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Abstract 

The growing demand for indoor navigation applications has promoted the implementation of 

navigation techniques on handheld devices. An accurate and reliable indoor navigation system 

hosted on handheld devices would benefit many consumer industries. MEMS (Micro-

Electromechanical System) sensors can provide a short-term accurate navigation solution. WiFi-

based (Wireless Fidelity) positioning is another potential technology for indoor navigation, which 

only uses pre-existing WiFi infrastructures and is a good source to aid the MEMS-based navigation 

solution. However, WiFi positioning requires databases to estimate the user position. The pre-

surveys for building and maintaining the WiFi databases make most current WiFi positioning 

systems are not automatic. Currently, it remains difficult to find an automatic and accurate indoor 

navigation system on typical handheld devices. However, the complementary characteristics of 

MEMS sensors and WiFi offer an efficient integration for indoor navigation applications.  

Two automatic WiFi Positioning Services (WPSs) based on trilateration and fingerprinting are 

investigated in this research, which both consist of the background survey service and WiFi 

positioning service. Both WPSs provide WiFi positioning solutions, with no cost to build and to 

maintain WiFi databases. This removes the limitations that most current WPSs require time-

consuming and labor-intensive pre-surveys to build the databases. Different approaches are 

investigated to improve the accuracy of both the WiFi databases and the userôs positions in indoor 

environments. The developed two automatic WPSs are also compared.  

An innovative MEMS navigation solution, based on motion constraints and the integration of INS 

(Inertial Navigation System) and PDR (Pedestrian Dead Reckoning), is built on handheld devices. 

LC (Loosely-coupled) integration and TC (Tightly-coupled) integration are implemented for WiFi 

and MEMS sensors to further limit the drifts of MEMS sensors. The navigation performances of 
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PDR, INS, the PDR/INS-integrated MEMS solution, the LC integration solution, and the TC 

integration solution are compared in this research. The test results also show its average positioning 

error of TC integration in various trajectories is 0.01% of INS, 10.38% of PDR, 32.11% of the 

developed MEMS solution, and 64.58% of LC integration. This developed TC integration solution 

can be used in both environments with dense and sparse deployments of WiFi APs (Access Points). 
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Chapter One: Introduction  

1.1 Background and Problem Statement 

The rapid development and improvement of handheld devices, such as smartphones and tablets, 

has enabled them to become powerful tools for navigation applications (Kim et al. 2013; Yohan 

and Hojung 2011). Modern handheld devices are widely used as platforms for navigation because 

they have sophisticated and powerful microprocessors, efficient operating systems, and embedded 

multi-sensors (Zhuang et al. 2013b). The microprocessors and operating systems ensure fast 

computation for navigation applications, whereas embedded multi-sensors guarantee sufficient 

data to support the design of navigation algorithms. The growing demand for navigation 

applications, especially indoors, has also promoted the implementation of navigation techniques 

on handheld devices. Accurate and reliable indoor navigation system hosted on handheld devices 

would benefit many consumer industries including health care, Location Based Services (LBS), 

emergency services, tourism, and personnel management (Renaudin et al. 2007). 

To provide indoor navigation solutions, there are several potential technologies available such as 

Wireless Fidelity (WiFi), Global Positioning System (GPS), and inertial sensors-based relative 

navigation, etc. GPS, when signal available, is the most popular and accurate navigation system 

(Kaplan and Hegarty 2006). However, GPS cannot provide a reliable indoor navigation solution 

because its signals are degraded by ceilings, walls, and other objects. Therefore, other technologies 

have been developed to compensate for the limitations of GPS, such as Radio Frequency 

Identification (RFID) (Cardullo and Parks 1973), Ultra-Wide Band (UWB) (Siwiak 2001), Micro-

Electromechanical Systems (MEMS) multi-sensors (Mohamed 1999) (Zhuang et al. 2013a), and 

Wireless Local Area Networks (WLAN) (Chen et al. 2012). Specifically, RFID and UWB require 
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dedicated infrastructure and special devices to detect signals for positioning, and can provide 

accurate positioning solutions. On the other hand, in most current handheld devices, MEMS 

sensors, such as accelerometers, gyroscopes, magnetometers, and barometers, provide navigation 

solutions without any dedicated infrastructure. However, the accuracy of the MEMS sensorsô 

navigation solution will decrease with time due to their drift characteristics (Zhuang et al. 2013a) 

(El-Sheimy 2006).  

WiFi-based positioning is another potential technology for indoor navigation because it only uses 

pre-existing WiFi infrastructure. WiFi positioning errors do not accumulate with time which makes 

WiFi an excellent source to aid the standalone navigation solution based on MEMS sensors (Yunye 

et al. 2013). Currently, there are two RSS-based (Received Signal Strength) WiFi localization 

techniques: trilateration and fingerprinting (Hui et al. 2007). Both of these technologies require 

special databases to estimate the user position. In traditional approaches, professional surveyors 

are hired to build and maintain the databases. A radio map database is required for fingerprinting, 

where the RSSs of available Access Points (APs) are mapped to absolute positions. Pre-survey is 

also needed to build the database of the propagation parameters (PPs) and AP locations for 

trilateration. Although some approaches have been proposed to reduce the effort to construct WiFi 

databases, these approaches still require many professional surveyors, especially for large areas. 

Pre-survey is a labor-intensive and time-consuming process conducted by professional surveyors. 

Therefore, most current WiFi positioning system are not automatic.  

Some crowdsourcing-based systems have made indoor positioning more practical. However, they 

still suffer from various limitations, such as needing a floor plan or GPS, being suitable only for 

specific indoor environments, and only implementing a simple MEMS sensor solution. Thus, 
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currently, it remains difficult to find an automatic and accurate indoor navigation system on typical 

handheld devices without special hardware or infrastructures. However, it is expected that the 

cooperation of MEMS sensors and WiFi is an efficient approach for indoor navigation 

applications. In this thesis, the focus primarily is on the implementation of WiFi and MEMS 

cooperated systems on handheld devices because the pedestrian navigation services implemented 

on handheld devices are low-cost, user friendly, and do not require additional hardware. 

1.2 Review of Existing Literature 

1.2.1 Reduce Labor for Building WiFi D atabases 

To ensure WiFi positioning is more practical, much work has been done to reduce the labor-

intensive and time-consuming task of building the databases for both trilateration (Cheng et al. 

2005) (Skyhook 2014) (Yu 2012) and fingerprinting (Cheng et al. 2005) (Yungeun et al. 2012) 

(Bolliger et al. 2009) (Nguyen and Zhang 2013). Fingerprinting-based research is given first. A 

system is proposed in (Cheng et al. 2005) to reduce the cost of offline training by automatically 

collecting WiFi fingerprints with the help of vehicles equipped with GNSS (Global Navigation 

Satellite System) receivers. However, this system is used for outdoors, and is not suitable for 

indoor applications. Another concept is discussed in (Bolliger et al. 2009) whereby normal users, 

not professional surveyors, update fingerprints to the radio map. But, this is also not an automatic 

system because it requires the active participation of users to update fingerprints. An inertial 

sensors based system is proposed in (Yungeun et al. 2012) for the offline training phase. However, 

the inertial sensorôs navigation solution in this system is only based on simple dead reckoning by 

using accelerometers and magnetometers, which is not accurate and robust. Second, we summarize 

the algorithms for building the database containing AP locations for trilateration. In PlaceLab 
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(Cheng et al. 2005), AP locations are computed through the use of averaging and weighted 

averaging of positions derived from the measurement points collected through ñwar-drivingò. 

However, large estimation errors can result from measurement points with poor geometrical 

distribution. The research given in (Tsui et al. 2010) and Skyhook (Skyhook 2014) also uses ñwar-

drivingò to collect AP locations. Moreover,  research provided in (Yu 2012) estimates the path loss 

exponent and a constant parameter of the propagation model through rigorous testing. Least 

squares (LSQ) is then used to estimate AP locations. Yet, the challenge of this method is that the 

pre-surveyed parameters are not suitable for the estimation of AP locations when the environment 

has changed.  

1.2.2 Crowdsourcing-Based Systems 

Until now, several crowdsourcing-based systems have been proposed for indoor navigation, see 

for example (Chintalapudi et al. 2010) (Rai et al. 2012) (Wang et al. 2012) (Yang et al. 2012) 

(Shen et al. 2013). The work in (Chintalapudi et al. 2010) proposes the EZ localization algorithm, 

which does not require any pre-deployment effort, infrastructure support, priori knowledge about 

WiFi APs, or active user participation. However, EZôs reliance on ñoccasional GPS fixesò in 

indoor environments could be problematic. Research conducted in (Rai et al. 2012) proposes the 

ñZeeò system which has zero-effort crowdsourcing for indoor locations. Zee requires a map 

showing the pathways and barriers to filter out infeasible locations over time and converge on the 

true location by using the idea that a user cannot walk through a wall or other barrier marked on 

the map. However, this map is not available in many real-world cases. Also, Zee uses 

magnetometers, rather than gyroscopes, for calculating direction, which is usually affected by the 

indoor environment. Unlike the Zee, UnLoc, an unsupervised indoor localization scheme that 
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bypasses the need for war-driving, is proposed in the work of (Wang et al. 2012). The key idea of 

UnLoc is to improve the dead-reckoning-based sensor solution by using seed and organic 

landmarks. A floor plan or GPS is required in this system to find the location of seed landmarks. 

However, the location of seed landmarks could be questionable if a floor plan and GPS are not 

available. Another work in (Yang et al. 2012) presents the LiFS, an indoor localization system, 

which constructs the radio map with the help of a floor plan and sensors in smartphones. The 

building of the radio map is easy and rapid since little human intervention is needed. LiFS works 

well in buildings where the corridor connects all other office rooms that are on both sides of the 

corridor. However, LiFS may fail in large open environments, where usersô movements are 

difficult to analyze. Furthermore, similar to Zee, LiFS needs a floor plan to build the database, 

which may not always be available. Unlike LiFS, (Shen et al. 2013) presents Walkie-Markie ï a 

crowdsourcing-capable pathway mapping system that leverages the sensor-equipped mobile 

phones of ordinary pedestrians and to build indoor pathway maps without any a priori knowledge 

of the building. Central to Walkie-Markie is a novel exploitation of the WiFi infrastructure to 

define landmarks (WiFi-Marks) to fuse crowdsourced user trajectories obtained from inertial 

sensors on usersô mobile phones. The main limitation of Walkie-Markie is that it does not work 

well in wide pathways where WiFi-Mark detection and clustering will deteriorate if users have a 

wide choice of where to walk.  

In summary, while these crowdsourcing-based systems have made indoor positioning more 

practical than before, they still suffer from various limitations, which need a floor plan (Rai et al. 

2012) (Wang et al. 2012) (Yang et al. 2012) or GPS (Chintalapudi et al. 2010) (Wang et al. 2012); 

are suitable only for specific indoor environments (Yang et al. 2012) (Shen et al. 2013); and only 
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implement a simple MEMS sensor solution (Rai et al. 2012) (Wang et al. 2012) (Yang et al. 2012) 

(Shen et al. 2013). Therefore, the proposed system aims at reducing these limitations.  

1.2.3 WiFi SLAM 

WiFi SLAM (Simultaneous Localization and Mapping) is another group of algorithms (Ferris et 

al. 2007) (Bruno and Robertson 2011) (Faragher and Harle 2013) (Huang et al. 2011) for 

localization and WiFi information mapping (radio map and AP location). Researchers in (Ferris et 

al. 2007) implemented a WiFi SLAM system by using the GP-LVM (Gaussian Processes Latent 

Variables Model). More specifically, a WiFi radio map was generated by using GP-LVM to 

extrapolate from the existing fingerprints. However, this system is limited by its large computation 

load when processing large sets of data. Another WiFi SLAM algorithm is provided in (Huang et 

al. 2011), which builds the WiFi radio map based on GraphSLAM. The WiSLAM algorithm for 

improving FootSLAM with WiFi is provided in (Bruno and Robertson 2011). Yet, one drawback 

of this algorithm is that the path loss exponent is set to two when using the propagation model. 

