This is attributed to the available CP data from operational
CP SAR systemsthat have beenusedin planetary imaging for sometime. Most recently,

the miniSAR on board Chandrayaan-1collectsCP SAR imagesof the moon [27].

In the eld of earth observation, most published researchhas beenbasedon the recon<
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struction of quad-poldata from dual-pol data and then the reconstructeddata are subjected
to variousclassi cation techniqueson di erent study areassuchascrop classi cation [22,59],
soil moisture estimation [60] and vegetation characterization [61,/62]. There has beenlittle

work reporting the use of the CP Stokesand/or child parameters. One exampleis the use
of Stokes parametersfor crop classi cation [20]. Another is the use of the relative phase
betweenthe RH-RV receivedchannels( ) for the discrimination betweenwind turbines and
their wakesin ocean[69]. In the context of ship detection, only a single paper [70Q] is found
that usesthe degreeof polarization for the purpose of ship detection. Shirvany et. al in

[70] estimate the the degreeof polarization (m) in the =4 and CTLR CP modesand the
HH-HV and VV-VH linear dual-pol SAR modesand comparethe contrast betweenthe tar<
gets and the oceanof these modesusing Radarsat-2 data. They do not use a particular

detection algorithm nor assessmenieasure.They map the degreeof polarization for quad-
pol and linear and compact dual-pol modesand comparevisually the visibility of shipsin

all images. Their results show that compact dual-pol modesdeliver better ship detection
performancecomparedwith linear dual-pol modes. Their results, although encouraging,are
purely qualitative. It is noticed in the m mapsthat someparts of the oceanhave similar
m characteristicsas potential ships(and thus can be falsely interpreted as ship candidates).

However,this notice doesnot appearin their conclusions.

For completenessthe work of Liu et. al [7/1]in using CP data for ship detectionshouldbe
cited. They do not reconstructPQ data nor usethe Stokesand child parametersfor the pur<
poseof ship detection.However,they use theraw CTLR CP data simulated from Radarsat-2
guad-pol data to comparethe detection performanceof the ship detection LRT algorithm
they developedin [19] with quad-pol, HH=HV j and HH . They use a single Radarsat-2
Fine Quad (FQ4) sceneof the Strait of Gibraltar. The detection performanceanalysisis
carried out on eight ships by plotting the ROC curvesfor these ships. All results clearly

showthat HH hasthe worst performancewhile the quad-poldetector hasthe strongestper<
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formance. Results also showthat dual-pol systemsprovide much better performancethan
the single-polsystem. For ve of eight casesstudied, the simulated CTLR systemprovides
better performancethan jHH=HV j system. For the other three casesthe jJHH=HV j sys<
tem providesslightly better performancethan the CTLR system. The major conclusionof
this study is that a CTLR radar systemprovides better ship detection performancethan a
single-polradar system. They also point out that more investigation is required to judge
if the CTLR CP mode provides better detection performancethan a conventional dual-pol

systemor not.

1.8 Problem Statement

In this section,the problemsand the shortcomingsin the literature that is associatedwith

ship detection using compact polariemtric SAR data topic are addressed.

1.8.1 The Useof CP Data for Ship Detection Purposes

Quad-pol SAR has beenwidely usedin ship surveillancebecauseit o ers information not
only about intensity but alsoabout the coherentphasebetweenthe four receivedchannels.
This additional information improve ship detection performance.However,this hugeamount
of information comesat the expenseof swath width, which is essentialto maximize the area
coveragefor ship detection application. Dual-pol data is found to o er wider swath but with

a reducedamount of information. However, the construction of the compact polarimetric
SAR as a dual-pol systemmay increaseits opportunity to provide a better accuracythan

linear dual-pol systemswhile at the sametime coversdouble the swath width of quad-pol
SAR. Recently, investigating the capabilitiesof CP data in earth observationapplicationshas
becomean active topic of research.However,there are few publishedstudieson the useof CP

data for ship detection. A review of the existing literature showsthat only two recentpapers

addressthe niche of ship detectionin CP data using the two CP analysisapproaches(one
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paperin eachdirection). Consideringthe work donein the reconstruction of quad-pol data
approach, it has beenshown that the reconstruction algorithm implies two assumptions.
Souyris et. al [22] and Nord et. al [57] both adopt the re ection symmetry as the rst

assumptionwhile di er in the secondassumption. Souyris developsa relation betweenthe
co-polcoherencend the crosspolarizedratio dependingon the volume scatteringmodelthat
dominated from vegetation. On the other, Nord et. al modify this relation to compensatéor
the double bouncescattering that is causedby buildings. Recalling that the oceansurface
exhibits single bounce scattering, it is anticipated that neither the original reconstruction
algorithm proposedby Souyris et. al nor the modi ed one of Nord et. al are consistent
with the backscatteringfrom ocean. From the study of Yin et. al [6€], it is concludedthat
they did not assumere ection symmetry assumptionand instead they derived an equation
dependingon the helical scattering mechanism. However, this work lacks the validation of

this assumptionfor oceandata and the performanceassessmendf their proposedalgorithm.

Collins et. al introduces an empirically-based model to reconstruct oceandata from
CP data for maritime applications [65]. In this model, the proportionality constantin the
polarization state interpolation equation is evaluated at the incidence angle of the scene
under study. The accuracyof Collins reconstructionalgorithm is shownto be approximately
constant with the incidenceangle and to yield the most accurate reconstruction results for
oceandata and the lowestvariability [65]amongother reconstructionalgorithms. Therefore,
this modelis usedin this thesisto reconstructquad-poldata from the CTLR CP data for the
purposeof ship detection. In this study, the ship detection performanceof the pseudo-quad
data generatedusing this modelis to be assesse@nd comparedto that of linear, circular

and compact polarimetric dual-pol SAR data.

Like the reconstruction approach,only a single paper is found which adopts the second
approachof analyzing CP data (Stokes/child parameters). The paper of Shirvany et. al [7C]

usesthe degreeof polarization to recognizeshipsfrom oceanbackground. As mentionedin
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the review section, no detection algorithm is used. In addition, the detection performanceis
assessedttisually dependingon the contrast betweenshipsand the ocean.We claim that the
degreeof polarization cannot be usedalonefor reliable ship detection. This is inferred from
the existenceof low degreeof polarization regionsin the ocean,which needa thresholding
algorithm to reject such pixels and enhancethe detection performance. The results from
this study can be consideredpreliminary and more work needto be doneto direct the useof
the degreeof polarization to bene t the ship detection performance.We suggestthat other
child parameterscan be employedindividually or jointly to help in improving the detection
performance.Finally and mostimportantly, no study hasbeenfound that usesthe valuable
information provided by Stokesparameterswhich is consideredto be a gap in this research

area.

1.8.2 The Ship Detection Algorithms

In light of what has beenreviewedin the literature about the widely used ship detection
pre-screenerfCFAR and LRT detectors), one may concludethat one category of existing
pre-screenergsuch as CFAR detectors) ignoresthe ship backscatter statistical model and
usesonly oceanbackscattermodel. This is often modeledparametrically by pre-assuminga
pdf for the data, estimating the parametersof the pdf using the real data and then testing
the goodnes=f t for the assumedpdf. In order to estimate the best t to the data, one
may try to t many pdfs to the data and then selectthe most suitable one which is time
consumingprocess. Otherwise to savetime, an approximate parametric pdf may be used
and this may lead to an increasednumber of false alarms. At present, severaldistribution
modelsof oceanclutter have beenadopted by CFAR algorithms. The reasonis that ocean
clutter under di ering seastates varies through severalclassesof distributions such as the
Gaussiandistribution [72], lognormal distribution [73], K distribution [55]and others.
TheseCFAR detectorsrequire extensivecomputationsdue to the needto estimate ocean

backscatterpdf parametersat eachpixel in the imageand consequentlymay take consider<
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abletime which is not preferredfor near-realtime applications suchasmaritime surveillance.

The other categoryof pre-screenersthe LRT, are optimal asthey maximizethe probabil<
ity of detectionat a given PFA [74]. However,the mannerin which they are utilized for ship
detection in the literature leadsto a deteriorated detection performance. This is attributed
to either ignoring ship statistics (which is a requirementin forming the likelihood ratio) or
assumingan inappropriate pdf model for oceanand/or ship backscatter [17, 19, 49]. Liu
et. al [16,/12] arguethat the elementsof ship covariancematrix are much larger than those
of the ocean. This assumptiondoesnot always hold, especiallyfor woodenships or those
made from berglass in low resolution data. From the review presentedabout the existing
LRT detectors,it is seenthat the developersf ship detectionLRT algorithms alwaysassume
Gaussianpdfs for oceanand ship (if takeninto consideration)backscatterin orderto simplify
their algorithms and reduceits computational burden. The Gaussianpdf is not the perfect
t for oceanbackscatterespeciallyin singlelook imagery and relatively high resolution data
[75]dueto the heavytail of the the oceanbackscatterdistribution [19]. It is noteworthy that
actual falsealarm rates of a ship detection algorithm vary tremendouslydependingon which
distribution model is appropriate for the backgroundclutter [75]. Therefore, existing LRT
algorithms sacri ce the improvement in the detection performancethat could be obtained
when using a more accuratepdf modelsand give high number of falsealarms which leadsto

deteriorated detection performance.

In order to avoid assuminginaccurate pdfs for ship and oceanbackscatterwhich yieldsto
a deteriorated detection performance,an alternative approachto estimate accurate pdf for
random data is recalled;that is the mixture density model [7€]. In this approachthe data
pdf is assumedas a mixture of a number of componentsbelongingto the sameparametric
family of distributions (e.g Gaussiandistribution)[76]. This method has the advantagesof
expressingcomplexdensitiesin terms of simpler densities(the mixture components)and the

ability to form smooth approximations to arbitrarily shapedpdfs [76]. Another advantage
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is that it provides a good model for certain data sets where di erent subsetsof the data
exhibit di erent characteristicsand can best be modeledseparately[/6]. This advantage
in particular is useful for maritime applications since oceanbackscatter di er at di erent

seastatesfrom oneimageto another and evenfrom location to location in the sameimage
in which assuminga speci c pdf for it is inappropriate. Thus the density function for any
image can be estimated directly without assumingthe pdf. Accordingly, it is anticipated
that using mixture modelswill yield more accuratepdf estimation for oceanand ship returns

and henceimprove detection performance.

From the literature review of the ship detection algorithms, it is noticed that all CFAR
and LRT detectorsemploy either the complexscattering vector or the intensity SAR data for
detecting ships. However, no thresholding pre-screenerfiave beenreported that utilize the
Stokesvector or any of its derived parametersfor ship detection. It is anticipated that the
valuableinformation content of the Stokesvector and its derived parametersmay bene t ship
detection. Thereforein this thesis,oneof the objectivesis to mergeall types of pre-screeners
(global thresholding, CFAR and LRT) to developnew robust pre-screenetthat utilize the
observedStokesparametersindividually and jointly. This pre-screeneiis designedto take
the advantagesof each existent pre-screeningdetector and discard its disadvantages. The
pdfs required by the adaptive thresholding detectors(CFAR and LRT) are estimated using

the GaussianMixture Model (GMM) method to take local seastate into consideration.

By looking at the discrimination algorithms, we nd that most existing onesdependon
removing individual false alarm pixels and groups of contiguousfalse alarm pixels with an
overall sizewhich is lessthan areal ship size. Suchdiscriminators canbe describedto belocal
for a speci ed imagesincethey are highly dependenton the ship sizesand imageresolution.
Therefore, it may not be valid for other images. However, discriminators that distinguish
pixels dependingon the dominant scattering mechanismover those pixels may give better

discrimination betweenreal targets and oceanpixels. Existing discriminatorsthat exploit the
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physicsof oceanand ship backscatteringinto discriminating ships from oceanfalse alarms
usually use polarimetric decompositiontechniques[77] or classi cation [78]. Thesephysics
are relatedto many parameters that can be extracted from multi-polarization SAR data such
as degreeof polarization, coherenceand phaseshift betweenreceivedchannelsand other
parameters. The use of such parametersmay increasethe robustnessof the discriminator

and provide more reliable discrimination in comparisonto ship-sizerelated discriminators.

1.9 Objectivesand Organization of the Thesis

Basedon the literature survey and accordingto the current problems and researchgaps
discussedn Sec. (1.8), the major objectivesof this thesisare as follows :

1. The investigation of the possibility and bene ts of using CP SAR generally and the
pseudo-quad data generated by Collins algorithm speci calfgr ship detection. This investi<
gation includesthe assessmentf the relative ship detection performanceof the reconstructed
data, raw CP and other linear and circular dual-pol SAR data. Moreover, it is intended to
investigate the possibility of using lower resolution data, which provideswider swath width,
e ectively for ship detection.

2. The investigation of the e ect of spatial resolution, ship orientation and imaging mode
incidenceangle on the ship detection performanceof a number of SAR systems.

3. The developmentof a new hybrid ship detection algorithm for hybrid CP data. In
this algorithm, CP Stokesparametersand some of their derived parametersare used for
ship detection. In this algorithm, four detection strategiesare utilized together to improve
detection performance.

4. The application of the proposeddetection algorithm to a number of RS2 sceneswith
medium and low resolution and the assessmendf the detection performanceof the proposed
algorithm.

This thesishastwo parts. The rst part is composedf Chapters2 and 3 and investigates
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the possibility and bene ts of using CP SAR generally, and the PQ data generatedby
Collins reconstruction algorithm speci cally, for ship detection. This is done by comparing
ship detection performanceof compactpolarimetric SAR systemsto linear dual polarimetric
(LP) and circular transmit/circular receive polarimetric (CirP) SAR systems. This ship
detection investigation study is conducted on two sets of SAR data. The rst set hasa
relatively ne resolution acquired by the RS2 Fine Quad (FQ) mode beams. The second
set has a lower resolution simulated data. Both setsof data are then fed to a Likelihood
Ratio Test detection algorithm for the ship detection performanceinvestigation. The impact
of spatial resolution, ship orientation with respectto the radar beamand the e ect of the
imaging modeincidenceangle on the ship detection performanceare all investigatedin this
part.

Chapter 2 reviewsthe CP reconstructionalgorithm that is usedin this researchstudy, i.e.
Collins reconstruction algorithm and the LRT detection algorithm. Moreover, it introduces
the experiment performedto investigate the ship detection performance. Chapter 3 shows
the results of this part and provides the correspondingconclusionremarks and suggested
future researchwork.

The secondpart of the thesisis composedof Chapters 4 and 5 and it introduces the
proposedStokesparametershybrid ship detection algorithm. In Chapter 4, the theoretical
conceptsand related basicsof eachpart of the proposedCP hybrid detection algorithm is
presentedalong with a detailed description of the proposedalgorithm.

In Chapter [§, the data used and the results of applying the proposedship detection
algorithm to a number of Radarsat-2 sceneswith medium and low resolution are discussed

and concluded. Finally, Chapter 6 outlines the main conclusionsof the work done.
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Chapter2

ShipDetectionPerformancénalysisof CompactPolarimetricData

Methodsand TheoreticalConcepts

In this chapter, the possibility and bene ts of using compact polarimetry SAR generally
and the pseudo-quaddata speci cally for ship detection are investigated. This is done by
comparing the ship detection performanceof compact polarimetric SAR systemsto con<
ventional linear dual polarimetric (LP) and circular transmit- circular receivepolarimetric
(CirP) SAR systems. This ship detection investigation study is conductedon two sets of
SAR data. The rst set has ne resolution of about 6 m. This data is acquired with the
RS2 Fine Quad (FQ) modebeams. The secondset hasa lower resolution. It is obtained by
simulating the FQ data into RCM data in three modes: the Low Resolution, the Medium
Resolution and the Ship Detection modes. Another purposeof this study is to investigate
the possibility of using lower resolution data, which provideswider swath width, e ectively
for ship detection. Consequently,the analysisherein hastwo parts; the rst part coversthe
ship detection analysisusing the FQ data while the secondpart coversthe ship detection
analysisusing RCM data. The CP data usedin this study hastwo forms: oneform is the
raw CTLR data (RH-RV) and the other form is the pseudo-quaddata generatedby recon<
structing quad-pol data using Collins reconstruction algorithm [65] which was developedin
a collaboration work with a researchteam at U of C. The linear dual-pol systemstested
in this study are the HH-HV, VV-VH and the amplitude-only HH-VV. Both setsof data
are then fed to a Likelihood Ratio Test detection algorithm for ship detection performance
investigation. The detection performanceis assessetbr eachSAR systemusing ROC curves
and the median probability of misseddetection at a speci ¢ probability of falsealarm. In

this study, the impact of spatial resolution, ship orientation with respectto the radar beam
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and the e ect of the incidenceangle on the ship detection performanceis investigated.

This chapter is organizedas follows. Section[2.] provides a description of the original
RS-2 and the simulated RCM data usedin this study. Section[2.Z exhibits the experimen<
tal methods employedin this work. This section contains a review of the reconstruction
algorithm usedand the Likelihood Ratio Test ship detection algorithm. Finally Section[2.3

concludesthe chapter.

2.1 Data and Study Site

The polarimetric data set usedin this chapter is shownin Table [2.]. It is composedof 14
Fine Quad (FQ) scenesf the Strait of Gibraltar acquiredby severalRadarsat-2beams. The
scenesare locatedaround (35 { 37) N, and (5 { 6 ) W. The scenesare numberedin Table
and the radar backscattercoe cient ( °) valueswereusedfor the calibration of the data.

The "Sc. No" columnin the table lists the scenenumbersby which eachsceneis referred
to in the upcominganalysis. The "Beam" column lists the Fine Quad beam position, with
lower positions having lower incidenceangles,and vice versa. The "Inc. Angle" column lists
incidenceanglerange of eachradar beam. The "Acq. date" and time "Acq. time" refer to
the acquisition date and time of eachscenerespectively. "W.S. (m/s)" lists the meanwind
speedof eachscene,jn metersper second,as calculated using the meanvalue of the HV
accordingto the equation developedin [79]. "No. Sh." is the the number of shipsusedin
eachscene.All scenedhave a rangesamplespacingof 4.73m and azimuthal samplespacing
varying from 4.8to 5 m accordingto beamposition. Nominal Radarsat-2Fine Quad mode
resolution is approximately 5.2 m in range by 7.6 m in azimuth. Automatic identi cation
System(AIS) data is available to validate the imagedshipsin all scenes.

In this work, the RCM data is simulated as single look complex (SLC) imagesin three
imaging modes:the Medium Resolution, the Low Resolutionand the Ship Detection modes

[80]. The simulated data had a noise oor of approximately -22 dB (accordingto the RCM
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Table 2.1: An overviewof the Fine Quad Radarsat-2data of the Strait of Gibraltar usedin
this study. Sc. No. is the Scenenumber, Beamis beamnumber, Inc. Angle is the incidence
anglerangecoveredby eachbeam,Acg. date is the sceneacquisition date , Acg. time is the
sceneacquisition time, W.S is the wind speedin m/s and No. Sh. is the number of ships
per sceneusedin the current study.

Sc. No. | Beam Inc. Angle Acg. time | Acq. date | W.S (m/s) | No. Sh.
1 2 19.77 { 21.78 18:11:03 | 2008-11-26 7.1 7
2 2 19.77 { 21.78 18:11:05 | 2008-11-26 6.7 4
3 2 19.77 { 21.78 06:35:01 | 2008-10-20 3.6 12
4 4 22.16 { 24.08 18:11:01 | 2008-12-20 5.8 7
5 4 22.16 { 24.08 18:11:04 | 2008-12-20 5.7 12
6 4 22.16 { 24.08 18:10:54 | 2008-07-29 6.0 12
7 8 26.88 { 28.71 06:30:56 | 2008-11-20 11.3 11
8 8 26.88 { 28.71 06:30:54 | 2008-11-20 11.8 11
9 12 31.34 { 33.03 06:26:46 | 2008-11-27 11.9 8
10 12 31.34 { 33.03 06:26:48 | 2008-11-27 13.8 3
11 21 40.17 { 41.61 06:22:40 | 2009-02-14 13.3 8
12 21 40.17 { 41.61 06:22:38 | 2009-02-14 12.1 7
13 21 40.17 { 41.61 18:23:32 | 2009-02-09 6.2 12
14 21 40.17 { 41.61 18:23:29 | 2009-02-09 5.5 11

Table 2.2: An overviewof the simulated RCM data in the three imaging modesusedin this
study. This Table showsthe incidenceangle (Inc. Ang.) in degreedor eachof the modes,
the multilook resolution (ML Res.) and the simulated SLC resolution (SLC. Res.) in the
(range x azimuth) directions and the nominal swath width (N.S.W) in Km.

RCM Beam Mode ML Res. Inc. Ang. . SLC.Res. N.S.W
Medium Resolution 50m 19 {58 7.9x49.7 350Km
Low Resolution 100 m 19 {54 8.3x98.8 500Km
Ship Detection variable 36 { 51 2.7x 48 350Km

classi cations) while the original Radarsat-2data has noise oors of approximately -30 dB.

The signal levelsfor the Sy ,Syv and Syy of the oceandata were comparedto the noise
oor valuesprovidedin the RS-2metadata for eachscene.The Sy and Sy arewell above
the noise while the §y is close to the noise oor but still above it.The incidenceangle range
“Inc. Ang.", the multilook resolution"ML Res.", the simulated SLC resolution"Sim. Res."
and the nominal swath width "N.S.W" of the simulated RCM data are indicated in Table

[2.2. It is noteworthy to mention that the simulated SLC resolution for the ship Detection

mode varies with the incidenceangle. The resolutionsshownin the table are for Scenell
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acquiredby FQ 21 beam. As indicated in Table [2.2, the RCM Ship Detection mode covers
the incidenceanglerange (36 { 51). Therefore,in this study, the Ship Detection modeis
only simulated for the scenesacquiredby the FQ21 beam(40:17 {41:61 ). The RCM data is
simulated using software developedand provided by Dr. Francois Charbonneauat Canada

Centre for Remote Sensing(CCRS).

2.2 Methods

In this section, the methodologyfollowed to investigate the ship detection performancefor
CP SAR is presented. In the beginning, Collins reconstruction algoritm usedto generate
the pseudo-quaddata from the CTLR CP data is briey presented. This is followed by
an explanation of the proceduresof the experimentperformedto analyzethe ship detection
performance.This sectionis endedby areviewof the LRT ship detectionalgorithm employed

in the current work.

2.2.1 The ReconstructionAlgorithm

The reconstructionof quad-poldata is the processof regeneratingsomeelementsof the quad-
pol covariancematrix from compactpolarimetric data under someassumptions.The purpose
of quad-pol reconstructionis to be able to use existing quad-pol methods of analysiswhile
maintaining the double quad-pol swath width provided by dual-pol SAR. In this research,
the quad-pol reconstructionis performedusing simulated CTLR data. The reconstruction
processhastwo steps. The rst stepis to simulate the CTLR data from linearly polarized
guad-pol data and second,to reconstruct the elementsof the quad-pol covariancematrix.

