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Abstract

Randomness is one of the most important research areas in computer science and in

particular, in cryptography. Security of almost all cryptosystems relies on random

keys. Unfortunately, perfect sources of randomness are not easily accessible. However,

True Random Number Generators (TRNGs) generate almost random strings, using

non-perfect random sequences. A TRNG algorithm consists of an entropy source and

an extractor. In this thesis, a TRNG is proposed in which a human player’s input

in a two-player game is used as the entropy source and the random seed required

by the extractor. This means that the proposed TRNG is only dependent on user’s

inputs. The thesis contains the theoretical foundation of the approach, the design,

and implementation of the corresponding game. To validate theories, we designed

and implemented a game, and performed some user studies. The results of our exper-

iments support the e↵ectiveness of the proposed method in generating high-quality

randomness.
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Chapter 1

Introduction

Randomness has been one of the most important research areas in computer science

over the past few decades. The applications of random numbers range from random-

ized algorithms to routing algorithms in networks, and finally cryptography. In the

world of information security, randomness is required for cryptosystems for purposes

such as key generation, data padding or challenge bits in challenge-response proto-

cols. Many security systems have been broken because they used poor sources of

randomness or weak random number generators for key generation. Attacks on the

Netscape implementation of the Secure Sockets Layer (SSL) protocol [GW96] and

Kerberos V4 [DLS97] are well-known examples of system breakdowns due to using

weak randomness sources and/or random number generation algorithms. More re-

cent studies show that the output of the /dev/urandom interface of the Linux Random

Number Generator (RNG) becomes deterministic under low entropy conditions, re-

sulting in insecurity of the Transport Layer Security (TLS) and Secure Shell (SSH)

keys [HDWH12]. Poorly generated randomness by the Linux Random Number Gen-

erator (RNG) also resulted in collisions among private and public keys, generated by

individuals around the world [LHA+12].

The examples of system breakdowns due to exploiting weak randomness, on one

hand, highlight the importance of randomness for security purposes, and on the other

hand confirms that generating true randomness is not an easy task especially in a de-

terministic device, such as a computer. Any random number generator ultimately

needs a physical entropy source. An entropy source uses a physical quantity such

as noise in electronic circuits, or “unpredictable” software processes to output a se-
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quence over an alphabet that is highly “unpredictable”. However, the underlying

distribution of this sequence is not necessarily uniform or even close to uniform.

Thus, a postprocessing step is usually applied to the output of an entropy source

to make it follow a uniform distribution. Randomness extractors are deterministic

or probabilistic functions that are used for this purpose. A True Random Number

Generator (TRNG) exploits randomness extractors to generate a random sequence

from an entropy source.

In this thesis, a new user-based TRNG is proposed. This TRNG uses a human

player’s inputs in a two-player competitive zero-sum game as the main entropy source

in its structure. The human player’s input also provides the required randomness

for the functionality of the randomness extractor. Therefore, the dependency of the

TRNG on sources other than its user is minimized. As a proof of concept, a two-player

game, and accordingly a TRNG is designed and implemented based on the proposed

approach, and the output of the TRNG is evaluated using appropriate randomness

tests.

1.1 Randomness

In spite of common sense on the concept of randomness, it is hard to define it math-

ematically. Nevertheless, for the limited purposes of creating random sequences of

numbers or symbols on a computer, only some simple properties of random sequences

require understanding. A sequence of symbols is considered random if it does not fol-

low any specific order or pattern. Therefore, in a random sequence, it is not possible

to predict an upcoming symbol from the previous symbols and from any given part of

the sequence one cannot determine the previous symbols. Moreover, the symbols in

a random sequence have no dependency on each other; that is, each symbol is gener-

ated independently from other symbols. In terms of probability theory, a sequence of
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symbols is perfectly random if and only if it is sampled from a uniform distribution.

Thus, all symbols in a random sequence are generated with the same probability. A

random sequence of bits can be viewed as the results of repeatedly flipping an un-

biased coin where one side corresponds to 0 and the other side to 1. Each outcome

happens with the probability of exactly 1
2 . Moreover, the flips are independent of

each other which means that the result of any previous coin flip will not influence

future coin flips.

In this thesis, the term “randomness” is used to specify the described properties

in a sequence of symbols.

1.1.1 Randomness Generation

Any resource that outputs an unpredictable value is considered as a “randomness

source” in this thesis. It is unclear whether the real world’s physical sources output

perfectly random sequences or not. However, some sources seem to have some unpre-

dictability, such as the low order bits of a system clock or thermal noise, nevertheless,

these sources generally have biases and correlations.

Random sequences are generated by “random number generators”. In a computer

system, there are two main categories of random number generators: True Random

Number Generators (TRNGs) and Pseudo Random Number Generators (PRNGs).

TRNGs exploit randomness from a physical source such as thermal noise or from

non-deterministic user based interactions such as mouse positions or times between

keystrokes. PRNGs, on the other hand, take an initial random value, named the

“initial seed”, to run an e�cient deterministic algorithm for producing a sequence

that “looks random” [RSN+01]. If a PRNG does not use an external source of ran-

domness, its output is deterministically determined by the initial seed, which means

compromising the seed will result in compromise of the whole system.
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1.1.2 Evaluating RNGs

It is impossible to prove definitively whether a given sequence of numbers is random

simply because it is essentially impossible to prove a given sequence is sampled from

a uniform distribution. The practical approach for systematic evaluation of RNGs is

to take many sequences of random numbers from a given generator and subject them

to a battery of statistical tests that are introduced for this purpose. If the sequences

pass most of the tests, the confidence in the randomness of the numbers increases and

so does the confidence in the generator.

The National Institute of Standards and Technology (NIST) has developed a pack-

age of 15 statistical tests to evaluate the randomness of a sequence. We use some

tests from this package for the final evaluation of our designed TRNG.

1.2 Human as a source of randomness

Computers are fundamentally deterministic; therefore, they can not do anything un-

predictable, especially randomness generation unless they use an input from a physical

randomness source. Most randomness sources, such as thermal noise, are not easily

available and an extra piece of hardware is required for exploiting their random-

ness. Therefore, in many systems, user based random number generation methods

are preferable due to the availability of the user on demand. Moreover, user based

RNGs add an extra level of assurance about the randomness source because users

know their input will eventually be used for generating randomness in the system.

Random number generation by humans is related to specific functions of the brain

such as updating and monitoring information and inhibition of automatic responses.

Psychological experiments show that humans do a poor job when asked to choose

random numbers [Wag72]. However, some studies demonstrate that humans become

better at generating randomness by practice [Neu86, CCR+14]. This confirms that
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humans, if led properly, can be considered as a relatively strong source of randomness

in user based random number generators. In [RB92], Rapoport et al. used game

theory to argue that the optimal strategy for rational players in some competitive

zero-sum games is to select actions from a uniform distribution. They conducted a

series of experiments to monitor human players’ actions in a specific zero-sum game

called “matching pennies”. In this game, each player makes a choice between heads

or tails; the first player wins if both players choose the same side or the second player

wins otherwise. The game theoretic argument implies that the optimal strategy for

winning the game is a uniform selection between heads and tails in each round of

the game. The experimental results supported the theoretic expectation of the user’s

selected strategy: they almost followed uniform strategy for selecting their action

in each round. This confirms that human can be considered as a good source of

randomness if engaged in a strategic game and randomness generation is an indirect

result of their actions.

In [HN09], Halprin et al. extended the previous experiment by enlarging players’

actions into distinct positions on a two-dimensional screen. The purpose was to gen-

erate more random bits in each round so that they can use the generated randomness

for practical applications such as cryptographic keys. However, their experimental

results endorse that their proposed approach for enlarging the action space decreases

the randomness level of generated sequence by users as they tend to avoid selecting

corner points. Thus, the users’ inputs are only considered as an entropy source. A

seeded extractor is then applied to extract randomness from this source, and the out-

put is fed to a robust PRNG for refreshing its states. Therefore, in this approach, the

entire random number generator is very dependent on randomness sources not pro-

vided by the user. The main reason is that a relatively long, truly random sequence

is required to provide a random seed for the operation of the seeded extractor that
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is in charge of extracting randomness from the users’ inputs. Moreover, as the game

is played against a computer player, a PRNG is required for selecting the computer

player’s actions. Respectively, the quality of the generated randomness by the hu-

man player in the game is a↵ected by the quality of the PRNG that determines the

computer player’s actions; a weak PRNG leads the human player toward weak ran-

domness generation. This puts the e�ciency of the proposed approach under serious

doubt.

1.3 The Contributions

In this thesis, a TRNG that uses human gameplay against the computer as the main

source of randomness is proposed. The dependency of the proposed TRNG on other

randomness sources or generators is minimized. This work can be viewed as an

extension of the work of Halprin et al. [HN09], but having better functionality and

e�ciency. The rate of randomness generation is kept high and at the same time, the

human player’s actions are limited to a few choices (e.g. 3 choices). It is explained how

the designed game is e�ciently applicable for generating a long sequence of random

bits. This is a two-player game, but when only one human player is available it can be

played against a computer player. Two algorithms for simulating one of the players by

a computer program are discussed, and a game along with an interface for collecting

data from sample human players who play the game against each of the introduced

algorithms is implemented. Following this approach, the human player’s input in this

game corresponds to a sequence of bits which are supposed to be random. The quality

of the final generated random sequence is evaluated using appropriate randomness

tests. Finally, the randomness quality of the generated sequences according to each

of the simulating algorithms are compared, and the results are justified. Part of this

work is published in GameSec’13 [ASNS13].
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When uniform selection among possible actions is the optimal strategy for win-

ning the game in a two-player game, one can simulate the optimal computer player by

choosing its actions using a PRNG. In this case, the proposed approach of using the

human player’s randomness will eventually generate a random sequence with better

random properties than the one used on the computer player’s side. An alternate ap-

proach for generating more random bits than what is used by a computer is proposed.

This approach, in fact, improves the e�ciency of the whole TRNG in the sense of the

randomness generation rate. This is basically done by providing more actions for the

human player than the computer player at each round of the game. The details of

this approach are discussed in Section 4.4.

1.3.1 Game theory based TRNG

The proposed TRNG algorithm is a seeded extractor that is constructed from an

expander graph. Expander graphs are well-connected d-regular graphs where each

vertex is connected to d neighbors. Random walks on an expander graph are used

to extract randomness from an initial distribution on a graph’s vertices [AB09]. One

can view the vertices as states of a process. Suppose there is an arbitrary distribution

on the vertices of the graph, which means there is a probability distribution on the

states. For doing a random walk on the graph, a uniform distribution on outgoing

edges from each vertex is required. This distribution determines the probability of

transition to corresponding neighbouring states. After one step of the random walk,

each state will transit to one of the corresponding d neighboring states with the same

probability. Thus, each step of the random walk results in a new distribution over the

vertices (states). This distribution is closer to a uniform distribution than the initial

one. By taking enough random walks, the obtained distribution becomes as close to

a uniform distribution as required.

In the proposed approach, the human player’s actions in the designed game are
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used for providing the initial distribution as well as the uniform distribution for

each step of the random walk process in the above framework. The game consists

of a sequence of stages. Each stage is a simple two-player zero-sum game such as

Roshambo (Rock-Paper-Scissors). At each stage the human player makes a choice

among some alternatives. The game and the corresponding scores in each stage are

designed so that selecting actions uniformly randomly is the best strategy for winning

the game against a rational player. The first stage generates an input entropy for the

TRNG, and subsequent stages provide the random seed for the extractor algorithm.

At the first stage, the user is presented with the graph and asked to randomly

choose a vertex. The human player’s choice at this stage is e↵ectively a symbol of

an entropy source that is generated according to some unknown distribution. The

number of available actions at the first stage is relatively large and equals the number

of the graph’s vertices, thus, due to the experimental results mentioned in [HN09],

the human player’s choices are not uniformly distributed. However, the unknown

distribution has some entropy. The random walks of length ` over the graph will be

used to generate an output symbol for the TRNG with a close to uniform randomness

guarantee. Subsequent intermediate stages function as the required random walk. At

each intermediate stage, the player is presented with d possible actions to play a

zero-sum strictly competitive game while the optimal strategy for winning the game

is to select an action uniformly from the action space. Each of the d possible actions

corresponds to one neighbor vertex. Since the number of possible actions at each

stage is small (3, 5 or 7), the human player’s input would correspond to uniform

selection (based on the experiments in [RB92]) and consequently one random step on

the graph.

For an estimated min-entropy of the initial vertex selection, one can determine the

number of required random steps so that the output of the TRNG has the required

8



randomness guarantee.

Note that in the above, although the human player’s actions in the intermedi-

ate game stages are e↵ectively assumed uniformly distributed, in practice the human

player’s input will be close to uniform and so the proposed extraction process can be

seen as approximating the random walk by a high min-entropy walk. The experimen-

tal results confirm the feasibility of this approximate approach. From a theoretical

view, it is interesting to analyze the quality of the output in an expander graph ex-

tractor when the uniform random walk is replaced with a close to uniform random

walk.

1.3.2 Game Design for Applicable TRNG from Human Gameplay

Two games are designed and implemented to validate the proposed TRNG. The first

game is based on a 3-regular expander graph with 10 vertices. The game consists of a

sequence of stages. At each stage the human and the computer make a choice from a

set of vertices. If the choices coincide, the computer wins; otherwise, the human wins.

In the implementation, the computer’s choice is shown after the player picks his/her

action, even though this choice is independent of the player’s previous actions. At

the first stage, the user makes a choice among 10 vertices of the whole graph. In all

the subsequent stages, the player is asked to make a selection among only 3 neighbors

of the previously chosen vertex.