Research in (Faragher and Harle 2013) proposes a smartSLAM scheme which contains PDR 

(Pedestrian Dead Reckoning), FEKF (Fingerprint Extended Kalman Filter), FEKFSLAM 

(Fingerprint Extended Kalman Filter SLAM), and DPSLAM (Distributed Particle SLAM). It also 

provides the process of building a WiFi radio map if it is not readily available. The large 

computation load of WiFi SLAM algorithms (Ferris et al. 2007) (Bruno and Robertson 2011) 

(Faragher and Harle 2013) (Huang et al. 2011) reduces the efficiency of microprocessors and 

increases battery consumption, which makes these algorithms unsuitable for implementation in 

handheld devices. If WiFi SLAM algorithms are implemented in the server, real-time transmission 

of high-rate sensor data to the server will increase the battery consumption of the devices.  
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1.2.4 Integrated Technologies for WiFi and MEMS Sensors 

Most research has focused on the integration of WiFi and body-mounted MEMS sensors (Chai et 

al. 2012; Evennou and Marx 2006; Frank et al. 2009). An indoor positioning system for 

pedestrians, combing WiFi fingerprinting with foot-mounted inertial and magnetometer sensors, 

is proposed in (Frank et al. 2009). However, foot-mounted systems are not as convenient as 

handheld devices for pedestrians, and the requirement of the pre-survey makes WiFi fingerprinting 

impractical for a large area. An advanced integration of WiFi and INS (Inertial Navigation 

System), based on a particle filter, is proposed in (Evennou and Marx 2006). Nevertheless, the 

particle filter is not suitable for handheld devices such as smartphones, due to its large computation 

load. If particle filter algorithms are implemented in the server, real-time transmission of high-rate 

sensor data to the server will increase the battery consumption of the devices. Furthermore, by 

using the AKF (adaptive Kalman filter), a PDR/WiFi/barometer integrated system is proposed in 

(Chai et al. 2012). However, this system is also based on WiFi fingerprinting and foot-mounted 

sensors. Moreover, a maximum-likelihood-based fusion algorithm that integrates the PDR and 

WiFi fingerprinting is proposed in (Chen et al. 2014). The algorithm was implemented in 

smartphones which made the system practical other than the pre-survey for fingerprinting.  

In addition, almost all current WiFi/MEMS integrations are loosely-coupled (LC) integrations, 

which means the integration is based on a MEMS navigation solution and WiFi position solution. 

On the other hand, tightly-coupled (TC) integration has been used for the integration of inertial 

sensors with GPS, RFID and USBL (Ultra-Short Baseline) (George and Sukkarieh 2005; Li et al. 

2006b; Morgado et al. 2006; Ruiz et al. 2012; Wendel and Trommer 2004; Yi and Grejner-
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Brzezinska 2006). Therefore, a TC integration for WiFi and MEMS sensors is proposed in this 

thesis to improve the performance of indoor navigation. 

1.3 Research Objectives 

The main objective of this research is to develop an automatic and seamless indoor navigation 

solution on handheld devices through the cooperation of WiFi and MEMS sensors. The accuracy 

objective in the proposed solution is to achieve the best accuracy for indoor navigation based on 

current hardware of handheld devices (e.g. smartphones and tablets). However, this accuracy 

objective has a lower priority than the automatic and seamless characteristics of the navigation 

system. Current handheld indoor navigation systems based on WiFi and MEMS sensors usually 

work in one mode whereby WiFi helps MEMS sensors to limit the drifts, or in the other mode 

whereby MEMS sensors help WiFi build the databases. But, systems seldom work in both modes 

and are not really cooperative. The proposed system in this thesis works in both modes and aims 

to provide an automatic and seamless indoor navigation solution. To achieve the main purpose, 

several important implementation and development issues must be addressed. 

1. Design and implementation of an automatic trilateration-based WPS (WiFi Positioning 

System): Trilateration requires current RSS values, propagation parameters, and AP locations 

to estimate the userôs position. A pre-survey is usually required to build the database, which 

consists of AP locations and propagation parameters. Thus, to implement an automatic 

trilateration-based WPS, the following two issues will be investigated: 

V Crowdsourcing-based WiFi database building: The pre-survey for the trilateration-

based database is time-consuming and labor-intensive, which makes most current WiFi 

positioning systems impractical and not automatic. To automatically build the 
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trilateration-based database by using crowdsourcing and MEMS-based navigation 

solution, several issues need to be investigated as follows: (1) How do we estimate the 

AP locations and propagation parameters from the MEMS solution and RSSs? (2) How 

can we remove unreliable estimates from the database? (3) How do we automatically 

build the database for trilateration through crowdsourcing? (4) What is the accuracy of 

AP locations and propagation parameters in the database? 

V WiFi positioning: We also need to investigate the issues for WiFi positioning by using 

the trilateration-based database as follows: (1) How do we estimate userôs position by 

using the crowdsourcing-based database? (2) How can we remove unreliable 

estimates? 

2. Design and implementation of an automatic fingerprinting-based WPS: Fingerprinting 

requires current RSS values and a radio map database to estimate the userôs position, and a 

pre-survey is usually required to build the radio map database. Thus, to implement an 

automatic fingerprinting-based WPS, the following two issues will be investigated: 

V Crowdsourcing-based WiFi database building: Similar to the automatic trilateration-

based WPS, several issues need to be investigated to automatically build the 

fingerprinting-based database by using crowdsourcing and MEMS-based navigation 

solution as follows: (1) How can we generate fingerprints from the MEMS solution and 

RSSs? (2) How do we remove unreliable fingerprints from the database? (3) How can 

we automatically build the database for fingerprinting through crowdsourcing?  

V WiFi positioning: We also need to investigate the issues for WiFi positioning by using 

the fingerprinting-based database as follows: (1) How to estimate userôs position by 

using the crowdsourcing-based database? (2) How to remove unreliable estimates? 
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3. Comparison of two automatic WPSs: After the two automatic WPSs are implemented, they 

will be compared in terms of: accuracy, memory cost, and implementation complexity. 

4. Design and implementation of the WiFi/MEMS integration for indoor navigation: There are 

different approaches for implementing a MEMS-based navigation solution and a WiFi/MEMS 

integrated navigation solution. Therefore, the following research questions will be addressed: 

How do we implement an advanced MEMS solution to reduce the drifts? Also, what are the 

navigation performances of loosely-coupled and tightly-coupled WiFi/MEMS integrations? 

Complete answers to these research questions will be provided in this thesis including some tests 

and analysis based on test results.  

1.4 Thesis Outline 

This thesis covers the design and implementation issues of an automatic and seamless indoor 

navigation solution on handheld devices through the cooperation of WiFi and MEMS sensors. The 

thesis consists of six chapters, and the outline of chapters two through six is as follows. 

Chapter 2 covers the necessary background information for the development and analysis of an 

indoor navigation system, and typical technologies for MEMS-based and WiFi-based navigation 

are summarized. The integrated navigation solutions using MEMS sensors and wireless signals 

are discussed, and three estimation approaches for navigation applications are presented in this 

chapter as follows: KF (Kalman Filter), EKF (Extended Kalman Filter), and nonlinear LSQ (Least 

Squares). 

Chapter 3 focuses on the issues of design and implementation of an automatic trilateration-based 

WPS. The design, implementation, and performance evaluation of a trilateration-based automatic 
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WPS is presented. In this chapter, the overview of the proposed system is discussed as well as the 

T-PN (Trusted Positioning Navigator) solution. The developed algorithms for measurement 

optimization, AP localization, PPs estimation, and autonomous crowdsourcing are discussed in 

detail. Background survey service and WiFi positioning service are also investigated and 

demonstrated, followed by test results and performance analyses.  

Chapter 4 deals with the issues of design and implementation of an automatic fingerprinting-based 

WPS and the comparison of two automatic WPSs. The design, implementation, and performance 

evaluation of a fingerprinting-based automatic WPS is discussed. In this chapter, background 

survey service and WiFi positioning service are investigated and analyzed. Algorithms for 

automatic radio map database generation and improved fingerprinting-based WiFi positioning are 

demonstrated, and their performances are evaluated through the field tests. The proposed 

automatic fingerprinting-based WPS is also compared with the automatic trilateration-based WPS.  

Chapter 5 focuses on the issues of design and implementation of the WiFi/MEMS integration for 

indoor navigation. An innovative algorithm, based on the integration of INS and PDR, is proposed 

for the MEMS-based navigation solution. Two integrated schemes for MEMS and WiFi, LC 

integration and TC integration, are proposed to improve the accuracy of the indoor navigation 

solution. The navigation performances of PDR, INS, PDR/INS-integrated MEMS solution, LC 

integration solution, and TC integration solution are also evaluated and compared in this chapter. 

Chapter 6 summarizes the achieved work of this thesis, concludes the results of this research, and 

gives recommendations for future research to improve the proposed system. Figure 1-1 shows the 

outline of the thesis and topic classification corresponding to the issues listed in Section 1.3. 
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Figure 1-1 Thesis outline. 
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Chapter Two: Background 

This chapter will cover the background information for the development and analysis of an 

automatic indoor navigation system based on the cooperation of MEMS sensors and WiFi. Since 

MEMS sensors play a significant role in indoor navigation, Section 2.1 summarizes the commonly 

used processes for implementing the MEMS-based navigation solution, which includes the INS 

solution, the PDR solution, and the motion constraints. Section 2.1 also describes the problems of 

current MEMS solutions. Section 2.2 discusses two typical implementations (trilateration and 

fingerprinting) for the WiFi-based navigation solution along with their limitations. The integrated 

navigation solutions using MEMS sensors and wireless signals are given in Section 2.3. Finally, 

Section 2.4 describes three estimation approaches for navigation applications: Kalman filter, 

extended Kalman filter, and nonlinear least squares. 

2.1 MEMS Solution for Indoor Navigation  

Currently, there are two different approaches to implement inertial sensors-based pedestrian 

navigation solution: INS and PDR. In the first approach, raw inertial sensor data is put to the INS 

mechanization equations to calculate the userôs navigation information. INS can provide 3D (Three 

dimensional) position, velocity, and attitude (PVA) information. However, the navigation error 

based on this approach increases rapidly with time due to the MEMS errors and the integrations 

used in the mechanization (Titterton and Weston 2004). On the other hand, PDR has four main 

procedures: step detection, step/stride length estimation, heading estimation, and 2D (Two 

dimensional) position calculation. In PDR, navigation solution errors are proportional to the 

distance traveled, and not to the time (Jahyoung and Hojung 2011). Besides these two approaches, 

motion constraints are also often used in MEMS-based navigation solutions. This section describes 
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three motion constraints used for pedestrian navigation: NHC (Non-holonomic constraints), ZUPT 

(Zero velocity update), and ZARU (Zero angular rate update). In the end, problems of current 

MEMS-based navigation solutions are discussed. 

2.1.1 Reference Frames 

Definitions of reference frames, which include navigation frame, body frame (sensor frame), and 

vehicle frame (pedestrian frame), are given below. 

The navigation frame (n-frame, north-east-down NED in this thesis) is a local geodetic frame 

which has its origin coinciding with that of the sensor frame, its x-axis pointing towards the 

geodetic north, its z-axis orthogonal to the reference ellipsoid pointing down, and its y-axis 

completing a right-handed orthogonal frame.  

The body frame (b-frame) is the frame in which accelerations and angular rates are generated from 

the accelerometers and gyroscopes. In this thesis, the sensor frame (s-frame) is the same as the b-

frame, and the roll, pitch, and heading are defined for the handheld device (or the IMU), but not 

for the pedestrian. This is appropriate because the pedestrian usually has a very small roll and pitch 

when walking or being static, while the handheld device may have a large roll and pitch. However, 

the pedestrian heading is assumed to be the same as the heading of the handheld device (heading 

misalignment is zero degree), which is often satisfied when holding the device for navigation. 

Several researches have been conducted to estimate the heading misalignment when it is not zero 

degree. However, this is not the focus of this thesis. 

The vehicle frame (v-frame) is an orthogonal forward-transversal-down axis set. In this thesis, the 

vehicle frame can also be called the pedestrian frame because the proposed navigation systems is 
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used for pedestrians. The frame is required because the b-frame is usually not parallel to the v-

frame in the handheld pedestrian navigation applications. 