The resultant reconstructedquad-pol data is called the pseudo-quaddata or the PQ data.
In this study, Collins reconstruction algorithm [65] is usedto generatethe PQ data. This

reconstruction algorithm is presentedin brief in this section.

Quad-pol data scattering vector is composedof four elementsas mentionedin Chapter
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1. However,under the scattering reciprocity assumptionSyy = Syn), it canbe written as
X quad-pol = ShH 2S4v  Svv (2.1)
The CTLR CP SAR scattering vector is given as Eqn. [2.3 and the CTLR covariance

matrix may be written asa sum of three components[22,57] asin Eqn. [2.3.

1 T
XCTLR = PS5 Sww  jSwv  Swv  Svy (2.2)

3 2 3
-S -2 - S .S -2 --S -2
2 JSHH | i(Sun Syv) g+2 JoHV ) J]S Hv]J g+
) i(S vv Syn) jSvvj? ijShy j? J'ngj2

1D
CcTir = 5

§ 2 (Sw Sw)  Sw Sw *Swv Sw gE
Suy Swv + Svv Sy 21 (Svv Syv)

(2.3)

whereT is the transposeoperator, the angle brackets representspatial averagingand |
is the imaginary part of a complexnumber.

In order to estimate the quad-pol 3 3 covariancematrix, it is required to estimate
nine unknowns; three unknowns are real: (jSun j?, jSvvj?, jShv j2 and three unknowns are
complex: Syy :Syy» Svv:Syy and Sy S, ). Howeveronly four equationsare available
from the CP mode covariance matrix; Ci;;C,, and C;, which is complex. Thus, some
assumptionsneedto be made to constrain the solution spaceand reduce the number of
unknowns or increasethe number of equations. Collins et. al [65] make the following
assumptions:

1) Re ection Symmetry:

Re ection symmetry refersto the media that is symmetric with respectto the incidence
plane [22]. Under this assumption,there is a completedecorrelationof the co-polarizedand

the cross-polarizedbackscatteringcoe cients, i.e.
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This assumptionsimpli es the CTLR covariancematrix (Eqn. 2.3), by removingthe third
component,hencereducing the number of unknownsto ve: jSyy j; jSnv J; jSvv] which are
real, and (Syy :Sy\/) Which is complex.

The re ection symmetry assumptionis consistentwith many terrestrial imaging scenarios
[63,64]. However, Collins et. al demonstratedthat the re ection symmetry assumptionis
valid for oceanbackscatterat C-band [65]. After applying the re ection symmetry relation,

the quad-pol covariancematrix simpli es to
2 3

iShH j2 0 S

D JSHH | HH Sy v E

CPQ = 0 jSij2 0
SvvSin 0 J-SVVJ.2

(2.5)

Thus, there are now only ve unknowns: jSyy j, JSvv]j, and jSyyv j which are real, and

Sun Sy Which is complex.

2) Polarization State Interpolation:
Collins et. al adopts the polarization state interpolation assumptiondevelopedby Souyris

et. al [22] asin Eqgn. [1.11and recalledherein for convenience

< jSnvj? > _@ijp (2.6)
< [SHHj?> + < [Syvj?> N .

Souyriset al. [22] developecthis relation (2.6) basedon the scattering behaviour of fully
polarized and fully depolarizedbackscatteredwaves. For a fully polarized scatteredwave,
a very small amount of cross-polenergyis scattered, i.e., jSyyv j? = 0. In addition, the HH
and VV backscatteredwaveswill be almost perfectly correlated;thus, the magnitude of the
copolarizedcoherenceis nearly one: j puv vj = 1 [22,65]. On the other hand, for fully
depolarizedbackscatteredwaves, the averagebackscatteredpower doesnot dependon the
polarization state of the scatteredwave. Hence,there is no correlation betweenthe co-pol
scatteredwaves,i.e. | yuv vj = 0, andthe intensity of all scatteredenergyis about the same,

i.e. jSunj? = jSvvj? = 2jSuvj2. The situation for backscattering from natural materials
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will be somewhereébetweenthesetwo extremes[65]. The proportionality constantN, in 2.6,
dependsmainly on the dominant scattering mechanism[81].

Collins et.al [65] test the validity of both Souyris (with N = 4) and Nord (using N asin
Eqn. [1.13) modelsfor oceandata. Their results showthat neither the approximation of N
to be"4" nor the form[1.13appearto be valid for oceandata, i.e. neither Souyrismodel nor
Nord modelis valid to reconstructthe C-band oceandata. Therefore,Collins et. al decided
to retain the form of Souyrisoriginal model however,estimate the value of N for eachscene
basedon the incidenceangle [65]. They usethe following equation, which follows directly

from rearrangingequation[2.§, for N calculation of eachpixel [65]:

< jSuni?> + < jSyvj?>
< jSnvj? >

N=(@jj) (2.7)

In order to construct their model, they calculate N for each pixel in a 1000 1000
pixel sub-imageof a number of sceneswith moderate wind speeds[65]. A meanN (N)
for eachimageis calculated and usedto investigate its dependenceon image geometry,i.e.,
the incidenceangle, and wind speed. They observedan increasein N, with a decreasing
incidenceangle [65]. However, they found that the dependenceof N on wind speedis much
weakerthan that on the incidenceangle. Therefore, they did not model N as a function of
wind speed.So, they developeda simple empirical modelto estimate N from the incidence
angle[65] asin . This modelis then usedto estimate N to perform the reconstruction.

0:60
9

N = 6:52+ 18305:72xp (2.8)

where N is the constant of proportionality (N) of Eqn. and is the meanincidence

angle of the studied scene.

2.2.2 Reconstructionlterative Equations

In this study, equationgl.12and[1.13areiteratively solvedto estimatejSy j? and the linear
coherence(). The iterative equationsof[1.12and[1.13for Collins model is given as Eqns.
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and2.10.N in is estimated using the model[2.§ at the scenemeanincidenceangle.

- iC 12+ jShv jf
ji @y = — U _2 (2.9)
(Ci1 JS nvi)(C22 S nvi)

!
Ciit+ Cyx 1] Gl
2 N+21 ] ¢oyl)

IShv jiy = (2.10)

The starting estimateof jSyy j is setto be zero,then the rst estimateofjj iscalculated
using[2.9. The jSyy j? is updated using2.10,then the processlternates betweei2.9 and 2.1p
until reaching convergence.In this study, convergencds consideredreachedwhen jSyy j?
be within 1% of its previous estimate. For eachpixel, iterations continue until convergence
or till reaching 100 iterations, whichevercame rst. It is worthy to mention that for some
pixels, the magnitude of convergedo a value greaterthan one,which is impossible. When
that happen,the iterations are halted and the jSyy j? is setto zerofor that pixel.

The other pseudo co-pol components(Spy ; Svy) intensities and their relative phase
(Shu 1Sy ) are estimateddirectly from the covariancematrix elementsof the CP modeand

the estimatedjSyy j? value as follows :

jSunj® = Cu jS nvj? (2.11)
jSVVj2 = Cx JS ij2 (2.12)
Sun Syy = IC 12+ [Shvj? (2.13)

Thus the covariancematrix of the pseudo-quaddata derived from the CTLR CP SAR

data can be written as,
2 3
Ciu1 JS wvj? 0 iC 12+ jShvj?
CPQ = E ZjSHVjZ 0 % (214)

( iC 12+ ]SijZ) 0 C22 JS HVj2
whereCq;; C1» and C,, are the elementsof the CTLR covariancematrix.
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The main purposein reconstructing the linear quad-pol covariancematrix is to detect
maritime targets suchasships. To perform ship detection, the Likelihood Ratio Test method

developedin [18,19]is used.

2.2.3 The Experiment

Figures[2.7 and [2.7 show strategy owcharts of the work presentedin Chapters[2 and [3.

Figure [2.1 showsthe owchart of the FQ analysispart of the ship detection investigation

study. In this part, the FQ data is usedto generatethe LP data and to simulate the CirP and

CTLR CP data by combiningthe fully polarimetric channels.The RR-RL data is simulated
asin the CirP scattering vector de ned in [2.13 while the RH-RV is simulated asin [57].

After that, the pseudo-quadCP data is generatedusing Collins reconstruction algorithm.

Then, all LP, CirP and CP SAR systems(also calleddetectorsthrough the thesis)are passed
to the LRT detector to distinguish betweenship and ocean. The LRT detection algorithm

is presentedin Sec.[2.2.4.

Xcirp Sun Swwv+i2Sw j(Sun * Swy) (2.15)

NI =

Figure [2.7 showsthe strategy of assessinghe ship detection performanceof the RCM
analysispart of this work. In this part, rst, the RCM data is simulated usingthe FQ data in
three modes:the Low resolution, Medium Resolutionand the Ship Detection modes. Next,
the CirP and CTLR data are simulated from the simulated RCM quad-pol data similarly
asin the FQ analysispart. Then, the pseudo-quadCP data is generatedasin the FQ case.

After that, all theseSAR systemsare passedto the LRT detection algorithm.

Now we have the following systemsto be analyzedfor the ship detection performance

assessmenin both FQ and RCM parts of the analysis:
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Figure 2.1: Strategy owchart of the FQ analysispart in this chapter.

Linear: coherentHH-HV, coherentVV-VH and incoherentHH-VV
Raw CirP : coherentRR-RL
Raw CTLR : coherentRH-RV

ReconstructedPQ: Full PQ, coherentPQ HH-VV, and PQHV
Merged CP detector: RH-RV-PQHV

This is a total of nine systems. We do not examine any of the observedsingle-pol
systemsas it has beenreported in the literature to have the worst detection performance
with respectto dual-pol and quad-pol systems|18,1€]. It is worth mentioning that in the
FQ analysis part, the quad-pol detector is also usedas a referenceand is included in the
performancecomparison. However,in the RCM part, the quad-pol detector is not included
in the comparisonas the upcoming RCM provides only dual polarization on all low and

medium resolution modes[8C]. This is to provide wide swath width to be suitable for
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Figure 2.2: Strategy owchart of the RCM analysispart in this chapter.
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maritime surveillance applications. Moreover, in the RCM analysis part, one should note
that the HH-VV con guration is not available in the RCM Ship Detection imaging mode,

howeveronly in the Medium and Low Resolution modes.

Ship Orientation Impact on Ship Detection

It is anticipated that the orientation of the shipswith respectto the radar range direction
might a ect the detector performance. Higher performance(lower PMD) is expectedfor
ship orientations of 90 and, to a lesserextent, 0 . At 90, the ship is broadsideto the
radar rangedirection and o ers the largest surfaceareafacing the radar. At this angle,the
hull and superstructureshould generatea signi cant amount of double bounceand a higher
radar crosssection, thus a lower PMD [81]. At O, the ship o ers the smallestsurfacearea
but its superstructure should also be roughly perpendicularto the rangedirection and it is
expectedto seea slightly lower PMD than at other orientations [81]. At all other angles,
onewould expectthe radar pulseto be re ected away from the radar. Thus we are looking
for enhancedperformance(lower PMD) at 0 and 90 . So,in this study the impact of ship
orientation on the detection performanceis explored. The orientation relative to the range
direction is measuredwith 0 being parallel to the rangedirection. However,the bow from
the stern could not be discriminated so, 0 is equivalentto 180 and 90 (perpendicularto

the range direction and parallel to the azimuth direction) is equivalentto 270. We also
assumeazimuthal symmetry, so 45 is equivalentto 135. Thus, the anglesare measured
between0 and 90 . The orientation of a ship is approximatedto be included in oneof ve

categories(0 ;30 ;45 ;60 or 90). In order to assesghe impact of ship orientation on the
detection performancenumerically, we compute what we call the "the Number of Lowest

PMD OccurrencePercentage{ NLPOP". The NLPOP can be de ned as:

Number of times the lowest PMD occursat a speci ¢ orientation category

NLPOP =
Number of detectors Number of beams

100%

(2.16)
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Incidence Angle Impact on Ship Detection

In this chapter, the impact of incidenceangle on the ship detection performanceis investi<
gated aswell. For this study, scenesacquiredby ve beams(B) are used. Eachbeamhasa
speci ¢ incidenceanglerange as follows :

B2:19.77 - 21.78.

B4 : 22.16 - 24.08.

B8: 26.88 - 28.71.

B12: 31.34 - 33.03.

B21: 40.17 - 41.61.

For this study, 125 ships from all scenesacquired by thesebeamsas depicted in Table [2.]]
areidenti ed. Theseshipshaveveri ed positionsfrom the Automatic ldenti cation System
data distributed with SAR data. Rather than reporting the detection results for all 125
ships, we summarizedetection results for all shipsat a particular orientation by reporting
the median PMD and indicate the number of shipsusedfor the calculation. The medianis

usedsincethe samplesizesare small and the medianis lessa ected by outliers [81].

2.2.4 LRT Ship Detection Algorithm

In the LRT detection algorithm, a decisionvariable is calculated using the Neyman-Pearson
criteria [16,[1S]. The decision variable (L) is formed from the ratio of ship and ocean
probability density function values at each pixel in the scene. Under the assumption of

Gaussianstatistics for shipsand oceanscattering components,the decisionvariable is given

by: 8 9
2 > for a shi =
L=X"C}l X = P (2.17)
> >
: for ocean;

whereX is the scattering vector of the SAR system,C, = E (X X ') is the oceancovari<
ancematrix calculatedfor a region of the oceanand E () is the expectation operation over

that region of the image, is a threshold.
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As in Eqn. [2.17,if the decisionvariable of the pixel is abovethe threshold, the pixel is
consideredfrom a ship. Otherwise, it belongsto the ocean.

Equation[2.17is usedfor the determination of the decisionvariable for the coherentdual-
pol systems(Quad-pol, LP, Cirp and CTLR) using appropriate de nitions of the scattering
vector X and the covariancematrix for eachsystem. For the single-polsystemthe decision

variable reducesto
L = jSi;j jz
E (jSi;j Jg)

where S;; is the scattering elementof the single-polsystemwith i transmit and j receive

(2.18)

polarization.

The decisionvariable for the RH-RV-PQHV hybrid systemis developedby mergingthe
decisionvariable of the coherent CTLR (RH-RV) systemwith the single-polPQHV asin
Eqgn.[2.19. This systemis called the mergedCP detector.

jSponv j?
E(iSpqHv j2)

where, C, is the 2 2 oceancovariancematrix of the RH-RV coherentsystemand X =

L=X"9Cl X+ (2.19)

[Srn Srv ] is the scattering vector of the CTLR system.

For the PQ data, oneshouldrecall that the reconstructionalgorithm can only reproduce
the amplitude of the two co-polcomponents their relative phaseand only the HV amplitude.
In this situation, it is consideredthat the full PQ systemis composedof two systems:the
HH-VV coherentdual-pol systemand the HV single-polsystem. The decisionvariable for
this systemcanbe then formulated by mergingthe decisionvariable of the coherentdual-pol
systemand that of the single-polsystem[81]asin Eqn. [2.19with usingthe scattering vector
of the PQ HH-VV system,i.e. X =[Spgun Spovv].

After the calculation of the decisionvariable for all pixels in the image, the decision
variable is comparedto a threshold for ship detection. This threshold is specied at a

desiredPFA. If the decisionvariable exceedshe threshold, the pixel is a ship; otherwiseit
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is ocean.

Before applying the LRT detector on the LP, CirP and the CTLR data, the data are
spatially averagedwith a3 3 boxcar Iter. The averagingis performedon the Hermitian
product of the scattering components(i.e. Si:S;) usedin calculating the decisionvariable
for eachSAR systemand not on the complexscattering components.This is doneto achieve
a fair comparisonwith the PQ data since the reconstruction algorithm operateson the
spatially averagedCTLR covariancematrix (which is averagedwith same3 3 boxcar lter)

to producethe PQ data.

2.2.5 Detection PerformanceAssessment

In this study, the detection performanceof the LRT algorithm is reported using two ap<
proaches.The rst approachis the ROC curves. The ROC curve is a relation betweenthe
probability of misseddetection (PMD) and the probability of falsealarm (PFA) at various
threshold values[19], [74].

To compute the PFA, a subsetof the oceanwith no targets is selected. Then the deci<
sion variables for eachpixel in the selectedocean-onlyregion are calculated. The decision
variablesare comparedto a set of thresholds. For eachthreshold, if the decisionvariable is
larger than the threshold, the pixel is considereda false alarm. To form the PFA at each
threshold, the number of falsealarmsis divided by the total number of selectedoceanpixels
asin Eqn. 2.21.

For the sameset of thresholds,the probability of detection (PD) valuesare computedas
follows: rst, oneship is selectedfrom the imageand the decisionvariable for eachship pixel
is comparedto the threshold. When the decisionvariable is higher than the threshold, the
pixel is considereda detectedpixel. The PD is computedby dividing the number of detected
pixels by the total number of ship pixels and the PMD is calculated using Eqn. [2.20.

For the generationof the ROC curves,the thresholdscanbe setarbitrarily. In this study,

all distinct valuesof oceandecisionvariablesare usedasthresholds. The PFA and the PMD
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are calculatedat eachthreshold value and the ROC is then generatedusingthe (PFA, PMD)

pairs.
Np
PMD =1 — (2.20)
Ns
N
PFA= —2 (2.21)
No

Np is the number of detected pixels, Ns is the total number of a ship samples,Ng4 is
the number of falsealarms, and N,, is the total number of oceansamplesin a speci ed area.
The secondapproachof detection performanceassessmernis taking a sectionof the ROC
curve at a speci ed PFA and record the correspondingPMD. The systemwith the lowest

PMD is the onewith the highestperformance.

2.3 Conclusion

In this chapter, the methodsusedfor the investigation of ship detection performancefor a
number of Radarsat-2beam modesand SAR systemswereintroduced. Moreover, the data
and study site were presented. This study is performed on SAR data with ne, medium
and low resolution. In this work, the ship detection performanceof compact polarimetric
SAR systemsis comparedto linear dual polarimetric and circular transmit- circular receive
polarimetric SAR systems. The CP systemsinvolved are in the form of the RH-RV SAR
and the reconstructed quad-pol data from the CP SAR. The reconstruction is performed
using Collins reconstructionalgorithm which is reviewedin this chapter. The LRT detection
algorithm is usedfor ship detectionin the SAR data. The detection performanceis assessed
using the ROC curves and the PMD at a speci c PFA. The impact of resolution, beam
incidenceangle and ship orientation on the detection performanceis investigated. Results

and conclusionsof this study are presentedin Chapter 3.
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Chapter3

ShipDetectionPerformancénalysisof CompactPolarimetricData

Resultsand Discussion

In this chapter, the results of applying the strategy presentedin Chapter[2 to investigate
the ship detection performanceof compact polarimetry SAR systemsare introduced. After

the results are discussed,conclusionsare accordingly made. This chapter is organizedas
follows. Section[3.] outlines the results of the study. This sectionincludestwo subsections:
subsection3.1.1 which introduces the study results of the FQ data and subsection[3.1.2
which presentsthe results of the RCM data. Finally, section[3.2 concludesthe ndings of

this chapter's work.

3.1 Results

3.1.1 Fine Quad Beam Mode Results

The summarizeddetection performanceresults of the Fine Quad beam mode are presented
in Table [3.1. The table showsthe median PMD values for each SAR system (detector)
at a PFA of 10° . The table is organizedso that the rst column lists the orientation of
the observedships in degreesmeasuredfrom the range direction and the other columns
representSAR detectors. The remainder columnsare divided into three sets separatedby
vertical lines. The rst setis for the CP systems(RH-RV, RH-RV-PQHYV, Full PQ, PQHH<
VV and PQHV). The secondsetis for the CirP (RR-RL) systemand the third setis for the
LP systems(HH-HV, VV-VH, HH-VV dual-pol and the quad-pol system). The table is also
organizedinto ve sectionsaccordingto incidenceangle, from the steepestincidenceangle

beam(B2: 19:77 21:78) at the top to the shallowestbeam (B21: 4017 41:61) at the
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bottom. Each beamsectioncontains shipsidenti ed in all scenesacquiredwith that beam.
Within eachsection,the rows refer to shipsat a particular orientation category,from 0 at
the top to 90 at the bottom. At eachorientation, table entries refer to the median PMD
taken over the number of shipsbelongto that orientation. The last row of eachsectionrefers
to median PMD taken over all the shipsin all scenef that beam. The lowest PMD (best
performance)is shadedin dark grey. In casesvherethe lowestPMD was achievedwith the
guad-poldata, the next lowestnon-quad-poldetectoris shadedin dark grey. Detectorswith
performancewithin 0.02 of the lowest PMD are shadedwith lighter grey. As mentioned
previously, we expect enhancedperformance(lower PMD) at 0 and 90. So, the lowest
PMD results per eachSAR detector are indicted in bold facefont as evidenceof this e ect.
The discussionin this sectionhasthree sides:
A. the e ect of incidenceangle on ship detection performanceof SAR detectors.
B. the impact of ship orientation on the detectability of ships.

C. A comparisonbetweenthe CP, CirP and LP systemsdetection performance.

A. IncidenceAngle Impact

The rst discussionis the performanceof the detectorsasthe incidenceangleincreasedrom
B2 to B21, anincreasein the incidenceangleof almost 22 . This relation canbe seenclearly
from Figure [3.7 which depicts the relationship betweenthe overall median PMD over all
ships per eachbeamat PFA of 10° for all detectorsand the meanincidenceangle for the
available beammodes(B2-B21).

For CP detectors, it is found that the PQHV detector performance uctuates at low
incidenceanglesand then the performanceimproves as the incidenceangle increaseswith
a spike in its weakestperformanceat B4 and the best detection performanceat B21. For
the merged CP detector, the performanceremains steady between B2 and B4 and then
it improves with the best performanceoccurring at B21. For the CirP and all other PQ

detectors, the detection performanceimproves asthe incidenceangleincreasesand its best
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Figure 3.1: Fine Quad beammode: overall median PMD for all shipswithin eachbeamat
PFA of 10° for all CP, CirP and LP detectorsasa function of the meanincidenceangle( )
at the range (19:78 41:61). It is obviousthat the strongest performanceoccursat the
shallowestincidenceangle (B21) and the weakestperformanceoccurseither at B2 or B4.
However,the detection performancegenerallyimproves as the incidenceangleincreasedor
all detectors.

performanceoccursat B21. The detection performanceof the quad-pol detector improves
gradually with the increaseof the incidenceangle. The LP HH-VV and LP VV-VH detectors
performanceimprovesbetweenB2 and B4 and then uctuates betweenB4 and B12. For the
LP HH-VV, the performancethen improvesat B21 while for the LP VV-VH, the performance
remainsnearly steadybetweenB12 and B21. For the LP HH-HV, the detection performance
slightly deterioratesbetweenB2 and B4 and then it improveswith incidenceangleincrease.
However, it is obviousthat the detection performancegenerally improves as the incidence
angle increasesfor all detectors with the strongest performanceoccurs at the shallowest

incidenceangle (B21).
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B. Ship Orientation Impact

In order to shedlight on the e ect of ship orientation on the detection performance,the
lowestPMD value of eachdetectoris indicated in bold facefont in Table[3.. This is doneat
eachincidenceanglerange(beam). We notice that the bestperformanceat shallowincidence
beams(B12, B21) occursat the 0 orientation while for steepincidencebems(B2, B4), the
lowest PMD mostly occursat 90 orientation.

