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Abstract� 

Maritime surveillance is an issue of particular interest and importance for countries bordering 

on the sea. Monitoring and controlling maritime activities are essential for these countries 

to assert their sovereignty over their waters. Ship detection is one of the most vital elements 

of maritime control. Traditional surveillance methods su�er from narrow coverage and high 

cost to achieve comprehensive surveillance. However, Synthetic Aperture Radar (SAR) with 

its ability to provide images covering wide geographic areas and acquired with a variety of 

imaging modes, polarization con�gurations, incidence angles and resolutions may be con<

sidered as a promising alternative/complement for existing methods. Quad-polarimetric 

SAR data has been used successfully for ship detection. However, narrow swath of quad-

polarimetric SAR promotes the urgent need to explore ship detectors for dual-polarimetric 

systems. Compact polarimetric (CP) SAR has high potential of providing more information 

than linear dual-polarimetric SAR. Even wider swaths will be provided in many of the CP 

imaging modes of the upcoming Canadian Radarsat Constellation Mission (RCM) SAR to 

be launched in 2018. 

In this thesis, the use of CP SAR for ship detection is explored. To ful�ll this purpose, 

two novel contributions are introduced. The �rst is an investigation study of the possibility 

and bene�ts of using pseudo-quad data for improved ship detection. This is achieved by 

comparing the ship detection performance of dual-polarized CP and pseudo-quad data to 

linear and circular dual-polarized SAR. The pseudo-quad data is generated by a reconstruc<

tion algorithm that aims to reconstruct some elements of the quad-pol covariance matrix 

from CP data speci�cally for maritime applications. This study is applied on Radarsat-2 

scenes with �ne resolution and simulated medium and low resolution RCM data . The e�ect 

of spatial resolution, ship orientation and incidence angle on the detection performance has 

been explored. 

i� 



The second contribution is a new hybrid ship detection algorithm that utilized CP Stokes� 

parameters and some of their derived parameters for ship detection. The pre-screener of the 

algorithm merges three detection strategies to declare candidate ships and the discriminator 

uses a CP decomposition technique to discriminate ships from false alarms based on the 

type of scattering mechanism. The proposed detection algorithm is applied to a number of 

simulated RCM scenes with medium and low resolutions. 

The �ndings of this thesis suggest the usefulness of CP reconstruction for improved ship 

detection. For the hybrid ship detection algorithm, a detection rate of 100% is obtained for 

medium resolution data and about 98% for low resolution data. 
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Chapter 1 

Introduction and Literature Review 

It is well known [1, 2, 3] that the economical prosperity of countries overlooking the sea is 

intimately linked to the maritime activities taking place within their waters. These activities 

need to be secured against illegal �shing, pollution, piracy, and others [2, 3]. This is par<

ticularly important for countries with extended coastlines which may su�er from formidable 

challenge in their quest for maritime security [1]. Fields of maritime surveillance include: 

�shery control, pollution control, maritime tra�c control and others. Fishing activities 

should be rigorously monitored because many illegal �shing ships �nd their ways through 

oceans far away from coast authorities [4]. Unfortunately, the change in earth climate due 

to global warming phenomenon has caused considerable volumes of sea ice in the Arctic 

waters to melt rapidly and many passages become completely opened giving better chance 

for such illegal ships to go through it away from governmental supervision [4]. Obviously, 

the situation will become worse as earth climate gets warmer since more Arctic passages will 

be accessible yielding the need of more e�ective control on maritime activities taking place 

at these passages. Moreover, a great threatening agent for oceanic creatures to be controlled 

is the pollution caused by oil spills from ships. A further important natural problem that 

should be detected and may cause a catastrophic crisis for ships traveling in near polar waters 

is icebergs. All these points and others promote the urgent demand for e�ective maritime 

surveillance methods. 

One of the most vital elements of maritime control is ship detection. Maritime surveil<

lance has relied on patrol boats and aircraft, shore-based radar and cameras. Other surveil<

lance methods which are utilized speci�cally for monitoring ships are the Vessel Monitoring 

System (VMS) [5] and the Automatic Identi�cation system (AIS) [6]. VMS is used in com<
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mercial �shing to allow environmental and �sheries regulatory organizations to monitor the� 

position, time at a position, course and speed of �shing vessels. The AIS is initially in<

tended to help ships avoid collisions, as well as assisting port authorities to better control 

sea tra�c. However, maritime surveillance with the aforementioned methods faces many 

challenges [7, 8]. The vast sea area to be monitored, the limitations of the available su<

pervision tools and the high cost of a comprehensive surveillance are considered as major 

challenges. Furthermore, while the VMS and the AIS are clearly very e�ective ship control 

systems [7, 8], some ships which are active without carrying transponders or switching their 

transponders o� cannot be guarded. Therefore, there has been recently growing interest in 

maritime surveillance in optical and Synthetic Aperture Radar (SAR) imagery as an alter<

native solution for the problems or as a complementary approach for the limitations of the 

existent surveillance methods [7, 8]. 

1.1 Ship Detection from Space 

It has been shown in the literature that satellite optical and radar imaging can readily be used 

for maritime surveillance generally and ship detection speci�cally [8, 9, 10]. By considering 

optical imaging �rst, it has been relatively clear that high resolution optical sensors such as 

Quick-Bird, IKONOS and SPOT-5 are able to produce images that are detailed enough for 

ship detection. However, these high resolution sensors su�er from limited swath which makes 

them less suitable for wide area surveillance [8]; instead, they are suitable for classifying ships 

within a particular area of interest. Furthermore, optical imaging is a�ected by cloud covers, 

haze, fog and sun glint [8]. Optical images are also restricted to be captured at daytime. 

On the other hand, SAR images are considered more e�ective to monitor most maritime 

activities such as ships, oil slicks, natural discharges and icebergs [11, 12, 13]. Imaging 

with SAR is not restricted by time of day (as an active sensor) or weather for imagery 

acquisition. The greatest value of using SAR sensors for maritime surveillance is the ability 

2� 



of these sensors to image hard targets such as ships in background of ocean clutter. The� 

large geographic coverage provided by some imaging modes compared to terrestrial methods 

along with the ability of providing near real time service and being cost e�ective and e�cient 

are considered among other appealing advantages of SAR sensors [14, 15]. 

1.2 SAR Polarization Con�gurations and Ship Detection 

Synthetic aperture radar may o�er single polarization (single-pol), dual polarization (dual<

pol) and quadrature polarization (quad-pol) imaging modes [14] as shown in Figure 1.1. 

Transmit and receive channel polarization may be linear or circular. In linear quad-pol 

radar, polarimetric information is contained in four channels; the return from quad-pol SAR 

for each pixel can be written as X = [HH HV HV V V ], where X is the complex 

scattering vector with its elements are the scattering components, H denotes horizontal 

polarization and V denotes the vertical polarization. In each element of X , the �rst letter 

represents the transmit polarization and the second letter represents the receive one. If 

a single polarization is transmitted and two polarizations are received, the radar provides 

dual-pol data and if one polarization is transmitted and only one polarization is received, 

the radar provides single-pol data. The information content about the imaged scene is the 

largest for the quad-pol data as the relative phase between the four channels is preserved 

which represents a valuable source of information [12]. In contrast, single-pol SAR o�ers 

only amplitude or intensity data which contains much less information than quad-pol SAR. 

In the middle comes the dual-pol SAR which may provide amplitude-only or amplitude and 

phase data. In the context of maritime surveillance, studies have shown that quad-pol SAR 

yields higher performance than dual-pol and single-pol data and that dual-pol data performs 

better than single-pol data [16, 17, 18]. This is intuitively expected since the the amount of 

information extracted from SAR data gradually decreases by moving from quad-pol through 

single-pol data and from amplitude and phase to amplitude only data. 
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Figure 1.1: SAR polarization con�gurations. The �rst letter is the transmit polarization and 
the second letter is the receive polarization; H stands for horizontal, V for vertical, R for 
right circular and L for left circular polarization. pi=4 represents 45� linear-pol transmission 
and H and V polarization reception. 

In the context of ship detection, one of the studies that compares the ship detection per<

formance using a number of radar systems (single-pol, dual-pol and quad-pol SARs) is that 

of Liu et.al in [19]. The detection performance of these systems was investigated by estimat<

ing the receiver operating characteristic (ROC) plots in terms of the probability of missed 

detection (PMD) versus the probability of false alarm (PFA). Results of this study showed 

that quad-pol system has better performance than other systems since it provides the lowest 

PMD at almost all PFAs over all other single-pol and dual-pol con�gurations. Moreover, 

it was found that the amplitude and phase dual-pol data generally provides better perfor<

mance than the amplitude only dual-pol and single-pol systems. The HH{VV amplitude 

and phase (again provided only from quad-pol radars) is the best dual-pol performer while 

the amplitude-only and amplitude and phase HH{HV and VV{VH dual-pol systems have 

nearly the same weaker performance due to the low correlation between co-pol and cross 

pol-channels. 

The advantage of the quad-pol system in providing the largest information content about 
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the imaged scene comes at the expense of the limited swath width and the high complexity of� 

the system [20]. In maritime surveillance applications, swath width is of critical importance 

since one of the objectives of this application is to cover as much area as possible to achieve 

both reliability and economic e�ciency. Dual-pol data o�ers a balance between swath width 

and the added accuracy that can often be realized with multiple polarization [20]. In other 

words, dual-pol SAR provides double the swath width of quad-pol data and at the same 

time provides much more information than single-pol SAR. Many studies in the literature 

[12, 17, 19, 21] show that dual-pol systems perform better than single-pol systems in various 

applications. For example, in the context of ship and iceberg detection, conclusions made 

from the study by Howell et. al [17] to detect ships and icebergs using dual-pol amplitude 

and phase and single-pol data show that dual polarization systems o�er improved iceberg 

and ship detection over single polarization systems. They show that HH{HV is recommended 

for operational ship/iceberg detection since the polarization HH is preferred for detection 

and the polarization HV is preferred for discrimination between ships and icebergs. In 

another study, Angelliaume et. al [21] compare target to clutter ratio using amplitude and 

polarimetric coherence information of HH-HV dual-pol data. They evaluate the target to 

clutter ratio for each channel separately and then evaluate it for the HH{HV Hermitian 

product. They found that the HV channel gives better contrast than co-pol data and that 

the HH{HV Hermitian product gives higher target to clutter ratio which con�rms the fact 

that dual-pol data may be valuable for maritime surveillance. 

Dual-pol SAR can be categorized into linear dual-pol (LP) systems and compact po<

larimetric (CP) systems according to the type of transmitted signal polarization [20]. In 

conventional linear dual-pol SAR, a linear polarization is transmitted (either H or V) and 

a co-pol (HH or VV) and a cross-pol (HV or VH) channels are received. Compact polari<

metric systems resemble coherent linear dual-pol ones in that they retain the relative phase 

between the two received channels. On the other, compact polarimetric systems di�er from 
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linear dual-pol radar in that the transmitted polarization is not linear horizontal nor ver<

tical polarization, i.e. it may be circular or inclined linear polarization, while the received 

polarizations can be either linear or circular. There are currently three CP polarization con<

�gurations that have been reported in the earth observation literature [20, 22, 23]. The �=4 

mode transmits a linear polarization that is oriented at 45� to the conventional horizontal 

and vertical polarizations, and it receives H and V. The dual circular polarization (DCP) 

transmits right or left circular polarization and receives both right and left circular polariza<

tions. Finally, the circular transmit- linear receive (CTLR and also called the hybrid-polarity 

con�guration), transmits right or left circular polarization and receives H and V. For the 

CTLR SAR in particular, the diversity between the transmitted and received polarizations 

o�ers the potential for CP data to have a greater amount of information than the linear 

dual-pol data. Therefore, in this thesis, the CTLR CP polarization con�guration will be 

used for ship detection in SAR data. In the next section, the advantages of CP SAR in 

general and of CTLR CP in particular are compared to linear dual-pol SAR. 

1.3 Compact Polarimetric SAR Against Linear Dual-pol SAR 

In this section, we expand on the justi�cation for selecting the CP SAR in general and the 

CTLR CP SAR in particular for ship detection in this research study. Below is a list of some 

disadvantages of the linear polarization transmission of conventional dual-pol systems over 

the CP SAR: 

1. Linear dual-pol systems are designed such that the receiving polarization basis 

agrees with the transmitted one. It follows that the signal level in the cross-pol 

channel is less than the co-pol channel by 7- 10 dB [22, 23] (Dis.1) . 

2. Transmitting a linearly polarized signal introduces a rotational selectivity onto 

the observation [23]. In other words, if the transmitted signal is linearly po<
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larized, the received signal is stronger when the object alignment is parallel to� 

the polarization of the incident wave and weaker if the object is rotated with 

respect to the incoming signal (Dis.2). 

3. Linear polarization transmission is highly a�ected with the Faraday e�ect in 

the ionosphere when the frequency of the transmitted signal is low [24] (Dis.3). 

The compact polarimetric systems overcome these drawbacks through adopting a diver<

sity between the transmitted and received polarizations. Below, we list how CP con�gura<

tions help alleviate the problems concerning linear dual-pol disadvantages: 

1. The� �=4 and the CTLR con�gurations o�ers a solution for Dis.1. In these 

con�gurations, the mean signal levels in both receive channels are comparable 

since there is no co-pol and cross-pol receive channels. As a consequence, less 

cross talk may occur from the stronger channel on the weaker channel [23, 25]. 

2. A solution to Dis.2 problem is to transmit a linearly polarized signal in which 

the orientation of the linear transmission is suitable to the assumed prevalent 

orientation of features in the imaged scene [23, 25]. This can be achieved by 

adopting the �=4 mode since transmitting a wave with polarization at 45� with 

respect to horizontal is suitable for our world where the mean surface tends 

to be horizontal and many natural and man-made objects tend to be vertical 

[23, 25]. 

3. Another solution for Dis.2 is to use circular polarization in the transmission (as 

in CTLR and DCP schemes) which leads to rotationally invariant backscatter 

with respect to the geometric characteristics of the scene [23, 25]. 

4. Dis.3 can only be alleviated by using circularly transmitted signal which is 

applicable for the CTLR and DCP con�gurations. 
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Generally, the three CP con�gurations are similar in that, in all three, there are advan<

tages over full polarization in the sense of o�ering double the full polarimetry swath width 

and reducing the complexity of the radar system. However, the results are less complete 

than that from a quad-pol system due to the single transmit polarization [20]. Compact 

polarimetry o�ers major capabilities above those of single-pol radar [25]. Among the three 

CP con�gurations, there are several signi�cant advantages enjoyed by a SAR in the CTLR 

architecture when compared to the other alternative CP schemes. These advantages are 

listed as follows: 

1. The rotational invariance is guaranteed for the CTLR scheme for any type 

of backscattering geometry [23, 25] due to the circular transmission. This 

property may bene�t ship detection since ship structure often contains dihe<

drals (from ship superstructure and sea-hull interface) and the power of their 

returned signal depends mainly on the orientation of the dihedral axis with 

respect to the polarization of the incident wave if it is linearly polarized. How<

ever, this is not the case if the transmitted signal is circularly polarized. 

2. The signal levels in the two receive channels of the CTLR SAR are always 

comparable. This is clear when we note that both receiving channels include 

the co-pol and cross-pol returns (Eqn. 2.2). This advantage may be useful 

for ship detection as well since both channels would carry information about 

the target or the background unlike the cross-pol channel in the same polar<

ization where the signal level is usually close to the noise oor (contains no 

information). Also, in this scheme the received channels are correlated and 

thus the relative phase between them may help in distinguishing ships from 

the background unlike linear dual-pol systems. 

3. The CTLR con�guration has been recently adopted in the Mini-RF aboard 

NASAs Lunar Reconnaissance Orbiter [26] and the Mini-SAR on India's lunar 
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Chandrayaan-1 satellite [27] to study the lunar surface. This CP con�gura<

tion will be also adopted in many imaging modes of the upcoming Canadian 

Radarsat Constellation Mission, which is the extension of the Radarsat space-

borne SAR, for earth observation applications. This may be attributed to that 

hybrid polarity CP radar has relatively simple architecture than the end-to-end 

DCP design and has a unique self-calibrating property [23, 25]. 

Based on these advantages for CP SAR systems over linear dual-pol along with the wider 

swath width o�ered by these systems over that of quad-pol SAR, the compact polarimetric 

systems is utilized in this research rather than the linear dual-pol systems for investigat<

ing ship detection in SAR images. In particular and due to its advantages over other CP 

con�gurations, the CTLR CP con�guration is used in the proposed ship detection study. 

Approaches used to detect ships in CP data are reviewed in Sec. 1.7. However, in order to 

maintain consistency for the current chapter, the basics concepts for ship detection operation 

in SAR data will be �rst reviewed in Sec. 1.4 to Sec. 1.6. 

1.4 Characteristics of Ocean and Ships in SAR Images 

From the basics of imaging radars, it is well known that each pixel in a radar image has 

a value that represents the backscattered energy from its corresponding spot on earth [14]. 

The characteristics of reected backscatter are dependent on radar signal characteristics 

(polarization, incidence angle, frequency) and on the scattering object/surface characteristics 

such as the dielectric constant, roughness and local slope [14]. Scattering from objects 

can generally be classi�ed into surface scattering or volume scattering or both. In surface 

scattering, waves are scattered from the interface between two dissimilar media while volume 

scattering results from particles within non-homogeneous medium [14] Generally surface 

scattering may be sorted into specular scattering and rough surface scattering according to 

the surface roughness. In specular scattering, most of the incident waves are reected away 
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from the radar. On the other, in rough surface scattering, the incident waves are scattered in� 

all directions and part of the incident waves is reected back to the radar antenna. Incident 

wave may experience a number of reections/bounces and so, scattering can also be classi�ed 

according to the number of reections to single or multiple (double, odd or even) bounce 

scattering. 

In the context of ship surveillance, much of the images contain mainly open ocean dotted 

with ships and land areas. When land appears, it may be excluded by land masking before 

applying the detection algorithm. Therefore, in the following discussion, only the nature of 

backscattering from ocean and ships is discussed. 

1.4.1 Backscatter from Ocean Surface 

By looking at the type of scattering from the ocean surface, one can conclude that it is due 

to the high dielectric constant of water [14]. For an operational radar with an incidence 

angle of 15� - 70� , backscattering from the ocean is predominantly due to Bragg scattering 

[12, 28]. Under Bragg scattering, incident waves are reected by wind-generated short waves 

(called capillary waves) whose wavelengths are given by Eqn. (1.1). This results in strong 

backscattering due to the coherent addition of the in-phase reected waves: 

n� 
� B = n = 1; 2; 3; ; ::: (1.1)

2 sin � 

where, � B is the Bragg wavelength, � is the radar wavelength and � is the radar incidence 

angle between radar line of sight and the normal to the surface. 

Generally, backscatter from ocean is a function of many parameters such as the wind 

speed and its direction relative to the radar look angle as well as polarization and incidence 

angle. In the absence of wind, the ocean surface is smooth and specular scattering takes 

place. Waves are then reected away from the radar and hence the ocean surface appears dark 

in a SAR image. In contrast, higher wind speeds increase the surface roughness and more 
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Figure 1.2: Scattering mechanisms of a ship. (a) single bounce (from at sheets), (b) double 
bounce (from sea-hull and dihedrals), (c) multiple bounce (from corner reectors). 

energy is reected back to the radar forming brighter ocean pixels. Wind direction, as well, 

signi�cantly a�ects ocean reections. For instance, an upwind and downwind cause higher 

backscatter than a cross wind. Backscattering from the ocean decreases as the incidence 

angle increases [12, 28]. Also backscattering of VV data is higher than HH and HV data 

[12, 28]. 

1.4.2 Backscatter from Ships 

Most ships are typically constructed from large at metallic sheets and often contain super<

structure or deck con�guration on them. Therefore, strong scattering from a ship may result 

from a variety of scattering types as the direct reection from surfaces perpendicular to a 

radar beam (single bounce scattering) or from dihedral reectors formed by two orthogonal 

metallic sheets (double bounce scattering) or trihedral corner reectors (odd bounce scat<

tering). Also, ship hull and ocean together may return signi�cant backscatter to the radar 
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through the double bounce scattering [12, 28] as shown in Fig. 1.2. Therefore, ships in SAR� 

imagery appear as a bright localized regions and they are usually detectable. 

1.5 Ship Detectability in SAR images 

There are many factors that come into play and a�ect the detectability of ships in SAR 

imagery. The �rst factor is ship characteristics such as ship superstructure con�guration, 

orientation of a ship with respect to radar beam, ship size, material from which the ship is 

made and others. It is clear that large size ships fabricated from steel are more likely to be 

detectable than small size, �berglass or wooden ships [12]. 

Another factor is the environmental conditions such as the state of the sea (wind speed), 

the presence of the sea ice, the proximity to the coastline. As the detectability of ships 

depends mainly on the contrast between the ship pixels and the ocean pixels, high wind 

speeds may cause higher backscattering from the ocean which decreases the ship/ocean 

contrast. Also near shores, ships may not be distinguishable from small islands and similarly 

near the polar water, ice pieces with a size comparable to ships may be detected falsely as 

ships due to the high back scatter from land and ice [28]. Other important factors are radar 

characteristics such as polarization, incidence angle and resolution. It has been reported in 

the literature that ship backscatter is relatively constant with respect to the incidence angle 

in contrast with sea clutter which decreases with increasing incidence angle [12, 29]. This 

means that using high incidence angle beams for ship detection are preferable due to the 

high ship/sea contrast. 

Many papers in the literature have discussed the best polarization for ship detection in 

polarimetric SAR data [30]- [33]. The study of Touzi et. al [33] show that HH has higher 

detection performance when the incidence angle is larger than 45� while HV has higher 

performance for lower incidence angles. Similar conclusions were made in the study of Liu 

et. al [19], which shows the ship detection performance, quanti�ed with the ROC curves for 
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a LRT detector, of a number of single and dual-pol SAR systems.� 

The phase information between the four polarimetric channels was also investigated. 

Hawkins et. al [31] argue that the relative phase between polarimetric channels may be 

useful for ship detection while Touzi et al [32] show that the co-pol phase di�erence (phase 

di�erence between HH and VV) is more useful for ship detection than the phase di�erence 

of the HV and HH or VV. This observation is sensible because the co-pol phase di�erence 

is able to distinguish between the single bounce and double bounce scattering mechanisms 

(presumably the former from ocean and the latter from ships) [34]. 

Resolution has an important and signi�cant impact on the detectability of ships in radar 

imagery. Therefore, image resolution and how it a�ects ship detection is elaborated in Sec. 

1.5.1. 

1.5.1 Radar Image Spatial Resolution and Ship Detectability 

Spatial resolution (or simply resolution) is de�ned as the minimum distance between two 

points that can be distinguished as separate by the SAR system [14]. Higher resolution 

images show more spatial details about the imaged scene and at the meantime, the area 

covered is relatively small in contrast to low resolution images [15]. Among the various 

ship characteristics that a�ect ship detectability is ship size (particularly ship length). In 

high resolution images, long ships normally occupy many pixels; this makes them more 

detectable by detection algorithms or even sometimes visually by eye. Conversely, in low 

resolution images, medium-length or small ships may occupy a single pixel. Such ships may 

be detectable or may not depending on the amount of their backscatter power. 

Space-borne SAR systems o�er a variety of beam modes, each with a particular resolution 

and swath width. So, generally speaking, beam mode selection for a certain application, 

entails trade-o�s between the gain obtained from the high resolution and the reduced areal 

coverage associated with it. In ship detection applications, as in any other surveillance 

application, swath width is of critical importance. However, high detection probability (fewer 
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missed detections) can not be sacri�ced. Many studies in the literature focus on assessing 

ship detectability in various beam modes of ERS and Radarsat-1 SAR system [29, 35]. The 

measure of ship detection performance (ship detectability) in these studies is taken to be the 

minimum detectable ship length. The most comprehensive study is that of Vachon et. al 

[29]; in this study, the minimum detectable ship length (called ship detection �gure of merit-

FOM in their paper) for the ERS (C-band, VV polarization) and Radarsat-1 (C-band, HH 

polarization) SARs is calculated under wind speed of 12 m/s. They estimated the minimum 

detectable ship length (l ) from the minimum detectable ship RCS (� ship ) by the empirical 

relation [29] 

n o 3=7� shiplship =� (1.2)
0:08 

The conclusions drawn from this study are [29] : 

1. The Radarsat-1 beam mode Standard-1 (Incibence angle = 23:5� ) has ship de<

tection performance better than ERS-1 SAR performance due to the decreased 

ocean backscatter in the HH polarization. 

2. The ship detection performance improves for increasing incidence angle due to 

the reduction in ocean backscatter level for increasing incidence angle. 

3. The ship detection performance is best for the �ne beam modes due to their 

large incidence angle and high resolution. 

4. For� ScanSAR modes, the detection performance is best for large incidence 

angles, but is worse than the standard beam modes due to the larger resolution 

cell size. 

From the results of this study, Vachon et. al concluded that Radarsat ScanSAR with its 

300 Km swath, is a good compromise between ship detectability and swath coverage [29]. 
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Another study was conducted on a smaller scale by Askari et.al [35] for SACLANT Under� 

Sea Research Center, Italy, using Radarsat-1 data only. In this study, Askari et. al used a 

modi�ed version of Eqn. 1.2 that takes the incidence angle (� ) into account as in Eqn. 1.3. 
� � 3=7� shiplship = ; R(� ) = 0 :78 + 0:11� (1.3)

0:08R(� ) 

Askari et. al worked with two types of Radarsat-1 images acquired by ScanSAR and 

Standard beam modes. The wind speed in some of the images was high and in the others 

was moderate. The results of this study con�rms most of Vachon et. al observations on 

Radarsat data. However, Askari et. al extend their study into the radiometric resolution 

of the data and its e�ect on ship detectability. Askari argues that the 8-bit quantization 

scale of ScanSAR data provides insu�cient dynamic range for discriminating between bright 

targets and sea clutter under high wind speeds. Consequently, he concluded that ScanSAR 

imagery, in spite of its extended swath width (300 Km), is not the recommended imaging 

mode for automatic ship detection due to the poor radiometric resolution. On the other, 

Askari [35] agrees with Vachon [29] that for ScanSAR modes, the detection performance is 

best for large incidence angles, but is still worse than the standard beam modes. 

1.6 The Ship Detection System 

Ship detection system is often composed of three stages as depicted in Figure 1.3. These 

stages are described briey as follows: 

1.6.1 Pre-processing 

Pre-processing consists of preparing the data and putting it in a compatible form for the 

designed detection algorithm. This includes many operations such as extracting calibrated 

radar cross section (RCS) values from images digital numbers (DNs), generation of am-

plitude/intensity images from single look complex (SLC) images, speckle �ltering, spatial 

averaging, the conversion of scattering vector to covariance or coherency matrices or Stokes 
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vector to be used by the detection algorithm and other operations. Speci�c pre-processing� 

operations depend mainly on the subsequent detection stages. 

1.6.2 Land Masking 

Land masking is the operation of masking land areas out of the image to be used for ship 

detection purposes since only ships in the ocean are of interest. Land masking is important 

because ship detectors usually produce a large number of false alarms when applied to land 

areas. There are two common approaches that are used for land masking. One approach is 

to register the SAR image with existing geographic maps and the other approach is to use 

automatic coastline detection algorithms [12]. The former approach is not perfect due to in<

accuracy of the recorded coastline, misregistration of SAR images and tidal variations [12]. In 

contrast, automatic coastline detection algorithms perform better than the geo-registration 

method because the former method doesn't depend on geographic maps or satellite orbital 

data. Instead it depends on either edge detection [36] - [38] or segmentation [39, 40]. 

1.6.3 The Detection Algorithm 

Based on the aforementioned backscattering characteristics of ships, most ship detection algo<

rithms rely on �nding image values that are high relative to the local image background [12]. 

The detection process is usually split into two distinct processing stages: (i) pre-screening 

and (ii) discrimination, which together forms the main mechanism for distinguishing a ship 

from the surrounding sea clutter and are often referred to in the literature as the "ship 

detection algorithm". 

The Pre-screening Stage 

Pre-screening consists of �nding candidate detections in the image [12]. This is done on 

a pixel-basis using a thresholding process. In pre-screening algorithms, all image pixels 

are examined with a high probability of false alarm to distinguish all possible targets and 
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Figure 1.3: Ship detection operation in SAR images. 

avoid missing some of them [12]. Thus, pre-screening algorithms should be relatively simple 

with respect to its computational complexity and run time. In the context of pre-screening 

algorithms, two types of these algorithms, classi�ed according to the number of received 

radar channels, can be de�ned. The �rst type is the single channel pre-screeners and the 

second one is the polarimetric pre-screeners 1 . 

One strategy to pre-screen a single-pol SAR image is to test all image pixels against a 

�xed threshold value. This strategy is called the global thresholding and was taken by Lin 

et. al [41]; they identi�ed ships by running a moving window of size 100 by 100 pixel through 

ERS SAR image. The threshold was set to be 250; the pixel is considered a candidate ship 

pixel if its value exceeds the threshold. In that paper, no details were provided about how this 

threshold was determined. However, the authors recognize that large number of false alarms 

resulted from this step. Another study by Lee et. al [42] aims to address ship target detection 

1For dual-pol data, polarimetric pre-screeners can be usually adjusted to be applied to dual-pol images 
[19], [43]. 
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in dual-frequency single polarization SAR data by using a global thresholding approach. 