2.1.2 INS Solution 

An inertial-sensors-based navigation system usually consists of three accelerometers and three 

gyroscopes. Accelerometers sense the specific force bf  in the body frame, whereas gyroscopes 

measure the angular velocity b

ibw  in the body frame, which is the rotation of the body frame with 

respect to the inertial frame, measured in the body frame. The specific force measurements bf  are 

used to compute the body acceleration, which is later used in estimating position differences after 

double integration with respect to time. The angular velocity measurements b

ibw  are used to 

calculate the angular differences of the body relative to its initial orientation after integration in 

time (Titterton and Weston 2004). In summary, INS mechanization equations use specific force 

measurements bf  and angular velocity measurements b

ibw  to compute the PVA information for 

the object (Titterton and Weston 2004), which is given as follows (Aggarwal et al. 2010). 
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[ ]
Tnr hf l=  is the position vector (latitude, longitude, and height). [ ]

Tn

N E Dv v v v=  is the 

velocity vector in the navigation frame. 
n

bC  is the transformation matrix from the body frame to 

the navigation frame as a function of attitude components. ng  is the gravity vector in the 

navigation frame. 2 n n

ie enW +W is the skew-symmetric matrix of the angular velocities 2 n n

ie enw w+ . 

n

iew  is the angular velocity of e-frame with respect to i-frame as measured in the navigation frame 

and n

enw  is the angular velocity of the navigation frame with respect to the e-frame as measured in 

the navigation frame. 2 n n

ie enw w+  can be calculated as follows. 
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where ew  is the earth rotation rate. Therefore, the 2 n n

ie enW +W in (2-1) can be expressed as follows. 
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where b

inW  is the skew-symmetric matrix of the rotation vector binw , from the navigation frame to 

the inertial frame measured in the body frame. b

inw  can be given by the following equation. 
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The INS mechanization algorithm is summarized in Figure 2-1 (El-Sheimy 2006).  

 

Figure 2-1 INS mechanization algorithm.  
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includes step detection, step length estimation, heading estimation, and PDR mechanization 

(Zhuang et al. 2013a).  

First, steps are usually detected by means of the cycle pattern of the acceleration norm. Currently, 

peak detection, zero crossing, auto/cross correlation and spectral analysis are typical approaches 

for the step detection (Harle 2013). Because stride is associated with sharp changes to the vertical 

acceleration, peak detection can be used to find the strikes. Zero crossing is a simpler way to detect 

steps by monitoring the acceleration value. Another step detection approach is based on the strong 

periodicity in the sensor data from the periodic nature of walking. The steps can be extracted by 

the autocorrelation of a sequence of sensor data. If a sample sequence of sensor data for a step has 

previously been collected, steps also can be extracted by the cross correlation between the collected 

sensor data and this sample data. Spectral analysis computes the frequency spectrum of the cyclic 

data and identifies strong peaks as step frequencies. These approaches are also summarized in 

Table 2-1. For more details about step detection, please refer to (Harle 2013). In this thesis, the 

peak detection is used for step detection. 

Table 2-1 Step detection algorithms 

Algorithms Basic Idea 

Peak Detection Detect peaks of acceleration norms 

Zero Crossings Detect zero crossings of acceleration norms 

Auto/Cross Correlation Mean-adjusted auto/cross correlation 

Spectral Analysis Identify strong peaks of spectrum as step frequencies 
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The step length estimation is used to estimate the moving distance of the pedestrian at each step. 

Different approaches have been proposed for estimating the step length. For the foot-mounted 

MEMS sensors, INS can provide the information of step length (Alvarez et al. 2006; Jimenez et 

al. 2009). However, INS solution drifts very fast when using small-size MEMS sensors. To 

improve the accuracy of step length estimation, ZUPT (Zero Velocity Update) in the stance phase 

is used to attenuate the bias of the accelerometers. This approach is not suitable for handheld 

devices because the stance phase cannot be detected in this case. If the device is mounted at the 

COM (Center of Mass) of the user, an inverted pendulum model can be used to calculate the step 

length by using the userôs leg length and the vertical displacement of the COM during one step 

(Jahn et al. 2010; Weinberg 2002). The need for a specific mounted place also makes this model 

unsuitable for handheld devices. Another group of methods estimate the step length by combining 

the step frequency, acceleration variance, vertical velocity, etc. The combination can be 

implemented by using difference models (Kappi et al. 2001; Ladetto 2000; Lee et al. 2011; Shin 

and Park 2011). Empirical models are also efficient approaches to estimate the step length. The 

models are built from sufficient experimental data (Alvarez et al. 2006; Jahn et al. 2010; Kim et 

al. 2004). In this thesis, the model proposed in (Weinberg 2002) is used for step length estimation, 

which assumes the step length is proportional to the vertical movement of the human hip. The 

largest difference of the vertical acceleration at each step is used to calculate vertical movement. 

The equation for step length estimation is expressed as: 

 4
max minz zSL a a K= - Ö  (2-6) 
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where 
maxza  is the maximum value of the vertical acceleration 

za , 
minza  is the minimum value of 

za , and K  is a calibrated constant parameter. When using (2-6) to estimate the step length of a 

user, the device is assumed to be levelled. Therefore, the vertical direction is the z-axis of the body 

frame of the device. 

There are two main ways to estimate the moving direction of a person: using gyroscopes and 

magnetometers. Gyroscopes provide a relative heading. Therefore, an initial heading should be 

derived from GPS velocity or provided by the user. It is accurate only for short term due to the 

accumulated error as a function of time. However, compared to magnetometers which can be easily 

disturbed by the environment, it will not suffer from sudden changes in the heading estimation. 

The magnetometers provide long term absolute heading. However, its main problem is the effect 

of external disturbance. Gyroscopes can be used to detect external disturbance using Equation 

(2-7) (Ladetto et al. 2001) 
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where 
Gw  is the derived angle rate from magnetometer measurements, 

Cw  is the angle rate of the 

gyroscopes, th  is the threshold selected at the calibration process, and y is the magnetic heading 

from magnetometer measurements. The details of these two approaches are depicted in Table 2-2.  
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Table 2-2 Summary of two approaches for heading estimation 

Heading Mag-Based Gyro-Based 
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Calibration  Hard Easy 

Cost Low High 

 

Even if using Equation (2-7), the magnetic heading does not work well indoors due to complex 

indoor environments. Therefore, gyroscopes serve as the main source for pedestrian heading 

estimation in this research. In Table 2-2, the heading estimation equations for magnetometers and 

gyroscopes are based on the assumption that the handheld device is levelled. This assumption is 

right when the user holds the device in compass mode. If this assumption is not valid in some 

cases, the device needs to be leveled down, and heading will be re-estimated. With the assumption 

that the handheld device is level (roll and pitch are zero degrees), the pedestrianôs moving direction 

is estimated by the integration of the vertical gyroscope. Finally, the PDR mechanization is given 

by  
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where ( )1 1,k kE N- -  and ( ),k kE N  are positions at epoch 1k-  and epoch k , ( 1, )
Ĕ

k ks -  and Ĕ
kH  are 

estimated step length and heading at epoch k . A simple description for PDR is shown in Figure 

2-2. 

 

Figure 2-2 PDR algorithm. 

2.1.4 Motion Constraints 

A MEMS-based navigation solution can also be improved by using several motion constraints, 

such as NHC, ZUPT, and ZARU (Zero Angular Rate Update). NHC (Syed et al. 2008) uses the 

fact that a land vehicle cannot move sideways or vertically. It can work as a velocity update to 

improve the MEMS solution. NHC is also suitable for normal pedestrian walking. ZUPT uses zero 

velocity as the velocity update to limit velocity error if the pedestrian is static. ZARU considers 

the fact that the heading remains unchanged to limit the attitude error if the pedestrian is static. 

With these motion constraints, a MEMS-based navigation solution can perform better than before. 

NHC, also known as velocity constraints, can be used to improve the performance of MEMS-

based navigation solutions, especially when there are no other wireless signals. NHC uses the fact 

that a land vehicle cannot suddenly move sideways or vertically. Therefore, these two velocity 
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components should be close to zero. This velocity constraint also can be used for typical pedestrian 

walking to constrain the lateral and vertical speeds of the pedestrian. The NHC equations for the 

NED implementation of the navigation frame are as follows. 
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where y  represents the lateral component of the velocity, z  represents the vertical component of 

the velocity, and b  represents the pedestrian body frame. 

If a static interval is detected, ZUPT and ZARU are used as motion constraints for the INS to limit 

the navigation error. The ZUPT-based zero velocity vector in the body frame is given by  

 [ ]0 0 0
Tb

ZUPTv =   (2-10) 

If the pedestrian is detected as static, the pedestrian heading is unchanging based on ZARU, which 

is given by 

 INS pre storedy y -=   (2-11) 

where 
INSy  is the INS-based heading and pre storedy -  is the pre-stored heading of the first epoch 

after the static is detected.  

2.1.5 Limitations of MEMS-Based Solution 

MEMS sensors are widely used in many applications; they can be found in various handheld 

products such as smartphones, tablets, and personal digital assistants (PDAs). However, 

measurements of low-cost MEMS sensors are usually contaminated by different types of error 
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sources: bias, bias variations, and scale factor, etc. Therefore, MEMS sensors cannot be used to 

provide relatively long-term accurate solutions without external aiding sources, especially by using 

the INS mechanization equations. The navigation error based on this approach increases rapidly 

with time due to the MEMS errors and the integrations used in the mechanization (Titterton and 

Weston 2004). PDR reduces the accumulated speed of the navigation error by decreasing the use 

of integrations. PDR used in the handheld devices usually assumes that the handheld device is 

leveled (roll and pitch are zero degrees). However, this assumption is not always valid. In these 

cases, the PDR-based heading, calculated by the direct integration of the vertical gyroscope is 

inaccurate. The heading estimation error will finally affect the positioning accuracy. To 

compensate for the limitations of INS and PDR, we propose a MEMS solution on handheld devices 

for indoor navigation, based on the use of PDR/INS integration. The proposed PDR/INS-integrated 

MEMS solution combines the advantages of both schemes. In this algorithm, step detection and 

step length estimation are kept the same as the traditional PDR algorithm. The estimated step 

length is used to calculate the forward speed, which works as the velocity update for the INS to 

limit the velocity error, and further limit the position error and attitude error. Therefore, the 

PDR/INS-integrated MEMS solution is superior to the INS solution. The heading from the 

PDR/INS integration also performs better when compared with PDR because it considers the effect 

of the roll and pitch. Furthermore, motion constraints are also used to improve the MEMS-based 

navigation solution. Even using these algorithms for MEMS sensors, the navigation solution still 

slowly drift with time. Therefore, wireless signals are usually used to aid the MEMS sensors to 

limit their drifts. WiFi is the main wireless signal in indoor environments, and typical WiFi 

positioning systems are discussed in Section 2.2. Two integration approaches (LC integration and 

TC integration) are also discussed in Section 5 for MEMS sensors and WiFi.  
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2.2 WiFi Solution for Indoor Navigation  

WiFi based positioning is a candidate technology for indoor navigation because it provides 

location information using pre-existing WiFi infrastructures. Currently, most public buildings, 

such as universities, colleges, airports, shopping malls, and office buildings, already have well 

established WiFi infrastructures. WiFi localization error does not accumulate with time which 

makes it a potential aiding source for the standalone navigation solution based on MEMS sensors. 

2.2.1 Trilateration 

2.2.1.1 Radio Propagation Model  

The relationship between transmitter power and receiver power is described by simplified path 

loss method (Goldsmith 2005), and is shown as follows. 

 ( ) ( ) ( ) 10

0

10 logr t

d
P dBm P dBm K dB n

d

å õ
= + - æ ö

ç ÷
  (2-12) 

where 
rP  is the RSS value received at the WiFi receiver in dBm at a distance d  from the 

transmitter, 
tP  is the transmitted signal strength of the AP. K  is a unitless constant depends on 

the antenna characteristics and the average channel attenuation, 
0d  is a reference distance for the 

antenna far-field, and n  is the path loss exponent which depends on the propagation environment. 

0d  is typically assumed to 1-10m indoors and 10-100m outdoors. Typical values of this parameter 

are 2n=  for free space and 2 6n¢ ¢ for an office building with multiple floors (Goldsmith 

2005). The value of K  is sometimes set to the free space path loss at the distance 0d . 