We can seethat the NLPOP at the 90 orientation is 24% while the lowestPMD occurs
at the O orientation for about 50% of the cases. This meansthat the lowest PMD still
occursat either 90 or the 0 orientations for about 74% of the casesas expected. For the
remaining 26% of the casesthe lowest PMD occursat other orientation angleswithout a

cleartrend.

C. Detection Performanceof SAR Systems

Now we cometo the comparisonof the LP, CirP, PQ and CTLR detectors performance.
For the steepestB2 beam, the highest median performanceover all ships is achievedby
the quad-pol detector followed by the PQHV and then the mergedCP detector. However,
over the various orientations, the best performanceswingsbetweenthe CP detectorswith
the mergedCP detector is the best non quad-pol detector for 3 out of the ve orientation
categories. For the B4 beam, the overall best performanceis occupiedby either the LP
HH-HV or LP VV-VH dual-pol over the orientation categoriesexceptfor 0 wherethe best
performer is the CirP detector. For the B8 beam mode, the best performanceis for the
PQHV at most orientations and over all shipswithin this beamfollowed by the mergedCP
detector. At the B12 beam,the bestdetector at all the orientations excepttwo and over all
shipsis the quad-pol detector. At 0 orientation, the PQHYV is the best detector followed
closely by the mergedCP detector. At 90 orientation, the native CTLR detector hasthe
highest performancefollowed by the quad-pol. Over all shipsin this beam, the highest

performanceis for the quad-pol followed by the merged CP detector. For the B21 beam,
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Table 3.1: Fine Quad beam mode: median probability of misseddetection (PMD) for sev<
eral shipsat a xed probability of falsealarm (PFA) of 10° . The leftmost column is the

orientation of the observedship in degreesmeasuredfrom the range direction of the radar,

i.e. if the shipis oriented along the rangedirection, its orientation is O , while if it is oriented
along the satellite track, its orientation is 90 . The orientation anglesare subscriptedwith

the number of shipsusedin the estimate. The lowestPMD (best performance)is shadedin

dark grey. In caseswherethe lowest PMD was achievedwith the quad-pol data, the next

lowestnon-quad-poldetectoris shadedin dark grey. Detectorswith performancewithin 0.02
of the lowest PMD are shadedwith a lighter grey. For eachSAR detector, the lowest PMD

is indicated with bold face font. The last row in eachsectionis the overall median taken

over the total number of shipswithin this beam (Tot.).

Ship PQHV RH-RV/ RH-RV Rl PQ PQHH-VV RR-RL HH-HV VV-VH HH-VV Quad-pol
’ Orient " (deg) ‘ PQHV ‘ ‘ ‘

B2 19:78 21:78

o” 0.296 0.273 0.346 0.367 0.504 0.358 0.282 0.376 0.854 0.217
307 0.466 0.433 0:517 0:449 0.511 0.464 0.615 0.589 0.807 0:433
457 0:487 0.603 0.626 0.603 0.639 0.628 0.613 0.641 0.950 0.592
603 0.627 0:594 0.596 0.609 0:707 0.598 0.641 0.637 0.833 0:609
902 0.415 0.216 0.183 0.192 0.190 0.184 0.355 0.514 0.479 0.226
Tot. = 23 0.469 0.477 0.519 0.540 0.580 0.524 0.549 0.553 0.862 0.439
B4 22:16 24:08

08 0.410 0.367 0.337 0.340 0.353 0.327 0.394 0.395 0.552 0.331
30° 0.624 0.467 0.431 0.476 0.476 0.466 0:275 0:272 0.755 0.359
45° 0.658 0.569 0.537 0.608 0.635 0.569 0:384 0.388 0.668 0.457
608 0.510 0.502 0.467 0.541 0.558 0.496 0.244 0.245 0.714 0.372
902 0.588 0.371 0.320 0.339 0.339 0.297 0:282 0:277 0.526 0.286
Tot. = 31 0.544 0.479 0.453 0.487 0.501 0.463 0:286 0:290 0.622 0.359
B8 26:88 28:71

03 0:302 0:290 0.377 0.341 0.377 0.372 0.403 0.396 0.620 0.323
30° 0.165 0.183 0.253 0.220 0.288 0.249 0.291 0.287 0.612 0.181
455 0:301 0.295 0.328 0.318 0.363 0.338 0.369 0.364 0.671 0.315
60% 0.288 0.308 0.369 0.345 0.384 0.392 0.357 0.348 0.717 0:305
90° 0.271 0.281 0.338 0.323 0.356 0.336 0.385 0.383 0.697 0.296
Tot. = 22 0:268 0:269 0.325 0.303 0.360 0.337 0.359 0.354 0.685 0:275
B12 31:34 33:03

0? 0.057 0.067 0.100 0.107 0.131 0.098 0.146 0.154 0.275 0.075
301 0.323 0:329 0.339 0.350 0.388 0.324 0.371 0.377 0.490 0.315
454 0:263 0.273 0.346 0.363 0.426 0.323 0.375 0.363 0.551 0.240
602 0.310 0:227 0.251 0:219 0.239 0.276 0:219 0.230 0.634 0.185
902 0.197 0.189 0.111 0.276 0.269 0.242 0.305 0.263 0.559 0.179
Tot. = 11 0.259 0:198 0.265 0.294 0.322 0.249 0.282 0. 267 0.490 0.179
B21 40:17 41:61

010 0.097 0.065 0.074 0.094 0.150 0.078 0.163 0.193 0.215 0.067
308 0.208 0.152 0.160 0.217 0.280 0.183 0.177 0.200 0.420 0.113
458 0.255 0.202 0.202 0.272 0.298 0:203 0.276 0.335 0.353 0.176
60° 0.158 0.127 0:139 0.164 0.207 0.144 0.181 0.188 0.299 0.122
907 0.280 0.213 0:181 0.283 0.317 0.143 0.240 0.296 0.501 0.143
Tot. = 38 0.177 0.138 0:140 0.209 0.254 0.143 0.211 0.272 0.380 0.118

58



the quad-pol detector is the highest performancedetector aver all orientations exceptfor O

wherethe bestperformeris the mergedCP detector. The bestnon quad-polperformeris the
mergedCP detector for all orientations except90 wherethe CirP is the best non quad-pol
performer. The quad-pol detector has the highest median PMD over all ships within this
beam mode followed by the merged CP detector and then the CTLR detector. It is also
noticed that the CirP detector has a closeperformanceto the merged CP detector for all

orientations exceptone and over all ships.

Now the detection performanceis discussedin terms of the overall median PMD as a
function of the PFA for all shipsin a speci c beammoderegardlesf their orientation angles
for all LP, CirP and CP detectors. Figure [3.3 showsthe overall median ROC curvesfor all
shipsin the ve Fine Quad beammodes.In the ROC curves,the detector with lower median

PMD hasbetter performance(the lower the curve, the better the detector performance).

For the B2 ROC curvesin Figure[3.2, we notice that the PQHV detector outperformsall
other detectorsfor PFA valuesupto 4 10° followed by the quad-pol detector. For lower
PMD values, the quad-pol detector outperforms all other detectorsfollowed by the PQHV
performanceand then the mergedCP detector performance. The LP HH-HV and LP VV<
VH detectors perform better than the CTLR, the RR-RL and the Full PQ detectors for
high PFAs. On the other hand, at lower PFAs, the performanceof thesedetectorsbecomes
comparable. The CirP and the CTLR CP detectorshave comparableperformancewith the
CirP performsslightly better for high PFA values. The worst detection performanceover

the entire PFA rangeis for the PQHH-VV detector.

For the B4 beam ROC curvesin Figure [3.3, we can seethat for high PFA values, the
best detector is the quad-pol followed so closelyby both the LP HH-HV and the LP VV<
VH detector. At high PFAs, the PQHV and the merged CP detectors share nearly the
same moderate performancewhile the PQHH-VV and the Full PQ detectors have lower

performance.For low PFA values,we notice that the highestperformancedetectorsare both
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the LP HH-HV andthe LP VV-VH detectorsfollowed by the quad-poldetector. The rest of
the CP detectors(CTLR, PQHH-VV and mergedCP detector) and the CirP detector have
closedetection performanceexceptthe PQHV detector which is the secondworst performer
for low PFA values. Clearly, the LP HH-VV occupiesthe worst performanceover the entire

PFA range.

For the B8 beam, one can seefrom Figure [3.2 that the PQHV detector outperforms all
other detectorsover the entire PFA rangefollowed closelyby the quad-poldetector and then
by the mergedCP detector. The CTLR, CirP and the Full PQ detectorshave intermediate
performanceand the PQHH-VV, LP HH-HV and LP VV-VH detectors sharea moderate

performancefor high PFAs. The LP HH-VV is the worst detector over the entire PFA range.

For the B12 beam, one can seethat the quad-pol detector is the best detector over the
entire PFA range. The merged CP detector has the secondbest performancefor nearly
the entire PFA range. The CTLR, the CirP and the PQHV detectors have a comparable
performancethat is better than that of the LP HH-HV and LP VV-VH for medium to
low PFA values. The CirP detector hasthe third best performancefor the PFA range from
8 10° to 10° andfrom 10° to 3 10° . The LP HH-VV detector hasthe worst detection
performanceand the PQHH-VV detector hasthe secondworst performanceover the entire

PFA range.

For the B21 beam, the quad-pol detector hasthe best performanceover the entire PFA
range. The secondbest performanceis shared by the native CTLR, the CirP and the
mergedCP detector for PFA valueslower than 10 and up-to 10° . For higher PFAs, the
CirP detector is the secondbest performer followed by both the CTLR and the mergedCP
detector. The PQHV detector performsbetter than the Full PQ detector for low PFAs while
they have comparableperformancefor higher PFAs. The LP HH-VV is the worst detector

followed by the LP VV-VH detector over the entire PFA range.

To summarize,one can seethat for low incidenceangles(B2), medium incidencebeams
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(B8 and B12) and shallowincidencebeam(B21), generatingPQHYV hasan advantagefor ship
detection aseither the PQHYV itself or whenaddedto the native CTLR detector outperforms
other detectors. For the B21 beam, wealsoseethat the CTLR shareshe mergedCP detector
best performancefor low PFA. However, it is suggestedthat its performancedeteriorates
for PFA lessthan 10° while that of the mergedCP detector will remain steady. Over all
incidenceangle categories,one can seethat the CirP hasa comparableperformanceto the
CTLR. However, the CirP detector starts to have a higher performancefor high PFA at
the B12 and B21 beams. For B4, it is noticed that the LP detectorsoutperform all other
detectors. So, generally,it is obviousthat CP detectors,either raw CTLR or PQ detectors,

outperform LP dual-pol detectorsfor medium to shallowincidenceangles.

3.1.2 RCM Results

Here, the results of the detection performanceof the RCM imaging modesare summarized
in three tables, onetable for eachRCM mode: Table [3.2 for the Medium Resolution mode,
Table [3.3 for the Low Resolution mode and Table [3.4 for the Ship Detection mode. These
tables showthe medianPMD valuesfor eachSAR system(detector) at a PFA of 10° . Each
table is organizedsothat the rst columnlists the orientation of the observedshipsin degrees
measuredfrom the range direction, the last column showsthe type of the systemwith the
highest performance(H.Pr.){lowest PMD: LP, CirP or CP and the other columnsrepresent
SAR detectors. Thesecolumnsare divided into three setsseparatedby vertical lines. The
rst setis for the CP systems(RH-RV, RH-RV-PQHYV, Full PQ, PQHH-VV and PQHV).
The secondset is for the CirP system and the third set is for the LP systems(HH-HV,
VV-VH, HH-VV) dual-pol system. Tables[3.2and[3.3 only are organizedinto ve horizontal
sectionsaccordingto the incidence angle range (the beam), from the steepestincidence
anglebeam(B2: 19:77 21:78) at the top to the shallowestbeam (B21: 40:17 41:61)
at the bottom. Each beam section contains ships identied in all scenesacquired with

that beam mode. Within each section, the rows refer to ships at a particular orientation

62



category, from 0 at the top to 90 at the bottom. At each orientation category, table
entries refer to the median PMD taken over the number of ships with the corresponding
orientation. The last row in eachsectionrefersto the median PMD taken over all the ships
in all scenesof that beam mode. The lowest PMD (best performance)is shadedin dark
grey. Detectorswith performancewithin 0.02 of the lowest PMD are shadedwith a lighter
grey. As aforementioned,we expectenhancedperformance(lower PMD) at 0 and 90 . So,
the lowest PMD results per each SAR detector are indicted in bold face as evidenceof this

e ect. Table[3.4will be describedlater on in this chapter.

The discussionin this sectionhasthree sidesfor eachRCM beammode:
A. the e ect of incidenceangle on ship detection performanceof SAR detectors.
B. the impact of ship orientation on the detectability of shipsregardlessof the resolution of
the beammode.

C. a comparisonbetweenthe the CP, CirP and LP systemsdetection performance.

Medium Resolution RCM Beam Mode Results
A. IncidenceAngle Impact

The graphicsin Figure 3.3 depict the relationship betweenthe overall median PMD over
all shipsfor eachbeamat PFA of 10° for eachdetector and the meanincidenceangle for
the available beammodes(B2-B21). This gure showsthat all dual-pol detectorshavetheir

weakestperformanceat the steepestincidenceanglebeam (B2).

The weakestdetector for this beammode, and overall detectors,wasthe LP HH-VV de<
tector. Thesegraphsshowthat detectionperformanceincreasegthe medianPMD decreases)
asthe incidenceangleincreasesrom the B2 ( = 20:78 ) beamto the B12( = 32:19) beam.
The exceptionto this generalobservationis that the performanceof the PQHV detector de<

teriorates slightly from beamB8 to B12.
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Figure 3.3: Medium Resolution RCM mode: overall median PMD for all shipswithin each
beamat PFA of 10° for all CP, CirP and LP detectorsasa function of the meanincidence
angle at the range (19:78 41:61). The rst two rows show the plots for the CP and
CirP detectors and the third row is for the LP detectors. It is clear that the detection
performancegenerally improves as the incidenceangle increasesfor all detectorswith the
strongest performanceoccurring at the shallowestincidenceangle (B21) and the weakest
performanceoccurring at the steepestincidenceangle (B2).

B. Ship Orientation Impact

In order to shedlight on the e ect of ship orientation on the detection performance,the
lowest PMD value for eachdetector is indicated in bold facefont in Table[3.2,[3.3 and, [3.4.

This is donefor eachincidenceanglerange.

The e ect of ship orientation on detection performancedos not show a clear trend for
the two steepestbeammodes. While severaldetectorshave their strongestperformancefor
shipsat 90 at B2, severalothers have their strongestperformancefor shipsat 45. The
situation is comparableat B4, exceptfewerhavetheir strongestperformanceat 90 . At BS,
every detector hastheir strongestperformanceat 0 , while at B12, every detector hastheir

strongest performanceat 90 . For the shallowestbeam (B21), the lowest PMD occursfor
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ships between60 and 90 .

The NLPOP at 90 orientation is 46.67%while the lowest PMD occursat the 0 orien<
tation for 20% of the cases.This meansthat the lowest PMD still occursat either 90 or
0 orientations for about 66% of the casesin this RCM mode which is consistentwith our
expectations.

For the remaining 34%of the casesthe lowestPMD occursin 17.78%of the casesnly at
low incidenceangle beamsat 45 orientation. However,for the remaining casesthe lowest

PMD occursat either 30 or 60 orientation without any clear trend.

C. Detection Performanceof SAR Systems

Table [3.2 showsthat the performanceof the CP, CircP, and LP detectorsvary with ship
orientation at incidenceanglesbetween20 and 24 , and there is no clear advantageto CP
over LP. At 27 incidence(B8), the reconstructedHV detector (PQHV) hasthe strongest
performance,slightly better than when paired with the two raw CP channels. For the two
steeperbeams(B12 and B21), the raw CP channelshave the strongest performance,and
there is no advantageto performing the linear reconstruction, as neither the full PQ nor the
addition of the reconstructedHV to RH-RV, improvesthe performance. Thus at incidence
anglegreaterthan 30 there is a clear advantageto the dual-pol CP polarization.
Figure[3.4 providesthe ROC curvesfor the ve beammodesshownin Table[3.3. These
graphs show the detection performancein terms of the overall median PMD as a function
of the PFA for all shipswithin eachbeamfor all orientation anglesfor eachof the LP, CirP
and CP detectors. For incidenceangle between20 and 24 (beamsB2 and B4) we can
seethat there is a sharp drop in performancefor the CP detectorsbetween10® and 10*
PFA. At the steepestbeam (B2), below this performancedrop, the highest performersare
the reconstructedHV detector, the raw RH-RV and their combination. As the PFA drops,
the performanceof the PQHV detector deterioratessigni cantly. The RH-RV detector, also

deteriorates but remains stronger than all other detectors, except LP VV-VH. However,
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Table 3.2: Medium Resolution RCM mode median probability of misseddetection (PMD)

for severalshipsat a xed probability of falsealarm (PFA) of 10° . The leftmost column
is the orientation of the observedship in degreesestimated from the range direction of the
radar. The orientation anglesare subscriptedwith the number of shipsusedin the estimate.
The lowestPMD (highest performance)is shadedin dark grey. Detectorswhoseperformance
is within 0.02 of the lowest PMD, are shadedin a light grey. Within eachbeam, the ship
orientation that generatedthe lowest PMD is indicated with bold face font. The last row
in eachbeamsectionis the overall mediantaken over the total number of shipswithin this

beam(Tot.).

Ship PQHV RH-RV/ RH-RV Rl PQ PQHH-VV RR-RL HH-HV VV-VH HH-VV H.Pr.
’ Orient " (deg) ‘ PQHV ‘ ‘ ‘ ‘
B2 : 19:78 21
04 0.774 0.668 0:679 0.719 0.765 0.691 0.745 0.733 0.958 CP
307 0.908 0.845 0.896 0.896 0.896 0.896 0.842 0.745 0.942 LP
457 0.640 0.621 0.583 0.714 0.721 0.585 0.613 0.617 0.987 CP
603 0.835 0.872 0.964 0.998 0.998 0.963 0.661 0.661 0.948 LP
902 0.903 0.587 0.583 0.572 0.573 0.582 0.658 0.635 0.727 CP
Tot. = 23 0.832 0.670 0.678 0.753 0.779 0.678 0.684 0.666 0.972 LP
B4 : 22:16 24:08
0% 0.565 0.622 0.647 0.679 0.707 0.646 0.625 0.632 0.778 CP
30° 0.428 0.456 0.475 0.529 0.571 0.484 0.552 0.552 0.743 CP
455 0.409 0.420 0.445 0.543 0.584 0.449 0.603 0.610 0.806 CP
608 0.675 0.706 0.730 0.757 0.789 0.731 0.629 0.624 0.929 LP
902 0.633 0:533 0.536 0.558 0.563 0.548 0.543 0.533 0.747 CP & LP
Tot. = 31 0.470 0.481 0.518 0.575 0.624 0.545 0.570 0.570 0.823 CP
B8 : 26:88 28:71
0 0.260 0.277 0.350 0.375 0.411 0.415 0.470 0.482 0.613 CP
30° 0.386 0.417 0.445 0.454 0.504 0.496 0.519 0.522 0.668 CP
455 0.468 0.488 0.529 0.525 0.562 0.531 0.540 0.559 0.749 CP
604 0.377 0.401 0.421 0.454 0.422 0.441 0.506 0.528 0.698 CP
90° 0.391 0.422 0.466 0.472 0.510 0.478 0.559 0.563 0.694 CP
Tot. = 22 0.386 0.414 0.463 0.436 0.473 0.450 0.518 0.526 0.695 CP
B12 : 31:34 33:03
0? 0.438 0.400 0.399 0.444 0.458 0.496 0.476 0.537 0.545 CP
301 0:528 0.514 0.506 0.508 0.538 0.569 0.544 0.569 0.629 CP
454 0.479 0.456 0.449 0.486 0.502 0.534 0.504 0.532 0.601 CP
602 0.403 0.313 0.305 0.306 0.312 0.352 0.333 0.353 0.623 CP
902 0.219 0.211 0.114 0.301 0.284 0.293 0.304 0.324 0.428 CP
Tot. = 11 0.427 0:387 0.378 0.416 0.427 0.455 0:452 0.518 0.588 CP
B21 : 40:17 41:61
010 0.342 0.293 0.285 0.365 0.370 0.292 0.320 0.361 0.350 CP
308 0.334 0.315 0.311 0.328 0.333 0.325 0.356 0.406 0.393 CP
458 0.411 0.385 0.379 0.426 0.433 0.399 0.436 0.500 0.465 CP
60° 0.317 0.289 0.278 0.303 0.303 0.278 0.306 0.331 0.345 CP & CirP
907 0.317 0.261 0.242 0.318 0.325 0.256 0.300 0.429 0.359 CP
Tot. = 38 0.350 0.316 0.309 0.376 0.389 0.346 0.387 0.414 0.423 CP
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Figure 3.4: Medium ResolutionRCM mode: overall medianROC curvesfor all shipswith all
orientations acquired by eachof the incidenceangle range for the simulated RCM Medium
Resolutionimaging mode. Top left: B2 (19:77 21:78). Top right: B4 (22:16 24:08).
Middle left: B8 (26:88 28:71). Middle right: B12 (31:34 33:03). Bottom left: B21
(40:17 41:61).
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there is a suggestionthat below a PFA of 10° , the LP VV-VH detector starts to weaken,
while the RH-RV remainssteady. The situation is very similar in the B4 beam, exceptthat
even after the drop in performanceof these three detectors (PQHV, RH-RV, merged CP
detector), they remain stronger than any of the others. At this slightly shallowerincidence
angleit appearsthere is someadvantagein combining the RH-RV with the PQHV.

