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Abstract
The growing demand for indoor navigation applications has promoted the implementation of
navigation techniques on handheld devices. An accurate and reliable malegation system
hosted on handheld devices would benefit many consumer industries. MEN®o-
Electromechanical y&tem)sensors can provide a shtgtm accurate navigation solution. WAFi
based (Wireless Fidelityositioning is another potential tewtiogy for indoor navigation, which
only uses prexisting WiFi infrastructures and is a good source to aid the MB&®d navigation
solution. However, WiFi positioning requires databases to estimate the user position.-The pre
surveys for building and matiaining the WiFi databases make most current WiFi positioning
systems are not automatic. Currently, it remains difficult to find an atiwaral accurate indoor
navigation system on typical handheld devices. Howetercomplementary characteristics

MEMS sensors and Wififfer an efficientintegrationfor indoor navigation applications.

Two automaticWiFi Positioning ServiceWWPSg based on trilateration arfthgerprinting are

investigated in this research, which both consist of the backgroundyssewace and WiFi

positioning service. Both WR®rovide WiFi positioning solutions, with no cost to build and to

maintain WiFi databases. This removes the limitations that most current YW&§8se time

consuming and lalvantensive presurveys to buildthe database Different approaches are
investigated to i mprove the accuracy of both

environments. The developeslo automatic WPSs are also compared.

An innovative MEMS navigation solution, based oaotion constraints and the integration of INS
(Inertial Navigation Systenmgnd PDR(Pedestrian Dead Reckoning built on handheld devices.
LC (Looselycoupled)integration and TETightly-coupled)integration are implemented for WiFi

and MEMS sensors tirther limit the drifts of MEMS sensors. The navigation performances of



PDR, INS, the PDR/IN$ntegrated MEMS solution, the LC integration solution, and the TC
integration solution are compared in this research. The test results also show its averagmgosi
error of TC integration in various trajectories is 0.01% of INS, 10.38% of PDR, 32.11% of the
developed MEMS solution, and 64.58% of LC integration. This developed TC integration solution

can be used in both environments with dense and sparsgmepks of WiFi AP{Access Points)
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Chapter Onetntroduction
1.1 Background and Problem Statement

The rapid development and improvement of handheld deveteh as smartphones and tablets,

has enabled them to become powerful tools for navigation applicgdanset al. 2013 Yohan

and Hojung 2011 Modern handheld devices are widely used as platforms for navigation because
they have sophisticated and powerful microprocessors, efficient operating systems, and embedded
multi-sensors(Zhuang et al. 2013b The microprocessors and operating systems ensure fast
computation for navigation applications, whereas embedded-sem$iors guarantee sufficient

data to support the design of navigation algorithifise growng demand for navigation
applications, especially indoors, has also promoted the implementation of navigation techniques
on handheld devices. Accurate and reliable indoor navigation system hosted on handheld devices
would benefit many consumer industriesluding health care, Location Based Services (LBS),

emergency services, tourism, and personnel managéRemaudin et al. 2007

To provide indoor navigation solutions, there are several potential technologies available such as
Wireless Fidelity (WiFi), Global Positioning System (GPS), and inertial sehssed relative
navigation, etc. GPS, when signal available, is the most gopad accurate navigation system
(Kaplan and Hegarty 2006However, GPS cannot provide a reliable indoor navigation solution
because its signals are degraded by ceilings, walls, and other objects. Therefore, other technologies
have been developed to compensate for liflmiations of GPS, such as Radio Frequency
Identification (RFID)(Cardullo and Parks 19Y,3JItra-Wide Band (UWB)Siwiak 2003, Micro-
Electromechanical Systems (MEMS) midénsorfMohamed 199P(Zhuang et al. 2013aand

Wireless Local Area Networks (WLANEhen et al. 2012 Specifically, RFID and UWB require



dedicated infrastructure and special devices to detect signals for positioning, and can provide
accurate positioning solutions. On the other handnost current handheld devices, MEMS

sensors, such as accelerometers, gyroscopes, magnetometers, and barometers, provide navigation
solutions without any dedicated infrastructur
navigation solution will decresa with time due to their drift characterist{@huang et al. 2013a

(EI-Sheimy 200k

WiFi-based positioning is another potential technology for indoor navigation leeitaumsy uses
pre-existing WiFi infrastructure. WiFi positioning errors do not accumulate with time which makes
WiFi an excellent source to aid the standalone navigation solution based on MEMS (dansges

et al. 2013 Currently, there are two RS$sed (Received Signal Strength) WiFi localization
techniques: trilateration and fingerprintiigui et al. 200J. Both of these technologies require
special databases to estimate the user position. In traditional approaches, profegsiegals

are hired to build and maintain the databases. A radio map database is required for fingerprinting,
where the RSSs of available Access PointssjAiPe mapped to absolute positions.-Buevey is

also needed to build the database of the promaggarameters (PPs) and AP locations for
trilateration.Although some approaches have been proposed to redweféoitieo construct WiFi
databasedhese approaches stitquire manyprofessional surveyorespeciallyfor large areas
Presurvey is a lbor-intensive and time&onsuming process conducted by professional surveyors.

Therefore, most current WiFi positioning system are not automatic

Some crowdsourcingpased systems have made indoor pmsitig more practicaHowever they
still suffer fromvarious limitations, such as needing a floor plan or GPS, being suitable only for

specific indoor environments, and only implementing a simple MEMS sensor solution. Thus,

2



currently, it remainslifficult to find an automatiand accurate indoor navigatioysgem on typical

handheld devices without special hardware or infrastructures. However, it is expected that the
cooperation of MEMS sensors and WiFi is an efficient approach for indoor navigation
applications. In this thesis, the focus primarily is on ithplementation of WiFi and MEMS
cooperated systems on handheld devices because the pedestrian navigation services implemented

on handheld devices are lasost, user friendly, and do not require additional hardware.

1.2 Review of Existing Literature

1.2.1Reduce Labofor Building WiFi D atabases

To ensure WiFi positioning is more practical, much work has been done to reduce the labor
intensive and timeonsuming task of building the databases for both trilatergGbeng et al.

2005 (Skyhook 201 (Yu 2012 and fingerprinting([Cheng et al. 2005Yungeun et al. 20)2

(Bolliger et al. 2009 (Nguyen and Zhang 20).3Fingerprintingbased research is given first. A
system is proposed {iCheng et al. 20050 reduce the cost of offline training by automatically
collecting WiFi fingerprints with the help of vehicles equipped with GNSBbal Navigation

Satellite System) receivers. However, this system is used for outdoors, and is not suitable for
indoor applications. Another concept is discusse@aoilliger et al. 2009whereby normal users,

not professional surveyors, update fingerprints to the radio map. But, this is also not an automatic
system because it requires the active participation of users to update firtgerninnertial

sensors based system is proposdd'imgeun et al. 20)2Zor the offline training phase. However,

the inertial sensords navi gat i oledealoeckoninglyn i n
using accelerometers and magnetometers, which is not accurate and robust. Second, we summarize

the algorithms for building the database containing AP locations for trilateration. In PlacelLab



(Cheng et al. 2005 AP locations a& computed through the use of averaging and weighted
averaging of positions derived fr omdrtihwi nngeda s
However, large estimation errors can result from measurement points with poor geometrical
distribution. The resarch given irffTsui et al. 201Ppand SkyhooKSkyhook 201%al s o uses fiw.
drivingo to collect AP | oc éru20drestimatellthe patoloss r , r
exponent and a constant parameter of the propagation model through rigorous testing. Least
squares (LSQ) is then used to estimate AP locations. Yet, the challenge of this method is that the
pressuveyed parameters are not suitable for the estimation of AP locations when the environment

has changed.

1.2.2Crowdsurcing-Based $stems

Until now, several crowdsourciAgased systems have been proposed for indoor navigation, see
for example(Chintalapudi et al2010 (Rai et al. 2012 (Wang et al. 2012(Yang et al. 201p

(Shen et al. 20)3The work in(Chintalapudi et al. 20)@roposes the EZ localization algorithm,
which does not require any pdeployment effort, infrastructure support, priori knovgedbout

Wi Fi APs, or active user participation. Howe)
indoor environments could be problematic. Research conduc{&airet al. 201Pproposes the
AZeed syst em-effoiticrowdsouncang for zngor locations. Zee requires a map
showing the pathways and barriers to filter out infeasible locations over time and converge on the
true location by using the idea that a user cannot walk through a wall or other barrier marked on
the map. However, this rpais not available in many rewalorld cases. Also, Zee uses
magnetometers, rather than gyroscopes, for calculating direction, which is usually affected by the

indoor environment. Unlike the Zee, UnLoc, an unsupervised indoor localization scheme that



bypasss the need for watriving, is proposed in the work ¢Vang et al. 2012 The key idea of

UnLoc is to improve the deagckoningbased sensor solution by using seed and organic
landmaks. A floor plan or GPS is required in this system to find the location of seed landmarks.
However, the location of seed landmarks could be questionable if a floor plan and GPS are not
available. Another work ifYang et al. 201pPpresents the LiFS, an indoor localizatisystem,

which constructs the radio map with the help of a floor plan and sensors in smartphones. The
building of the radio map is easy and rapid since little human intervention is needed. LiFS works

well in buildings where the corridor connects all otbffice rooms that are on both sides of the
corridor. However, Li FS may fail i n | arge op
difficult to analyze. Furthermore, similar to Zee, LiFS needs a floor plan to build the database,
which may not always bevailable.Unlike LiFS, (Shen et al. 20)3resents Walle-MarkieT a
crowdsourcingcapable pathway mapping system that leverages the ssmspped mobile

phones of ordinary pedestrians and to build indoor pathway maps without any a priori knowledge

of the building. Central to Walki®larkie is a novel exploiteon of the WiFi infrastructure to

define landmarks (WiFMarks) to fuse crowdsourced user trajectories obtained from inertial
sensors on userso6 mobil e piMarkieisthat itTdbes notwaork n | i
well in wide pathways where Wifark detection and clustering will deteriorate if users have a

wide choice of where to walk.

In summary, while these crowdsourcibgsed systems have made indoor positioning more
practical than before, they still suffer from various limitations, which r@etabr plan(Rai et al.
2012 (Wang et al. 2012(Yang et al. 201Ror GPS(Chintalapudi et al. 20)@Wang et al. 2012

are suitable only for specific indoor environmef(itaing et al. 2012(Shen et al. 2018 and only



implement a simple MEMS sensor soluti@tai et al. 201p(Wang et al. 201(Yang et al. 201p

(Shen et al. 20)3Therefore, the proposed system aims at reducing these limitations.

1.2.3WiFi SLAM

WiFi SLAM (Simultaneous Local&tion and Mapping) is another group of algorithifasrris et

al. 2007 (Bruno and Robertson 2011Faragher and Harle 2013Huang et al. 2001 for
localization and WiFinformation mapping (radio map and AP location). ResearchéFemis et

al. 2007 implemented a WiFi SLAM system by using the-G¥M (Gaussian Processes Latent
Variables Model). More specifically, a WiFi radio map was generated by usirgVGPto
extrapolate frm the existing fingerprints. However, this system is limited by its large computation
load when processing large sets of data. Another WiFi SLAM algorithm is provideldamg et

al. 2012, which builds the WFi radio map based on GraphSLAM. The WiSLAM algorithm for
improving FOotSLAM with WiFi is provided iBruno and Robertson 20}l IYet, onedrawback

of this algorithm is that the path loss exponent is set to two when using the propagation model.
Research iFaragher and Harle 20Lproposes a smartSLAM scheme which contains PDR
(Pedestrian Dead Reckoning), FEKF (Fingerprint Extended Kalman Filter), FEKFSLAM
(Fingerprint Extended Kalman Filter SLAM), and®PBLAM (Distributed Particle SLAM). It also
provides the process of building a WiFi radio map if it is not readily available. The large
computation load of WiFi SLAM algorithm@-erris et al. 2007(Bruno and Robertson 2011
(Faragher and Harle 2018Huang et al. 20D)1reduces the efficiency of microprocessors and
increases battery consumption, which makes these algorithms unsuitable for implementation in
handheld device If WiFi SLAM algorithms are implemented in the server, 1i@le transmission

of high-rate sensor data to the serwglt increase the battery consumptioithe devices.