 ( ) ( ) ( ) ( )10 0 10 1020log 4 / 10log 10logt rK dB d G Gp l=- + +   (2-13) 
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Where l is WiFi signal wavelength, 
tG  is the gain of the transmitting antenna, and 

rG  is the gain 

of the receiving antenna. Shadowing of channels should be carefully considered in indoor 

environment. The effects of shadowing are modeled statistically in the uncertain and changing 

indoor environment. The assumption of log-normal random process with zero mean is applied for 

shadowing in (Goldsmith 2005). One term ( )dBy-  indicating the shadows is added to Equation 

(2-12) for this. Combining Equations (2-12) and (2-13), a new propagation model is formulated as 

follows. 

 ( ) ( )10 0

0

10 logr

d
P dBm n P dBm

d
y

å õ
=- + -æ ö

ç ÷
  (2-14) 

where ( ) ( ) ( )0 tP dBm P dBm K dB= +  is the received signal strength at distance 
0d . Equation 

(2-14) is simplified to Equation (2-15) through averaging and assuming 
0 1d = , and is given as 

follows. 

 ()1010 logRSS n d A=- -  (2-15) 

where 0( ( 1 )) ( )A mean P d m meany=- = - . Another approach for deriving (2-15) based on MLE 

(Maximum Likelihood Estimation) is given in (Mazuelas et al. 2009). The typical range for A  is 

0 ~ 100. Equation (2-15) is the simplified propagation model used in this research.  

2.2.1.2 Trilateration-Based Position Estimation  

Trilateration-based WiFi positioning consists of two steps: range estimation and position 

estimation. First, distances (ranges) between the user and APs are estimated from the RSS values 

by using the propagation model. Second, the userôs position is calculated by applying estimation 
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techniques for the ranges and APsô locations. Equation (2-16) is given to calculate the distance d  

by rewriting Equation (2-15). 

 1010
RSS A

nd
+

-=   (2-16) 

Propagation parameters (A  and n ) and RSS are needed to calculate the distance d . We can 

easily obtain RSS values from the WiFi receivers in handheld devices. Typical values of A  and 

n  can be set for Equation (2-16). However, typical values are not suitable for a specific indoor 

environment. A  and n  values can be obtained from pre-surveys, and they are stored in the 

database. AP locations are additional necessary information for trilateration-based WiFi 

positioning, and they are usually obtained by pre-surveys or uploads from users. With known AP 

locations and ranges, typical estimation techniques, such as non-linear iterative LSQ, are utilized 

to estimate userôs positions. The details about non-linear iterative LSQ are given in Section 2.4.2. 

2.2.2 Fingerprinting 

Fingerprinting based WiFi positioning includes two phases: pre-survey and real-time positioning 

(Bahl and Padmanabhan 2000). The pre-survey is to build the radio map databases by measuring 

and storing the positions and corresponding RSS values at measurement points. Real-time 

positioning uses several approaches to determine the userôs position by comparing current RSS 

values with radio map databases. Building the radio map databases will be discussed in the next 

section. Then, the approaches for estimating userôs positions by using radio map databases will be 

discussed in Section 2.2.2.2. 
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2.2.2.1 Pre-Survey Phase 

Pre-surveys are usually required to build the radio map databases which contain a location 

fingerprint F  labeling with a location information L . The location fingerprint is based on some 

RF characteristics such as RSS, which is the basis for representing a unique location. The location 

information L  is defined to differentiate a special location from other locations. The radio map 

databases are used to estimate the userôs position during the real-time positioning phase. The 

location and fingerprint are usually denoted as a tuple of ( ),L F  (Zhang et al. 2011).  

The location information L  is usually stored in radio map databases in the form of a tuple of 

coordinates. For 3D systems, three dimension space and two orientation of variables make up the 

tuple of coordinates. For 2D systems, the tuple of coordinates consists of two dimension space and 

one orientation variables, which is given by 

 ( ) { }{ }2, , | , , , , ,L x y d x y R d North East South West= Í Í   (2-17) 

where ,x y represent 2D coordinates, and d  represents the heading.  

RSS is the most effective RF signature for location fingerprints in WiFi positioning systems 

(Outemzabet and Nerguizian 2008) (Bahl and Padmanabhan 2000). RSS values are more 

dependent on locations than SNR (Signal to noise ratio) values because the noise in SNR is random 

in nature. However, RSS has one main drawback, which is that it fluctuates over time even at the 

same location for the same AP. The environment change is the main reason for this fluctuation, 

which can be caused by the moving of the passerby. Typically, the mean of RSS values at each 

measurement point is calculated and recorded as an element ir for the location fingerprint. For a 
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measurement point that can obtain RSS values from N  APs, the location fingerprint can be given 

by 

 ( )1 2, ,...,
T

NF r r r=   (2-18) 

where ir is an average RSS element. Radio map databases with tuples of ( ),L F  are built by 

combining L  and F  at each measurement point. 

An alternate approach for building the radio map database is given in (Roos et al. 2002) which 

calculates probability distributions of all measurement points as location fingerprints. Different 

from the average of RSS values, the location fingerprint in this approach is the probability 

distribution ( | )f r p , where r  represents the RSS vector and p  represents the location of the 

measurement point. The conditional probability ( | )f r p  is usually called the likelihood function 

because it represents the probability of occurrence of r  when given p . Furthermore, the 

probability approaches are utilized for real-time positioning corresponding to this type of location 

fingerprint. 

Two different location fingerprints define two frames for fingerprint-based WiFi positioning 

systems: deterministic frame and probability frame. Real-time positioning approaches 

corresponding to these two location fingerprints are also different. The details about the real-time 

positioning approaches are discussed in Section 2.2.2.2.  

2.2.2.2 Real-Time Positioning Phase 

If the radio map database has been successfully set up, real-time positioning can use several 

approaches for RSS values and radio map databases to determine the userôs position. These 
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approaches can be classified into two schemes: deterministic frame and probability frame. They 

are given in detail as follows. 

¶ Deterministic Frame 

In this frame, the userôs position is calculated as the weighted average of selected measurement 

pointsô positions by some criteria. Weights are determined by the inverse of the norm of the RSS 

innovation (Honkavirta et al. 2009). The details are given in Equation (2-19) and (2-20). 
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where Ĕp  is the estimated userôs position, ip  is the position of the thi  measurement point, iw is 

the weight corresponding to the 
thi  measurement point, r  is the measured RSS vector of current 

position, ir  is the RSS vector in the thi  measurement points, and M  is the total number of 

observable APs. The norm Ö is arbitrary, and the Euclidean norm (2-norm) is widely used and 

given as follows. 
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- =ä   (2-21) 

The weighted K-nearest neighbour (Li et al. 2006a) is another popular method, which keeps the 

largest K weights and sets others to zeroes. The K-nearest neighbour (KNN) is a special type of 

WKNN, in which K neighbours have equal weights. 
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¶ Probability Frame 

In the probability frame, determination of the user position can be considered as a probability 

problem. The aim of this probability problem is to estimate the optimal solution for the userôs 

position from the probability density functions. Three optimality criteria have been widely used 

for positioning: (1) maximization of the likelihood density (Gelb 1974), (2) minimization of the 

mean square error (Maybeck 1982), and (3) maximization of the posteriori density (Maybeck 

1982). Their corresponding optimal estimators are as follows: (1) maximum likelihood (ML) 

estimator (Gelb 1974), (2) minimum mean square error (MMSE) estimator (Maybeck 1982), and 

maximum a posteriori (MAP) estimator (Maybeck 1982). The ML estimator finds the user position 

estimate by maximizing the likelihood density function, shown as: 

 ( )Ĕ argmax |ML
p

p f r p=   (2-22) 

where ( )|f r p  is the likelihood density. The ML estimator chooses one measurement point with 

the maximum likelihood density as the estimate for the userôs position. If the measurement points 

are sparsely distributed, the positioning accuracy is limited by only choosing one measurement 

point as the position estimate. To improve the position accuracy, we calculate the position estimate 

by averaging (or weighted averaging) K measurement points with largest likelihood densities. This 

method is also known as KNN (or WKNN). This KNN method is different from the KNN in the 

deterministic frame because the K neighbours here are chosen by the ML estimator, whereas the 

K neighbours are selected by the norms of the RSS innovations in the deterministic frame. The 

MMSE estimator calculates the userôs position by minimizing the mean square of positioning 

errors, and the equation is given as follows. 
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where Ĕp  is the estimated userôs position. Last, the MAP estimator is formulated as follows. 

 ( )()Ĕ argmax |MAP
p

p f r p f p=   (2-24) 

where ()f p  is a priori density of p . The ML estimator can be thought of as a special case of the 

MAP estimator without a priori information. 

2.2.3 Limitations of WiFi-Based Solution 

WiFi-based positioning is a potential aiding source for the standalone navigation solution based 

on MEMS sensors. However, both trilateration and fingerprinting require special databases to 

estimate the user position. AP locations and PPs are necessary for trilateration-based WiFi 

positioning. Fingerprinting estimates the user position by finding the closest fingerprints within 

the radio map database. In traditional approaches, professional surveyors are hired to build and 

maintain the databases. A radio map database requires intensive surveys of the areas where the 

RSS of available APs are mapped with respect to absolute positions. Pre-survey is also needed to 

build the database of PPs and AP locations for trilateration-based WiFi positioning. Pre-survey, a 

labor-intensive and time-consuming process, is one of the limitations in most current WiFi 

positioning systems. In addition, if an indoor environment is changed due to the removal or 

addition of WiFi routers, this survey must be redone to maintain the database. 

One purpose of this research is to design an automatic indoor WiFi positioning system (WPS), 

with virtually no pre-survey, through crowdsourcing. In order to achieve this aim, two different 
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automatic WPSs are proposed based on trilateration and fingerprinting. T-PN is a commercial 

software that converts inertial sensors into navigation solution that can be used on any smartphone 

operating system (e.g. Android). This software is used to automatically build the databases. In both 

schemes, a background survey service runs on the operating system of handheld devices to build 

databases automatically. Another positioning service can also be activated to provide a positioning 

solution for the user. In the trilateration scheme, a background survey service estimates AP 

locations and PPs automatically. These values are estimated by using nonlinear iterative least 

squares (LSQ) and recorded in the database when some pairs of the T-PN solution and 

corresponding RSS values meet the pre-set requirements. The estimated accuracy of AP locations 

is also stored in the database for the future use of WiFi positioning. Autonomous crowdsourcing 

is used to update the AP information in the database and keep data accurate. The database update 

happens automatically in the background, without any restriction on the user, thus making the 

crowdsourcing completely autonomous. The positioning service is mainly based on trilateration 

and positioning result optimization through the use of the automatically surveyed database. In the 

fingerprinting scheme, the background pre-survey builds the radio map database automatically. In 

the crowdsourcing model, fingerprints are generated automatically, whether the user is walking or 

static, as long as the service is running in the background. The accuracy of the database will be 

improved when more fingerprints are generated to update the database through autonomous 

crowdsourcing. Because the system does not guarantee that the radio map database contains all the 

fingerprints in the building, an improved positioning algorithm is designed in the proposed system. 
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2.3 Integrated Navigation Solutions 

Our proposed indoor pedestrian navigator is based on the cooperation of MEMS sensors and WiFi. 

The key idea of this system is that the MEMS-based navigation solution is used to build the 

database for WiFi through crowdsourcing when it is accurate, whereas the WiFi solution is used 

to reduce the drift of MEMS sensors when its database is successfully built. The basic question as 

to ñHow to automatically build the WiFi database based on crowdsourcing using the MEMS-based 

navigation solution?ò has been discussed in the last section. In this section, some background 

knowledge will be given on ñHow to use wireless signals to reduce the drifts of MEMS sensors.ò 

GPS/INS integration is used as an example to introduce the background of integrated navigation 

solutions because it is the most common. The methodology and result of WiFi and MEMS 

integrated systems are discussed in Chapter 5.  

The GPS/INS integrated system has several advantages. INS can fill the gap of GPS signal outages 

to implement a seamless navigation solution. On the other hand, GPS signals can be used to aid 

the INS to reduce the drifts. Another advantage of the GPS/INS integrated system is that it can 

provide redundant measurements and improve the reliability of the navigation system. Usually, 

there are two schemes for GPS/INS integrated systems: LC integration and TC integration. 