The corresponding threshold values were determined from the gamma distribution for ocean 

clutter intensity at a probability of false alarm of 10�8 . The parameters of the Gamma 

distribution are estimated from an ocean block of the scene. Thus, the �xed threshold used 

is appropriate for this region but not for the entire scene, although no information about the 

sea state was given in the text. Since the main purpose of this paper [42] was to compare 

ship detection performance using dual frequency data ( C- and L-band data), the authors 

do not focus or comment on the detection performance of their simple global thresholding 

detector. 

Another single-pol pre-screening strategy is the adaptive thresholding pre-screening. The 

most common single-pol adaptive thresholding pre-screener is the constant false alarm rate 

(CFAR) detector [12, 44]. The basic geometry for the CFAR pre-screener consists of three 

nested sliding windows; the target window which includes the pixel under consideration is 

surrounded by a guard window and then a background window [44]. The purpose of the 

guard window is to prevent leakage of target pixels into the background region and hence 

that the background window represents only the underlying background statistics [12]. At 

each pixel of the image, the intensity value of the pixel in the center of the sliding window 

is compared to a local threshold calculated to achieve a speci�ed probability of false alarm 

(PFA). If the pixel value exceeds the threshold, then the pixel is declared a ship pixel, 

otherwise, it is a background pixel. The windows move across the image one pixel at a time 

and a new local threshold is calculated using the background statistics at each placement 

of the window so the PFA remains constant over the entire image. A suitable ocean clutter 

model needs to be selected to denote the probability density characteristic of the background 

echo. After the statistical model of ocean probability density function (pdf) is determined, 

then the parameters of the pdf are estimated and the threshold is determined at a speci�ed 

PFA. 
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Many con�gurations of CFAR detector have been developed [12, 44, 45, 46], however 

for ship detection the most common are the two-parameter CFAR (2P-CFAR) and the cell 

averaging CFAR algorithms [12, 45, 46]. 

In the two-parameter CFAR algorithm, the threshold value (T ) depends on the mean 

(� o) and the standard deviation (� o) of the ocean clutter as in Eqn. (1.4). However, in the 

cell averaging CFAR (CA-CFAR) algorithm, the threshold depends only on the background 

mean value [12] as in Eqn. (1.5). 

T = � o + t� o (1.4) 

T = t� o (1.5) 

where T is the threshold, t is called the design parameter which controls the PFA [47] and 

is determined either empirically or by solving Eqn. (1.6) for T; and � o and � o are estimated 

from background pixels. 
Z 1 

PFA = f (x) dx (1.6) 
T 

where, f (x) is the ocean clutter pdf and PFA is the desired probability of false alarm. 

By moving to polarimetric detectors, it has been found that there are three strategies 

to perform ship detection using fully polarimetric data [12], [48], [49]. These strategies are 

extensively studied and compared in the work by Sciotti et. al and Lombardo et. al [45] <

[49]. 

One strategy is to apply a single channel detector to each polarimetric channel image 

separately and then combine the detection results. An example of this detection strategy 

is given by Sciotti et. al [48] who uses a segmentation-based CFAR detection algorithm 

developed by Sciotti and Lombardo in [45, 46] as their single channel detector. The aim of 

Sciotti and Lombardo in developing their single channel CFAR algorithm in [46] is to solve 

the problem of the large number of false alarms su�ered by standard CFAR techniques in 

non-homogeneous ocean. For this reason, they suggest segmenting the image before applying 

the detection algorithm to identify the regions with homogeneous characteristics and then 
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use the pixels in each segment to determine the appropriate threshold of a cell-averaging� 

CFAR detector. They use two sets or imagery for their analysis: a low resolution and a 

high resolution imagery. For low resolution images, the segmentation is done by setting a 

hard threshold that splits the image into low wind regions (LWR) and normal wind regions 

(NWR). However, no details about how this threshold was set is given in the paper. For 

high resolution images, where the sea surface shows a large non-homogeneity, they use a 

segmentation technique based on simulated annealing that was especially developed for the 

analysis of high resolution SAR images by Cook et. al in [50]. Thus, the image can be 

decomposed into a set of adjacent homogeneous regions. Within each region, the pixels are 

used to calculate the detection threshold at a speci�ed PFA. Their comparison of the number 

of false alarms when using the standard CA-CFAR and the proposed segmentation-based 

scheme shows that their proposed algorithm gives a very high ship detection capability yield<

ing a controlled number of false alarms in the presence of a uctuating background. Sciotti 

et. al in [48] address the problem of ship detection against non-homogeneous background in 

multi-channel SAR images. Due to the non-homogeneity of ocean backsactter in the image, 

they segment all polarimetric channels in the pre-processing stage. The single-pol detection 

algorithm is then applied to each polarimetric image (HH, VV, HV) and then the detec<

tion target candidates are combined since all the candidates obtained in the three channels 

separately are considered as detections. Thus, the polarimetric information is exploited in 

the combination of the detection candidates, while the segmentation stage is separately per<

formed on the single-channel images. No absolute assessment of this work was given in the 

paper since the authors introduced other strategies for exploiting the polarimetric data and 

then built their conclusions on the comparison between these strategies. 

The second strategy presented in [48] is to fuse all polarimetric channels into a single 

image and then apply a single channel detection algorithm to it. Sciotti et al. used the 

polarimetric whitening �lter (PWF) [51] and the span technique for the fusion of the po<
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larimetric channels. In the span technique [51] the intensity images of the HH, HV. VH 

and VV channels are generated and then summed together. After the fusion operation, the 

segmentation and detection procedures are applied to the fused data. The 2P-CFAR, the 

CA-CFAR and the Gaussian Generalized Likelihood ratio test (G-GLRT) are used as the 

single channel detectors. The G-GLRT detector belongs to the likelihood ratio test detection 

category in which the detection decision is made by comparing the likelihood ratio de�ned 

in Eqn. (1.7) to a threshold (T ) [52]. 

In the G-GLRT algorithm, two sets of data are considered. The primary data consists of 

N pixels values obtained from a square target window of N pixels. These pixels values are 

arranged in a vector x. The other data set is the secondary data which is a background data 

to be used for the estimation of parameters of the background pdf. Under the hypothesis H0, 

clutter echoes are contained in x, while under the hypothesis H1, target echoes are contained 

in x. The ocean and target data are all assumed to be extracted from a zero mean Gaussian 

random distributions. The likelihood ratio is then obtained by dividing the joint probability 

density function (pdf) of primary and secondary data under the H1 to that under the H0. 

P (xjw t ) > T (1.7)
P (xjw c) 

where x is the data under test, P (xjw t ) is the pdf of x given that a target is present (under 

hypothesis H1), P (xjw c) is the pdf of x given that only background clutter is present (under 

hypothesis H0) and T is a �xed threshold determined at a speci�ed PFA. 

Before discussing the results of these two strategies, a third strategy of exploiting the 

polarimetric information in SAR data is pointed. Sciotti et. al in [49] have introduced 

a multi-channel detection algorithm inspired by the G-GLRT algorithm and called it the 

Polarimetric G-LRT or PG-LRT. Sciotti et. al extend the G-GLRT to the multivariate case 

since each pixel in the polarimetric data has four complex values instead of one for the single 

channel data. They assume also that target and clutter are extracted from a zero mean 

Gaussian random distribution with polarimetric correlation properties common to all the 
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pixels and given by the covariance matrices of the target and clutter. The likelihood ratio� 

was formed similarly as in the G-GLRT but for the multivariate case. 

The results of comparing the detection performance of the three strategies show that the 

PG-GLRT algorithm outperforms the two other detection strategies [48, 49]. For the other 

two strategies, the 2P-CFAR detector outperforms the G-GLRT which performs better than 

the CA-CFAR for non-segmented images. However, the G-GLRT outperforms both CFAR 

detectors when the segmentation step is applied before detection. They also reported that 

polarimetric fusion using span-�ltered and PWF-�ltered data yields equivalent ship detection 

results so far [48, 49]. 

The multi-channel strategy was also adopted by Liu et. al in [16, 19]. Liu et. al used a 

LRT based algorithm. They substituted in the numerator of the likelihood ratio (Eqn. 1.7) 

by the joint pdf of the four polarimetric channels of the ocean pixels and that of the target 

pixels in the denominator. They assumed that the elements HH, HV, VH and VV of the 

scattering vector X to be jointly Gaussian for both ocean and target pixels. Therefore X has 

a pdf of the form 
1 �1=2(X ��) H C�1 (X ��)P (X ) = exp (1.8)

(2� )n=2jCj1=2 

where n is the number of polarimetric channels, � is the mean vector, C = EfXX H g is 

the covariance of the polarimetric feature vector X and H denotes the complex conjugate 

transpose. Note that this detector requires a priori knowledge of the target mean vector and 

covariance matrix; Thus the detection criterion can be written as 

(X � � o)H (Co)�1 (X � � o) � (X � � t )H (Ct )�1 (X � � t ) > T =) target (1.9) 

where Co is the covariance matrix of the ocean clutter, Ct is the covariance matrix of the 

target (ship) backscatter and T is the threshold. 

Liu et. al [16, 19] assumed that both ship targets and ocean backscatter have zero mean. 

They also assumed that the elements of the covariance matrix of ship samples are much 

larger in magnitude than those of ocean samples. Therefore, � o and � t are set to zero and 
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Ct is neglected in Eqn. 1.9 resulting in a detector that assumes that the ocean backscatter 

is Gaussian in relatively high resolution SLC data (airborne data) and doesn't take ship 

statistics into consideration in the decision criterion as shown in Eqn. 1.10. 

X H C�1 
o X > T =) target (1.10) 

Liu et. al did not compare their detection algorithm with other detectors since the aim of 

their work was to quantify the extent to which additional polarimetric data channels can 

aid in ship detection by comparing the detection performance of quad-pol data to that of 

various combinations of dual-pol and single-pol data [16, 19]. These results are discussed 

later on in this document. 

It is worth mentioning that a large number of false alarms result from the pre-screening 

stage. Therefore, pre-screening algorithms are usually followed by a discrimination stage to 

eliminate the majority of false alarms while at the same time maintaining a high probability 

of detection. 

The Discrimination Stage 

In the discrimination stage, the candidate trgets from the pre-screening algorithms are pro<

cessed to make more discerning decisions about the likelihood of a candidate being a target 

of interest at certain probability of false alarm. Usually the design of the discrimination 

algorithm depends on the pre-screener output, image pixel spacing and the target measure<

ments such as the ship size [12]. This in turn usually makes it valid for speci�c data types 

and not applicable for other types. One approach for discrimination is to reject clusters with 

sizes less than a real ship size. This approach is taken by Lin et. al [41] since they reject 

detected clusters with size less than 25 pixels in ERS image of 62.5 m pixel spacing. Also, 

in the �shing vessel detection study of Kourti et. al [53] using SAR images of 50 to 70 meter 

resolution, detections with more than 5 pixels in a row or column are separated out. This 

discrimination approach can be implemented using a moving window in which the pixel of 

interest is placed in the centre of a sliding window, and then a rule is set on the neighboring 
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pixels [54]. For instance, Jiang et. al [55] use a 7� 7 moving window and set the rule: if 7 out 

of the 48 window pixels are ship pixels (detected by a CFAR detector), then the center pixel 

belongs to a ship otherwise it is not. Lin et. al [41] use also a 3 � 3 window and examine the 

8 neighboring pixels. If more than 3 neighboring pixels are possible ship pixels, the centre 

pixel is considered as a true ship pixel. Another discrimination approach depends on the 

supervised discrimination of ships in which the the decision about rejecting false alarms is 

speci�ed by the user [12]. 

1.7 Use of Compact Polarimetry For Ship Detection 

At the present time, there is a shortage in the CP data provided by operational spaceborne 

CP SAR for earth observation. This is because there is only one satellite with CP SAR 

on board that has been recently launched in 2012 (Risat-1) [56]. However, CP data can be 

simulated using quad-pol data [23, 57]. The advantages of CP data over that of linear dual-

pol and its usefulness over quad-pol data in terms of swath width and system complexity, 

promote several earth observation studies to be investigated using CP data [22, 57, 58]. The 

majority of applications of CP SAR data have been terrestrial including crop classi�cation 

[22, 59], soil moisture estimation [60], vegetation characterization [61, 62] and land cover 

mapping [57, 59]. The preliminary results obtained from these studies by using CP data are 

found to be comparable to those from quad-pol data. 

In order to analyze CP data, there are two possible approaches [20]. These approaches 

are described as follows: 

1.7.1 First Approach : Reconstruction of Quad-pol data 

In this approach the 2 � 2 covariance matrix of compact polarimetric dual-pol data is ex<

panded to a 3 � 3 pseudo-covariance matrix under certain symmetry assumptions. In other 

words, the CP data are to be used to estimate components of the quad-polarized covariance 
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matrix to use these reconstructed quad-pol data (termed pseudo-quad, or PQ, data) in exist<

ing quad-pol algorithms. This has been the approach taken by Souyris et. al [22] and Nord 

et. al [57] in two papers presenting quad-pol reconstruction algorithms. These algorithms 

have been developed in the context of terrestrial imaging. In order to estimate the quad-pol 

3 � 3 covariance matrix, one must estimate nine unknowns: the amplitude of all three chan<

nels and the three Hermitian product of the received channels which are complex quantities. 

The CP data provide only four equations from the CP mode covariance matrix. An assump<

tion is made to reduce the number of unknowns. This assumption is the reection symmetry 

which is consistent with many terrestrial imaging scenarios [63, 64]. Under this assumption, 

there is complete decorrelation of the co-polarized and cross-polarized backscattering coef<

�cients, hSHH � S� i = � S� i = 0; where Sij is the complex backscatter coe�cient HV hSV V HV 

with i transmit and j receive polarization. Thus, there are now only �ve unknowns: jSHH j, 

jSV V j, and jSHV j which are real, and SHH S� which is complex. Thus, another assumption V V 

is required to bring the number of unknowns down to four or to increase the number of 

equations to �ve. 

Souyris et. al [22] proposed the following model that relates the ratio of the cross-pol 

intensity to the mean of the co-pol intensity to the magnitude of the co-pol coherence : 

< jSHV j2 > (1 � j�j) 
= (1.11)

< jSHH j2 > + < jSV V j2 > N 

where, j�j is the co-pol coherence magnitude de�ned as 

� S�jSHH V V jj�j � p (1.12)
jSHH j2jSV V j2 

Souyris et. al substituted by 4 into N in 1.11. This value is derived assuming dominant 

volume scattering from vegetation in the scene they used. Equation 1.11 is modi�ed by 

Nord et. al in [57] to compensate for the double bounce backscatter dominated from the 

buildings of the urban area in the image they use for analysis. Nord et. al plot the right-hand 

side (RHS) of 1.11 against the left-hand side (LHS) and observe that the value of 4 in the 
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denominator of 1.11 is a lower limit. Their data suggests that this constant of proportionality� 

should generally have higher values. They then replaced the proportionality constant N with 

the ratio of double bounce backscatter (jSHH � SV V j2) to volume backscatter (jSHV j2) [57, 65] 

as in 1.13. 

N = 
jSHH � SV V j2 

jSHV j2 
(1.13) 

In both the Souyris and Nord models, equations 1.11 and 1.12 are iteratively solved to 

estimate jSHV j2 and the linear co-pol coherence (�). The other pseudo co-pol components 

(SHH ; SV V ) intensities and their relative phase (SHH :S� ) are estimated directly from the V V 

covariance matrix elements of the CP mode and the estimated jSHV j2 value as will be shown 

in Chapter 2. 

The use of the reconstruction of CP data approach for ship detection purpose is reported 

by Yin et. al [66]. Yin re�nes the Souyris reconstruction algorithm by considering the 

helix scattering component in the reconstruction procedures to deal with the case when 

reection symmetry does not hold. He tests his reconstruction algorithm by comparing 

the ship detection performance of the original quad-pol data, PQ data using the original 

Souyris algorithm and his own algorithm and the raw CTLR dual-pol data. Yin et al. 

[66] present two ROC curves, for two di�erent data sources: JPL AIRSAR and SIR-C, 

presumably based on two individual ships (this information was not indicated). His ROC 

curves show the detection performance of the original quad-pol data, PQ data based on 

his re�ned algorithm, PQ data based on the original Souyris algorithm and the compact 

polarimetry data (in his case he simulated �=4 data). His results for the two ships he 

used show that the raw CP data outperforms the reconstructed data generated by their 

proposed algorithm and the latter outperforms the pseudo-quad data generated using the 

original Souyris algorithm. He concludes that the compact polarimetry is a reasonable choice 

when fully polarimetric data is not available [66]. Nevertheless, this work could be criticized 

from two perspectives. The �rst is that, although their interest is the reconstruction of 
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CP data for ship detection which means that they mainly deal with open ocean images,� 

they didn't test the reection symmetry assumption to refuse it nor validate their helical 

scattering assumption for ocean pixels. However, since the surface scattering dominates from 

the ocean surface, the helical scattering assumption might be violated for ocean pixels. The 

other perspective is that they did not provide any reconstruction performance assessment in 

which the reconstructed data is compared to the original quad-pol one to prove the validity 

of their proposed algorithm. Therefore, it is essential to develop a reconstruction algorithm 

speci�c for maritime applications which provides high reconstruction performance for ocean 

data. In order to ful�ll this purpose, a new reconstruction algorithm speci�c for maritime 

applications is developed in a collaboration with a research team at the U of C and published 

in [65]. This algorithm is called hereafter as Collins reconstruction algorithm. 

Collins et. al [65] developed a new model to reconstruct quad-pol data from CP data for 

ocean pixels to be used for maritime applications. This reconstruction algorithm uses the 

four elements of the CTLR CP covariance matrix to generate the amplitude of the two co<

pol components (jSHH j; jSV V j), their relative phase and the cross-pol amplitude (jSHV j). In 

order to do that, reection symmetry was assumed after it was veri�ed and demonstrated as 

valid for ocean data [65]. Another assumption that was incorporated is the polarization state 

interpolation originally developed by Souyris et al. [22] and then modi�ed by Nord [57] as 

de�ned in Eqn. 1.11. This assumption was demonstrated as invalid for ocean data [65]. This 

means that neither Souyris model nor Nord model are valid to reconstruct the C-band ocean 

data. Therefore, a new experimentally-based model is developed to estimate the constant of 

proportionality in the Souyris assumption (Eqn. 1.11) which is required to reconstruct ocean 

quad-pol data. Incidence angle of imaging mode beam is taken into consideration in this 

model to improve reconstruction performance [65]. More details are presented about this 

algorithm in Chapter 3. The reconstruction performance of Collins algorithm is assessed by 

reporting the median and standard deviation of the di�erences between the reconstructed 
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and the observed quantities as a function of incidence angle. The algorithm performance is 

compared to that of the Souyris and Nord algorithms. Moreover, the signi�cance between 

Collins algorithm and these algorithms is tested. Results of this study show that the accuracy 

of the Collins algorithm stays approximately constant with the incidence angle and yields 

the most accurate reconstruction results for ocean data and the lowest variability [65]. In 

contrast, both Souyris model and Nord model accuracy deteriorate as the incidence angle 

increases. Moreover, the signi�cance test suggests that the di�erence between the Collins 

algorithm and the other algorithms is signi�cant for all reconstructed components. 

1.7.2 Second Approach : Stokes and Child Parameters 

In a dual-pol radar system, the received signals take the form of the the two-element scatter<

ing vector X = [ Str 1 Str 2 ] where S is the scattering component, t denotes the transmitted 

polarization and r1; r2 denote the receiving polarizations in the �rst and second channels 

respectively. These scattering components are complex in the SLC images. A useful rep<

resentation of the information carried by coherent dual-pol systems is the Stokes vector as 

in Eqns.(1.14{1.17). The four-real parameters of the Stokes vector capture all of the infor<

mation inherent to the dual-polarized backscattered signals [58]. Stokes parameters are real 

quantities composed from the intensity images (powers) and the cross product between the 

SLC images of the two receive channels [58]. The right-hand set of equations corresponds 

to linear polarization basis while the left-hand set corresponds to the circular polarization 

basis. The equality between the Stokes parameters of both polarization bases holds only 

when the transmitted polarization is the same in both cases [58]. 

S0 = hjStH j2 + jStV j2i = hjStL j2 + jStR j2i (1.14) 

S1 = hjStH j2 � jS tV j2i = h2R(StL S � (1.15)tR )i 

S2 = h2R(StH S� )i = h2I(StL S � )i (1.16)tV tR

S3 = h2I (StH S� )i = ( hjStL j2 � jS tR j2i) (1.17)tV 
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where Sti is the complex backscattering coe�cient and i is the receive polarization which 

can be H for linear horizontal, V for linear vertical, R for right-handed circular or L for 

left-handed circular polarization while the subscript t is the transmitted polarization which 

is R for the current study. R and I are the real and imaginary parts of the complex quantity 

respectively, � is the complex conjugate and the triangular brackets are the spatial averaging 

operator. 

Although these parameters have real values, the phase information between the receive 

channels is retained in them. This property makes them very useful in enhancing the de<

tectability of targets in dual-pol images. Another advantage of the Stokes parameters is that 

several useful "child parameters" can be derived from them such as the degree of polariza<

(S1
2+S 2

2+S 2)1=2 

tion (m = S0

2 ), degree of depolarization(DODP = 1 � m), linear polarization ratio 

S0�S (1) S0�S (3)(LPR = ), circular polarization ratio (CPR = ), degree of circular polarization S0+S (1) S0+S (3)� 

S(3)�(DCP = S0 
), and other parameters [58]. The importance of these "derived parameters" 

emerges from their relation to the type of scattering mechanisms of the scattering medium. 

Put di�erently, these parameters convey information according to the characteristics of the 

scene, primarily its geometric shape, roughness, dielectric properties, density, or electromag<

netic penetrability [67]. Thus, the Stokes parameter values provide invaluable insight into 

the geophysical properties of the surface. This in turn aids in better interpretation of the 

imaged scene. A third advantage of using the Stokes vector is that, unlike the reconstruction 

approach, there is no need to make any assumptions throughout the analysis about the data, 

e.g. reection symmetry assumption. 

The Stokes vector and the derived parameters have been used with CP data for planetary 

imaging applications [20, 67, 68]. This is attributed to the available CP data from operational 

CP SAR systems that have been used in planetary imaging for some time. Most recently, 

the miniSAR on board Chandrayaan-1 collects CP SAR images of the moon [27]. 

In the �eld of earth observation, most published research has been based on the recon<
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struction of quad-pol data from dual-pol data and then the reconstructed data are subjected� 

to various classi�cation techniques on di�erent study areas such as crop classi�cation [22, 59], 

soil moisture estimation [60] and vegetation characterization [61, 62]. There has been little 

work reporting the use of the CP Stokes and/or child parameters. One example is the use 

of Stokes parameters for crop classi�cation [20]. Another is the use of the relative phase 

between the RH-RV received channels (� ) for the discrimination between wind turbines and 

their wakes in ocean [69]. In the context of ship detection, only a single paper [70] is found 

that uses the degree of polarization for the purpose of ship detection. Shirvany et. al in 

[70] estimate the the degree of polarization (m) in the �=4 and CTLR CP modes and the 

HH-HV and VV-VH linear dual-pol SAR modes and compare the contrast between the tar<

gets and the ocean of these modes using Radarsat-2 data. They do not use a particular 

detection algorithm nor assessment measure. They map the degree of polarization for quad-

pol and linear and compact dual-pol modes and compare visually the visibility of ships in 

all images. Their results show that compact dual-pol modes deliver better ship detection 

performance compared with linear dual-pol modes. Their results, although encouraging, are 

purely qualitative. It is noticed in the m maps that some parts of the ocean have similar 

m characteristics as potential ships (and thus can be falsely interpreted as ship candidates). 

However, this notice does not appear in their conclusions. 

For completeness, the work of Liu et. al [71] in using CP data for ship detection should be 

cited. They do not reconstruct PQ data nor use the Stokes and child parameters for the pur<

pose of ship detection. However, they use the raw CTLR CP data simulated from Radarsat-2 

quad-pol data to compare the detection performance of the ship detection LRT algorithm 

they developed in [19] with quad-pol, jHH=HV j and HH . They use a single Radarsat-2 

Fine Quad (FQ4) scene of the Strait of Gibraltar. The detection performance analysis is 

carried out on eight ships by plotting the ROC curves for these ships. All results clearly 

show that HH has the worst performance while the quad-pol detector has the strongest per<
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formance. Results also show that dual-pol systems provide much better performance than 

the single-pol system. For �ve of eight cases studied, the simulated CTLR system provides 

better performance than jHH=HV j system. For the other three cases, the jHH=HV j sys<

tem provides slightly better performance than the CTLR system. The major conclusion of 

this study is that a CTLR radar system provides better ship detection performance than a 

single-pol radar system. They also point out that more investigation is required to judge 

if the CTLR CP mode provides better detection performance than a conventional dual-pol 

system or not. 

1.8 Problem Statement 

In this section, the problems and the shortcomings in the literature that is associated with 

ship detection using compact polariemtric SAR data topic are addressed. 

1.8.1 The Use of CP Data for Ship Detection Purposes 

Quad-pol SAR has been widely used in ship surveillance because it o�ers information not 

only about intensity but also about the coherent phase between the four received channels. 

This additional information improve ship detection performance. However, this huge amount 

of information comes at the expense of swath width, which is essential to maximize the area 

coverage for ship detection application. Dual-pol data is found to o�er wider swath but with 

a reduced amount of information. However, the construction of the compact polarimetric 

SAR as a dual-pol system may increase its opportunity to provide a better accuracy than 

linear dual-pol systems while at the same time covers double the swath width of quad-pol 

SAR. Recently, investigating the capabilities of CP data in earth observation applications has 

become an active topic of research. However, there are few published studies on the use of CP 

data for ship detection. A review of the existing literature shows that only two recent papers 

address the niche of ship detection in CP data using the two CP analysis approaches (one 
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paper in each direction). Considering the work done in the reconstruction of quad-pol data� 

approach, it has been shown that the reconstruction algorithm implies two assumptions. 

Souyris et. al [22] and Nord et. al [57] both adopt the reection symmetry as the �rst 

assumption while di�er in the second assumption. Souyris develops a relation between the 

co-pol coherence and the cross polarized ratio depending on the volume scattering model that 

dominated from vegetation. On the other, Nord et. al modify this relation to compensate for 

the double bounce scattering that is caused by buildings. Recalling that the ocean surface 

exhibits single bounce scattering, it is anticipated that neither the original reconstruction 

algorithm proposed by Souyris et. al nor the modi�ed one of Nord et. al are consistent 

with the backscattering from ocean. From the study of Yin et. al [66], it is concluded that 

they did not assume reection symmetry assumption and instead they derived an equation 

depending on the helical scattering mechanism. However, this work lacks the validation of 

this assumption for ocean data and the performance assessment of their proposed algorithm. 

Collins et. al introduces an empirically-based model to reconstruct ocean data from 

CP data for maritime applications [65]. In this model, the proportionality constant in the 

polarization state interpolation equation is evaluated at the incidence angle of the scene 

under study. The accuracy of Collins reconstruction algorithm is shown to be approximately 

constant with the incidence angle and to yield the most accurate reconstruction results for 

ocean data and the lowest variability [65] among other reconstruction algorithms. Therefore, 

this model is used in this thesis to reconstruct quad-pol data from the CTLR CP data for the 

purpose of ship detection. In this study, the ship detection performance of the pseudo-quad 

data generated using this model is to be assessed and compared to that of linear, circular 

and compact polarimetric dual-pol SAR data. 

Like the reconstruction approach, only a single paper is found which adopts the second 

approach of analyzing CP data (Stokes/child parameters). The paper of Shirvany et. al [70] 

uses the degree of polarization to recognize ships from ocean background. As mentioned in 
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the review section, no detection algorithm is used. In addition, the detection performance is� 

assessed visually depending on the contrast between ships and the ocean. We claim that the 

degree of polarization cannot be used alone for reliable ship detection. This is inferred from 

the existence of low degree of polarization regions in the ocean, which need a thresholding 

algorithm to reject such pixels and enhance the detection performance. The results from 

this study can be considered preliminary and more work need to be done to direct the use of 

the degree of polarization to bene�t the ship detection performance. We suggest that other 

child parameters can be employed individually or jointly to help in improving the detection 

performance. Finally and most importantly, no study has been found that uses the valuable 

information provided by Stokes parameters which is considered to be a gap in this research 

area. 