Some experiments are performed to support the theoretical approach for designing

the TRNG. The above game is implemented, and then experimented with nine human

users playing the game. For the precise design of the game, the min-entropy of human

choices in the initial stage is required, that is when the human player is an entropy

source. For this purpose, another game is designed, which requires users to choose a

vertex of the same graph and they win if their choice does not match the computer’s

choice. NIST [RSN+01] tests for estimating the min-entropy of the human player’s
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choices in this initial game are used. The number of required random walks was

then determined with regards to this min-entropy. Moreover, the min-entropy of

the human player’s input at subsequent stages is measured and used to emulate the

random walk. The estimations show that the player’s choices at these stages are not

exactly uniform. However, they have high min-entropy, and thus the final output of

the TRNG passes the randomness tests. This confirms that the theoretical design of

the TRNG is applicable in practice.

The second game is designed to generate long random sequences (e.g. 40 bits)

for real world applications such as cryptographic keys. In this game, the human

player initially makes a choice on a circle. The selected location is mapped to an

8-bit value. The subsequent stages are a normal Roshambo game. The expander

graph is never presented to the player. Instead, random walks are tracked through

the indices of neighboring vertices. The output of the TRNG is a vertex on the

graph that is obtained by tracking random walks. The designed game requires two

players. However, we simulate one of the players actions by a computer. Two di↵erent

algorithms are used for simulating the second player’s actions. In the first one, the

output symbols of a very weak PRNG are mapped to the computer’s actions and then

the computer’s actions are selected based on the PRNG’s outputs and independent of

the user’s previous actions. The other algorithm is a predictor algorithm that keeps

a history of the human player’s actions over the previous rounds of the game and

decides on the computer’s action with respect to this history. This minimizes the

computer’s dependency on an outside PRNG and at the same time helps the player

to modify his/her actions if they are not su�ciently random and are predictable

by the computer. The details of the algorithm are explained in Section 4.3.2. The

output of the proposed TRNG is compared in these two cases that verifies using a

predictor algorithm for simulating one of the player’s actions causes better randomness

10



generation by the proposed TRNG. The initial min-entropy of the player’s actions is

estimated similar to the previous game: a separate game is designed in which players

are asked to pick a location on a circle, and they will win the game if their choice

does not match the computer’s. The player’s min-entropy in this game is estimated

using the NIST tests.

Statistical tests in a battery of tests called Rabbit [LS07] are used to evaluate the

output of the proposed TRNG. The details of the experiments are given in Chapter

5.

1.4 Thesis Structure

This thesis is divided into six chapters. Chapter 1 gives an overview of the stud-

ied problem, which is randomness generation, and addresses the contributions for

generating randomness from human gameplay. Chapter 2 is the definitions and the

related background knowledge. In Chapter 3 randomness measures and methods for

generating randomness are elaborated and the psychological studies on randomness

generation by human beings are briefly reviewed. Chapter 4 contains the main contri-

butions and methodology for constructing a TRNG from human gameplay. Chapter

5 explains the experimental set-up for evaluating the proposed TRNG and contains

the results and analysis of the experiments. Finally, the conclusion and future work

are in Chapter 6.

1.4.1 Theorems and proofs

In this thesis, whenever a theorem or lemma is used from other works, the original

reference proving it is cited. If a theorem or lemma is not cited, the proof is from

this work.
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Chapter 2

Preliminaries and Background

In this chapter, some of the concepts and backgrounds which are extensively used in

this work are recalled. For definitions in probability theory section [S+02] is used,

and for the graph theory part [Gra95] is used. Information theoretic concepts are

mainly from [CT12]. For describing entropy estimation methods [BK12] is used. The

game theory concepts and definitions are from [Osb04] and [OR94] and the repeated

games part is mainly from [BS08].

2.1 Linear Algebra

For two vectors u,v 2 Rn, the inner product is defined as hu,vi =
P

n

i=1 ui

,v
i

. These

two vectors are orthogonal when hu,vi = 0.

L2-norm for a vector u 2 Rn is denoted by kuk2 and is defined as
p

hu,ui =
pP

n

i=1 u
2
i

. For L2-norm of the sum of two vectors we have ku+ vk2  kuk2 + kvk2,

where equality happens only when two vectors are orthogonal. The L1-norm of u

is denoted by |u|1, and is defined as
P

n

i=1 |ui

|. The following lemma shows the

relationship between L1 and L2 norms:

Lemma 2.1.1 [AB09] For every vector u 2 Rn, we have:

|u|1p
n

 kuk2  |u|1

In this thesis, bold lower-case letters such as u are used to denote vectors, and bold

upper-case letters such as U are used to denote matrices. For row representation of

a column vector ut is used and the transpose of a matrix U is denoted by Ut.
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2.2 Probability Theory

A probability space is a triple (⌦,F , P ) where ⌦ is a set of “outcomes”, F is a set of

“events”, and P : F ! [0, 1] is a function that assigns probabilities to events so that

the sum of probabilities over the whole sample space becomes 1 where the sample

space is the collection of all possible outcomes. A real-valued function defined on

the outcome of a probability experiment is called a “random variable”. A random

variable whose set of possible values is either finite or countably infinite is called

discrete.

Upper-case letters are used to denote discrete random variables, and lower-case

letters are used to denote a random variable’s realizations. By Pr(X = x) we mean

the assigned probability to the realization of random variable X when it equals x.

The calligraphic letters X are used to show sets and subsets of elements. In this

thesis, |X | is used to denote the number of elements in a set and X 2 X means the

random variable’s distribution is over X , and x 2 X means the realization of the

random variable is one of the elements of X .

P
X

denotes the distribution of the random variable X. Since any random vari-

able corresponds to a distribution, the terms “random variable” and “distribution”

are used interchangeably, unless for emphasising their di↵erence. For two random

variables X 2 X and Y 2 Y , P
XY

denotes their joint distribution, and P
X|Y denotes

their conditional distribution. The conditional probability of a random variable X

given that Y takes a value y 2 Y with P
Y

(y) > 0, is denoted by P
X|Y (x|y) and is

given by:

P
X|Y (x|y) =

P
XY

(x, y)

p
Y

(y)
for x 2 X .

The expected value of a random variable X with probability distribution P
X

is de-
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noted by E[X] and is given by:

E(X) =
X

x2X

xPr(X = x).

Theorem 2.2.1 (A Cherno↵ Bound)[Hoe63] Suppose X1, X2, ..., Xn

are indepen-

dent random variables taking values in the interval [0, 1]. Then for X =
Pn

i=1 Xi

t

, we

have:

Pr[|X � E(X)| � ✏]  2exp(
�t✏2

4
).

Definition 2.2.1 Markov Chain[S+02] Consider a sequence of random variables

X0, X1, ... and suppose that the set of possible values for these random variables is

{0, 1, ...,M} for an integer M . The sequence of random variables form a Markov

chain if and only if

P{X
n+1 = j|X

n

= i
n

, X
n�1 = i

n�1, ..., X0 = i0} = P
ij

.

X
n

can be interpreted as the state of the system at time n. With this interpretation,

forming a Markov chain means the system changes from state i to j with some

constant probability P
ij

. The values of P
ij

are called transition probabilities of the

Markov chain and they satisfy:

P
ij

� 0 and
MX

j

P
ij

= 1.

The Markov chain of order  for the sequence as X0, X1, ... is defined if and only if

P{X
n+1 = j|X

n

= i
n

, ..., X
n�+1 = i

n�+1} = P
ij

.

It is convenient to show transition probabilities p
ij

in a square matrix called a tran-
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sition probability matrix as follows:

P =

0

BBBBBBB@

P0,1 P0,1 · · · P0,M

P1,0 P1,1 · · · P1,M

...
...

. . .
...

P
M,0 P

M,1 · · · P
M,M

1

CCCCCCCA

.

In theory, by knowing the transition probability matrix of a Markov chain, one can

compute all probabilities of interest.

2.3 Measures of Randomness

A random variable is perfectly random when its corresponding distribution is uniform.

However, we would like to quantify imperfect randomness for other distributions so

that they become comparable. This is done by defining the notion of the entropy of

a given distribution. There are multiple types of entropy that one can define [Rrn61].

In this work, only two notions are considered: Shannon entropy [Sha01] which is the

most common notion of entropy in cryptography, and min-entropy which is the most

suitable notion for our application, generating randomness.

2.3.1 Information Theoretic Measures of Randomness

The most common information theoretic measure of randomness is Shannon’s defini-

tion of entropy. Shannon entropy measures the average amount of uncertainty in a

random variable and is defined as follows.

Definition 2.3.1 Shannon entropy: For a random variable X 2 X with distribu-

tion P
X

(x), the Shannon entropy is denoted by H(X) and is equal to:

H(X) = �
X

x2X

P
X

(x) logP
X

(x).
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For X 2 X , Shannon entropy is maximized when we have uniform distribution over

X . In this case H(X) = � log |X | and any other distribution on this set will have

smaller Shannon entropy. One can view Shannon entropy as a measure of exist-

ing randomness in a random variable. The bigger Shannon entropy represents more

randomness. Nevertheless, this claim is not precise since it is possible to define patho-

logical distributions that have high Shannon entropy but are useless for randomness

extraction. To see why this is a problem, consider X 2 {0, 1}n with the following

distribution:

Pr[X = 0n] = 1� 1

2100
.

and for a 2 {0, 1}n \ 0n:

Pr[X = a] =
1

2100
(

1

2n � 1
) ⇠ 1

2n+100
.

Consequently the Shannon entropy for a random variable X is:

H(X) = (1� 1

2100
) log

1

1� 1
2100

+
X

a 6=0n

1

2100
(

1

2n � 1
) log

1

1
2100 (

1

2n � 1
)
⇠ n+ 100

2100
.

Although the amount of Shannon entropy in the above example is linear in n, we

cannot extract bits that are close to uniform by sampling X since it is a constant

value (0n) most of the time.

Min-entropy is an alternative entropy notion which is more useful for random-

ness extraction applications. The min-entropy measures the minimum information

contained in a random variable.

Definition 2.3.2 Min-entropy: For a random variable X 2 X with distribution

P
X

(x), min-entropy is denoted by H1(X) and is :

H1(X) = � log(max
x2X

(P
X

(x))).

16



In the mentioned example, H1(X) = �log(1 � 1

2100
), which is quite a small num-

ber and matches our intuition about the amount of randomness in the described

distribution.

An alternative approach to evaluate the randomness of a distribution is to compare

it with the uniform distribution. The statistical distance of two distributions is a

measure of their di↵erence and is defined as follows.

Definition 2.3.3 Statistical distance: For two distributions X and Y defined over

the set U , the statistical distance between X and Y is defined as:

SD(X;Y ) , 1

2

X

u2U

|Pr(X = u)� Pr(Y = u)| = 1

2
|X � Y |.

When SD(X;Y )  ✏ we say the distribution X is ✏-close to distribution Y .

2.3.2 Entropy Estimation

Finding the entropy of a source requires knowledge of the exact source distribution.

However, when the source distribution is unknown, one can still estimate the source

entropy by sampling (as much as required) from the source. Apparently the existence

of certain structures in the source simplifies entropy estimation. In particular, esti-

mating the min-entropy of an independently and identically distributed (IID) source

is straightforward. Since the samples are not correlated in such a source, the most

common value among the samples is more likely to be the most probable one. The

upper and lower bounds for the min-entropy is calculated based on this observation.

Details of finding the upper bound and lower bound for the min-entropy of an IID

source are explained in [BK12].

The testing method introduced in the NIST draft [BK12] initially, checks whether

the source can be considered an IID. NIST suggests the following set of tests for

checking if a source is IID: shu✏ing tests and statistical tests. The source output is
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considered IID if the dataset passes all the tests. Then, based on the number of the

observations of the most common output value, the min-entropy is estimated.

In the shu✏ing tests the following scores are calculated for the shu✏ed datasets:

Compression score, Runs score, Excursion score, Directional Runs score, Covariance

score and Collision score. For the samples following an IID distribution, the shu✏ed

datasets would follow the same distribution as the original dataset and therefore, the

derived scores for the original dataset and shu✏ed datasets are expected to be similar.

But, if the samples do not follow an IID distribution, then some test scores may be

very di↵erent for the original and shu✏ed datasets.

NIST only introduces one statistical test to check if a source is IID. The test

is called Chi-square test and consists of two di↵erent types of test: a test for in-

dependence, and a test for goodness of fit. The independence test is aimed to find

dependencies in the existing samples of the dataset. The goodness of fit test checks

whether ten data subsets produced from the main dataset follow the same distribu-

tion.

A failure of any of the shu✏ing or statistical tests stops IID testing, and a number

of tests are used to estimate the min-entropy, assuming the source is non-IID. For

a non-IID source, the dependencies in time or state may result in entropy overesti-

mation. However, in [BK12], five tests are suggested to minimize the possibility of

overestimating the source entropy. Each of these tests is designed to measure spe-

cific statistics of the samples to capture the structure of the distribution. These five

tests are collision, collection, compression, Markov, and frequency tests. Each test

outputs a value as the estimation of the min-entropy. The final min-entropy will be

the minimum over all of these estimated values.
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2.3.2.1 Collision Test

The collision test is designed to estimate the probability of the most-likely state in

a dataset. For this purpose it measures the mean time to the first collision in the

dataset. To avoid entropy overestimation in non-IID sources, this test selects the

minimum entropy estimation of all the tests as the expected entropy of the source

[BK12, p. 62].

2.3.2.2 Partial Collection Test

The partial collection test computes the entropy of a dataset with regards to the

number of distinct values in the output space. If the output dataset contains a small

number of distinct values, the test estimates low entropy and if the dataset has high

variation, high entropy is estimated [BK12, p. 65].

2.3.2.3 Markov Test

A Markov model in Definition 2.2.1 is used as a template for describing sources with

dependencies. The Markov tests estimate min-entropy by measuring the dependency

between successive outputs of the source. In the Markov tests, instead of single

samples, chains of samples are considered. By the careful estimation of the transition

probability matrix, the Markov model is used for entropy estimation. An accurate

estimation of this matrix requires a large dataset. Nevertheless, in practice, a large

data requirement is avoided by overestimating the low transition probabilities [BK12,

p. 67].

2.3.2.4 Compression Test

The comparison test is designed based on the Maurer Universal Statistic [Mau92].