The ROC curve for the B8 beam carries the same messageas the tabulated results.
The reconstructed HV detector has the strongest performance,slightly better than when
in combination with RH-RV. For beamB12, the reconstructedHV detector is quite strong
belowa PFA of 10% . The RH-RV detectorhasslightly weakerperformancewith no apparent
advantageof adding PQHYV. For lower PFA values,the RH-RV detector and the mergedCP
detector share the best performance. At 41 (B21), the RH-RV detector has the highest
performancefor PFAs up to 10% , again, with no apparent advantage of calculating and
adding the PQHV channel. On the other hand, for high PFA levels, adding the PQHV to

the CTLR detector improvesthe detection performance.

Low ResolutionRCM Beam Mode Results
A. IncidenceAngle Impact

Figure [3.5 showshow the overall median PMD for eachdetector changesa function of the
imaging beamincidenceanglein the range (19.75 41:61) for the RCM Low Resolution
mode. At this lower resolution the behaviour of the CP/CirP and LP detectorsis quite
di erent at the steeperincidenceangles. The performanceof the CP and CircP detector is
similar at the two steepestincidenceangle and then the performanceimprovessigni cantly

at B8, while the performanceof the three LP detectors showsa fairly strong performance
gain betweenB2 and B4. With the exception of HH-VV, which again has the weakest
performanceover all the detectors,the detection performancedoesnot improve betweenB8
and B21, and in somecases,the performanceactually deterioratesslightly. Thus, for the

Low Resolution casesthe performancegainsin observedships at shallow incidenceangles
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Figure 3.5: Low ResolutionRCM mode: overall medianPMD for all shipswithin eachbeam
at PFA of 10° for all CP and FP detectorsasa function of the meanincidenceangleat the
range (19:78 41:61). The rst two rows showthe plots for the CP and CirP detectors
and the third row is for the LP detectors. It is noticed that the performanceimprovesfrom
B2 to B8 however,the performancegainsat shallowincidenceanglesare more modestthan
for Medium Resolution.
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Table 3.3: Low ResolutionRCM beammode medianprobability of misseddetection (PMD)

for severalshipsat a xed probability of falsealarm (PFA) of 10° . The leftmost column
is the orientation of the observedship in degreesestimated from the range direction of the
radar. The orientation anglesare subscriptedwith the number of shipsusedin the estimate.
The lowestPMD (highest performance)is shadedin dark grey. Detectorswhoseperformance
is within 0.02 of the lowest PMD, are shadedin a light grey. Within eachbeam, the ship
orientation that generatedthe lowest PMD is indicated with bold face font. The last row
in eachbeamsectionis the overall mediantaken over the total number of shipswithin this

beam(Tot.).

Ship PQHV RH-RV/ RH-RV Full PQ PQHH-VV RR-RL HH-HV VV-VH HH-VV H.Pr.
’ Orient " (deg) ‘ PQHV ‘ ‘ ‘ ‘

B2 : 19:78 21

0? 0.839 0.840 0.849 0.863 0.875 0.866 0.884 0.881 0.996 CP
307 0.810 0.811 0.811 0.838 0.846 0.811 0.905 0.909 1.00 CP
457 0.829 0.847 0.847 0.873 0.891 0.847 0.889 0.886 1.00 CP
603 0.721 0.726 0.758 0.790 0.802 0.759 0.948 0.962 1.00 CP
902 0.636 0.645 0.667 0.697 0.709 0.669 0.855 0.861 0.910 CP
Tot. = 23 0.803 0.804 0.811 0.831 0.858 0.811 0.896 0.887 1.00 CP
B4 : 22:16 24:08

0% 0.763 0.787 0.823 0.825 0.825 0.808 0.717 0.685 0.759 LP
30° 0.808 0.774 0.741 0.806 0.808 0.741 0.803 0.803 0.809 CP
456 0.715 0.722 0.764 0.812 0.821 0.763 0.691 0.710 0.853 LP
608 0.810 0.936 0.940 0.953 0.962 0.940 0.669 0.668 0.921 LP
902 0.786 0.637 0.635 0.635 0.630 0.636 0.652 0.641 0.689 CP
Tot. = 31 0.771 0.791 0.805 0.818 0.818 0.805 0.715 0:693 0.838 LP
B8 : 26:88 28:71

0° 0.510 0.545 0.577 0.587 0.607 0.627 0.669 0.665 0.759 CP
30° 0.549 0.574 0.620 0.610 0.631 0.648 0.664 0.651 0.836 CP
455 0.616 0:610 0.643 0.627 0.661 0.685 0.716 0.719 0.873 CP
604 0.579 0.613 0.638 0.626 0.646 0.659 0.756 0.748 0.881 CP
90° 0.498 0.517 0.560 0.575 0.596 0.589 0.629 0.644 0.739 CP
Tot. = 22 0.538 0.572 0.603 0.599 0.617 0.622 0.673 0.667 0.848 CP
B12 : 31:34 33:03

0? 0.614 0.594 0.597 0.613 0.615 0.644 0.663 0.713 0.788 CP
301 0.694 0.686 0.688 0.703 0.703 0.688 0.703 0.718 0.725 CP
454 0.627 0.612 0.620 0.652 0.688 0.633 0.667 0.687 0.729 CP
602 0.543 0.485 0.490 0.474 0.485 0.519 0.520 0.537 0.738 CP
902 0.396 0.383 0.182 0.443 0.435 0.417 0.446 0.475 0.549 CP
Tot. = 11 0.581 0.565 0.586 0.604 0.612 0.608 0.614 0.643 0.717 CP
B21 : 40:17 41:61

010 0.594 0.565 0.569 0.609 0.619 0.564 0.573 0.620 0.617 CP
308 0.595 0.567 0.579 0.605 0.621 0.597 0:613 0.641 0.647 CP
458 0.641 0.611 0.607 0.644 0.650 0.632 0.648 0.684 0.660 CP
60° 0.612 0.538 0.534 0.596 0.594 0.524 0.512 0.637 0.542 LP
907 0.469 0.434 0.425 0.490 0.490 0.452 0.514 0.629 0.551 CP
Tot. = 38 0.598 0:574 0.577 0.614 0.629 0.581 0.603 0.637 0.651 CP

are more modestthan for Medium Resolution. Neverthelessthere is still a clear advantage

in observedshipsat incidenceanglesat a minimum of 28 .

B. Ship Orientation Impact

In this beam mode, by calculating the percentageof the casesin which the lowest PMD
occursat eachorientation angle (the NLPOP), it has beenfound that for 91.11%of the
casesthe lowest PMD occursat the 90 orientation. In about 2.22%o0f the casegone case

only), the lowest PMD occursat the O orientation while in the rest of the casesthe lowest
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PMD occursat the other orientations without clear trend.

C. Detection Performanceof SAR Systems

In this low resolutionRCM mode,onecanseefrom Table[3.3,that the detection performance
is slightly more variable than in the Medium Resolutiondata. For the Low Resolutiondata,
the strongestdetector for the B2 and B8 beamsis the PQHV. The B4 beam had variable
resultswith the standard linear dual-pol detectorshave generallystronger performancethan
the CirP and CP detectors.

For the two shallowerbeams,the resultsare morevariable than in the Medium Resolution
case,but the trend is similar. The raw RH-RV detector with and without the combination
of the reconstructedHV hasthe strongestperformance. It is also noticed that the highest
performanceover all beamsoccursat B8 by the PQHV detector. Adding PQHYV to the
RH-RV data seemdo strengthenthe detector more for low resolution data. Overall, the CP
detectorssigni cantly outperform the linear dual-pol and the CirP detectorsaswasthe case
in the Medium Resolution data.

Figure[3.§showsthe ROC curvesfor the ve beamssimulatedin the RCM Low Resolution
mode, and allows us to explorethe detection performanceas a function of the PFA. For the
lowestincidenceangle,B2, onecan seethat the PQHV hasthe strongestperformancefor all
PFAs, exceptfor a sectionwherethe combination with RH-RV is an advantage. This is the
casewith the B8 beamaswell - the PQHV detector had the strongestperformanceacross
all levelsof PFA.

The B4 results seemto be an anomaly. The performanceof the CP detectorsis strong
up to a PFA of 10 , after which they deteriorate signi cantly. For lower PFA levels,at this
incidence,the two coherentlinear dual-pol detectorshave the strongestperformance.

For the two shallow beamsthe raw RH-RV detector, with and without PQHYV, hasthe
strongestperformanceacrossall levelsof PFA. It appearsthat at the lowest PFA, the RH<

RV detector beginsto fall o, and the addition of PQHV maintains the strength of this
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Figure 3.6: Low ResolutionRCM beammode: overall median ROC curvesfor all shipswith
all orientationsin all scenef eachof the incidenceanglerangefor the simulated RCM Low
Resolutionimaging mode. Top left: B2 (19:77 21:78). Top right: B4 (22:16 24:08).
Middle left: B8 (26:88 28:71). Middle right: B12 (31:34 33:03). Bottom left: B21
(40:17 41:61).
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Table 3.4: Ship Detection RCM mode (Beam B21 only): median probability of missed
detection (PMD) for severalshipsat a xed probability of falsealarm (PFA) of 10° . The
leftmost column is the orientation of the observedship in degreesestimated from the range
direction of the radar. The orientation anglesare subscriptedwith the number of shipsused
in the estimate. The lowestPMD (best performance)is shadedin dark grey. Detectorswith
performancewithin 0.02 of the lowest PMD are shadedwith a lighter grey. For eachSAR
detector, the lowestPMD is indicated with bold facefont. The last row is the overall median
taken over the total number of shipswithin this beam (Tot.).

Ship PQHV RH-RV; RH-RV Full PQ PQHH-VV | RR-RL | HH-HV  VV-VH | H.Pr.
Orient" (deg) PQHV
B21:40:17 41:61
0t 0.326 0.183 0.167 0.196 0.221 0.200 0.248 0.339 CP
30 0.672 0:465 0.442 0.398 0:410 0.544 0.584 0.770 CP
45 0.706 0:364 0.344 0.337 0.341 0.405 0.542 0.888 CP
60° 0.445 0.325 0.321 0.363 0.384 0.361 0.373 0.457 CP
90’ 0.456 0:363 0.305 0.365 0.365 0.352 0.503 0.589 CP
Tot. = 38 0.476 0.292 0.274 0.319 0.332 0.329 0.393 0.526 CP

detector. However,overall one can seethat the CP detectorsoutperform the linear-pol and

CirP detectorsfor the Low Resolution data.

Ship Detection RCM Beam Mode Results

As indicated in Sec/4.],the RCM Ship Detection modewill coverthe incidenceanglerange
36 51. In this study, this modeis only simulated for the scenesacquired by the B21
beam(40:17 41:61). Therefore,for this RCM mode,it is not possibleto investigate the
impact of incidenceangleon detection performance. Table 3.4 showsthe medianPMD value
at a PFA of 10° for all CP detectors,the CirP detector, and the LP HH-HV and the LP
VV-VH only.

The native RH-RV detector hasthe strongestperformanceover most orientation angles
and hasthe strongestmedian performanceover all shipswithin the four scenes.There is no
apparentadvantagein adding the PQHV channelto this detector. For the two intermediate
ship orientation anglesof 30 and 45, the Full PQ detector hasthe strongestperformance,

although in the latter casethe RH-RV detector waswithin 2%.
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Figure 3.7: RCM Ship Detection mode (Beam B21 only): overall median ROC curvesfor all
shipswith all orientations.

In order to investigate the impact of ship orientation on the detection performance,we
can seethat for all detectors, the lowest PMD value occursat the O orientation which
meansthat the NLPOP = 100%for this category. This opposesvhat wasfound in the Low
Resolutionmodewherethe 90 orientation hasthe highestNLPOP. This can be interpreted
again on the light of the fact that the range pixel spacingof the Ship detection mode is
the leastin all modes. Thus, shipswith 0 orientation have the largest number of pixelsin
the rangedirection which giveslesschanceof misseddetection and hencelower PMD values
than other orientations.

The ROC curves shownin Figure 3.1 mirror the Medium and Low Resolution results.
The RH-RV detector hasthe strongestperformanceacrossall levelsof PFA, followed closely
by RH-RV-PQHV. It appearsfrom the ROC curvesthat the performanceof all detectorsis
weakeningasthe PFA decreasesexceptthe RH-RV and RH-RV-PQHV, whoseperformance

seemsto be relatively constant after PFA of 10* . In general,the CP detectors are all
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stronger than the linear dual-pol and RR-RL detectors.

3.1.3 Discussion

Table 3.5 summarizesthe median detection performanceover all ship orientations. The
e ect of ship orientation on detection performanceis rst summarized. For the FQ beam
mode, the e ect of ship orientation is variable with NLPOP of 24%for 0 mostly occurred
at incidenceangle rangesbetween32 and 41 and 50% for 90 mostly occur betweenthe
two steepincidenceanglebeamsB2 and B4. For the Ship Detection Mode at B21, there is
signi cantly enhancedperformanceat O, for all detectors. For Low Resolution mode, for
all detectorsand all incidenceanglesthere is enhanceddetection at 90 , with an NLPOP of
91%. The e ect of ship orientation on Medium Resolutionis more variable. For the shallow
beams- incidenceanglesbetween32 and 41 { detection performanceis enhancedat 90
orientation, with someenhancementat the shallowestbeamat 60 . At B8, all detector had
enhanceddetectionat 0 . At the two steepestbeams,the performanceis morevariable, with
half the detectorshaving their lowest PMD at 90 , and the rest at intermediate orientation
angles. The NLPOP with this imaging mode is 90 :46.67%;0 : 20%; and intermediate
angles: 34.33%. In general,it has beenfound that, for all modes,the best performance
occursat either 0 or 90 orientation for more than 66% of the cases.

The e ect of ship orientation on ship detectability hasbeenpointed out by many papers
[84]- [87]. Margarit and his colleaguedaveintegrated detailed ship and seasurfacescattering
modelswith a SAR simulation system (called GRECOSAR) that can model polarimetric
backscatteras a function of the dynamic three-dimensionalship orientation [86,87]. They
note that the di erent polarimetric scattering mechanismsare mixed at spatial resolutions
comparableto Radarsat-2 FQ and that the polarimetric backscatter, in this case,is very
sensitive to incidence angle and orientation [86,87] . Our results con rm that the ship
orientation hasa clearimpact on the performanceof the LRT detector.

Secondwe discussthe e ect of incidenceangle. The generaltrend is that asthe incidence
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Table 3.5: Summary of detection performanceresults.

RCM  Mode PQHV RH-RV/ RH-RV Full PQ PQHH-VV RR-RL HH-HV VV-VH HH-VV H.Pr.
| rany [T | [ ]
B2 . 19:78 21
Fine Quad 0.469 0.477 0.519 0.540 0.580 0.524 0.549 0.553 0.862 CP
Low 0.803 0.804 0.811 0.831 0.858 0.811 0.896 0.887 1.00 CP
Medium 0.832 0.670 0.678 0.753 0.779 0.678 0.684 0.666 0.972 LP
B4 : 22:16 24:08
Fine Quad 0.544 0.479 0.453 0.487 0.501 0.463 0:286 0:290 0.622 LP
Low 0.771 0.791 0.805 0.818 0.818 0.805 0.715 0:693 0.838 LP
Medium 0.470 0.481 0.518 0.575 0.624 0.545 0.570 0.570 0.823 CP
B8 : 26:88 28:71
Fine Quad 0:268 0:269 0.325 0.303 0.360 0.337 0.359 0.354 0.685 CP
Low 0.538 0.572 0.603 0.599 0.617 0.622 0.673 0.667 0.848 CpP
Medium 0.386 0.414 0.463 0.436 0.473 0.450 0.518 0.526 0.695 CP
B12 : 31:34 33:.03
Fine Quad 0.259 0:198 0.265 0.294 0.322 0.249 0.282 0. 267 0.490 CP
Low 0.581 0.565 0.586 0.604 0.612 0.608 0.614 0.643 0.717 CpP
Medium 0.427 0:387 0.378 0.416 0.427 0.455 0:452 0.518 0.588 CP
B21 : 40:17 41:61
Fine Quad 0:268 0:269 0.325 0.303 0.360 0.337 0.359 0.354 0.685 CP
Low 0.598 0:574 0.577 0.614 0.629 0.581 0.603 0.637 0.651 CP
Medium 0.350 0.316 0.309 0.376 0.389 0.346 0.387 0.414 0.423 CP
Ship Detection 0.476 0.292 0.274 0.319 0.332 0.329 0.393 0.526 - CP

angle increasesthe detection performanceincreases. For the FQ mode, it is noticed that
the performanceis enhancedfrom B2 to B21 for all detectorsexceptfor the LP VV-VH and
LP HH-VV. Thesetwo detectorssu er from deteriorated performancebetweenB4 and B8.
BetweenB2 and B4, the detection performanceis enhancedfor all detectorsexceptfor the
PQHV and the LP HH-HV. For the RCM modes,it has beenmentioned earlier that the
performancegain betweenthe two steepestbeamsis relatively modestfor Low Resolution.
In addition, for a few of the Low Resolution detectors,the performancedeterioratesslightly
asthe incidenceangleincreasedrom B12to B21. For example,the strongestLow Resolution
detector over all beams(RH-RV-PQHYV), is at B12. This is not the casefor the Medium
Resolution detectorswhoseperformanceincreasessteadily from B2 through to B21.

As expected,the detection performanceincreaseswith spatial resolution. Within each
beam, the performanceof FQ mode outperformsall RCM modes. Among all RCM modes,
the performanceof the Medium Resolution is signi cantly stronger than the Low Resolu<
tion. And with two exceptions,the Ship Detection Mode has stronger performancethan
the Medium Resolution. The highest detection performanceacrossall beamsand spatial
resolutionsis the FQ modefollowed by the Ship Detection RCM modeat B21, as expected.
It is worth mentioning that the performanceof the RH-RV detector of the Ship Detection

and Medium Resolution modesis closeto that of the PQHV detector of the FQ mode at
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B21.

Ship detection performancereported by Vachon et al. [29], using Radarsat-1data, and
Askari and Zerr [|35], using ERS ScanSARdata, with ne and low resolution, demonstrate
that shallow incidenceangle beamsare preferablefor ship detection, due to high ship/sea
contrast. Thesestudiesalso nd that ship detection performanceis higher for ne beam
modes,due to their large incidenceangle and higher resolution, than the lower resolution
ScanSARdata. Our results are consistentwith all these ndings in terms of e ect of both

resolution and incidenceangle on detection performance.

In general,it is found in this study that the detection performanceof the CP detectors
to be stronger than the standard linear dual-pol detectors. In all but three cases,the
strongestdetector for eachbeam/resolution is a CP detector. At the three steepestbeams
between20 and 28, the strongestperformeris the PQHV detector. At the two shallowest
beams,the strongestperformer for the Medium and Ship Detection resolutions,is the RH<
RV detector. For Low Resolution at these incidenceanglesand for the FQ mode at B12
(32 ), the performanceof this detector is enhancedslightly by adding PQHV. For the FQ
modeat B21 (40 ), the strongestperformanceis for the PQHV followed by the mergedCP

detector.

As there are no published analysesof ship detection performancewith simulated RCM
data, this study resultsare comparedto other SAR systems.Liu and Meek[16]usedCP data,
simulated from a singleRadarsat- 2Fine Quad (Beam 4) scene for ship detection. Although
they do not reconstruct PQ data for the purposeof ship detection, they usethe raw CTLR
CP data to comparethe detection performanceof the ship detection LRT algorithm [16]
with quad-pol,jHH/HV] and HH. The detection performanceanalysisis carried out on eight
ships by plotting the ROC curvesfor these ships. For ve of the eight casesstudied, the
simulated CTLR systemprovided improved performanceover the jHH/HV| system. For the

other three casesthe jHH/HV] systemhas a slightly higher performancethan the CTLR
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system. Our resultsagreewith Liu's in that, for the FQ and all RCM modesat B4 beam,the
CTLR performsbetter for someorientation categorieswhile for the others, the LP HH-HV
performsbetter than the CTLR. A singlepaperis found in the literature that generatesPQ
data and comparesthe ship detection performanceof the PQ data with quad-poldata using
ROC approachasin the current study [66]. Yin et. al [66] generatetwo ROC curvesfor two
di erent data sources:JPL AIRSAR and SIR-C, presumablybasedon two individual ships.
The ROC curves show the detection performanceof the original quad-pol data, PQ data
basedon their re ned algorithm, PQ data basedon the original Souyris algorithm and the
compact polarimetry data (in their casehe simulated =4 data). They do not explain how
the LRT wasimplementedin thesecases,thus it is not known whether the two PQ cases
and the CP caseare amplitude-only or if they are a sum of a coherentHH/VV and jHV j.
Finally, it is not mentionedin that paper what the incidenceanglesof the imaging beams
nor the orientation of the two shipswere. In both casesthe quad-pol detectorsoutperform
the PQ and CP detectors. For the AIRSAR case the PQ and CP detectorshave comparable
performancewhile in the SIR-C case,the CP detector have much higher performancethan
the PQ case.Thus, although, they used =4 con guration, our resultsare consistentwith the
Yin resultsin that detectorsbasedon the coherentdual-pol compactpolarimetry data have
higher performancethan those basedon the full set of quad-pol covariancematrix elements

reconstructedfrom the CP data.

3.2 Conclusion

In this chapter, an investigation of ship detection performancewasintroduced for a number
of Radarsat-2beammodes;the Fine Quad modeand three simulated Radarsat Constellation
Mission modeswith di erent resolution. The investigation of ship detection performancefor
the simulated dual-pol RCM data is the rst in the literature. In this study three wide

swath imaging modesthat will be available on RCM imaging radars are examined: Low
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Resolution, Medium Resolution, and Ship Detection. The focusof this study was on dual-
polarization image data, astheseprovide a balancebetweenmultiple polarization and wide

swath imaging.