1.8.2 The Ship Detection Algorithms 

In light of what has been reviewed in the literature about the widely used ship detection 

pre-screeners (CFAR and LRT detectors), one may conclude that one category of existing 

pre-screeners (such as CFAR detectors) ignores the ship backscatter statistical model and 

uses only ocean backscatter model. This is often modeled parametrically by pre-assuming a 

pdf for the data, estimating the parameters of the pdf using the real data and then testing 

the goodness of �t for the assumed pdf. In order to estimate the best �t to the data, one 

may try to �t many pdfs to the data and then select the most suitable one which is time 

consuming process. Otherwise to save time, an approximate parametric pdf may be used 

and this may lead to an increased number of false alarms. At present, several distribution 

models of ocean clutter have been adopted by CFAR algorithms. The reason is that ocean 

clutter under di�ering sea states varies through several classes of distributions such as the 

Gaussian distribution [72], lognormal distribution [73], K distribution [55] and others. 

These CFAR detectors require extensive computations due to the need to estimate ocean 

backscatter pdf parameters at each pixel in the image and consequently, may take consider<
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able time which is not preferred for near-real time applications such as maritime surveillance. 

The other category of pre-screeners, the LRT, are optimal as they maximize the probabil<

ity of detection at a given PFA [74]. However, the manner in which they are utilized for ship 

detection in the literature leads to a deteriorated detection performance. This is attributed 

to either ignoring ship statistics (which is a requirement in forming the likelihood ratio) or 

assuming an inappropriate pdf model for ocean and/or ship backscatter [17, 19, 49]. Liu 

et. al [16, 19] argue that the elements of ship covariance matrix are much larger than those 

of the ocean. This assumption does not always hold, especially for wooden ships or those 

made from �berglass in low resolution data. From the review presented about the existing 

LRT detectors, it is seen that the developers of ship detection LRT algorithms always assume 

Gaussian pdfs for ocean and ship (if taken into consideration) backscatter in order to simplify 

their algorithms and reduce its computational burden. The Gaussian pdf is not the perfect 

�t for ocean backscatter especially in single look imagery and relatively high resolution data 

[75] due to the heavy tail of the the ocean backscatter distribution [19]. It is noteworthy that 

actual false alarm rates of a ship detection algorithm vary tremendously depending on which 

distribution model is appropriate for the background clutter [75]. Therefore, existing LRT 

algorithms sacri�ce the improvement in the detection performance that could be obtained 

when using a more accurate pdf models and give high number of false alarms which leads to 

deteriorated detection performance. 

In order to avoid assuming inaccurate pdfs for ship and ocean backscatter which yields to 

a deteriorated detection performance, an alternative approach to estimate accurate pdf for 

random data is recalled; that is the mixture density model [76]. In this approach the data 

pdf is assumed as a mixture of a number of components belonging to the same parametric 

family of distributions (e.g Gaussian distribution)[76]. This method has the advantages of 

expressing complex densities in terms of simpler densities (the mixture components) and the 

ability to form smooth approximations to arbitrarily shaped pdfs [76]. Another advantage 
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is that it provides a good model for certain data sets where di�erent subsets of the data� 

exhibit di�erent characteristics and can best be modeled separately [76]. This advantage 

in particular is useful for maritime applications since ocean backscatter di�er at di�erent 

sea states from one image to another and even from location to location in the same image 

in which assuming a speci�c pdf for it is inappropriate. Thus the density function for any 

image can be estimated directly without assuming the pdf. Accordingly, it is anticipated 

that using mixture models will yield more accurate pdf estimation for ocean and ship returns 

and hence improve detection performance. 

From the literature review of the ship detection algorithms, it is noticed that all CFAR 

and LRT detectors employ either the complex scattering vector or the intensity SAR data for 

detecting ships. However, no thresholding pre-screeners have been reported that utilize the 

Stokes vector or any of its derived parameters for ship detection. It is anticipated that the 

valuable information content of the Stokes vector and its derived parameters may bene�t ship 

detection. Therefore in this thesis, one of the objectives is to merge all types of pre-screeners 

(global thresholding, CFAR and LRT) to develop new robust pre-screener that utilize the 

observed Stokes parameters individually and jointly. This pre-screener is designed to take 

the advantages of each existent pre-screening detector and discard its disadvantages. The 

pdfs required by the adaptive thresholding detectors (CFAR and LRT) are estimated using 

the Gaussian Mixture Model (GMM) method to take local sea state into consideration. 

By looking at the discrimination algorithms, we �nd that most existing ones depend on 

removing individual false alarm pixels and groups of contiguous false alarm pixels with an 

overall size which is less than a real ship size. Such discriminators can be described to be local 

for a speci�ed image since they are highly dependent on the ship sizes and image resolution. 

Therefore, it may not be valid for other images. However, discriminators that distinguish 

pixels depending on the dominant scattering mechanism over those pixels may give better 

discrimination between real targets and ocean pixels. Existing discriminators that exploit the 
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physics of ocean and ship backscattering into discriminating ships from ocean false alarms� 

usually use polarimetric decomposition techniques [77] or classi�cation [78]. These physics 

are related to many parameters that can be extracted from multi-polarization SAR data such 

as degree of polarization, coherence and phase shift between received channels and other 

parameters. The use of such parameters may increase the robustness of the discriminator 

and provide more reliable discrimination in comparison to ship-size related discriminators. 

1.9 Objectives and Organization of the Thesis 

Based on the literature survey and according to the current problems and research gaps 

discussed in Sec. (1.8), the major objectives of this thesis are as follows : 

1. The investigation of the possibility and bene�ts of using CP SAR generally and the 

pseudo-quad data generated by Collins algorithm speci�cally for ship detection. This investi<

gation includes the assessment of the relative ship detection performance of the reconstructed 

data, raw CP and other linear and circular dual-pol SAR data. Moreover, it is intended to 

investigate the possibility of using lower resolution data, which provides wider swath width, 

e�ectively for ship detection. 

2. The investigation of the e�ect of spatial resolution, ship orientation and imaging mode 

incidence angle on the ship detection performance of a number of SAR systems. 

3. The development of a new hybrid ship detection algorithm for hybrid CP data. In 

this algorithm, CP Stokes parameters and some of their derived parameters are used for 

ship detection. In this algorithm, four detection strategies are utilized together to improve 

detection performance. 

4. The application of the proposed detection algorithm to a number of RS2 scenes with 

medium and low resolution and the assessment of the detection performance of the proposed 

algorithm. 

This thesis has two parts. The �rst part is composed of Chapters 2 and 3 and investigates 
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the possibility and bene�ts of using CP SAR generally, and the PQ data generated by� 

Collins reconstruction algorithm speci�cally, for ship detection. This is done by comparing 

ship detection performance of compact polarimetric SAR systems to linear dual polarimetric 

(LP) and circular transmit/circular receive polarimetric (CirP) SAR systems. This ship 

detection investigation study is conducted on two sets of SAR data. The �rst set has a 

relatively �ne resolution acquired by the RS2 Fine Quad (FQ) mode beams. The second 

set has a lower resolution simulated data. Both sets of data are then fed to a Likelihood 

Ratio Test detection algorithm for the ship detection performance investigation. The impact 

of spatial resolution, ship orientation with respect to the radar beam and the e�ect of the 

imaging mode incidence angle on the ship detection performance are all investigated in this 

part. 

Chapter 2 reviews the CP reconstruction algorithm that is used in this research study, i.e. 

Collins reconstruction algorithm and the LRT detection algorithm. Moreover, it introduces 

the experiment performed to investigate the ship detection performance. Chapter 3 shows 

the results of this part and provides the corresponding conclusion remarks and suggested 

future research work. 

The second part of the thesis is composed of Chapters 4 and 5 and it introduces the 

proposed Stokes parameters hybrid ship detection algorithm. In Chapter 4, the theoretical 

concepts and related basics of each part of the proposed CP hybrid detection algorithm is 

presented along with a detailed description of the proposed algorithm. 

In Chapter 5, the data used and the results of applying the proposed ship detection 

algorithm to a number of Radarsat-2 scenes with medium and low resolution are discussed 

and concluded. Finally, Chapter 6 outlines the main conclusions of the work done. 
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Chapter 2� 

Ship Detection Performance Analysis of Compact Polarimetric Data� 

Methods and Theoretical Concepts� 

In this chapter, the possibility and bene�ts of using compact polarimetry SAR generally 

and the pseudo-quad data speci�cally for ship detection are investigated. This is done by 

comparing the ship detection performance of compact polarimetric SAR systems to con<

ventional linear dual polarimetric (LP) and circular transmit- circular receive polarimetric 

(CirP) SAR systems. This ship detection investigation study is conducted on two sets of 

SAR data. The �rst set has �ne resolution of about 6 m. This data is acquired with the 

RS2 Fine Quad (FQ) mode beams. The second set has a lower resolution. It is obtained by 

simulating the FQ data into RCM data in three modes: the Low Resolution, the Medium 

Resolution and the Ship Detection modes. Another purpose of this study is to investigate 

the possibility of using lower resolution data, which provides wider swath width, e�ectively 

for ship detection. Consequently, the analysis herein has two parts; the �rst part covers the 

ship detection analysis using the FQ data while the second part covers the ship detection 

analysis using RCM data. The CP data used in this study has two forms: one form is the 

raw CTLR data (RH-RV) and the other form is the pseudo-quad data generated by recon<

structing quad-pol data using Collins reconstruction algorithm [65] which was developed in 

a collaboration work with a research team at U of C. The linear dual-pol systems tested 

in this study are the HH-HV, VV-VH and the amplitude-only HH-VV. Both sets of data 

are then fed to a Likelihood Ratio Test detection algorithm for ship detection performance 

investigation. The detection performance is assessed for each SAR system using ROC curves 

and the median probability of missed detection at a speci�c probability of false alarm. In 

this study, the impact of spatial resolution, ship orientation with respect to the radar beam 
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and the e�ect of the incidence angle on the ship detection performance is investigated. 

This chapter is organized as follows. Section 2.1 provides a description of the original 

RS-2 and the simulated RCM data used in this study. Section 2.2 exhibits the experimen<

tal methods employed in this work. This section contains a review of the reconstruction 

algorithm used and the Likelihood Ratio Test ship detection algorithm. Finally Section 2.3 

concludes the chapter. 

2.1 Data and Study Site 

The polarimetric data set used in this chapter is shown in Table 2.1. It is composed of 14 

Fine Quad (FQ) scenes of the Strait of Gibraltar acquired by several Radarsat-2 beams. The 

scenes are located around (35� { 37� ) N, and (5� { 6� ) W. The scenes are numbered in Table 

2.1 and the radar backscatter coe�cient (� o) values were used for the calibration of the data. 

The "Sc. No" column in the table lists the scene numbers by which each scene is referred 

to in the upcoming analysis. The "Beam" column lists the Fine Quad beam position, with 

lower positions having lower incidence angles, and vice versa. The "Inc. Angle" column lists 

incidence angle range of each radar beam. The "Acq. date" and time "Acq. time" refer to 

the acquisition date and time of each scene respectively. "W.S. (m/s)" lists the mean wind 

speed of each scene, in meters per second, as calculated using the mean value of the HV � � , 

according to the equation developed in [79]. "No. Sh." is the the number of ships used in 

each scene. All scenes have a range sample spacing of 4.73 m and azimuthal sample spacing 

varying from 4.8 to 5 m according to beam position. Nominal Radarsat-2 Fine Quad mode 

resolution is approximately 5.2 m in range by 7.6 m in azimuth. Automatic identi�cation 

System (AIS) data is available to validate the imaged ships in all scenes. 

In this work, the RCM data is simulated as single look complex (SLC) images in three 

imaging modes: the Medium Resolution, the Low Resolution and the Ship Detection modes 

[80]. The simulated data had a noise oor of approximately -22 dB (according to the RCM 
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Table 2.1: An overview of the Fine Quad Radarsat-2 data of the Strait of Gibraltar used in 
this study. Sc. No. is the Scene number, Beam is beam number, Inc. Angle is the incidence 
angle range covered by each beam, Acq. date is the scene acquisition date , Acq. time is the 
scene acquisition time, W.S is the wind speed in m/s and No. Sh. is the number of ships 
per scene used in the current study. 

Sc. No. Beam Inc. Angle Acq. time Acq. date W.S (m/s) No. Sh. 
1 2 19.77� { 21.78� 18:11:03 2008-11-26 7.1 7 
2 2 19.77� { 21.78� 18:11:05 2008-11-26 6.7 4 
3 2 19.77� { 21.78� 06:35:01 2008-10-20 3.6 12 
4 4 22.16� { 24.08� 18:11:01 2008-12-20 5.8 7 
5 4 22.16� { 24.08� 18:11:04 2008-12-20 5.7 12 
6 4 22.16� { 24.08� 18:10:54 2008-07-29 6.0 12 
7 8 26.88� { 28.71� 06:30:56 2008-11-20 11.3 11 
8 8 26.88� { 28.71� 06:30:54 2008-11-20 11.8 11 
9 12 31.34 � { 33.03� 06:26:46 2008-11-27 11.9 8 
10 12 31.34� { 33.03� 06:26:48 2008-11-27 13.8 3 
11 21 40.17� { 41.61� 06:22:40 2009-02-14 13.3 8 
12 21 40.17� { 41.61� 06:22:38 2009-02-14 12.1 7 
13 21 40.17� { 41.61� 18:23:32 2009-02-09 6.2 12 
14 21 40.17� { 41.61� 18:23:29 2009-02-09 5.5 11 

Table 2.2: An overview of the simulated RCM data in the three imaging modes used in this 
study. This Table shows the incidence angle (Inc. Ang.) in degrees for each of the modes, 
the multilook resolution (ML Res.) and the simulated SLC resolution (SLC. Res.) in the 
(range x azimuth) directions and the nominal swath width (N.S.W) in Km. 

RCM Beam Mode ML Res. Inc. Ang. . SLC. Res. N.S.W 
Medium Resolution 50 m 19� { 58� 7.9 x 49.7 350 Km 

Low Resolution 100 m 19� { 54� 8.3 x 98.8 500 Km 
Ship Detection variable 36� { 51� 2.7 x 48 350 Km 

classi�cations) while the original Radarsat-2 data has noise oors of approximately -30 dB. 

The signal levels for the SHH ,SV V and SHV of the ocean data were compared to the noise 

oor values provided in the RS-2 meta data for each scene. The SHH and SV V are well above 

the noise while the SHV is close to the noise oor but still above it. The incidence angle range 

"Inc. Ang.", the multilook resolution "ML Res.", the simulated SLC resolution "Sim. Res." 

and the nominal swath width "N.S.W" of the simulated RCM data are indicated in Table 

2.2. It is noteworthy to mention that the simulated SLC resolution for the ship Detection 

mode varies with the incidence angle. The resolutions shown in the table are for Scene 11 
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acquired by FQ 21 beam. As indicated in Table 2.2, the RCM Ship Detection mode covers 

the incidence angle range (36� { 51� ). Therefore, in this study, the Ship Detection mode is 

only simulated for the scenes acquired by the FQ21 beam (40:17� {41:61� ). The RCM data is 

simulated using software developed and provided by Dr. Francois Charbonneau at Canada 

Centre for Remote Sensing (CCRS). 

2.2 Methods 

In this section, the methodology followed to investigate the ship detection performance for 

CP SAR is presented. In the beginning, Collins reconstruction algoritm used to generate 

the pseudo-quad data from the CTLR CP data is briey presented. This is followed by 

an explanation of the procedures of the experiment performed to analyze the ship detection 

performance. This section is ended by a review of the LRT ship detection algorithm employed 

in the current work. 

2.2.1 The Reconstruction Algorithm 

The reconstruction of quad-pol data is the process of regenerating some elements of the quad-

pol covariance matrix from compact polarimetric data under some assumptions. The purpose 

of quad-pol reconstruction is to be able to use existing quad-pol methods of analysis while 

maintaining the double quad-pol swath width provided by dual-pol SAR. In this research, 

the quad-pol reconstruction is performed using simulated CTLR data. The reconstruction 

process has two steps. The �rst step is to simulate the CTLR data from linearly polarized 

quad-pol data and second, to reconstruct the elements of the quad-pol covariance matrix. 

The resultant reconstructed quad-pol data is called the pseudo-quad data or the PQ data. 

In this study, Collins reconstruction algorithm [65] is used to generate the PQ data. This 

reconstruction algorithm is presented in brief in this section. 

Quad-pol data scattering vector is composed of four elements as mentioned in Chapter 
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1. However, under the scattering reciprocity assumption(SHV = SV H ), it can be written as 

p i T 
= SHH 2SHV SV V (2.1)X quad-pol 

The CTLR CP SAR scattering vector is given as Eqn. 2.2 and the CTLR covariance 

matrix may be written as a sum of three components [22, 57] as in Eqn. 2.3. 

� T1� 
X CTLR = p 

2 
SHH � jS HV SHV � jS V V (2.2) 

3232 

6
4

� S�jSHH j2 i(SHH V V )� 7
5�+� 64�

jSHV j2 �ijS HV j21� 7
5�+�CCTLR� = 

2 

3
jSHV j2 

� S� ) � S� + S��2I (SHH HV SHH HV V V � SHV 

� S� )HH jSV V j2 ijSHV j2�i(S V V 
2� 

6
4� 

7
5� (2.3)� 

S� � SHV + SV V � S� 2I (SV V � S� )HH HV HV 

where T is the transpose operator, the angle brackets represent spatial averaging and I 

is the imaginary part of a complex number. 

In order to estimate the quad-pol 3 � 3 covariance matrix, it is required to estimate 

nine unknowns; three unknowns are real: (jSHH j2 , jSV V j2 , jSHV j2 and three unknowns are 

complex: SHH :S� 
HV and SHH :S� ). However only four equations are available HV , SV V :S� 

V V 

from the CP mode covariance matrix; C11; C22 and C12 which is complex. Thus, some 

assumptions need to be made to constrain the solution space and reduce the number of 

unknowns or increase the number of equations. Collins et. al [65] make the following 

assumptions: 

1) Reection Symmetry: 

Reection symmetry refers to the media that is symmetric with respect to the incidence 

plane [22]. Under this assumption, there is a complete decorrelation of the co-polarized and 

the cross-polarized backscattering coe�cients, i.e. 

� S � � S � i = 0 (2.4)hSHH HV i = hSV V HV 
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This assumption simpli�es the CTLR covariance matrix (Eqn. 2.3), by removing the third 

component, hence reducing the number of unknowns to �ve: jSHH j; jSHV j; jSV V j which are 

real, and (SHH :S� ) which is complex. V V 

The reection symmetry assumption is consistent with many terrestrial imaging scenarios 

[63, 64]. However, Collins et. al demonstrated that the reection symmetry assumption is 

valid for ocean backscatter at C-band [65]. After applying the reection symmetry relation, 

the quad-pol covariance matrix simpli�es to 
32 

CPQ� =� 

6
6
6
6
4� 

jSHH j2 0 SHH S� 
V V 

0� jSHV j2 0� 

7
7
7
7
5� 

(2.5)� 

SV V S� 0 jSV V j2 
HH 

Thus, there are now only �ve unknowns: jSHH j, jSV V j, and jSHV j which are real, and 

SHH S� which is complex. V V 

2) Polarization State Interpolation: 

Collins et. al adopts the polarization state interpolation assumption developed by Souyris 

et. al [22] as in Eqn. 1.11 and recalled herein for convenience 

< jSHV j2 > (1 � j�j) 
= (2.6)

< jSHH j2 > + < jSV V j2 > N 

Souyris et al. [22] developed this relation (2.6) based on the scattering behaviour of fully 

polarized and fully depolarized backscattered waves. For a fully polarized scattered wave, 

a very small amount of cross-pol energy is scattered, i.e., jSHV j2 = 0. In addition, the HH 

and VV backscattered waves will be almost perfectly correlated; thus, the magnitude of the 

copolarized coherence is nearly one: j� HHV V j = 1 [22, 65]. On the other hand, for fully 

depolarized backscattered waves, the average backscattered power does not depend on the 

polarization state of the scattered wave. Hence, there is no correlation between the co-pol 

scattered waves, i.e. j� HHV V j = 0, and the intensity of all scattered energy is about the same, 

i.e. jSHH j2 = jSV V j2 = 2 jSHV j2 . The situation for backscattering from natural materials 
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will be somewhere between these two extremes [65]. The proportionality constant N , in 2.6, 

depends mainly on the dominant scattering mechanism [81]. 

Collins et.al [65] test the validity of both Souyris (with N = 4) and Nord (using N as in 

Eqn. 1.13) models for ocean data. Their results show that neither the approximation of N 

to be "4" nor the form 1.13 appear to be valid for ocean data, i.e. neither Souyris model nor 

Nord model is valid to reconstruct the C-band ocean data. Therefore, Collins et. al decided 

to retain the form of Souyris original model however, estimate the value of N for each scene 

based on the incidence angle [65]. They use the following equation, which follows directly 

from rearranging equation 2.6, for N calculation of each pixel [65]: 

< jSHH j2 > + < jSV V j2 > 
N = (1 � j�j) (2.7)

< jSHV j2 > 

In order to construct their model, they calculate N for each pixel in a 1000 � 1000 

pixel sub-image of a number of scenes with moderate wind speeds [65]. A mean N (N ) 

for each image is calculated and used to investigate its dependence on image geometry, i.e., 

the incidence angle, and wind speed. They observed an increase in N , with a decreasing 

incidence angle [65]. However, they found that the dependence of N on wind speed is much 

weaker than that on the incidence angle. Therefore, they did not model N as a function of 

wind speed. So, they developed a simple empirical model to estimate N from the incidence 

angle [65] as in 2.8. This model is then used to estimate N to perform the reconstruction. 

N = 6:52 + 18305:73 expf�� 0:60 g (2.8) 

where N is the constant of proportionality (N ) of Eqn. 2.6 and � is the mean incidence 

angle of the studied scene. 

2.2.2 Reconstruction Iterative Equations 

In this study, equations 1.12 and 1.13 are iteratively solved to estimate jSHV j2 and the linear 

coherence (�). The iterative equations of 1.12 and 1.13 for Collins model is given as Eqns. 
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2.9 and 2.10. N in 2.10 is estimated using the model 2.8 at the scene mean incidence angle.� 

�iC 12 + jSHV j2 
(i)j�j (i+1) =� (2.9)� 

(C11 � jS HV j2 )(C22 � jS HV j2 )(i) (i)

C11 + C22 1 � j� (i+1) j
jSHV j(i+1) = (2.10)

2 N + 2(1 � j� (i+1) j)

The starting estimate of jSHV j2 is set to be zero, then the �rst estimate of j�j is calculated 

using 2.9. The jSHV j2 is updated using 2.10, then the process alternates between 2.9 and 2.10 

until reaching convergence. In this study, convergence is considered reached when jSHV j2 

be within 1% of its previous estimate. For each pixel, iterations continue until convergence 

or till reaching 100 iterations, whichever came �rst. It is worthy to mention that for some 

pixels, the magnitude of � converges to a value greater than one, which is impossible. When 

that happen, the iterations are halted and the jSHV j2 is set to zero for that pixel. 

The other pseudo co-pol components (SHH ; SV V ) intensities and their relative phase 

(SHH :S� ) are estimated directly from the covariance matrix elements of the CP mode and V V 

the estimated jSHV j2 value as follows : 

jSHH j2 = C11 � jS HV j2 (2.11) 

jSV V j2 = C22 � jS HV j2 (2.12) 

SHH � S � = �iC 12 + jSHV j2 (2.13)V V 

Thus the covariance matrix of the pseudo-quad data derived from the CTLR CP SAR 

data can be written as, 

32 

CP Q =� 

6
6
6
6
4� 

C11 � jS HV j2 0 �iC 12 + jSHV j2 

0� 2jSHV j2 0� 

7
7
7
7
5� 

(2.14)� 

(�iC 12 + jSHV j2)� 0 C22 � jS HV j2 

where C11; C12 and C22 are the elements of the CTLR covariance matrix. 
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The main purpose in reconstructing the linear quad-pol covariance matrix is to detect� 

maritime targets such as ships. To perform ship detection, the Likelihood Ratio Test method 

developed in [16, 19] is used. 

2.2.3 The Experiment 

Figures 2.1 and 2.2 show strategy owcharts of the work presented in Chapters 2 and 3. 

Figure 2.1 shows the owchart of the FQ analysis part of the ship detection investigation 

study. In this part, the FQ data is used to generate the LP data and to simulate the CirP and 

CTLR CP data by combining the fully polarimetric channels. The RR-RL data is simulated 

as in the CirP scattering vector de�ned in 2.15 while the RH-RV is simulated as in 2.2 [57]. 

After that, the pseudo-quad CP data is generated using Collins reconstruction algorithm. 

Then, all LP, CirP and CP SAR systems (also called detectors through the thesis) are passed 

to the LRT detector to distinguish between ship and ocean. The LRT detection algorithm 

is presented in Sec. 2.2.4. 

1 
� � T 

X CirP = 
2 SHH � SV V + j 2SHV j (SHH + SV V ) (2.15) 

Figure 2.2 shows the strategy of assessing the ship detection performance of the RCM 

analysis part of this work. In this part, �rst, the RCM data is simulated using the FQ data in 

three modes: the Low resolution, Medium Resolution and the Ship Detection modes. Next, 

the CirP and CTLR data are simulated from the simulated RCM quad-pol data similarly 

as in the FQ analysis part. Then, the pseudo-quad CP data is generated as in the FQ case. 

After that, all these SAR systems are passed to the LRT detection algorithm. 

Now we have the following systems to be analyzed for the ship detection performance 

assessment in both FQ and RCM parts of the analysis: 
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Figure 2.1: Strategy owchart of the FQ analysis part in this chapter. 

Linear: coherent HH-HV, coherent VV-VH and incoherent HH-VV 

Raw CirP : coherent RR-RL 

Raw CTLR : coherent RH-RV 

Reconstructed PQ: Full PQ, coherent PQ HH-VV, and PQHV 

Merged CP detector: RH-RV-PQHV 

This is a total of nine systems. We do not examine any of the observed single-pol 

systems as it has been reported in the literature to have the worst detection performance 

with respect to dual-pol and quad-pol systems [18, 19]. It is worth mentioning that in the 

FQ analysis part, the quad-pol detector is also used as a reference and is included in the 

performance comparison. However, in the RCM part, the quad-pol detector is not included 

in the comparison as the upcoming RCM provides only dual polarization on all low and 

medium resolution modes [80]. This is to provide wide swath width to be suitable for 
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Figure 2.2: Strategy owchart of the RCM analysis part in this chapter.� 
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maritime surveillance applications. Moreover, in the RCM analysis part, one should note 

that the HH-VV con�guration is not available in the RCM Ship Detection imaging mode, 

however only in the Medium and Low Resolution modes. 

Ship Orientation Impact on Ship Detection 

It is anticipated that the orientation of the ships with respect to the radar range direction 

might a�ect the detector performance. Higher performance (lower PMD) is expected for 

ship orientations of 90� and, to a lesser extent, 0� . At 90� , the ship is broadside to the 

radar range direction and o�ers the largest surface area facing the radar. At this angle, the 

hull and superstructure should generate a signi�cant amount of double bounce and a higher 

radar cross section, thus a lower PMD [81]. At 0� , the ship o�ers the smallest surface area 

but its superstructure should also be roughly perpendicular to the range direction and it is 

expected to see a slightly lower PMD than at other orientations [81]. At all other angles, 

one would expect the radar pulse to be reected away from the radar. Thus we are looking 

for enhanced performance (lower PMD) at 0� and 90� . So, in this study the impact of ship 

orientation on the detection performance is explored. The orientation relative to the range 

direction is measured, with 0� being parallel to the range direction. However, the bow from 

the stern could not be discriminated so, 0� is equivalent to 180� and 90� (perpendicular to 

the range direction and parallel to the azimuth direction) is equivalent to 270� . We also 

assume azimuthal symmetry, so 45� is equivalent to 135� . Thus, the angles are measured 

between 0� and 90� . The orientation of a ship is approximated to be included in one of �ve 

categories (0� ; 30� ; 45� ; 60� or 90� ). In order to assess the impact of ship orientation on the 

detection performance numerically, we compute what we call the "the Number of Lowest 

PMD Occurrence Percentage { NLPOP". The NLPOP can be de�ned as: 

Number of times the lowest PMD occurs at a speci�c orientation category 
NLPOP = �100% 

Number of detectors � Number of beams 
(2.16)� 
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Incidence Angle Impact on Ship Detection� 

In this chapter, the impact of incidence angle on the ship detection performance is investi<

gated as well. For this study, scenes acquired by �ve beams (B) are used. Each beam has a� 

speci�c incidence angle range as follows :� 

B2 : 19.77� - 21.78� .� 

B4 : 22.16� - 24.08� .� 

B8 : 26.88� - 28.71� .� 

B12 : 31.34� - 33.03� .� 

B21 : 40.17� - 41.61� .� 

For this study, 125 ships from all scenes acquired by these beams as depicted in Table 2.1� 

are identi�ed. These ships have veri�ed positions from the Automatic Identi�cation System� 

data distributed with SAR data. Rather than reporting the detection results for all 125� 

ships, we summarize detection results for all ships at a particular orientation by reporting� 

the median PMD and indicate the number of ships used for the calculation. The median is� 

used since the sample sizes are small and the median is less a�ected by outliers [81].� 

2.2.4 LRT Ship Detection Algorithm 

In the LRT detection algorithm, a decision variable is calculated using the Neyman-Pearson 

criteria [16, 19]. The decision variable (L) is formed from the ratio of ship and ocean 

probability density function values at each pixel in the scene. Under the assumption of 

Gaussian statistics for ships and ocean scattering components, the decision variable is given 

by:� 8 
><� 

9 
>=�> � for a ship� 

L = X H C�1 
o X =� (2.17)�

>:� >;�� � for ocean� 

where X is the scattering vector of the SAR system, Co = E(X oX o
H ) is the ocean covari<

ance matrix calculated for a region of the ocean and E(�) is the expectation operation over 

that region of the image, � is a threshold. 
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As in Eqn. 2.17, if the decision variable of the pixel is above the threshold, the pixel is 

considered from a ship. Otherwise, it belongs to the ocean. 