The test does not have any assumption of independence. The entropy rate of the

dataset is calculated based on the compression rate of the dataset. The test initially

generates a dictionary of values, and then computes the average number of samples
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required to write an output with respect to the dictionary [BK12, p. 69].

2.3.2.5 Frequency Test

In the frequency test, min-entropy is estimated based on the rate of occurrence of the

most probable sample value. Similar to the Markov test, an accurate estimation of

min-entropy requires a large dataset. When only a small dataset is available, this test

ignores unlikely sample values and therefore underestimates the min-entropy [BK12,

p. 71].

2.4 Graph Theory

A graph G consists of a non-empty set V (G) of elements, called vertices or nodes,

and a set E(G) of elements called edges, together with a relation of incidence that

associates each edge with two vertices, called its ends. An edge with identical ends

is a loop and one with distinct ends is a link. A multigraph is one with no loops. A

simple graph is one with neither loops nor multiple edges. A directed graph (digraph)

D is a graph in which a direction is assigned to each edge.

The degree of a vertex v in a graph G is the number of edges of G incident with

v. A graph is d-regular if each vertex has degree d.

The adjacency matrix A(G) is the matrix whose rows and columns are indexed

by the vertices of G and the element a
uv

is the number of edges of G joining vertices

u and v.

2.5 Game Theory

Game theory is the study of strategic decision making. Decision makers are consid-

ered the players of the game. There is a set of available actions for each player and a

specification of payo↵s for each combination of actions which models the interaction
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between the players. An action profile is a list of all the players’ actions. An assump-

tion in game theory is that players are rational, which means they aim to maximize

their utility, given some belief about the other players’ actions. Thus, each player has

preferences about the action profile. For describing the players’ preferences a utility

function is used. In general, a strategic game is defined as follows:

Definition 2.5.1 A strategic game with ordinal preferences consists of

• A set of players, N = 1, ..., N is a finite set,

• A set of actions for player i denoted by A
i

,

(If for every player i, the set A
i

of actions is finite then the game is

“finite”.)

Action profile: a = (a1, ..., an) 2 A = A1 ⇥ ...⇥ A
n

.

• Preferences over the set of action profiles based on the utility func-

tion that captures payo↵s.

• Utility function for player i: u
i

: A ! R , which R is the set of real

numbers.We say that player i prefers a to b i↵ u
i

(a) > u
i

(b).

A finite two-player strategic game can be represented by a table. In such a repre-

sentation, the row player is player 1 and the column player is player 2; i.e. rows

correspond to actions a1 2 A1 and columns correspond to actions a2 2 A2. The two

numbers in each cell list payo↵s of each player: the row player first and the column

player second.

2.5.1 Strategic Games

In game theory, two kinds of games are considered: competitive games and coop-

erative games. In competitive games players have exactly opposed interests (conse-
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quently the number of players is always 2), while in games of cooperation players

have the same interest.

An example of a strategic game is the “Prisoner’s Dilemma”. In this game,

two criminals are arrested for their individual minor crimes, while they also have

associated in a major crime but there is not enough evidence for proving the major

crime. The prisoners are put into separate cells. If they both confess, each will be

sentenced to three years in prison. If only one of them confesses, he/she will be freed

and used as a witness against the other, who will receive a sentence of four years.

If neither confesses, they will both spend one year in prison for the minor crime.

Table 2.1 shows the payo↵ table of this game. Note that negative numbers are used

for denoting the payo↵s of this game since each prisoner tends to minimize prison

sentences for himself/herself:

- Stay silent Confess
Stay silent (-1,-1) (0,-4)
Confess (-4,0) (-3,-3)

Table 2.1: Prisoner’s Dilemma payo↵s

Definition 2.5.2 Nash Equilibrium: When the game is played by the players,

each player forms a belief about other players’ actions. This belief is under the as-

sumption that each player plays rationally. Playing based on these beliefs would con-

clude in achieving a Nash Equilibrium. If an equilibrium profile is played, nobody has

an incentive to deviate from his/her action and an action profile is not equilibrium if

someone has incentive to deviate from the action profile.

Definition 2.5.3 Best Response: Let the list of all the players’ actions except i

be denoted by a�i

, then the set of player i’s best actions is denoted by B
i

(a�i

) and is

defined as follows:

B
i

(a�i

) = a
i

2 A
i

: u
i

(a
i

, a�i

) � u
i

(a0
i

, a�i

) for all a0
i

in A
i
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We say that a⇤
i

2 BR(a
i

) i↵ 8a
i

2 A
i

: u
i

(a⇤
i

, a�i

) � u
i

(a
i

, a�i

), where a�i

=

(a1, ..., ai�1, ai+1, ..., an) and n is the number of the players.

The minmax value for player i is defined as v
i

= min
a�i2A�i

max
ai2Ai

u
i

(a�i

, a
i

). We say that

players of the game are playing with pure strategy when they play only one action

with positive probability. Now we can define the pure strategy Nash equilibrium.

Definition 2.5.4 Pure strategy Nash equilibrium: a = (a1, ..., an) is a pure

strategy Nash equilibrium i↵ 8i, a
i

2 BR(a�i

)

In the prisoner’s dilemma example the best response for each of the players regardless

of the other player’s action is to “confess”. Thus, the pure strategy Nash equilibrium

of this game is (Confess, Confess).

2.5.2 Mixed Strategy Equilibrium

There are many games that do not have a pure strategy Nash equilibrium. Another

kind of equilibrium, called a mixed strategy Nash Equilibrium, is defined for these

games. A mixed strategy of a player in a strategic game means that more than

one action is played with positive probability by the player. The set of actions with

non-zero probability form the support of a mixed strategy.

Suppose the set of all strategies for i is S
i

, and the set of all strategy profiles is

S = S1 ⇥S2 ⇥ ...⇥S
n

. If all players follow a mixed strategy s 2 S, then their payo↵s

are:

u
i

(s) =
X

a2A

u
i

(a)Pr(a|s)

And

Pr(a|s) =
Y

j2N

s
j

(a
j

)

Definition 2.5.5 Mixed strategy Nash equilibrium: Suppose s is the action

profile of n players playing mixed strategies in a strategic game. s = (s1, s2, ..., sn) is

a Nash Equilibrium if 8i, s
i

2 BR(s�i)
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One of the most well-known games in game theory is “matching pennies”. This

game is an example of a strictly competitive game. In the matching pennies game,

one player wants to match the other player’s choice and the other player wants to

mismatch. Table 2.2 shows the player’s payo↵s in this game:

- Head Tail
Head (1,-1) (-1,1)
Tail (-1,1) (1,-1)

Table 2.2: Matching Pennies payo↵s

The matching pennies game is called a zero-sum game because for any action

profile a we have u1(a) + u2(a) = 0. From the table one can see that there is no pure

strategy Nash equilibrium for matching pennies.

Theorem 2.5.1 [Nas51] Every strategic finite game, in which players have finitely

many actions has a mixed strategy Nash equilibrium.

Example 2.5.1 (Matching pennies Nash equilibrium): Suppose the first player

chooses Head or Tail with corresponding probabilities p and 1 � p. This player must

randomize to make player 2 indi↵erent in his/her choices, so that he/she will not

have incentive to change his/her strategy. Thus:

u2(Head) = u2(Tail),

�p+ 1(1� p) = p� (1� p) ) p =
1

2
.

With a similar argument, we conclude the mixed strategy Nash equilibrium for

the second player is also choosing Head or Tail with probability 1
2 . This means the

best strategy for both players in the matching pennies game is to play completely

randomly.
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2.5.3 Repeated Games

In game theory, when the same set of the players play a given game multiple times,

the game is called a repeated game, and the game that is repeated is called the stage

game.

When a game is repeated for finitely many times it can be represented by a game

tree (in the sense of graph theory) in which each node represents the choice of one

of the players, each edge represents a possible action, and the leaves represent final

outcomes over which each player has a utility value. This form of representing payo↵s

of a game is known as the extensive form. Suppose the prisoner’s dilemma game in

Table 2.1 is played twice and the payo↵ function of each player is additive.

player 1

player 2

player 1

player 2

-2 , -2 -5,-1

player 2

-1,-5 -4,-4

player 1

player 2

-5,-1 -8,0

player 2

-4,-4 -7,-3

player 2

player 1

player 2

-1,-5 -4,-4

player 2

0,-8 -3,-7

player 1

player 2

-4,-4 -7,-3

player 2

-3,-7 -6,-6

C

C

C

C S

S

C S

S

C

C S

S

C S

S

C

C

C S

S

C S

S

C

C S

S

C S

Figure 2.1: Two stage prisoner’s dilemma extensive form ([BS08])

When a game is infinitely repeated, the extensive form representation of the game

is an infinite tree, and the payo↵s would be infinite if we define them as the sum

of the payo↵s in each stage-game. There are two meaningful ways to define a finite

payo↵ for an infinitely repeated game: the average reward, which is the average of

the infinite sequence of payo↵s for player i, and the discounted reward, which is the

sum of player i’s payo↵ in the immediate stage-game, plus the sum of future rewards

discounted by a constant factor.
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A payo↵ profile r = (r1, r2, ..., rn) in an n-player game is enforceable when each

player’s payo↵ is bigger or equal to its corresponding minmax value, and is feasible if

it is a convex, rational combination of the outcomes in the game.

Folk theorems are a family of theorems about possible Nash equilibrium payo↵

profiles in a repeated game. An instance of a folk theorem family for an infinitely

repeated game with an average reward is as follows:

Theorem 2.5.2 Folk Theorem[BS08] Consider an n-player infinitely repeated game

with average reward payo↵ profile r = (r1, r2, ..., rn).

1. If r is the payo↵ profile for any Nash equilibriums of the game, then for

each player i, r
i

is enforceable.

2. If r is both feasible and enforceable, then r is the payo↵ profile for some

Nash equilibrium of the game.

2.6 Related Works

User inputs are widely used to provide background entropy for random number gener-

ators in computer systems. For example, in Linux based systems the operating system

continuously runs a background process to collect entropy from users’ inputs [GPR06].

However, due to repetitive patterns of mouse movements or keystrokes, these entropy

sources, in general, provide lower entropy level when used for on-demand collection

of entropy.

Psychological studies show that humans are neither capable of generating random-

ness nor recognizing it [Bru97, Wag72]. Nevertheless, some psychological experiments

confirm that humans’ random behaviour will improve by trial and error. In other

words, a human asked to continuously generate random sequences will do better by

receiving feedback on the randomness of previously generated sequences [Neu86].
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Some competitive two-player games are capable of leading a human toward more

random behaviours. In such games, the opponent would exploit non-random be-

haviour of the human player to win the game. Thus, each of the players tries to play

as randomly as possible to win. Fortunately, such games are very well studied in the

“game theory” context. In particular, it has been shown that in some competitive

zero-sum games the best strategy for winning is to play uniformly randomly. The idea

of using such games for leading a human toward random behaviour and consequently

generate randomness was initially proposed by Rapoport and Budescu [RB92]. Their

experimental results showed that it is possible to generate a sequence with relatively

good randomness properties from a series of human actions in a two-player competi-

tive zero-sum game with uniform choices as the best strategy of players. They used

thematching pennies game as an example of the desired game in their study. In the

matching pennies game, each of the players makes a choice between “head” and “tail”.

One of the players wins the game in case of matching choices while the other one wins

if the choices mismatch. Due to the game theory, the optimal strategy for players in

this game is to choose uniformly randomly (with probability 1
2) between head and tail.

The experimental results in [RB92] showed that players almost followed a uniform

random strategy for playing the game. This result confirms that humans engaged in

a strategic game can be a good source of entropy and entropy generation could be

an indirect result of their actions. Indeed, one can view the two-player competitive

game as an approach to provide feedback for players on their previous actions. In

this sense, the later experimental results confirm the psychological experiments that

emphasise the role of feedback in training human for randomness generation.

Although the approach for generating randomness from human gameplay in [RB92]

is important from a theoretical point of view, it can not be considered as a practi-

cal framework since in each stage of the game the players have two possible choices
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which means in each stage they can at most generate one random bit. Considering

that modern cryptographic keys are relatively long, e.g. at least 128 bits for AES

key, by using the above approach one needs to play the matching pennies game at

least 128 times in order to generate an appropriate key for a cryptographic purpose.

Playing the game so many times on one hand is boring for the player and on the

other hand is not e�cient since the randomness generation process is very slow.

Halprin et al. by using the above studies, proposed a framework for extracting

randomness from human gameplay against computer [HN09]. They designed an ex-

tension of the matching pennies game named “hide and seek”, in which the player

is provided with an n ⇥ m matrix displayed on the computer screen and is asked

to choose a matrix location. The player wins if his/her choice is the same as the

computer player’s choice. It turns out that this game itself is a zero-sum game with a

uniform optimal strategy for the players. Theoretically, by taking the optimal strat-

egy, a human player would be able to generate log n+logm random bits in each stage

of the game. Nevertheless, visual implementation of the game showed that players’

choices are biased as they tend to avoid choosing ending points. To overcome the

problem of non-uniformity of choices, an explicit t-resilient extractor from [BST03]

is used. Players’ choices in the designed game are given to the seeded extractor as

an entropy source to generate a sequence that is ✏-close to a uniform distribution.

The output of the extractor is then used as an input for the refresh() function in

Barak-Halevi’s robust PRNG [BH05]. Figure 2.2 shows the construction of a robust

PRNG based on human gameplay.

Barak and Halevi’s robust PRNG is constructed from any cryptographically secure

PRNG G : {0, 1}m ! {0, 1}2m. The system has an internal state State
i

2 {0, 1}m.

On request for next(), the system runs G on the internal state State
i

. One half of the

result is returned as the output of the PRNG, and the other half becomes the new
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State1

Output1

next() State2 next()

Output2

State3 refresh() State3

t-resilient EXT

Entropy from human gameplay

Figure 2.2: Robust PRNG with human provided entropy

state of the system State
i+1. When refresh() is requested, the system takes m bits of

the extracted random sequence from the entropy source and applies the XOR on the

current state with it to obtain the new state.