In this work, the detection performancewas assesseth terms of the median probability
of misseddetection (PMD) for eachsystem calculated over a number of ships spreadover
the available scenesas a function of the probability of false alarm (PFA) and at specic
PFA value. It hasbeenfound that, at incidenceanglesgreaterthan 25 compactpolarime<
try modeshave superior ship detection performanceto linear polarization data. At steeper
incidenceangles,the two polarization con gurations have comparableperformance. For all
polarizations, ship detection performanceincreaseswith incidenceangle, with the highest
performanceat about 40 . In addition, detection performanceincreaseswith spatial reso<
lution, the FQ mode data has the strongest performanceover all RCM modesdata while
for RCM data, the Low Resolution data hasthe weakestperformanceand the Ship Detec<
tion mode has the strongest performance. Severaldi erent types of compact polarimetry
data were explored,including the raw RH-RV data, and pseudoquad-pol (PQ) data recon<
structed from the CP data. It hasbeenfound that PQHV and RH-RV, by themselvesand
in combination had the highest performanceover other CP and linear-pol data. The PQHV
data is most e ective at steeperincidenceangles,lessthan 30 . At anglesgreaterthan 30,
RH-RV data hasthe highestperformancefor Medium Resolutionand Ship Detection modes,
while for FQ mode and Low Resolution, the addition of PQHV improvesthe performance.
This study alsotook ship orientation into considerationand investigated the impact of the
orientation on the detection performance. Higher detection performanceis expectedwhen
the ship and its superstructurewere perpendicularto the radar bore sight. This expectation
was met at incidenceanglesfor the Low Resolution data. For Medium Resolution data,
higher performancefor perpendicularship orientations at incidenceanglesgreaterthan 27

was observed,and no e ect at steeperincidenceangleswas found. Enhancedperformance
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is expectedfor ships parallel to range direction. This was observedfor the FQ and Ship
Detection modesat shallow incidenceangles. Thus, the results of this study suggestthat
the three RCM modesgenerally, and the Ship Detection mode in particular, are promising
compromisebetweenthe ship detection performanceand the wide swath width desiredfor
maritime surveillance. Furthermore, it has beenfound that the compact polarimetric SAR
detectors outperform the conventional linear dual-pol detectors at the three RCM modes
for ship detection. Moreover, the results showthat CP reconstruction of oceandata using
Collins algorithm aids in improving the ship detection performancefor FQ and the three

RCM modes.
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Chapter4

Hybrid Ship DetectionAlgorithm for CP SAR

Methodsand TheoreticalConcepts

The secondpart of the thesisintroduces a new ship detection algorithm for CP SAR. This
part is coveredin Chapter[d and[§. In this chapter, the data usedand a detailed description
of the detection algorithm is introduced. Moreover, the theoretical conceptsand related
basicsof each part of the proposedalgorithm are presented. In Chapter 5, results from
the proposeddetection algorithm are discussedand nally, conclusionsare drawn from the

performedwork.

The Stokesvector and derived parametersof CP SAR are utilized to developa robust ship
detection algorithm in compact polarimetric SAR data. The proposedalgorithm combines
four detection techniquestogetherto improve the detection performanceand discrimination
betweenshipsand falsealarms. The introduced detection algorithm hasa pre-screeneand a
discriminator. The pre-screener of the algorithm is hybrid onethat employsthree detection
methodsand hastwo steps. The rst pre-screeningstep usesglobal thresholdingto highlight
all possibletarget candidates. In the secondpre-screeningstep, the detectedcandidatesare
retested by using either one of two new Adapted Thresholding Detectors (ATDs). These
detectorsretest the candidate targets against their local background statistics. The devel<
opedATDs are the StokesparametersLRT and Sy-CFAR detectors. The selectionbetween
thesetwo pre-screenerss madeaccordingto the sizeof the candidatetarget. The Gaussian
Mixture Model approachis usedto estimate the joint pdf of the Stokesparametersfor the
LRT detectorfor oceanand ship data and for the StokesS, of oceandata. The discriminator
of the algorithm relies on the scattering mechanismsof the detectedtarget to distinguish

shipsfrom falsealarms.
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The performanceof the proposedalgorithm is assessetty comparingthe number of de<
tected ships with veri ed positions to the total number of ships with AIS positions. The
chapter is organizedas follows. Section[4.] presentsthe data and the preprocessingoper<
ations applied to it. Secl4.2to Secld.7 presentthe basic conceptsrelated to the proposed
algorithm. A detailed description of the developedship detection algorithm is given in
Secl4.§. Section[4.9 outlines the measureof the detection performanceassessmenbf the

algorithm. Finally, section4.10concludesthe chapter.

4.1 Data and Study Site

The proposeddetectionalgorithm is appliedto data simulatedin three RCM modes:Medium
resolution, Low Resolution and Ship detection imaging modes, as in the rst part of the
thesis. The polarimetric datasetusedin this study to simulate the RCM data is composed
of six RS-2 scenesof the Gibraltar Strait acquired by the Fine Quad beam (FQ-21). The
scenesare located around (35{ 37) N, (5{ 6 ) W. The scenesare referred to by their
numbers. The scenenumbers”"SceneNo.", the acquisition date "Acq. date" and time "Acq.
time" of eachsceneare depictedin Table[4.]. All sceneshave a rangesamplespacingof 4.73
m and the azimuth spacingis 5.1 m. The FQ-21 beam coversthe incidenceangle range of
[40.17 { 41.61]. Nominal Radarsat-2Fine Quad moderesolutionis approximately 5.2 m in
rangeby 7.6 m in azimuth. The averagewind speedin m/s "W.S." calculatedfor eachscene
accordingto the model developedby Vachon and Wolfe [79] is also provided in the table.
The data is calibrated by the ( 0) radar backscatter coe cient. Automatic identi cation
system (AIS) data is available for a number of shipsin eachsceneto be usedfor detection
performanceassessment.The total number of shipswith AIS positionsin all sceneds 147
ship. The number of shipswith veri ed positions"No. Sh." for eachsceneis depictedin
Table[4.. The veri ed shipshave various sizes;ship lengths range from 29 m to 337 m.

In this work, the useof RCM data for ship detection is explored as these data have a
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Table 4.1: An overview of the Fine Quad Radarsat-2data of the Strait of Gibraltar scenes
usedin the study of this chapter. The " Acg. date" refersto the sceneacquisition date, the
" Acg. time" is the sceneacquisition time in GMT, the "W.S" is the wind speedin (m/s)
and "No. Sh." is the number of shipswith veri ed positionsin eachscene.A value of < 3
for the wind speedindicatesthat the wind speedwastoo low to be estimatedfrom the data.

SceneNo. | Acq. time | Acqg. date | W.S (m/s) | No. Sh.
1 06:22:40 | 2009-02-14 13.3 9
2 06:22:38 | 2009-02-14 12.1 8
3 18:23:29 | 2009-02-09 5.5 11
4 18:23:29 | 2008-11-05 <3 11
5 18:23:32 | 2009-02-09 6.2 54
6 18:23:32 | 2008-11-05 <3 54

wider swathsthan the FQ data. The RCM data is simulated asa singlelook complex(SLC)
imagein the three imaging modes. The simulated data hasa noise oor of approximately -22
dB (accordingto the RCM speci cations) which is larger than the original Radarsat-2data
which hasa noise oor of approximately -30dB [8C]. The incidenceanglerange”Inc. Ang.",

the simulated spatial resolution of the SLC data "SLC. Res.", the nominal multi-look spatial
resolution"ML Res.", the number of looks"N Look", the simulated multi-look pixel spacing
"ML ¢ Pix Sp." and the nominal swath width "N.S.W" of eachRCM mode are indicated
in Table[4.2. The RCM data is simulated using a software developedand provided by Dr.

Francois Charbonneauof CanadaCentre for Remote Sensing(CCRS).

Table 4.2: An overview of the simulated RCM data in the three imaging modesusedin
this study. This table showsthe incidenceangle”Inc. Ang." in degreesthe SLC simulated
resolution "SLC. Res."in the (range x azimuth) directions, the nominal multi-look spatial
resolution "ML Res.", the number of looks "N Look" in the (range x azimuth) directions,
the simulated multi-look pixel spacing"ML ¢ Pix Sp." and the nominal swath width "N.S.W
in Km for eachof the modes.

RCM Beam Mode | ML Res. | N Look | Inc. Ang. SLC. Res. ML Pix Sp. N.S.W
Medium Resolution 50m 4x1 19 {58 | 79mx49.7m | 28.6m x 20m | 350Km
Low Resolution 100 m 8x1 19 {54 | 83mx98.8m | 57.1m x 40m | 500 Km
Ship Detection variable | variable | 36 { 51 2.7mx 48m - 350Km
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4.1.1 Data Preparation

As the ship detection algorithm introduced in this thesisis designedspeci cally for CP SAR
Stokes parameters, some pre-processingoperations need to be performed on the original
full polarimetric data. First, the RCM data is simulated in the three RCM modesusing
the RCM simulator with the original quad-pol imagesas input. Second,the CTLR CP
scattering vector is generatedfor eachRCM mode using Eqn. [2.7 for the entire scenefrom
the simulated RCM images. For the Low Resolutionand Medium Resolutionmodes the data
are multilooked accordingto the number of looksdepictedin Table[4.2by spatially averaging
pixels in the rangedirection. On the other hand, the Ship Detection mode data is usedas
SLC imagebecauseaccordingto RCM speci cations, the number of looks for this modeis
not speci ed [80]. Next, for eachRCM mode, the Stokesvector is then constructedfor each
pixel in the image using Eqns. -[4.4. This step resultsin four imagesfor the scene,an
imagefor eachStokesparameter. The required spatial averagingis performedusinga3 3
boxcar lter for the Low and Medium Resolution modes. For the Ship Detection mode, a
5 5 boxcar lter is usedasthis data hasnot beenmulti-looked . Thesewindow sizesare
selectedto achievea trade-o betweenthe required smoothinge ect and the corresponding
deteriorated resolution. After that, the Stokesparameter imagesare passedto the land

masking algorithm.

4.2 StokesParameters

When a polarizedwaveinteracts with atarget, its state of polarization may be altered. While
radar transmits fully polarizedwaves,the receivedwavesmay be fully or partially polarized.
In other words, completely polarized incident wave may becomerandomly polarized after
beingscatteredby an objectthat givesriseto multiple internal re ections. GeorgeStokes[88]
developeda methodto representthe state of polarization of partially polarizedwaves,namely

the Stokesvector which is composedof four real quantities that capture all the information
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about the backscatteredeld [58]. The generalexpression®f the Stokesparametersare given
in Chapter 1 in Eqns. [1.I4to [L.17. In this Chapter, the focusis on the use of the Stokes
parametersand their derived parametersof the CTLR CP SAR. The Stokesparameters

forms consistentwith this caseare givenin Eqgns.[4.1to [4.4

For a dual-pol SAR which receivestwo orthogonal linear polarizations (Ey and Ey) in
responseto a right-circularly polarized transmitted wave, the Stokesparametersare given

as|[58,189]

So= hjE4j?+ JEvjii = So (4.1)
S1 = hjE4j? JE vj%i = m Sycos2 cos?2 (4.2)
S;= 2 RhEJE,i = mSycos2 sin 2 (4.3)
Ss= 2 IhEE,i = mSpsin 2 (4.4)

whereR and| arethe real andimaginary parts of the complexquantity respectively, isthe
complexconjugateand the triangular bracketsare the spatial averagingoperator. The right
column of this formalism relatesthe Stokesparametersto the polarization ellipse variables;

and ; where isthe ellipticity of the polarization ellipse,while is the orientation of the
major axis of the polarization ellipseasshownin Figure[4.1. The degreeof polarization ( m)
is de ned asthe ratio of the power of the polarized portion of the wave to the total power
of the wave. StokesS, representsthe total power of the wave; S, is the di erence between
the power of the two orthogonal linear components,S; is the di erence betweenthe power
of the =4 rotated two orthogonal componentsand S; is the di erence betweenthe power of
the right and left circularly polarized components|90,191,192]. Of the four parameters,only

three are independent[91] since,generally,S3  S?+ S2+ S2,
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Figure 4.1: The polarization ellipse. Ey; Ey is the horizontal and vertical componentsof
the electric eld vector respectively. OA is the ellipse semi-major axis, OB is the ellipse
semi-minoraxis, is the ellipticity angleand is the orientation angle.

4.3 StokesDerived Parameters

As pointed in Chapter 1, there may be many parametersthat are derived from the Stokes
parameters. These child parametershave their relation to the physical scattering mecha<
nism from targets [89]. In this chapter, only two child parametersare usedjointly for ship
detection. The rst oneis the degreeof polarization m de ned in Sec.[4.2and given as [20]

IS+ S+ S
St

(4.5)

Since 1950's,m has beenrecognizedas the most important parameterthat showshow
muchthe backscatteredwaveis polarized[68,93,94]. Valuesof m rangefrom 0 for completely
depolarizedwaveto 1 for completely polarized wave while m takes valuesin betweenthese
two extremesfor partially polarizedwaves. Therefore,m for odd and evenbouncescatterers
is closeto 1 while for volume scatterers,m is closeto O.

The secondderived parameter usedin this researchis the ellipticity of the polarization
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ellipse, which is related to Stokesparametersthrough the relation [68]

sin(2) = % (4.6)

The ellipticity  is the angle determined by the ratio of the semi-major axis to the
semi-minor axis of the polarization ellipse [92]. Thus, it describesthe degreeto which the
polarization ellipse is oval. In addition, the sign of indicates the handinessof ellipti<
cal/circular polarization. The ellipticity  takesvaluesin the range[-45 to 45]. The value
-45 corresponddo the right-handed circular polarization while the value +45 is for the left-
handedcircular polarization. When = 0, the waveis linearly polarizedwith an orientation

determinedby the angle

4.4 Compact Polarimetric Decomposition

Decompositionis a mature technique that is usedto interpret the information contained
in the radar data and relate it to the scattering mechanismsor the physical properties of
the imagedarea. For quad-polarimetric data, decompositionworks on splitting the polarized
backscatterof eachimagepixel into a combination of scattering mechanismg95]. Polarimet<
ric decompositiontechniquesmay be classi ed into coherentand incoherentdecomposition.
The polarimetric coherentdecompositionis implementedusingthe scatteringmatrix to study
point targets. However,the polarimetric incoherentdecompositionworks on the coherency
or covariancematrix to study distributed targets [95].

In compactpolarimetric decomposition,two or more parametersderived from the Stokes
parametersof the dual-pol CP data are usedjointly to classify radar backscatterinto the
correspondingscatteringmechanism|20]. There havebeentwo CP decompositiontechniques
reported in the literature; the m and the m decomposition[20,25,168]. The degree
of polarization m is a commondecompositionparameterin both techniques.

Inthem  decompositionthe seconddecompositionparameteristhe anglede ned as

the relative phasebetweenthe two receivedcomponents|25]. The anglecan be calculated
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using Stokesparametersaccordingto the relation [23]

— 1
= S 4.7
tan (4.7)

The angleis a discriminator betweenodd and even bounce scatterers especiallywhen
circular polarization is transmitted. In other words, odd bouncescattering causeshe phase
of the incident eld to be shifted by 180 with eachbounce,while the re ected wave from
even bounce scatterer has zero phase shift with the incident wave. For instance, if the
transmitted wave hasright circular polarization, then odd bouncescattererreturns a strong
backscatter in the opposite senseof rotation polarization [20, [23]. That is, left handed
circularly polarizedwave which implies that is positive while is negativefor evenbounce
scatterers[23].

According to this decompositionschemeand in responseto right circularly polarized
transmission, backscatter contribution to the odd, evenand volume scattering mechanisms

is classi ed asfollows [20]

bs= [mSy(L + sin (2 ))=2]*" (4.8)
db = [mSe(1 sin(2 ))=2]"? (4.9)
vs= [So(l  m)]*? (4.10)

where, vs is the contribution of backscatterin the volume scattering mechanism,bs is the
contribution to the Bragg scattering or odd bounce scattering and db is the contribution
to the double or even bounce scattering mechanism. When is positive, this meansthat
the surfacescattering is dominant. On the other hand, when is negative, the dominant
scattering mechanismis even bounce. Volume scattering is evaluated by multiplying the
degreeof depolarization (1-m) by the total backscatterpower S, [20].

In the m decomposition,the ellipticity , asgivenin Eqn. [4.§, is selectedas the
seconddecompositionparameter. This is attributed to its sign, which is an unambiguous

indicator of evenversusodd bouncebackscatter[68,96]. According to this decomposition,
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the backscatterin responseto a right circularly polarized transmission contributes to the

three aforementionedscattering mechanismsaccordingto

bs= [MSy(1 + sin (2 ))=2]*** (4.11)
db = [mSe(1 sin(2))=2] *2 (4.12)
vs= [So(1  m)]*? (4.13)

As can be seenfrom the aboveequations,vs is the samein both schemeavhile in bs and the
db expressionsthe isreplacedby . Whenthe right circularly polarized (with negative )
waveexperience®dd bouncere ection dueto Bragg surfacesor trihedrals, the receivedwave
is expectedto havethe oppositesenseof rotation (left circular polarization) with positive
[96]. This causesbs to be larger than db. On the other hand, re ection from evenbounce
scatterersis expectedto be strongerin the samesenseof rotation asthe incident wave, that

is, the right circular polarization [96]. Thus, the db, in this case,becomedarger than bs.

Recently,them andm decompositionshave beenappliedto the CP data collected
by the Mini-RF aboard NASAs Lunar Reconnaissanc®rbiter [26] and the Mini-SAR on
India's lunar Chandrayaan-1satellite [27] to study the lunar surface [67, 68, ©Q8]. These
studies show that the m decompositionis an e cient technique to interpret surface
featuresaccordingto single(odd) or double (even)bouncesignaturesin the polarizedportion
of the backscatteredwave, and characterizesthe randomly polarized constituents. They
concludethat the m decompositionhas demonstratedto be robust in the eventthat the
transmitted eld is not perfectly circularly polarized and more e cient than the the m
technique [68]. Therefore, the m decompositionhas been selectedto be usedin the

discrimination stageof the proposeddetection algorithm.
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4.5 Statistics of StokesParameters

Generally, the statistics of SAR data is essentialffor imagespecklereduction, targetdetection,
identi cation, and classi cation [99]. Derivation of the statistics of SAR data in the form

of scattering vector and covariancematrix have beenwidely coveredin the literature [99] <
[103]. Neverthelessfew papershave addressedhe issueof analytically deriving the pdf of
the Stokesparametersfor SAR data. The statistics of the four Stokesparametersof partially

polarized light was rst derived by Barakat [90]. Later, the work of Barakat was extended
by Touzi and Lopes[91]; they derived the pdfs of the Stokesparametersasa function of the
e ective phasedi erence and complex correlation coe cients betweenthe receivechannels
for SLC and multilook SAR data. Jin et. al [1L01]re ned the Stokespdfs derived by Touzi

and Lopes[91] by using somereasonableapproximations validated by real SAR data. It is
noteworthy that the pdfs formulated in the literature werederived for the individual Stokes
parameters. However, to-date and to the best of our knowledge,no single paper presents
the joint statistics of the Stokesvector elementsof SAR data. Sincethe LRT component
of the proposeddetection algorithm requiresthe joint pdf of the four Stokesparameter,the

GaussianMixture Model method is proposedto estimate the joint statistics of the CP SAR

Stokesvector in this study.

4.6 GaussianMixture Model Method for pdf Estimation

The GMM method is a semi-parametricapproachthat is used for the estimation of the
probability density function of random data [7/6]. The GMM method is utilized in the
current study to estimate the pdfs for oceanand ship Stokesparameters. The selectionof
the GMM for pdf estimation emergesfrom the needto estimate accurate pdfs for ocean
and ship backscatterto improve detection performance. This is attributed to the ability of
the GMM approachto form smooth approximations to arbitrarily shapedpdfs evenwhen

they are not Gaussian. Moreover, its componentsdescribethe multi-modal nature of the
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distribution. So,it is reasonabldo consider tting a mixture of Gaussiancomponentsfor the
density estimation given the computational tractability of Gaussiandensity function [76].
Generally, in the GMM method, the pdf to be estimated can be consideredas a linear
combination (mixture) of K number of D-dimensional Gaussianpdfs with di erent parame<
ters asin Eq. (4.14). The GMM is parametrized by the mean vectors, covariancematrices

and mixture coe cients for eachGaussiancomponentof the mixture.

X
fu )= pcou «Ci) (4.14)

k=1

whereu is a D-dimensionaldata vector (i.e. the measurementata for which the pdf is to
be constructed), K is the number of Gaussiancomponentsin the mixture, =( 1; 2;:; k)
is the vector of all componentsparameterswhere = (px; «; Ck) is the parameter vector
of the ky, Gaussiancomponentcontaining the coe cient of that componentp, aswell asits
meanvector  and the covariancematrix Cy. The term g(u; ;Cy); k =1;::::;K isthe k"

Gaussiandensity given as

1 1 1
g(u; «;Cy) = 2 )92 |G exp o )Tel Uy (4.15)

Sincethe mixture coe cients are actually the mixing probabilities of the components,
they should be non-negative and their values should never be greater than 1. Thus, the
constraints0 p¢ 1and i Ezl P« = 1 apply.

There are severaltechniguesfor estimating the parametersof a GMM. By far the most
popular and most straightforward method is the maximum likelihood estimation (MLE)
[104]. So, the problem of pdf estimation can be summarizedas the problem of nding the
parametersof the mixture that maximizesthe likelihood of the estimated pdf to generate
the data that wasusedto estimate the pdf. To convert that into a mathematical problem,
the likelihood function of the unknown parametersmust be deducedand after that to be

maximized to estimate the unknown mixture parameters. The likelihood function in our
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caseis given by
W WX

Lu; )= fun; )= P 9Un; «; Ci) (4.16)
n=1 n=1 k=1
It is clearthat the likelihood function L(u; ) is a non-linearfunction of the unknown param<
eter vector which meansthat no direct solution is possible. However,maximum likelihood
parameter estimatescan be obtained iteratively using the expectation-maximization (EM)
algorithm [105].

The EM algorithm works as follows, beginning with an initial model ', the new model

*1 js estimated suchthat L™ (u; ) > L'(u; ). Then the new model becomesthe initial
model for the next iteration and the processis repeateduntil someconvergencecriterion

is reached. In the EM algorithm, this is done in two steps; the rst is the expectation

(E step)and the secondis the maximization (M step). The iterative equationsof the EM

algorithm [76] are given asin Eqgs. -[4.20).

E step
i e i
pl(kJn) = p ka g<una k’c.:k) : (417)
k=1 P 9(Un; 4 Cy)
M step
j+1 1 X\I i,
pit= o Plkin) (4.18)
n=1

Py .
1 =1 P'(Kin) uy

- o (4.19)
“ n1 P (Kin)
PN o Ki i+1 i+1 T
citt = = p( Jnl,._l[l:n K un 7] (4.20)
n=1 P'(KjN)

Where p(kjn) is the a posteriori probability for componentk and py; « andCy are de ned

asabove.
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4.6.1 Gooodnesf Fit of the GMM and Number of ComponentsDetermination

In this study, the assessmenbf the goodnessf t of the GMM distribution and the deter<
mination of the appropriate number of Gaussiancomponentsin the GMM are done using
information statistics (parsimony indices) [76]. These statistics are basedmainly on the
value of (-2) times the log-likelihood of the model, adjusted for the number of parameters
in the model. In other words, given a set of candidate modelsfor the data, the preferred
modelis the onewith the minimum index value. Hence,parsimonyindicesnot only reward
goodnesf t, but alsoinclude a penalty that is an increasingfunction of the number of
estimated parameters[76]. This penalty discouragesover tting and is usedto determine
the appropriate number of componentsin mixture models[7€]. So,in comparing di erent
modelsfor the samedata, onewill prefer modelswith lower valueson theseindices.