Equation 2.17 is used for the determination of the decision variable for the coherent dual-

pol systems (Quad-pol, LP, Cirp and CTLR) using appropriate de�nitions of the scattering 

vector X and the covariance matrix for each system. For the single-pol system the decision 

variable reduces to 

jSi;j j2 

L = (2.18)
E(jSi;j j2)o

where Si;j is the scattering element of the single-pol system with i transmit and j receive 

polarization. 

The decision variable for the RH-RV-PQHV hybrid system is developed by merging the 

decision variable of the coherent CTLR (RH-RV) system with the single-pol PQHV as in 

Eqn. 2.19. This system is called the merged CP detector. 

jSP QHV j2 

L = X H Co 
�1 X + (2.19)

E(jSP QHV j2 
o) 

where, Co is the 2 � 2 ocean covariance matrix of the RH-RV coherent system and X = 

[SRH SRV ] is the scattering vector of the CTLR system. 

For the PQ data, one should recall that the reconstruction algorithm can only reproduce 

the amplitude of the two co-pol components, their relative phase and only the HV amplitude. 

In this situation, it is considered that the full PQ system is composed of two systems: the 

HH-VV coherent dual-pol system and the HV single-pol system. The decision variable for 

this system can be then formulated by merging the decision variable of the coherent dual-pol 

system and that of the single-pol system [81] as in Eqn. 2.19 with using the scattering vector 

of the PQ HH-VV system, i.e. X = [ SP QHH SP QV V ]. 

After the calculation of the decision variable for all pixels in the image, the decision 

variable is compared to a threshold for ship detection. This threshold is speci�ed at a 

desired PFA. If the decision variable exceeds the threshold, the pixel is a ship; otherwise it 
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is ocean.� 

Before applying the LRT detector on the LP, CirP and the CTLR data, the data are 

spatially averaged with a 3 � 3 boxcar �lter. The averaging is performed on the Hermitian 

product of the scattering components (i.e. Si :Sj 
� ) used in calculating the decision variable 

for each SAR system and not on the complex scattering components. This is done to achieve 

a fair comparison with the PQ data since the reconstruction algorithm operates on the 

spatially averaged CTLR covariance matrix (which is averaged with same 3� 3 boxcar �lter) 

to produce the PQ data. 

2.2.5 Detection Performance Assessment 

In this study, the detection performance of the LRT algorithm is reported using two ap<

proaches. The �rst approach is the ROC curves. The ROC curve is a relation between the 

probability of missed detection (PMD) and the probability of false alarm (PFA) at various 

threshold values [19], [74]. 

To compute the PFA, a subset of the ocean with no targets is selected. Then the deci<

sion variables for each pixel in the selected ocean-only region are calculated. The decision 

variables are compared to a set of thresholds. For each threshold, if the decision variable is 

larger than the threshold, the pixel is considered a false alarm. To form the PFA at each 

threshold, the number of false alarms is divided by the total number of selected ocean pixels 

as in Eqn. 2.21. 

For the same set of thresholds, the probability of detection (PD) values are computed as 

follows: �rst, one ship is selected from the image and the decision variable for each ship pixel 

is compared to the threshold. When the decision variable is higher than the threshold, the 

pixel is considered a detected pixel. The PD is computed by dividing the number of detected 

pixels by the total number of ship pixels and the PMD is calculated using Eqn. 2.20. 

For the generation of the ROC curves, the thresholds can be set arbitrarily. In this study, 

all distinct values of ocean decision variables are used as thresholds. The PFA and the PMD 
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are calculated at each threshold value and the ROC is then generated using the (PFA, PMD)� 

pairs. 

P MD = 1 � 
ND 

NS 
(2.20) 

P F A = 
NF A 

No 
(2.21) 

ND is the number of detected pixels, NS is the total number of a ship samples, NF A is 

the number of false alarms, and No is the total number of ocean samples in a speci�ed area. 

The second approach of detection performance assessment is taking a section of the ROC 

curve at a speci�ed PFA and record the corresponding PMD. The system with the lowest 

PMD is the one with the highest performance. 

2.3 Conclusion 

In this chapter, the methods used for the investigation of ship detection performance for a 

number of Radarsat-2 beam modes and SAR systems were introduced. Moreover, the data 

and study site were presented. This study is performed on SAR data with �ne, medium 

and low resolution. In this work, the ship detection performance of compact polarimetric 

SAR systems is compared to linear dual polarimetric and circular transmit- circular receive 

polarimetric SAR systems. The CP systems involved are in the form of the RH-RV SAR 

and the reconstructed quad-pol data from the CP SAR. The reconstruction is performed 

using Collins reconstruction algorithm which is reviewed in this chapter. The LRT detection 

algorithm is used for ship detection in the SAR data. The detection performance is assessed 

using the ROC curves and the PMD at a speci�c PFA. The impact of resolution, beam 

incidence angle and ship orientation on the detection performance is investigated. Results 

and conclusions of this study are presented in Chapter 3. 
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Chapter 3� 

Ship Detection Performance Analysis of Compact Polarimetric Data 

Results and Discussion 

In this chapter, the results of applying the strategy presented in Chapter 2 to investigate 

the ship detection performance of compact polarimetry SAR systems are introduced. After 

the results are discussed, conclusions are accordingly made. This chapter is organized as 

follows. Section 3.1 outlines the results of the study. This section includes two subsections: 

subsection 3.1.1 which introduces the study results of the FQ data and subsection 3.1.2 

which presents the results of the RCM data. Finally, section 3.2 concludes the �ndings of 

this chapter's work. 

3.1 Results 

3.1.1 Fine Quad Beam Mode Results 

The summarized detection performance results of the Fine Quad beam mode are presented 

in Table 3.1. The table shows the median PMD values for each SAR system (detector) 

at a PFA of 10�5 . The table is organized so that the �rst column lists the orientation of 

the observed ships in degrees measured from the range direction and the other columns 

represent SAR detectors. The remainder columns are divided into three sets separated by 

vertical lines. The �rst set is for the CP systems (RH-RV, RH-RV-PQHV, Full PQ, PQHH<

VV and PQHV). The second set is for the CirP (RR-RL) system and the third set is for the 

LP systems (HH-HV, VV-VH, HH-VV dual-pol and the quad-pol system). The table is also 

organized into �ve sections according to incidence angle, from the steepest incidence angle 

beam (B2: 19:77� � 21:78� ) at the top to the shallowest beam (B21: 40:17� � 41:61� ) at the 
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bottom. Each beam section contains ships identi�ed in all scenes acquired with that beam.� 

Within each section, the rows refer to ships at a particular orientation category, from 0� at 

the top to 90� at the bottom. At each orientation, table entries refer to the median PMD 

taken over the number of ships belong to that orientation. The last row of each section refers 

to median PMD taken over all the ships in all scenes of that beam. The lowest PMD (best 

performance) is shaded in dark grey. In cases where the lowest PMD was achieved with the 

quad-pol data, the next lowest non-quad-pol detector is shaded in dark grey. Detectors with 

performance within 0.02 of the lowest PMD are shaded with lighter grey. As mentioned 

previously, we expect enhanced performance (lower PMD) at 0� and 90� . So, the lowest 

PMD results per each SAR detector are indicted in bold face font as evidence of this e�ect. 

The discussion in this section has three sides : 

A. the e�ect of incidence angle on ship detection performance of SAR detectors. 

B. the impact of ship orientation on the detectability of ships. 

C. A comparison between the CP, CirP and LP systems detection performance. 

A. Incidence Angle Impact 

The �rst discussion is the performance of the detectors as the incidence angle increases from 

B2 to B21, an increase in the incidence angle of almost 22� . This relation can be seen clearly 

from Figure 3.1 which depicts the relationship between the overall median PMD over all 

ships per each beam at PFA of 10�5 for all detectors and the mean incidence angle for the 

available beam modes (B2-B21). 

For CP detectors, it is found that the PQHV detector performance uctuates at low 

incidence angles and then the performance improves as the incidence angle increases with 

a spike in its weakest performance at B4 and the best detection performance at B21. For 

the merged CP detector, the performance remains steady between B2 and B4 and then 

it improves with the best performance occurring at B21. For the CirP and all other PQ 

detectors, the detection performance improves as the incidence angle increases and its best 
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Figure 3.1: Fine Quad beam mode : overall median PMD for all ships within each beam at 
PFA of 10�5 for all CP, CirP and LP detectors as a function of the mean incidence angle (� ) 
at the range (19:78� � 41:61� ). It is obvious that the strongest performance occurs at the 
shallowest incidence angle (B21) and the weakest performance occurs either at B2 or B4. 
However, the detection performance generally improves as the incidence angle increases for 
all detectors. 

performance occurs at B21. The detection performance of the quad-pol detector improves 

gradually with the increase of the incidence angle. The LP HH-VV and LP VV-VH detectors 

performance improves between B2 and B4 and then uctuates between B4 and B12. For the 

LP HH-VV, the performance then improves at B21 while for the LP VV-VH, the performance 

remains nearly steady between B12 and B21. For the LP HH-HV, the detection performance 

slightly deteriorates between B2 and B4 and then it improves with incidence angle increase. 

However, it is obvious that the detection performance generally improves as the incidence 

angle increases for all detectors with the strongest performance occurs at the shallowest 

incidence angle (B21). 
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B. Ship Orientation Impact� 

In order to shed light on the e�ect of ship orientation on the detection performance, the 

lowest PMD value of each detector is indicated in bold face font in Table 3.1. This is done at 

each incidence angle range (beam). We notice that the best performance at shallow incidence 

beams (B12, B21) occurs at the 0� orientation while for steep incidence bems (B2, B4), the 

lowest PMD mostly occurs at 90� orientation. 

We can see that the NLPOP at the 90� orientation is 24% while the lowest PMD occurs 

at the 0� orientation for about 50% of the cases. This means that the lowest PMD still 

occurs at either 90� or the 0� orientations for about 74% of the cases as expected. For the 

remaining 26% of the cases, the lowest PMD occurs at other orientation angles without a 

clear trend. 

C. Detection Performance of SAR Systems 

Now we come to the comparison of the LP, CirP, PQ and CTLR detectors performance. 

For the steepest B2 beam, the highest median performance over all ships is achieved by 

the quad-pol detector followed by the PQHV and then the merged CP detector. However, 

over the various orientations, the best performance swings between the CP detectors with 

the merged CP detector is the best non quad-pol detector for 3 out of the �ve orientation 

categories. For the B4 beam, the overall best performance is occupied by either the LP 

HH-HV or LP VV-VH dual-pol over the orientation categories except for 0� where the best 

performer is the CirP detector. For the B8 beam mode, the best performance is for the 

PQHV at most orientations and over all ships within this beam followed by the merged CP 

detector. At the B12 beam, the best detector at all the orientations except two and over all 

ships is the quad-pol detector. At 0� orientation, the PQHV is the best detector followed 

closely by the merged CP detector. At 90� orientation, the native CTLR detector has the 

highest performance followed by the quad-pol. Over all ships in this beam, the highest 

performance is for the quad-pol followed by the merged CP detector. For the B21 beam, 
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Table 3.1: Fine Quad beam mode: median probability of missed detection (PMD) for sev<
eral ships at a �xed probability of false alarm (PFA) of 10�5 . The leftmost column is the 
orientation of the observed ship in degrees measured from the range direction of the radar, 
i.e. if the ship is oriented along the range direction, its orientation is 0� , while if it is oriented 
along the satellite track, its orientation is 90� . The orientation angles are subscripted with 
the number of ships used in the estimate. The lowest PMD (best performance) is shaded in 
dark grey. In cases where the lowest PMD was achieved with the quad-pol data, the next 
lowest non-quad-pol detector is shaded in dark grey. Detectors with performance within 0.02 
of the lowest PMD are shaded with a lighter grey. For each SAR detector, the lowest PMD 
is indicated with bold face font. The last row in each section is the overall median taken 
over the total number of ships within this beam (Tot.). 

B2 19:78 � � 21:78 � 

Ship 
Orient n (deg) 

PQHV RH-RV/
PQHV 

RH-RV Full PQ PQHH-VV RR-RL HH-HV VV-VH HH-VV Quad-pol 

04 0.296 0.273 0.346 0.367 0.504 0.358 0.282 0.376 0.854 0.217 
307 0.466 0.433 0:517 0:449 0.511 0.464 0.615 0.589 0.807 0:433 
457 0:487 0.603 0.626 0.603 0.639 0.628 0.613 0.641 0.950 0.592 
603 0.627 0:594 0.596 0.609 0:707 0.598 0.641 0.637 0.833 0:609 
902 0.415 0.216 0.183 0.192 0.190 0.184 0.355 0.514 0.479 0.226 
Tot. = 23 0.469 0.477 0.519 0.540 0.580 0.524 0.549 0.553 0.862 0.439 
B4 22:16 � � 24:08 � 

B8 26:88 � � 28:71 � 

03 0:302 0:290 0.377 0.341 0.377 0.372 0.403 0.396 0.620 0.323 
305 0.165 0.183 0.253 0.220 0.288 0.249 0.291 0.287 0.612 0.181 
455 0:301 0.295 0.328 0.318 0.363 0.338 0.369 0.364 0.671 0.315 
604 0.288 0.308 0.369 0.345 0.384 0.392 0.357 0.348 0.717 0:305 
905 0.271 0.281 0.338 0.323 0.356 0.336 0.385 0.383 0.697 0.296 
Tot. = 22 0:268 0:269 0.325 0.303 0.360 0.337 0.359 0.354 0.685 0:275 
B12 31:34 � � 33:03 � 

06 0.410 0.367 0.337 0.340 0.353 0.327 0.394 0.395 0.552 0.331 
309 0.624 0.467 0.431 0.476 0.476 0.466 0:275 0:272 0.755 0.359 
456 0.658 0.569 0.537 0.608 0.635 0.569 0:384 0.388 0.668 0.457 
608 0.510 0.502 0.467 0.541 0.558 0.496 0.244 0.245 0.714 0.372 
902 0.588 0.371 0.320 0.339 0.339 0.297 0:282 0:277 0.526 0.286 
Tot. = 31 0.544 0.479 0.453 0.487 0.501 0.463 0:286 0:290 0.622 0.359 

02 0.057 0.067 0.100 0.107 0.131 0.098 0.146 0.154 0.275 0.075 
301 0.323 0:329 0.339 0.350 0.388 0.324 0.371 0.377 0.490 0.315 
454 0:263 0.273 0.346 0.363 0.426 0.323 0.375 0.363 0.551 0.240 
602 0.310 0:227 0.251 0:219 0.239 0.276 0:219 0.230 0.634 0.185 
902 0.197 0.189 0.111 0.276 0.269 0.242 0.305 0.263 0.559 0.179 
Tot. = 11 0.259 0:198 0.265 0.294 0.322 0.249 0.282 0. 267 0.490 0.179 
B21 40:17 � � 41:61 � 

0.065 0.074 0.094 0.150 0.078 0.163 0.193 0.215 0.067 
0.152 0.160 0.217 0.280 0.183 0.177 0.200 0.420 0.113 
0.202 0.202 0.272 0.298 0:203 0.276 0.335 0.353 0.176 
0.127 0:139 0.164 0.207 0.144 0.181 0.188 0.299 0.122 
0.213 0:181 0.283 0.317 0.143 0.240 0.296 0.501 0.143 
0.138 0:140 0.209 0.254 0.143 0.211 0.272 0.380 0.118 

010 

308 

458 

605 

907 

Tot. = 38 

0.097 
0.208 
0.255 
0.158 
0.280 
0.177 
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the quad-pol detector is the highest performance detector aver all orientations except for 0� 

where the best performer is the merged CP detector. The best non quad-pol performer is the 

merged CP detector for all orientations except 90� where the CirP is the best non quad-pol 

performer. The quad-pol detector has the highest median PMD over all ships within this 

beam mode followed by the merged CP detector and then the CTLR detector. It is also 

noticed that the CirP detector has a close performance to the merged CP detector for all 

orientations except one and over all ships. 

Now the detection performance is discussed in terms of the overall median PMD as a 

function of the PFA for all ships in a speci�c beam mode regardless of their orientation angles 

for all LP, CirP and CP detectors. Figure 3.2 shows the overall median ROC curves for all 

ships in the �ve Fine Quad beam modes. In the ROC curves, the detector with lower median 

PMD has better performance (the lower the curve, the better the detector performance). 

For the B2 ROC curves in Figure 3.2, we notice that the PQHV detector outperforms all 

other detectors for PFA values up to 4 � 10�5 followed by the quad-pol detector. For lower 

PMD values, the quad-pol detector outperforms all other detectors followed by the PQHV 

performance and then the merged CP detector performance. The LP HH-HV and LP VV<

VH detectors perform better than the CTLR, the RR-RL and the Full PQ detectors for 

high PFAs. On the other hand, at lower PFAs, the performance of these detectors becomes 

comparable. The CirP and the CTLR CP detectors have comparable performance with the 

CirP performs slightly better for high PFA values. The worst detection performance over 

the entire PFA range is for the PQHH-VV detector. 

For the B4 beam ROC curves in Figure 3.2, we can see that for high PFA values, the 

best detector is the quad-pol followed so closely by both the LP HH-HV and the LP VV<

VH detector. At high PFAs, the PQHV and the merged CP detectors share nearly the 

same moderate performance while the PQHH-VV and the Full PQ detectors have lower 

performance. For low PFA values, we notice that the highest performance detectors are both 
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Figure 3.2: Fine Quad beam mode: overall median ROC curves for all ships with all 
orientations acquired by each of the incidence angle range for the Fine Quad beam imaging 
mode. Top left: B2 (19:77� � 21:78� ). Top right: B4 (22:16� � 24:08� ). Middle left: B8 
(26:88� � 28:71� ). Middle right: B12 (31:34� � 33:03� ). Bottom left: B21 (40:17� � 41:61� ). 
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the LP HH-HV and the LP VV-VH detectors followed by the quad-pol detector. The rest of 

the CP detectors (CTLR, PQHH-VV and merged CP detector) and the CirP detector have 

close detection performance except the PQHV detector which is the second worst performer 

for low PFA values. Clearly, the LP HH-VV occupies the worst performance over the entire 

PFA range. 

For the B8 beam, one can see from Figure 3.2 that the PQHV detector outperforms all 

other detectors over the entire PFA range followed closely by the quad-pol detector and then 

by the merged CP detector. The CTLR, CirP and the Full PQ detectors have intermediate 

performance and the PQHH-VV, LP HH-HV and LP VV-VH detectors share a moderate 

performance for high PFAs. The LP HH-VV is the worst detector over the entire PFA range. 

For the B12 beam, one can see that the quad-pol detector is the best detector over the 

entire PFA range. The merged CP detector has the second best performance for nearly 

the entire PFA range. The CTLR, the CirP and the PQHV detectors have a comparable 

performance that is better than that of the LP HH-HV and LP VV-VH for medium to 

low PFA values. The CirP detector has the third best performance for the PFA range from 

8� 10�5 to 10�3 and from 10�5 to 3� 10�6 . The LP HH-VV detector has the worst detection 

performance and the PQHH-VV detector has the second worst performance over the entire 

PFA range. 

For the B21 beam, the quad-pol detector has the best performance over the entire PFA 

range. The second best performance is shared by the native CTLR, the CirP and the 

merged CP detector for PFA values lower than 10�4 and up-to 10�5 . For higher PFAs, the 

CirP detector is the second best performer followed by both the CTLR and the merged CP 

detector. The PQHV detector performs better than the Full PQ detector for low PFAs while 

they have comparable performance for higher PFAs. The LP HH-VV is the worst detector 

followed by the LP VV-VH detector over the entire PFA range. 

To summarize, one can see that for low incidence angles (B2), medium incidence beams 
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(B8 and B12) and shallow incidence beam (B21), generating PQHV has an advantage for ship� 

detection as either the PQHV itself or when added to the native CTLR detector outperforms 

other detectors. For the B21 beam, we also see that the CTLR shares the merged CP detector 

best performance for low PFA. However, it is suggested that its performance deteriorates 

for PFA less than 10�5 while that of the merged CP detector will remain steady. Over all 

incidence angle categories, one can see that the CirP has a comparable performance to the 

CTLR. However, the CirP detector starts to have a higher performance for high PFA at 

the B12 and B21 beams. For B4, it is noticed that the LP detectors outperform all other 

detectors. So, generally, it is obvious that CP detectors, either raw CTLR or PQ detectors, 

outperform LP dual-pol detectors for medium to shallow incidence angles. 

3.1.2 RCM Results 

Here, the results of the detection performance of the RCM imaging modes are summarized 

in three tables, one table for each RCM mode: Table 3.2 for the Medium Resolution mode, 

Table 3.3 for the Low Resolution mode and Table 3.4 for the Ship Detection mode. These 

tables show the median PMD values for each SAR system (detector) at a PFA of 10�5 . Each 

table is organized so that the �rst column lists the orientation of the observed ships in degrees 

measured from the range direction, the last column shows the type of the system with the 

highest performance (H.Pr.){lowest PMD: LP, CirP or CP and the other columns represent 

SAR detectors. These columns are divided into three sets separated by vertical lines. The 

�rst set is for the CP systems (RH-RV, RH-RV-PQHV, Full PQ, PQHH-VV and PQHV). 

The second set is for the CirP system and the third set is for the LP systems (HH-HV, 

VV-VH, HH-VV) dual-pol system. Tables 3.2 and 3.3 only are organized into �ve horizontal 

sections according to the incidence angle range (the beam), from the steepest incidence 

angle beam (B2: 19:77� � 21:78� ) at the top to the shallowest beam (B21: 40:17� � 41:61� ) 

at the bottom. Each beam section contains ships identi�ed in all scenes acquired with 

that beam mode. Within each section, the rows refer to ships at a particular orientation 
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category, from 0� at the top to 90� at the bottom. At each orientation category, table 

entries refer to the median PMD taken over the number of ships with the corresponding 

orientation. The last row in each section refers to the median PMD taken over all the ships 

in all scenes of that beam mode. The lowest PMD (best performance) is shaded in dark 

grey. Detectors with performance within 0.02 of the lowest PMD are shaded with a lighter 

grey. As aforementioned, we expect enhanced performance (lower PMD) at 0� and 90� . So, 

the lowest PMD results per each SAR detector are indicted in bold face as evidence of this 

e�ect. Table 3.4 will be described later on in this chapter. 

The discussion in this section has three sides for each RCM beam mode: 

A. the e�ect of incidence angle on ship detection performance of SAR detectors. 

B. the impact of ship orientation on the detectability of ships regardless of the resolution of 

the beam mode. 

C. a comparison between the the CP, CirP and LP systems detection performance. 

Medium Resolution RCM Beam Mode Results 

A. Incidence Angle Impact 

The graphics in Figure 3.3 depict the relationship between the overall median PMD over 

all ships for each beam at PFA of 10�5 for each detector and the mean incidence angle for 

the available beam modes (B2-B21). This �gure shows that all dual-pol detectors have their 

weakest performance at the steepest incidence angle beam (B2). 

The weakest detector for this beam mode, and overall detectors, was the LP HH-VV de<

tector. These graphs show that detection performance increases (the median PMD decreases) 

as the incidence angle increases from the B2 (� = 20:78� ) beam to the B12 (� = 32:19� ) beam. 

The exception to this general observation is that the performance of the PQHV detector de<

teriorates slightly from beam B8 to B12. 
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Figure 3.3: Medium Resolution RCM mode : overall median PMD for all ships within each 
beam at PFA of 10�5 for all CP, CirP and LP detectors as a function of the mean incidence 
angle at the range (19:78� � 41:61� ). The �rst two rows show the plots for the CP and 
CirP detectors and the third row is for the LP detectors. It is clear that the detection 
performance generally improves as the incidence angle increases for all detectors with the 
strongest performance occurring at the shallowest incidence angle (B21) and the weakest 
performance occurring at the steepest incidence angle (B2). 

B. Ship Orientation Impact 

In order to shed light on the e�ect of ship orientation on the detection performance, the 

lowest PMD value for each detector is indicated in bold face font in Table 3.2, 3.3 and, 3.4. 

This is done for each incidence angle range. 

The e�ect of ship orientation on detection performance dos not show a clear trend for 

the two steepest beam modes. While several detectors have their strongest performance for 

ships at 90� at B2, several others have their strongest performance for ships at 45� . The 

situation is comparable at B4, except fewer have their strongest performance at 90� . At B8, 

every detector has their strongest performance at 0� , while at B12, every detector has their 

strongest performance at 90� . For the shallowest beam (B21), the lowest PMD occurs for 
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ships between 60� and 90� . 

The NLPOP at 90� orientation is 46.67% while the lowest PMD occurs at the 0� orien<

tation for 20% of the cases. This means that the lowest PMD still occurs at either 90� or 

0� orientations for about 66% of the cases in this RCM mode which is consistent with our 

expectations. 

For the remaining 34% of the cases, the lowest PMD occurs in 17.78% of the cases only at 

low incidence angle beams at 45� orientation. However, for the remaining cases, the lowest 

PMD occurs at either 30� or 60� orientation without any clear trend. 

C. Detection Performance of SAR Systems 

Table 3.2 shows that the performance of the CP, CircP, and LP detectors vary with ship 

orientation at incidence angles between 20� and 24� , and there is no clear advantage to CP 

over LP. At 27� incidence (B8), the reconstructed HV detector (PQHV) has the strongest 

performance, slightly better than when paired with the two raw CP channels. For the two 

steeper beams (B12 and B21), the raw CP channels have the strongest performance, and 

there is no advantage to performing the linear reconstruction, as neither the full PQ nor the 

addition of the reconstructed HV to RH-RV, improves the performance. Thus at incidence 

angle greater than 30� there is a clear advantage to the dual-pol CP polarization. 

Figure 3.4 provides the ROC curves for the �ve beam modes shown in Table 3.2. These 

graphs show the detection performance in terms of the overall median PMD as a function 

of the PFA for all ships within each beam for all orientation angles for each of the LP, CirP 

and CP detectors. For incidence angle between 20� and 24� (beams B2 and B4) we can 

see that there is a sharp drop in performance for the CP detectors between 10�3 and 10�4 

PFA. At the steepest beam (B2), below this performance drop, the highest performers are 

the reconstructed HV detector, the raw RH-RV and their combination. As the PFA drops, 

the performance of the PQHV detector deteriorates signi�cantly. The RH-RV detector, also 

deteriorates but remains stronger than all other detectors, except LP VV-VH. However, 
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Table 3.2: Medium Resolution RCM mode: median probability of missed detection (PMD) 
for several ships at a �xed probability of false alarm (PFA) of 10�5 . The leftmost column 
is the orientation of the observed ship in degrees estimated from the range direction of the 
radar. The orientation angles are subscripted with the number of ships used in the estimate. 
The lowest PMD (highest performance) is shaded in dark grey. Detectors whose performance 
is within 0.02 of the lowest PMD, are shaded in a light grey. Within each beam, the ship 
orientation that generated the lowest PMD is indicated with bold face font. The last row 
in each beam section is the overall median taken over the total number of ships within this 
beam (Tot.). 

19:78 � � 21 � 

Ship 
Orient n (deg) 

PQHV RH-RV/
PQHV 

RH-RV Full PQ PQHH-VV RR-RL HH-HV VV-VH HH-VV H.Pr. 