Indirect approaches for generating randomness from human gameplay are con-

sidered in [Dey14] and [ASN14]. In particular Dey [Dey14] uses the randomness

produced in the video game by the interaction of the player (e.g. Super Mario) with

game elements for the purpose of obfuscation. In [ASN14] a video game is designed

to indirectly collect entropy from human errors in the gameplay of a user against a

computer.
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Chapter 3

Randomness Generation

In this chapter, the di↵erent methods for randomness generation are introduced. Ran-

dom number generators (RNGs) are classified and an overview of practical RNGs as

well as theoretical functions and their explicit constructions that can extract random-

ness from an entropy source is conducted. To answer the question, “Is a human able

to generate randomness?”, a brief survey on human psychology is provided, and some

hypotheses and experiments that aim to explain the random behaviour of a human

are mentioned.

3.1 Randomness Importance

Randomness plays an important role in computer science, in particular in cryptog-

raphy and information security. The security of any cryptographic algorithm and

protocol directly depends on the randomness of the key. Indeed, it is impossible to

have a deterministic fixed secret. Randomness can be exploited for generating the

required cryptographic keys in encryption or challenge-response protocols (e.g. the

key in SSH or SSL/TLS connections), or for randomizing cryptographic algorithms

to achieve a desirable level of security. The unpredictability of a random sequence

is its pivotal property that makes it suitable for the mentioned applications. Using

weak randomness in security systems may result in a security breakdown of the whole

system.

A weak random number generator exposes the system to a variety of attacks.

Several attacks on Netscape browser Version 1.1 are addressed in [GW96]. These

attacks exploit weakness in the system’s RNG to guess the secret key, and break the
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security of the system. Kerberos 4 session keys, generated for a DES block cipher, are

shown to have much smaller entropy than what is required for their security [DLS97].

This means that the brute force attack can break the security of the system with

much fewer trials than what is expected (in particular when time and the host-id of

Kerberos server are known, the number of possible keys is only 220, while DES o↵ers

256 possible keys for providing the security of the encrypted block). More recent

studies observed weak-key-generation vulnerability in the Debian Linux version of

OpenSSL [YRS+09] and a level of predictability in RSA public keys [LHA+12] due

to a bug in the random number generation algorithm.

The importance of having a good random number generator is well recognized

from the above examples. Indeed, a huge part of a system’s security depends on the

quality of randomness, and thus improving the random number generators as well

as introducing appropriate applicable entropy sources is of crucial importance for

enhancing the security level of cryptographic systems.

3.1.1 Random Number Generators

An RNG is an algorithm that could be implemented by a computer program, and is

intended to have an output with desirable randomness properties. There are mainly

two di↵erent types of RNGs: True Random Number Generators (TRNGs) and Pseudo

Random Number Generators (PRNGs).

3.1.1.1 True Random Number Generators

A TRNG (also referred to as an entropy harvester in the literature [VM03]) applies

a processing function to an entropy source to generate (extract) randomness. The

entropy source is obtained from a non-deterministic physical quantity such as noise

in an electrical circuit or mouse positions during a user’s specific interactions with

a computer program. Although TRNGs are presumably secure under most circum-
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stances, their speed is limited by the speed of the physical phenomenon, and thus

they are usually slow. For increasing the throughput of random number generation,

the output of a TRNG might be fed into a PRNG.

Quantum TRNGs, on the other hand, are very fast, but using them requires

special hardware and resources. This limits their application to very restricted and

critical security purposes.

3.1.1.2 Pseudo Random Number Generators

A PRNG is an e�cient deterministic algorithm that expands a short perfectly random

(or almost perfectly random) seed to a much longer sequence that “looks random”

in a meaningful and well-defined way [Gol10, RSN+01]. This usually means that no

e�cient algorithm can distinguish the output of the CSPRNG (Cryptographic Secure

Pseudo Random Number Generator) from a perfectly random sequence.

There are two kinds of PRNGs: Normal Pseudo Random Number Generators

(NPRNGs) and Cryptographic Secure Pseudo Random Number Generators (CSPRNGs).

An NPRNG deterministically produces a sequence of values depending only on

the initial seed (also known as initial internal state). Since there are only a limited

number of states, the output of an NPRNG eventually repeats itself and becomes

periodic. If the initial seed is an n-bit vector, the maximum period for the NPRNG

is 2n [VGLS12], however some NPRNGs such as a Linear Feedback Shift Register

(LFSR) might have an even smaller period. Nevertheless, with a long enough period

the output random sequence could be appropriate for practical applications.

A simple example of an NPRNG is the Linear Congruential Generator (LCG)

[PM88]. The generator function of a LCG is:

X
n+1 = a.X

n

+ b mod m

Where a, b, and m are chosen constant integers and a, b < m. X0 is the initial seed

and the sequence of (X
n

)
n�1s is the generated pseudo random sequence.
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An LFSR (Figure 3.1) is another important example of an NPRNG, which is a

shift register whose input bit is a linear function of its previous state. The initial

value of the LFSR is its seed and its input is a linear function of some bits of the shift

register value. Since the operation of the register is deterministic, the stream of values

produced by the register is completely determined by its current state, and because

the register has a finite number of possible states, it ultimately enters a repeating

cycle. However, with an appropriate feedback function, one can obtain a sequence of

bits which appears random with a long period.

0 1001101

Figure 3.1: An 8-bit LFSR
([Kle13])

The most commonly used linear function of single bits for an LFSR is exclusive-or

(XOR). Thus, an LFSR is most often a shift register whose input bit is derived from

the XOR of some bits of the overall shift register. The bits in the LFSR state that

influence the input are called taps. A maximum-length LFSR with n bits output,

cycles through all possible 2n � 1 states within the shift register except the state

where all bits are zero [Kle13].

A CSPRNG is a PRNG that satisfies cryptographic conditions besides statistical

conditions [VGLS12]. Although, CSPRNGs are still predictable from their internal

state, they do not quickly reveal significant information about their internal state

when seeded with su�cient entropy. An example of a CSPRNG is the CryptMT3

random number generator [MSNH08].
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3.2 Statistical Tests

Generally, the quality of produced random numbers is evaluated by statistical tests;

this means that for making any statement about the quality of an RNG, we should

specify the tests this statement is based on. NIST has developed a package of 15

statistical tests to evaluate the randomness of (arbitrarily long) binary sequences.

Di↵erent types of predictability in a random sequence are considered in the NIST

statistical package [RSN+01]. The 15 tests included in the NIST statistical test suite

are: The Frequency Test, Frequency Test within a Block, The Runs Test, Tests for

the Longest-Run-of-Ones in a Block, The Binary Matrix Rank Test, The Discrete

Fourier Transform (Spectral) Test, The Non-overlapping Template Matching Test,

The Overlapping Template Matching Test, Maurer’s “Universal Statistical” Test,

The Linear Complexity Test, The Serial Test, The Approximate Entropy Test, The

Cumulative Sums (Cusums) Test, The Random Excursions Test, and The Random

Excursions Variant Test.

Note that some desirable properties for random numbers can only be checked by

non-polynomial-time tests, such as the spectral test. Thus, it is not su�cient to limit

the definition of PRNGs to those RNGs whose output could not be distinguished

from uniform sequences [Röc05] using polynomial-time algorithms.

3.3 Human Psychology for Generating Randomness

Random number generation by human subjects is a procedurally-simple task which is

related to specific executive functions in the brain such as updating and monitoring

of information and inhibition of automatic responses. There is a relatively large

body of literature on human random number generation in psychology. The failure of

human subjects to behave randomly is a robust finding (for reviews see [Wag72] and

[Bru97]). The experiments for evaluating human random behaviour vary from calling
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out digits, letters of the alphabet, or nonsense syllables, to writing these same symbols

on paper, pressing push-buttons, touching metal disks with a stylus, or drawing lines

on a paper. The e↵ect of di↵erent experimental conditions such as required speed of

responses, age, mathematical sophistication of subjects, and competing attentional

demands have systematically been extensively studied and various statistical tests

have been used for evaluating the generated randomness [TN98].

There are two di↵erent explanations for human randomness generation ability in

the psychology community: explanation by trait and explanation by skill.

3.3.1 Explanation by Trait for Humans’ Random Behaviour

In a random sequence, each symbol is approximately equally repeated over a long

run. An explanation by trait claims that humans are incapable of generating random

sequences due to their inherent limitations. According to one hypothesis, humans fail

in generating randomness because their memory is not able to keep track of all the

generated symbols [Bad66]. According to another hypothesis, attentional processes do

not permit subjects to completely ignore their previous responses while it is essential

for random behaviour [Wei64]. The third hypothesis highlights humans’ di�culty

in distinguishing randomness (when presented with two series of numbers, subjects

usually cannot discriminate random from non-random series) as the trait limitation

that prevents randomness generation by a human [Wag70].

3.3.2 Explanation by Skill for Humans’ Random Behaviour

Due to this explanation, “Randomlike behaviours are learned and controlled by en-

vironmental feedback, as are other highly skilled activities” [Neu86]. If so, random

behaviour skill should be trained and practiced to be improved. Indeed, humans can

learn how to generate randomness during a process. The role of feedback in improving

generated randomness by humans is considered in [Neu86], and the result confirms
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that humans generates better random sequences when feedback on their previous

actions is provided.

More recent studies showed that random number generation involves several men-

tal processes. In fact, it requires adopting the correct strategy, based on instructions

and the subject’s concept of randomness, monitoring the output, and eventually mod-

ifying the strategy of randomness generation. Generating random numbers requires

the activation of di↵erent brain regions consisting of the Left Dorsolateral Prefrontal

Cortex (DLPFC), the Anterior Cingulate Cortex (ACC), the Superior Parietal Cor-

tex (SPC), the Right Inferior Frontal Cortex (RIFC) and the Cerebellar Hemispheres

(CH) [CCR+14]. The functionality of each part is briefly explained below [MC07].

-The Left Dorsolateral Prefrontal Cortex (DLPFC) is an area in the prefrontal cor-

tex of the human brain that is “known to be involved in classical executive functions,

includng working memory, set shifting, sequencing, planing, inhibition and abstract

reasoning” [MC07, P. 355].

-The Anterior Cingulate Cortex (ACC) plays an important role as an integrative

center in lots of the body’s autonomic functions as well as controlling emotions. It

is also involved in cognitive behavioural tasks, such as reward anticipation, decision-

making and attention motivation.

-The Superior Parietal Cortex (SPC) is involved with divided attention and re-

ceives a great deal of visual input as well as sensory input from one’s hands.

-The Right Inferior Frontal Cortex (RIFC) mediates response inhibition. It is

typically implicated in go/no-go tasks.

-The Cerebellar Hemispheres (CH) play a significant role in some of the motor

and perceptual tasks like spatial attention, verbal working memory, and language

processing and in regulating fear and pleasure responses.

Transcranial Direct Current Stimulation (TDCS) is a safe and reliable technique
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that can produce transient behavioural changes and influence cognitive functions. In

this method, a weak current is applied constantly over time to increase (anodal stimu-

lation) or decrease (cathodal stimulation) the excitability of the neuronal populations

underlying the active electrode.

TDCS can produce transient behavioural changes and influence cognitive func-

tions. When TDCS is combined with cognitive training protocols, seemingly it can

enhance the protocol e↵ects [LMF12].

The experiments in [CCR+14] demonstrate that practice consistently induces

training plasticity and influences specific features of humans’ performance in random-

ness generation. The experiments also suggest that TDCS could transiently modify

the random behaviour of a human.

3.4 Randomness Extraction

Any function that extracts almost uniform bits from an entropy source is called a

randomness extractor. Randomness extractors require a guarantee on the random-

ness property such as min-entropy of their input entropy source in order to guarantee

randomness level of the output. A TRNG thus can be built from a randomness

extractor together with an entropy source. There are two di↵erent types of extrac-

tors: deterministic extractors and seeded extractors. Deterministic extractors, like

TRNGs, use a source of imperfect randomness for generating randomness, but do not

require a random seed. On the other hand, seeded extractors and PRNGs are similar

due to using a random seed for randomness generation. Nevertheless, extractors and

PRNGs are totally di↵erent objects. The output of the extractor is statistically close

to uniform distribution, while the output of a PRNG is computationally indistin-

guishable from a uniform distribution. Moreover, a source of imperfect randomness is

not a required input for a PRNG, while it is necessary for randomness extractors. It
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turns out that PRNG constructions of a certain kind are extractors. The connection

between extractors and PRNGs is demonstrated in [Tre01].

3.4.1 Deterministic extractors

Deterministic extractors are ideal extractors that extract randomness from an entropy

source without investing any extra randomness. However, it turns out that having

a deterministic extractor as a general imperfect randomness source is impossible.

Respectively, the challenge in constructing an optimal extractor is to minimize the

amount of required extra randomness known as the seed.

Definition 3.4.1 (Deterministic Extractors) For a class of distributions C over

{0, 1}n, the function Ext : {0, 1}n ! {0, 1}m is (n, ✏)-extractor if for any X 2 C,

Ext(X) is ✏-close to U
m

, where U
m

is the uniform distribution over {0, 1}m.

A well-known example of a deterministic extractors are the von Neumann extractor

[von63] that extracts perfectly uniform bits from a source generated by a finite-state

Markov chain. Suppose X1, X2, ..., Xn

is an identical independent distributed binary

sequence with bias � so that Pr[X
i

= 1] = �. A Von Neumann extractor breaks all

the variables in pairs and for each non-identical pair (01 or 10) outputs the first bit

and skips otherwise. With this extractor, after processing 1
2�(1��) pairs, on average,

we will have an unbiased random bit sequence.

The Definition 3.4.1 follows the observation that an extractor is a single function

that works for all sources in a class. For determining the class of a source, we do

not need the exact distribution of each source since only having special properties

is su�cient for our purpose. Some examples of specific class of distributions are as

follows:

• Bit fixing source: A block of n bits consisting of k random and inde-

pendent bits together with n� k fixed bits.
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• Adaptive bit-fixing sources: A block of n bits consisting of k indepen-

dent and random bits and n � k bits that are dependent on the k

independent bits.