1.2.4Integrated Technologies for WiFi and MEMS éhsors

Mostresearchasfocusedon the integration of WiFi and bodynounted MEMS sensof€hai et

al. 2012 Evennou and Marx 2006~rank et al. 2009 An indoor positioning system for
pedestrians, combing WiFi fingerprinting with fembunted inertial and magnetometer sensors,

is proposed inFrank et al. 2009 However, footmounted systems are not as convenient as
handheld devices for pedestrians, and the requirement of tsanwey makes WiFi fingerprinting
impractical for a large area. An advanced integration of WiFi and INS (Inertial Navigation
System), basedn a patrticle filter, is proposed (Evennou and Marx 2006Nevertheless, the
particle filter is ot suitable for handheld devices such as smartphones, due to its large computation
load.If particle filter algorithms are implemented in the server -tiea transmission of highate
sensor data to the serwsill increase the battery consumptiontioé devices.Furthermore, by

using the AKF (adaptive Kalman filter), a PDR/WiFi/barometer integrated system is proposed in
(Chai et al. 2012 However, this system is also based on WiFi fingerprinting andnfoointed
sensors. Moreover, a maximdikelihood-based fusion algorithm that integrates the PDR and
WiFi fingerprinting is proposed i(Chen et al. 2014 The algorithm was implemented in

smartphones which made the system practical other than Hsewesy for fingerprinting.

In addition, almosgall current WiFi/MEMS integrations are loosatgupled (LC) inteations,

which means the integration is based on a MEMS navigation solution and WiFi position solution.
On the other hand, tightlgoupled TC) integrationhasbeen used for the integration of inertial
sensorwith GPS, RFID and USBL (Ultr&hort BaselinejGeorge and Sukkarieh 2005 et al.

2006h Morgado et al.2006 Ruiz et al. 2012Wendel and Trommer 20041 and Grejner



Brzezinska 2006 Therefore, a TC tegration for WiFi and MEMS sensors is proposed in this

thesis to improve the performance of indoor navigation.

1.3 Research Objectives

The main objective of this research is to depean automatic and seamlesgdoor navigation
solution on handheld devicdwough the cooperation of WiFi and MEMS sens®tse accuracy
objectivein the proposed solution is to achieve the best accdoadgdoor navigatiorbasedon

current hardware of handheld devicesg( snartphones andabletg. However, thisaccuracy
objective has a lower priority thathe automatic and seamless characteristics of the navigation
system Current handheld indoor navigation systems based on WiFi and MEMS sensors usually
work in one mode whereby WiFi helps MEMS sensors to limit the drifts) dre other mode
whereby MEMS sensors help WiFi build the databases. But, systems seldom work in both modes
and are not really cooperative. The proposed system in this thesis works in both modes and aims
to provde an automatic and seaml@sdoor navigabn solution. To achieve the main purpose,

several important implementation and development issues must be addressed.

1. Design andimplementation of an automatic trilateratiothased WPS (WiFi Positioning
System)Trilateration requires current RSS valuegpgagation parameters, and AP locations
to estimate t he-swveywsususly rqused to buildhthe dadabgse, which
consists of AP locations and propagation parameters. Thus, to implement an automatic
trilaterationbased WPS, the followintwo issues will be investigated:

V Crowdsourcingbased WiFi database buildingThe presurvey for the trilateration
based database is timmensuming anthbar-intensive which makes most current WiFi

positioning systems impractical and not automatic. Teoraatically build the
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trilaterationbased database by using crowdsourcing and MBlERd navigation
solution, several issues need to be investigated as followdo¢t do we estimate the
AP locations and propagation parameters from the MEMS solution&8d™R2) How
can we remove unreliable estimates from the database? (3) How do we automatically
build the database for trilateration through crowdsourcing? (4) What is the accuracy of
AP locations and propagation parameters in the database?

V  WiFi positioning: We also need to investigate the issues for WiFi positioning by using
the trilateratod ased dat abase as follows: (1) How
using the crowdsourcingased database? (2) How can we remove unreliable
estimates?

2. Design andimplementation of an automatic fingerprintindbased WPS:Fingerprinting
requires current RSS values and a radio map
pressurvey is usually required to build the radio map database. Thus, to implement an
automatidingerprintingbased WPS, the following two issues will be investigated:

V Crowdsourcingbased WiFi database buildingSimilar to the automatic trilateration
based WPS, several issues need to be investigated to automatically build the
fingerprintingbased dtabase by using crowdsourcing and MEbESed navigation
solution as follows: (1iHow can we generate fingerprints from the MEMS solution and
RSSs? (2) How do we remove unreliable fingerprints from the database? (3) How can
we automatically build the databe for fingerprinting through crowdsourcing?
V  WiFi positioning: We also need to investigate the issues for WiFi positioning by using
the fingerprintngp ased database as foll ows: (1) Ho
using the crowdsourcingased databa8 (2) How to remove unreliable estimates?
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3. Comparison of two automatic WPS#fter the two automatic WPSs are implemented, they
will be conpared in terms of: accurgcmemory costand implementation complexity.

4. Design andmplementation of the WiFI/MEMSntegration for indoor navigationThere are
different approaches for implementing a MEM&sed navigatiosolution anda WiFi/MEMS
integratedhavigationsolution. Therefore, the following research questions will be addressed:
How do we implement an advarnc®EMS solution to reduce the drifts? Also, what are the
navigation performances of loosatgpupled and tighthcoupled WiFi/MEMS integrations?

Complete answers to these research questions will be providad thdskis including some tests

and analysis &sed ortest results

1.4 Thesis Outline
This thesis covers the design and implatagon issues of an automatic and seamiegsor
navigation solution on handheld devices through the cooperation of WiFi and MEMS sensors. The

thesis consists of six chapteasd the outline of chapters two through six is as follows.

Chapter 2 covers the necessary background information for the development and analysis of an
indoor navigation system, and typical technologies for MEMSed and WiFbased navigation

are summarged. The integrated navigation solutions using MEBEhsors and wireless signals

are discussed, and three estimation approaches for navigation applications are presented in this
chapter as fébws: KF (Kalman Filter), EKF (Extended Kalmaiitér), and nornhear LSQ(Least

Squares)

Chapter 3 focuses on the issueslesign andmplementation of an automatic trilateratibased

WPS. The design, implementation, and performance evaluation of a trilatdyased automatic
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WPS is presented. In this chaptee tverview of the proposed system is discdssewell as the

T-PN (Trusted Positioning &Vigator) solution. The developed algorithms for measurement
optimization, AP localization, PPsstimation, and autonomous crowdsourcing are discussed in
detail. Backgound survey service and WiFi positioning service are also investigated and

demonstrated, followed by test results and performance analyses.

Chapter 4 deals with the issueslekign andmplementation of an automatic fingerprintibgsed

WPS and the congpison of two automatic WPSs. The design, implementation, and performance
evaluation of a fingerprintingased automatic WPS is discussed. In this chapsskground

survey service and WiFi positioning service are investigated and anakigatithms for
automatic radio map database generation and improved fingerpiuatssgl WiFi positioningre
demonstrated, and their performances are evaluated through the field tests. The proposed

automatic fingerprintingpased WPS is also compared with the autontditerationbased WPS.

Chapter 5 focuses on the issueslesign andmplementation of the WiFi/MEMS integration for
indoor navigationAn innovative algorithm, based on the integration of INS and PDR, is proposed
for the MEMSbased navigation solutiomwo integrated schemes for MEMS and WiFi, LC
integration and TC integration, are proposed to improve the accuracy of the indoor navigation
solution. The navigation performances of PDR, INS, PDR{iN&rated MEMS solution, LC

integration solution, and T{tegration solution are also evaluated and compared in this chapter.

Chapter 6 summarizes the achieved work of this thesis, concludes the results of this research, and
gives recommendations for future research to improve the proposed dyperal-1 shows the

outline of the thesis and topic classification corresponding to the issues listed in Section 1.3.
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2. Background

Topic Classification

3. Automatic WPS based
on trilateration

| mplementation of an automatic
trilateration-based WPS

4. Automatic WPS based |

on fingerprinting

Implementation of an automatic
fingerprinting-based WPS

Comparison of two automatic
WPSs

5. WiF/MEMS Integration
for Indoor Navigation

6. Conclusions &
Recommendation

Implementation of the WiFi/
MEMS integration for indoor
navigation

Figure 1-1 Thesis outline.
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Chapter TwoBackground

This chapter will cover the background information for the development and analysis of an
automatic indoor navigation system based on the cooperation of MEMS sensors and WiFi. Since
MEMS sensors play a significant role in indoor navigation, Section 2.1 summarizes the commonly
used processes for implementing the MEM&ed navigation solution, which includes the INS
solution, the PDR solution, and the motion constraints. Sectionst Hascribes the problems of
current MEMS solutions. Section 2.2 discusses two typical implementations (trilateration and
fingerprinting) for the WiFibased navigation solution along with their limitations. The integrated
navigation solutions using MEMSmsors and wireless signase given in Section 2.3. Finally,
Section 2.4 describes three estimation approaches for navigation applications: Ki&bknan

extended Kalmaifilter, andnonlinearleastsquares.

2.1 MEMS Solution for Indoor Navigation

Currently, there are two different approaches to implement inertial sebsgesl pedestrian
navigation solution: INS and PDR. In the first approach, raw inertial sensor data is put to the INS
mechanization equationséoa | cul at e t he us er NSscanp@wde 3PdThreeo n | n f
dimensional) position, velocity, and attitude (PVA) information. However, the navigation error

based on this approach increases rapidly with time due to the MEMS errors and the integrations
used in the mechanizatidmitterton and Weston 20040n the other hand, PDR has four main
procedures: step detection, step/stride length estimation, heading estimation, and 2D (Two
dimensional) positio calculation.In PDR, navigation solution errors are proportional to the
distance traveled, and not to the tidahyung and Hojung 20)1Besides these two approaches,

motion constraints are also often used in MEMSed navigation solutions. This section describes
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three motion constraints used for pedestrian navigation: NHG(Etmmomic constraints), ZUPT
(Zero vdocity update), and ZARU (Zero angular rate update). In the end, problems of current

MEMS-based navigation solutions are discussed.

2.1.1Reference Frames

Definitions ofreference framesvhich incudenavigation frame, body frame (sensor frame), and

vehicle frane (pedestrian framegre giverbelow.

The navigation frame (frame, northeastdown NED in thisthesid is a local geodetic frame
which has its origin coinciding with that of the sensor frame, {&xig pointing towards the
geodetic north, its-axis athogonal to the reference ellipsoid pointing down, and 4{tig

completing a righthanded orthogonal frame.

The body frame ({frame) is the frame in which accelerations and angular rates are generated from
the accelerometers and gyroscopes. In thisighthe sensor frame-fame) is the same as the b

frame, and the roll, pitch, and heading are defined for the handheld device (or the IMU), but not
for the pedestrian. This is appropriate because the pedestrian usually has a very small roll and pitch
when walking obeingstatic, while the handheld device may have a large roll and pitch. However,
the pedestrian heading is assumed to be the same lasatitiag of thdnandheld devicéheading
misalignment is zero degreeyhich is often satisfied when hahg) the device for navigation.
Several researches have been conducted to estimate the heading misalidrenéns not zero

degreeHowever, his is not the focus of this thesis.