The most common parsimony indices include the Akaike Information Criterion (AIC)

[106]given as Eq. (4.21) and the SchwarzBayesianCriterion also called the Bayesianinfor<
mation Criterion (BIC) [107]given by Eq. (4.22).

AIC = 2 In(L)+2p (4.21)

BIC = 2 In(L)+ pIn(N,) (4.22)

whereln(L) is the log-likelihood, p is the number of estimated model parametersand N, is
the total number of data points usedfor pdf estimation.

The AIC and BIC are usedfor comparisonacrossseveral plausible models where the
lowest value indicates the best tting model. It is worth mentioning that there is no com<
mon acceptanceof the best criteria for determining the number of componentsin mixture
modelling [108]. However,it hasbeenshownthat the BIC providesa better model selection
than the AIC [107,[108]. It has beenshownin the literature that the AIC tendsto select
modelswith large number of componentswhich may overt the data especiallywhen the
number of data points are large [107] which is applicable to our case. Moreover, a study

conductedby Nylund et. al [108]which looked at the performanceand the ability of these
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indicesand othersto correctly identify the number of componentsin mixture modelsshowed
that the BIC performsthe bestamongall information criteria for modelselectionin mixture
models. Thus, in this study, it is decidedto usethe BIC for the selectionof GMM order and

the assessmentdf the goodnesf t.

4.7 Land Masking

Land maskingis a preprocessingoperation that is applied after the RCM data is simulated
and before applying the detection algorithm to the scenes.Land regionsin the scenesare
excludedto avoid producing false alarms. In this work, the land is maskedafter detecting
the shorelinefrom the RGB imagesgeneratedby the m- decompositionof the CP RCM
images. The shorelineis detectedusing Canny edgedetector [109] after smoothing speckles
usingthe Lee Iter [110]. In orderto extract the shorelineperimeter, morphologicaldilation
and erosionoperationsare used. After the shorelineis extracted, land pixels included within

the shorelineperimeter are setto zeroand not included in any calculations afterward.

4.8 The ProposedShip Detection Algorithm

In pixel-basedship detection algorithms, eachimage pixel is to be classi ed either to a ship
or to the ocean. So, the ship detection problemis simply a binary test of simple hypotheses:
the null hypothesisin which the pixel belongsto the oceanwhereaghe alternative hypothesis
in which the pixel belongsto a ship. According to the Neyman-Pearsonemma [74,111],
the best statistical test for the binary hypothesess the onethat maximizesthe probability
of detection at a speci c probability of falsealarms|[74]. This aim can be achievedthrough
using the Likelihood Ratio Test. However,the LRT requiresthe pdf of the oceanand the
ship data. As ships are not known apriori, it is often not possibleto estimate the pdf of
ship data. Hence,it is usually resortedto usethe background (ocean) statistics only for

the hypothesistesting like in the CFAR detectors. In this thesis, we tackle the problem of
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ship detection using a new hybrid detection algorithm that utilizes both the LRT and the
CFAR detectorsin its primary stages. The proposedship detection algorithm is composed
of a pre-screenerand a discriminator. The pre-screeningstageaims to highlight candidate
ships and it is composedof two steps: a global thresholding step followed by an adaptive
thresholding one. The discriminator distinguishesbetweenreal shipsand falsealarms based
on the type of scattering mechanismof the targets detectedby the pre-screener.Finally, a
detection decisionis taken basedon that. In the following section, a detailed description
of the proposeddetection algorithm is given. The detection proceduresof the introduced

hybrid ship detection algorithm are summarizedin the ow chart of Figure[4.2.

4.8.1 The Pre-screeningStage

In the rst step of pre-screeningthe entire imageis scannedto searchfor ships candidates
using a global threshold. Since ships are usually fabricated from re ective materials, ship
pixels appear brighter than surrounding oceanpixels which meansthat the receivedpower
by the SAR sensorfrom shipsis larger than that from ocean.As the Sy value of eachpixel
representsthe total power scatteredfrom the areacontainedby that pixel, in this rst pre-
screeningstep, the Sy image is globally thresholdedto highlight candidate targets. Figure
shows2D plots of the S, valuesof ship pixels surroundedby ocean. Figure 4.4 showsan
intersection of the Sy surfaceplot acrossonerangeline at a xed azimuth. It is clear that
the Sy valuesof oceanis much lessthan that of ship pixels. Therefore,the global threshold
is setto be the maximum Sy value of a block of oceanpixels which is still much lessthan
So of most ship pixels. This step results in a large number of candidate detectionswhich
is usefulto avoid missingany ships although someof thesedetectionsare anticipated to be
falsealarms from oceanpixels.

In order to re ne the detectionsof the rst pre-screeningstep, thesedetectionsare sub<
jectedto an adaptive thresholding stepto test the candidate pixels againsttheir neighboring

oceanpixels at a speci ¢ PFA.
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Figure 4.2: Flow chart of the proposedhybrid ship detection algorithm. NDPC refersto the
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Window Setup for the Pre-screeningStage

As the secondpre-screeningstep is designedto work only on candidate targets detected by
the rst pre-screeningstep, each candidate target is surroundedby a rectangular window
called the "target window". Each pixel of this window is then tested by an ATD againsta
threshold. When the LRT detectoris used,all pixels of the candidatetarget are usedfor the
estimation of the ship data pdf. The target window is surroundedby another larger window
called the "background window". The pixels included in the backgroundwindow are used
for the estimation of the oceandata pdf and threshold determination. The window setup
of the secondstep of the pre-screeningstageis depicted in Figure [4.5. This setup di ers
from conventional CFAR window setup which includesadditional guard window betweenthe
target and backgroundwindows. In this setup, a guard window is not usedsincethe entire
candidate ship is included in the target window. Moreover, asa precautionary procedurein
the caseof closecandidatetargets, if any detectedpixel is found in the backgroundwindow,
it is then excludedfrom oceandata.

The target window boundariesare setto be:

At = aznin Cl1; (4.23)
Bt = aznax + C1; (4.24)
Cr=rmpys C1; (4.25)
Dt = rnpax + C1; (4.26)

Where A1 and Bt are the boundariesin the azimuth, C; and Dt are the onesin the range
direction, az,, and az,,x are the minimum and maximum pixel indicesin the azimuth
direction respectivelyand rn i, , rn max are the minimum and maximum pixel indicesin the
rangedirection respectively(the coordinatesorigin is at the top-left corner). C1is a constant
o set from the candidate target minimum and maximum rangeindices. In this study, C1is
setto be one pixel to reducethe computational burden and to avoid including pixels from

other closecandidate targets.
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Figure 4.5: Window setup of the pre-screeningstage secondstep. At Bt, Cy, Dt are the
boundariesof the target window de ned asin Eqns. [4.24-[4.28. Ag, Bg, Cg, Dg arethe
boundariesof the backgroundwindow de ned asin Eqns.[4.28-[4.30.

The boundariesof the backgroundwindow are set as

Ag = A; C2; (4.27)
Bg = By + C2; (4.28)
Ce=Cr C3; (4.29)
Dg = Dy + C3; (4.30)

Where Ag and Bg are the boundariesin the azimuth, Cg and Dg are the boundariesin
the range direction. A, Bt, Cr, Dt are the boundariesof the target window. C2 and
C3 are constant o sets from the target window boundaries. C2 and C3 can be equal or
di erent accordingto the number of pixelsin the rangeand azimuth directions of the image
and according to the target position in the image. For instance, candidate targets near

image boundariesand land mask require specialwindow shapesand dimensionsto ensure
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appropriate pdf estimation of backgrounddata.

In the secondpre-screeningstep, either one of two ATDs is usedto threshold eachpixel
in the target window which contains the entire candidate target with a threshold. This
threshold is determined adaptively so that a constant PFA is maintained over the entire
image. Thesetwo ATDs are the LRT and the Sp-CFAR detectors. The selectionbetween
the two ATDs is made basedon the total number of pixels of candidate target detected by
the pre-screenerrst step. The number of detected pixels per candidate target is counted
beforepassingthe targets to the secondpre-screeningtep. Sincethe target data pdf is to be
estimated by the GMM method, there should be an adequatenumber of data points of the
target. If the number of candidate target pixels is large enough,the LRT detector is used;
otherwise,the CFAR oneis used. More explanation about this number is given in Chapter

5.

The StokesParametersLikelihood Ratio Test Detector

The StokesparametersLRT pre-screenelis usedto retest eachcandidate target against a
threshold determined accordingto the local statistics of the backgroundpixels surrounding
the target at a speci ¢ PFA. The proposedLRT detector is formulated to usethe joint pdf
of the four Stokesparametersof oceanand candidate target data to generatethe likelihood
ratio (LR) instead of the traditionally usedjoint pdf of the scattering vector components.
Then, at eachpixel of the target window, the value of the likelihood ratio or a monotonic
function of it is comparedto a threshold determinedat a speci ¢c PFA to decideon the object
to which the pixel undertest belongs. The determination of the threshold value isdiscussedn
Sec.[4.8.2. When the LR value of the pixel exceedghe threshold, the alternative hypothesis
is acceptedand the pixel is related to a target. Otherwise, the null hypothesisis accepted
which meansthat the pixel is related to the ocean.
After the candidate target is passedto the secondpre-screeningLRT step, the joint

pdf of the four elementsof the Stokesvector is estimated. The pixels of the background
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window are usedto estimatethe Stokesparametersjoint GMM pdf of oceandata. Similarly,
all detected pixels within the target window are used for target (ship) Stokesparameters
joint pdf estimation. The GMM algorithm estimatesthe joint pdf of the StokesParameters
starting from k=1 and D = 4 (one multivariate Gaussiancomponent), calculating the BIC
and then increasingthe number of componentsby one and then comparing the BIC of all
modelsto choosethe appropriate number of componentswhich is related to the smallest
BIC. This processis conducted one time for oceanpdf and another time for the ship pdf
for eachlarge candidate target. After the pdfs are estimated, the likelihood ratio is then

calculatedfor eachpixel in the target window. The likelihood ratio is de ned as

fs(ux.y); s)

LRsp (X Y) = £y o)

(4.31)

whereLR sp (X; y) isthe likelihood ratio value of the Stokesparameters(SP) at an imagepixel
with (x,y) pixel coordinates;f (u(x,y); o) andfs(u(x,y); s) arethe oceanand ship Stokes
parametersjoint pdfs valuesrespectivelyat the (x,y) pixel, u is a 4-Dimensionalvector of
the Stokesparametersu =[Sy S; S, S3]", s and , are the vectors of all components
parametersof oceanand ship pdf respectively,where s = (ps; s;Cs) isthe parametervector
of ship GMM and ,=(po; o; Co) is the parametervector of oceanGMM.

The value to be comparedwith the threshold is computed using the natural logarithm

of Eq. (4.37) at eachpixel of the target window using the estimated GMM SP joint pdfs for
oceanand shipsasin Eq. (4.33).

P x. !
= ka1 Ps 9(U(X,Y); 55 Cs,)

LRsp(X;y) =1In P (4.32)
Il<<:01 pOk g(u(x,y); Ok ; Cok)

Where the subscript'o’ is related to oceanand the subscript's' is related to ship joint pdf
parameters. K, and K are the number of Gaussiancomponentsin the oceanSP joint pdf
and ship SP joint pdf respectivelyand (x,y) are the pixel's coordinates.

After the LRsp (LR sp is called hereafteras LR for simplicity) value is calculated for

eachpixel in the target window, it is then comparedto a threshold and a decisionis made
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basedon the rule:
8

2 1=) target pixel 2

(LR sp(X;Y) )= (4.33)
70 =) oceanpixel 7

Where LR sp (X; y) is the likelihood ratio value at the pixel (x,y) and is the threshold value.
After the pre-screeningstage, the re-detectedtargets are passedto the discrimination

stage.

The Constant False Alarm Rate Detector

The CFAR detector is selectedas a secondstep pre-screenemwhen the number of detected
pixels per candidate target is not adequateto be used for target pdf estimation. In the
CFAR detector, the samewindow setup is usedas for the LRT detector and the value of
So is reusedagain for testing candidate pixels. It is to be comparedto a local Sy value
(threshold) and not to a global one as donein the rst pre-screeningstep. The Sy value
of eachpixel in the target window is comparedto a threshold that is determined using the
statistics of the local backgroundincluded in the backgroundwindow at a speci ¢ PFA. If
the value of Sy of the pixel exceedghe prede ned threshold, it is consideredthat the pixel
belongsto a target, otherwiseit is consideredthat the pixel belongsto the oceanasin the

following decisionrule
8

2 19 target pixel 2

Sosy) )= S (4.34)
z 0=) oceanpixel >

where Sy(x; y) is the Sy value at the pixel (x,y) and is the threshold value. It is worth
mentioning that for both ATDs and for each candidate target, if any of its pixels is re-
detected,then the target is considereddetected. After all the candidatesare retestedby the
secondpre-screeningstep, they are passedto the discrimination stage. The discrimination
stageis describedin detailsin Sec.[4.8.3after explaining the threshold determination process

in the next section.

102



4.8.2 Threshold Calculation

The threshold valuesfor both ATDs weredeterminedat a speci ¢ PFA using oceanstatistics
of background pixels. In the LRT pre-screenerthe threshold ( ) is the value of the log-
likelihood ratio LR sp of oceanpixels that achievesa desiredPFA value. We recall that the

PFA equalsthe areaunder the tail of the oceandata pdf curve starting at a speci ¢ data

value ( ) asper Eqn. [4.35, [111].
Z 1
PFA = H(; )dl (4.35)
whereH(l; ) is the pdf of the oceandata (I). In the LRT case,H(l; ) is the joint GMM pdf

of the LR sp of oceanpixels expressedas

H(; )= X pcal; ,;C) (4.36)
k=1

wherel is the oceanlog-likelihood data vector, is the vectorsof all componentsparameters
of oceanlog-likelihood pdf, and = (p; ; C) is the parametervector of log-likelihood GMM.
For eachlarge candidatetarget, rst, Stokesvectorsof all oceanpixels of the background
window are substituted in the log-likelihood ratio of Eqn. [4.32to obtain the data vector
I. Then, the pdf of the oceanlog-likelihood ratio is estimated using the GMM method
as describedpreviously. Finally, the commutative distribution function (cdf) is evaluated
numerically at eachvalue in the oceanset. As the areaunder the pdf curve equalsl, then

the area under the tail is then evaluated accordingto the relation [4.37. After that, the

threshold is determinedat a speci c PFA by linear interpolation.
Tail = 1 cdf (4.37)

For the CFAR pre-screenerthe threshold is determinedby usingthe GMM pdf of oceanS,
estimatedby backgroundpixelsin a similar way. So,for the CFAR threshold, rst, the ocean
So GMM pdf is estimated. Then, the cdf is calculated numerically and the distribution tail

is evaluated after that accordingly. Finally, the threshold is determinedat a speci c PFA
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Figure 4.6: Proceduresof threshold determination for the pre-screeningtageof the detection
algorithm. pdf isthe GMM of the log-likelihoodratio (1), cdfis its correspondingcumulative
distribution function and is the threshold at a speci c value of the PFA.

by linear interpolation. Figure 4.6 showsthe proceduresof threshold determination for the

pre-screeningstageof the detection algorithm.

Pre-screeningStageof Candidate Targets Near Land Regions

Land region data is excludedusing the land masking algorithm before applying the detec<
tion algorithm to the scene. However, candidate targets that are detected by the global
thresholding step and located near land regionsneedspecialtreatment in both secondpre-
screeningstep and discrimination stage. This is decidedas the high re ections from land
may interfere with oceanreturns at theseregions. In this section, we focuson the window
set up for thesecandidates,while the specialtreatment related to the discrimination stage
is deferredto Sec.[4.8.3.

After maskingland regions,land pixel valuesare replacedby zeros. Thus, if the regular
window setup, depicted in Figure [4.5, is used with targets closeto land, oceandata pdf
may be inappropriately estimated due to the large number of background pixels with zero
valuesor the GMM algorithm may be unable to estimate the pdf at all. So, beforepassing
the candidate targets to the secondpre-screeningstep, the distance betweenthe center of
the detectedtarget to all pixels on the perimeter of the land-maskis calculated for each

candidatetarget. If the distanceto any of thesepixelsis lessthan a pre-de ned value, then
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the backgroundwindow is enlarged. Then, any candidate pixels or pixels with zero values
are excludedbeforethe estimation of oceandata pdf. The distanceis set arbitrarily as will

be shownin the results chapter. If the candidateis far from land, the regular window setup
is used. After determining nearand far candidatesand setting window sizes,the appropriate

ATD is selectedto eachcandidate target.

4.8.3 The Discriminator: Child ParametersAnalysis and Final Decision

For the purposeof reducing false alarms and as a nal stagein the detection process,all
re-detectedtargets from the previousstageare subjectedto further child parametersanalysis
to classify there-detected targetsither asreal shipor false alarm. The discrimination herein
is basedon the type of scattering mechanismof the candidate pixels. It is well known that
the oceanexhibits dominantly surface scattering while ships may have hybrid scattering
mechanisms(even, odd and volume) due to ship construction materials, superstructure,
orientation with respectto radar beam and other factors. We also recall that there is a
relationship betweenthe physical scattering mechanismand the child parametersderived
from the Stokesparameters|[25]. This is exploited in the discrimination stageto distinguish
between ship targets from surrounding ocean. Therefore, this approachis anticipated to
improve the discrimination performance.

In this stagewe usethe degreeof polarization m and the ellipticity () for discrimination
through the m decomposition.The m and can be calculated from Stokesparameters
asin Egs. [4.5and[4.6 respectively. After calculatingm and and accordingto the m
decompositiondescribedin Sec.[4.4, a color-coded(RGB) imageis then constructed from
three individual color (Red, Greenand Blue) images[68] asin Eqns. [4.38-[4.40. Eachof the
colorsrepresentsa scattering mechanismtype: R representsthe evenbounce,B represents

the odd bounceand the G representsvolume scattering.

B = [mS(1 + sin(2))=2] 2 (4.38)
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R=[mSy(1 sin(2))=2] 2 (4.39)
G=[(So(1 m)]*? (4.40)

Figure[4.7 showsthe Red, Blue, Greenand the combinedRGB imagesof a ship in ocean
built basedonthe (m ) decomposition.lt is clearfrom the RGB image(the top rightmost
part of Figure[4.7that the seasurfacepixels are dominated by the blue color which re ects
the single bouncescattering. On the other hand, ship pixels color results from a mixture of
the three colors with a percentageof eachcolor that is proportional to the corresponding
scattering mechanismstrength at that pixel. This mixture can be one of sevenclassesas
suggestecby Raneyin [96] and shownin Table[4.3. It is alsonoticed that the strength of

all three colorsfor ship pixelsis larger for ship pixels than oceanpixels.
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Figure 4.7: The original Red, Blue, Green, RGB and the R, B, G and RGB imagesafter thresholding of a ship with veri ed
position in ocean. Top row from left to right: original Red. original Blue, original Greenand original RGB imagesevaluated
from Eqgns.[4.38- [4.40. Red imagerepresentsthe evenbouncescattering, Blue imagerepresentsthe odd bouncescattering and
Greenimage representsthe volume scattering. Bottom row from left to right: Binary imagesresulted from thresholding the

top row images:R, B, G.



In order to quantitatively involve the m decompositionto discriminate ships from

falsely detected oceanclusters,three stepsare introduced as follows:

1. Each of the R, B and G imagesis subjectedseparatelyto a thresholding processto
generatethree new binary images(R, B and G). So,for the R image, for instance,R image

is generatedusing the rule

IV ©

8
2 1 : RXY) R

R(x;y) = (4.41)

"V

0 : RXy)< r 7
where g is the threshold of the Red image. The threshold of eachcolor imageis selected
experimentally to be the maximum color strength of an oceanblock of pixels. It hasbeen
found that most ship pixesvaluesfor the Red and Green colors exceedthe maximum color
strength of oceanpixels while only someship pixels have Blue color valuesthat are larger
than the oceanpixels as seenfrom Figure which showsthe R, B and G and the RGB
imagefor a ship in ocean.

2. Each pixel in the three binary color images(R, B, G ) are jointly comparedto
a three binary digit patterns to construct another binary image called the discrimination
image d(x; y). Each of the patterns correspondto a single or a combination of scattering
mechanisms. As we have 3 binary images,there are 8 possiblecombinationsthat a pixel
can take. These combinations are depicted in Table [4.3. In order to distinguish between
ships and false alarms, we compareeach pixel's value in the three binary imagesto ve of
the patterns shadedin gray color in Table . The pattern "RGB = 000" is rejected asiit
indicates that the pixel is from oceanaccordingto the thresholding processwhich givesO
for oceanpixels with low color strength. The pattern "RGB = 001" is also rejected which
re ects only high single bounce scattering which may results from an oceanpixel. The
pattern "RGB = 100" is alsorejected as we found by experimentthat ship ghostshas high
double bouncestrength. Ship ghostsappearin SAR imagesas a line of bright pixels along

the rangedirection dueto the high re ectivity of ship pixels [112]. Figure[4.§ showsthe Red,

108



Blue, Greenand the combinedRGB imagesbuilt basedonthe (m ) decompositionof a
ship and its ghostin the top row. The bottom row of Figure showsthe R, B, G after
thresholding. It is obviousfrom theseimagesthat the Blue and Greencolor strength of ship
ghostis low and belowthe threshold of eachcolor. This is con rmed from the binary images
of the thresholdedBlue and Greenimagesasall ghost pixels have zerovalues. On the other,
it is clear from the Red and the RGB imagesthat the Red color strength (the evenbounce
scattering) is higher than the red threshold. Thus, ship ghostcan be detectedincorrectly as
ships. Therefore,it is seento excludethe "RGB = 100" pattern from the comparison.
So,if a pixel's binary pattern coincideswith one of the four patterns "RGB = [111,110,
010, 101, 011]", then 1 is placedin that pixel of the discrimination image; otherwiseO is

placed.

Table 4.3: All possiblepatterns that a pixel can havein the three binary colorimages(R,
B and G). Gray shadedpatterns only are to be comparedwith the (R, B; G) imagespixels.
The 'db" standsfor the double bounce;the 'vs' for the volume scattering and the 'bs' for the
Bragg scattering or the odd bouncescattering mechanism(Scattering Mech.)