• Flat k-source: Uniform distribution on a subset S 2 {0, 1}n of size 2k.

The min-entropy of sources is a general measure that can be used to classify sources.

Definition 3.4.2 (k-source) A random variable X is a k-source if H1(X) � k, i.e.

if Pr[X = x]  2�k.

All the above examples of sources are considered k-sources. An appropriate determin-

istic extractor should work for a wide class of random sources. But it turns out that

it is impossible to construct a deterministic extractor that extracts even one random

bit from a general k-source. Further studies on deterministic extractors can be found

in [SV86].

3.4.2 Seeded Extractors

Although deterministic extractors do not exist for general k-sources, any randomly

chosen function is a good extractor for all flat k-sources (and therefore for all k-sources

because any k-source is a convex combination of flat k-sources [CG88]) with high

probability. One can show this by allowing the extractor to depend on the source and

then apply the Cherno↵ bound (Theorem 2.2.1) to bound the failure probability of the

extractor. By allowing extractors to use an additional random input called a seed,

extraction from general k-sources becomes possible. The additional random input

indeed randomizes over the choice of extracting function from a family of extractors.

As a result, the seeded extractor is able to extract almost all entropy from all k-sources

with high probability.
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Definition 3.4.3 seeded extractors [NZ96]: A function Ext : {0, 1}n⇥{0, 1}d !

{0, 1}m is a (n, k, ✏)-extractor if for every k-source X on {0, 1}n, Ext(X,U
d

) is ✏-close

to U
m

. An extractor is explicit if it is polynomial time computable.

Note that in seeded extractors, since output length is bigger than the seed length, the

overall generated randomness is more than the amount of randomness we invest as

the seed. The goal of seeded extractors is to produce as many output bits as possible

while minimizing the number of random bits used for the seed. The existence of

an optimal (n, k, ✏)-extractor with seed length d = log(n � k) + 2 log(1
✏

) + O(1) and

output length k+ d� 2 log(1
✏

)�O(1) has been shown by using probabilistic methods

[RTS00].

Despite an existence proof of extractors, using extractors for randomness gen-

eration requires an explicit construction of the extractor. These constructions are

mentioned in [Sha04]. One example of the explicit construction of extractors is ob-

tained by using pairwise independent hash functions [HILL99]. The other explicit

construction uses expander graphs for obtaining extractors. This type of construction

will be elaborated in the next section.

Definition 3.4.4 [BST03] A seeded extractor is called a t-resilient extractor if its

output is "-close to uniform for 2t pre-determined source distributions with the prob-

ability of at least 1� ", when the seed is chosen uniformly random.

Explicit constructions of t-resilient extractors from `-wise independent Universal Hash

Function (UHF) are given in [BST03].

3.5 Expander Graphs for Randomness Extraction

Expander graphs are a family of well-connected graphs with a broad range of applica-

tions in theoretical computer science as well as computer networks. They have been
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used for designing algorithms, error correcting codes, pseudo random generators and

robust computer networks. In particular, they can be used as seeded extractors for

randomness extraction from an entropy source.

3.5.1 Measures of expansion

For a formal definition of an “expander graph”, we require a quantitative invariant

for measuring connectedness of the graph. Minimum number of neighbor vertices for

all sub-graphs or minimum number of edges leaving any sub-graphs are two classic

measures for well-connectedness [HLW06].

3.5.1.1 Vertex Expansion

This measure requires that every “not-too-large” set of vertices has “many” neighbors:

Definition 3.5.1 (Vertex Expander)A graph G is a (K,A) vertex expander if for

all sets S of at most K vertices, the neighborhood N(S)
def

= {u| 9v 2 S| (u, v) 2 E}

is of size at least A⇥ |S|.

For an ideal d-regular expander graph, A is as close to d as possible. d = O(1) and

K = ⌦(n), where n is the number of vertices. In the above definition, if instead of

N(S) we use the number of edges leaving S, we will have edge expansion.

3.5.1.2 Random Walks and Spectral Expansion

Suppose X = i and i = 1, 2, ..., n is an outcome of a random experience, and vector

pt = (p1, p2, ..., pn) indicates the corresponding probabilities for each of the outcomes

such that Pr(X = i) = p
i

. An undirected d-regular graph G with n vertices labelled

from 1 to n, depicts the outcomes of the random experience. Consequently, the

probability of picking vertex i is p
i

. The edge between vertices i and j is denoted by

e
ij

. Suppose there is probability distribution on d connected edges to each vertex. The
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corresponding probability for e
ij

is depicted by p
ij

. The corresponding probability

for e
ij

is regardless of starting and ending vertices order that is p
ij

= p
ji

. An edge

is selected due to the outcome of another independent random experience. Starting

from vertex i and picking the edge e
ij

will conclude in reaching to vertex j. This is

called one random walk on the graph G.

LetA be the normalized adjacency matrix of graphG. ObviouslyA is a symmetric

matrix and the sum of the entries on each row or column is exactly one. The product

of A and p, i.e. q = Ap, gives a vector qt = [q1, q2, ..., qn], which is actually the new

probability distribution on the vertices of graph G after one random walk. Elements

of q are obtained from the inner product of each row of A with vector p. Thus we

have:

q
i

=
nX

j=1

a
ij

p
j

Since each element of q has a non-negative value and
nP

i=1
q
i

= 1 (because
nP

j=1
a
ij

= 1

and
nP

j=1
p
j

= 1), we conclude that the vector qt = [q1, q2, ..., qn] is a probability

distribution vector.

Intuitively, well-connectedness of the graph implies that random walks on graph

would converge quickly to uniform distribution. The convergence rate of random

walks is captured by the second largest eigenvalue of the graph’s adjacency matrix.

This value is denoted by � from now on. Spectral expansion is the random walk based

measure of well-connectedness for the expander graph.

Definition 3.5.2 For � 2 [0, 1], a regular graph G has spectral expansion � if � 

1� �.

The following lemma shows the exact relation between the convergence rate of random

walks and the second largest eigenvalue of the normalized adjacency matrix in an

expander graph:
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Lemma 3.5.1 [AB09, Lemma 21.3] Let G be an n-vertex regular graph and p the

initial distribution on the nodes of the graph and u the vector of uniform distribution.

Then we have:

||Alp� u||  �l

Note that since A is a stationary matrix, all of its eigenvalues would be less than

or equal to 1 [AB09, p. 424]. Lemma 3.5.1 shows that good expander graphs have

smaller �, since with smaller �, one needs a smaller number of random walks to get

close to a uniform distribution.

The relation between spectral expansion, vertex expansion, and edge expansion

has been studied in [Tan84], [AM84] and [Che70]. These studies show that any of the

expansion measures implies others.

3.5.1.3 Explicit Expander Graphs

Due to the enormous number of applications of expander graphs in computer science,

having an explicit construction for them is essential. One simple construction for

an expander graph is d-regular graphs. The following theorem shows that d-regular

graphs have small � and consequently are good expanders.

Theorem 3.5.1 [AB09, Section 21.2.1] For every constant d 2 N any d-regular n-

vertex graph G satisfies � � 2
p
d� 1

d� o(1)
where the o(1) term vanishes as n ! 1 and d

is constant.

Ramanujan graphs are the representation of an explicit construction for expander

graphs such that � <
2
p
d� 1

d
, which means for Ramanujan graphs as n ! 1 we

would have � =
2
p
d� 1

d
.

For a fixed d and large n , the d-regular n-vertex Ramanujan graph minimizes

�. Thus Ramanujan graphs are the best expanders. The explicit construction for

Ramanujan graphs is given in [LPS86] that uses deep mathematical results to prove
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that the construction is a Ramanujan graph. There are other simple explicit construc-

tions of good expander graphs that can be e�ciently generated. That is, there exists a

polynomial-time algorithm that for vertices indexed by i 2 I, generates the indexes of

each vertex’s neighbors. In Chapter 4, a game is designed based on expander graphs.

The explicit construction of expander graphs is very critical for realizing the designed

game. Here we bring two examples of simple explicit constructions for 5-regular and

3-regular expander graphs. The designed game is realized based on these two graphs

in Chapter 4.

Construction 3.5.1 (discrete torus expanders) [GG81] Let G be a graph with

vertex set V = Z
M

⇥Z
M

and edges from each node (x, y) to the nodes (x, y), (x+1, y),

(x, y + 1), (x, x + y) and (�y, x) where all arithmetic is modulo M . This graph is a

good 5-regular graph.

Construction 3.5.2 (p-cycle with inverse chords) [Lub10] For a prime number

p, let V = Z
p

be the set of vertices in graph G. The vertices are labelled by x 2

{0, p�1}. Neighbor vertices have indexes x�1, x+1 and x�1 where all arithmetic is

mod p and 0�1 is defined to be 0. This is a construction of a good 3-regular expander

graph.

Other explicit constructions of expander graphs use graph product techniques such

as the Zig-Zag product and replacement product [RVW00].

3.5.2 Expander Graphs as Extractors

Lemma 3.5.1 yields that a random walk on an expander graph can be interpreted as

an extractor. In particular we have the following extractor construction from random

walks on an expander graph.

Lemma 3.5.2 [AB09, lemma 21.27] For 0 < ✏  1 and every n and k  n, there

exists an explicit (k, ✏)-extractor Ext : {0, 1}n ⇥ {0, 1}t ! {0, 1}n where t = O(n �
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k + log 1
✏

).

The above lemma assumes an expander graph with � = 1
2 . However, in general for

an arbitrary � and min-entropy k, we have:

Theorem 3.5.2 [ASNS13] Let G be a 2n-vertex d-regular expander graph with nor-

malized adjacency matrix A and X be a k-source with probability distribution vector

p over {0, 1}n. For a random walk of length ` over the graph starting from a vertex

selected according to distribution p, we have:

SD(A`p, U
n

)  1

2
�`

p
n(2�k/2 + 2�n/2)

Proof:

SD(A`p, U
n

) =
1

2

X

a2{0,1}n
|Pr[A`p = a]� Pr[U

n

= a]| (3.1)

 1

2

p
nkA`p� U

n

k2 (3.2)

 1

2

p
n�`kp� U

n

k2 (3.3)

 1

2

p
n�`(2�k/2 + 2�n/2) (3.4)

Equation 3.1 is the definition of statistical distance. Inequality 3.2 follows from

Lemma 2.1.1. Inequality 3.3 is indicated in the proof of Lemma 3.5.2 in [AB09]

and Inequality 3.4 is because kp� U
n

k2 
p

kpk22 + kU
n

k22 and kpk22  2�k (since X

with probability distribution p is a k-source).

Note that since there are explicit constructions for expander graphs, Theorem

3.5.2 introduces a family of explicit constructions for randomness extractors.
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Chapter 4

True Random Number Generator from Human

Gameplay

In this chapter, an integrated approach for true randomness generation from human

gameplay is proposed. Game theory is used for designing the game. We show that the

game design is adjustable to several popular existing games, such as Roshambo. The

proposed TRNG is compared with previous existing RNGs that use human gameplay,

and the advantages of the proposed approach are described.

4.1 Introduction

Every RNG (even PRNG) needs at least one source of randomness to produce random

numbers. The challenge is where to find randomness in a deterministic device, such as

a computer. The commonly applicable entropy sources in a computing device include

noise in electrical circuits, the current system time or user input (such as mouse

movements or time intervals between keystrokes). Any of these sources has their

advantages and drawbacks. System time is probably the worst source of randomness

among the above mentioned sources. This is because, if the execution time of the

RNG is almost known, the time as a source of randomness will only contain a few

bits of entropy [RSN+01]. This was the biggest problem in the implementation of

the Netscape browser v1.1 [GW96] and Kerberos V4 [DLS97]. Gathering entropy

from system-based noise sources often requires extra hardware. Moreover, such noise

sources are not always available. User based entropy sources, on the other hand, are

an attractive alternative entropy source, which is easily available while requiring no
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extra hardware for exploiting their entropy.

Using the input of a computer game is a tempting idea for providing a user based

entropy source. The user willingly plays the game as much as required, while pro-

ducing entropy for a random number generator. Note that not just any game is

appropriate for this purpose. The desired game should lead the human player to

generate as much randomness as possible while staying interesting for the user.

4.2 The Contribution: True Random Number Generator from Human

Gameplay

A TRNG that uses human gameplay against a computer as the only source of random-

ness is proposed. This TRNG is a randomness extractor that uses human input as the

initial entropy source and the random seed. The user can improve the randomness of

the output at any time and to any level of closeness to a uniform distribution, simply

by playing the game for more rounds. Thus, the final results have a guaranteed and

adjustable level of randomness.

In comparison, in the construction of Halprin et al. [HN09], (i) although the en-

tropy source is based on human input, a second external source of perfect randomness

is required to provide a seed for the extractor, and (ii) the size and quality of the

final output depends on the extractor that is used after obtaining the output of the

entropy source. Therefore, changing the quality of the final output requires replacing

the extractor and performing the calculations from the beginning.

4.2.1 Applications

As mentioned before, RNGs are essential components for security systems. User-

based TRNGs add an extra level of assurance about the randomness source since

the TRNGs exploit randomness from the user’s input. An example application of
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this approach is generating random cryptographic keys for software such as PGP,

OpenSSL, and GnuPG. These applications rely on the random number generation of

the OS, which collects its required entropy from a physical entropy source. However,

enough entropy for randomness extraction may not be available at the time of the

request. In this case, the proposed approach can be used to generate the required

randomness from users by asking them to play a simple game. According to the

conducted experiments in this thesis, for generating a 64 bit key that is 2�18-close to

uniform distribution, the user should choose 8 locations on a presented circle (with

256 distinct points) and then play Roshambo for 15 times against the computer.

Another application of the proposed approach can be in virtual environments in

which multiple users share some hardware such as CPU and RAM. In such environ-

ments using the shared hardware as an entropy source for the system’s RNG is risky

due to the dependence between entropy pools of di↵erent users, especially if the RNG

is used for generating a cryptographic key of a security protocol. In these scenarios us-

ing a human player’s gameplay for generating randomness is much more reliable, since

the generated randomness would be independent of the underlying shared hardware

and the other users’ randomness.