The vehicle frame @frame) is an orthogonal forwatdansversatlown axisset. In this thesis, the

vehicle frame can also be called the pedestrian frame because the proposed naygjatisrs
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used for pedestrians. The frame is required becauseftaenb is usually not parallel to the v

frame in the handheld pedestrian igation applications.

2.1.2INS Solution

An inertiaksensordased navigation system usually consists of three accelerometers and three

gyroscopes. Accelerometers sense the specific fofca the body frame, whereas gyroscopes
measurelte angular velocity? in the body frame, which is the rotationtb® body frame with
respect to the inertial frame, measured in the body fratrespecific force measurementt§ are

used to compute the bpdcceleration, which is later used in estimating position differences after
double integration with respect to time. The angular velocity measureméngse used to

calculate the angular differences of the body relative to itiglimrientation after integration in

time (Titterton and Weston 2004in sunmary, INS mechanization equations use specific force
measurements ® and angular velocity measurememt’ to compute the PVA information for

the objet (Titterton and Weston 20Q4which is given afollows (Aggarwal et al. 2010
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r"=[f / h] s the position vector (latitude, longitudend height)v" =[v, w ]  is the
velocity vector in the navigation framé:t? is the transformation matrix from the body frame to
the navigation frame as a function of attitude componegitsis the gravity vector in the
navigation frame2W, + Yyis the skewsymmetric matrix of the angular velociti@s + .

W, is the angular velocity of-Bame with respect toframe as measured in the navigation frame
and u/, is the angular velocity of the navigation frame with respect to-finenee as measured in

the navigation frame2u, + 1, can be calculated as follows.

o
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where W” is the earth rotation rate. Therefore, @&, + Y in (2-1) can be expressed as follows.

io -w
2Vvi1e+WéWz 0 Mé (2'4)
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where W is the skewsymmetric matrix of the rotation vecto?’ , from the navigation frame to

the inertial frame measured in the body framé.can be given by thellowing equation.
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Figure 2-1 INS mechanization dgorithm.

2.1.3PDR Solution

PDR determines the current position of the pedestrian from the knovdétigeprevious position

and the measurements of the motion direction and traveled distance. The PDR algorithm usually
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includes step detection, step length estimation, heading estimation, and PDR mechanization

(Zhuang et al. 2013a

First, steps are usually detected by means of the cycle pattern of the acceleration norm. Currently,
peak detection, zero crossing, auto/cross correlation and spectral analysis are typicahepproac

for the step detectiofHarle 2013. Because stride is associated with sharp changes to the vertical
acceleration, peak detection can be used to find the stli&escrossing is a simpler way to detect

steps by monitoring the acceleration value. Another step detection approach is based on the strong
periodicity in the sensor data from the periodic nature of walking. The steps can be extracted by
the autocorrel@&n of a sequence of sensor data. If a sample sequence of sensor data for a step has
previously been collected, steps also can be extracted by the cross correlation between the collected
sensor data and this sample data. Spectral analysis computeslbadyespectrum of the cyclic

data and identifies strong peaks as step frequencies. These approaches are also summarized in
Table2-1. For more details about step detection, please refgitade 2013. In this thesis, the

peak detection is used for step detection.

Table 2-1 Step detection algorithms

Algorithms Basic Idea
Peak Déection Detect peaks of acceleration norms
Zero Crossings Detect zero crossings of acceleration norms
Auto/Cross Correlation Meanadjusted auto/cross correlation
Spectral Analysis Identify strong peaks of spectrum as step frequen
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The step lengthstimation is used to estimate the moving distance of the pedestrian at each step.
Different approaches have been proposed for estimating the step length. For -theuntsd

MEMS sensors, IS can provide the information of step len@fivarez et al. 2006Jimenez et

al. 2009. However, INS solution drifts very fast when using srsae MEMS sensors.To
improvethe accuracy of step length estimation, ZUPT (Zero Velocity Update) in the stance phase
is used to attenuate the bias of the accelerometers. This approach is not suitable for handheld
devices because the stance phase cannot be detected in this casgeVidé is mounted at the

COM (Center of Mass) of the user, an inverted pendulum model can be used to calculate the step
l ength by wusing the usero6és |l eg Il ength and the
(Jahn et al. 2030NVeinberg 2002 The need for a specific mounted place also makes this model
unsuitable for handheld devices. Another group efhods estimate the step length by combining

the step frequency, acceleration variance, vertical velocity, etc. The combination can be
implemented by using difference modéappi et al. 200lLadetto 2000Lee et al. 201,1Shin

and Park 2011 Empirical models aralso efficient approaches to estimate the step length. The
models are built from sufficient experimental déddvarez et al. 2006Jahn et al. 201XKim et

al. 2004. In this thesis, the model proposedWeinberg 2002is used for step length estimation,

which assumethe step length is proportiona the vertical movement of the human hip. The
largest difference of the vertical acceleration at each step is used to calculate vertical movement.

Theequation forstep length estimation is expressed as:

SL=4 Smax ~Smin K (2_6)
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wherea, ., is the maximum value of the vertical acceleratan a,;, is the minimum value of
a,, andK is a calibrated constant paramet&then using2-6) to estimatehe step lengtiof a

user the device is assuméalbe levelledTherefore, the vertical direction is thaxis of the body

frame of the device.

There are two main ways to estimate the moving direction of a person: using gyroscopes and
magnetmeters.Gyroscopes provide a relative heading. Therefore, an initial heading should be
derived fromGPSvelocity or provided by the user. It is accurate only for short term due to the
accumulated error as a function of time. However, compared to magnetsmbich can be easily
disturbed by the environment, it will not suffer from sudden changtseineading estimation.

The magnetometers provide long term absolute heading. However, its main problem is the effect
of external disturbance. Gyroscopes carubed to defct external disturbance usingjuation

(2-7) (Ladeto et al. 2001

g, - w th
=Y () - M) (2-7)

tk+1 - tk

where wy, is the derive angle rate from magnetometer measurementss the angle rate of the
gyroscopesth is the threshold selected at the calibration processy arsdthe magnetic heading

from magnetmeter measuremenifhe details of thes®vo approaches are depictedliable2-2.
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Table 2-2 Summary of two approaches for heading estimation

Heading Mag-Based Gyro-Based
H y Akt
Theory H, =atan (I_T) Heon = Hew m mt)dt
Absolute heading Less disturbance
Pros
Long term accuracy Short term accuracy
Unpredictable Drift
Cons
External disturbance Relative heading
Calibration Hard Easy
Cost Low High

Even if usingEquation(2-7), the magnetic heading does not work well indoors due to complex

indoor environments. Thereforgyroscopes serve as the main souamrepedestrian heading

estimation in this researcim Table2-2, the headingstimationequationgor magnetometers and

gyroscopesre based on the assumption that the handheld device liteTdis assumptiols

right when the user holds thaevicein compass mode. If thiassumption is notalid in some

casesthedevice needs tbeleveleddown, andheadingwill be re-estimatedWith the assumption

that the handheld device is level (roll and pitchare zeggorde e s ) , t he pedestri an(

is estimated by the integration of the vertical gyroscope. Finally, the PDR mechanization is given

by

E., &, SOCH,)

FE.
| o v =
iN =N, &, cs(R,)
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where (E,,, N, ;) and (E, N,) are positions at epock- 1 and epochk, &, ,,, and HE are

estimated &p length and heading at epdch A simple description for PDR is shown kiigure

2-2.
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Figure 2-2 PDR algorithm.

2.1.4Motion Constraints

A MEMS-based navigation solution can also be improved by using sewetain constraints,
such adNHC, ZUPT, and ZARU (Zero Angular Rate Update). NHEyed et al. 2008uses the

fact that a land vehicle cannot move sideways or vertically. It can work asdityeipdate to
improve the MEMS solution. NHC is alsaoitablefor normal pedestrian walking. ZUPT uses zero
velocity as the velocity update to limit velocity error if the pedestrian is static. ZARU considers
the fact that the heading remains unchangduanio the attitude error if the pedestrian is static.

With these motion constraints, a MEM@&sed navigation solution can perform better than before.

NHC, also known as velocity constraints, can be used to improve the performance of MEMS
based navigatiorodutions, especially when there are no other wireless signals. NHC uses the fact

that a land vehicle cannot suddenly move sideways or vertically. Therefore, these two velocity
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components should be close to zero. This velocity constraint also can berugpitébpedestrian
walking to constrain the lateral and vertical speeds of the pededthearNHC equations for the

NED implementation of the navigation frame are as follows.

Y
|

(2-9)
fv;°0

where y represents the lateral component of the velodtyepresents the vertical compoheh

the velocity, andb represents the pedestrian body frame.

If a static interval is detected, ZUPT and ZARU are used as motion constraints for the INS to limit

the navigation error. The ZUPdased zero velocity vector in the lyddame is given by
VkZ)UPT = [O 0 qT (2'10)

If the pedestrian is detected as stalie, pedestrian heading is unchanging based on ZARU, which

is given by
Yins = ypre storec (2'11)

wherey s is the INSbased heading and is the prestored heading of the first epoch

pre- stored

after the static is detected.

2.1.5Limitations of MEMS-Based Solution

MEMS sensors are widely used in many applicatidhsy can be found in various handheld
products such assmartphones, tablets, and personal digital assistants (PDfsyever,

measurements of lowost MEMS sensors are usually contaminated by different types of error

23



sources: bias, bias variations, andledactor, etcTherefore MEMS sensorgamot be used to
provide relatively longerm accurate solutions without external aiding sources, especially by using
the INS mechanization equations. The navigation error based on this approach increases rapidly
with time due to the MEMS errors and the integrations used in the mechaniZatierton and
Weston 2003 PDR reduces the accumulated speed of the navigatimnbgr decreasing the use

of integrations. PDR used in the handheld devices usually assumes that the handheld device is
leveled (roll and pitch are zero degrees). However, this assumption is not always valid. In these
casesthe PDR-based heading, calcudat by the direct integration of the vertical gyroscope is
inaccurate. The heading estimation error will finally affect the positioning accuracy. To
compensate for the limitations of INS and PDR, we propose a MEMS solution on handheld devices
for indoor navgation, based on the use of PDR/INS integration. The proposed PDRti2¢fBated

MEMS solution combines the advantages of both schemes. In this algorithm, step detection and
step length estimation are kept the same as the traditional PDR algorithm.tilretess step

length is used to calculate the forward speed, which works as the velocity update for the INS to
limit the velocity error, and further limit the position error and attitude error. Therefore, the
PDR/INSintegrated MEMS solution is superior the INS solution. The heading from the
PDR/INS integration also performs better when compared with PDR because it considers the effect
of the roll and pitch. Furthermore, motion constraints are also used to improve the-WisEIS
navigation solution. Eveasing these algorithms for MEMS sensdhg navigatiorsolutionstill

slowly drift with time. Therefore, wireless signals are usually used to aid the MEMS sensors to
limit their drifts. WiFi is the main wireless signal in indoor environments, and typuigi
positioning systems are discussed in SectionT2® integration approaches (LC integration and

TC integration) are also discussed in SectidorMEMS sensors and WiFi.
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2.2 WiFi Solution for Indoor Navigation

WiFi based positioning is a candidate teclogy for indoor navigation because it provides
location information using prexisting WiFi infrastructures. Currently, most public buildings,
such as universities, colleges, airports, shopping naidpffice buildings, already have well
established Wi infrastructures. WiFi localization error does not accumulate with time which

makes it a potential aiding source for the standalone navigation solution based on MEMS sensors.