2.3.1 Loosely-Coupled Integration 

The most popular integration for GPS and INS is the loosely-coupled integration. In this 

integration, these systems operate independently and provide two navigation solutions. Usually, 

GPS-based position and velocity as well as the INS solution are fed to a KF. The error states consist 

of position errors, velocity errors, and attitude errors, as well as INS errors. The KF can estimate 

these errors by using the difference between GPS and INS solutions and the error model. To further 
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improve the accuracy of the navigation solution, the estimated INS errors are fed back into the INS 

mechanization. The INS solution is also corrected for these errors to produce an improved 

integrated navigation solution. A block diagram of the LC GPS/INS integration is depicted in 

Figure 2-3. Note that ñGPS Kalman Filterò usually exists in the GPS part, however, it is not 

mandatory.  

 

Figure 2-3 Loosely-coupled GPS/INS integration. 

The main advantage of the LC integration is that it is simple to implement and robust, i.e. a smaller 

size of KF states is used in this integration when compared to the tightly-coupled integration. It 

provides three navigation solutions: GPS, INS, and GPS/INS-integrated solutions. The main 

disadvantage of LC integration is that it cannot provide a GPS solution to aid the INS when there 

are less than four satellites available. Another advantage is that this integration has two KFs, which 

introduce more process noise and decrease the signal-to-noise ratio.  

2.3.2 Tightly-Coupled Integration 

TC integration is also known as centralized integration which only uses a single common filter. 

The difference between the pseudo-range and pseudo-range rate measurements from GPS and INS 

are fed to the KF to estimate the navigation errors, GPS receiver clock errors, and INS errors. INS 

errors are fed back into the INS mechanization to correct the integrated navigation solution. 
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Usually, GPS receiver clock errors are also fed back into the GPS receiver to improve the GPS-

based pseudo-ranges and pseudo-range rates. A block diagram of the TC GPS/INS integration is 

depicted in Figure 2-4. 

 

Figure 2-4 Tightly -coupled GPS/INS integration. 

The main advantage of TC integration is that it can provide a GPS update for INS even when there 

are less than four satellites available. This advantage makes the TC integration work in challenging 

environments, such as urban canyons, where the number of available satellites are less than four. 

However, this integration is more complex to implement, as the algorithm involves processing 

GPS pseudo-ranges and pseudo-range rates. Another disadvantage of this integration is that there 

is no stand-alone GPS solution. Typically, the TC integration can provide a more accurate 

navigation solution when compared to the LC integration.  
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2.4 Estimation for Navigation  

Many navigation applications need estimation theory to determine the parameters and their 

covariance from redundant measurements. Least squares is the most commonly used approach to 

convert redundant measurements to parameters. Dynamics also can be combined with the 

redundant measurements to achieve the optimal estimates if the system has them. The KF is a 

popular algorithm for estimating states from measurements and dynamics. 

2.4.1 Kalman Filtering 

The Kalman filter is a well-known optimal filter based on minimizing the variance estimation of 

system dynamics and measurements. It is usually used to fuse multiple navigation solutions. The 

KF has two models: the system model and the measurement model. Both models consist of a 

deterministic and a stochastic part. The general KF operates in two steps: a prediction and an 

update step. The prediction step uses system dynamics to predict the next state vector and the state 

covariance matrix while the update step combines the measurements and the prediction to give the 

final estimates and their covariance matrix. The KF has the capability to recursively estimate the 

current state vector based on previous steps and current measurements. 

Given the fact that measurements usually occur at discrete times, the KF works in the discrete 

mode for navigation applications. Therefore, the system dynamic model must be converted to the 

discrete format, which is given in the following equation. 

 1, 1 1k k k k kx x w- - -=F +   (2-25) 
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where 
kx  and 1kx -  represent the state vectors at epoch k  and 1k- , 1,k k-F  represents the state 

transition matrix from epoch 1k-  to epoch k , and 1kw -  represents the process noise. The 

measurement model in the discrete form is given as follows. 

 k k k kz H x v= +  (2-26) 

where kz  represents the measurement vector at epoch k , 
kH  represents the design matrix at 

epoch k , and kv  represents the measurement noise. 

The KF algorithm is made up of two parts: prediction and update. The prediction part is responsible 

for predicting the state vector from epoch to epoch by using the transition function based on the 

system dynamics. The prediction equations are formulated as follows. 

 1, 1
Ĕ Ĕ

k k k kx x- +

- -=F  (2-27) 

 1, 1 1, 1

T

k k k k k k kP P Q- +

- - - -=F F +  (2-28) 

where (^) denotes estimation, (-) denotes the estimated value after prediction, and (+) denotes the 

estimated value after update. x  represents the navigation state vector, P  represents the covariance 

matrix of the state vector, 1,k k-F  represents the transition matrix from epoch 1k-  to epoch k , and 

1kQ -  is the system noise matrix. The update equations are given by 

 ( )
1

T T

k k k k k k kK P H H P H R
-

- -= +  (2-29) 

 ( )Ĕ Ĕ Ĕ
k k k k k kx x K z H x+ - -= + -  (2-30) 
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 ( )T

k k k kP I K H P+ -= -   (2-31) 

where kK  is the Kalman gain, kR  is the measurement covariance matrix, and kH  is the 

measurement design matrix. The general process of the discrete time KF is shown in Figure 2-5. 

 

Figure 2-5 General process of the discrete time KF 

2.4.2 Extended Kalman Filter 

KF assumes that the system model and measurement model are linear. However, this assumption 

is not always satisfied for all the applications, such as the GPS/INS integration system. In this case, 

the non-linearity is mainly derived by estimating the userôs position, velocity, and attitude from 

the mechanization equations. There are two approaches to process the non-linear systems. First, 

the system is linearized based on a nominal or approximate trajectory during the design of the KF. 

Second, the system is linearized about the actual trajectory, which is done by linearizing the 

process around the current state. The second approach is commonly known as the Extended 

Kalman Filter (EKF). The EKF is usually used to fuse other information such as position and 

velocity from GNSS to reduce the drift characteristics of the MEMS sensors. When the EKF is 

used to fuse other information for INS, the state vector is determined first as follows: 
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where rd  , vd  , and e represent errors of position, velocity and attitude. d  and b  represent 

gyroscope drift and accelerometer bias, which are estimated and fed back to the INS 

mechanization. The discrete-time EKF system model and observation model can be expressed as 

 
1, 1k k k k k

k k k k

x x w

z H x v

d d

d d

- -=F +ëî
ì

= +îí
  (2-33) 

where 
kxd  represents the state vector at epoch k ; 1,k k-F  represents the state transition matrix from 

epoch 1k-  to epoch k ; and kw  represents the process noise. kzd  represents the observation 

misclosure vector at epoch k ; 
kH  represents the design matrix at epoch k ; and kv  represents the 

observation noise. For more knowledge about the EKF for the integrated navigation system, please 

refer to (Gelb 1974). 

2.4.3 Nonlinear Least Squares 

The method of least squares is the standard approach to obtain unique values for parameters from 

related redundant measurements through a known observation model. The typical observation 

model for the LSQ is given in Equation (2-34) (Petovello 2012). 

 ( )h= +z x v   (2-34) 

where z  is the measurement vector, and ( )h x  is a function of the state vector x . A Taylor series 

is then used to linearize the nonlinear measurement vector by expanding the terms around the 

current estimated state, Ĕx , as shown in Equation (2-35). Only the first order term is used in the 

linearization.  
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where Ĕd = -x x x  represents the ñerrorò in the state vector and 
( )dh

d
=

x
H

x
 is the design matrix. 

Rearranging Equation (2-35) will give a measurement misclosure vector (dz ) as shown in 

Equation (2-36). Equation (2-36) is a linear observation model. 

 
Ĕ( )h d

d d

- = +

= +

z x H x v

z H x v
  (2-36) 

The solution, Ĕdx , and its covariance matrix, ĔdxC , are given in (Petovello 2012) and provided 

below in Equation (2-37) as 
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where R  is the covariance matrix of observations. The new state vector is calculated as 

 Ĕ Ĕ Ĕ
updated d= +x x x  (2-38) 

and, the observation model is expanded at the new state vector, Ĕ
updatedx . It is an iterative process 

until Ĕ| | thresholdd <x . Equation (2-39) provides the residual and covariance equations as follows. 
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where r  is the residual vector of LSQ and rC . rC  is its covariance matrix. The measurement 

covariance matrix can be written as 

 
2

0s= R
R Q  (2-40) 

where 2

0s  is the a-priori variance factor, and RQ  is the cofactor matrix of R . The solution of the 

nonlinear LSQ is given by (Petovello 2012).  
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Note that the estimations of Ĕdx  and r  are independent of 
2

0s . However, 
2

0s  scales ĔdxC  and rC  

directly, as shown in Equation (2-41). On the other hand, RQ  affects Ĕx , r , ĔdxC , and rC . To use 

nonlinear LSQ for estimation problems, the key step is to determine the observation model and 

state vector, including x , z , R , H , and Ĕx .  
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Chapter Three: Automatic WPS Based on Trilateration  

This chapter and the next chapter mainly focus on two automatic WPSs on handheld devices: 

trilateration-based and fingerprinting-based. In these two chapters, two systems are carefully 

discussed, evaluated, and compared. The results are used to select an appropriate WPS to integrate 

with MEMS sensors. In this chapter, an efficient and practical trilateration-based WPS is proposed 

in order to overcome the extensive surveying needed by traditional systems. The main purpose of 

this research is to reduce the labor needed for the survey of WiFi databases. Currently, most WPSs 

based on trilateration assume that AP locations and PPs are available from pre-surveys (Yim et al. 

2008). 

Most public buildings, such as universities, colleges, airports, shopping malls, and office buildings 

already have well established WiFi infrastructure. WiFi positioning solutions do not drift as 

compared to standalone inertial navigation solutions using MEMS sensors. However, current WiFi 

positioning systems (WPSs) usually require pre-survey to provide AP locations, PPs, or radio maps 

(Bahl and Padmanabhan 2000; Hui et al. 2007; Swangmuang and Krishnamurthy 2008). The pre-

survey is time and labor consuming, which makes most current WPSs not practical. In fact, even 

if this information is available, it may not be suitable for real-time WiFi positioning due to the 

changing environment. Changes in the environment could be caused by the following situations: 

¶ Removal or addition of WiFi routers;  

¶ Temporary loss of signals from one or more routers; or 

¶ Changes in the obstruction pattern from survey time to data collection time.  

Consequently, the automatic estimation for AP locations and PPs is an effective way to ensure 

accurate WiFi positioning. An autonomous system will also reduce the labor and time costs for 
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surveys to maintain the databases because crowdsourcing will be updating the databases in the 

background. Unfortunately, most current methods cannot automatically estimate AP locations and 

PPs, adapting to the changes in the environment.  

In order to implement an automatic and practical WPS, a novel algorithm for the background 

survey service is proposed by using a MEMS-based navigation solution, such as the T-PN (Trusted 

Positioning Inc. Portable Navigator). The algorithm includes AP localization, PPs estimation and 

autonomous crowdsourcing. T-PN is highly customizable software that converts any quality and 

grade of inertial sensors into navigation capable sensors that can be used on many smartphone 

operating system (e.g. Android). In this research, T-PN is used as an example of the navigation 

solution provider, and other providers can also be used in our proposed system. T-PN provides the 

user position information and position accuracy as observations to build the database. Therefore, 

the accuracy of the automatically built database relies on the accuracy of the navigation solution. 

However, the T-PN solution can be improved if the WiFi positioning solution is estimated by using 

the automatically built database. AP locations and PPs are estimated using nonlinear LSQ and the 

corresponding information is recorded in the database when some pairs of the T-PN solution and 

corresponding RSS values meet the pre-set requirements. Additionally, the estimation accuracy of 

the AP localization data is also stored in the database to be used for WiFi positioning in the future. 

The function of autonomous crowdsourcing is to update the AP information in the database to 

ensure the accuracy of the database. The database update happens automatically in the background, 

without any restriction on the user; thus, making the crowdsourcing completely autonomous.  