04 

307 

457 

603 

902 

0.774 
0.908 
0.640 
0.835 
0.903 

0.668 
0.845 
0.621 
0.872 
0.587 

0:679 
0.896 
0.583 
0.964 
0.583 

0.719 
0.896 
0.714 
0.998 
0.572 

0.765 
0.896 
0.721 
0.998 

0.573 

0.691 
0.896 
0.585 
0.963 
0.582 

0.745 
0.842 
0.613 
0.661 
0.658 

0.733 
0.745 
0.617 
0.661 
0.635 

0.958 
0.942 
0.987 
0.948 
0.727 

CP 
LP 
CP 
LP 
CP 

Tot. = 23 0.832 0.670 0.678 0.753 0.779 0.678 0.684 0.666 0.972 LP 
22:16 � � 24:08 � 

B8 : 26:88 � � 28:71 � 

03 

305 

455 

604 

905 

Tot. = 22 
B12 : 31:34 � � 33:03 � 

40:17 � � 41:61 �B21 : 

B2 : 

B4 : 
06 

309 

456 

608 

902 

0.565 
0.428 

0.409 
0.675 
0.633 

0.622 
0.456 
0.420 
0.706 
0:533 

0.647 
0.475 
0.445 
0.730 
0.536 

0.679 
0.529 
0.543 
0.757 
0.558 

0.707 
0.571 
0.584 
0.789 
0.563 

0.646 
0.484 
0.449 
0.731 
0.548 

0.625 
0.552 
0.603 
0.629 
0.543 

0.632 
0.552 
0.610 
0.624 
0.533 

0.778 
0.743 
0.806 
0.929 
0.747 

CP 
CP 
CP 
LP 

CP & LP 
Tot. = 31 0.470 0.481 0.518 0.575 0.624 0.545 0.570 0.570 0.823 CP 

0.260 0.277 
0.386 0.417 
0.468 0.488 
0.377 0.401 
0.391 0.422 
0.386 0.414 

0.350 
0.445 
0.529 
0.421 
0.466 
0.463 

0.375 
0.454 
0.525 
0.454 
0.472 
0.436 

0.411 
0.504 
0.562 
0.422 
0.510 
0.473 

0.415 
0.496 
0.531 
0.441 
0.478 
0.450 

0.470 
0.519 
0.540 
0.506 
0.559 
0.518 

0.482 
0.522 
0.559 
0.528 
0.563 
0.526 

0.613 
0.668 
0.749 
0.698 
0.694 
0.695 

CP 
CP 
CP 
CP 
CP 
CP 

02 

301 

454 

602 

902 

0.438 
0:528 
0.479 
0.403 
0.219 

0.400 
0.514 
0.456 
0.313 
0.211 

0.399 
0.506 
0.449 
0.305 
0.114 

0.444 
0.508 
0.486 
0.306 
0.301 

0.458 
0.538 
0.502 
0.312 
0.284 

0.496 
0.569 
0.534 
0.352 
0.293 

0.476 
0.544 
0.504 
0.333 
0.304 

0.537 
0.569 
0.532 
0.353 

0.324 

0.545 
0.629 
0.601 
0.623 
0.428 

CP 
CP 
CP 
CP 
CP 

Tot. = 11 0.427 0:387 0.378 0.416 0.427 0.455 0:452 0.518 0.588 CP 

010 

308 

458 

605 

907 

0.342 
0.334 
0.411 
0.317 
0.317 

0.293 
0.315 
0.385 
0.289 

0.261 

0.285 
0.311 
0.379 
0.278 
0.242 

0.365 
0.328 
0.426 
0.303 
0.318 

0.370 
0.333 
0.433 
0.303 
0.325 

0.292 
0.325 
0.399 
0.278 
0.256 

0.320 
0.356 
0.436 
0.306 
0.300 

0.361 
0.406 
0.500 
0.331 
0.429 

0.350 
0.393 
0.465 
0.345 
0.359 

CP 
CP 
CP 

CP & CirP 
CP 

Tot. = 38 0.350 0.316 0.309 0.376 0.389 0.346 0.387 0.414 0.423 CP 
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Figure 3.4: Medium Resolution RCM mode: overall median ROC curves for all ships with all 
orientations acquired by each of the incidence angle range for the simulated RCM Medium 
Resolution imaging mode. Top left: B2 (19:77� � 21:78� ). Top right: B4 (22:16� � 24:08� ). 
Middle left: B8 (26:88� � 28:71� ). Middle right: B12 (31:34� � 33:03� ). Bottom left: B21 
(40:17� � 41:61� ). 
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there is a suggestion that below a PFA of 10�5 , the LP VV-VH detector starts to weaken, 

while the RH-RV remains steady. The situation is very similar in the B4 beam, except that 

even after the drop in performance of these three detectors (PQHV, RH-RV, merged CP 

detector), they remain stronger than any of the others. At this slightly shallower incidence 

angle it appears there is some advantage in combining the RH-RV with the PQHV. 

The ROC curve for the B8 beam carries the same message as the tabulated results. 

The reconstructed HV detector has the strongest performance, slightly better than when 

in combination with RH-RV. For beam B12, the reconstructed HV detector is quite strong 

below a PFA of 10�3 . The RH-RV detector has slightly weaker performance with no apparent 

advantage of adding PQHV. For lower PFA values, the RH-RV detector and the merged CP 

detector share the best performance. At 41� (B21), the RH-RV detector has the highest 

performance for PFAs up to 10�3 , again, with no apparent advantage of calculating and 

adding the PQHV channel. On the other hand, for high PFA levels, adding the PQHV to 

the CTLR detector improves the detection performance. 

Low Resolution RCM Beam Mode Results 

A. Incidence Angle Impact 

Figure 3.5 shows how the overall median PMD for each detector changes a function of the 

imaging beam incidence angle in the range (19.75� � 41:61� ) for the RCM Low Resolution 

mode. At this lower resolution the behaviour of the CP/CirP and LP detectors is quite 

di�erent at the steeper incidence angles. The performance of the CP and CircP detector is 

similar at the two steepest incidence angle and then the performance improves signi�cantly 

at B8, while the performance of the three LP detectors shows a fairly strong performance 

gain between B2 and B4. With the exception of HH-VV, which again has the weakest 

performance over all the detectors, the detection performance does not improve between B8 

and B21, and in some cases, the performance actually deteriorates slightly. Thus, for the 

Low Resolution cases, the performance gains in observed ships at shallow incidence angles 
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Figure 3.5: Low Resolution RCM mode : overall median PMD for all ships within each beam 
at PFA of 10�5 for all CP and FP detectors as a function of the mean incidence angle at the 
range (19:78� � 41:61� ). The �rst two rows show the plots for the CP and CirP detectors 
and the third row is for the LP detectors. It is noticed that the performance improves from 
B2 to B8 however, the performance gains at shallow incidence angles are more modest than 
for Medium Resolution. 
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Table 3.3: Low Resolution RCM beam mode: median probability of missed detection (PMD) 
for several ships at a �xed probability of false alarm (PFA) of 10�5 . The leftmost column 
is the orientation of the observed ship in degrees estimated from the range direction of the 
radar. The orientation angles are subscripted with the number of ships used in the estimate. 
The lowest PMD (highest performance) is shaded in dark grey. Detectors whose performance 
is within 0.02 of the lowest PMD, are shaded in a light grey. Within each beam, the ship 
orientation that generated the lowest PMD is indicated with bold face font. The last row 
in each beam section is the overall median taken over the total number of ships within this 
beam (Tot.). 

B2 : 19:78 � � 21 � 

04 0.866� 
307� 

457� 

603� 0.759� 
902� 0.669 
Tot. = 23� 
B4 : 22:16 � � 24:08 �� 

Ship 
Orient n (deg) 

PQHV RH-RV/
PQHV 

RH-RV Full PQ PQHH-VV RR-RL HH-HV VV-VH HH-VV H.Pr. 

0.839 0.840 0.849 0.863 0.875 0.884 0.881 0.996 CP 
0.810 0.811 0.811 0.838 0.846 0.811 0.905 0.909 1.00 CP 
0.829 0.847 0.847 0.873 0.891 0.847 0.889 0.886 1.00 CP 
0.721 0.726 0.758 0.790 0.802 0.948 0.962 1.00 CP 
0.636 0.645 0.667 0.697 0.709 0.855 0.861 0.910 CP 
0.803 0.804 0.811 0.831 0.858 0.811 0.896 0.887 1.00 CP 

06 

309 

456 

608 

902 

0.763 
0.808 
0.715 
0.810 
0.786 

0.787 
0.774 
0.722 
0.936 
0.637 

0.823 
0.741 
0.764 
0.940 
0.635 

0.825 
0.806 
0.812 
0.953 
0.635 

0.825 
0.808 
0.821 
0.962 

0.630 

0.808 
0.741 
0.763 
0.940 
0.636 

0.717 
0.803 
0.691 
0.669 
0.652 

0.685 
0.803 
0.710 
0.668 
0.641 

0.759 
0.809 
0.853 
0.921 
0.689 

LP 
CP 
LP 
LP 
CP 

Tot. = 31 0.771 0.791 0.805 0.818 0.818 0.805 0.715 0:693 0.838 LP 

03 

305 

455 

604 

905 

0.510 
0.549 
0.616 
0.579 
0.498 

0.545 
0.574 
0:610 
0.613 
0.517 

0.577 
0.620 
0.643 
0.638 
0.560 

0.587 
0.610 
0.627 
0.626 

0.575 

0.607 
0.631 
0.661 
0.646 
0.596 

0.627 
0.648 
0.685 
0.659 
0.589 

0.669 
0.664 
0.716 
0.756 
0.629 

0.665 
0.651 
0.719 
0.748 
0.644 

0.759 
0.836 
0.873 
0.881 
0.739 

CP 
CP 
CP 
CP 
CP 

Tot. = 22 0.538 0.572 0.603 0.599 0.617 0.622 0.673 0.667 0.848 CP 

02 

301 

454 

602 

902 

0.614 
0.694 
0.627 
0.543 
0.396 

0.594 
0.686 
0.612 
0.485 
0.383 

0.597 
0.688 
0.620 
0.490 

0.182 

0.613 
0.703 
0.652 
0.474 
0.443 

0.615 
0.703 
0.688 
0.485 
0.435 

0.644 
0.688 
0.633 
0.519 
0.417 

0.663 
0.703 
0.667 
0.520 
0.446 

0.713 
0.718 
0.687 
0.537 
0.475 

0.788 
0.725 
0.729 
0.738 
0.549 

CP 
CP 
CP 
CP 
CP 

Tot. = 11 0.581 0.565 0.586 0.604 0.612 0.608 0.614 0.643 0.717 CP 

26:88 � � 28:71 � 

B12 : 31:34 � � 33:03 � 

40:17 � � 41:61 � 

B8 : 

B21 : 
010 

308 

458 

605 

907 

0.594 
0.595 
0.641 
0.612 
0.469 

0.565 
0.567 
0.611 
0.538 
0.434 

0.569 
0.579 
0.607 
0.534 
0.425 

0.609 
0.605 
0.644 
0.596 
0.490 

0.619 
0.621 
0.650 
0.594 
0.490 

0.564 
0.597 
0.632 
0.524 

0.452 

0.573 
0:613 
0.648 
0.512 
0.514 

0.620 
0.641 
0.684 
0.637 
0.629 

0.617 
0.647 
0.660 
0.542 
0.551 

CP 
CP 
CP 
LP 
CP 

Tot. = 38 0.598 0:574 0.577 0.614 0.629 0.581 0.603 0.637 0.651 CP 

are more modest than for Medium Resolution. Nevertheless, there is still a clear advantage 

in observed ships at incidence angles at a minimum of 28� . 

B. Ship Orientation Impact 

In this beam mode, by calculating the percentage of the cases in which the lowest PMD 

occurs at each orientation angle (the NLPOP), it has been found that for 91.11% of the 

cases, the lowest PMD occurs at the 90� orientation. In about 2.22% of the cases (one case 

only), the lowest PMD occurs at the 0� orientation while in the rest of the cases, the lowest 
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PMD occurs at the other orientations without clear trend.� 

C. Detection Performance of SAR Systems 

In this low resolution RCM mode, one can see from Table 3.3, that the detection performance 

is slightly more variable than in the Medium Resolution data. For the Low Resolution data, 

the strongest detector for the B2 and B8 beams is the PQHV. The B4 beam had variable 

results with the standard linear dual-pol detectors have generally stronger performance than 

the CirP and CP detectors. 

For the two shallower beams, the results are more variable than in the Medium Resolution 

case, but the trend is similar. The raw RH-RV detector with and without the combination 

of the reconstructed HV has the strongest performance. It is also noticed that the highest 

performance over all beams occurs at B8 by the PQHV detector. Adding PQHV to the 

RH-RV data seems to strengthen the detector more for low resolution data. Overall, the CP 

detectors signi�cantly outperform the linear dual-pol and the CirP detectors as was the case 

in the Medium Resolution data. 

Figure 3.6 shows the ROC curves for the �ve beams simulated in the RCM Low Resolution 

mode, and allows us to explore the detection performance as a function of the PFA. For the 

lowest incidence angle, B2, one can see that the PQHV has the strongest performance for all 

PFAs, except for a section where the combination with RH-RV is an advantage. This is the 

case with the B8 beam as well - the PQHV detector had the strongest performance across 

all levels of PFA. 

The B4 results seem to be an anomaly. The performance of the CP detectors is strong 

up to a PFA of 10�4 , after which they deteriorate signi�cantly. For lower PFA levels, at this 

incidence, the two coherent linear dual-pol detectors have the strongest performance. 

For the two shallow beams the raw RH-RV detector, with and without PQHV, has the 

strongest performance across all levels of PFA. It appears that at the lowest PFA, the RH<

RV detector begins to fall o�, and the addition of PQHV maintains the strength of this 
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Figure 3.6: Low Resolution RCM beam mode: overall median ROC curves for all ships with 
all orientations in all scenes of each of the incidence angle range for the simulated RCM Low 
Resolution imaging mode. Top left: B2 (19:77� � 21:78� ). Top right: B4 (22:16� � 24:08� ). 
Middle left: B8 (26:88� � 28:71� ). Middle right: B12 (31:34� � 33:03� ). Bottom left: B21 
(40:17� � 41:61� ). 
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Table 3.4: Ship Detection RCM mode (Beam B21 only): median probability of missed 
detection (PMD) for several ships at a �xed probability of false alarm (PFA) of 10�5 . The 
leftmost column is the orientation of the observed ship in degrees estimated from the range 
direction of the radar. The orientation angles are subscripted with the number of ships used 
in the estimate. The lowest PMD (best performance) is shaded in dark grey. Detectors with 
performance within 0.02 of the lowest PMD are shaded with a lighter grey. For each SAR 
detector, the lowest PMD is indicated with bold face font. The last row is the overall median 
taken over the total number of ships within this beam (Tot.). 

Ship 
Orientn (deg) 

PQHV RH-RV;
PQHV 

RH-RV Full PQ PQHH-VV RR-RL HH-HV VV-VH H.Pr. 

B21 : 40:17� � 41:61� 

010 0.326 0.183 0.167 0.196 0.221 0.200 0.248 0.339 CP 
308 0.672 0:465 0.442 0.398 0:410 0.544 0.584 0.770 CP 
458 0.706 0:364 0.344 0.337 0.341 0.405 0.542 0.888 CP 
605 0.445 0.325 0.321 0.363 0.384 0.361 0.373 0.457 CP 
907 0.456 0:363 0.305 0.365 0.365 0.352 0.503 0.589 CP 

Tot. = 38 0.476 0.292 0.274 0.319 0.332 0.329 0.393 0.526 CP 

detector. However, overall one can see that the CP detectors outperform the linear-pol and 

CirP detectors for the Low Resolution data. 

Ship Detection RCM Beam Mode Results 

As indicated in Sec. 4.1, the RCM Ship Detection mode will cover the incidence angle range 

36� � 51� . In this study, this mode is only simulated for the scenes acquired by the B21 

beam (40:17� � 41:61� ). Therefore, for this RCM mode, it is not possible to investigate the 

impact of incidence angle on detection performance. Table 3.4 shows the median PMD value 

at a PFA of 10�5 for all CP detectors, the CirP detector, and the LP HH-HV and the LP 

VV-VH only. 

The native RH-RV detector has the strongest performance over most orientation angles 

and has the strongest median performance over all ships within the four scenes. There is no 

apparent advantage in adding the PQHV channel to this detector. For the two intermediate 

ship orientation angles of 30� and 45� , the Full PQ detector has the strongest performance, 

although in the latter case the RH-RV detector was within 2%. 
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Figure 3.7: RCM Ship Detection mode (Beam B21 only): overall median ROC curves for all 
ships with all orientations. 

In order to investigate the impact of ship orientation on the detection performance, we 

can see that for all detectors, the lowest PMD value occurs at the 0� orientation which 

means that the NLPOP = 100% for this category. This opposes what was found in the Low 

Resolution mode where the 90� orientation has the highest NLPOP. This can be interpreted 

again on the light of the fact that the range pixel spacing of the Ship detection mode is 

the least in all modes. Thus, ships with 0� orientation have the largest number of pixels in 

the range direction which gives less chance of missed detection and hence lower PMD values 

than other orientations. 

The ROC curves shown in Figure 3.7 mirror the Medium and Low Resolution results. 

The RH-RV detector has the strongest performance across all levels of PFA, followed closely 

by RH-RV-PQHV. It appears from the ROC curves that the performance of all detectors is 

weakening as the PFA decreases, except the RH-RV and RH-RV-PQHV, whose performance 

seems to be relatively constant after PFA of 10�4 . In general, the CP detectors are all 
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stronger than the linear dual-pol and RR-RL detectors.� 

3.1.3 Discussion 

Table 3.5 summarizes the median detection performance over all ship orientations. The 

e�ect of ship orientation on detection performance is �rst summarized. For the FQ beam 

mode, the e�ect of ship orientation is variable with NLPOP of 24% for 0� mostly occurred 

at incidence angle ranges between 32� and 41� and 50% for 90� mostly occur between the 

two steep incidence angle beams B2 and B4. For the Ship Detection Mode at B21, there is 

signi�cantly enhanced performance at 0� , for all detectors. For Low Resolution mode, for 

all detectors and all incidence angles there is enhanced detection at 90� , with an NLPOP of 

91%. The e�ect of ship orientation on Medium Resolution is more variable. For the shallow 

beams - incidence angles between 32� and 41� { detection performance is enhanced at 90� 

orientation, with some enhancement at the shallowest beam at 60� . At B8, all detector had 

enhanced detection at 0� . At the two steepest beams, the performance is more variable, with 

half the detectors having their lowest PMD at 90� , and the rest at intermediate orientation 

angles. The NLPOP with this imaging mode is 90� :46.67%; 0� : 20%; and intermediate 

angles: 34.33%. In general, it has been found that, for all modes, the best performance 

occurs at either 0� or 90� orientation for more than 66% of the cases. 

The e�ect of ship orientation on ship detectability has been pointed out by many papers 

[84] - [87]. Margarit and his colleagues have integrated detailed ship and sea surface scattering 

models with a SAR simulation system (called GRECOSAR) that can model polarimetric 

backscatter as a function of the dynamic three-dimensional ship orientation [86, 87]. They 

note that the di�erent polarimetric scattering mechanisms are mixed at spatial resolutions 

comparable to Radarsat-2 FQ and that the polarimetric backscatter, in this case, is very 

sensitive to incidence angle and orientation [86, 87] . Our results con�rm that the ship 

orientation has a clear impact on the performance of the LRT detector. 

Second we discuss the e�ect of incidence angle. The general trend is that as the incidence 
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Table 3.5: Summary of detection performance results.� 
RCM Mode PQHV RH-RV/

PQHV 
RH-RV Full PQ PQHH-VV RR-RL HH-HV VV-VH HH-VV H.Pr. 

B2 : 
Fine Quad 

Low 
Medium 

0.469 
0.803 
0.832 

0.477 
0.804 
0.670 

0.519 
0.811 
0.678 

0.540 
0.831 
0.753 

0.580 
0.858 
0.779 

0.524 
0.811 
0.678 

0.549 
0.896 
0.684 

0.553 
0.887 
0.666 

0.862 
1.00 

0.972 

CP 
CP 
LP 

B4 : 
Fine Quad 

Low 
Medium 

0.544 
0.771 
0.470 

0.479 
0.791 
0.481 

0.453 
0.805 
0.518 

0.487 
0.818 
0.575 

0.501 
0.818 
0.624 

0.463 
0.805 
0.545 

0:286 
0.715 
0.570 

0:290 
0:693 
0.570 

0.622 
0.838 
0.823 

LP 
LP 
CP 

19:78 � � 21 � 

22:16 � � 24:08 � 

26:88 � � 28:71 � 

B12 : 31:34 � � 33:03 � 

40:17 � � 41:61 � 

B8 : 
Fine Quad 

Low 
Medium 

0:268 
0.538 
0.386 

0:269 
0.572 
0.414 

0.325 
0.603 
0.463 

0.303 
0.599 
0.436 

0.360 
0.617 
0.473 

0.337 
0.622 
0.450 

0.359 
0.673 
0.518 

0.354 
0.667 
0.526 

0.685 
0.848 
0.695 

CP 
CP 
CP 

Fine Quad 
Low 

Medium 

0.259 
0.581 
0.427 

0:198 
0.565 
0:387 

0.265 
0.586 
0.378 

0.294 
0.604 
0.416 

0.322 
0.612 
0.427 

0.249 
0.608 
0.455 

0.282 
0.614 
0:452 

0. 267 
0.643 
0.518 

0.490 
0.717 
0.588 

CP 
CP 
CP 

B21 : 
Fine Quad 

Low 
Medium 

Ship Detection 

0:268 
0.598 
0.350 
0.476 

0:269 
0:574 
0.316 
0.292 

0.325 
0.577 
0.309 
0.274 

0.303 
0.614 
0.376 
0.319 

0.360 
0.629 
0.389 
0.332 

0.337 
0.581 
0.346 
0.329 

0.359 
0.603 
0.387 
0.393 

0.354 
0.637 
0.414 
0.526 

0.685 
0.651 
0.423 

-

CP 
CP 
CP 
CP 

angle increases, the detection performance increases. For the FQ mode, it is noticed that 

the performance is enhanced from B2 to B21 for all detectors except for the LP VV-VH and 

LP HH-VV. These two detectors su�er from deteriorated performance between B4 and B8. 

Between B2 and B4, the detection performance is enhanced for all detectors except for the 

PQHV and the LP HH-HV. For the RCM modes, it has been mentioned earlier that the 

performance gain between the two steepest beams is relatively modest for Low Resolution. 

In addition, for a few of the Low Resolution detectors, the performance deteriorates slightly 

as the incidence angle increased from B12 to B21. For example, the strongest Low Resolution 

detector over all beams (RH-RV-PQHV), is at B12. This is not the case for the Medium 

Resolution detectors whose performance increases steadily from B2 through to B21. 

As expected, the detection performance increases with spatial resolution. Within each 

beam, the performance of FQ mode outperforms all RCM modes. Among all RCM modes, 

the performance of the Medium Resolution is signi�cantly stronger than the Low Resolu<

tion. And with two exceptions, the Ship Detection Mode has stronger performance than 

the Medium Resolution. The highest detection performance across all beams and spatial 

resolutions is the FQ mode followed by the Ship Detection RCM mode at B21, as expected. 

It is worth mentioning that the performance of the RH-RV detector of the Ship Detection 

and Medium Resolution modes is close to that of the PQHV detector of the FQ mode at 
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B21.� 

Ship detection performance reported by Vachon et al. [29], using Radarsat-1 data, and 

Askari and Zerr [35], using ERS ScanSAR data, with �ne and low resolution, demonstrate 

that shallow incidence angle beams are preferable for ship detection, due to high ship/sea 

contrast. These studies also �nd that ship detection performance is higher for �ne beam 

modes, due to their large incidence angle and higher resolution, than the lower resolution 

ScanSAR data. Our results are consistent with all these �ndings in terms of e�ect of both 

resolution and incidence angle on detection performance. 

In general, it is found in this study that the detection performance of the CP detectors 

to be stronger than the standard linear dual-pol detectors. In all but three cases, the 

strongest detector for each beam/resolution is a CP detector. At the three steepest beams 

between 20� and 28� , the strongest performer is the PQHV detector. At the two shallowest 

beams, the strongest performer for the Medium and Ship Detection resolutions, is the RH<

RV detector. For Low Resolution at these incidence angles and for the FQ mode at B12 

(32� ), the performance of this detector is enhanced slightly by adding PQHV. For the FQ 

mode at B21 (40� ), the strongest performance is for the PQHV followed by the merged CP 

detector. 

As there are no published analyses of ship detection performance with simulated RCM 

data, this study results are compared to other SAR systems. Liu and Meek [16] used CP data, 

simulated from a single Radarsat- 2 Fine Quad (Beam 4) scene, for ship detection. Although 

they do not reconstruct PQ data for the purpose of ship detection, they use the raw CTLR 

CP data to compare the detection performance of the ship detection LRT algorithm [16] 

with quad-pol, jHH/HVj and HH. The detection performance analysis is carried out on eight 

ships by plotting the ROC curves for these ships. For �ve of the eight cases studied, the 

simulated CTLR system provided improved performance over the jHH/HVj system. For the 

other three cases, the jHH/HVj system has a slightly higher performance than the CTLR 
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system. Our results agree with Liu's in that, for the FQ and all RCM modes at B4 beam, the 

CTLR performs better for some orientation categories while for the others, the LP HH-HV 

performs better than the CTLR. A single paper is found in the literature that generates PQ 

data and compares the ship detection performance of the PQ data with quad-pol data using 

ROC approach as in the current study [66]. Yin et. al [66] generate two ROC curves for two 

di�erent data sources: JPL AIRSAR and SIR-C, presumably based on two individual ships. 

The ROC curves show the detection performance of the original quad-pol data, PQ data 

based on their re�ned algorithm, PQ data based on the original Souyris algorithm and the 

compact polarimetry data (in their case he simulated �=4 data). They do not explain how 

the LRT was implemented in these cases, thus it is not known whether the two PQ cases 

and the CP case are amplitude-only or if they are a sum of a coherent HH/VV and jHV j. 

Finally, it is not mentioned in that paper what the incidence angles of the imaging beams 

nor the orientation of the two ships were. In both cases, the quad-pol detectors outperform 

the PQ and CP detectors. For the AIRSAR case, the PQ and CP detectors have comparable 

performance while in the SIR-C case, the CP detector have much higher performance than 

the PQ case. Thus, although, they used �=4 con�guration, our results are consistent with the 

Yin results in that detectors based on the coherent dual-pol compact polarimetry data have 

higher performance than those based on the full set of quad-pol covariance matrix elements 

reconstructed from the CP data. 

3.2 Conclusion 

In this chapter, an investigation of ship detection performance was introduced for a number 

of Radarsat-2 beam modes; the Fine Quad mode and three simulated Radarsat Constellation 

Mission modes with di�erent resolution. The investigation of ship detection performance for 

the simulated dual-pol RCM data is the �rst in the literature. In this study three wide 

swath imaging modes that will be available on RCM imaging radars are examined: Low 
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Resolution, Medium Resolution, and Ship Detection. The focus of this study was on dual-

polarization image data, as these provide a balance between multiple polarization and wide 

swath imaging. 

In this work, the detection performance was assessed in terms of the median probability 

of missed detection (PMD) for each system calculated over a number of ships spread over 

the available scenes as a function of the probability of false alarm (PFA) and at speci�c 

PFA value. It has been found that, at incidence angles greater than 25� compact polarime<

try modes have superior ship detection performance to linear polarization data. At steeper 

incidence angles, the two polarization con�gurations have comparable performance. For all 

polarizations, ship detection performance increases with incidence angle, with the highest 

performance at about 40� . In addition, detection performance increases with spatial reso<

lution, the FQ mode data has the strongest performance over all RCM modes data while 

for RCM data, the Low Resolution data has the weakest performance and the Ship Detec<

tion mode has the strongest performance. Several di�erent types of compact polarimetry 

data were explored, including the raw RH-RV data, and pseudo quad-pol (PQ) data recon<

structed from the CP data. It has been found that PQHV and RH-RV, by themselves and 

in combination had the highest performance over other CP and linear-pol data. The PQHV 

data is most e�ective at steeper incidence angles, less than 30� . At angles greater than 30� , 

RH-RV data has the highest performance for Medium Resolution and Ship Detection modes, 

while for FQ mode and Low Resolution, the addition of PQHV improves the performance. 

This study also took ship orientation into consideration and investigated the impact of the 

orientation on the detection performance. Higher detection performance is expected when 

the ship and its superstructure were perpendicular to the radar bore sight. This expectation 

was met at incidence angles for the Low Resolution data. For Medium Resolution data, 

higher performance for perpendicular ship orientations at incidence angles greater than 27� 

was observed, and no e�ect at steeper incidence angles was found. Enhanced performance 
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is expected for ships parallel to range direction. This was observed for the FQ and Ship� 

Detection modes at shallow incidence angles. Thus, the results of this study suggest that 

the three RCM modes generally, and the Ship Detection mode in particular, are promising 

compromise between the ship detection performance and the wide swath width desired for 

maritime surveillance. Furthermore, it has been found that the compact polarimetric SAR 

detectors outperform the conventional linear dual-pol detectors at the three RCM modes 

for ship detection. Moreover, the results show that CP reconstruction of ocean data using 

Collins algorithm aids in improving the ship detection performance for FQ and the three 

RCM modes. 
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Chapter 4� 

Hybrid Ship Detection Algorithm for CP SAR� 

Methods and Theoretical Concepts� 

The second part of the thesis introduces a new ship detection algorithm for CP SAR. This 

part is covered in Chapter 4 and 5. In this chapter, the data used and a detailed description 

of the detection algorithm is introduced. Moreover, the theoretical concepts and related 

basics of each part of the proposed algorithm are presented. In Chapter 5, results from 

the proposed detection algorithm are discussed and �nally, conclusions are drawn from the 

performed work. 