2.2 1Trilateration
2.2.1.1Radio Propagation Model

The relationship between transmittemgs and receiver power is described by simplified path

loss methodGoldsmith 2005 and is shown as follows.
ad
P (dBm = P( dBm + K dB 10 tog, e - (2-12)
C*Yo

where P is the RSS value received at the WiFi receiverdBm at a distanced from the
transmitter,R, is the transmitted signal strength of the APis a unitless constant depends on

the antenna characteristiasdethe average channel attenuatidpjs a reference distance for the

antenna fafield, andn is the path loss exponenhich depend on the propagation environment.

d, is typicallyassumed to-10m indoors and 3@00m outdoors. Typical values of this parameter

are n=2 for free space an@¢ n ¢6 for an office building with multiple floorgGoldsmith

2009. The value ofK is sometimes set to the free space path loss at the distance

K(dB)= 20log,(4d, / ) 30log,(G) 16log(G) (213
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Where/ is WiFi signal wavelengthG, is the gam of the transmitting antenna, at] is the gain

of the receving antenna.Shadowing of channels should be carefully considered in indoor
environment. The effects of shadowing are modeled statistically in the uncertain and changing

indoor environment. The assumption of-4egrmal random process with zero mean is applied for

shadowing iGoldsmith 2005 One term-y (dB) indicating the shadows is added tquiation

(2-12) for this. Combining Guationg2-12) and(2-13), a new propagation model is formulated as

follows.

P (dBm = 10nlog,

i

Ce) Qo
|- O: O

6 B( dBrj - (2-19)

where P,(dBm) = P( dBrh + K dR is the received signal strength at distame Equation
(2-14) is simplified to Euation(2-15) through averaging and assumidg=1, and is given as

follows.
RSS= 40 rioglo( ()I - (2-15)

where A= mearf { d =) medn). Another approach for derivin@®-15) based on MLE

(Maximum Likelihood Estimation) is given i{Mazuelas et al. 2009The typical range folA is

0 ~ 100.Equation(2-15) is the simplified propagation model used in this research.

2.2.1.2TrilaterationBased Position Estimation

Trilaterationrbased WiFi positioning consists of two steps: range estimation and position
estimaton. First, distances (ranges) between the user and APs are estimated from the RSS values

by using the propagation model . Second, t he
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techniques for the r an ¢2€6)is gverdto caleukaté the distarade i on s .

by rewriting Ejuation(2-15).

RSS A

d =101 (2-16)

Propagation parametersA(and n) and RSS are needed to calculate the distamceWe can
easily obtain RSS values from the WiFi receivers in handheld devices. Typical valaezsnof

n can be set for Guation(2-16). However, typical values are not suitable for a specific indoor
environment.A and n values can be obtained from gmerveys, and they are stored in the
database. AP locations are additional necessary infammdor trilaterationbased Wi
positioning, and they are usually obtained by-gueys or uploads from users. With known AP
locations and ranges, typical estimation techniques, such dmeaniterative LSQ, are utilized

to estimate user 6s p diseariterabve ISSQ aré ¢given indSedtieni2.h.2. ab o

2.2.2Fingerprinting

Fingerprinting based WiFi positioning includes two phasesspreey and redime positioning

(Bahl and Padmanabhan 2000he presurvey is to build the radio map databases by measuring

and storing the positions and corresponding RSS values at measurement Redatsne
positioning uses sever al approaches to detern
values with radio map databasBsiilding the radio map databases will be discussed in the next
section. Then, the appr oabysegradiomap daabdasesmid bei n g

discussed in Section 2.2.2.2.
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2.2.2.1PreSurvey Phase

Presurveys are usually required to build the radio map databases which contain a location
fingerprint F labeling with a location informatioh . The location fingerprint is based on some

RF characteristics such as RSS, which is the basis for representing a unique location. The location
information L is defined to differentiate a special locatioonh other locations. The radio map

dat abases are used to est i miane@ositiohirgg phaseeThedd s po

location and fingerprint are usually denoted as a tup(é_fﬁ) (Zhang et al. 2011

The location informatiorL is usually stored in radio map databases in the form of a tuple of
coordinates. For 3D systems, three dimension space and two orientatasiabfes make up the
tuple of coordinates. For 2D systems, the tuple of coordinates consists of two dimension space and

one orientation variables, which is given by
L:{(x, y,d)|xyiR,d{ North East South V\Hs (2-17)
where X, y represent 2D coordinates, addrepresents the heading.

RSS is the most effective RF signa&uor location fingerprintsn WiFi positioning systems
(Outemzabet and Nerguizian 2Q008ahl and Padmanabhan 2Q00RSS values are more
dependent on locations than SNRyf&il to noise ratio) values because the noise in SNR is random

in nature. However, RSS has one main drawback, which is that it fluctuates over time even at the
same location for the same APhe environmentchangeis the main rasonfor this fluctuation

which canbe caused by the moving of the passefiypically, the mean of RSS values at each

measurement point is calculated and recorded as an elem#ortthe location fingerprint. For a
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measurement point that can obtain RSSesfiomN APs, the location fingerprint can be given

by
F=(ry, £ ) (2-18)

where r, is an average RSS element. Radio map databases with tur(lbsl-_o)‘ are built by

combiningL and F at each measurement point.

An altemate approach for building the radio map database is givéRoios et al. 2002which
calculates probability distributions of all measurement points as location fingerprints. Different
from the average of RSS values, the location fingerprint in this approach is the probability

distribution f (r | p), wherer represents the RSS vector apdrepresents the location of the
measurement point. The conditional probabilftyr | p) is usually called té likelihood function
because it represents the probability of occurrenceé @fhen given p . Furthermore, the

probability approaches are utilized for réiahe positioning corresponding to this type of lbca

fingerprint.

Two different location fingerprints define two frames for fingerpbased WiFi positioning
systems: deterministic frame dnprobability frame. Redime positioning approaches
corresponding to these two location fingerprints are aldereint. The details about the réahe

positioning approaches are discussed in Section 2.2.2.2.

2.2.2.2RealTime Positioning Phase

If the radio map database has been successfully set ugintegbositioning can use several

approaches for RSS values and rasiap dat abases to determine
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approaches can be classified into two schemes: deterministic frame and probability frame. They

are given in detail as follows.

1 Deterministic Frame
I n this frame, t he useweighted average df seleated measureraentc u | a
points6é positions by some criteria. Weights a

innovation(Honkavirta et al. 2009 The details are given ingdation(2-19) and(2-20).

. M w
= — R (2-19)
a4
1

W = (2-20)

-

wheregi s t he est i ma tpasdthe pasigon of she™pmeasuramend pointy is
the weight corresponding to th® measurement point, is the measured RSS vector of current

position 1. is the RSS vector in the" measurement points, ard is the total number of

observable APs. The norHﬁP is arbitrary, and the Euclidean normr{@rm) iswidely used and

given as follows.

2- norm:| ¥, :‘fé_ lel\ X (2-21)

The weighted Knearest neighdur (Li et al. 2006ais another popular method, which keeps the
largest K weights and sets others to zeroes. Tned€est neighbour (KNN) is a special type of

WKNN, in which K neighbours have equal weights.
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1 Probability Frame

In the probability frame, determination of the user position can be considered as a probability
probl em. The aim of this probability probl em
posiion from the probability density functions. Three optimality criteria have been widely used

for positioning: (1) maximization of the likelihood densftyelb 1974, (2) minimizdion of the

mean square errdMaybeck 1982 and (3) maximization of the posteriori densiiaybeck

1982. Their corresponding optimal estimators are as follows: (1) maximum likelihood (ML)
estimator(Gelb 1974, (2) minimum mean square error (MMSE) estimdéddaybeck 1982 and

maximum a posteriori (MAP) estimatfMaybeck 1982 The ML estimator finds the user pogiti

estimate by maximizing the likelihood density function, shown as:

g, =arg ng)axf (r Ip) (2-22)

where f (r | p) is the likelihood density. The ML estimator chooses one measurement point with

the maximum | i kelihood density as the esti mat
are sparsely distributed, the positiamiaccuracy is limited by only choosing one measurement

point as the position estimate. To improve the position accuracy, we calculate the position estimate
by averaging (or weighted averaging) K measurement points with largest likelihood densities. This
method is also known as KNN (or WKNN). This KNN method is different from the KNN in the
deterministic frame because the K neighbours here are chosen by the ML estimator, whereas the
K neighbours are selected by the norms of the RSS innovations in the detcnfiame. The

MMSE estimator calculates the wuserb6s positior

errors, and the equation is given as follows.
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Bee =argmin{(p -pE(p 9 B (2-23)
wheregi s the estimated userdés position. Last,

B, = arg rr;axf (r Ip) f(p) (2-24)

where f ( p) is a priori densityf p. The ML estimator can bedhghtof as a special case of the

MAP estimator without a priori information.

2.2.3Limitations of WiFi-Based Solution

WiFi-based positioning is a potential aiding source for the standalone navigation solution based
on MEMS sensors. However, both trilateratiard &ingerprinting require special databases to
estimate the user position. AP locations and PPs are necessary for trilafesagdnWiFi
positioning. Fingerprinting estimates the user position by finding the closest fingerprints within
the radio map dabease. In traditional approaches, professional surveyors are hired to build and
maintain the databases. A radio map database requires intensive surveys of the areas where the
RSS of available APs are mapped with respect to absolute positiorsuri?eg isalso needed to

build the database of PPs and AP locations for trilaterdased WiFi positioning. Pygurvey, a
laborintensive and time&onsuming processs one of the limitations in most current WiFi
positioning systems. In addition, if an indoor @owiment is changed due to the removal or

addition of WiFi routers, this survey must be redone to maintain the database.

One purpose of this research is to design an automatic indoor WiFi positioning system (WPS),

with virtually no presurvey, through crowsburcing. In order to achieve this aim, two different
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automatic WPSs are proposed based on trilateration and fingerprintPly. i3 a commercial
software that converts inertial sensors into navigation solution that can be used on any smartphone
operatingsystem (e.g. Android). This software is used to automatically build the databases. In both
schemes, a background survey service runs on the operating system of handheld devices to build
databases automatically. Another positioning service can also batedtio provide a positioning
solution for the user. In the trilateration scheme, a background survey service estimates AP
locations and PPs automatically. These values are estimated by using nonlinear leastive
squares SQ) and recorded in the ddtase when some pairs of thePN solution and
corresponding RSS values meet thegetrequirements. The estimated accuracy of AP locations

is also stored in the database for the future use of WiFi positioning. Autonomous crowdsourcing
is used to updatéaé AP information in the database and keep data accurate. The database update
happens automatically in the background, without any restriction on the user, thus making the
crowdsourcing completely autonomous. The positioning service is mainly basecatanatibn

and positioning result optimization through the use of the automatically surveyed database. In the
fingerprinting scheme, the background-gtevey builds the radio map database automatically. In

the crowdsourcing model, fingerprints are generatgomatically, whether the user is walking or
static, as long as the service is running in the background. The accuracy of the database will be
improved when more fingerprints are generated to update the database through autonomous
crowdsourcing. Becauske system does not guarantee that the radio map database contains all the

fingerprints in the building, an improved positioning algorithm is designed in the proposed system.
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2.3Integrated Navigation Solutions

Our proposed indoor pedestrian navigator is thasethe cooperation of MEMS sensors and WiFi.
The key idea of this system is that the MEl&ed navigation solution is used to build the
database for WiFi through crowdsourcing when it is accurate, whereas the WiFi solution is used

to reduce the drift dMEMS sensors when its database is successfully built. The basic question as

to AHow to automatically build the Wi-baseddat ab:
navigation solution?06 has been di scakgoareld i n t
knowl edge wi | | be given on fAHow to use wirele e

GPSI/INS integration is used as an example to introduce the background of integrated navigation
solutions because it is the most common. The methodadogyresult of WiFi and MEMS

integrated systems are discussed in Chapter 5.

The GPS/INS integrated system has several advantages. INS can fill the gap of GPS signal outages
to implement a seamless navigation solution. On the other hand, GPS signalsusad teaid

the INS to reduce the drifts. Another advantage of the GPS/INS integrated system is that it can
provide redundant measurements and improve the reliability of the navigation system. Usually,

there are two schemes for GPS/INS integrated systebhsitegration and TC integration.