The WiFi positioning service contains two steps. First, RSS values are converted to ranges using 

the propagation model based on PPs from an automatically surveyed database. Next, user position 
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is estimated based on nonlinear LSQ and positioning result optimization. The main contributions 

of this research are as follows: 

¶ A convenient and practical WPS on smartphones is proposed to reduce the labor of pre-

surveying and to improve the positioning accuracy.  

¶ Novel algorithms for the background survey service, which includes estimating AP 

locations and PPs in the propagation model and autonomous crowdsourcing, are proposed. 

¶ The proposed system is implemented on smartphones and evaluated by both simulations 

and real-world experiments. 

The remainder of this chapter is organized as follows. Section 3.1 describes the overview of the 

proposed system. Section 3.2 presents the T-PN solution. Section 3.3 presents the optimization of 

measurements. Section 3.4 describes the background survey service, including the algorithms for 

AP localization, PPs estimation and autonomous crowdsourcing. Section 3.5 describes the 

proposed WiFi positioning service, and is followed by test results and the performance analysis. 

Finally, Section 3.7 gives the summary of this chapter. 

3.1 System Overview 

In this chapter, a WPS based on autonomous crowdsourcing is proposed for handheld devices with 

the support of a MEMS solution (e.g. T-PN). Figure 3-1 shows the structure for the proposed 

system. In the proposed system, background survey service and WiFi positioning service are two 

significant services running on a handheld device. RSS values and position information from the 

MEMS solution (e.g. T-PN) are inputs for the background survey service. This service outputs the 

AP information (AP locations and PPs) to the WiFi database. Background survey service is mainly 

based on crowdsourcing, and reduces the labor consumption for the survey process. WiFi 
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positioning service provides a WiFi position solution through improved algorithms based on 

trilateration with the help of the database. WiFi solution also can be used as an aiding source for 

the MEMS solution (e.g. T-PN) to improve its performance. Details about this system are 

described in Section 3.3 and Section 3.4. 

 

Figure 3-1 System overview of the proposed automatic WPS. 

3.2 T-PN Solution 

T-PN is a highly customizable software that provides an inertial sensors based navigation solution 

and can be used on many of available smartphone/tablet operating systems such as Android 

(Zhuang et al. 2013b). This engine improves the navigation results by taking any available absolute 

measurements as filter updates. GPS is the most common type of external update that provides 

absolute position and velocity information to the inertial engine and limits the drift errors.  

Physical movements of the user, such as pedestrian dead reckoning, zero velocity updates and non-

holonomic constraints, are used as constraints to improve the navigation solution. The constraints 
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are also tailored to user transit mode (such as walking, cycling, taking a bus, etc.) to ensure the 

most robust navigation solution for the user. The mode of transit is automatically detected on a 

continuous basis. If additional sensors such as a magnetometer and barometer are present and 

properly calibrated, their readings can be used as optional updates by the T-PN. Most of the 

handheld devices today usually have both magnetometers and barometers and in this case the T-

PN provides a 3D PVA of the system.  

Two examples of the T-PN navigation solution in different scenarios are shown in Figure 3-2. The 

experiments were executed by using a Samsung Galaxy SIII. T-PN navigation solution is derived 

from the integration of 3-axis accelerometers, 3-axis gyroscopes, 3-axis magnetometers and a 

barometer in Samsung Galaxy SIII. In the experiments, the user held the smartphone, and walked 

normally. The experiments were carried out in building E and the west part of building M. Building 

E is the building of Energy, Environment, and Experiential learning (EEEL), University of 

Calgary, which is about 120m × 40m. Building M is the MacEwan Student Center (MSC), 

University of Calgary, with a west part about 90m × 70m. These two trajectories lasted 2 minutes 

and 3 minutes, respectively. Note that reference trajectory is provided by using several pre-set 

markersô positions from the floor plan of the building. The initial position and heading are given 

manually by using the floor plan. The results show that the maximum position errors of the T-PN 

solution are less than 5 meters in these two trajectories when comparing to the reference 

trajectories. Therefore, T-PN has been adopted in this thesis as a reliable position provider for 

WiFi database generation through autonomous crowdsourcing. Note that T-PN also provides an 

indicator for the accuracy of its navigation solution. This accuracy indicator is a significant factor 

in the proposed automatic database generation algorithms.  
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(a) 

 

(b) 

Figure 3-2 Examples of the navigation solution from the T-PN with respect to reference: (a) 

building E and (b) the west part of building M . 

3.3 Measurements Optimization 

To evaluate the stability of AP signals for WiFi-based positioning system, a test was conducted by 

recording the signals from a number of APs in the building E, University of Calgary. The test 

included 36 APs and was conducted using a Samsung Galaxy SIII in walking and static mode. The 
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test revealed that some APs with weak signals are not always observable even when the handheld 

device is static at the same place. Therefore, the response rate is introduced to evaluate the stability 

of AP signals. Preliminary results show that APs with RSS values greater than -75dBm provided 

a response rate of over 90%; APs with RSS values between -75dBm and -85dBm provided a 

response rate of about 70%; and APs with RSS values less than -85dBm provided a response rate 

of about 30%. If the user stands at a specific location for a long time, the response rate can be used 

to determine the quantity and quality of the recorded RSS information. However, in this research, 

measurements are collected by the background service on handheld devices. Sometimes, only one 

sample is collected at a measurement point when the mobile user is walking. In this case, a high 

response rate is used by setting the threshold to -85dBm to ensure the response rate of RSS signals, 

and to potentially increase the reliability of the database. 

The fluctuation of RSS values also needs to be considered beyond the AP response rate. A three-

point average is used to reduce the noise of RSS values. The current RSS value is re-determined 

by averaging the previous, current, and next RSS values. Of course, the average can improve the 

accuracy of the measured RSS value if the user is static. If the user is walking, the previous RSS 

and the next RSS are measured at points different from the current RSS value. However, the 

previous RSS and the next RSS are close to the current RSS because they only have one sampleôs 

difference. Furthermore, the previous and next measurement points are usually located at two 

opposite sides of the current measurement point, and thus these RSS values are usually 

complementary. This is helpful as WiFi RSS measurements are highly noisy. Therefore, no matter 

whether the user is static or moving, the average of three sampleôs RSS values will improve the 
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accuracy of the RSS value for building the database. Note that RSS sample rates in current 

handheld devices (smartphones and tablets) are usually in the range of 0.5 ~ 2 Hz. 

The position and RSS information are collected as pairs to build the database in the background 

survey service of a handheld device. The position information from the T-PN solution includes 

geodetic coordinates - latitude, longitude, and height (LLH), as well as their accuracies. The 

geodetic coordinates LLH can be converted to coordinates in the local east-north-up (ENU) 

coordinate system. RSS values are read from the operating system running on the handheld device. 

To optimize the measurements, algorithms are designed to detect and solve the RSS ambiguity 

problem, in which the RSS values of two pairs are totally different, while the LLH coordinates are 

almost the same. This ambiguity problem is mainly caused by the fluctuation of RSS values and 

the navigation errors of T-PN. The RSS ambiguity problem is detected by using (3-1). 
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where 1LLH  and 
2LLH  represent the geodetic coordinates of two pairs; 1ENU  and 2ENU  

represent the ENU coordinates of two pairs; _horizontal dis and _height dis represent the 

calculations of horizontal distance and height distance for two pairs; _hor th  and _floor th 

represent the horizontal and floor thresholds for determining whether coordinates of two pairs are 

almost the same; ,1h
s and ,2h

s  represent horizontal accuracies of two pairs; ,1as  and 
,2a

s  
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represent the altitude accuracies of two pairs; _acc th represents the threshold of horizontal 

accuracy; _RSS th represents the RSS threshold; and 
1

S  and 
2

S  represent the RSS vectors of 

available APs. These thresholds will affect the performance of WPSs. Before discussing the setting 

of these thresholds, how to appropriately set the grid spacing for the WPSs will be discussed. If it 

is set too large, it decreases the accuracy of WiFi positioning. If it is set too small, it needs more 

data to build the database and uses more memory. In this thesis, the grid spacing is set to a balanced 

value of 3 meters, which is determined by experimentation. _hor th is set to the same as the grid 

spacing, and _floor th is set to a typical floor height (3 meters). _acc th is set to 5 meters, which 

is larger than the _hor th. It was not set to a smaller value since more useful data can be used for 

building the databases through crowdsourcing. Also, it is not set to a larger value, in which case 

T-PN is not accurate enough to provide navigation solutions. _RSS th is set to 5 dBm, which is 

the standard deviation of RSS values in the static field tests. If this ambiguity is detected, these 

two pairs will be replaced by a new pair given in  

 [ ]1 2,newT E T T=   (3-2) 

where { }i iENU SiT =  represents the measurement pair including the ENU coordinates iENU  

and the RSS values iS , and []E  represents the expectation. The detection and solution of the 

ambiguity problem improves the reliability of measurements. 
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3.4 Background Survey Service 

3.4.1 System Flow Chart  

A flow chart and general description of the proposed algorithm for AP localization, PPs estimation 

and autonomous crowdsourcing is given in Figure 3-3 and summarized here. To prove the concept, 

the algorithm was implemented as a background service for Android-based handheld devices. The 

RSS values and position solution from the T-PN are automatically collected as pairs if they satisfy 

the requirements. The position information is converted from geodetic coordinates LLH to ENU 

coordinates, and paired with the corresponding RSS values. The pairs are checked for RSS 

ambiguity problem. If the ambiguity is detected, the method provided in Section 3.3 is utilized to 

fix this problem and improve the accuracy of the pairs in the database. Nonlinear iterative LSQ is 

used for estimation of the AP location, PPs, and their accuracies if multiple measurements from 

the same APs are collected. Dilution of Precision (DOP) (Langley 1999), which is an efficient 

indictor for evaluating the geometric distribution of measurements, is also calculated after the 

LSQ. The efficiency of DOP for performance evaluation will be shown in Section 3.6.1.1. If the 

computed results pass the verification of the criteria (such as range check for the path loss 

exponent) which will be discussed in Section 3.4.2.3, and no information about this AP is found 

in the database, this AP information from the LSQ results is recorded in the database. The details 

about the verification is given in Section 3.4.2.3. If the AP information is already present in the 

database, the computed results are used to update AP information in the database. This update 

process is a significant part of autonomous crowdsourcing. 
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Figure 3-3 Flow chart of background survey service in the trilateration-based WPS. 

3.4.2 AP Localization and PPs Estimations 

This section details the algorithm of AP localization and PPs estimation and is divided into three 

subsections: a propagation model, the LSQ-based estimation for AP locations and PPs, and the 

LSQ results assessment. 

3.4.2.1 Propagation Model 

The typical path loss model follows the distance power law: 
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where rP  is the RSS value received at the receiver in dBm at a distance d  from the transmitter;

0P  is the RSS value with distance 0l  from the transmitter; n  is the path loss exponent with typical 

values in the range of 2.0 ï 6.0 indoors; and Xs represents the shadow noise which is modeled as 

a Gaussian random variable with zero mean. Equation (3-3) can be simplified by averaging as 

follows: 

 ()10  10  RSS n log d A= - -  (3-4) 

where 0 0( ( 1 ))A mean P l m=- = , and the distance between the AP located at ( )00,x y  and the 

measurement point ( ),i ix y  is defined as 

 
2 2

0 0( ) ( )i i id x x y y= - + -   (3-5) 

Note that there are other propagation models that consider the effect of walls and floors (Bahl and 

Padmanabhan 2000) (Lott and Forkel 2001). However, they are not suitable for real-time AP 

localizations because a priori information of walls and floors are usually unavailable. The walls 

and floors can affect the estimation of PPs. Unfortunately, floor plans are not always available. 

For example, the floor plans of many older buildings can be unreliable or, in some cases, even 

unknown. Further, individuals at times cannot download the floor plan of a building quickly due 

to some technical problems. In this research, we design the system to provide a general and 

accurate positioning solution without depending on much additional information, such as a floor 

plan. The advantage of this system, when compared with other floor-plan-depended systems, is 

that it can work well without a floor plan. 
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3.4.2.2 LSQ-Based Estimation for AP Locations and PPs 

3.4.2.2.1 First Design for LSQ 

The goal in this subsection is to estimate AP locations and PPs by using observations (RSS values) 

with the position information from MEMS-based navigation solution (e.g. T-PN). In many cases, 

MEMS-based navigation solution cannot provide the accuracy information about the position 

solution. In this case, MEMS-based position solutions can only be considered error-free 

information, and not to be included in the observations. In the designed LSQ of this subsection, 

only RSS values are used in the observation vector, which can work for all MEMS-based 

navigation solutions. For convenience, this designed LSQ is called LSQ1. In the next subsection, 

both RSS values and MEMS-based derived positions are included in the observation vector for the 

LSQ, which can be used when the position accuracy is also provided by the MEMS-based 

navigation solution and will be called LSQ2. 