4.2.2 The TRNG’s Structure

The proposed TRNG, similar to any other TRNGs, consists of two main modules:

(i) An entropy source that uses a physical process to generate a sequence of symbols

with a lower bound on its min-entropy and (ii) a seeded randomness extractor that

transforms the entropy source into an almost perfect random sequence using the extra

randomness provided by the seed.

In the proposed approach, the gameplay between a human player and a computer

player is used to realize the two modules of a TRNG. The required entropy for the

proposed construction is provided by the user’s initial choices among the vertices of
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an expander graph, while the expander graph is used as a randomness extractor and

the user’s choices in the subsequent stage-games provide the seed for the randomness

extractor.

4.2.2.1 Fitting a Two-player Game to a TRNG

There is a d-regular expander graph at the heart of the proposed construction. The

game consists of a sequence of stage-games. At the first stage-game, the whole ex-

pander graph is presented to the user who will be asked to choose a vertex. The

number of vertices of the graph is determined by the length of the required ran-

dom sequence, such that if n random bits are required, the number of vertices is 2n.

The human’s choice is e↵ectively a symbol of an entropy source with some unknown

distribution that is not uniform but has some min-entropy.

A subsequent random walk of length ` over the graph will be used to obtain

an output of the TRNG, which is desirably close to uniform randomness. On each

vertex of the graph, the user is provided with a simple game which e↵ectively requires

him/her to choose among the set of neighboring vertices. The presented game at this

stage is a zero-sum game with uniform optimal strategy. The required randomness

to generate random walks is provided from human choices in this game.

One of the players is simulated with the computer but note that it is possible to

consider two human players playing the game as well. The computer player’s choices

would not a↵ect the order of the rounds, but is e↵ective in gaining or losing scores by

the other player. In fact, it is the computer player’s strategy, besides the appropriate

design of the payo↵s in stage-games, that leads the human player to play randomly

at each stage. The number of required random walks to achieve a specific level of

randomness, i.e. ✏-closeness to a uniform distribution, is determined by a desired ✏

and the min-entropy of the initial vertex selection. Consequently the designed game

consists of two parts:
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1. Initial stage-game:

The initial stage-game is an extension of the matching pennies game.

The user chooses a vertex from the set of 2n possible vertices in the

graph, and wins if the computer cannot “guess” his/her choice.

2. Walk stage-games:

Each subsequent stage-game corresponds to a single step of the random

walk. At vertex V , the player is presented with a zero-sum game with

d possible actions. The game payo↵s are designed in such a way that a

uniform choice between the presented actions is the optimal strategy,

and so the user’s input would correspond to uniform selection among

the possible actions. Each of the d actions corresponds to one of the

neighbouring vertices of V . Thus, the user’s random choice in the zero-

sum game is used to generate a random walk on the expander graph.

Using a d-regular graph ensures that the number of choices at every

vertex is the same.

The main di↵erence between the initial and the subsequent stage-games is the

number of choices available to the user and the way these choices are used.

Suppose n
i

represents the corresponding vertex of a player’s choice at the ith walk

stage-game and c1 to c
d

represent the neighbouring vertices of n
i

. Figure 4.1 shows

how player choices in walk stage-games are mapped to a random walk.

4.2.2.2 Choosing the expander graph

The initial step toward constructing the proposed TRNG is to choose an appropriate

d-regular expander graph. The number of vertices is determined by the length of the

required random string. An expander graph with 2n vertices outputs n bits that are
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n
i

c1

c2

c
d

Summary of the walk stage-games:

- n
i

: The choice of the player in the previous round that we interpret
as the player’s current state.

- c1 � c
d

: d available actions for the human player in round i.

- c
i

: The choice of the player in round i.

- n
i+1 = c

i

.

Figure 4.1: The graph representation of ith stage-game

✏-close to uniform distribution. After selecting the graph, each vertex is labeled with

a binary string of length n. The two parameters n and d are directly related to the

computational e�ciency of the system in generating random bits: larger n means a

longer output string and more random bits, and larger d means faster convergence to

the uniform distribution and thus a shorter walk to reach the same level of closeness to

the uniform distribution (see Theorem 3.5.1). However, there are some considerations

in choosing these parameters: first of all, because the graph is the basis of the game’s

visual presentation to the user, one needs to consider the usability of the system and

so the choice of n and d should take this factor into account. In Section 4.2.3.1,

a solution for overcoming the visualization restrictions is suggested. Nevertheless,

storage limitations of the computer may cause other constraints on choosing these

parameters as storing a graph construction with a large number of vertices on a

computer requires a relatively large amount of available memory on the computer.

The other essential requirement for the proposed TRNG is that the steps of the
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random walk must correspond to an independent and uniformly distributed random

variable. Experimental results in [HN09, Wag72] show that bias will increase in the

human player’s choices for larger sets of possible choices as human beings naturally

tend to avoid picking end points. This implies a restriction on choosing relatively

large values for d.

Example 4.2.1 Suppose a sequence of 64 random bits that is 2�18-close to a uniform

sequence is required for a real world application (e.g. to construct a cryptographic

key). Using the proposed TRNG requires constructing a d-regular expander graph

with 264 vertices. According to Theorem 3.5.1, there exists an explicit construction

for expander graphs named Ramanujan graphs that, for large amounts of N (number

of vertices), have a second largest eigenvalue, that is approximately equal to � ⇡
2
p
d� 1

d
. To find the required number of random walks for obtaining the desirable

random sequence, we need an estimate for the min-entropy of the user’s initial choices.

Assume the amount of existing min-entropy is 0.6 per bit (38 bits in 64 bits) that is the

estimated min-entropy of human players in [HN09]. For the choice of d = 3, � ⇡ 0.92.

In this case, for obtaining 64 bits that are 2�18-close to uniform distribution:

2�19  1

2
0.92`

p
64(2�19.2 + 2�32)

) ` � 14.3 ) ` = 15

Table 4.1 lists the number of required random walks for di↵erent amounts of d to

get 64 random bits that are 2�18 close to uniform distribution. As the table shows,

the number of required rounds significantly decreases as d grows.

4.2.3 Game Design

A two-player game based on the described approach is designed. For the game design,

a Petersen graph is used, which is a 3-regular graph with n vertices. The second
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d � `
3 0.92 15
5 0.8 7
7 0.7 4
10 0.6 3

Table 4.1: Number of required random walks (`) for di↵erent choices of d

largest eigenvalue of the adjacency matrix of this graph is 0.94. In the designed

game, initially, the graph is presented to the human player and the player chooses a

vertex out of 10 vertices. In the corresponding stage-game, the player is presented

with neighboring vertices and is asked to choose a vertex from neighboring vertices.

Both the initial stage-game and walk stage-games are an extension of the matching

pennies game. The human player plays against the computer player, and he/she

wins the game if his/her choice does not match the computer’s choice. Behavioural

strategy for simulating the computer’s player actions is used, that is, at each stage

of the game the computer player plays its optimal strategy. The optimal strategy is

choosing an action uniformly. Thus, a PRNG is used for determining the computer

player’s actions.

4.2.3.1 Visualizing large graphs

The number of required random bits for real world applications is relatively large, e.g.

64 bits. However, the proposed game will generate at most log 10 ⇡ 3.3 random bits.

One way to generate the appropriate sequence is to iterate the game (consisting of

initial stage-game and walk stage-games) until 64 bits are generated. This method,

however, is not practical as in this example one needs to play the game roughly 21

times, which is neither e�cient nor interesting. Instead, for generating long random

sequences of length n, it is preferred to start with a large graph having 2n vertices and

ask the human player to choose a vertex. In this case, the player only needs to play a

few walk stage-games for generating the appropriate random sequence. Nevertheless,
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with the proposed approach for game design, visualizing the whole graph on the screen

would be a challenge.

For solving the visualization problem for generating sequences of length n, Con-

struction 3.5.2 (p-cycle with inverse chords) is used for the expander graph where p

is the smallest prime number smaller than 2n. All the vertices of the initial graph are

presented as 2-dimensional points on the screen labeled from 0 to p� 1. In the initial

stage-game, the player is just asked to pick a location on the screen. This choice is

mapped to one of the vertices of the original graph. Subsequent walk stage-games are

just a simple zero-sum game, such as Roshambo with 3 possible actions for players.

Since the neighbour vertices of vertex x in (p-cycle with inverse chords) expander

graphs are x�1, x+1 and x�1, each of the player’s choices is mapped to one of these

vertices. For example:

Rock x� 1

Paper x+ 1

Scissors x�1

The final output is then calculated by following this mapping.

Example: For p = 17, suppose a player’s initial choice corresponds to a vertex

with the label 10 and the subsequent choices in Roshambo are: Paper, Paper and

Rock. Using the above mapping, the sequence of random walks is as follows:

10
Paper���! 11

Paper���! 12
Rock���! 11

Thus 11 is the output of this random walk process.

Remark 4.2.1 Enlarging human choices in the initial game can significantly decrease

the initial entropy as the player will avoid choosing corner points due to experiments

in [HN09, Wag72]. Our suggestion is using a continuous circle instead of the whole

screen in the initial stage-game so that each point on the circle represents a graph
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vertex. The user chooses a random point on the circle, which corresponds to a random

point in the initial stage-game and continues to walk stage-games as described above.

The advantage of a circular representation of the graph is that all the vertices have

almost equal chance of being selected by the human player as there is no corner to be

avoided. However, it is likely that players have bias in their choices of points . To

avoid this, we randomly change the corresponding number to each point at each round

of the game. Therefore, the player’s initial min-entropy would become larger by using

this game.

4.3 Simulating one of the Players by Computer

Although the designed game can be played by two players, in some systems, such

as a Personal Digital Assistant (PDA), private randomness is preferred as a second

player may not always be available. Furthermore, any communication for generating

randomness might be eavesdropped, which is not desirable if the random value is

supposed to generate a cryptographic key. Thus, it is natural to simulate one of the

players in the game by a computer.

Two di↵erent algorithms are used for simulating one of the players. One of the

algorithms simply uses a pseudo random sequence for determining the player’s actions

while the second algorithm adaptively picks an action based on the opponent’s game-

play. Game theory is used to analyze the human player’s expected actions against

each of these algorithms and to find the equilibrium of the game. In Chapter 5, the

theoretical predictions are compared with experimental results.

4.3.1 Algorithm “A”: PRNG on the Computer Side

In this algorithm, the output of a PRNG determines the computer player’s choices.

These choices will look uniformly random to the human player. The human player is
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not able to remember long sequences. Thus, there is no need to use a cryptographic

PRNG for this application, as the output of even weak PRNGs looks uniformly ran-

dom to human players. In this case, the game is analyzed as an imperfect information

game with behavioural strategy.

In an extensive form game, which is obtained from a finitely repeated game, some-

times players do not know all the actions of the other player or cannot recall all their

past actions. In this case, some nodes in the game tree (Section 2.5.3) are indis-

tinguishable to the player simply because (i) the player does not have the sequence

of previous actions and (ii) the available actions in the indistinguishable nodes are

identical. These types of games are called imperfect information games. Each group

of indistinguishable nodes forms an information set. Behavioural strategies in the ex-

tensive form game are the strategies in which each agent’s (potentially probabilistic)

choice at each node is made independently of his/her choices at other nodes.

This algorithm does not use any history of previous actions. Thus, the game is

an imperfect information game and the computer player’s information set consists

of all the nodes that require its action. Since the action at each node is made inde-

pendent of other nodes, the computer’s strategy is considered a behavioural strategy.

Repeating a Nash strategy in each stage-game will be an equilibrium in behavioural

strategies simply because a Nash strategy is the optimal strategy at each node. The

human player may remember the previous 1 or 2 actions nevertheless, because of

the symmetry of the game and the computer player’s random strategy, this will not

change his/her optimal strategy which is playing uniformly randomly.

Note that one can view the game with a PRNG on the computer side as a non-

repetitive game: at each stage the computer’s choices are independent of previous

actions, and the human player does not need to remember previous actions (because

this will not change his/her optimal strategy).

56



4.3.2 Algorithm “B”: Predictor Algorithm on the Computer Side

For two-player zero-sum repeated games, the folk theorem (Theorem 2.5.2) is still true

[OR94, Proposition 156.1], but it becomes vacuous. Suppose we iterate a two-player

zero-sum game G with payo↵s U and �U . If each of the players uses a minimax

strategy against the opponent, the maximum payo↵ is U . Thus in the iterated game,

the only Nash-equilibrium payo↵ profile is (U, –U) and the only way to get this is

if each player always plays his/her minimax strategy, which is randomizing over the

possible actions with uniform distribution. Thus, a Nash equilibrium strategy is

optimal if the other players also use the Nash equilibrium strategies. In reality,

however, players will not use Nash equilibrium strategies simply because they may

be trying to predict the opponent’s actions. In this case, the player who can predict

better and plays more unpredictably wins the game.

The attempt to predict the opponent’s action naturally appears when a human is

involved in playing the game. This makes the game more competitive and thus more

interesting.

To have a more realistic simulation of the human player, a predictor algorithm

named “Iocaine Powder” [Egn00] by Dan Egnor is used. This algorithm took the

first place in the “First International Roshambo Programming Competition”. This

algorithm uses a heuristically designed compilation of strategies and attempts to

predict what the opponent will do. Thus, the optimal strategy or metastrategy is

chosen based on past performance. The main strategies that are employed in this

algorithm are random guessing, frequency analysis, and history matching:

• Random guess

The algorithm may choose a move by random selection. This algorithm

can be called a hedge. If somebody predicts and defeats this algorithm,

it means that he/she is able to predict the output of the PRNG, which
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is assumed to be impossible. At that point, the meta-strategy will

make sure that the program “eliminates its losses” then starts playing

randomly to avoid a destructive loss.

• Frequency analysis

The frequency analyzer looks at the players’ past actions to find the

move they have made most frequently to predict their future moves.

However, it is not very useful against complex opponents. It can be

used to defeat other competitors who use it as a predictive method.