2.3.1LooselyCoupled Integration

The most popular integration for GPS and INS is the loesmiypled integration. In this

integration, these systems operate independently and provide two navigation solutions. Usually,
GPShbasel position and velocity as well as the INS solution are fed to a KF. The error states consist
of position errors, velocity errors, and attitude errors, as well as INS errors. The KF can estimate

these errors by using the difference between GPS and INaseland the error model. To further
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improve the accuracy of the navigation solution, the estimated INS errors are fed back into the INS
mechanization. The INS solution is also corrected for these errors to produce an improved
integrated navigation solain. A block diagram of the LC GPS/INS integration is depicted in
Figure2-3. Not e t hat A G P Ssudlyaelistsaim theFGPE paet,rhowever, it is not

mandatory.

IMU errors and PVA corrections

y PVA
IMU »| Mechanization
+ PVA
Navlgatl_on Kalman
Filter
P\/
GPS »| GPSKaman Filter

Figure 2-3 Loosely-coupled GPS/INS integration.

The main advantage of the LC integration is that it is simple to implement and robust, i.e. a smaller
size ofKF states is used in this integration when compared to the tigbtlypled integration. It
provides three navigation solutions: GPS, INS, and GPSiiigrated solutions. The main
disadvantage of LC integration is that it cannot provide a GPS solution to aid the INS when there
are less than four satellites available. Another advantage isithaitégration has twkFs, which

introduce more process noise and decrease the-$ggnaise ratio.

2.3.2Tightly-Coupled Integration

TC integration is also known as centralized integration which only uses a single common filter.
The difference between theguderange and pseud@nge rate measurements from GPS and INS
are fed to the KF to estimate the navigation errors, GPS receiver clock errors, and INS errors. INS

errors are fed back into the INS mechanization to correct the integrated navigation solution
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Usually, GPS receiver clock errors aatsofed back into the GPS receiver to imprdalie GPS

based pseudmnges and pseudange ratesA block diagram of the TC GPS/INS integration is

depicted inFigure2-4.

IMU errors and PV A corrections

\ 4

INS-derived pseudo-ranges &

pseudo-range rates

Navigation Kalman

Filter

IMU »| Mechanization
+
GPS-derived pseudo-ranges & -
pseudo-range rates
GPS

Aiding

Figure 2-4 Tightly -coupled GPS/INS integration.

PVA

The main advantage of TC integration is that it can provide a GPS update for INS even when there

are less than four satellites available. This advantage rttek@€ integration work in challenging

environments, such as urban canyons, where the number of available satellites are less than four.

However, this integration is more complex to implement, as the algorithm involves processing

GPS pseudoanges and psdo-range rates. Another disadvantage of this integration is that there

is no stanehlone GPS solution. Typically, the TC integration can provide a more accurate

navigation solution when compared to the LC integration.
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2.4 Estimation for Navigation

Many navigtion applications need estimation theory to determine the parameters and their
covariance from redundant measurements. Least squares is the most commonly used approach to
convert redundant measurements to parameters. Dynamics also can be combined with the
redundant measurements to achieve the optimal estimates if the system has them. The KF is a

popular algorithm for estimating states from measurements and dynamics.

2.4.1Kalman Filtering

The Kalman filter is a welknown optimal filter based on minimizing thanance estimation of

system dynamics and measurements. It is usually used to fuse multiple navigation solutions. The
KF has two models: the system model and the measurement model. Both models consist of a
deterministic and a stochastic part. The genefaloerates in two steps: a prediction and an
update step. The prediction step uses system dynamics to predict the next state vector and the state
covariance matrix while the update step combines the measurements and the prediction to give the
final estimags and their covariance matrix. The KF has the capability to recursively estimate the

current state vector based on previous steps and current measurements.

Given the fact that measurements usually occur at discrete times, the KF works in the discrete
modefor navigation applications. Therefore, the system dynamic model must be converted to the

discrete format, which is given in the following equation.

X = R Wy (2-29)
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where x, and X, represent the state vectors at ep&chnd k- 1, Fk—l,k represents the state

transition matrix from epoclk- 1 to epochk , and w,_, represents the process noise. The

measurement model in the discrete form is given asvisll
Z = Ho #, (2-26)

where z, representshie measurementector at epoctk, H, representshe design matrix at

epochk, andv, represents the measurement noise.

The KF algorithm is made up of two parts: predictamd update. The prediction part is responsible
for predicting the state vector from epoch to epoch by using the transition function based on the

system dynamics. The prediction equations are formulated as follows.
% = R XxE (2-27)
R = Rkl K @, (2-28)

where () denotes estimation;)(denotes the estimated value after prediction, and (+) denotes the

estimated value after update.representthe navigation state vectoP, represents the covariance

matrix of the state vectoF, ,_,, represents the transition matfiem epochk - 1 to epochk, and

Q. is the system noise matrix. The update equations are given by

1

K =FR HI (HkPk_H-:; +Rk)_ (2-29)

£ =xEK,(z Hx) (2-30)
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R =(1 KHy)R, (2-3D)

where K, is the Kalman gainR, is the measurement covarcan matrix, andH, is the

measurement design matrix. The general process of the discrete time KF is shayuna2-5.

( ™)
I} [N 2ttt g [N
] ' ] - . !
: E ' =k +Kk(zk Hk&) E
; ' '
i ' '
. -1
' Prediction ') K, =P H! (Hkpk HT +RL<) Update '
' L oop "o L oop '
] 0 (] 0
0 0 [] ]
. ] . "o A . '
' R = RuBa El,k @, ' R :(l 'Kka)Pk '
e e e e e e e e I S _
. J

Figure 2-5 General process of the discrete time KF
2.4.2Extended Kalman Filter

KF assumes that the system model and measurement model are linear. However, this assumption
is not always satisfied for all the applications, such as the GPS/INS integration system. In this case,
thenm-l i nearity is mainly derived by estimating
the mechanization equations. There are two approaches to process-limearosystems. First,

the system is linearized based on a nominal or approximate trgjearing the design of the KF.

Second, the system is linearized about the actual trajectory, which is done by linearizing the
process around the current state. The second approach is commonly knowrEaetided

Kalman Filter EKF). The EKF is usually sed to fuse otheinformation such asposition and

velocity from GNSS to reduce the drift characteristicshefMEMS sensorsWhen the EKF is

used to fuse oth@nformationfor INS, the state vector is determined first as follows:

T

Xs:[drPS K71133 1€ dlS’ b143 (2'32)
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where dr , dv , and e represent errors of gaion, velocity and attituded and b represent
gyroscope drift and accelerometer bias, which are estimated and fed back to the INS

mechanization. The discretiene EKF systenmodel and observation model can be expressed as

gax = Ry By W,

fon= 1, @33

where dx, represert the state vector at epokh F,_;, represents the statransition matrix from
epochk- 1 to epochk; and w, represents the process noig&, represents the observatio

misclosure vector at epodt;, H, represents thelesign matrix at epoch; andv, represents the

observation noise. For more knowledge about the EKF for the integrated navigation system, please

refer to(Gelb 1973.

2.4.3Nonlinear Least Squares

The mehod of least squares is the standard approach to obtain unique values for parameters from
related redundant measurements through a known observation model. The typical observation

model for the LSQ is given indoiation(2-34) (Petovello 201p
z=h(x) (2-39)

where z is the measurement vector, ahgk) is a function of the state vectar. A Taylor series

is then used to linearize the nonlinear measurement vector by expanding theuteamd the
currentestimatedstate, €, as shown in guation(2-35). Only the first order term is used in the

linearization.
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z=h(x)

=n@ S0 (x 0 v
X k=g
(2-39)
° h(% Ahx) (x XE v+
dx x=%
z=h(® Hax w
= ~ s _dh(x) . . .
whereadx =x -k represents thé e r r dhe étateventor andH v is the design matrix.
X

Rearranging Buation (2-35) will give a measurement misclosure vectavz() as shown in

Equation(2-36). Equation(2-36) is a linear obervation model.

dz=H & ~

The solution,dk, andits covariance matrixC ¢, are given in(Petovello 201p and provided

below in Eguation(2-37) as

HK=HRHHR *z

Ce=(H'RH)* &37

whereR is the covariance matrix of observations. The new state vector is calculated as
Ejpdated =X Bk (2-38)

and, the observation model is expanded at the new state \/E;F;gggd. It is an iterative process

until | g%k thresholc. Equation(2-39) provides the residual and covariance equations as fllow
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r=z -h(®

C,=R HHRH)HT (239

wherer is the residual vector of L@ andC, . C, is its covariance matrix. The measurement

covariance matrix can be written as
R=5,Qz (2-40)

where s/ is the apriori variance factor, an@j, is the cofactor matrix oR . The solution of the

nonlinear ISQ is given byPdovello 2013.

dE:(HTQR—lH) »lH TQR lz]l
Cre=Ss(H'Qx H) ™

r=z -h(®
C,=s5(Qe HHQH)HT)

(2-42)

Note that the estimations a@fic andr are independent of 2. However,s scalesC  andC,

directly, as shown in uation(2-41). On the other hand) affects £ r, C,,andC, . To use

nonlinearLSQ for estimation problems, the key step is to determine the observation model and

state vector, including, z, R, H, and £.
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Chapter ThreeAutomatic WPS Based on Trilateration

This chapter andhe next chapter mainly foauon two automatic WPSs on handheld devices:
trilaterationbasedand fingerprintingbased In these two chapters, two systems are carefully
discussegdevaluatedand compared. The results are used to sateagppropriate WPS tmtegrate

with MEMS sensordn this chapteran efficient and practicdtilaterationbasedVPS is proposed

in order to overcome the extensive surveying needed by traditional systems. The main purpose of
this research is to reduce the labor needed for the survey of WiFi datdhasestly, most WPSs

based on trilateratioassume that AP locations and PPs are available frosupveysYim et al.

2008.

Most public buildings, such as universities, colleges, airports, shopping malls, and office buildings
already have well established WiFi infrastructure. WiFi positioning solutions do not drift as
compared taetandalone inertial navigation solutions using MEMS sensors. However, current WiFi
positioning systems (WPSs) usually requireguevey to provide AP locations, PPs, or radio maps
(Bahl and Padmanabhan 2Q@®{ui et al. 2007 Swangmuang and Krishnamurthy 2008he pre
survey is time and labor consuming, which nskestcurrentWPSs not practical. In fact, even
if this information is available, it may not be suitable for #t@ake WiFi positioning due to the
changing environment. Changes in the environment could be caused by the following situations:

1 Removal or adition of WiFi routers;

1 Temporary loss of signals from one or more routers; or

1 Changes in the obstruction pattern from survey time to data collection time.
Consequently, the automatic estimation for AP locations and PPs is an effective way to ensure

accuate WiFi positioning. An autonomous system will also reduce the labor and time costs for
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surveys to maintain the databases because crowdsourcing will be updating the databases in the
background. Unfortunately, most current methods cannot automaticathags#P locations and

PPs, adapting to the changes in the environment.

In order to implement an automatic and practical WPS, a novel algoliththe background
survey service is proposed by using a MEMSecdhavigation solutionsuch ashe T-PN (Trused
Positioning Inc. Portable Navigator). The algamitincludes AP localization, PRstimation and
autonomous crowdsourcing-AN is highly customizable software that converts any quality and
grade of inertial sensors into navigation capable sensorgdhdbe used on many smartphone
operating system (e.g. Androidh this research, IPN isused asan example othe navigation
solution provider, and other providers can also be used in our proposed JystRprovides the

user position information andpition accuracy as observations to build the database. Therefore,
theaccuracy of thautomatically built databaselieson the accuracy of the navigation solution
However, thél-PNsolutioncan be improved theWiFi positioning solution is estimatdxy using
theautomaticallybuilt databaseAP locations and PPs are estimated using nonlinear LSQ and the
corresponding information is recorded in the database when some pairs é@Pheclution and
corresponding RSS values meet theggerequirement&dditionally, the estimation accuracy of

the AP localization data is also stored in the database to be used for WiFi positioning in the future.
The function of autonomous crowdsourcing is to update the AP information in the database
ensurdghe accuracyf thedatdase The database update happens automatically in the background,

without any restriction on the user; thus, making the crowdsourcing completely autonomous.