R | G | B | Scattering Mech.
0|00 -
1/10]0 db
0|10 VS
0|01 bs
1,10 db + vs
1|01 db + bs
0|11 Vs + bs
11111 db + vs + bs
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Figure 4.8: The original Red, Blue, Green, RGB and the R, B, G and RGB imagesafter thresholding of a ship with veri ed
position and its ghost. Top row from left to right: original Red. original Blue, original Greenand original RGB imagesevaluated
from Eqns.[4.38- [4.40. Red imagerepresentsthe evenbouncescattering, Blue imagerepresentsthe odd bouncescattering and
Greenimage representsthe volume scattering. Bottom row from left to right: Binary imagesresulted from thresholding the

top row images:R, B, G.



3. Finally, all pixels of eachdetectedtarget resulting from the pre-screeningstage are
comparedwith their correspondingvaluesin the discrimination image d(x; y) accordingto
the condition [4.42;i.e. if a target pixel is detectedby both pre-screenerand discriminator,

then the pixel is declareda ship pixel,

8 9
2 1) shippixel =
[talx;y) && dxiy)] = _ (4.42)

- 09 falsealarm ;

where, t4(X; y) is the value of the pixel (x;y) in a detectedtarget.

4. When all pixelsin a given target are rejected accordingto the above discrimination
condition, then this target is considereda falsealarm. On the other, when any of the pixels

within a target is accepted,then the entire target is considereda ship.

Discrimination of Target CandidatesNear Land Regions

Near-land candidates need a special treatment in the discrimination stage like the pre-
screeningstage. Near shores,there is high re ections from land that may interfere with
backscatteringfrom oceanthus providing bright pixelsthat may be falsely detectedas ships
by the pre-screenersTherefore,morestrict condition shouldbe appliedin the discrimination
processfor targets detected at theseregions. That is, only candidate pixels having strong
strength of the three colors (all three types of the scattering mechanisms)are acceptedas
ship pixels. In other words, detected pixels with values coinciding with the pattern "RGB

= 111" are consideredfrom a ship; otherwise, it is deemedas falsealarm.

4.9 Detection PerformanceAssessmenbf the Hybrid Ship Detection Algo<

rithm

The output of the proposeddetection algorithm is a set of targets declaredasreal ships. In

order to assesgshe detection performanceof the developedalgorithm, the nal detections
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should be con rmed as shipsby veri cation data. However,not all shipsin the oceancarry
AIS transponders. Therefore, it is expectedthat someof these nal detectionsbe shipswith

no veri cation data. Thesedetectionswill be calledin the resultschapterthe "extra targets".

In fact, without the veri cation data, it is not possibleto con rm that thesetargets are real
ships evenif multiple di erent detection algorithms are applied to the samedata. This is
becauseno two detectors give the same nal detectionswhen applied to exactly the same
sceng]8]. Therefore,we will assesshe detection performanceusing only shipswith veri ed

positions and not taking extra detectionsinto considerationin the assessmenbperation.

In eachscene,there were a considerablenumber of ships with veri ed positions given
by the AIS data available with the RS-2 scenes.AlS positions for shipslocated exactly at
the shorelinewas ignored sincethese shipswere maskedout by the land masking algorithm
as a part of the shorelinebeforethe application of the ship detection algorithm. Moreover,
monitoring shipsnearthe shorelineis lessimportant than shipssailing far in the ocean.Put
in a di erent way, shipsat the shorelinemaybe guardedby terrestrial surveillancemethods
like shore-basedadars. However, SAR-basedship surveillanceis necessaryto monitor ships
outsidethe eld supervisedby the terrestrial surveillancemethods.

To assesshe detection performance,the percentratio of the detectedshipswith veri ed
positionsto the total number of shipswith AIS positionsis calculated. This percentratio
is called "the veried detection rate (VDR) percentage"de ned asin Eqn. (4.43). The
VRD showshow many shipswith validated positionsare correctly detectedby the detection

algorithm.

number of detectedshipswith veri ed AIS positions
total number of shipswith veri ed AIS positions

VDR% = 100 (4.43)

4.10 Conclusion

In this chapter, a new ship detection algorithm for CP SAR was introduced. Moreover,

the basicsand theoretical conceptsrelated to this algorithm are reviewed. The proposed
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algorithm combinesfour detectiontechniquestogetherto improve the detectionperformance.
The proposeddetection algorithm has a pre-screeneland a discriminator. The pre-screener
of the algorithm is a hybrid onethat employsthree detection methods: global thresholding,
StokesLRT and Sp-CFAR. In the rst pre-screeningstep,a global thresholding processis
utilized to highlight all possibletarget candidates. In the secondpre-screeningstep, the
detectedcandidatesare retestedby using either the StokesparametersLRT or the So-CFAR
detectors. The selectionbetweenthesetwo pre-screenerss made accordingto the size of
the candidate target. The GMM approachis usedto estimate the joint pdf of the Stokes
parametersfor the LRT detector for oceanand ship data and for the StokesS, of ocean
data. The discriminator of the proposedalgorithm usesthe m- decompositiontechnique
to distinguish shipsfrom falsealarms.

This study is performedon simulated RCM SAR data in the Medium and Low Resolution
and the Ship Detection modes. The performanceof the proposedalgorithm is assessedy
comparingthe number of detectedshipswith veri ed positionsto the total number of ships

with AIS positions. Resultsand conclusionsof this study are presentedin Chapter[5.
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Chapter5

Hybrid Ship DetectionAlgorithm for CP SAR

Resultsand Discussion

In this chapter, the results of applying the proposedhybrid ship detection algorithm to a
number of RS-2 scenesare introduced. After presentingthe results, conclusionsare drawn
accordingly. This chapteris organizedasfollows. In Sec.[5.1, parameterssetup of the GMM

algorithm are discussed.Sec.[5.Z presentsthe setup of the detection algorithm parameters
and the detectionresultsfor the Medium ResolutionRCM modedata. The detectionresults
of the Low Resolution RCM mode are introduced in Sec. and the results of the Ship
Detection mode are given in Sec.[5.4. Finally, in Sec. 5.5, concluding remarks are made

about the presentedwork.

5.1 GMM pdf Estimation Algorithm Setup and Results

For the StokesparametersLRT pre-screenerthe GMM algorithm is run twice for eachcan<
didate target: oncefor the estimation of oceanStokesdata joint pdf and another for target's
Stokesdata joint pdf. The input to the GMM algorithm is the 4-D Stokesvector of the data
pixels for which the pdf is to be estimated and the output is the joint Stokesparameters
pdf of that data. After the likelihood ratios of all backgroundpixels are computed, they are
fed to the GMM algorithm to estimate oceanLR pdf asrequiredto determinethe adaptive
threshold at the desiredPFA.

For the Sp-CFAR pre-screenerthe algorithm is run oncefor the estimation of oceanS,
pdf using backgroundwindow pixels. This pdf is usedto determine the required threshold

at a speci c PFA. In order to reducemissingships,the PFA is selectedto be relatively high;
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that is to be 10° at all candidate clustersfor both LRT and CFAR detectors.

For both ATD pre-screenersthe number of components(k) is setto 1 at the beginning
and it is then increasedby 1 till reachingan arbitrarily large value. At eachk, the BIC is
calculatedand stored. After that, the modelwith the lowestBIC is selectedto bethe best t
to the data. At eachk, the initial mixing probabilities are setto be equalfor all components:
k observationsfrom the data are selectedat random as the initial componentmeansand

variances. This setup of the GMM algorithm is the samefor all three RCM modes.

In the secondpre-screeningstep, either oneof two ATDs is usedto threshold eachpixel in
the target window. Thesetwo detectorsarethe LRT andthe CFAR detectors. The selection
betweenthe two ATDs is made basedon the total number of pixels per candidate target
detected by the pre-screener'srst step. If the number of candidate target pixels is larger
than 40 pixels, the LRT detector is used; otherwise, the CFAR is used. Although, more
data points is preferredfor accuratepdf estimation, a trade-o betweenadequatenumber of
data points for accurate pdf estimation and the speedof the detection algorithm should be
made. In other words, the more data points usedfor the pdf estimation, the more number
of componentsneedto be tested for the selectionof the best GMM of the data by the BIC
criteria, and consequently,the more run time the algorithm takes per detected candidate

which may a ect its validity for near real time results.

A sample of the GaussianMixture Modeling of oceanS, data, from an oceansubset
extracted from the Low Resolution mode data, is shownin Figure [5.1. Another sample
GMM resultsfor oceanlikelihood ratio (LR) data in the Ship Detection RCM modeis shown
in Figure[5.2. In these gures, the top subplots presentthe number of GMM components
(N.) versustheir correspondingBIC values. The middle subplots showthe 1-D pdf and the
histogram of oceanS,, while the bottom subplots presentthe cdf and tail probability. It
is clear from Figure 5.1, that the BIC valuesof the Sy pdf start high and then decreaseo

a minimum and then increaseas the number of componentsincreases.The minimum BIC
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value correspondso the best t to the data. The GMM of this Sy data has 3 components.
From the middle subplot of Figure [5.1, one can visually observethe goodnessf t of the
GMM pdf for the Sy data. The bottom subplot of Figure [5.1 showsthe tail of the GMM

pdf that is usedto determinethe threshold of the CFAR detector.

For the oceanLR data, it is obviousfrom the top subplot of Figure[5. that the general
decrease-then-increadeehavior of the BIC valueswith the increasein the number of compo<
nentsfor the LR GMM is similar to that of the Sy case.However,the BIC valuessu er from
uctuations starting at k = 2till k = 10 and then the BIC valuesstart to increaselinearly
with the number of componentsincrease.The GMM pdf of this LR data has5 components.
The goodnessof t of the GMM pdf for the LR data can visually be observedfrom the
middle subplot. One can seefrom this subplot how the GMM approachis able to clearly
describethe nature of LR data. The bottom subplot showsthe range of the threshold values

of the LRT detector.

Figure[5.3showsthe GaussianMixture Modeling of the joint pdf for oceanand ship Stokes
parametersdata in the Medium ResolutionRCM mode. The left subplot showsthe number
of Gaussiancomponents(N.) of oceanStokesjoint GMM against the correspondingBIC
values. In the right subplot, the (N, BIC) relation is depicted for Ship Stokesparameters
joint GMM. It is obviousthat for the oceanjoint Stokescase,the BIC valueshave a similar
generaltrend to that of the oceanLR. Neverthelessijt is noticed that ship data BIC values
start high, uctuate with a decreasingrend till reachinga minimum and then increasewith
uctuation with the number of Gaussiancomponentsincrease. This observation may be
attributed to the high variability in ship backscatter along with the multidimensional pdf
estimation of the Stokesparameters4-D data. For this data set, oceanjoint GMM pdf has

13 componentswhile ship joint GMM has 24 components.
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Figure 5.1: Low ResolutionRCM mode: GaussianMixture Modeling of oceanS, data. Top:
Number of Gaussiancomponents(N.) of S GMM againstBIC values. Middle: oceanS, pdf
(3 componentsGMM) and histogram. Bottom :oceanSy cdf and tail probability. The GMM
of this Sy data has 3 componentswhich correspondsto the minimum BIC. The goodness
of t of the GMM pdf for this oceanS, data can be seenfrom the middle subplot and the
range of threshold valuesof the CFAR detector can be seenfrom the bottom subplot.
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Figure 5.2: Ship Detection RCM mode: GaussianMixture Modeling of oceanLR data.
Top: Number of Gaussiancomponents(N.) of oceanLR GMM againstBIC values. Middle:
oceanLR pdf and histogram. Bottom: oceanLR cdf and tail probability. The GMM of this
oceanLR data has5 componentswhich correspondgo the minimum BIC. The goodnesf
t of the GMM pdf for this oceanLR data can be seenfrom the middle subplot and the

range of threshold valuesof the StokesLRT detector can be seenfrom the bottom subplot.
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Figure 5.3: Medium ResolutionMode : GaussianMixture Modeling of the joint pdf for ocean
and ship Stokesparametersdata. Left : Number of Gaussiancomponents(N.) of oceanLR
GMM against BIC valuesfor joint pdf of oceanStokesparameterdata. Right : Number of
Gaussiancomponents(N.) of ship StokesGMM againstBIC values.

5.2 The Medium Resolution RCM Mode Results

5.2.1 Setup of Detection Algorithm Parameters

First step Pre-screeningstage

In orderto determinethe global threshold requiredfor this step, a block of (400 400)ocean
pixels with no targets is extracted from each scene. Then, the maximum S, value of the

oceanpixels is taken to be the global threshold.

Target and Background Windows Setup

For the Medium Resolutionmode,the regulartarget window hasan o set from the maximum
and minimum range and azimuth target boundary pixels of 1 pixel (C1 = 1). However,the
backgroundwindow o sets from the target window, C2 and C3, are equaland are setto 10
pixels. Thesevaluesare selectedto achieveboth accurateoceandata pdf estimation for the
smallestcandidatetarget of onepixel and to facilitate fast run of the pre-screenealgorithms.
For near-land candidates,C1 remainsthe sameasfor far-from-land targets while C2 and C3

is enlargedto 30 pixelsto ensureadequatenon-zerodata points for accurateoceandata pdf
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estimation.

5.2.2 Detection Results

The detection results of each pre-screeningstep and the discrimination stage applied to
Scenel is shownin Figure[5.4. In Figure 5.4, red squaresrepresentthe veri ed position of
ships, greenstars representcandidate targets detected by the global thresholding rst pre-
screeningstep, yellow crossesepresentdetectedtargets after the ATD pre-screeneraind the
white dots representthe nal detectionsafter the discrimination stage. The top left subplot
of Figure 5.4 showsthe detectionsof the rst pre-screeningstep (global thresholding). The
top right subplot showsthe detectionsof the secondpre-screeningstep (CFAR and Stokes
LRT ATDs). The bottom subplot presentsthe nal detections after discrimination stage
(child parametersanalysis). It is clearthat the number of candidatetargetsis large after the
rst pre-screeningstepwhich is attributed to the global thresholding process.The number of
re-detectedtargets by the ATD pre-screenerss lessthan that of the rst pre-screeningstep
after taking the e ect of local seastate in determining the threshold of eachATD. However,
after the child parameteranalysisof the discrimination stage,all shipswith veri ed positions
are properly detectedwith two more extra targets. Thesetwo targets were declaredby the
discrimination stageto have a strong hybrid scattering mechanismwhich is highly unlikely
to be from oceanclusters but may result from ships (with no veri ed positions) or other

maritime objectslike buoys.

120



2T

Figure 5.4: Medium ResolutionRCM mode: Detection resultsof applying the hybrid detectionalgorithm stagesto Scenel. Red
squaregepresentthe veri ed positionsof the ships,greenstarsrepresentthe candidatetarget detectedby the global thresholding
rst pre-screeningstep, yellow crossesepresentthe detectedtargets after of the ATD pre-screenerand the white dots represent
the nal detectionsafter the discrimination stage. Top left : results of the rst pre-screeningstep (global thresholding). Top
right: results of the secondpre-screeningstep (CFAR and StokesLRT ATDs). Bottom: nal detectionsafter discrimination
stage(child parametersanalysis). Detectionsare superimposedon the RGB imagesof the m decomposition.



The nal detection results of all six scenesn the Medium Resolution RCM mode are
shownin Figure[5.5to Figure[5.10. The number of detectedtargets after eachstageis shown
in Table[5.Tfor all scenes.The table entriesrepresentthe number of detectionsafter the rst
pre-screeningstep (15t Pre-scr.), the secondpre-screeningstep (2" Pre-scr.) and the nal
detectionsafter the discrimination stage. The nal detectionsare sorted as detectionswith
AIS positions (AIS(D)), misseddetectionswith AIS positions(AIS(M)) and extra detections
(Ext.). The total number of detectionsand the Veri ed Detection Rate (VDR) percentage
are also shown for each scene. It is clear that, for all scenes,the number of total nal
detectionsis much lessthan that after the pre-screeningstage. Put di erently, in all scenes
of this mode, the number of detectionsfrom the pre-screeningstagerangesfrom 1.3to 2.3
times morethan the total numberof nal detections. This may be attributed to the fact that
the pre-screeningstagerelieson the brightnessof the pixel relative to the neighboringocean
pixels. So,somedetectionsmay be bright specklegixels of oceanbut detectedas candidate
targets by the pre-screenerHowever,the discrimination stagedistinguishesbetweentargets
and oceanaccordingto the scattering mechanismwhich signi cantly reducespotential false
alarms. It is also noticeablethat the numbersof detectionsafter the rst and secondpre-
screeningsteps are close and in some casesare equal. This may be due to the nearly
homogeneouseastate over the entire scenefor all scenesand the smoothinge ect of spatial
averaging. Overall, the detection algorithm is able to detect all shipswith veri ed positions
with a VDR percentageof 100%. Moreover, it is noticed that the number of extra detections
which may correspondto other maritime objects in all scenes,except sceness and 6, is

relatively low.
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Table 5.1: Medium Resolution RCM mode: Number of detectionsafter applying all stages
of the hybrid detection algorithm to all scenes. The table entries representthe number
of detections after the rst pre-screeningstep (15 Pre-scr.), the secondpre-screeningstep
(2" Pre-scr.) and the nal detectionsafter the discrimination stage. The nal detections
are sorted to detectionswith AIS positions (AIS(D)), misseddetectionswith AIS positions
(AIS(M)) and extra detections (Ext.). The total number of detections and the Veri ed

Detection Rate (VDR) percentageare also shownfor eachscene.The last row presentsthe
total number of detectionsover the six scenesfter eachdetection stage.

Scene| 1% 2nd Final Detections Total No. VDR

No. | Pre-scr. Pre-scr. | AIS(D) AIS(M) Ext Det.
1 37 25 9 0 2 11 100%
2 15 15 8 0 1 9 100%
3 21 21 11 0 2 13 100%
4 35 35 11 0 6 17 100%
5 129 110 54 0 11 65 100%
6 102 99 54 0 10 64 100%

Tot. 339 305 147 0 32 179 100%
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Figure 5.5: Medium ResolutionRCM mode: Final detectionsof Scenel detectedby the hybrid detection algorithm superim<
posedon the RGB imagesof the m decomposition. Red squaresrepresentthe veri ed position of the shipsand white dots
representthe nal detections.
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Figure 5.6: Medium ResolutionRCM mode: Final detectionsof Scene2 detectedby the hybrid detection algorithm superim<
posedon the RGB imagesof the m decomposition. Red squaresrepresentthe veri ed position of the shipsand white dots
representthe nal detections.
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Figure 5.7: Medium ResolutionRCM mode: Final detectionsof Scene3 detectedby the hybrid detection algorithm superim<
posedon the RGB imagesof the m decomposition. Red squaresrepresentthe veri ed position of the shipsand white dots
representthe nal detections.
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Figure 5.8: Medium ResolutionRCM mode: Final detectionsof Scene4 detectedby the hybrid detection algorithm superim<
posedon the RGB imagesof the m decomposition. Red squaresrepresentthe veri ed position of the shipsand white dots
representthe nal detections.
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Figure 5.9: Medium Resolution RCM mode: Final detectionsof Sceneb detectedby the hybrid detection algorithm superim<
posedon the RGB imagesof the m decomposition. Red squaresrepresentthe veri ed position of the shipsand white dots
representthe nal detections.
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Figure 5.10: Medium ResolutionRCM mode: Final detectionsof Scene6 detectedby the hybrid detection algorithm superim<
posedon the RGB imagesof the m decomposition. Red squaresrepresentthe veri ed position of the shipsand white dots
representthe nal detections.



5.3 The Low ResolutionRCM Mode Results

5.3.1 Setup of Detection Algorithm Parameters

First step Pre-screeningstage

For the Low Resolution mode, the global threshold is determined using an oceanblock of
400 pixels in range 200 pixels in azimuth analogousto that of the Medium Resolution
mode. The oceanblock dimensionin the azimuth direction, is reducedto half of that of
the Medium Resolution mode in order to achievea fair comparisonbetweenthe detection
results of these two imaging modes. This is done becausethe simulated Low Resolution
data hasdouble the azimuth samplespacingof the Medium Resolution mode while hasthe
samerange spacing. After that, the maximum S, value of the oceanpixels is taken to be

the global threshold.

Target and Background Windows Setup

As in the Medium Resolutionmode, the regular target window for the Low Resolutiondata
hasan o set from the maximum and minimum rangeand azimuth target boundary pixels of
1 pixel (C1 = 1). However,the backgroundwindow o sets from the target window, C2 and
C3, are equal and are set to 10 pixels. Thesevaluesare selectedto achieveboth accurate
oceandata pdf estimation for the smallestcandidatetarget of onepixel and to facilitate fast
run of the pre-screeneralgorithms. For near-land candidates, C1 remains the sameas for
far-from-land targets while C2 and C3 is enlargedto 30 pixels to ensureadequatenon-zero

data points for accurateoceandata pdf estimation.

5.3.2 Detection Results

Table showsthe number of detections after each stage of the developedalgorithm for
the six Low resolution RCM scenes.The number of detections after pre-screenings much
larger than that after the discrimination stageby 1.4to 2.5times. It is alsoclearthat there

is a number of misseddetectionsfor this mode. The number of missedships with veri ed
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positionsrangesfrom 1 to 2 shipsin 2 of the scenegScene2 and 3) which reducesthe VDR
percentageto 81.82%at the worst case(Scene3). Table showsthe length, width, type
and orientation relative to the range direction information related to theseships. In Scene
3, the upper ship is number 1 and the lower ship is number 2. By investigating the AIS data
of theseships,we found that all 3 shipshave dimensionsthat are smallerthan the resolution
cell of this RCM mode. This meansthat if the brightness of these ship pixels is not high
enoughwith respectto their neighboring oceanpixels, they will most likely be missed. In
fact all three shipswerenot detectedby either pre-screeningsteps. This can be seenclearly
from Figure[5.11which showsthe detectionresults after applying eachstageof the detection
algorithm to Scene3. This sceneis selectedto manifestthe worst misseddetectionscasein
this mode. The top left sub- gure showsthe candidatetargets from the global thresholding
pre-screenein greenstarswith the veri ed ship positionsasred squaressuperimposecn an
RGB imageof Scene3. Detectionsfrom secondpre-screenersre indicated in yellow crosses
in the top right sub- gure and nal detectionsare presentedas white dots in the bottom
sub- gure. The aboveobservationsabout the missedshipsmay be interpreted asthat these
shipshave a low backscatteredpower (low brightness) most probably dueto their small sizes
with respectto the resolution cell size. However, other factors like ship shape,orientation,
construction and superstructuremay a ect the backscatteredpower.