• History matching

This is the strongest predictor in the Iocaine Powder algorithm, and

several forms of this technique are used in other strong entries. This

algorithm looks for an order in the history similar to the last few moves.

For instance, if in the last four moves, the player played paper against

rock, scissors against scissors, rock against paper, and scissors against

rock, the algorithm will look for sequences in the history when the same

four moves happened. In fact, a sequence of the last 30 moves by the

opponent is considered superior to the last four moves. When such a

sequence is found, the history matcher assesses the opponent’s move

after that sequence and assumes they will make the same move in the

future.

Once the history is created, this predictor can easily defeat a broad

range of weak contestants. The use of meta-strategy allows this algo-

rithm to defeat other strong opponents.

This algorithm is used in the second experiment in Chapter 5, where the human

player plays Roshambo against the computer repeatedly and then the final output of

58



the TRNG is calculated based on the user’s choices.

4.4 Enlarging Choices of the Human Player

So far, we have considered the game in which the number of actions for both players

is equal and the optimal strategy for both players is to play uniformly randomly.

When the game is played against a computer, this e↵ectively means that the com-

puter should make a random choice for any random move of the human player. The

computer’s random choice is provided by a PRNG. When the number of actions for

both players is equal, any generated randomness by the human requires an equivalent

amount of randomness from the computer. This puts the e�ciency of such a human

based RNG into serious doubt.

Note that in the proposed TRNG, the equality of the actions for both players

will not disturb the e�ciency of the TRNG, as truly random bits are obtained from

human choices even if we spend some pseudo random bits for the computer player’s

choices. In other words, the quality of generated randomness is improved by the

proposed game design. Moreover, by using algorithm “B” (Section 4.3.2) the amount

of required pseudo random bits is much less than the generated bits.

Halprin et al. [HN09] use the two dimensional extension of the matching pennies

game (named Hide and Seek) to enlarge the choices of the players and subsequently

increase the number of generated random bits in one round of the game. Since in

this approach, the number of available actions for both of the players is equal, the

game is not an e�cient way of generating randomness from human gameplay. In

other words, this approach cannot produce more random bits than what is spent on

the computer player’s side. For example, assume there are 2n locations on a two

dimensional screen and each player is asked to choose one of the locations. The

computer player wins if the choices match and the human player wins otherwise.

59



The computer player’s actions are determined by a PRNG. Suppose the PRNG on

the computer side generates 2n�1 instead of 2n outputs. As a result, the computer

player only chooses half of the locations on the screen. For example, the computer

player chooses locations on the right half of the screen. The human player after a

while figures this out and chooses locations on the left half of the screen to avoid

matching the choices. Therefore, the generated random bits by the human player,

corresponding to his/her choices in the game, would at most be n� 1 bits.

In a two-player computer game, if we provide the human player with more choices

than the computer player, he/she can generate more random bits than a computer

player. For this purpose, we suggest using a non-cooperative game in which the

number of available actions for one of the players (the human player) is more than

the other player (the computer player). The important issue in designing such a game

is setting the payo↵s so that randomly choosing among possible actions becomes the

human player’s best strategy.

For setting the payo↵s in the desired game, let’s assume the computer’s strategy is

pre-determined (i.e. we know the probability distribution over the computer player’s

available actions). The payo↵s are set such that they lead the human player to play

uniformly randomly over the available actions.

Suppose the size of action profile (Definition 2.5.1) for the human player is n and

for the computer player is m, with m < n. We assume a
ij

is the payo↵ for the first

player resulting from picking the ith action by the first player and jth action by the

second player, and b
ij

is the corresponding payo↵ for the second player. Table 4.2

shows the payo↵ table of a general two-player game between the human player and

the computer player.

Assume that the computer player picks action X
i

with probability of p
i

, thus we

have
nP

i=1
p
i

= 1.
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Human � Computer X1 X2 ... X
n

Y1 a11, b11 a12, b12 ... a1n, b1n
Y2 a21, b21 a22, b22 ... a2n, b2n
...
Y
m

a
m1, bm1 a

m1, bm2 ... a
mn

, b
mn

Table 4.2: Payo↵ table of a general two-player game

In order to gain the mixed strategy, the computer player has to randomize its

moves to make the human player indi↵erent between his/her choices, i.e.

8i :
nX

j=1

p
j

a
ij

= K

where K is an arbitrary constant.

On the other hand, we want the human player to make the computer player indif-

ferent between its choices by playing each action with probability of
1

m
. Consequently:

8j : 1

m

mX

i=1

= K 0

where K 0 is another arbitrary constant.

The above criteria do not specify unique payo↵s for the game, but any set of

payo↵s satisfying those criteria will result in the desired Nash Equilibrium.

Example 4.4.1 Consider the following extension of matching pennies: A human

player has 4 colors to choose from. Two of these colors are warm colors (Red and

Yellow), and the other two are cold (Blue and Green). The computer player has only

2 choices: warm or cold. If the computer player guesses the kind of the color picked

by the human player correctly, then it wins, otherwise the human player will win.

Satisfying the mentioned criteria, we have adjusted the payo↵s of the game so that

the best strategy for the human player is to pick each color with a probability of 1
4 .

The payo↵ table is shown in Table 4.3.

The Nash Equilibrium of this matrix game can be calculated using a “graphical

solution” or alternatively linear programming [BOC+95]. The Nash equilibrium is
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Cold Warm
Red (1,2) (-1,-2)
Blue (-3,1) (3,-1)
Yellow (4,-3) (-4,3)
Green (-2,4) (2,-4)

Table 4.3: Payo↵ table for color picking game

equal to 1
4 , which means the human player will play uniformly randomly. We interpret

each color as 2 bits assigned in Table 4.4.

Color Output bits
Red 00
Blue 01
Yellow 10
Green 11

Table 4.4: Mapping human choices to binary strings

By playing this game in each round, we will get 2 random bits while the computer

has used just one random bit. After several rounds, we can generate twice as many

random bits than the computer.

4.5 Comparison to Halprin et al. approach

Initial psychological experiments on human random gameplay confirmed that human

actions in competitive zero-sum games correspond to almost uniform randomness.

However, available actions in these games were limited to a small number (2 or 3

choices) [RB92]. Halprin et al. [HN09] used an extension of the matching pennies

game in which available actions are from a two-dimensional action space. Players were

asked to choose a location on the screen, one of them wins when the choices match, and

the other wins otherwise. This extension is done to increase the entropy rate as more

available actions will collect more entropy and eventually generate more random bits.
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Despite the theoretic expectations, experiments in [HN09] showed that human players

avoid choosing corner locations in their designed game. To compensate for the bias

of human choices, a seeded randomness extractor was used to extract randomness

from the human player’s choices in the game. They used a t-resilient extractor to

ensure the extraction procedure is resilient against limited adversarial influence on

the entropy source after the public seed is chosen. To provide su�cient entropy

for randomness extraction, the human player has to play the game for a relatively

large number of time. This requirement decreases the speed and e�ciency of the

randomness generation process. For better e�ciency, the output of the extractor is

given to a robust PRNG that uses the extracted randomness for state refreshment

and generates s longer random sequences. Table 4.5 shows a setting of parameters in

Halprin et al.’s game design.

Parameter Value
Output(bits) 128
Required clicks 28
t resiliency 46

Random seed (bits) 15232
Initial state of PRNG (bits) 128

✏ closeness to uniform 2�64

Table 4.5: Parameters setting in Halprin et al.’s design

The length of the required seed for Halprin et al.’s extractor is relatively long

and providing this random seed itself needs a TRNG. This creates a loop in their

construction. Nevertheless, the output is a pseudo random sequence which means

that the quality of the generated randomness is decreased from true randomness to

pseudo randomness. Moreover, when one of the players is simulated by a computer,

a PRNG should generate a sequence of actions for the computer player.

In contrast, in the proposed game-theoretic based game design, the human player

has a few choices in each round of the game while the entropy rate is still high and
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long sequences of random bits are generated. The randomness extraction is done as

part of the game design with no need for an extra seed, and furthermore, the number

of rounds that are required to be played is significantly less than what is required in

the simple form of the matching pennies game.

In the proposed two-player game, we can simulate one of the players with a com-

puter. In this case, however, the amount and quality of the generated sequence is

improved. Note that the number of random bits used by the computer player is de-

termined by the number of required random walks, which is significantly smaller than

the final generated random sequence.

Table 4.6 demonstrates a parameter setting in the proposed game design for com-

parison with Table 4.5.

Parameter Value
Output(bits) 128

Required stage-games 37
d-regularity 5

Random seed (bits) not required
✏ closeness to uniform 2�64

Table 4.6: Parameter setting in our design

Another advantage of the proposed game is that it can adjust to some of the pop-

ular and respectively interesting two-player games (such as Roshambo) while Halprin

et al.’s approach needs a new design of a two-player game with the supporting game-

theoretic analysis to show the optimal strategy is uniform. The new game is supposed

to be interesting, even though ultimately the users decide if the game is interesting.
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Chapter 5

Experiments and Results

5.1 Introduction

As mentioned in Section 4.2.2, a TRNG consists of two modules: (i) an entropy source

that generates a sequence of symbols and (ii) a randomness extractor module that

transforms the input from an entropy source into an almost uniformly distributed

sequence. The parameters of the extractor module directly depend on the minimum

available min-entropy in the entropy source. By conservatively estimating the min-

entropy, one can guarantee a reliable design of the extractor module. The output of

the TRNG is finally evaluated using statistical tests to ensure appropriate function-

ality of the designed TRNG.

In this chapter, the output of the proposed TRNG is assessed. Two di↵erent

games with the same structures are designed for this purpose. One is a graphical

game, named Wolf and Sheep, in which the human player is initially asked to choose

a vertex on a Petersen (10 vertex, 3-regular) graph. In the subsequent walk stage-

games, the player chooses a vertex from 3 neighbors of the previously selected vertex.

In each stage-game, the player wins the game in case of a mismatch. The other game

is called C-Roshambo, which is choosing a location on a circle followed by the regular

Roshambo game for a number of rounds 1. The theoretical approach, proposed in

this thesis, enables us to generate random sequences from human gameplay in these

two games. The details of the game design and the final evaluation of the output are

explained in this chapter.

1
The University of Calgary Conjoint Faculties Research Ethics Board has approved this research

study
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5.2 Game Design and Experiment Set-up

In this chapter, two di↵erent simple games are designed to examine the proposed

TRNG: Wolf and Sheep and C-Roshambo. Each game is played between a human

and a computer player. For estimating the min-entropy of human choices in the initial

stage-game, a separate sub-game is designed for each of the main games. The potential

players were contacted, and the willing players participated in the experiment. The

set of players who participate in the first game (Wolf and Sheep) is di↵erent from

those who participate in the second game (C-Roshambo). Nine players played the

first and seven players played the second game. All of them were graduate computer

science students at the University of Calgary. The instructions of the game were

explained to the players. Each player was asked to play each game for at least 1000

rounds, trying his/her best to win the game. This is su�cient to run the required

min-entropy and statistical tests. The objectives of the experiments are as follows:

1. Estimate the min-entropy of human choices in the initial stage-game,

which is required for an appropriate design of the extraction module

for the TRNG. With regards to Theorem 3.5.2, the number of required

random walks on the expander graph, and consequently the number of

walk stage-games is only determined if the min-entropy of the input is

lower-bounded.

2. Examine the statistical properties (e.g. min-entropy) of the user’s ran-

dom walks to verify whether they are a good approximation of uniform

random walks.

3. Examine the statistical properties of the final output.

4. Compare the output’s statistical properties with that of a pseudo ran-

dom sequence generated by the computer to show the generated random
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sequence is more random than what is used for simulating the computer

player.

Remark 5.2.1 The only requirement for the players is to be able to play the game

rationally to maximize their overall score in the game. Students are participants who

can play rationally and thus are appropriate participants for the experiment.

5.2.1 First Game: “Wolf and Sheep”

This game is a version of matching pennies in which a human player tries to hide

his/her sheep from the computer’s wolf. A Petersen graph, which is a 3-regular graph

with 10 vertices is used as the expander graph, for the game design. In the initial

stage-game, the human player chooses one of the 10 vertices of the presented graph.

This will place a sheep on the chosen vertex (Figure 5.1a). The computer responds

by placing a wolf on a random vertex. The player loses if the wolf and sheep are on

the same vertex. Otherwise, he/she wins the game. If the player wins, then the game

will highlight vertices that are adjacent to the selected vertex (marked by the stars

in Figure 5.1b). Then the same game is played again, but this time, the available

actions are only the highlighted vertices, instead of all the vertices. The same as the

initial game, the user wins (Figure 5.1c) if the choices are di↵erent and loses otherwise

(Figure 5.1d). The final winner of the game is the player with a higher final score.

Note that in the initial stage-game the number of possible actions is equal to the total

number of vertices (10), and in the walk stage-games the number of possible actions

is equal to the number of neighboring vertices (3).

The game is implemented using HTML 5 technology so that it can be run and

played on any system with an Internet browser and even on touchscreen devices, such

as tablets or smartphones. From now on we refer to the experiment related to this

game as Experiment I.
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(a) Game start

(b) Initial vertex selection

(c) First step of random walks (d) Computer wins

Figure 5.1: Wolf and Sheep game
[ASNS13, Figure 1]

5.2.2 Second Game: “C-Roshambo”

This game is for generating long random sequences. Since the corresponding expander

graph for this purpose is too big (i.e. has too many vertices). The whole graph

is never presented to the player. Instead, the player is asked to choose a random

location on a circle to start the game (Figure 5.2a). This initial selection corresponds

to some unknown distribution that provides initial min-entropy for the TRNG. In

the subsequent stage-games, the player is asked to play the basic Roshambo game

(Figure 5.2b). The optimal strategy for winning Roshambo is to play uniformly

randomly. Thus, the actions of a rational player in these stage-games determine a

random walk on the expander graph. For generating random 8-bit sequences, 251

points (which is the largest prime number less than 28 = 256) are specified on the

circle and Construction 3.5.2 is used for the expander graph. Each of the points are

mapped to an integer from 0 to 250. For increasing the min-entropy of the player’s

choices, the corresponding numbers to each point are changed for each round of the
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game. As explained in Section 4.2.3.1, the final output of the TRNG is determined

by tracking the sequence of choices in the Roshambo game.