The WiFi positioning service contains two steps. First, RSS values are convedadds using

the propagation model based on PPs from an automatically surveyed database. Next, user position
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is estimated based on nonlinear LSQ and positioning result optimization. The main contributions
of this research are as follows:
1 A convenient and pictical WPS on smartphones is proposed to reduce the labor-of pre
surveying and to improve the positioning accuracy.
1 Novel algorithms for the background survey service, which includes estimating AP
locations and PPs in the propagation model and autonacnmwdsourcing, are proposed.
1 The proposed system is implemented on smartphones and evaluated by both simulations

and realworld experiments.

The remainder of this chapter is organized as follows. Section 3.1 describes the overview of the
proposed systensection 3.2 presents thePIN solution. Section 3.3 presents the optimization of
measurements. Section 3.4 describes the background survey service, includingithenalfar

AP localization, PPsstimation and autonomous crowdsourcing. Section 3.5 ibescthe
proposed WiFi positioning service, and is followed by test results and the performance analysis.

Finally, Section 3.7 gives the summary of this chapter.

3.1 System Overview

In this chapter, a WPS based on autonomous crowdsourcing is proposed feldhdetiites with

the support o MEMS solution (e.g. FPN). Figure 3-1 shows the structure for the proposed
system. In the proposed system, background survey service and WiFi positioning service are two
significart services running on a handheld device. RSS values and position informaticthérom
MEMS solution (e.g. IPN) are inputs for the background survey service. This service outputs the
AP information (AP locations and PPs) to the WiFi database. Backgroweyservice is mainly

based on crowdsourcing, and reduces the labor consumption for the survey process. WiFi
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positioning service provides a WiFi position solution through improved algorithms based on
trilateration with the help of the database. WiFi golutalso can be used as an aiding source for
the MEMS solution (e.g. IPN) to improve its performance. Details about this system are

described in Section 3.3 and Section 3.4.

WiF Solution
= [ meus

Solution

<
<

Position and
Accuracy

\ 4

Background WiH Positioning
Qurvey Srvice Service

WiR
Database

Figure 3-1 System overview of lhe proposed automatic WPS.

3.2T-PN Solution

T-PN is a highly customizable software tpabvides an inertial sensors based navigation solution

and can be used on many of available smartphone/tablet operating systems such as Android
(Zhuang et al. 2013bThis engine improves the navigation results by taking any available absolute
measurements as filter updates. GPS is the most common type of external update that provides

absolute position and velocilyformation to the inertial engine and limits the drift errors.

Physical movements of the user, such as pedestrian dead reckoning, zero velocity updates and non

holonomic constraints, are used as constraints to improve the navigation solution. Tlantenstr
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are also tailored to user transit mgdech as walking, cycling, taking a bus, eto)ensure the

most robust navigation solution for the user. The mode of transit is automatically detected on a
continuous basis. If additional sensors such as anetagneter and barometer are present and
properly calibrated, their readings can be used as optional updates byPtheMost of the
handheld devices today usually have both magnetometers and barometers and in this ease the T

PN provides a 3D PVA of the stem.

Two exampls of theT-PN navigation solution idifferent scenarioare shown irFigure3-2. The
experiments were executed by using a Samsung GalaxyTStN navigation solutiors derived

from the integriion of 3-axis accelerometers;&kis gyrscope, 3axis magnetometers and a
barometein Samsung Galaxy Sllin the experiments, theser held the smartphone, and walked
normally. The experiments were carried aubuilding E and the west part of buitdj M. Building

E is the building of Energy, Environment, and Experiential learning (EEEL), University of
Calgary, which is about 120m x 40m. Building M is the MacEwan Student Center (MSC),
University of Calgary, with a west part about 90m x 70m. Thesdrajectories lasted 2 minutes
and 3 minutes, respectivelfote thatreference trajectory is provided by using severalset
mar kersod positions f r oheinitiadpoditibnand headinipragivenof t h e
manuallyby using the floor @n.The results show that the maximum position errors of tRNT
solution are less than 5 meters in these two trajectories when comparthg reference
trajectories. Therefore,-PN has been adopted in this thesis as a reliable position provider for
WiFi database generation through autonomous crowdsourcing. Note-BiN@&also provides an
indicator forthe accuracy ats navigation solution. This accuracy indicator is a significant factor

in the proposed automatic database generation algorithms.
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Figure 3-2 Examples of the navigation solution from the TPN with respect to reference(a)
building E and (b) the west partof building M.

3.3 Measurements Optimization

To evaluate the stability of AP sigls for WiFtbased positioning system, a test was conducted by
recording the signals from a number of APs in the building E, University of Calgary. The test

included 36 APs and was conducted using a Samsung Galaxy Slll in walking and static mode. The
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testrevealed that some APs with weak signals are not always observable even when the handheld
device is static at the same place. Therefore, the response rate is introduced to evaluate the stability
of AP signals. Preliminary results show that APs with RS8egagreater thasv5dBm provided

a response rate of over 90%; APs with RSS values betwéeBm and-85dBm provided a
response rate of about 70%; and APs with R&8esless than85dBm provided a response rate

of about 30%. If the user stands at a gpelocation for a long time, the response rate can be used

to determine the quantity and quality of the recorded RSS information. However, in this research,
measurements are collected by the background service on handheld devices. Sometimes, only one
sanple is collected at a measurement point when the mobile user is walking. In this case, a high
response rate is used by setting the thresheRb@Bm to ensure thesponse ratef RSSsignals

and to potentially increase the reliability of the database.

The fluctuation of RSS values also needs to be considered beyond the AP response rate. A three
point average is used teducethe noiseof RSS values. The current RSS value tglegermined

by averaging the previous, curreahd next RSS values. Of coarshe average can improve the
accuracy of the measured RSS value if the user is static. If the user is walking, the previous RSS
and the next RSS are measured at points different from the current RSS value. However, the
previous RSS and the next RSS dose to the current RSS because they only haveanenp | e 6 s
difference.Furthermore, e previous and next measurement points are usually located at two
opposite sides of the current measurement point, and thus these RSS values are usually
complementary. fiis is helpful as WiFi RSS measurements are highly noisy. Therefore, no matter

whether the user is static or moving, the average of thr@aem p RSS &aues will improve the
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accuracy of the RSS8alue for building the databasdéNote that RSS sample raten current

handheld devicesartphones and tabletreusually in the range of 0.5 ~ 2 Hz.

The position and RSS information are collected as pairs to build the database in the background
survey service of a handheld device. The position information fne1-PN solution includes
geodetic coordinates latitude, longitudeand height (LLH),as well astheir accuracies. The
geodetic coordinates LLH can be converted to coordinates in the localoetmstip (ENU)
coordinate system. RSS values are read th@operating system running on the handheld device.

To optimize the measurements, algorithms are designed to detect and solve the RSS ambiguity
problem, in which the RSS values of two pairs are totally different, while the LLH coordinates are
almost the ame. This ambiguity problem is mainly caused by the fluctuation of RSS values and

the navigation errors of-PN. The RSS ambiguity problem is detected by uErt).

ég horizontal _ digLLH,,LLH ) < hor tf) and ( height d{tLH,LLH ) < floor Yhg

ior

ighorizontal_ digENU,,ENU, )< hor_th and (height di¢ENY ,ENU )< floor_ th (3-1)
7S, <acc_thand s, <acc_th

;Sa,l< floor _thand s, <floor_th

LEgabs(S - S) 2RSS th
where LLH, and LLH, represent the geodetic coordinates of two pdalU, and ENU,
represent the ENU coordinates of two paingrrizontal _ dis and height_ dis represent the

calculations of horizaial distance and height distance for two paher_th and floor _th

represent the horizontal and floor thresholds for determining whether coordinates of two pairs are

almost the sames$,, and S, represent horizontal accuracies of two pakg, and s _,
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represent the altitude accuracies of two pais;_th represents the threshold of horizontal
accuracy;RSS tlrepresents the RSS threshold; afdand S, represent the RSS vectors of

available APsThese thresholds will affect the performance of WPSs. Before discussing the setting
of these thrdwsolds, how to appropriately set the grid spacing for the WiIEbe discussedif it

is set too large, it decreases the accuracy of WiFi positioning. If it is set too small, it needs more
data to build the database and uses more memory. theéisis the grid spacing is set to a balanced

value of 3 meters, which is g@mined by experimentatiomor _th is set to thesame as the grid
spacing, andfloor _th is set to a typicalldor height (3 meters)cc_ this setto 5 meterswhich
is larger than thénor _th. It wasnot set to a smaller value since more useful data can be used for

building the databases through crowdsourcing. Also, it is not set to a larger value, in which case

T-PN is not accurate enough tmpide navgation solutionsRSS  ttis set to 5 dBm, which is

the standard deviation of RSS values in the static field #dtds ambiguity is detected, these

two pairs will be replaced by a new paiven in

Toow=E[T. T] (3-2)

new

whereT, :{ENUi S} represents the measaorent pair including the ENU coordinat&NU,

and the RSS valu&s, and E[] represents thexpectation The detection and solution of the

ambiguity problem improves the reliability of nsemements.

51



3.4 Background Survey Service
3.4.1System Flow Chart

A flow chart and general description of the proposedrétym for AP localization, PRsstimation

and autonomous crowdsourcing is givelrigure3-3 and sumrmarized here. To prove the concept,

the algorithm was implemented as a background service for Ardasield handheld devices. The
RSS values and position solution from th®N are automatically collected as pairs if they satisfy
the requirements. The ptisn information is converted from geodetic coordinates LLH to ENU
coordinates, and paired with the corresponding RSS valtles pairs are checked for RSS
ambiguity problem. If the ambiguity is detected, the method provided in Section 3.3 is utilized to
fix this problem andmprove the accuracy thie pairs in the database. Nonlinear iterative LSQ is
used for estimation of the AP location, PBsd their accuracies if multiple measurements from
the same APs are collected. Dilution of Precision (D@Rhgley 1999, which is an efficient
indictor for evaluating the geometric distribution of measurements, is also calculated after the
LSQ. The efficiency of DOP for performance evaluation will be shown in Section 3.6.1he.
computed results pass the verification of the critésiach as nage check for the path loss
exponent)which will be discussed in Section 3.4.2&81d no information about this AP is found

in the database, this AP information from the LSQ ressiltscorded in the database. The details
about the verification is givemiSection 3.4.2.3. If the AP information is already present in the
database, the computed results are used to update AP information in the database. This update

process is a significant part of autonomous crowdsourcing.
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Figure 3-3 Flow chart of background survey service in the trilaterationbased WPS

3.4.2AP Localization and PPs Estimations
This section details the algthhm of AP localization and PRestimation and is divided into three

subsections: a propagatianodel, the LS€based estimation for AP locations and PPs, and the

LSQ results assessment.