In LSQ1, the state vector to estimate AP locations (0x  and 0y ) and PPs (n  and  A ) is 

0 0[ , , , ]Tx y n A=x , while the observation vector is =z RSS. The nonlinear observation model 

using LSQ is provided in Equation (3-6), which combines Equation (3-4) and Equation (3-5) and 

adds measurement error vector v . 

 ( )2 2

10 0 010 ( ) ( )nlog x y A=- - + - - +u uRSS x y v  (3-6) 

where 1 2[ , ,..., ]TkRSS RSS RSS=RSS  is an RSS vector for k  measurement points, 

1 2[ , ,..., ]Tkx x x=
u

x , and 1 2[ , ,..., ]Tky y y=
u

y . The initial [ ( ), ( ),3,35]Tmean mean= u ux x y  with 3 

and 35 as the typical values for n  and  A  in an indoor environment. Coordinates ( , )i ix y  of the 
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measurement points are provided by the T-PN solution. The equation of the design matrix can be 

obtained by comparing Equation (3-6) with the LSQ observation model, and is shown as follows: 

 ( )2 2

10 0 0( ) 10 ( ) ( )h nlog x y A=- - + - -u ux x y   (3-7) 

The derivative of Equation (3-7) is the design matrix and is provided below 
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As discussed in Chapter 2, the measurement covariance matrix can be written as: 

 
2

0s= R
R Q   (3-9) 

where 
2

0s  is a-priori variance factor, and RQ  is the cofactor matrix of R . RQ  is a diagonal 

matrix because the RSS values are independent for all the measurements, and is given by 

 ,11 ,22 R,( , ,..., )TR R kkdiag Q Q Q=
R

Q   (3-10) 

where ,11 ,22 R,, ,...,R R kkQ Q Q  are the diagonal elements of RQ . Note that 
2

0s  is often not provided 

or, if provided, it is unreliable. Therefore, one empirical value is pre-set for 
2

0s  at first. RQ  is an 

identity matrix if the weights are equal and the algorithm is a simple LSQ. On the other hand, if 
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the weights are not equal, the algorithm is called a weighed LSQ. In this case, RSS values can be 

used as weights for the measurement variances as given in Equation (3-11).  

 , , 1,2,...
( )

i
R ii

i

RSS
Q i k

sum RSS
= =   (3-11) 

After the parameters are set for the LSQ estimation, the LSQ results are calculated by using the 

equations discussed in Chapter 2. 

3.4.2.2.2 Second Design for LSQ 

In the previous subsection, LSQ1 is designed by only using RSS values in the observation vector. 

For the LSQ2 in this subsection, both the RSS values and the MEMS derived positions are 

considered in the observation vector. LSQ2 can be used if  the MEMS-based navigation solution 

provides the position accuracy along with the position. In LSQ2, the observation model can be 

obtained by rewriting Equation (3-6), and is given by  
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0 0( ) ( ) 10 0
A

nx y
-

+

=- + - -
RSS

u u
x y   (3-12) 

where 1 2[ , ,..., ]TkRSS RSS RSS=RSS  is the observed RSS vector collected by handheld devices 

for k  measurement points; 1 2[ , ,..., ]Tkx x x=
u

x  and 1 2[ , ,..., ]Tky y y=
u

y  are the position 

coordinates from the MEMS-based navigation solution (e.g. T-PN). Therefore, the observed vector 

is rewritten as , ,
T

T T Tè ø=ê úu uL x y RSS . The state vector is the same as before, which is 

0 0[ , , , ]Tx y n A=x . Equation (3-12) is a combined (implicit) LSQ model of the form: 

 ( ), 0f =x L   (3-13) 
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The vector function f  represents r equations relating n observations and u unknowns.  

If the vector function f  is nonlinear, Taylor expansion is used to approximately linearize these 

functions. The expanded point is the initial approximation to the state vector (0
x ), and the 

measured values of the observation vector (obsL ) with the covariance matrix 
obsl

C . The linearized 

model is given as (El-Sheimy 2000): 

 ( ) ( ) 0 0

0

, ,
, , 0

obs obs
obs

f f
f f

µ µ
= + + =

µ µx L x L
x L x L ŭ v

x L
  (3-14) 

or 

 0+ + =w Aŭ Bv   (3-15) 

where ( )0, obsf=w x L  is called the misclosure vector; and 0 , obs

fµ
=
µ x L

A
x

 and 0 , obs

fµ
=
µ x L

B
L

 are 

called the design matrices. Lagrangeôs method is used to solve for Equation (3-15), and the result 

is given by 
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  (3-16) 

where 
1

obs

-=
l

P C , and Ĕk  is the Lagrange multiplier. The covariance matrices for w , Ĕŭ, and Ĕv  are 

expressed as: 
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The adjusted quantities are given by 

 
0 ĔĔ

Ĕ + obs

= +

=

x x ŭ

L L L
  (3-18) 

Usually, the estimation for the state vector is an iterative process. In this case, the expanded point 

in Equation (3-14) is changed to the previous estimate of state vector ((i 1)
Ĕ
-x ), and w  in Equation 

(3-15) is changed to  

 ( ) ( )(i 1) (i 1)
ĔĔ , obs obsf - -= + -w x L B L L   (3-19) 

where 
(i 1)
Ĕ
-L  is the previous estimate of observation vector. Equations (3-14) ~ (3-18) are repeated 

until 
(i 1) (i)
Ĕ Ĕ
+ -ŭ ŭ approaches 0. For more details about the solution of implicit LSQ model, see (El-

Sheimy 2000). 

¶ Parameter Determination  

By comparing (3-12) with (3-13), the functional model can be written as:  

 ( ) 2 2

0 0
5, ( ( 10) ) n

A

x yf
-

+

- + -= -
RSS

u u
x yx L   (3-20) 
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where 0 0[ , , , ]Tx y n A=x  and 
T

T T Tè ø=ê úu uL x y RSS . The vector function f  represents k

equations relating 3k  observations and 4 unknowns. k  represents the number of measurement 

points. If 4k> , the number of degrees of freedom is greater than 0, Equation (3-13) can be solved 

by using LSQ. The covariance matrix of L  is given by 

 ( )
1 1 1

2 2 2 2 2 2

k k kx y RSS x y RSSdiag s s s s s sè ø= ê úL
C   (3-21) 

where 
2

ixs , 
2

iys , and 
2

iRSSs  are the variances of ix , iy , and iRSS. The accuracy of these variances 

will affect the final estimation result. If a MEMS-based navigation solution cannot provide an 

appropriate estimate of the position variances, the result of this method may be worse than the one 

only using RSS values as observations. The design matrices A  and B  are given by  
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and 
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Then, Equations (3-14) ~ (3-18) are repeated until 
(i 1) (i)
Ĕ Ĕ
+ -ŭ ŭ approaches 0.  

3.4.2.3 LSQ Results Assessment 

To improve the estimation performance for AP locations and PPs, it is important to ensure that the 

algorithm is converged and that the terms, listed below, are checked.  

¶ Path loss exponent n  in Equation (3-4)  

¶ Constant value A  in Equation (3-4)  

¶ Reasonable AP location 

¶ DOP value  

The typical ranges of the path loss exponent n  and the constant A  in Equation (3-4) are 2.0 - 6.0 

and 0 ï 100, respectively. The estimation result is ignored if it is not located within these typical 

ranges. According to the typical propagation model and field tests, an AP always stays within 200 

meters of the WiFi measurement points. Therefore, the estimation results are ignored and deemed 

unreliable if the estimated AP location is far away from the measurement points. The last value 

that needs to be evaluated is the DOP value of the measurements. For the designed LSQ, the 

horizontal DOP value (Petovello 2012) is given in 

 ( ) ( )
11 22

DOP = +
P P

Q Q   (3-24) 

where ()
ii
 represents the element in the thi row, thi column of a matrix and PQ  is calculated by 

 ( )
1

T -1 = 
-

P RQ H Q H   (3-25) 
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where H  and RQ  are the design matrix and the cofactor matrix of R , respectively. For details of 

the DOP calculation and application, please refer to (Langley 1999) (Petovello 2012). The similar 

applications of DOPs for WiFi navigation are discussed in (Yu 2012) (Zirari et al. 2010). The 

estimated results for the AP locations and PPs are used only when the DOP values are less than 

the pre-set threshold of 4.0.  

3.4.3 Autonomous Crowdsourcing 

The proposed system is a natural crowdsourcing system, and ensures the creation and maintenance 

of the database automatically and efficiently. In traditional methods (Cheng et al. 2005), trained 

professionals are employed to survey an area to obtain a robust and precise database of AP 

locations. After the initial creation, the database needs sporadic maintenance due to changes in the 

environment. Furthermore, both survey and maintenance of the database cost time and labor, 

especially for a large area. The autonomous crowdsourcing-based approach is developed to reduce 

the cost of building and maintaining the database of the AP locations and PPs. Regular smartphone 

users can collect RSS values and corresponding positioning solutions from T-PN as measurements 

during their normal daily use of their mobile devices. When enough measurements are collected, 

they are used automatically to estimate the AP locations and PPs. The estimation results are, then, 

updated to the database by autonomous crowdsourcing without additional operations. The 

estimation result is recalculated and the database is updated as more measurements of the AP 

become available. The aim of crowdsourcing is to maintain the accuracy of the AP information in 

the database (locations and PPs) for future positioning usage. The crowdsourcing-based systems 

usually face some problems such as: (1) hardware differences of various devices and (2) different 

mounting places of devices. For the problem (1), if the uploaded data is large enough, final 
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estimated database can achieve the best performance by using some algorithms to process the large 

data. Also, WiFi RSS biases in different devices are also estimated in the tightly-coupled 

integration of WiFi and MEMS sensors as will be discussed in Chapter 5. The estimated RSS 

biases can also be used to solve the problem of hardware differences. For the problem (2), T-PN 

can provide navigation solutions in various modes/mounting places, therefore, different mounting 

places do not affect the proposed crowdsourcing-based systems. However, mounting places may 

affect the system if the navigation solution provider cannot provide solutions in various mounting 

places. In this case, mode detection is required before using the navigation solution to update the 

database. 

3.5 WiFi Positioning Service 

The flow chart of the WiFi positioning service based on trilateration is shown in Figure 3-4. In the 

trilateration-based system, iterative nonlinear LSQ is used for WiFi positioning if the AP number 

is larger than the threshold ñAP_thò. AP locations and ranges between the user and APs are 

necessary information for the user position estimation. AP locations are obtained from the 

background survey service, as discussed in Section 3.4. The ranges are calculated by substituting 

the real-time collected RSS values to the propagation model (Subsection 3.4.2.1), whose 

parameters are from the automatically generated database. To estimate user position (ux  and uy ), 

the state vector is set to [ , ]u u
Tx y=x . The height is not considered in the state vector, because it 

cannot be accurately estimated only using WiFi RSS values. In the design, the measurement vector 

z  is the range between user and AP ( =z range), which is calculated from RSS values by using 

the propagation model.  
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The nonlinear observation model using LSQ is provided as follows: 

 2 2( ) ( )user AP user APx y= - + - +range x y v  (3-26) 

where [ , ,..., ]T1 2 krange range range=range  is a range vector for k  measurement points, and

1 2[ , ,..., ]TAP APAP APkx x x=x  and 1 2[ , ,..., ]TAP AP AA PP ky y y=y  are 2D coordinate vectors from the 

ENU coordinates of the AP locations. Ĕ [ ( ), ( )]A

T

P APmean mean=x x y  is set as the initial values for 

the iterative LSQ. 
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Figure 3-4 Flow chart of WiFi positioning service in the trilateration -based WPS. 
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The equation of the design matrix can be obtained by comparing Equation (3-26) with the LSQ 

observation model as follows:  

 2 2( ) ( ) ( )user AP user APh x y= - + -x x y   (3-27) 

Therefore, the design matrix is given by 

 
1 2

1 2

1

1

2

2

( ) ( ) ( )
...