The nal detectionresults of all six scenesn the Low Resolution RCM modeare shown

in Figure[5.12to Figure[5.17.
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Table 5.2: Low ResolutionRCM mode: Number of detectionsafter applying all stagesof the
hybrid detectionalgorithm to all scenes.The table entriesrepresentthe number of detections
after the rst pre-screeningstep (15t Pre-scr.), the secondpre-screeningstep (2" Pre-scr.)
and the nal detectionsafter the discrimination stage. The nal detectionsare sorted to
detectionswith AIS positions (AIS(D)), misseddetectionswith AIS positions (AIS(M)) and
extra detections (Ext.). The total number of detections and the veri ed detection rate
(VDR) percentageare alsoshownfor eachscene.The last row presentsthe total number of
detectionsover the six scenesafter eachdetection stage.

Scene 13t 2nd Final Detections Total No. | VDR
No. Pre-scr. Pre-scr. | AIS(D) AIS(M) Ext Det. %
1 22 16 9 0 2 11 100%
2 13 11 7 1 0 7 87.50%
3 29 27 9 2 2 11 81.82%
4 31 31 11 0 9 20 100%
5 84 82 54 0 6 60 100%
6 120 120 54 0 10 64 100%

Tot. 299 287 144 3 29 173 97.96%

Table 5.3: AIS information of the three missedshipsof Scene® and 3 in the Low Resolution
RCM mode. In Scene3, the upper ship is number 1 and the lower ship is number 2.

| Ship No. Length (m) Width (m) Orient. () Type |

Scene2
] 1 29 9 90 Tug \
Scene3
1 81 14 30 Cargo
2 91 78 0 Cargo
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Figure 5.11: Low Resolution RCM mode: Detection results applying the hybrid detection algorithm stagesto Scene3. Red
squaregepresentthe veri ed position of the ships, greenstarsrepresentthe candidatetarget detectedby the global thresholding
rst pre-screeningstep, yellow crossesepresentthe detectedclustersafter of the ATD pre-screenerand the white dots represent
the nal detectionsafter the discrimination stage. Top left: results of the rst pre-screeningstep (global thresholding). Top
right: results of the secondpre-screeningstep (CFAR and StokesLRT ATDs). Bottom: nal detectionsafter discrimination
stage(child parametersanalysis). Detectionsare superimposedon the RGB imagesof the m decomposition.
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Figure 5.12: Low ResolutionRCM mode: Final detectionsof Scenel detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaregepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.13: Low ResolutionRCM mode: Final detectionsof Scene2 detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaregepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.14: Low ResolutionRCM mode: Final detectionsof Scene3 detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaresrepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.15: Low ResolutionRCM mode: Final detectionsof Scene4 detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaresrepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.16: Low ResolutionRCM mode: Final detectionsof Sceneb detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaregepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.17: Low ResolutionRCM mode: Final detectionsof Scenes detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaregepresentthe veri ed position of the shipsand white dots represent
the nal detections.



5.4 The Ship Detection RCM Mode Results

5.4.1 Setup of Detection Algorithm Parameters

First step Pre-screeningstage
In this mode,the global threshold is determinedusing an oceanblock of 1600pixelsin range
400 pixels in azimuth, analogousto that of the Medium Resolution mode. The ocean
block dimensionin the range direction is increasedby 4 times over that of the Medium
Resolutionmodein order to achievea fair comparisonbetweenthe detection results of these
two imaging modes. This is done becausethe range pixel spacingsimulated of the Ship
Detection data has nearly one quarter that of the Medium Resolution mode, but has the
sameazimuth pixel spacing. After that, the maximum Sy value of the oceanpixels is taken

to be the global threshold.

Target and Background Windows Setup
As in the other two modes,the regular target window for the Ship Detection data has an
o set from the maximum and minimum rangeand azimuth target boundary pixels of 1 pixel
(C1 = 1). However,the backgroundwindow o sets from the target window, C2 and C3, are
setto be unequalto get the benet from the large number of pixels in the range direction
of this modeimages. The o set in the azimuth direction C2 is setto 10 while the o set in
the rangedirection C3 is setto 40.

For near-land candidates, C1 remains the sameas for far-from-land targets while C2
enlargedto 30 pixels and C3 is setto 60 pixels to ensureadequatenon-zerodata points for

accurateoceandata pdf estimation.

5.4.2 Detection Results

For the Ship detection mode, Table [5.4 showsthe number of detections after each stage
of the developedalgorithm for all scenes. It is clear from Table [5.4 that all ships with

veri ed positions are successfullydetectedin all scenes.One also can seethat someextra
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targets are found in all scenes. It is noticed that the number of candidate targets after
the rst pre-screeningstep is larger than that of the secondstep for all scenesas in the
other two modes. The latter is more than the nal detectionsby 1.6 to 4.4 times. Figure
[5.18 showsthe detection results of eachstage of the algorithm of Scene6. In Figure [5.18,
red squaresrepresentthe veri ed position of ships, greenstars representcandidate targets
detectedby the global thresholding rst pre-screeningstep, yellow crossesepresentdetected
targets after of the ATD pre-screeneraind the white dots representthe nal detectionsafter
the discrimination stage. Note from this gure that the number of candidate targets after
both pre-screeningstepsis similar and larger than the nal detections. However, after the
discrimination stagenearly 54% of thesedetectionsis rejected.

Table 5.4: Ship Detection RCM mode: Number of detectionsafter applying all stagesof the
hybrid detection algorithm to all scenes.Table entries representthe number of detections
after the rst pre-screeningstep (15t Pre-scr.), the secondpre-screeningstep (2" Pre-scr.)
and the nal detectionsafter the discrimination stage. The nal detectionsare sorted to
detectionswith AIS positions (AIS(D)), misseddetectionswith AIS positions (AIS(M)) and
extra detections (Ext.). The total number of detections and the veri ed detection rate

(VDR) percentageare alsoshownfor eachscene.The last row presentsthe total number of
detectionsover the six scenesafter eachdetection stage.

Scene 13t 2nd Final Detections Total No. | VDR

No. | Pre-scr. Pre-scr. | AIS(D) AIS(M) Ext Det. %
1 21 18 9 0 2 11 100%
2 23 17 8 0 1 9 100%
3 35 33 11 0 3 14 100%
4 79 75 11 0 6 17 100%
5 120 102 54 0 8 62 100%
6 143 140 54 0 10 64 100%

Tot. 421 385 147 0 30 177 100%
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Figure 5.18: Ship Detection RCM mode : Detection results applying the hybrid detection algorithm stagesto Scene6. Red
squaresepresentthe veri ed position of the ships,greenstarsrepresentthe candidatetarget detectedby the global thresholding
rst pre-screeningstep, yellow crossegepresentthe detectedtargets after the ATD pre-screenerand the white dots represent
the nal detectionsafter the discrimination stage. Top left: results of the rst pre-screeningstep (global thresholding). Top
right: results of the secondpre-screeningstep (CFAR and StokesLRT ATDs). Bottom: nal detectionsafter discrimination
stage(child parametersanalysis). Detectionsare superimposedon the RGB imagesof the m decomposition.
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Figure 5.19: Ship Detection RCM mode: Final detectionsof Scenel detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaregepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.20: Ship Detection RCM mode: Final detectionsof Scene2 detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaregepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.21: Ship Detection RCM mode: Final detectionsof Scene3 detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaresrepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.22: Ship Detection RCM mode: Final detectionsof Scene4 detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaresrepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.23: Ship Detection RCM mode: Final detectionsof Scenes detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaregepresentthe veri ed position of the shipsand white dots represent
the nal detections.
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Figure 5.24: Ship Detection RCM mode: Final detectionsof Scene6 detectedby the hybrid detection algorithm superimposed
on the RGB imagesof the m decomposition.Red squaregepresentthe veri ed position of the shipsand white dots represent
the nal detections.



5.4.3 Comparisonof RCM ModesDetection Results

To summarizethe detection results of the three RCM modes,we include the total number of
detectionsover all six scenesn eachmodein Table[5.5. The columnsof the table is divided
into 4 setsseparatedby a vertical line. The rst set contains the three RCM modes. The
secondsetshowsthe total number of detectionsafter the rst and secondore-screeningsteps.
The third set showsthe total number of nal detectionsafter the discrimination stage;this
setis composedof three columns: the total number of detectedship with veri ed positions,
the total number of missedshipswith AIS positionsand total number of extra targets. The
fourth setis for the total number of all detections,with and without veri ed positions, and

the last setis for the total VDR percentage.

It is clear from the table that the largest number of pre-screeningdetectionsis for the
Ship Detection modefollowed by the Medium Resolutionmodeand then the Low Resolution
one. This may be attributed to the fact that Ship Detection data hasthe highestresolution
followed by the Medium Resolutionmodeand then the Low Resolutionmode. Moreover,the
Ship Detection data is used as the simulated SLC imageswithout multilooking unlike the
other two RCM modesdata. Obviously, multilooking reducesspecklethat may be detected
as candidatetargets by the pre-screener.The Low Resolution mode hasthe largest number
of looks (8 looksin the rangedirection) and hencethe best smoothinge ect alongwith the
low resolution and therefore, the lowest number of pre-screeningdetections. In the middle,
comesthe Medium Resolutionmodewith the 4 looksin the rangedirection and the medium

number of pre-screeningdetections.

From the total number of nal detections,we notice that the developeddetection algo<
rithm has successfullydetected all ships with veri ed positionsin the Ship detection and
the Medium Resolution modes. On the other hand, three ships were missedat the Low
Resolution mode. This may be attributed to their low backscatteredpower due to their

small sizeswith respectto the resolution cell (and other factors) and the low resolution of
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this mode. Thus, the total percentVeri ed Detection Rate is reducedto nearly 98%for this

low resolution mode.

Table 5.5: Total detection results of the Medium Resolution, Low Resolutionand the Ship
Detection RCM modesafter each stage of the hybrid ship detection algorithm. The table
entriesrepresentthe total numberof detectionsafter the rst pre-screeningstep (15t Pre-scr.),
the secondpre-screeningstep (2" Pre-scr.) and the nal detectionsafter the discrimination
stage. The nal detectionsare sorted to detectionswith AIS positions (AIS(D)), missed
detectionswith AIS positions (AIS(M)) and extra detections (Ext.). The total number of
detectionsand the total veri ed detectionratio (VDR) are presentedaswell for eachmode.
The total number of detectionsafter eachstageare taken over the six scenesat eachmode.

RCM Mode 15t 2nd Final Detections Total No. [ VDR
Pre-scr. Pre-scr. | AIS(D) AIS(M) Ext Det. %
Medium Resolution 339 305 147 0 32 179 100%
Low Resolution 299 287 144 3 29 173 97.96%
Ship Detection 421 385 147 0 30 177 100%

It is obviousfrom Table[5.5that the total number of extra detectionsin all three modes
is close,and that the leastnumber is for the Low Resolutionmode. Finally, we can seethat
the total number of all detectedshipsfor the Ship Detection and for the Medium Resolution
modesare close,and that the Ship detection modehasthe largestnumber, while the lowest

number is for the Low Resolution modewhich is to be expected.

5.4.4 Advantagesof the Hybrid Ship Detection Algorithm

To sumup, the results manifest the following advantagesof the developedalgorithm:

1. The pre-screener'srst step declaresa large number of candidate targets. This is
usefulto avoid missingpotential targets.

2. The compositestructure of the pre-screener'ssecondstep (the CFAR and the LRT)
bene ts from eachof the detector merits and discardsits demerits. The sub-optimal CFAR
detector is usedwhen it is not possibleto estimate target's pdf while the optimal LRT
detector is employedadaptively for large candidates.

3. The application of the secondpre-screeningstep only to candidate detections from
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the rst step reducesthe computational burden and the run time neededto obtain nal
detections comparedto algorithms that apply adaptive thresholding to the entire scene.
This makesthe algorithm suitable to o er nearreal time service.

4. The adaptive nature of the pre-screener'secondstep enablestaking into consideration
local seastate around candidatesonly in order to re ne the detectionswithout increasing
the computational burden.

5. Taking local seacondition requires estimating accurate pdf of oceandata which is
ful lled by usingthe GMM method. The GMM method enablesthe estimation of the joint
pdfs of oceanand ships Stokesparametersrequired by the LRT detector.

6. The m decompositionanalysis of the discrimination stage reducesfalse alarms
from oceanand ship ghostssigni cantly and enhanceghe detection performance.

7. The specialsetup of the pre-screeneand discriminator usedfor candidatetargets near
land reducespotential falsealarmsin theseregions.

8. The detection algorithm can be usede ectively to detect shipsin low and medium

resolution CP images.

5.5 Conclusion

In this chapter, the detectionresultsof applying the proposedhybrid ship detectionalgorithm
were presented. The algorithm was applied to a number of RS-2 scenessimulated in the
Medium Resolution, Low Resolution and the Ship Detection RCM modes. The detection
algorithm is composedf two stages:two-step pre-screeningstageand a discrimination stage.
In the pre-screeningstage, a global thresholding of each pixel in the total receivedpower
(So) imageis performedto declarepreliminary candidatetargets. This stepis followedby an
adaptive thresholding detection applied only for thesepreliminary candidatesto take local
seastate condition into consideration. The adaptive thresholding detectorsusedin this step

are the S;-CFAR and the StokesParametersLRT detectors. The selectionbetweeneither
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detectorsis made basedon the sizeof the candidatetarget. Small targets are tested by the
CFAR detector while large targets are tested by the LRT one. Re-detectedtargets are then
passedto the discrimination stagefor (m-) decompositionanalysis. In the discrimination
stage,a nal detection decisionis made basedon the type and strength of the scattering
mechanismsof the detectedtargets and not on the target size.

Results show that the pre-screeningstage,the rst stepin particular, declaresa large
number of candidate targets. Although someof these detectionsmay be false alarms, this
large number of preliminary detectionsis countedasan advantageto avoid missingpotential
targets. The composite structure of the pre-screenemakesbene ts from many detection
strategies(global thresholding, sub-optimal detector like the CFAR and optimal detector as
the LRT one). Moreover, this structure reducesthe computational burden and the run time
to obtain nal detectionscomparedto algorithms that apply adaptive thresholding to the
entire scene.On the other hand, nal detections, after the discrimination stage, are much
lessasthe child parametersanalysisof the discrimination algorithm enhanceghe detection
performanceby reducing false alarms.

The developedhybrid ship detection algorithm was able to detect most veri ed shipsin
addition to extra maritime objectsin all scenesand RCM modes.In the Medium Resolution
and the Ship Detection modes,the algorithm detected successfullyall ships with veri ed
positions. However, nearly 98% of the veri ed ships were detectedin the Low Resolution
mode. The missedships have low backscatter power that do not enablethe algorithm to
detect them in the rst detection stage. The detection results of the three RCM modes
are comparablewith the Medium Resolution and the Ship detection modessharethe best
detection performancefollowed by the Low Resolutionmode. Therefore,it is apparent that
all three RCM modeswould bene t the ship detectionapplication by providing high detection

performanceand large swath width.
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Chapter6

Conclusionaind Future Study Recommendations

6.1 Conclusions

Ship detection is one of the important componentsof maritime surveillance. SAR systems
provide tremendousamount of information about earth in the form of multi-polarization and
multi-resolution imagesof areasallover our planet. Of particular importance and interest is
the compact polarimetric SAR data which achievesa trade-o betweenmulti-polarization
system advantagesand the wide coveragerequired for surveillance applications. In this
thesis, the bene ts of using hybrid CP data for ship detectionin SAR imageswith various
resolutions, acquired with di erent incidenceangle beamsand polarizations were explored.
For this purpose,two novel contributions were introduced in this research;the rst is the
investigation of the possibility and bene ts of usingthe pseudo-quadiata generatedfrom CP
data for improved ship detection. The PQ data wasgeneratedby a reconstructionalgorithm
that wasdevelopedspeci cally for maritime applications. This is doneby comparingthe ship
detection performanceof PQ data to linear, circular and CP dual-pol SAR data. This study
is performedon FQ RS-2 data and simulated RCM data in the Medium, Low Resolution
and the Ship Detection modes. This CP ship detection investigation study for simulated
Radarsat Constellation Mission data is the rst in the literature. The other contribution is
the developmentof a Stokesparametershybrid ship detectionalgorithm to be usedto detect

vesseldn CP data with medium and low resolutions.

6.1.1 Ship Detection PerformanceAnalysis of Compact Polarimetric Data Conclusions

In this part of the thesis,the possibility and bene ts of using compactpolarimetry SAR gen<

erally and the pseudo-quadiata speci cally for ship detection are investigated. The pseudo<
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guad data was generatedusing Collins reconstruction algorithm which was developedin a
collaboration with a researchteam at the U of C speci cally for maritime applications. This
reconstruction algorithm hasthe highest reconstruction performanceof C-band oceandata
amongother algorithms. The reconstruction algorithm usesthe four elementsof the CTLR
CP covariancematrix to generatethe amplitude of the two co-polcomponents(jSy j; jSvvi),
their relative phaseand the cross-polamplitude (jSyy j). In orderto do that, re ection sym<
metry was assumedfor the oceandata. Another assumptionthat was incorporated is the
polarization state interpolation originally developedby Souyriset. al [22] and then modi<
ed by Nord et. al [57]. The constant of proportionality required for this assumptionwas
estimated using Collins experimentally-basedmodel which takes the incidenceangle of the
imaging modeinto considerationto improve the reconstruction performanceof oceandata.
This reconstruction algorithm was applied to a number of RS2 sceneswvith ne (FQ data),
medium and low resolutions(simulated RCM data) and acquiredby di erent beammodes.
The ship detection performanceof the reconstructedquad-pol (PQ) data was comparedto
that of a number of SAR detectors (quad-pol, linear, circular and compact dual-pol) data.
The ship detection performancewasinvestigatedfor a LRT ship detector taking into consid<
eration the impact of resolution, ship orientation and beamincidenceangle. The detection
performancewas assesseth terms of the median probability of misseddetection (PMD) for
eachsystemcalculated over a number of shipsspreadover the available scenesasa function
of the probability of falsealarm (PFA) and at speci c PFA value. From this analysis, the

following can be concluded:

1. The detectionperformanceincreasewith spatial resolution: FQ data hasthe strongest
performanceover all RCM modesdata while for RCM data, the Low Resolution data had

the weakestperformanceand the Ship Detection mode had the strongestperformance.

2. For incidenceanglesgreaterthan 25, compact polarimetry modeshad superior ship

detection performanceto linear polarization data while at steeperincidenceangles,linear
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and compact polarization con gurations had comparableperformance.

3. For all polarizations and imaging modes,ship detection performanceincreasedwith
incidenceangle,with the highestperformanceat about 40 .

4. For all imaging modes,the PQHV and RH-RV, by themselvesand in combination,
had the highest performanceover other CP, circular and linear-pol data. This suggestshe
usefulnesof quad-pol reconstruction for improved ship detection.

5. Higher performancewas observedfor ships perpendicularand parallel to radar bore
sight.

Thus, the results of this study suggestthat quad-pol reconstruction, using Collins re<
construction algorithm, bene ts ship detection by enhancingthe detection performance.
Moreover, the three RCM modesgenerally,and the Ship Detection modein particular, are
shownto be a promising compromisebetweenthe ship detection performanceand the wide
swath width desiredfor ship surveillance. Therefore,it may be recommendedo usehybrid
compact polarimetric SAR data (raw and reconstructed),acquiredby RCM imaging modes

that covermediumto high (shallow) incidenceanglesfor improved ship detection.

6.1.2 The Hybrid Ship Detection Algorithm Conclusions

The hybrid ship detection algorithm utilizes the CP Stokesparametersand someof their
child parametersfor ship detection. The proposedalgorithm combinesfour detection tech<
niquestogether to improve the detection performanceand discrimination betweenshipsand
falsealarms. The algorithm is composedof two stages:a two-step pre-screeningstageand a
discrimination stage. The rst step of the pre-screeneexploits the di erence in the received
power betweenoceanand ship pixels to globally threshold the entire imageto declarepre<
liminary candidatetargets. In the secondpre-screeningstep, either one of two new Adaptive
Thresholding Detectors ( So-CFAR and StokesLRT) are selectedto test each preliminary
candidate. These adaptive thresholding detectors take local seastate condition into con<

sideration when determining its threshold value. The selectionbetweeneither detector is
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made basedon the size of the candidate target. Small targets are tested by the CFAR
detector while large targets are tested by the LRT one. This composite structure of the
pre-screenetbene ts from eachdetector merits and discardsits demerits. Moreover, it re<
ducesthe computational burden and the run time to obtain nal detections. The probability
density functions of oceanand ships data Stokesparametersrequired by the ATDs are es<
timated using the GaussianMixture Model method for eachcandidate target. Re-detected
targets are then passedo the discrimination stagefor (m-) decompositionanalysis. In the
discrimination stage, nal detection decisionis made basedon the type and strength of the
scattering mechanismsof the detectedtargets and not on target size. This discrimination
rule reducessigni cantly falsealarms. Furthermore, a specialsetup of the pre-screeneiand
discriminator is usedfor candidatetargets nearland to reducepotential falsealarmsin these
regions. This algorithm is applied to a number of RS-2scenesimulatedin the Medium Res<
olution, Low Resolution and the Ship Detection RCM modes. The detection performance
of the developedalgorithm is assessedising veri cation data. Obtained results can help

concludethat:

1. In the Medium Resolution and the Ship Detection modes, the algorithm detected
successfullyall shipswith veri ed positions. However,nearly 98% of the veri ed shipswere
detectedin the Low Resolutionmode. In addition, extra maritime objectsin all scenesand

RCM modeswere detected.

2. All missedshipshavelow backscatterpowerthat do not enablethe algorithm to detect

them in the pre-screeningstage.

3. The detection results of the three RCM modesare comparablewith the Medium
Resolutionand the Ship Detection modessharesthe best detection performancefollowed by

the Low Resolution mode.

Accordingly, it hasbeenfound that the proposedhybrid detection algorithm canbe used

e ectively to detect shipsin CP SAR imageswith medium and low resolution.
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6.2 Recommendedruture Studies

In the future work, it is recommendedo follow up the performedresearchwith the following:
1. Developan adaptive reconstruction algorithm to accountfor seastate and ship data.
2. Investigate the e ect of using other Stokesparametersin the pre-screeningstage of
the hybrid detection algorithm on the detection performance.
3. Useother child parametersand decompositiontechniquesin the discrimination stage
of the algorithm and investigate the improvementin the detection performance.

4. Estimate of someship-related measurementdike length, width and speed.
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AppendixA

Copyright Permissionfor the paper: G. E. Atteia and M. J. Collins, \Ship detection Per<
formance assessmenfor simulated RCM SAR data,” in Proc. of the IEEE International

Geoscienceand Remote SensingSymposium(IGARSS), July 2014.
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