3.4.2.1Propagation Model

The typical path loss model follows the distance power law:

R =R 40nlog,(d/}) X (3-3)
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where P, is the RSS value received at the receivedBm at a distancel from the transmitter;
P, is the RSS value with distant¢efrom the transmittern is the path loss exponent with typical

values in the range of 2106.0 indoors; andX, represents the shadow noise which is modeled as

a Gaussian random variable with zero mean. Equ#&8a3) can be simplified by averaging as

follows:

RSS= -0 nlog( o -. (3-4)

where A= mearf {J En), and the distance between the ARdted afx,,Y,) and the

measurement poir(tx, ¥ ) is defined as

d=y(% %) Gy W (3-5)

Note that there are other propagation models that consider the effect of walls an@@#bbdesnd
Padmanabhan 20pQLott and Forkel 2001 However, they are not suitable for rtiahe AP
localizations beaase a priori information of walls and floors are usually unavaildiite. walls

and floors can affect the estimation of PPs. Unfortunately, floor plans are not always available.
For examplethe floor plans of many older buildings can be unreliable ospme cases, even
unknown Further, individuals at times cannot download the floor plan of a building quickly due
to some technical problems. In thissearchwe design the system to provide a general and
accurate positioning solution without dependinghanch additional information, such as a floor
plan. The advantage of this system, when compared with othepledepended systems, is

that it can work well without a floor plan.
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3.4.2.2L.SQ-Based Estimation for AP Locations and PPs

3.4.2.2.1First Desigrfor LSQ

The godin this subsection is to estimate AP locations and PPs by using observations (RSS values)
with the position information frorMEMS-based navigation solution (e.g:PN). In many cases,
MEMS-based navigation solution cannot provithe accuracy informatiorabout the position
solution. In this case MEMS-based position solutions caronly be considerederrorfree
information, and noto beincluded in theobservationsin the designed LSQ of this subsection,

only RSS values are used the observation vectorwhich can work for all MEM$ased
navigation solutios For conveniencehts designed LSQ is called LSQh.the next subsection,

both RSS values and MEMSasedlerivedpositions aréncludedin the observation vector for the

LSQ, which can beused whenthe position accuracy is also provided by the MEMfSed

navigation solutiorand will be called.SQ?2.

In LSQL, the state vector to estimate AP locations, (@nd y,) and PPs 6 and A ) is

X =[x, Yo, n A", while theobservationvector isz=RSS. The nonlinear observation model
using LSQ is provided in EquatidB-6), which combines Equatn (3-4) and Equatior{3-5) and

adds measurement error vector

RSS= 40nog, (6 xF (% %F) A (36)

where RSS=[RSS RSS.., R3S is an RSS vector fork measurement points,
X, =[%, %o % I, @andy, =[Yp Y- Y] . The initial x =[meattx,), meafy,),3,35] with 3

and 35 as the typical values forand A in an indoor environment. Coordiest(x, ) of the
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measurement points are provided by theN solution. The equation of the design matrix can be

obtained by comparing Equati¢8-6) with the LSQ observation model, and is shown as follows:

h()= 10nlog,(y0s %7 (% V.¥) # (37

The derivative of EquatiofB8-7) is the design matrix and is provided below

a-10n(x, -x,) -10n(x, -x, )
ol ceo Y0 AJ
ps dZIn10 d?In10
dh(x) 2 10n - -10n -y,
= dhx) = Eyo Y) Eyo Y, ) 38)
dx g d;Inl0 d;Inl0
:' 100910 (dl) '100910( CL )
&
¢ -1 -1
As discussed in Chapter 2, the measurement covariance matrix can be written as:
R=5,Qq (39

where s’ is apriori variance factor, an®@, is the cofactor matrix oR . Q. is a diagonal

matrix because the RSS values are independent for all the measurements, and is given by
Qr =diag(Quuy Qo Qi)' (3-10)

where Qg1 Qg 22 - Qri @re the diagonal elements @, . Note thats; is often not provided

or, if provided, itis unreliable. Therefore, oranpirical value is preet fors/ at first. Q, is an

identity matrix if the weights are equal and the algorithm is a simple LSQ. On the other hand, if
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the weights are not equdhe algorithm is called a weighed LSQ. In this case, RSS values can be

used as weights for the measurement variances as given in EqG&tihn

RSS

Qui :m1

i 4,2,k (3-11)

After the parameters are set for the LSQ estimation, the LSQ resultalarated by using the

equations discussed in Chapter 2.

3.4.2.2.2Second Design for LSQ

In theprevioussubsection.SQL is designed bynly usingRSS values in the observation vector.
For the LSQ2 in this subsection, bothhe RSS values anthe MEMS derived positions are
consideredn the observation vectotSQ2 can beusedif the MEMSbased navigation solution
providesthe position accuracglong with the positionin LSQ2 the observation model can be
obtained by rewritindequation(3-6), andis given by

RSS+A

(%-X)" €Y% ¥,)?-10 = =0 (3-12)

where RSS=[RSS RSS.., RSSis the observed RSS vector collected by handheld devices

for k measurement pointsx, =[x, X,...% ] and y,=[Y, Y,,.... )] are the position
coordinatesrom theMEMS-based navigation solution (elgPN). Therefore, the observed vector

is rewritten asL :@Q y!, RSS' TE. The state vector is the same as before, which is
X=[%, ¥, i A" . Equation(3-12) is a combined (implicit.SQ modelof the form:

f(x,L)=0 (3-13
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The vector functionf represents r equations relating n observations and u unknowns.

If the vector functionf is nonlinear, Taylor expansion is used to agpnately linearize these

functions. The expanded point is the initial approximation to the state vectdr &nd the

measured values of the observation veclqy ) with the covariance matri€, . Thelinearized

model is given agEl-Sheimy 200D

f(xL)=f(X°L o) i o, U Aoy (3-14)
w(XVObs lJ,X'LObS
or
w+AlU +B VG (3-15
wherew = f (xo,Lobs) is called the misclosure vector; avfbd:E o, andB -u o, are
u)( X", L obs “.L X ’Lobs

called the design matrices. Lagradge met hod i s quaien(B-15, and therésulte
is given by

= {A (BP'B)) Th “AT)BI

E=(BPBT)" (AE+w) (3-16)

&= PB'E

whereP = C[Olhs, andE is the Lagrange multiplier. The covariance matricesdior, and & are

expressea@s:
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c,=(BP'B")"
Ce=(A"BPBT)'A)" (3-17)

Ce=P'B'(BP'B") §BP" -A(AT(BP'B')'A) AT(BP'B") BP"

The adjusted quantities are given by

£=x° &

g (3-18)
E=L+

Usually, the estimation for the state vector is an iterative process. Irasi@isthe expanded point

in Equation(3-14) is changed to the previous estimate of state ve&p{) I, andw in Equation

(3-15) is changed to

w=f (Ei-l)’l—obs) B (L obs LE(i 1)) (3-19)

where [,

is the previous estimate of observation vector. Equa®dgd) ~ (3-18) are repeated
until Eﬁﬂ) - QF approaches @=or more details about the solution of implicit LSQ model,(Bte

Sheimy 200D

1 Parameter Determination

By comparing(3-12) with (3-13), the functional model can be written as:

_RSSHA

FOGL)=0%- %)% €Y, ¥,)° 40 = (3-20)
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where X =[x, ¥,,n A" and L =&, Y, RSS' TE. The vector functionf representsk

equations relatin@k observations and 4 unknowns.represents the number of measurement
points. If k > 4, the number of degree$freedom is greater than Ogéatian (3-13) can be solved

by using LSQ. The covariance matrix lofis given by
C =diag(gs? § & v 25 25 Lok (3-22)

wheresi : s; : ands,§5$ are the variances of , y., and RSS. The accuracy of these variances

will affect the final estimation result. E MEMS-based navigation solution cannot provide an
appropriate estimata the position variancethe result of this method may be worse than the one

only usingRSS values as observatiofitie design matriced. and B are given by

A:EXOL
IJX 1= ob
& s R in(10)(RS$+ A) RS n(10) @
P 0 _ _ 0 i <
gZ(Xo x) 2(% -%) 0" =8 () 10° ﬁﬁé i (322
¢ u
:e, cee l:l
¢ Rser R n(10)(RSS+ A RS+ I (10)
Sl-x) 2 x) w0 TEATET A 40
0 () &
and
B:% XL o
¢ Bt A n(10) g (3-23
&(x-%) 2y %) 10 = B ;
y
: 54 1n10) b
g 2(%.- %) 2(y -¥) 10 SEabl
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Then, Kuationg(3-14) ~ (3-18) are repeated untﬁ(iﬂ) - [,F approaches 0.

3.4.2.3LSQ Results Assessment
To improve the estimation performance for AP locations andiPiBsmportant to ensure that the
algorithm is converged and that themer listed below, are checked.

i1 Path loss exponemt in Equation(3-4)

1 Constant valueA in Equation(3-4)

1 Reasonable AP location

1 DOP value
The typical ranges of the path losgpenentn and the constanf in Equation(3-4) are 2.0- 6.0
and Oi 100, respectively. The estimation result is ignored if it is not located within these typical
ranges. According to the typical propagation model and field tst&P always stays within 200
meters of the WiFi measurement points. Therefore, the estimation results are ignored and deemed
unreliable if the estimated AP location is far away from the measurement points. The last value
that needs to be evaluated i€ thOP value of the measuremerfsr the designed LSQhe

horizontal DOP valuéPetovello 2012is given in

poP =[], +(@) (329

Where(-)ii represents the element in thierow, i column of a matrix and,, is calculated by

Q. = (H'QMH)" (3-25)
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whereH and Q are the design matrandthe cofactomatrix of R, respectivelyFor details of

the DOP calculation and application, please ref¢ramgley 1999 (Petovello 2012 The similar
applications of DOPs for WiFi navigation are discusse@yun 2012 (Zirari et al. 201). The
estimatedesults for the AP locations and PPs are used only when the DOP values are less than

the preset thresholaf 4.0.

3.4.3Autonomous Crowdsourcing

The proposed system is a natural crowdsourcing system, and ensures the creation and maintenance
of the database samatically and efficiently. In traditional metho@Sheng et al. 2005trained
professionals are employed to survey an area to obtain a robust and precise database of AP
locations. After the initial creation, the database needs sporadic macgehanto changes in the
environment. Furthermore, both survey and maintenance of the database cost time and labor,
especially for a large area. The autonomous crowdsoubeiegd approach is developed to reduce

the cost of building and maintaining thealadse of the AP locations and PPs. Regular smartphone
users can collect RSS values and corresponding positioning solutions-Pdha3 measurements

during their normal daily use of their mobile devices. When enough measurements are collected,
they are usg automatically to estimate the AP locations and PPs. The estimation results are, then,
updated to the dabase by autonomous crowdsourcing without additional operations. The
estimation result is recalculated and the database is updated as more measwethenAP

become available. The aim of crowdsourcing is to mainteaccuracy of the AP information in

the database (locations and PPs) for future positioning uShgecrowagourcingbasedsystems

usually face some problems such(@s$ hardware diférencs of various deviceand(2) different

mounting places of devicesor the problem(1), if the uploaded data is large enough, final
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estimated database can achieve thegerftrmancdy using some algorithms to processltrge

data Also, WiFi RSS biases in different deviceare also estimated in the tighitpupled
integration of WiFi and MEMS sensoes will be discusseth Chapter 5The estimated RSS
biases can also be used to solve the problem of hardware differéacts problem (2),T-PN

can provide navigation solutiomsvarious modes/mounting places, therefore, different mounting
places do not affect the proposed crowdsourbiaged systemslowever, mounting plasamay

affect the system if the navigation solution provider cannot geosolutios in various mounting

places. In this case, mode detection is required before using the navigation solution to update the

database.