( )

(y ) (y ) (y )
...

user AP user AP user APk

user A

k

P user AP u

k

ser APk

x x x x x x

RANGE RANGE RANGEdh

y y yd

RANGE RANGE RANGE

- - - - - -å õ
æ ö
æ ö= =
æ ö- - - - - -
æ ö
ç ÷

x
H

x
  (3-28) 

where 
1RANGE, 

2RANGE, é, kRANGE  represent the k elements about the range information in 

the vector [ , ,..., ]T1 2 kRANGE RANGE RANGE=RANGE , which is given by 

 2 2( ) ( )user AP user APx y= - + -RANGE x y   (3-29) 

In this LSQ, RQ  is a diagonal matrix because the ranges, which are calculated from RSS values, 

do not depend on each other, and is given by 

 ,11 ,22 R,( , ,..., )TR R kkdiag Q Q Q=
R

Q   (3-30) 

where ,11 ,22 R,, ,...,R R kkQ Q Q  are the diagonal elements of RQ . The setting of RQ  is from the 

estimated accuracies of AP locations in the database. After the parameters are set for the LSQ 

estimation, LSQ results are calculated by using the equations discussed in Chapter 2. 
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As mentioned earlier, there are some criteria that should be met to ensure the performance of the 

improved WiFi positioning algorithm. First of all, the number of observed APs must be over a 

minimum number to ensure the accuracy of WPS. The next criterion is related to the DOP value, 

which should be less than a threshold to make sure the distribution of the measurements are 

appropriate. Finally, if the iteration time goes beyond a pre-set threshold, the algorithm will stop 

the LSQ for this epoch, and process the data for the next epoch. All of the thresholds stated here 

are determined by the experimental tests.  

3.6 Test Results and Performance Analysis 

3.6.1 Performance of AP Localization and PPs Estimation 

3.6.1.1 Simulations 

A simulation, in a 50 m ³ 50 m square, is conducted in this section to evaluate the performance of 

the proposed algorithm of AP localization and PPs estimation. In this subsection, the first design 

of LSQ is evaluated as an example. Two different geometrical distributions of measurements are 

simulated as shown in Figure 3-5. Configuration as depicted in Figure 3-5(a) has a smaller DOP 

value because it has better distributed measurements. Simulated RSS values are generated by using 

the propagation model in Equation (3-3) with 0l  set to 1m, A  set to 30dBm, and n  set to 3. The 

Gaussian random variable Xs in Equation (3-3) is simulated as a statistical variable, which has a 

mean value of 0, and a standard deviation of 2.  

The simulated results for estimating AP locations and PPs are shown in Table 3-1. In the case of 

Figure 3-5(a), the estimation error of the AP location is about 3.6 meters and the relative error of 

PPs is about 20%. Due to the larger DOP value, Figure 3-5(b) has a poorer estimation performance 
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than Figure 3-5(a). This example shows that DOP is a significant indicator for the accuracy of AP 

localization. For the rest of the simulations, only the case in Figure 3-5(a) is discussed.  

 

(a) 

 

(b) 

Figure 3-5 Simulation area.  
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Table 3-1 Simulated results of estimating AP locations and PPs 

 

East 

(m) 

North  

(m) 

Estimated 

n 

Estimated 

A 

AP 

Localization 

Error (m) 

n 

Estimated 

Error  

A 

Estimated 

Error  

(a) 3.51 -0.73 2.57 37.15 3.59 14.33% 23.83% 

(b) -2.27 16.84 1.27 58.73 16.99 57.67% 95.77% 

True 

Value 

0 0 3 30 N/A N/A N/A 

 

To compare the proposed algorithm with other methods, several methods are also implemented in 

this project. Table 3-2 shows the AP localization results of several methods as follows: (a) M1: 

average method in (Cheng et al. 2005); (b) M2: weighted average method in (Cheng et al. 2005); 

(c) M3: method in (Jahyoung and Hojung 2011); (d) M4: method in (Yu 2012); and (e) M5: the 

proposed method. The proposed method clearly show better performance than the other methods. 

Table 3-2 AP localization results using different methods 

Method East (m) North (m) Error (m)  

M1 -2.50 -3.33 4.17 

M2 -2.73 -3.42 4.38 

M3 5.31 -3.39 6.30 

M4 4.31 0.37 4.32 

M5 3.51 -0.73 3.59 
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In order to evaluate the performance of PPs estimation, several simulations are conducted with 

different PPs as shown in Table 3-3. To simulate different environments, the PP ñnò is set to 2, 3, 

and 4; and ñAò is set to 30 and 40. In different environments, the results show that the proposed 

method can actually estimate the PPs. It also illustrates that the proposed method can successfully 

cope with changes in the dynamic environment. 

Table 3-3 Simulated results in different indoor environments 

Set n; 

A 

East 

(m) 

North  

(m) 

Estimated 

n 

Estimated 

A 

AP 

Localization 

Error  (m) 

n 

Estimated 

Error  

A 

Estimated 

Error  

2; 30 -2.04 0.55 2.16 28.04 2.11 8.00% 6.53% 

3; 30 3.51 -0.73 2.57 37.15 3.59 14.33% 23.83% 

4; 30 0.59 -0.63 3.78 32.83 0.86 5.50% 9.43% 

2; 40 -2.78 0.10 1.77 43.78 2.78 11.50% 9.45% 

3; 40 2.00 -0.26 3.30 35.99 2.02 10.00% 10.02% 

4; 40 -0.38 0.10 3.72 44.47 0.39 7.00% 11.17% 

 

3.6.1.2 Field Experiments 

This section discusses the setup, results, and analysis of the field experiments to evaluate the 

performance of the proposed algorithms. First, the design and setup of the experiments are 

explained. Then, several preliminary results of the real-world scenarios are tested and analyzed. 

Two proposed systems using LSQ1 and LSQ2 are evaluated and compared by field tests. 
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To evaluate the performance of the proposed systems in field environments, we implemented the 

algorithm as the background survey service on three Android-based Samsung Galaxy S III 

smartphones. Two evaluation sites were selected for the experiments which are shown in Figure 

3-6. The first experimental site was building A (Alastair Ross Technology Centre, Calgary, about 

100m ³ 70m), with seven location-known APs as shown in Figure 3-6(a). Building E (about 120m 

³ 40m) with eight location-known APs is chosen as the second test site, as shown in Figure 3-6(b). 

Note that there were more APs in these two buildings, but they were not used for assessing the 

performance of AP localization. However, their locations and PPs are also estimated and recorded 

in the database for the use of WiFi positioning.  

 

(a) 
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(b) 

Figure 3-6 Experimental area (red circles = APs): (a) building A and (b) building E. 

The experimental results of AP localization and PPs estimation in building A using LSQ1 are 

shown in Figure 3-7. In Figure 3-7(a), the red trajectories in four sub-figures are automatically 

generated by T-PN, which represents the paths taken by the user in building A. Figure 3-7(b), (c), 

and (d) show the final estimation results by using all four trajectories. The estimated and true 

locations of APs are shown in Figure 3-7(b). The blue ellipses in Figure 3-7(b) represents the 

standard confidence ellipses. For the 2D case, the standard confidence ellipse has a probability of 

39.4% associated with it (Petovello 2012). In other words, only 39.4% of the points fall within the 

standard confidence ellipse. There are 3/7 APs located in the standard confidence ellipses, which 

is close to the reference. The estimation result is calculated by nonlinear LSQ, and its accuracy 

mainly depends on the fluctuation of RSS signals, the accuracy of T-PN solutions, and the 

geometrical distribution of measurement pairs. Figure 3-7(b) clearly shows that the estimated AP 

locations are close to the true values, which illustrates the efficiency of the proposed system. In 

Figure 3-7(c), the estimated path loss exponent ñnò and constant ñAò are located in typical ranges. 

The true values of PPs cannot be shown here because they are unknown in this environment. 
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However, the efficiency of PPs estimation has been demonstrated in the simulation (Subsection 

3.6.1.1). In Figure 3-7(d), the estimated AP localization error is close to the true value at most 

times, and the maximum difference between them is about 4 meters. Therefore, the estimated AP 

localization error is an efficient parameter to indicate the performance of AP localization. It is 

recorded in the database, and used as an indicator for the accuracy of AP locations.  

  

 

(a) 
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(b) 
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(d) 

Figure 3-7 Results of AP localization and PPs estimation in building A using LSQ1: (a) four 

T-PN trajectori es used for estimation, (b) the result of AP localization, (c) the result of PPs 

estimation, and (d) estimated and true 2D errors of AP localization. 

Table 3-4 clearly depicts the trend where the increase in RSS and T-PN pairs improves the 

accuracy of AP localization. In Table 3-4, ñAP Localization Errorò represents the difference 

between the estimated AP location and the true value. ñAccuracy Estimation Errorò equals the 

difference between the estimated and true AP localization error, and is used to determine whether 

estimated AP localization error is an efficient indicator for the accuracy of AP localization. Note 

that both ñAP Localization Errorò and ñAccuracy Estimation Errorò are calculated in 2D space. 

Table 3-4 shows that ñAP Localization Errorò and ñAccuracy Estimation Errorò decrease as the 

number of trajectories increases. However, this does not apply if the measurement error of a 

trajectory is large, as was the case for trajectory 4 in which ñAP Localization Errorò increased. 
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Table 3-4 AP localization results using LSQ1 in building A  

Trajectory 

Number 

Number of 

Estimated APs 

AP Localization Error  Accuracy Estimation Error  

MEAN (m) RMS (m) MEAN (m) RMS (m) 

1 7 6.34 6.65 3.80 5.82 

2 7 5.72 5.89 2.56 3.44 

3 7 5.27 5.47 2.82 3.46 

4 7 5.51 6.14 2.03 2.55 

 

The experimental results of AP localization and PPs estimation in building A using LSQ2 are 

shown in Figure 3-8. The used trajectories as the same as the Figure 3-7 (a). Figure 3-8 (a), (b), 

and (c) show the final estimation results based on LSQ2 by using all four trajectories. The 

estimated and true locations of APs are shown in Figure 3-8 (a). Figure 3-8 (a) clearly shows that 

the estimated AP locations are close to the true values. The blue ellipses in Figure 3-8 (a) represents 

the standard confidence ellipses. There are 2/7 APs located in the standard confidence ellipses. In 

Figure 3-8 (b), the estimated path loss exponent ñnò and constant ñAò are located in typical ranges. 

In Figure 3-8 (c), the estimated AP localization error is not always close to the true value, however, 

it can be considered a rough estimate. 
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(c) 

Figure 3-8 Results of AP localization and PPs estimation in building A using LSQ2: (a) the 

result of AP localization, (b) the result of PPs estimation; and (c) estimated and true 2D 

errors of AP localization. 

Table 3-5 summarizes the results of AP localizations by using different numbers of trajectories in 

building A. In Table 3-5, ñAP Localization Errorò and ñAccuracy Estimation Errorò decrease as 

the trajectories increase. Note that both ñAP Localization Errorò and ñAccuracy Estimation Errorò 

are calculated in the 2D space.  
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Table 3-5 AP localization results using LSQ2 in building A  

Trajectory 

Number 

Number of 

Estimated APs 

AP Localization Error  Accuracy Estimation Error  

MEAN (m) RMS (m) MEAN (m) RMS (m) 

1 5 7.90 8.34 8.16 11.89 

2 7 6.81 7.10 2.64 3.60 

3 7 6.23 6.64 3.47 4.24 

4 7 4.78 4.90 2.19 2.46 

 

The second test for evaluating the performance of AP localization by using LSQ1 was conducted 

in building E, as shown in Figure 3-9. Six red trajectories were generated from the T-PN solution, 

used for AP localization as shown in Figure 3-9 (a). The results in Figure 3-9 (b), (c), and (d) were 

estimated by using all six trajectories. Figure 3-9 (b) and Figure 3-9 (c) demonstrate the efficiency 

of AP localizations and PPs estimation. Estimated AP localization error is not always a perfect 

indicator of the true values as shown in Figure 3-9 (d). However, since it is the only available value 

for the accuracy of APs, it can be considered a rough estimate. 
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