The Stokes vector and derived parameters of CP SAR are utilized to develop a robust ship 

detection algorithm in compact polarimetric SAR data. The proposed algorithm combines 

four detection techniques together to improve the detection performance and discrimination 

between ships and false alarms. The introduced detection algorithm has a pre-screener and a 

discriminator. The pre-screener of the algorithm is a hybrid one that employs three detection 

methods and has two steps. The �rst pre-screening step uses global thresholding to highlight 

all possible target candidates. In the second pre-screening step, the detected candidates are 

retested by using either one of two new Adapted Thresholding Detectors (ATDs). These 

detectors retest the candidate targets against their local background statistics. The devel<

oped ATDs are the Stokes parameters LRT and S0-CFAR detectors. The selection between 

these two pre-screeners is made according to the size of the candidate target. The Gaussian 

Mixture Model approach is used to estimate the joint pdf of the Stokes parameters for the 

LRT detector for ocean and ship data and for the Stokes S0 of ocean data. The discriminator 

of the algorithm relies on the scattering mechanisms of the detected target to distinguish 

ships from false alarms. 
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The performance of the proposed algorithm is assessed by comparing the number of de<

tected ships with veri�ed positions to the total number of ships with AIS positions. The 

chapter is organized as follows. Section 4.1 presents the data and the preprocessing oper<

ations applied to it. Sec 4.2 to Sec 4.7 present the basic concepts related to the proposed 

algorithm. A detailed description of the developed ship detection algorithm is given in 

Sec 4.8. Section 4.9 outlines the measure of the detection performance assessment of the 

algorithm. Finally, section 4.10 concludes the chapter. 

4.1 Data and Study Site 

The proposed detection algorithm is applied to data simulated in three RCM modes: Medium 

resolution, Low Resolution and Ship detection imaging modes, as in the �rst part of the 

thesis. The polarimetric dataset used in this study to simulate the RCM data is composed 

of six RS-2 scenes of the Gibraltar Strait acquired by the Fine Quad beam (FQ-21). The 

scenes are located around (35� { 37� ) N, (5� { 6� ) W. The scenes are referred to by their 

numbers. The scene numbers "Scene No.", the acquisition date "Acq. date" and time "Acq. 

time" of each scene are depicted in Table 4.1. All scenes have a range sample spacing of 4.73 

m and the azimuth spacing is 5.1 m. The FQ-21 beam covers the incidence angle range of 

[40.17� { 41.61� ]. Nominal Radarsat-2 Fine Quad mode resolution is approximately 5.2 m in 

range by 7.6 m in azimuth. The average wind speed in m/s "W.S." calculated for each scene 

according to the model developed by Vachon and Wolfe [79] is also provided in the table. 

The data is calibrated by the (�o) radar backscatter coe�cient. Automatic identi�cation 

system (AIS) data is available for a number of ships in each scene to be used for detection 

performance assessment. The total number of ships with AIS positions in all scenes is 147 

ship. The number of ships with veri�ed positions "No. Sh." for each scene is depicted in 

Table 4.1. The veri�ed ships have various sizes; ship lengths range from 29 m to 337 m. 

In this work, the use of RCM data for ship detection is explored as these data have a 
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Table 4.1: An overview of the Fine Quad Radarsat-2 data of the Strait of Gibraltar scenes 
used in the study of this chapter. The " Acq. date" refers to the scene acquisition date, the 
" Acq. time" is the scene acquisition time in GMT, the "W.S" is the wind speed in (m/s) 
and "No. Sh." is the number of ships with veri�ed positions in each scene. A value of < 3 
for the wind speed indicates that the wind speed was too low to be estimated from the data. 

Scene No. Acq. time Acq. date W.S (m/s) No. Sh. 
1 
2 
3 
4 
5 
6 

06:22:40 
06:22:38 
18:23:29 
18:23:29 
18:23:32 
18:23:32 

2009-02-14 
2009-02-14 
2009-02-09 
2008-11-05 
2009-02-09 
2008-11-05 

13.3 
12.1 
5.5 
<3 
6.2 
<3 

9 
8 
11 
11 
54 
54 

wider swaths than the FQ data. The RCM data is simulated as a single look complex (SLC) 

image in the three imaging modes. The simulated data has a noise oor of approximately -22 

dB (according to the RCM speci�cations) which is larger than the original Radarsat-2 data 

which has a noise oor of approximately -30 dB [80]. The incidence angle range "Inc. Ang.", 

the simulated spatial resolution of the SLC data "SLC. Res.", the nominal multi-look spatial 

resolution "ML Res.", the number of looks "N Look", the simulated multi-look pixel spacing 

"ML s Pix Sp." and the nominal swath width "N.S.W" of each RCM mode are indicated 

in Table 4.2. The RCM data is simulated using a software developed and provided by Dr. 

Francois Charbonneau of Canada Centre for Remote Sensing (CCRS). 

Table 4.2: An overview of the simulated RCM data in the three imaging modes used in 
this study. This table shows the incidence angle "Inc. Ang." in degrees, the SLC simulated 
resolution "SLC. Res."in the (range x azimuth) directions, the nominal multi-look spatial 
resolution "ML Res.", the number of looks "N Look" in the (range x azimuth) directions, 
the simulated multi-look pixel spacing "ML s Pix Sp." and the nominal swath width "N.S.W 
in Km for each of the modes. 

RCM Beam Mode ML Res. N Look Inc. Ang. SLC. Res. ML s Pix Sp. N.S.W 
Medium Resolution 50 m 4 x 1 19� { 58� 7.9 m x 49.7 m 28.6 m x 20 m 350 Km 

Low Resolution 100 m 8 x 1 19� { 54� 8.3 m x 98.8 m 57.1 m x 40 m 500 Km 
Ship Detection variable variable 36� { 51� 2.7 m x 48 m - 350 Km 
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4.1.1 Data Preparation 

As the ship detection algorithm introduced in this thesis is designed speci�cally for CP SAR 

Stokes parameters, some pre-processing operations need to be performed on the original 

full polarimetric data. First, the RCM data is simulated in the three RCM modes using 

the RCM simulator with the original quad-pol images as input. Second, the CTLR CP 

scattering vector is generated for each RCM mode using Eqn. 2.2 for the entire scene from 

the simulated RCM images. For the Low Resolution and Medium Resolution modes, the data 

are multilooked according to the number of looks depicted in Table 4.2 by spatially averaging 

pixels in the range direction. On the other hand, the Ship Detection mode data is used as 

SLC image because, according to RCM speci�cations, the number of looks for this mode is 

not speci�ed [80]. Next, for each RCM mode, the Stokes vector is then constructed for each 

pixel in the image using Eqns. 4.1 - 4.4. This step results in four images for the scene, an 

image for each Stokes parameter. The required spatial averaging is performed using a 3 � 3 

boxcar �lter for the Low and Medium Resolution modes. For the Ship Detection mode, a 

5 � 5 boxcar �lter is used as this data has not been multi-looked . These window sizes are 

selected to achieve a trade-o� between the required smoothing e�ect and the corresponding 

deteriorated resolution. After that, the Stokes parameter images are passed to the land 

masking algorithm. 

4.2 Stokes Parameters 

When a polarized wave interacts with a target, its state of polarization may be altered. While 

radar transmits fully polarized waves, the received waves may be fully or partially polarized. 

In other words, completely polarized incident wave may become randomly polarized after 

being scattered by an object that gives rise to multiple internal reections. George Stokes [88] 

developed a method to represent the state of polarization of partially polarized waves, namely 

the Stokes vector which is composed of four real quantities that capture all the information 
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about the backscattered �eld [58]. The general expressions of the Stokes parameters are given� 

in Chapter 1 in Eqns. 1.14 to 1.17. In this Chapter, the focus is on the use of the Stokes 

parameters and their derived parameters of the CTLR CP SAR. The Stokes parameters 

forms consistent with this case are given in Eqns. 4.1 to 4.4 

For a dual-pol SAR which receives two orthogonal linear polarizations (EH and EV ) in 

response to a right-circularly polarized transmitted wave, the Stokes parameters are given 

as [58, 89] 

S0 = hjEH j2 + jEV j2i = S0 (4.1) 

S1 = hjEH j2 � jE V j2i = m S0 cos 2� cos 2  (4.2) 

S2 = 2 RhEH EV 
� i = m S0 cos 2� sin 2  (4.3) 

S3 = 2 IhEH EV 
� i = m S0 sin 2� (4.4) 

where R and I are the real and imaginary parts of the complex quantity respectively, � is the 

complex conjugate and the triangular brackets are the spatial averaging operator. The right 

column of this formalism relates the Stokes parameters to the polarization ellipse variables; 

� and  ; where � is the ellipticity of the polarization ellipse, while   is the orientation of the 

major axis of the polarization ellipse as shown in Figure 4.1. The degree of polarization ( m) 

is de�ned as the ratio of the power of the polarized portion of the wave to the total power 

of the wave. Stokes S0 represents the total power of the wave; S1 is the di�erence between 

the power of the two orthogonal linear components, S2 is the di�erence between the power 

of the �=4 rotated two orthogonal components and S3 is the di�erence between the power of 

the right and left circularly polarized components [90, 91, 92]. Of the four parameters, only 

three are independent [91] since, generally, S0
2 � S1

2 + S2
2 + S3

2 . 
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Figure 4.1: The polarization ellipse. Ex ; Ey is the horizontal and vertical components of 
the electric �eld vector respectively. OA is the ellipse semi-major axis, OB is the ellipse 
semi-minor axis, � is the ellipticity angle and   is the orientation angle. 

4.3 Stokes Derived Parameters 

As pointed in Chapter 1, there may be many parameters that are derived from the Stokes 

parameters. These child parameters have their relation to the physical scattering mecha<

nism from targets [89]. In this chapter, only two child parameters are used jointly for ship 

detection. The �rst one is the degree of polarization m de�ned in Sec. 4.2 and given as [20] 

[S1
2 + S2

2 + S2]1=2 

m = 3 (4.5)
S0 

Since 1950's, m has been recognized as the most important parameter that shows how 

much the backscattered wave is polarized [68, 93, 94]. Values of m range from 0 for completely 

depolarized wave to 1 for completely polarized wave while m takes values in between these 

two extremes for partially polarized waves. Therefore, m for odd and even bounce scatterers 

is close to 1 while for volume scatterers, m is close to 0. 

The second derived parameter used in this research is the ellipticity of the polarization 
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ellipse, � which is related to Stokes parameters through the relation [68]� 

S3sin (2�) = (4.6)
mS0 

The ellipticity � is the angle determined by the ratio of the semi-major axis to the 

semi-minor axis of the polarization ellipse [92]. Thus, it describes the degree to which the 

polarization ellipse is oval. In addition, the sign of � indicates the handiness of ellipti<

cal/circular polarization. The ellipticity � takes values in the range [-45� to 45� ]. The value 

-45� corresponds to the right-handed circular polarization while the value +45� is for the left-

handed circular polarization. When � = 0, the wave is linearly polarized with an orientation 

determined by the angle  . 

4.4 Compact Polarimetric Decomposition 

Decomposition is a mature technique that is used to interpret the information contained 

in the radar data and relate it to the scattering mechanisms or the physical properties of 

the imaged area. For quad-polarimetric data, decomposition works on splitting the polarized 

backscatter of each image pixel into a combination of scattering mechanisms [95]. Polarimet<

ric decomposition techniques may be classi�ed into coherent and incoherent decomposition. 

The polarimetric coherent decomposition is implemented using the scattering matrix to study 

point targets. However, the polarimetric incoherent decomposition works on the coherency 

or covariance matrix to study distributed targets [95]. 

In compact polarimetric decomposition, two or more parameters derived from the Stokes 

parameters of the dual-pol CP data are used jointly to classify radar backscatter into the 

corresponding scattering mechanism [20]. There have been two CP decomposition techniques 

reported in the literature; the m � � and the m � � decomposition [20, 25, 68]. The degree 

of polarization m is a common decomposition parameter in both techniques. 

In the m� � decomposition, the second decomposition parameter is the � angle de�ned as 

the relative phase between the two received components [25]. The � angle can be calculated 
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� � 

using Stokes parameters according to the relation [23] 

�1 S3� = tan (4.7)
S2 

The � angle is a discriminator between odd and even bounce scatterers especially when 

circular polarization is transmitted. In other words, odd bounce scattering causes the phase 

of the incident �eld to be shifted by 180� with each bounce, while the reected wave from 

even bounce scatterer has zero phase shift with the incident wave. For instance, if the 

transmitted wave has right circular polarization, then odd bounce scatterer returns a strong 

backscatter in the opposite sense of rotation polarization [20, 23]. That is, left handed 

circularly polarized wave which implies that � is positive while � is negative for even bounce 

scatterers [23]. 

According to this decomposition scheme and in response to right circularly polarized 

transmission, backscatter contribution to the odd, even and volume scattering mechanisms 

is classi�ed as follows [20] 

1=2bs = [mS0(1 + sin (2� ))=2] (4.8) 

db = [mS0(1 � sin (2� ))=2]1=2 (4.9) 

vs = [S0(1 � m)]1=2 (4.10) 

where, vs is the contribution of backscatter in the volume scattering mechanism, bs is the 

contribution to the Bragg scattering or odd bounce scattering and db is the contribution 

to the double or even bounce scattering mechanism. When � is positive, this means that 

the surface scattering is dominant. On the other hand, when � is negative, the dominant 

scattering mechanism is even bounce. Volume scattering is evaluated by multiplying the 

degree of depolarization (1-m) by the total backscatter power S0 [20]. 

In the m � � decomposition, the ellipticity �, as given in Eqn. 4.6, is selected as the 

second decomposition parameter. This is attributed to its sign, which is an unambiguous 

indicator of even versus odd bounce backscatter [68, 96]. According to this decomposition, 
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the backscatter in response to a right circularly polarized transmission contributes to the 

three aforementioned scattering mechanisms according to 

1=2bs = [mS0(1 + sin (2�))=2] (4.11) 

db = [mS0(1 � sin (2�))=2] 1=2 (4.12) 

vs = [S0(1 � m)]1=2 (4.13) 

As can be seen from the above equations, vs is the same in both schemes while in bs and the 

db expressions, the � is replaced by �. When the right circularly polarized (with negative �) 

wave experiences odd bounce reection due to Bragg surfaces or trihedrals, the received wave 

is expected to have the opposite sense of rotation (left circular polarization) with positive � 

[96]. This causes bs to be larger than db. On the other hand, reection from even bounce 

scatterers is expected to be stronger in the same sense of rotation as the incident wave, that 

is, the right circular polarization [96]. Thus, the db, in this case, becomes larger than bs. 

Recently, the m� � and m� � decompositions have been applied to the CP data collected 

by the Mini-RF aboard NASAs Lunar Reconnaissance Orbiter [26] and the Mini-SAR on 

India's lunar Chandrayaan-1 satellite [27] to study the lunar surface [67, 68, 98]. These 

studies show that the m � � decomposition is an e�cient technique to interpret surface 

features according to single (odd) or double (even) bounce signatures in the polarized portion 

of the backscattered wave, and characterizes the randomly polarized constituents. They 

conclude that the m � � decomposition has demonstrated to be robust in the event that the 

transmitted �eld is not perfectly circularly polarized and more e�cient than the the m � � 

technique [68]. Therefore, the m � � decomposition has been selected to be used in the 

discrimination stage of the proposed detection algorithm. 
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4.5 Statistics of Stokes Parameters 

Generally, the statistics of SAR data is essential for image speckle reduction, target detection, 

identi�cation, and classi�cation [99]. Derivation of the statistics of SAR data in the form 

of scattering vector and covariance matrix have been widely covered in the literature [99] <

[103]. Nevertheless, few papers have addressed the issue of analytically deriving the pdf of 

the Stokes parameters for SAR data. The statistics of the four Stokes parameters of partially 

polarized light was �rst derived by Barakat [90]. Later, the work of Barakat was extended 

by Touzi and Lopes [91]; they derived the pdfs of the Stokes parameters as a function of the 

e�ective phase di�erence and complex correlation coe�cients between the receive channels 

for SLC and multilook SAR data. Jin et. al [101] re�ned the Stokes pdfs derived by Touzi 

and Lopes [91] by using some reasonable approximations validated by real SAR data. It is 

noteworthy that the pdfs formulated in the literature were derived for the individual Stokes 

parameters. However, to-date and to the best of our knowledge, no single paper presents 

the joint statistics of the Stokes vector elements of SAR data. Since the LRT component 

of the proposed detection algorithm requires the joint pdf of the four Stokes parameter, the 

Gaussian Mixture Model method is proposed to estimate the joint statistics of the CP SAR 

Stokes vector in this study. 

4.6 Gaussian Mixture Model Method for pdf Estimation 

The GMM method is a semi-parametric approach that is used for the estimation of the 

probability density function of random data [76]. The GMM method is utilized in the 

current study to estimate the pdfs for ocean and ship Stokes parameters. The selection of 

the GMM for pdf estimation emerges from the need to estimate accurate pdfs for ocean 

and ship backscatter to improve detection performance. This is attributed to the ability of 

the GMM approach to form smooth approximations to arbitrarily shaped pdfs even when 

they are not Gaussian. Moreover, its components describe the multi-modal nature of the 

90� 



X 

distribution. So, it is reasonable to consider �tting a mixture of Gaussian components for the 

density estimation given the computational tractability of Gaussian density function [76]. 

Generally, in the GMM method, the pdf to be estimated can be considered as a linear 

combination (mixture) of K number of D-dimensional Gaussian pdfs with di�erent parame<

ters as in Eq. (4.14). The GMM is parametrized by the mean vectors, covariance matrices 

and mixture coe�cients for each Gaussian component of the mixture. 

K

f (u; � ) = pk g(u; � k ; Ck) (4.14) 
k=1 

where u is a D-dimensional data vector (i.e. the measurement data for which the pdf is to 

be constructed), K is the number of Gaussian components in the mixture, � = ( � 1; � 2; :::; � K ) 

is the vector of all components parameters where � k = ( pk; � k ; Ck) is the parameter vector 

of the kth Gaussian component containing the coe�cient of that component pk as well as its 

mean vector � k and the covariance matrix Ck. The term g(u; � k ; Ck); k = 1; ::::; K is the kth 

Gaussian density given as 

1 � 1 (u�� k )T C �1 
g(u; � k ; Ck) = exp (4.15)2 k (u�� k ) 

(2� )D=2 jCkj1=2 

Since the mixture coe�cients are actually the mixing probabilities of the components, 

they should be non-negative and their values should never be greater than 1. Thus, the 
P Kconstraints 0 � pk � 1 and k=1 pk = 1 apply. 

There are several techniques for estimating the parameters of a GMM. By far the most 

popular and most straightforward method is the maximum likelihood estimation (MLE) 

[104]. So, the problem of pdf estimation can be summarized as the problem of �nding the 

parameters of the mixture that maximizes the likelihood of the estimated pdf to generate 

the data that was used to estimate the pdf. To convert that into a mathematical problem, 

the likelihood function of the unknown parameters must be deduced and after that to be 

maximized to estimate the unknown mixture parameters. The likelihood function in our 
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case is given by 

YN N K

L(u; � ) = f (un; � ) = pk g(un; � k ; Ck) (4.16) 
n=1 n=1 k=1 

It is clear that the likelihood function L(u; � ) is a non-linear function of the unknown param<

eter vector � which means that no direct solution is possible. However, maximum likelihood 

parameter estimates can be obtained iteratively using the expectation-maximization (EM) 

algorithm [105]. 

The EM algorithm works as follows, beginning with an initial model � i , the new model 

� i+1 is estimated such that L i+1 (u; � ) > L i (u; � ). Then the new model becomes the initial 

model for the next iteration and the process is repeated until some convergence criterion 

is reached. In the EM algorithm, this is done in two steps; the �rst is the expectation 

(E step)and the second is the maximization (M step). The iterative equations of the EM 

algorithm [76] are given as in Eqs. (4.17 - 4.20). 

E step 

pi
k g(un; � i

k ; Ck
i ) 

p i (kjn) = (4.17)P K pi
k g(un; � i ; Ci )k=1 k k

M step 

N1 
p ik 

+1 = p i (kjn) (4.18)
N 

n=1 

P N pi (kjn) uni+1 n=1 � = (4.19)k P N pi (kjn)n=1 

P N i+1 i+1 

Ci+1 n=1 pi (kjn)[un � � k ][un � � k ]T 

= (4.20)k P N pi (kjn)n=1 

Where p(kjn) is the a posteriori probability for component k and pk; � k and Ck are de�ned 

as above. 
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4.6.1 Gooodness of Fit of the GMM and Number of Components Determination� 

In this study, the assessment of the goodness of �t of the GMM distribution and the deter<

mination of the appropriate number of Gaussian components in the GMM are done using 

information statistics (parsimony indices) [76]. These statistics are based mainly on the 

value of (-2) times the log-likelihood of the model, adjusted for the number of parameters 

in the model. In other words, given a set of candidate models for the data, the preferred 

model is the one with the minimum index value. Hence, parsimony indices not only reward 

goodness of �t, but also include a penalty that is an increasing function of the number of 

estimated parameters [76]. This penalty discourages over �tting and is used to determine 

the appropriate number of components in mixture models [76]. So, in comparing di�erent 

models for the same data, one will prefer models with lower values on these indices. 

The most common parsimony indices include the Akaike Information Criterion (AIC) 

[106] given as Eq. (4.21) and the Schwarz Bayesian Criterion also called the Bayesian Infor<

mation Criterion (BIC) [107] given by Eq. (4.22). 

AIC = �2 ln(L) + 2p (4.21) 

BIC = �2 ln(L) + p ln(N p) (4.22) 

where ln(L) is the log-likelihood, p is the number of estimated model parameters and Np is 

the total number of data points used for pdf estimation. 

The AIC and BIC are used for comparison across several plausible models where the 

lowest value indicates the best �tting model. It is worth mentioning that there is no com<

mon acceptance of the best criteria for determining the number of components in mixture 

modelling [108]. However, it has been shown that the BIC provides a better model selection 

than the AIC [107, 108]. It has been shown in the literature that the AIC tends to select 

models with large number of components which may over�t the data especially when the 

number of data points are large [107] which is applicable to our case. Moreover, a study 

conducted by Nylund et. al [108] which looked at the performance and the ability of these 
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indices and others to correctly identify the number of components in mixture models showed 

that the BIC performs the best among all information criteria for model selection in mixture 

models. Thus, in this study, it is decided to use the BIC for the selection of GMM order and 

the assessment of the goodness of �t. 

4.7 Land Masking 

Land masking is a preprocessing operation that is applied after the RCM data is simulated 

and before applying the detection algorithm to the scenes. Land regions in the scenes are 

excluded to avoid producing false alarms. In this work, the land is masked after detecting 

the shoreline from the RGB images generated by the m-� decomposition of the CP RCM 

images. The shoreline is detected using Canny edge detector [109] after smoothing speckles 

using the Lee �lter [110]. In order to extract the shoreline perimeter, morphological dilation 

and erosion operations are used. After the shoreline is extracted, land pixels included within 

the shoreline perimeter are set to zero and not included in any calculations afterward. 

4.8 The Proposed Ship Detection Algorithm 

In pixel-based ship detection algorithms, each image pixel is to be classi�ed either to a ship 

or to the ocean. So, the ship detection problem is simply a binary test of simple hypotheses: 

the null hypothesis in which the pixel belongs to the ocean whereas the alternative hypothesis 

in which the pixel belongs to a ship. According to the Neyman-Pearson lemma [74, 111], 

the best statistical test for the binary hypotheses is the one that maximizes the probability 

of detection at a speci�c probability of false alarms [74]. This aim can be achieved through 

using the Likelihood Ratio Test. However, the LRT requires the pdf of the ocean and the 

ship data. As ships are not known apriori, it is often not possible to estimate the pdf of 

ship data. Hence, it is usually resorted to use the background (ocean) statistics only for 

the hypothesis testing like in the CFAR detectors. In this thesis, we tackle the problem of 
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ship detection using a new hybrid detection algorithm that utilizes both the LRT and the� 

CFAR detectors in its primary stages. The proposed ship detection algorithm is composed 

of a pre-screener and a discriminator. The pre-screening stage aims to highlight candidate 

ships and it is composed of two steps: a global thresholding step followed by an adaptive 

thresholding one. The discriminator distinguishes between real ships and false alarms based 

on the type of scattering mechanism of the targets detected by the pre-screener. Finally, a 

detection decision is taken based on that. In the following section, a detailed description 

of the proposed detection algorithm is given. The detection procedures of the introduced 

hybrid ship detection algorithm are summarized in the ow chart of Figure 4.2. 

4.8.1 The Pre-screening Stage 

In the �rst step of pre-screening, the entire image is scanned to search for ships candidates 

using a global threshold. Since ships are usually fabricated from reective materials, ship 

pixels appear brighter than surrounding ocean pixels which means that the received power 

by the SAR sensor from ships is larger than that from ocean. As the S0 value of each pixel 

represents the total power scattered from the area contained by that pixel, in this �rst pre-

screening step, the S0 image is globally thresholded to highlight candidate targets. Figure 

4.3 shows 2D plots of the S0 values of ship pixels surrounded by ocean. Figure 4.4 shows an 

intersection of the S0 surface plot across one range line at a �xed azimuth. It is clear that 

the S0 values of ocean is much less than that of ship pixels. Therefore, the global threshold 

is set to be the maximum S0 value of a block of ocean pixels which is still much less than 

S0 of most ship pixels. This step results in a large number of candidate detections which 

is useful to avoid missing any ships although some of these detections are anticipated to be 

false alarms from ocean pixels. 

In order to re�ne the detections of the �rst pre-screening step, these detections are sub<

jected to an adaptive thresholding step to test the candidate pixels against their neighboring 

ocean pixels at a speci�c PFA. 
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Figure 4.2: Flow chart of the proposed hybrid ship detection algorithm. NDPC refers to the 
number of detected pixels per candidate target, � LR is the threshold of the LRT detector 
and � S0 is the threshold of the CFAR detector. 
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Window Setup for the Pre-screening Stage 

As the second pre-screening step is designed to work only on candidate targets detected by 

the �rst pre-screening step, each candidate target is surrounded by a rectangular window 

called the "target window". Each pixel of this window is then tested by an ATD against a 

threshold. When the LRT detector is used, all pixels of the candidate target are used for the 

estimation of the ship data pdf. The target window is surrounded by another larger window 

called the "background window". The pixels included in the background window are used 

for the estimation of the ocean data pdf and threshold determination. The window setup 

of the second step of the pre-screening stage is depicted in Figure 4.5. This setup di�ers 

from conventional CFAR window setup which includes additional guard window between the 

target and background windows. In this setup, a guard window is not used since the entire 

candidate ship is included in the target window. Moreover, as a precautionary procedure in 

the case of close candidate targets, if any detected pixel is found in the background window, 

it is then excluded from ocean data. 

The target window boundaries are set to be: 

AT = azmin � C1; (4.23) 

BT = azmax + C1; (4.24) 

CT = rn min � C1; (4.25) 

DT = rn max + C1; (4.26) 

Where AT and BT are the boundaries in the azimuth, CT and DT are the ones in the range 

direction, azmin and azmax are the minimum and maximum pixel indices in the azimuth 

direction respectively and rn min , rn max are the minimum and maximum pixel indices in the 

range direction respectively (the coordinates origin is at the top-left corner). C1 is a constant 

o�set from the candidate target minimum and maximum range indices. In this study, C1 is 

set to be one pixel to reduce the computational burden and to avoid including pixels from 

other close candidate targets. 
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Figure 4.5: Window setup of the pre-screening stage second step. AT BT , CT , DT are the 
boundaries of the target window de�ned as in Eqns. 4.24 - 4.26. AB , BB , CB , DB are the 
boundaries of the background window de�ned as in Eqns. 4.28 - 4.30. 

The boundaries of the background window are set as 

AB = AT � C2; (4.27) 

BB = BT + C2; (4.28) 

CB = CT � C3; (4.29) 

DB = DT + C3; (4.30) 

Where AB and BB are the boundaries in the azimuth, CB and DB are the boundaries in 

the range direction. AT , BT , CT , DT are the boundaries of the target window. C2 and 

C3 are constant o�sets from the target window boundaries. C2 and C3 can be equal or 

di�erent according to the number of pixels in the range and azimuth directions of the image 

and according to the target position in the image. For instance, candidate targets near 

image boundaries and land mask require special window shapes and dimensions to ensure 
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appropriate pdf estimation of background data.� 

In the second pre-screening step, either one of two ATDs is used to threshold each pixel 

in the target window which contains the entire candidate target with a threshold. This 

threshold is determined adaptively so that a constant PFA is maintained over the entire 

image. These two ATDs are the LRT and the S0-CFAR detectors. The selection between 

the two ATDs is made based on the total number of pixels of candidate target detected by 

the pre-screener �rst step. The number of detected pixels per candidate target is counted 

before passing the targets to the second pre-screening step. Since the target data pdf is to be 

estimated by the GMM method, there should be an adequate number of data points of the 

target. If the number of candidate target pixels is large enough, the LRT detector is used; 

otherwise, the CFAR one is used. More explanation about this number is given in Chapter 

5. 