3.5WiFi Positioning Service

The flow chart of the WiFi positioning service based on trilateration is shokigume3-4. In the
trilaterationbased system, iterative nonlinear LSQ is used for WiFi positioning if the AP number

is |l arger than the threshold AAP_tho. AP | oc
necessary iformation for the user position estimation. AP locations are obtained from the
background survey service, as discussed in Section 3.4. The ranges are calculated by substituting
the realtime collected RSS values to the propagation model (Subsection B.4anhdse

parameters are from the automatically generated database. To estimate user ppstiony( ),

the state vector is set %0=[X,, yu]T. The height is not considered in the state vedtecause it

cannot be accurately estimated only using WiFi RSS valudsedlesign, the measurement vector

z is the range between user and @& range), which is calculated from RSS values by using

the propagtion model.
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The nonlinear observation model using LSQ is provided as follows:

range = \/()&ser _XAP)Z (-Vuser y_AI)2 \4 (3_26)

where range=[range, range,..., rangg' is a range vector fok measurement points, and
Xpp =[Xapps Xapgs-os Xapc . AN Y pp =[Vapn Yapr-- Y | @re 2D coordinate vectors from the

ENU coordinates of the AI%cations.E:[mearQXAP), meafy ,,)]" is set as the initial values for

the iterativeLSQ.
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Figure 3-4 Flow chart of WiFi positioning servicein the trilateration -based WPS.
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The equation of the design matrix can be obtalmedomparing Equatio(B-26) with the LSQ

observation model as follows:

h(X) = \/( x.jser X AP)2 (-|yuser y _AI) ? (3-27)

Therefore, the design matrix is given by

a- (Xuser _XAFEL) (_Xuser Xp ( Xiser X Aax
RANG RANG RANGE
g = dn) & 3 G (3-29)
dX $ (yuser _y APl) (yuser y7—\P2) . (y ser yAPk-)
& RANGE RANGE RANGE

where RANGE, RANGE, RANGE represent the k elements about the range information in

the vectorRANGE =[RANGE, RANGE..., RANGE, which is given by

RANGE = \/(XJSEI' X AP)2 (_yuser y _AI)2 (3-29)

In this LSQ, Q is a diagonal matrix because the ranges, which are calculated from RSS values,

do not depend on each other, and is given by
Qr =diag(Q s Quzzr- Qi)' (3-30)

where Qg 1, Qg -+ Qg are the diagonal elements Qf; . The setting ofQ is from the

estimated accuracies of AP locationgthie database. After the parameters are set for the LSQ

estimation, LSQ results are calculated by using the equations discussed in Chapter 2.
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As mentioned earlier, there are some criteria that should be met to ensure the performance of the
improved WiFi paitioning algorithm. First of all, the number of observed APs must be over a
minimum number to ensure the accuracy of WPS. The next criterion is related to the DOP value,
which should be less than a threshold to make sure the distribution of the measu@m®en
appropriate. Finally, if the iteration time goes beyond asptehreshold, the algorithm will stop

the LSQ for this epoch, and process the data for the next epoch. All of the thresholds stated here

are determined by the experimental tests.

3.6 Test Results and Performance Analysis
3.6.1Performance of AP Localization and PPSstimation

3.6.1.1Simulations

A simulation, in a 50 @ 50 m square, is conducted in this section to evaluate the performance of

the proposed algorithm of AP localizationdaPPsestimation.In this subsectiorthe first design

of LSQ is evaluateds an exampléf'wo different geometrical distributions of measurements are
simulated as shown iRigure 3-5. Configuration as depicted #igure3-5(a) has a smaller DOP

value because it has better distributed measurements. Simulated RSS values are generated by using

the propagation model in Equati@83) with |, set to 1m,A set to 30dBm, ane set to 3. The
Gaussian random variabl€, in Equation(3-3) is simulated as a statistical variable, which has a

mean value of 0, and a standard deviation of 2.

The simulated results for estimating AP locations and PPs are shdwbleB-1. In the case of
Figure3-5(a), the estimation error of the AP location is about 3.6 meters and the relative error of

PPs is about 20%. Due to the larger DOP vdtigyre3-5(b) has a poorer estimation performance
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thanFigure3-5(a). This example shows that DOP is a significant indicator for the accuracy of AP

localization. For the rest ofi¢ simulations, only the casefigure3-5(a) is discussed.
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Figure 3-5 Simulation area.
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Table 3-1 Simulated results of estimating AP locations and PPs

AP n A
East | North | Estimated | Estimated
Localization | Estimated | Estimated
(m) (m) n A
Error (m) Error Error
(@) 3.51 | -0.73 2.57 37.15 3.59 14.33% 23.83%
(b) -2.27 | 16.84 1.27 58.73 16.99 57.67% 95.77%
True
0 0 3 30 N/A N/A N/A
Value

To compare the proposed algorithm with other methods, several methods are also implemented in
this project.Table3-2 shows the AP localization results of several methods as follows(a)
average method ifCheng et al. 2005(b) M2: weighted average method(ibheng et al. 2005

(c) M3: method in(Jahyoung and Hojung 20t Xd) M4: method inYu 2012; and (e) M5: the

proposed method. The proposed method clearly show better performance than the other methods.

Table 3-2 AP localization resultsusing different methods

Method East (m) North (m) Error (m)
M1 -2.50 -3.33 4.17
M2 -2.73 -3.42 4.38
M3 5.31 -3.39 6.30
M4 4.31 0.37 4.32
M5 3.51 -0.73 3.59
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In order toevaluate the performance of P&simation, several simulations are conducted with
different PPs as shownireble3-3.To si mul ate different environme
and 4; and AAO0O is set to 30 and 40. In differ
methodcanactually estimate the PPs alsoillustrates that the proposed method can sucakgsf

cope with changes in the dynamic environment.

Table 3-3 Simulated results indifferent indoor environments

AP n A

Setn; | East | North | Estimated | Estimated

Localization | Estimated | Estimated

A (m) (m) n A
Error (m) Error Error

2:30 | -2.04 | 0.55 2.16 28.04 2.11 8.00% 6.53%
3:30 3.51 | -0.73 2.57 37.15 3.59 14.33% 23.83%
4: 30 0.59 | -0.63 3.78 32.83 0.86 5.50% 9.43%
2:40 | -2.78 | 0.10 1.77 43.78 2.78 11.50% 9.45%
3: 40 2.00 | -0.26 3.30 35.99 2.02 10.00% 10.02%
4:40 | -0.38 | 0.10 3.72 44.47 0.39 7.00% 11.17%

3.6.1.2Field Experiments

This section discusses the setup, resaltsl analysis of the field experiments to evaluate the
performance of the proposed algorithnkerst, the design and setup of the experiments are
expldaned. Then, several preliminary results of the-tgatld scenarios are tested and analyzed.

Two proposedsystemsisingLSQ1 and LSQzre evaluated and compared by field tests
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To evaluate the performance of the proposed sysitefield environments, wemplemented the
algorithm as the background survey service on three Antbaséd Samsung Galaxy S Il
smartphones. Two evaluation sites were selected for the experiments which are sRmurein

3-6. The first exprimental site was building A (Alastair Ross Technology Centre, Calgary, about
100m3 70m), with seven locatieknown APs as shown frigure3-6(a). Building E (about 120m

3 40m) with eight locatiorfknown APs is chsen as the second test site, as showigime3-6(b).

Note that there were more APs in these two buildings, but they were not used for assessing the
performance of AP localization. However, their locations aPsl &e also estimated and recorded

in the database fdhe use of WiFi positioning.
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(b)

Figure 3-6 Experimental area (red circles = APs)(a) building A and (b) building E.

The experimental result§ &P localization and PPs estimation in buildingu8ing LSQ are

shown inFigure 3-7. In Figure 3-7(a), the red trajectories in four sfigures are automatically
generatd by T-PN, which represents the paths taken by the user in buildir@ire3-7(b), (c),

and (d) show the final estimation results by using all four trajectories. The estimated and true
locations of APs are shown Figure 3-7(b). The blue ellipses ifrigure 3-7(b) reprsents the
standard confidence ellipsd-or the 2D case, the standard confidence ellipse has a probability of
394% associated with (Petovello 2012 In other words, only 39.4% of the points fall within the
standard confidence ellipsEhere are 3/7 APs located in the standard confidence &llybéch

is close to the referenc&he estimation result is calculated by nonline&qQ., and its accuracy
mainly depends on the fluctuation of RSS signals, the accuracyRM $olutions, and the
geometrical distribution of measurement pdtigure3-7(b) clearly shows that the estimated AP
locations are close to the true values, which illustrates the efficiency of the proposed system. In
Figure3-7( c), the estimated path | oss exponent AnNnO

The true values of s cannot be shown here because they are unknown in this environment.
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However, the efficiency of PRsstimation has been demonstrated in the simulation (Subsection
3.6.1.1). InFigure 3-7(d), the estimated AP loaahtion error is close to the true value at most
times, and the maximum difference between them is about 4 meters. Therefore, the estimated AP
localization error is an efficient parameter to indicate the performance of AP localization. It is

recorded in th database, and used as an indicatath®accuracy of AP locations.

(@)
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Figure 3-7 Results of AP localizationand PPs estimation in building Ausing LSQL: (a) four

T-PN trajectories used for estimation, (b) the result of AP localizationg) the result of PPs
estimation, and (d) estimated and true2D errors of AP localization.

Table 3-4 clearly depicts the trend where the increase in RS5TaRN pairs improves the

accuracy of AP localization. Ifable 3-4, AAP Localization Erroro r
bet ween the estimated AP | ocation and the tr.
difference between the estimated and true AP localization error, and is used to determine whether
estimated AP localization error is an efficient indicdtarthe accuracy of AP localizatiohlote

t hat both AAP Localizati onr rBEorrroo raor ea ncadgpddeAucl caut rea
Table3-4s hows that AAP Localization Erroro and /£
number of trajectories increases. However, this does not apply if the measurement arror

trajectory is | arge, as was the case for traj
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Table 3-4 AP localization results usingLSQ1 in building A

Trajectory Number of AP Localization Error | Accuracy Estimation Error
Number Estimated APs | MEAN (m) | RMS (m) | MEAN (m) RMS (m)
1 7 6.34 6.65 3.80 5.82
2 7 5.72 5.89 2.56 3.44
3 7 5.27 5.47 2.82 3.46
4 7 551 6.14 2.03 2.55

The experimental results of AP localization and PPs estimation in royifdiusing LSQ are

shown inFigure 3-8. The usedrajectoriesas the same as tliégure 3-7 (a). Figure 3-8 (a), (b),

and (9 shov the final estimation results based on 2SRy using all four trajectories. The

estimated and true locations of APs are showrigare3-8 (a). Figure3-8 (a) clearly shavs that

the estimated AP locations are clts¢he true value§ he blue ellipses iRigure3-8 (a) represents

the standard confidence elligs@here ar@/7 APs located ithe standard confidence elligsén

Figure3-8 (b) ,

In Figure3-8 (c), the estimated AP localization error is not alwaysectoghe true value, however,

the esti mated

it can be considered a rough estimate.
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Figure 3-8 Results of AP localizationand PPs estimation in building Ausing LSQ2: (a) the

result of AP localization, ) the result of PPs estimation; andd) estimated and true 2D
errors of AP localization.

Table3-5 summarizes the results of AP localizations by using different nianbémajectories in
building A. InTable3-5,A AP Localization Hrirmartd oann dErir Aa ou rde
thetrajectoriesncreaseNotethab ot h A AP Locali zation Erroro anc

are calculated ithe 2D space.
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Table 3-5 AP localization results using LSQ2n building A

Trajectory Number of AP Localization Error | Accuracy Estimation Error
Number Estimated APs | MEAN (m) | RMS (m) | MEAN (m) RMS (m)
1 5 7 90 334 8.16 11.89
2 7 6.81 7 10 2.64 3.60
3 7 6.23 6.64 3.47 4.24
4 7 4.78 4.90 2.19 2.46

The second test for evaluating the performance of AP localizayiarsing LSQ was conducted
in building E, as shown iRigure 3-9. Six red tajectories were generated from thé N solution,
used for AP localization as shownkigure 3-9 (a). The results ifigure 3-9 (b), (c), and (d) were
estimated by usindlasix trajectoriesFigure 3-9 (b) andFigure 3-9 (c) demonstrate the efficiey

of AP localizations and PRsstimation. Estimated AP localization error is not alwaysréege
indicator of the true values as showrkigure 3-9 (d). However, since it is the only available value

for the accuracy of APs, it can be considered a rough estimate.
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