The Stokes Parameters Likelihood Ratio Test Detector 

The Stokes parameters LRT pre-screener is used to retest each candidate target against a 

threshold determined according to the local statistics of the background pixels surrounding 

the target at a speci�c PFA. The proposed LRT detector is formulated to use the joint pdf 

of the four Stokes parameters of ocean and candidate target data to generate the likelihood 

ratio (LR) instead of the traditionally used joint pdf of the scattering vector components. 

Then, at each pixel of the target window, the value of the likelihood ratio or a monotonic 

function of it is compared to a threshold determined at a speci�c PFA to decide on the object 

to which the pixel under test belongs. The determination of the threshold value isdiscussed in 

Sec. 4.8.2. When the LR value of the pixel exceeds the threshold, the alternative hypothesis 

is accepted and the pixel is related to a target. Otherwise, the null hypothesis is accepted 

which means that the pixel is related to the ocean. 

After the candidate target is passed to the second pre-screening LRT step, the joint 

pdf of the four elements of the Stokes vector is estimated. The pixels of the background 
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window are used to estimate the Stokes parameters joint GMM pdf of ocean data. Similarly, 

all detected pixels within the target window are used for target (ship) Stokes parameters 

joint pdf estimation. The GMM algorithm estimates the joint pdf of the Stokes Parameters 

starting from k=1 and D = 4 (one multivariate Gaussian component), calculating the BIC 

and then increasing the number of components by one and then comparing the BIC of all 

models to choose the appropriate number of components which is related to the smallest 

BIC. This process is conducted one time for ocean pdf and another time for the ship pdf 

for each large candidate target. After the pdfs are estimated, the likelihood ratio is then 

calculated for each pixel in the target window. The likelihood ratio is de�ned as 

f s(u(x,y); � s)� LR SP (x; y) = (4.31)
f o(u(x,y); � o)� 

�� where LR SP (x; y) is the likelihood ratio value of the Stokes parameters (SP) at an image pixel 

with (x,y) pixel coordinates; f o(u(x,y); � o) and f s(u(x,y); � s) are the ocean and ship Stokes 

parameters joint pdfs values respectively at the (x,y) pixel, u is a 4-Dimensional vector of 

the Stokes parameters u = [S0 S1 S2 S3]T , � s and � o are the vectors of all components 

parameters of ocean and ship pdf respectively, where � s = ( ps; � s; Cs) is the parameter vector 

of ship GMM and � o = ( po; � o; Co) is the parameter vector of ocean GMM. 

The value to be compared with the threshold is computed using the natural logarithm 

of Eq. (4.31) at each pixel of the target window using the estimated GMM SP joint pdfs for 

ocean and ships as in Eq. (4.32). 
 P K s g(u(x,y); � sk )k=1 psk ; CskLR SP (x; y) = ln (4.32)P K o g(u(x,y); � ok ; Cok )k=1 pok 

Where the subscript 'o' is related to ocean and the subscript 's' is related to ship joint pdf 

parameters. K o and K s are the number of Gaussian components in the ocean SP joint pdf 

and ship SP joint pdf respectively and (x,y) are the pixel's coordinates. 

After the LR SP (LR SP is called hereafter as LR for simplicity) value is calculated for 

each pixel in the target window, it is then compared to a threshold and a decision is made 
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based on the rule:� 
8 
><� 

9 
>=�1 =) target pixel� 

(LR SP (x; y) � � ) = (4.33)�
>:� >;�0 =) ocean pixel� 

Where LR SP (x; y) is the likelihood ratio value at the pixel (x,y) and � is the threshold value. 

After the pre-screening stage, the re-detected targets are passed to the discrimination 

stage. 

The Constant False Alarm Rate Detector 

The CFAR detector is selected as a second step pre-screener when the number of detected 

pixels per candidate target is not adequate to be used for target pdf estimation. In the 

CFAR detector, the same window setup is used as for the LRT detector and the value of 

S0 is reused again for testing candidate pixels. It is to be compared to a local S0 value 

(threshold) and not to a global one as done in the �rst pre-screening step. The S0 value 

of each pixel in the target window is compared to a threshold that is determined using the 

statistics of the local background included in the background window at a speci�c PFA. If 

the value of S0 of the pixel exceeds the prede�ned threshold, it is considered that the pixel 

belongs to a target, otherwise it is considered that the pixel belongs to the ocean as in the 

following decision rule 
8 
><� 

9 
>=�1 =) target pixel� 

(S0(x; y) � � ) = (4.34)�
>:� >;�0 =) ocean pixel� 

where S0(x; y) is the S0 value at the pixel (x,y) and � is the threshold value. It is worth 

mentioning that for both ATDs and for each candidate target, if any of its pixels is re-

detected, then the target is considered detected. After all the candidates are retested by the 

second pre-screening step, they are passed to the discrimination stage. The discrimination 

stage is described in details in Sec. 4.8.3 after explaining the threshold determination process 

in the next section. 
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4.8.2 Threshold Calculation� 

The threshold values for both ATDs were determined at a speci�c PFA using ocean statistics 

of background pixels. In the LRT pre-screener, the threshold (� ) is the value of the log-

likelihood ratio LR SP of ocean pixels that achieves a desired PFA value. We recall that the 

PFA equals the area under the tail of the ocean data pdf curve starting at a speci�c data 

value (� ) as per Eqn. 4.35, [111]. 

Z 1 

PFA = H (l; � ) dl (4.35) 
� 

where H(l; � ) is the pdf of the ocean data (l). In the LRT case, H(l; � ) is the joint GMM pdf 

of the LR SP of ocean pixels expressed as 

K

H (l; � ) = pk g(l; � k ; Ck ) (4.36) 
k=1 

where l is the ocean log-likelihood data vector, � is the vectors of all components parameters 

of ocean log-likelihood pdf, and � = ( p; �; C) is the parameter vector of log-likelihood GMM. 

For each large candidate target, �rst, Stokes vectors of all ocean pixels of the background 

window are substituted in the log-likelihood ratio of Eqn. 4.32 to obtain the data vector 

l . Then, the pdf of the ocean log-likelihood ratio is estimated using the GMM method 

as described previously. Finally, the commutative distribution function (cdf) is evaluated 

numerically at each value in the ocean set. As the area under the pdf curve equals 1, then 

the area under the tail is then evaluated according to the relation 4.37. After that, the 

threshold � is determined at a speci�c PFA by linear interpolation. 

Tail = 1 � cdf (4.37) 

For the CFAR pre-screener, the threshold is determined by using the GMM pdf of ocean S0 

estimated by background pixels in a similar way. So, for the CFAR threshold, �rst, the ocean 

S0 GMM pdf is estimated. Then, the cdf is calculated numerically and the distribution tail 

is evaluated after that accordingly. Finally, the threshold � is determined at a speci�c PFA 
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Figure 4.6: Procedures of threshold determination for the pre-screening stage of the detection 
algorithm. pdf is the GMM of the log-likelihood ratio (l ), cdf is its corresponding cumulative 
distribution function and � is the threshold at a speci�c value of the PFA. 

by linear interpolation. Figure 4.6 shows the procedures of threshold determination for the 

pre-screening stage of the detection algorithm. 

Pre-screening Stage of Candidate Targets Near Land Regions 

Land region data is excluded using the land masking algorithm before applying the detec<

tion algorithm to the scene. However, candidate targets that are detected by the global 

thresholding step and located near land regions need special treatment in both second pre-

screening step and discrimination stage. This is decided as the high reections from land 

may interfere with ocean returns at these regions. In this section, we focus on the window 

set up for these candidates, while the special treatment related to the discrimination stage 

is deferred to Sec. 4.8.3. 

After masking land regions, land pixel values are replaced by zeros. Thus, if the regular 

window setup, depicted in Figure 4.5, is used with targets close to land, ocean data pdf 

may be inappropriately estimated due to the large number of background pixels with zero 

values or the GMM algorithm may be unable to estimate the pdf at all. So, before passing 

the candidate targets to the second pre-screening step, the distance between the center of 

the detected target to all pixels on the perimeter of the land-mask is calculated for each 

candidate target. If the distance to any of these pixels is less than a pre-de�ned value, then 
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the background window is enlarged. Then, any candidate pixels or pixels with zero values� 

are excluded before the estimation of ocean data pdf. The distance is set arbitrarily as will 

be shown in the results chapter. If the candidate is far from land, the regular window setup 

is used. After determining near and far candidates and setting window sizes, the appropriate 

ATD is selected to each candidate target. 

4.8.3 The Discriminator: Child Parameters Analysis and Final Decision 

For the purpose of reducing false alarms and as a �nal stage in the detection process, all 

re-detected targets from the previous stage are subjected to further child parameters analysis 

to classify the re-detected targets either as real ship or false alarm. The discrimination herein 

is based on the type of scattering mechanism of the candidate pixels. It is well known that 

the ocean exhibits dominantly surface scattering while ships may have hybrid scattering 

mechanisms (even, odd and volume) due to ship construction materials, superstructure, 

orientation with respect to radar beam and other factors. We also recall that there is a 

relationship between the physical scattering mechanism and the child parameters derived 

from the Stokes parameters [25]. This is exploited in the discrimination stage to distinguish 

between ship targets from surrounding ocean. Therefore, this approach is anticipated to 

improve the discrimination performance. 

In this stage we use the degree of polarization m and the ellipticity (�) for discrimination 

through the m � � decomposition. The m and � can be calculated from Stokes parameters 

as in Eqs. 4.5 and 4.6 respectively. After calculating m and � and according to the m � � 

decomposition described in Sec. 4.4, a color-coded (RGB) image is then constructed from 

three individual color (Red, Green and Blue) images [68] as in Eqns. 4.38 - 4.40. Each of the 

colors represents a scattering mechanism type: R represents the even bounce, B represents 

the odd bounce and the G represents volume scattering. 

B = [mS 0(1 + sin (2�))=2] 1=2 (4.38) 
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R = [ mS0(1 � sin (2�))=2] 1=2 (4.39) 

G = [(S0(1 � m))]1=2 (4.40) 

Figure 4.7 shows the Red, Blue, Green and the combined RGB images of a ship in ocean 

built based on the (m� �) decomposition. It is clear from the RGB image (the top rightmost 

part of Figure 4.7 that the sea surface pixels are dominated by the blue color which reects 

the single bounce scattering. On the other hand, ship pixels color results from a mixture of 

the three colors with a percentage of each color that is proportional to the corresponding 

scattering mechanism strength at that pixel. This mixture can be one of seven classes as 

suggested by Raney in [96] and shown in Table 4.3. It is also noticed that the strength of 

all three colors for ship pixels is larger for ship pixels than ocean pixels. 
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� � �  Figure 4.7: The original Red, Blue, Green, RGB and the R, B, G and RGB images after thresholding of a ship with  veri�ed  

position in ocean. Top row from left  to right:  original Red. original Blue, original Green and original RGB images evaluated 

from Eqns. 4.38 - 4.40. Red image represents the even bounce scattering, Blue image represents the odd bounce scattering and 

Green image represents the volume scattering. Bottom row from left  to right:  Binary images resulted from thresholding the 

� � �  top row images: R, B, G. 



In order to quantitatively involve the m � � decomposition to discriminate ships from 

falsely detected ocean clusters, three steps are introduced as follows: 

1.� Each of the R, B and G images is subjected separately to a thresholding process to 

� � � � generate three new binary images ( R, B and G). So, for the R image, for instance, R image 

is generated using the rule� 
8 
><� 

9 
>=�1 : R(x; y) � � R�� R(x; y) =� (4.41)�

>:� >;�0 : R(x; y) < � R 

where � R is the threshold of the Red image. The threshold of each color image is selected 

experimentally to be the maximum color strength of an ocean block of pixels. It has been 

found that most ship pixes values for the Red and Green colors exceed the maximum color 

strength of ocean pixels while only some ship pixels have Blue color values that are larger 

� � � than the ocean pixels as seen from Figure 4.7 which shows the R, B and G and the RGB 

image for a ship in ocean. 

� � � 2. Each pixel in the three binary color images ( R, B, G ) are jointly compared to 

a three binary digit patterns to construct another binary image called the discrimination 

image d(x; y). Each of the patterns correspond to a single or a combination of scattering 

mechanisms. As we have 3 binary images, there are 8 possible combinations that a pixel 

can take. These combinations are depicted in Table 4.3. In order to distinguish between 

ships and false alarms, we compare each pixel's value in the three binary images to �ve of 

� � � the patterns shaded in gray color in Table 4.3. The pattern "RGB = 000" is rejected as it 

indicates that the pixel is from ocean according to the thresholding process which gives 0 

� � � for ocean pixels with low color strength. The pattern "RGB = 001" is also rejected which 

reects only high single bounce scattering which may results from an ocean pixel. The 

� � � pattern " RGB = 100" is also rejected as we found by experiment that ship ghosts has high 

double bounce strength. Ship ghosts appear in SAR images as a line of bright pixels along 

the range direction due to the high reectivity of ship pixels [112]. Figure 4.8 shows the Red, 
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Blue, Green and the combined RGB images built based on the (m � �) decomposition of a� 

� � � ship and its ghost in the top row. The bottom row of Figure 4.8 shows the R, B, G after 

thresholding. It is obvious from these images that the Blue and Green color strength of ship 

ghost is low and below the threshold of each color. This is con�rmed from the binary images 

of the thresholded Blue and Green images as all ghost pixels have zero values. On the other, 

it is clear from the Red and the RGB images that the Red color strength (the even bounce 

scattering) is higher than the red threshold. Thus, ship ghost can be detected incorrectly as 

� � � ships. Therefore, it is seen to exclude the " RGB = 100" pattern from the comparison. 

� � � So, if a pixel's binary pattern coincides with one of the four patterns " RGB = [111, 110, 

010, 101, 011]" , then 1 is placed in that pixel of the discrimination image; otherwise 0 is 

placed. 

� Table 4.3: All possible patterns that a pixel can have in the three binary color images ( R, 
� � � � � B and G). Gray shaded patterns only are to be compared with the ( R, B; G) images pixels. 
The 'db' stands for the double bounce; the 'vs' for the volume scattering and the 'bs' for the 
Bragg scattering or the odd bounce scattering mechanism (Scattering Mech.) 

� R � G � B Scattering Mech. 
0 0 0 -
1 0 0 db 
0 1 0 vs 
0 0 1 bs 
1 1 0 db + vs 
1 0 1 db + bs 
0 1 1 vs + bs 
1 1 1 db + vs + bs 
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� � �  Figure 4.8: The original Red, Blue, Green, RGB and the R, B, G and RGB images after thresholding of a ship with  veri�ed  

position and its ghost. Top row from left  to right:  original Red. original Blue, original Green and original RGB images evaluated 

from Eqns. 4.38 - 4.40. Red image represents the even bounce scattering, Blue image represents the odd bounce scattering and 

Green image represents the volume scattering. Bottom row from left  to right:  Binary images resulted from thresholding the 

� � �  top row images: R, B, G. 



3. Finally, all pixels of each detected target resulting from the pre-screening stage are 

compared with their corresponding values in the discrimination image d(x; y) according to 

the condition 4.42; i.e. if a target pixel is detected by both pre-screener and discriminator, 

then the pixel is declared a ship pixel, 
8 
><� 

9 
>=�1 =) ship pixel� 

[td(x; y) && d(x; y)] = (4.42)�
>:� >;�0 =) false alarm� 

where, td(x; y) is the value of the pixel (x; y) in a detected target. 

4. When all pixels in a given target are rejected according to the above discrimination 

condition, then this target is considered a false alarm. On the other, when any of the pixels 

within a target is accepted, then the entire target is considered a ship. 

Discrimination of Target Candidates Near Land Regions 

Near-land candidates need a special treatment in the discrimination stage like the pre-

screening stage. Near shores, there is high reections from land that may interfere with 

backscattering from ocean thus providing bright pixels that may be falsely detected as ships 

by the pre-screeners. Therefore, more strict condition should be applied in the discrimination 

process for targets detected at these regions. That is, only candidate pixels having strong 

strength of the three colors (all three types of the scattering mechanisms) are accepted as 

� � � ship pixels. In other words, detected pixels with values coinciding with the pattern "RGB 

= 111" are considered from a ship; otherwise, it is deemed as false alarm. 

4.9� Detection Performance Assessment of the Hybrid Ship Detection Algo<

rithm 

The output of the proposed detection algorithm is a set of targets declared as real ships. In 

order to assess the detection performance of the developed algorithm, the �nal detections 
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should be con�rmed as ships by veri�cation data. However, not all ships in the ocean carry� 

AIS transponders. Therefore, it is expected that some of these �nal detections be ships with 

no veri�cation data. These detections will be called in the results chapter the "extra targets". 

In fact, without the veri�cation data, it is not possible to con�rm that these targets are real 

ships even if multiple di�erent detection algorithms are applied to the same data. This is 

because no two detectors give the same �nal detections when applied to exactly the same 

scene [8]. Therefore, we will assess the detection performance using only ships with veri�ed 

positions and not taking extra detections into consideration in the assessment operation. 

In each scene, there were a considerable number of ships with veri�ed positions given 

by the AIS data available with the RS-2 scenes. AIS positions for ships located exactly at 

the shoreline was ignored since these ships were masked out by the land masking algorithm 

as a part of the shoreline before the application of the ship detection algorithm. Moreover, 

monitoring ships near the shoreline is less important than ships sailing far in the ocean. Put 

in a di�erent way, ships at the shoreline maybe guarded by terrestrial surveillance methods 

like shore-based radars. However, SAR-based ship surveillance is necessary to monitor ships 

outside the �eld supervised by the terrestrial surveillance methods. 

To assess the detection performance, the percent ratio of the detected ships with veri�ed 

positions to the total number of ships with AIS positions is calculated. This percent ratio 

is called "the veri�ed detection rate (VDR) percentage" de�ned as in Eqn. (4.43). The 

VRD shows how many ships with validated positions are correctly detected by the detection 

algorithm. 

number of detected ships with veri�ed AIS positions 
VDR% = � 100 (4.43) 

total number of ships with veri�ed AIS positions 

4.10 Conclusion 

In this chapter, a new ship detection algorithm for CP SAR was introduced. Moreover, 

the basics and theoretical concepts related to this algorithm are reviewed. The proposed 
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algorithm combines four detection techniques together to improve the detection performance.� 

The proposed detection algorithm has a pre-screener and a discriminator. The pre-screener 

of the algorithm is a hybrid one that employs three detection methods: global thresholding, 

Stokes LRT and S0-CFAR. In the �rst pre-screening step,a global thresholding process is 

utilized to highlight all possible target candidates. In the second pre-screening step, the 

detected candidates are retested by using either the Stokes parameters LRT or the S0-CFAR 

detectors. The selection between these two pre-screeners is made according to the size of 

the candidate target. The GMM approach is used to estimate the joint pdf of the Stokes 

parameters for the LRT detector for ocean and ship data and for the Stokes S0 of ocean 

data. The discriminator of the proposed algorithm uses the m- � decomposition technique 

to distinguish ships from false alarms. 

This study is performed on simulated RCM SAR data in the Medium and Low Resolution 

and the Ship Detection modes. The performance of the proposed algorithm is assessed by 

comparing the number of detected ships with veri�ed positions to the total number of ships 

with AIS positions. Results and conclusions of this study are presented in Chapter 5. 
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Chapter 5� 

Hybrid Ship Detection Algorithm for CP SAR� 

Results and Discussion� 

In this chapter, the results of applying the proposed hybrid ship detection algorithm to a 

number of RS-2 scenes are introduced. After presenting the results, conclusions are drawn 

accordingly. This chapter is organized as follows. In Sec. 5.1, parameters setup of the GMM 

algorithm are discussed. Sec. 5.2 presents the setup of the detection algorithm parameters 

and the detection results for the Medium Resolution RCM mode data. The detection results 

of the Low Resolution RCM mode are introduced in Sec. 5.3 and the results of the Ship 

Detection mode are given in Sec. 5.4. Finally, in Sec. 5.5, concluding remarks are made 

about the presented work. 

5.1 GMM pdf Estimation Algorithm Setup and Results 

For the Stokes parameters LRT pre-screener, the GMM algorithm is run twice for each can<

didate target: once for the estimation of ocean Stokes data joint pdf and another for target's 

Stokes data joint pdf. The input to the GMM algorithm is the 4-D Stokes vector of the data 

pixels for which the pdf is to be estimated and the output is the joint Stokes parameters 

pdf of that data. After the likelihood ratios of all background pixels are computed, they are 

fed to the GMM algorithm to estimate ocean LR pdf as required to determine the adaptive 

threshold at the desired PFA. 

For the S0-CFAR pre-screener, the algorithm is run once for the estimation of ocean S0 

pdf using background window pixels. This pdf is used to determine the required threshold 

at a speci�c PFA. In order to reduce missing ships, the PFA is selected to be relatively high; 
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that is to be 10�6 at all candidate clusters for both LRT and CFAR detectors. 

For both ATD pre-screeners, the number of components (k) is set to 1 at the beginning 

and it is then increased by 1 till reaching an arbitrarily large value. At each k, the BIC is 

calculated and stored. After that, the model with the lowest BIC is selected to be the best �t 

to the data. At each k, the initial mixing probabilities are set to be equal for all components: 

k observations from the data are selected at random as the initial component means and 

variances. This setup of the GMM algorithm is the same for all three RCM modes. 

In the second pre-screening step, either one of two ATDs is used to threshold each pixel in 

the target window. These two detectors are the LRT and the CFAR detectors. The selection 

between the two ATDs is made based on the total number of pixels per candidate target 

detected by the pre-screener's �rst step. If the number of candidate target pixels is larger 

than 40 pixels, the LRT detector is used; otherwise, the CFAR is used. Although, more 

data points is preferred for accurate pdf estimation, a trade-o� between adequate number of 

data points for accurate pdf estimation and the speed of the detection algorithm should be 

made. In other words, the more data points used for the pdf estimation, the more number 

of components need to be tested for the selection of the best GMM of the data by the BIC 

criteria, and consequently, the more run time the algorithm takes per detected candidate 

which may a�ect its validity for near real time results. 

A sample of the Gaussian Mixture Modeling of ocean S0 data, from an ocean subset 

extracted from the Low Resolution mode data, is shown in Figure 5.1. Another sample 

GMM results for ocean likelihood ratio (LR) data in the Ship Detection RCM mode is shown 

in Figure 5.2. In these �gures, the top subplots present the number of GMM components 

(Nc) versus their corresponding BIC values. The middle subplots show the 1-D pdf and the 

histogram of ocean S0, while the bottom subplots present the cdf and tail probability. It 

is clear from Figure 5.1, that the BIC values of the S0 pdf start high and then decrease to 

a minimum and then increase as the number of components increases. The minimum BIC 
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value corresponds to the best �t to the data. The GMM of this S0 data has 3 components. 

From the middle subplot of Figure 5.1, one can visually observe the goodness of �t of the 

GMM pdf for the S0 data. The bottom subplot of Figure 5.1 shows the tail of the GMM 

pdf that is used to determine the threshold of the CFAR detector. 

For the ocean LR data, it is obvious from the top subplot of Figure 5.2 that the general 

decrease-then-increase behavior of the BIC values with the increase in the number of compo<

nents for the LR GMM is similar to that of the S0 case. However, the BIC values su�er from 

uctuations starting at k = 2 till k = 10 and then the BIC values start to increase linearly 

with the number of components increase. The GMM pdf of this LR data has 5 components. 

The goodness of �t of the GMM pdf for the LR data can visually be observed from the 

middle subplot. One can see from this subplot how the GMM approach is able to clearly 

describe the nature of LR data. The bottom subplot shows the range of the threshold values 

of the LRT detector. 

Figure 5.3 shows the Gaussian Mixture Modeling of the joint pdf for ocean and ship Stokes 

parameters data in the Medium Resolution RCM mode. The left subplot shows the number 

of Gaussian components (Nc) of ocean Stokes joint GMM against the corresponding BIC 

values. In the right subplot, the (Nc, BIC) relation is depicted for Ship Stokes parameters 

joint GMM. It is obvious that for the ocean joint Stokes case, the BIC values have a similar 

general trend to that of the ocean LR. Nevertheless, it is noticed that ship data BIC values 

start high, uctuate with a decreasing trend till reaching a minimum and then increase with 

uctuation with the number of Gaussian components increase. This observation may be 

attributed to the high variability in ship backscatter along with the multidimensional pdf 

estimation of the Stokes parameters 4-D data. For this data set, ocean joint GMM pdf has 

13 components while ship joint GMM has 24 components. 
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Figure 5.1: Low Resolution RCM mode : Gaussian Mixture Modeling of ocean S0 data. Top: 
Number of Gaussian components (Nc) of S0 GMM against BIC values. Middle: ocean S0 pdf 
(3 components GMM) and histogram. Bottom :ocean S0 cdf and tail probability. The GMM 
of this S0 data has 3 components which corresponds to the minimum BIC. The goodness 
of �t of the GMM pdf for this ocean S0 data can be seen from the middle subplot and the 
range of threshold values of the CFAR detector can be seen from the bottom subplot. 
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Figure 5.2: Ship Detection RCM mode : Gaussian Mixture Modeling of ocean LR data. 
Top: Number of Gaussian components (Nc) of ocean LR GMM against BIC values. Middle: 
ocean LR pdf and histogram. Bottom: ocean LR cdf and tail probability. The GMM of this 
ocean LR data has 5 components which corresponds to the minimum BIC. The goodness of 
�t of the GMM pdf for this ocean LR data can be seen from the middle subplot and the 
range of threshold values of the Stokes LRT detector can be seen from the bottom subplot. 
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Figure 5.3: Medium Resolution Mode : Gaussian Mixture Modeling of the joint pdf for ocean 
and ship Stokes parameters data. Left : Number of Gaussian components (Nc) of ocean LR 
GMM against BIC values for joint pdf of ocean Stokes parameter data. Right : Number of 
Gaussian components (Nc) of ship Stokes GMM against BIC values. 

5.2 The Medium Resolution RCM Mode Results 

5.2.1 Setup of Detection Algorithm Parameters 

First step Pre-screening stage 

In order to determine the global threshold required for this step, a block of (400� 400) ocean 

pixels with no targets is extracted from each scene. Then, the maximum S0 value of the 

ocean pixels is taken to be the global threshold. 

Target and Background Windows Setup 

For the Medium Resolution mode, the regular target window has an o�set from the maximum 

and minimum range and azimuth target boundary pixels of 1 pixel (C1 = 1). However, the 

background window o�sets from the target window, C2 and C3, are equal and are set to 10 

pixels. These values are selected to achieve both accurate ocean data pdf estimation for the 

smallest candidate target of one pixel and to facilitate fast run of the pre-screener algorithms. 

For near-land candidates, C1 remains the same as for far-from-land targets while C2 and C3 

is enlarged to 30 pixels to ensure adequate non-zero data points for accurate ocean data pdf 
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estimation. 

5.2.2 Detection Results 

The detection results of each pre-screening step and the discrimination stage applied to 

Scene 1 is shown in Figure 5.4. In Figure 5.4, red squares represent the veri�ed position of 

ships, green stars represent candidate targets detected by the global thresholding �rst pre-

screening step, yellow crosses represent detected targets after the ATD pre-screeners and the 

white dots represent the �nal detections after the discrimination stage. The top left subplot 

of Figure 5.4 shows the detections of the �rst pre-screening step (global thresholding). The 

top right subplot shows the detections of the second pre-screening step (CFAR and Stokes 

LRT ATDs). The bottom subplot presents the �nal detections after discrimination stage 

(child parameters analysis). It is clear that the number of candidate targets is large after the 

�rst pre-screening step which is attributed to the global thresholding process. The number of 

re-detected targets by the ATD pre-screeners is less than that of the �rst pre-screening step 

after taking the e�ect of local sea state in determining the threshold of each ATD. However, 

after the child parameter analysis of the discrimination stage, all ships with veri�ed positions 

are properly detected with two more extra targets. These two targets were declared by the 

discrimination stage to have a strong hybrid scattering mechanism which is highly unlikely 

to be from ocean clusters but may result from ships (with no veri�ed positions) or other 

maritime objects like buoys. 
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Figure 5.4: Medium Resolution RCM mode : Detection results of applying the hybrid  detection algorithm stages to Scene 1. Red 

squares represent the veri�ed  positions of the ships, green stars represent the candidate target detected by the global thresholding 

�rst  pre-screening step, yellow crosses represent the detected targets after of the ATD  pre-screeners and the white dots represent 

the �nal  detections after the discrimination stage. Top left  : results of the �rst  pre-screening step (global thresholding). Top 

right:  results of the second pre-screening step (CFAR  and Stokes LRT  ATDs).  Bottom:  �nal  detections after discrimination 

stage (child parameters analysis). Detections are superimposed on the RGB images of the m �  �  decomposition. 



The �nal detection results of all six scenes in the Medium Resolution RCM mode are 

shown in Figure 5.5 to Figure 5.10. The number of detected targets after each stage is shown 

in Table 5.1 for all scenes. The table entries represent the number of detections after the �rst 

pre-screening step (1st Pre-scr.), the second pre-screening step (2nd Pre-scr.) and the �nal 

detections after the discrimination stage. The �nal detections are sorted as detections with 

AIS positions (AIS(D)), missed detections with AIS positions (AIS(M)) and extra detections 

(Ext.). The total number of detections and the Veri�ed Detection Rate (VDR) percentage 

are also shown for each scene. It is clear that, for all scenes, the number of total �nal 

detections is much less than that after the pre-screening stage. Put di�erently, in all scenes 

of this mode, the number of detections from the pre-screening stage ranges from 1.3 to 2.3 

times more than the total number of �nal detections. This may be attributed to the fact that 

the pre-screening stage relies on the brightness of the pixel relative to the neighboring ocean 

pixels. So, some detections may be bright speckles pixels of ocean but detected as candidate 

targets by the pre-screener. However, the discrimination stage distinguishes between targets 

and ocean according to the scattering mechanism which signi�cantly reduces potential false 

alarms. It is also noticeable that the numbers of detections after the �rst and second pre-

screening steps are close and in some cases are equal. This may be due to the nearly 

homogeneous sea state over the entire scene for all scenes and the smoothing e�ect of spatial 

averaging. Overall, the detection algorithm is able to detect all ships with veri�ed positions 

with a VDR percentage of 100%. Moreover, it is noticed that the number of extra detections 

which may correspond to other maritime objects in all scenes, except scenes 5 and 6, is 

relatively low. 
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Table 5.1: Medium Resolution RCM mode : Number of detections after applying all stages 
of the hybrid detection algorithm to all scenes. The table entries represent the number 
of detections after the �rst pre-screening step (1st Pre-scr.), the second pre-screening step 
(2nd Pre-scr.) and the �nal detections after the discrimination stage. The �nal detections 
are sorted to detections with AIS positions (AIS(D)), missed detections with AIS positions 
(AIS(M)) and extra detections (Ext.). The total number of detections and the Veri�ed 
Detection Rate (VDR) percentage are also shown for each scene. The last row presents the 
total number of detections over the six scenes after each detection stage. 

Scene 
No. 

1st 

Pre-scr. 
2nd 

Pre-scr. 
Final Detections 

AIS(D) AIS(M) Ext 
Total No. 

Det. 
VDR 

1 37 25 9 0 2 11 100% 
2 15 15 8 0 1 9 100% 
3 21 21 11 0 2 13 100% 
4 35 35 11 0 6 17 100% 
5 129 110 54 0 11 65 100% 
6 102 99 54 0 10 64 100% 

Tot. 339 305 147 0 32 179 100% 
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Figure 5.5: Medium Resolution RCM mode : Final detections of Scene 1 detected by the hybrid  detection algorithm superim<
posed on the RGB images of the m �  �  decomposition. Red squares represent the veri�ed  position of the ships and white dots 

represent the �nal  detections. 
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Figure 5.6: Medium Resolution RCM mode : Final detections of Scene 2 detected by the hybrid  detection algorithm superim<
posed on the RGB images of the m �  �  decomposition. Red squares represent the veri�ed  position of the ships and white dots 

represent the �nal  detections. 
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Figure 5.7: Medium Resolution RCM mode : Final detections of Scene 3 detected by the hybrid  detection algorithm superim<
posed on the RGB images of the m �  �  decomposition. Red squares represent the veri�ed  position of the ships and white dots 

represent the �nal  detections. 
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Figure 5.8: Medium Resolution RCM mode : Final detections of Scene 4 detected by the hybrid  detection algorithm superim<
posed on the RGB images of the m �  �  decomposition. Red squares represent the veri�ed  position of the ships and white dots 

represent the �nal  detections. 
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Figure 5.9: Medium Resolution RCM mode : Final detections of Scene 5 detected by the hybrid  detection algorithm superim<
posed on the RGB images of the m �  �  decomposition. Red squares represent the veri�ed  position of the ships and white dots 

represent the �nal  detections. 



129 

Figure 5.10: Medium Resolution RCM mode : Final detections of Scene 6 detected by the hybrid  detection algorithm superim<
posed on the RGB images of the m �  �  decomposition. Red squares represent the veri�ed  position of the ships and white dots 

represent the �nal  detections. 



5.3 The Low Resolution RCM Mode Results 

5.3.1 Setup of Detection Algorithm Parameters 

First step Pre-screening stage 

For the Low Resolution mode, the global threshold is determined using an ocean block of 

400 pixels in range � 200 pixels in azimuth analogous to that of the Medium Resolution 

mode. The ocean block dimension in the azimuth direction, is reduced to half of that of 

the Medium Resolution mode in order to achieve a fair comparison between the detection 

results of these two imaging modes. This is done because the simulated Low Resolution 

data has double the azimuth sample spacing of the Medium Resolution mode while has the 

same range spacing. After that, the maximum S0 value of the ocean pixels is taken to be 

the global threshold. 

Target and Background Windows Setup 

As in the Medium Resolution mode, the regular target window for the Low Resolution data 

has an o�set from the maximum and minimum range and azimuth target boundary pixels of 

1 pixel (C1 = 1). However, the background window o�sets from the target window, C2 and 

C3, are equal and are set to 10 pixels. These values are selected to achieve both accurate 

ocean data pdf estimation for the smallest candidate target of one pixel and to facilitate fast 

run of the pre-screener algorithms. For near-land candidates, C1 remains the same as for 

far-from-land targets while C2 and C3 is enlarged to 30 pixels to ensure adequate non-zero 

data points for accurate ocean data pdf estimation. 

5.3.2 Detection Results 

Table 5.2 shows the number of detections after each stage of the developed algorithm for 

the six Low resolution RCM scenes. The number of detections after pre-screening is much 

larger than that after the discrimination stage by 1.4 to 2.5 times. It is also clear that there 

is a number of missed detections for this mode. The number of missed ships with veri�ed 
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positions ranges from 1 to 2 ships in 2 of the scenes (Scene 2 and 3) which reduces the VDR 

percentage to 81.82% at the worst case (Scene 3). Table 5.3 shows the length, width, type 

and orientation relative to the range direction information related to these ships. In Scene 

3, the upper ship is number 1 and the lower ship is number 2. By investigating the AIS data 

of these ships, we found that all 3 ships have dimensions that are smaller than the resolution 

cell of this RCM mode. This means that if the brightness of these ship pixels is not high 

enough with respect to their neighboring ocean pixels, they will most likely be missed. In 

fact all three ships were not detected by either pre-screening steps. This can be seen clearly 

from Figure 5.11 which shows the detection results after applying each stage of the detection 

algorithm to Scene 3. This scene is selected to manifest the worst missed detections case in 

this mode. The top left sub-�gure shows the candidate targets from the global thresholding 

pre-screener in green stars with the veri�ed ship positions as red squares superimposed on an 

RGB image of Scene 3. Detections from second pre-screeners are indicated in yellow crosses 

in the top right sub-�gure and �nal detections are presented as white dots in the bottom 

sub-�gure. The above observations about the missed ships may be interpreted as that these 

ships have a low backscattered power (low brightness) most probably due to their small sizes 

with respect to the resolution cell size. However, other factors like ship shape, orientation, 

construction and superstructure may a�ect the backscattered power. 

The �nal detection results of all six scenes in the Low Resolution RCM mode are shown 

in Figure 5.12 to Figure 5.17 . 
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Table 5.2: Low Resolution RCM mode : Number of detections after applying all stages of the 
hybrid detection algorithm to all scenes. The table entries represent the number of detections 
after the �rst pre-screening step (1st Pre-scr.), the second pre-screening step (2nd Pre-scr.) 
and the �nal detections after the discrimination stage. The �nal detections are sorted to 
detections with AIS positions (AIS(D)), missed detections with AIS positions (AIS(M)) and 
extra detections (Ext.). The total number of detections and the veri�ed detection rate 
(VDR) percentage are also shown for each scene. The last row presents the total number of 
detections over the six scenes after each detection stage. 

Scene 
No. 

1st 

Pre-scr. 
2nd 

Pre-scr. 
Final Detections 

AIS(D) AIS(M) Ext 
Total No. 

Det. 
VDR 

% 
1 
2 
3 
4 
5 
6 

22 
13 
29 
31 
84 
120 

16 
11 
27 
31 
82 
120 

9 0 2 
7 1 0 
9 2 2 
11 0 9 
54 0 6 
54 0 10 

11 
7 
11 
20 
60 
64 

100% 
87.50% 
81.82% 
100% 
100% 
100% 

Tot. 299 287 144 3 29 173 97.96% 

Table 5.3: AIS information of the three missed ships of Scenes 2 and 3 in the Low Resolution 
RCM mode. In Scene 3, the upper ship is number 1 and the lower ship is number 2. 

Ship No. Length (m) Width (m) Orient. (� ) Type 
Scene 2 

1 29 9 90 Tug 
Scene 3 

1 81 14 30 Cargo 
2 91 78 0 Cargo 
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Figure 5.11: Low Resolution RCM mode : Detection results applying the hybrid  detection algorithm stages to Scene 3. Red 

squares represent the veri�ed  position of the ships, green stars represent the candidate target detected by the global thresholding 

�rst  pre-screening step, yellow crosses represent the detected clusters after of the ATD  pre-screeners and the white dots represent 

the �nal  detections after the discrimination stage. Top left:  results of the �rst  pre-screening step (global thresholding). Top 

right:  results of the second pre-screening step (CFAR  and Stokes LRT  ATDs).  Bottom:  �nal  detections after discrimination 

stage (child parameters analysis). Detections are superimposed on the RGB images of the m �  �  decomposition. 
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Figure 5.12: Low Resolution RCM mode : Final detections of Scene 1 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.13: Low Resolution RCM mode : Final detections of Scene 2 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.14: Low Resolution RCM mode : Final detections of Scene 3 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.15: Low Resolution RCM mode : Final detections of Scene 4 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.16: Low Resolution RCM mode : Final detections of Scene 5 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.17: Low Resolution RCM mode : Final detections of Scene 6 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 



5.4 The Ship Detection RCM Mode Results 

5.4.1 Setup of Detection Algorithm Parameters 

First step Pre-screening stage 

In this mode, the global threshold is determined using an ocean block of 1600 pixels in range 

� 400 pixels in azimuth, analogous to that of the Medium Resolution mode. The ocean 

block dimension in the range direction is increased by 4 times over that of the Medium 

Resolution mode in order to achieve a fair comparison between the detection results of these 

two imaging modes. This is done because the range pixel spacing simulated of the Ship 

Detection data has nearly one quarter that of the Medium Resolution mode, but has the 

same azimuth pixel spacing. After that, the maximum S0 value of the ocean pixels is taken 

to be the global threshold. 

Target and Background Windows Setup 

As in the other two modes, the regular target window for the Ship Detection data has an 

o�set from the maximum and minimum range and azimuth target boundary pixels of 1 pixel 

(C1 = 1). However, the background window o�sets from the target window, C2 and C3, are 

set to be unequal to get the bene�t from the large number of pixels in the range direction 

of this mode images. The o�set in the azimuth direction C2 is set to 10 while the o�set in 

the range direction C3 is set to 40. 

For near-land candidates, C1 remains the same as for far-from-land targets while C2 

enlarged to 30 pixels and C3 is set to 60 pixels to ensure adequate non-zero data points for 

accurate ocean data pdf estimation. 

5.4.2 Detection Results 

For the Ship detection mode, Table 5.4 shows the number of detections after each stage 

of the developed algorithm for all scenes. It is clear from Table 5.4 that all ships with 

veri�ed positions are successfully detected in all scenes. One also can see that some extra 
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targets are found in all scenes. It is noticed that the number of candidate targets after 

the �rst pre-screening step is larger than that of the second step for all scenes as in the 

other two modes. The latter is more than the �nal detections by 1.6 to 4.4 times. Figure 

5.18 shows the detection results of each stage of the algorithm of Scene 6. In Figure 5.18, 

red squares represent the veri�ed position of ships, green stars represent candidate targets 

detected by the global thresholding �rst pre-screening step, yellow crosses represent detected 

targets after of the ATD pre-screeners and the white dots represent the �nal detections after 

the discrimination stage. Note from this �gure that the number of candidate targets after 

both pre-screening steps is similar and larger than the �nal detections. However, after the 

discrimination stage nearly 54% of these detections is rejected. 

Table 5.4: Ship Detection RCM mode : Number of detections after applying all stages of the 
hybrid detection algorithm to all scenes. Table entries represent the number of detections 
after the �rst pre-screening step (1st Pre-scr.), the second pre-screening step (2nd Pre-scr.) 
and the �nal detections after the discrimination stage. The �nal detections are sorted to 
detections with AIS positions (AIS(D)), missed detections with AIS positions (AIS(M)) and 
extra detections (Ext.). The total number of detections and the veri�ed detection rate 
(VDR) percentage are also shown for each scene. The last row presents the total number of 
detections over the six scenes after each detection stage. 

Scene 
No. 

1st 

Pre-scr. 
2nd 

Pre-scr. 
Final Detections 

AIS(D) AIS(M) Ext 
Total No. 

Det. 
VDR 

% 
1 
2 
3 
4 
5 
6 

21 
23 
35 
79 
120 
143 

18 
17 
33 
75 
102 
140 

9 0 2 
8 0 1 
11 0 3 
11 0 6 
54 0 8 
54 0 10 

11 
9 
14 
17 
62 
64 

100% 
100% 
100% 
100% 
100% 
100% 

Tot. 421 385 147 0 30 177 100% 
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Figure 5.18: Ship Detection RCM mode : Detection results applying the hybrid  detection algorithm stages to Scene 6. Red 

squares represent the veri�ed  position of the ships, green stars represent the candidate target detected by the global thresholding 

�rst  pre-screening step, yellow crosses represent the detected targets after the ATD  pre-screeners and the white dots represent 

the �nal  detections after the discrimination stage. Top left:  results of the �rst  pre-screening step (global thresholding). Top 

right:  results of the second pre-screening step (CFAR  and Stokes LRT  ATDs).  Bottom:  �nal  detections after discrimination 

stage (child parameters analysis). Detections are superimposed on the RGB images of the m �  �  decomposition. 
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Figure 5.19: Ship Detection RCM mode : Final detections of Scene 1 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.20: Ship Detection RCM mode : Final detections of Scene 2 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.21: Ship Detection RCM mode : Final detections of Scene 3 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.22: Ship Detection RCM mode : Final detections of Scene 4 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.23: Ship Detection RCM mode : Final detections of Scene 5 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 
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Figure 5.24: Ship Detection RCM mode : Final detections of Scene 6 detected by the hybrid  detection algorithm superimposed 

on the RGB images of the m� �  decomposition. Red squares represent the veri�ed  position of the ships and white dots represent 

the �nal  detections. 



5.4.3 Comparison of RCM Modes Detection Results 

To summarize the detection results of the three RCM modes, we include the total number of 

detections over all six scenes in each mode in Table 5.5. The columns of the table is divided 

into 4 sets separated by a vertical line. The �rst set contains the three RCM modes. The 

second set shows the total number of detections after the �rst and second pre-screening steps. 

The third set shows the total number of �nal detections after the discrimination stage; this 

set is composed of three columns: the total number of detected ship with veri�ed positions, 

the total number of missed ships with AIS positions and total number of extra targets. The 

fourth set is for the total number of all detections, with and without veri�ed positions, and 

the last set is for the total VDR percentage. 

It is clear from the table that the largest number of pre-screening detections is for the 

Ship Detection mode followed by the Medium Resolution mode and then the Low Resolution 

one. This may be attributed to the fact that Ship Detection data has the highest resolution 

followed by the Medium Resolution mode and then the Low Resolution mode. Moreover, the 

Ship Detection data is used as the simulated SLC images without multilooking unlike the 

other two RCM modes data. Obviously, multilooking reduces speckle that may be detected 

as candidate targets by the pre-screener. The Low Resolution mode has the largest number 

of looks (8 looks in the range direction) and hence the best smoothing e�ect along with the 

low resolution and therefore, the lowest number of pre-screening detections. In the middle, 

comes the Medium Resolution mode with the 4 looks in the range direction and the medium 

number of pre-screening detections. 

From the total number of �nal detections, we notice that the developed detection algo<

rithm has successfully detected all ships with veri�ed positions in the Ship detection and 

the Medium Resolution modes. On the other hand, three ships were missed at the Low 

Resolution mode. This may be attributed to their low backscattered power due to their 

small sizes with respect to the resolution cell (and other factors) and the low resolution of 
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this mode. Thus, the total percent Veri�ed Detection Rate is reduced to nearly 98% for this� 

low resolution mode. 

Table 5.5: Total detection results of the Medium Resolution, Low Resolution and the Ship 
Detection RCM modes after each stage of the hybrid ship detection algorithm. The table 
entries represent the total number of detections after the �rst pre-screening step (1st Pre-scr.), 
the second pre-screening step (2nd Pre-scr.) and the �nal detections after the discrimination 
stage. The �nal detections are sorted to detections with AIS positions (AIS(D)), missed 
detections with AIS positions (AIS(M)) and extra detections (Ext.). The total number of 
detections and the total veri�ed detection ratio (VDR) are presented as well for each mode. 
The total number of detections after each stage are taken over the six scenes at each mode. 

RCM Mode 1st 

Pre-scr. 
2nd 

Pre-scr. 
Final Detections 

AIS(D) AIS(M) Ext 
Total No. 

Det. 
VDR 

% 
Medium Resolution 

Low Resolution 
Ship Detection 

339 
299 
421 

305 
287 
385 

147 0 32 
144 3 29 
147 0 30 

179 
173 
177 

100% 
97.96% 
100% 

It is obvious from Table 5.5 that the total number of extra detections in all three modes 

is close, and that the least number is for the Low Resolution mode. Finally, we can see that 

the total number of all detected ships for the Ship Detection and for the Medium Resolution 

modes are close, and that the Ship detection mode has the largest number, while the lowest 

number is for the Low Resolution mode which is to be expected. 

5.4.4 Advantages of the Hybrid Ship Detection Algorithm 

To sum up, the results manifest the following advantages of the developed algorithm: 

1. The pre-screener's �rst step declares a large number of candidate targets. This is 

useful to avoid missing potential targets. 

2. The composite structure of the pre-screener's second step (the CFAR and the LRT) 

bene�ts from each of the detector merits and discards its demerits. The sub-optimal CFAR 

detector is used when it is not possible to estimate target's pdf while the optimal LRT 

detector is employed adaptively for large candidates. 

3. The application of the second pre-screening step only to candidate detections from 
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the �rst step reduces the computational burden and the run time needed to obtain �nal 

detections compared to algorithms that apply adaptive thresholding to the entire scene. 

This makes the algorithm suitable to o�er near real time service. 

4. The adaptive nature of the pre-screener's second step enables taking into consideration 

local sea state around candidates only in order to re�ne the detections without increasing 

the computational burden. 

5. Taking local sea condition requires estimating accurate pdf of ocean data which is 

ful�lled by using the GMM method. The GMM method enables the estimation of the joint 

pdfs of ocean and ships Stokes parameters required by the LRT detector. 

6. The m � � decomposition analysis of the discrimination stage reduces false alarms 

from ocean and ship ghosts signi�cantly and enhances the detection performance. 

7. The special setup of the pre-screener and discriminator used for candidate targets near 

land reduces potential false alarms in these regions. 

8. The detection algorithm can be used e�ectively to detect ships in low and medium 

resolution CP images. 

5.5 Conclusion 

In this chapter, the detection results of applying the proposed hybrid ship detection algorithm 

were presented. The algorithm was applied to a number of RS-2 scenes simulated in the 

Medium Resolution, Low Resolution and the Ship Detection RCM modes. The detection 

algorithm is composed of two stages: two-step pre-screening stage and a discrimination stage. 

In the pre-screening stage, a global thresholding of each pixel in the total received power 

(S0) image is performed to declare preliminary candidate targets. This step is followed by an 

adaptive thresholding detection applied only for these preliminary candidates to take local 

sea state condition into consideration. The adaptive thresholding detectors used in this step 

are the S0-CFAR and the Stokes Parameters LRT detectors. The selection between either 
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detectors is made based on the size of the candidate target. Small targets are tested by the� 

CFAR detector while large targets are tested by the LRT one. Re-detected targets are then 

passed to the discrimination stage for (m-�) decomposition analysis. In the discrimination 

stage, a �nal detection decision is made based on the type and strength of the scattering 

mechanisms of the detected targets and not on the target size. 

Results show that the pre-screening stage, the �rst step in particular, declares a large 

number of candidate targets. Although some of these detections may be false alarms, this 

large number of preliminary detections is counted as an advantage to avoid missing potential 

targets. The composite structure of the pre-screener makes bene�ts from many detection 

strategies (global thresholding, sub-optimal detector like the CFAR and optimal detector as 

the LRT one). Moreover, this structure reduces the computational burden and the run time 

to obtain �nal detections compared to algorithms that apply adaptive thresholding to the 

entire scene. On the other hand, �nal detections, after the discrimination stage, are much 

less as the child parameters analysis of the discrimination algorithm enhances the detection 

performance by reducing false alarms. 

The developed hybrid ship detection algorithm was able to detect most veri�ed ships in 

addition to extra maritime objects in all scenes and RCM modes. In the Medium Resolution 

and the Ship Detection modes, the algorithm detected successfully all ships with veri�ed 

positions. However, nearly 98% of the veri�ed ships were detected in the Low Resolution 

mode. The missed ships have low backscatter power that do not enable the algorithm to 

detect them in the �rst detection stage. The detection results of the three RCM modes 

are comparable with the Medium Resolution and the Ship detection modes share the best 

detection performance followed by the Low Resolution mode. Therefore, it is apparent that 

all three RCM modes would bene�t the ship detection application by providing high detection 

performance and large swath width. 
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Chapter 6� 

Conclusions and Future Study Recommendations� 

6.1 Conclusions 

Ship detection is one of the important components of maritime surveillance. SAR systems 

provide tremendous amount of information about earth in the form of multi-polarization and 

multi-resolution images of areas allover our planet. Of particular importance and interest is 

the compact polarimetric SAR data which achieves a trade-o� between multi-polarization 

system advantages and the wide coverage required for surveillance applications. In this 

thesis, the bene�ts of using hybrid CP data for ship detection in SAR images with various 

resolutions, acquired with di�erent incidence angle beams and polarizations were explored. 

For this purpose, two novel contributions were introduced in this research; the �rst is the 

investigation of the possibility and bene�ts of using the pseudo-quad data generated from CP 

data for improved ship detection. The PQ data was generated by a reconstruction algorithm 

that was developed speci�cally for maritime applications. This is done by comparing the ship 

detection performance of PQ data to linear, circular and CP dual-pol SAR data. This study 

is performed on FQ RS-2 data and simulated RCM data in the Medium, Low Resolution 

and the Ship Detection modes. This CP ship detection investigation study for simulated 

Radarsat Constellation Mission data is the �rst in the literature. The other contribution is 

the development of a Stokes parameters hybrid ship detection algorithm to be used to detect 

vessels in CP data with medium and low resolutions. 

6.1.1 Ship Detection Performance Analysis of Compact Polarimetric Data Conclusions 

In this part of the thesis, the possibility and bene�ts of using compact polarimetry SAR gen<

erally and the pseudo-quad data speci�cally for ship detection are investigated. The pseudo<
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quad data was generated using Collins reconstruction algorithm which was developed in a 

collaboration with a research team at the U of C speci�cally for maritime applications. This 

reconstruction algorithm has the highest reconstruction performance of C-band ocean data 

among other algorithms. The reconstruction algorithm uses the four elements of the CTLR 

CP covariance matrix to generate the amplitude of the two co-pol components (jSHH j; jSV V j), 

their relative phase and the cross-pol amplitude (jSHV j). In order to do that, reection sym<

metry was assumed for the ocean data. Another assumption that was incorporated is the 

polarization state interpolation originally developed by Souyris et. al [22] and then modi<

�ed by Nord et. al [57]. The constant of proportionality required for this assumption was 

estimated using Collins experimentally-based model which takes the incidence angle of the 

imaging mode into consideration to improve the reconstruction performance of ocean data. 

This reconstruction algorithm was applied to a number of RS2 scenes with �ne (FQ data), 

medium and low resolutions (simulated RCM data) and acquired by di�erent beam modes. 

The ship detection performance of the reconstructed quad-pol (PQ) data was compared to 

that of a number of SAR detectors (quad-pol, linear, circular and compact dual-pol) data. 

The ship detection performance was investigated for a LRT ship detector taking into consid<

eration the impact of resolution, ship orientation and beam incidence angle. The detection 

performance was assessed in terms of the median probability of missed detection (PMD) for 

each system calculated over a number of ships spread over the available scenes as a function 

of the probability of false alarm (PFA) and at speci�c PFA value. From this analysis, the 

following can be concluded: 

1. The detection performance increases with spatial resolution: FQ data has the strongest 

performance over all RCM modes data while for RCM data, the Low Resolution data had 

the weakest performance and the Ship Detection mode had the strongest performance. 

2. For incidence angles greater than 25� , compact polarimetry modes had superior ship 

detection performance to linear polarization data while at steeper incidence angles, linear 
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and compact polarization con�gurations had comparable performance.� 

3. For all polarizations and imaging modes, ship detection performance increased with 

incidence angle, with the highest performance at about 40� . 

4. For all imaging modes, the PQHV and RH-RV, by themselves and in combination, 

had the highest performance over other CP, circular and linear-pol data. This suggests the 

usefulness of quad-pol reconstruction for improved ship detection. 

5. Higher performance was observed for ships perpendicular and parallel to radar bore 

sight. 

Thus, the results of this study suggest that quad-pol reconstruction, using Collins re<

construction algorithm, bene�ts ship detection by enhancing the detection performance. 

Moreover, the three RCM modes generally, and the Ship Detection mode in particular, are 

shown to be a promising compromise between the ship detection performance and the wide 

swath width desired for ship surveillance. Therefore, it may be recommended to use hybrid 

compact polarimetric SAR data (raw and reconstructed), acquired by RCM imaging modes 

that cover medium to high (shallow) incidence angles for improved ship detection. 

6.1.2 The Hybrid Ship Detection Algorithm Conclusions 

The hybrid ship detection algorithm utilizes the CP Stokes parameters and some of their 

child parameters for ship detection. The proposed algorithm combines four detection tech<

niques together to improve the detection performance and discrimination between ships and 

false alarms. The algorithm is composed of two stages: a two-step pre-screening stage and a 

discrimination stage. The �rst step of the pre-screener exploits the di�erence in the received 

power between ocean and ship pixels to globally threshold the entire image to declare pre<

liminary candidate targets. In the second pre-screening step, either one of two new Adaptive 

Thresholding Detectors ( S0-CFAR and Stokes LRT) are selected to test each preliminary 

candidate. These adaptive thresholding detectors take local sea state condition into con<

sideration when determining its threshold value. The selection between either detector is 
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made based on the size of the candidate target. Small targets are tested by the CFAR� 

detector while large targets are tested by the LRT one. This composite structure of the 

pre-screener bene�ts from each detector merits and discards its demerits. Moreover, it re<

duces the computational burden and the run time to obtain �nal detections. The probability 

density functions of ocean and ships data Stokes parameters required by the ATDs are es<

timated using the Gaussian Mixture Model method for each candidate target. Re-detected 

targets are then passed to the discrimination stage for (m-�) decomposition analysis. In the 

discrimination stage, �nal detection decision is made based on the type and strength of the 

scattering mechanisms of the detected targets and not on target size. This discrimination 

rule reduces signi�cantly false alarms. Furthermore, a special setup of the pre-screener and 

discriminator is used for candidate targets near land to reduce potential false alarms in these 

regions. This algorithm is applied to a number of RS-2 scenes simulated in the Medium Res<

olution, Low Resolution and the Ship Detection RCM modes. The detection performance 

of the developed algorithm is assessed using veri�cation data. Obtained results can help 

conclude that: 

1. In the Medium Resolution and the Ship Detection modes, the algorithm detected 

successfully all ships with veri�ed positions. However, nearly 98% of the veri�ed ships were 

detected in the Low Resolution mode. In addition, extra maritime objects in all scenes and 

RCM modes were detected. 

2. All missed ships have low backscatter power that do not enable the algorithm to detect 

them in the pre-screening stage. 

3. The detection results of the three RCM modes are comparable with the Medium 

Resolution and the Ship Detection modes shares the best detection performance followed by 

the Low Resolution mode. 

Accordingly, it has been found that the proposed hybrid detection algorithm can be used 

e�ectively to detect ships in CP SAR images with medium and low resolution. 
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6.2 Recommended Future Studies 

In the future work, it is recommended to follow up the performed research with the following: 

1. Develop an adaptive reconstruction algorithm to account for sea state and ship data. 

2. Investigate the e�ect of using other Stokes parameters in the pre-screening stage of 

the hybrid detection algorithm on the detection performance. 

3. Use other child parameters and decomposition techniques in the discrimination stage 

of the algorithm and investigate the improvement in the detection performance. 

4. Estimate of some ship-related measurements like length, width and speed. 
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Appendix A� 

Copyright Permission for the paper : G. E. Atteia and M. J. Collins, \Ship detection Per<

formance assessment for simulated RCM SAR data," in Proc. of the IEEE International 

Geoscience and Remote Sensing Symposium (IGARSS), July 2014. 
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