(a) Initial Game

(b) Roshambo

Figure 5.2: C-Roshambo Game

This game is implemented in Java and one can run and play it on any Android

device. We refer to experiment related to this game as Experiment II.

5.3 Entropy Estimation

To measure the min-entropy (or Shannon entropy) of a source, initially, one needs

to figure out whether the source is an IID source. For an IID source, having enough

samples from the source allows estimating the probability distribution of the source

with high confidence by estimating the occurrence probability of the most repeated

sample. Shu✏ing tests and Chi-square tests check whether the source follows an

IID distribution. If any one of these tests fails, then the source is considered a non-
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IID source, and the min-entropy is estimated through the corresponding tests for a

non-IID source (Section 2.3.2).

Any anomaly in the source should be detected before applying IID and non-IID

tests. Otherwise, the min-entropy would be over- or underestimated. NIST defines a

set of sanity checks to prevent this. The sanity checks contain two tests: a compression

test and a collision test. No estimation will be given if the sanity checks fail.

For the experiments in this thesis, an uno�cial version of the NIST tests for

entropy estimation are obtained (the code is not released yet) and used to estimate

the min-entropy of the user’s inputs. It is admitted in [BK12, Section 9.3.1] that

the approximation from the NIST tests are very much dependent on the number of

samples given to the tests (which is quite intuitive and acceptable). In our case, the

subset of users and consequently the sample size is relatively small which implies a

very conservative estimate of min-entropy for our experiment.

5.3.1 Entropy Estimation in the Initial Stage-Game

To measure the min-entropy of the initial stage-game, an independent sub-game is

designed for both of the experiments. The players are asked to play this initial game

for at least 1000 times that is su�cient for estimating the min-entropy of player’s

choices in the initial stag-game.

5.3.1.1 Entropy Estimation of Initial Stage-Game in the “Wolf and Sheep” Game

In Experiment I, players are asked to initially play the designed separate sub-game.

The min-entropy of player’s choices in this game is indeed, the min-entropy of the

player’s initial selection of a vertex on the graph in the main game. At each round of

this game, the player is asked to choose a vertex out of 10 existing vertices and wins

if his/her choice does not match the computer’s. Table 5.1 shows the estimated min-

entropy of 9 users who played the described game for some rounds. NIST tests showed
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that users’ inputs to this game are not following an IID distribution. Therefore, the

min-entropy is estimated using tests for a non-IID source (Section 2.3.2). The first

row is the number of total shots played by each user and the second row is the

min-entropy of the player’s choices per bit.

User 1 2 3 4 5 6 7 8 9
Total shots 1770 2141 3980 3439 2021 652 1685 905 983

Min-entropy (per bit) 0.45 0.49 0.61 0.65 0.52 0.49 0.47 0.55 0.51

Table 5.1: Min-entropy of users’ input in the first stage-game of Wolf and Sheep game
[ASNS13, Table 1]

In conclusion, for the first stage-game the lowest min-entropy is 0.45 per bit, and

on average a min-entropy of 0.52 per bit is expected. This amount of min-entropy is

su�cient to: 1) consider user provided inputs to the first stage-game of Experiment I

as an appropriate entropy source and 2) design the rest of the TRNG based on the

estimated min-entropy.

5.3.1.2 Entropy Estimation of Initial Stage-Game in the “C-Roshambo” Game

The designed sub-game for Experiment II is selecting a location on a circle for col-

lecting random scores. This sub-game is designed for estimating the min-entropy of

player’s choices in the initial stage-game of the main game. Seven players played this

game. The min-entropy of player’s choices on the circle is estimated by NIST tests.

The tests showed that player’s choices do not follow an IID distribution. Thus, the

min-entropy is estimated using tests for non-IID sources. The results are showed in

Table 5.2.

User 1 2 3 4 5 6 7
Total shots 1093 731 987 1000 993 1115 2163

Min-entropy (per bit) 0.58 0.61 0.42 0.56 0.47 0.44 0.54

Table 5.2: Min-entropy of users’ inputs in first stage-game of C-Roshambo game
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The lowest min-entropy is 0.42 per bit and on average we expect 0.52 per bit

entropy. This amount of min-entropy is su�cient to: 1) consider user provided inputs

to the first stage-game of Experiment II as an appropriate entropy source and 2)

design the rest of the TRNG based on the estimated min-entropy.

5.3.2 Entropy Estimation of Random Walks

To use an expander graph as an extractor for randomness extraction, random walks

should follow a uniform distribution (Section 3.5.1). In both of the designed games,

the human player’s random choices in walk stage-games are used for doing a random

walk. In spite of theoretical expectation, the human player’s choices in these stage-

games are not uniformly random. However, because of the particular design of the

games (in which playing uniformly random is the optimal strategy), the sequence

of the human player’s choices is very close to uniform randomness. The result of

experiments in this section verifies that the sequence of the human player’s random

walks in both designed games has high min-entropy and thus is appropriate for using

as random walks to extract entropy from the initial game.

The players are asked to play the walk stage-game for at least 1000 rounds. Data

from game play of participants is collected, and the corresponding min-entropy for

both games is estimated.

5.3.2.1 Entropy Estimation of Walk Stage-games in Wolf and Sheep Game

In this experiment, NIST tests for IID sources are passed for player’s inputs in walk

stage-games. Therefore, the tests for IID sources are used for estimating the min-

entropy of the data. Table 5.3 shows the estimated min-entropy for each player during

the walk stage-game in Experiment I.

From the above table, the average expected min-entropy in walk stage-games for

Experiment I is 0.68 per bit. One can compare the average expected min-entropy
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User 1 2 3 4 5 6 7 8 9
Total shots 370 369 1009 1786 560 1071 4821 1190 1065

Min-entropy (per bit) 0.49 0.51 0.64 0.75 0.78 0.72 0.83 0.61 0.79

Table 5.3: Min-entropy of users’ inputs in walk stage-games in “Wolf and Sheep”
[ASNS13, Table 3]

of two tables or the amount of min-entropy for each player in Table 5.1 and Table

5.3 to confirm that the min-entropy of the human player’s choices is more when the

alternatives are less. Relatively high min-entropy of players’ choices in these stage-

games validates our assumption regarding uniformity of choices in walk stage-games.

5.3.2.2 Entropy Estimation of Walk Stage-games in C-Roshambo Game

The human players were asked to play two types of C-Roshambo game, each for at

least 1000 times. The computer player is once simulated with a PRNG (Algorithm

“A”) and once with the “Iocain Powder” algorithm (Algorithm “B”) (Section 4.3).

A very weak PRNG for simulating the computer’s player is used in the first case. In

particular, a 5-bit maximum length LFSR with a period of 31 states was utilized for

this purpose. This LFSR takes taps from 3rd and 5th bits, and the initial seed value

is 10110.

NIST tests for IID distribution were passed for user’s inputs in these walk stage-

games, and so the samples are considered as an IID samples for min-entropy estima-

tion. Table 5.4, shows the min-entropy of human players’ choices in walk stage-games

of Experiment II, once playing against Algorithm “A” and once against Algorithm

“B”.

User 1 2 3 4 5 6 7
Total shots playing against “A” 1034 948 1171 1000 1016 939 1592

Min-entropy (per bit) 0.64 0.55 0.61 0.32 0.57 0.49 0.74

Total shots playing against “B” 1098 1112 976 1000 1240 1458 832
Min-entropy (per bit) 0.73 0.65 0.58 0.44 0.79 0.62 0.67

Table 5.4: Min-entropy of users in walk stage-games in “C-Roshambo”
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The expected average min-entropy for player’s choices against Algorithm “A” is

0.56 per bit and for playing against Algorithm “B” is 0.64 per bit. This shows that the

min-entropy of the human player’s actions is more when playing against Algorithm

“B”, that is the human player plays more randomly against Algorithm “B”. This

observation is intuitive as Algorithm “B” indeed gives feedback to the player on

his/her previous actions. Any predictability in the player’s actions is exploited by

the computer and concludes in the player’s loss of the game. Thus, the human player

modifies his/her actions to become unpredictable and therefore wins the game.

The other point to note is that, because of the short period of the LFSR, none

of the random tests are passed for its output and its estimated min-entropy is very

small (0.08 per bit). However, the results of experiment in this chapter show that the

human player plays randomly even against this weak PRNG.

5.4 Measuring Statistical Property of the Output

To examine statistical properties of a sequence, the statistical tests in a battery of

tests called Rabbit [LS07] are used. The Rabbit set of tests includes tests from

NIST [RSN+01] and DIEHARD [Mar98] with modified parameters tuned for smaller

sequences and hardware generators.

5.4.1 Evaluating the Output of the “Wolf and Sheep” Game

Using the results in Theorem 3.5.2, the distribution of the final output of the Wolf and

Sheep game will be ✏-close to uniform distribution if the walk is uniformly random.

The previous experiments (Section 5.3.2) showed that the human player’s actions

in walk stage-games are almost uniformly distributed, and there is a min-entropy

guarantee on the actions of the players in the initial stage-game. Consequently, we

expect to have a random sequence as the output of the game (which in fact is the
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output of the designed TRNG). The set of statistical tests on the final output is run,

and the results are summarized in Table 5.5. The data in the table is from a sample

player.

Statistical Test p-value
LinearComplexity 0.51

LempelZiv 0.73
SpectralFourier 0.34

Kolmogorov-Smirnov 0.23
PeriodsInString 0.13
HammingWeight 0.55

HammingCorrelation 0.69
HammingIndependence 0.29

RunTest 0.60
RandomWalk 0.67

Table 5.5: Statistical tests for the “Wolf and Sheep” game
[ASNS13, Table 2]

The numbers in Table 5.5 are the p-values of each test. The details of p-value

calculation are given in [LS07]. In statistical studies with a limited dataset, it is

possible to fix an acceptance margin for p-values (for example 0.05 or 0.001) and

accept the randomness of the sequence only if the p-value is not in the margin area.

However, it is often recommended to report p-values as well, because this provides

more information than reporting an “accept” or “ reject” based on the fixed margin.

For our case, we set the margin of p-value to be 0.001. Thus, the test is passed if

these values are more than 0.001 or less than 0.999. Therefore, the tests in Table 5.5

are passed for our dataset.

The data from other players is also examined with all statistical tests, and all the

tests were passed for other player’s data. Overall the experiments show the viability

of the proposed approach in practice.
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5.4.2 Evaluating the Output of the “C-Roshambo” Game

Besides statistical tests, the output min-entropy of an arbitrarily chosen sample user

(user 1) is estimated to compare it with the initial min-entropy in the first stage-game:

Game Estimated min-entropy
Initial stage-game 0.58 per bit
Playing against “A” 0.63 per bit
Playing against “B” 0.71 per bit

Table 5.6: Min-entropy comparison of user 1’s input and output

Table 5.6 shows that the min-entropy of the TRNG’s output is more than the

min-entropy of the initial input. This means that the output of the TRNG is more

uniformly distributed than its initial input. This is because of using random-walks

in the walk stage-games. As expected, when the computer player is simulated by

Algorithm “B”, the output’s min-entropy is larger than the min-entropy of the output

when Algorithm “A” is used. This shows that the TRNG’s output is more random

when Algorithm “B” determines the computer player’s choices. This is because the

human player plays more randomly against Algorithm “B” that provides feedback on

his/her actions. Similar to the previous game, the set of statistical tests are run on the

final output of C-Roshambo when the computer player is simulated with Algorithm

“B” (Iocain Powder algorithm). The results are summarized in Table 5.7, which is

generated from an arbitrarily chosen sample user’s inputs (user 1).

The amount of the p-values for the above tests shows that the randomness tests

are passed for the output of the designed TRNG. The statistical tests were run for

the other user’s data as well. The PeriodsInString test failed for user 4. It is probable

that this user has followed a specific pattern during his/her gameplay. However, the

overall results of the experiments are close to our expectation from human player’s

gameplay.
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Statistical Test p-value
LinearComplexity 0.33

LempelZiv 0.18
SpectralFourier 0.49

Kolmogorov-Smirnov 0.81
PeriodsInString 0.21
HammingWeight 0.55

HammingCorrelation 0.76
HammingIndependence 0.08

RunTest 0.67
RandomWalk 0.42

Table 5.7: Statistical tests for “C-Roshambo” game

5.5 Conclusion

Two games were designed and implemented for doing experiments on the proposed

TRNG. The min-entropy of player’s actions in the initial stage-games and correspond-

ing walk stage-games were estimated. The results show that human actions in walk

stage-games are an appropriate choice for doing a random walk on an expander graph.

The statistical properties of the final output were also tested. In spite of limited sam-

ple data, modified statistical tests passed for player’s provided data which confirms

the TRNG output is su�ciently random.

The results of experiments with the second designed game, C-Roshambo, showed

that a human player plays more randomly against a predictor algorithm that tries

to predict his/her actions based on the history of previous actions. Subsequently,

the output of the TRNG is more random when a predictor algorithm is simulating

the computer player’s actions. However, the output of the TRNG is still considered

random when a PRNG simulates the computer’s actions. Even using a weak PRNG

does not change this conclusion. The justification is that since a human is not able

to detect patterns in a weak PRNG, he/she plays as if the computer’s actions are

uniformly random. A critical point here is that the output of the designed TRNG
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(generated by human gameplay) is much more random than the initial PRNG.
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Chapter 6

Conclusion and Future Works

The main contribution in this thesis was proposing a new TRNG that is capable of

using the human player’s input as the only source of randomness. This TRNG is

mainly a two-player game that takes human gameplay as the input and generates

a sequence of random bits. We designed and implemented two games as a proof of

concept for the proposed TRNG. The results of statistical tests on the output of the

TRNG confirm its e�ciency and applicability.

6.1 Concluding Remarks

Random number generators are an important part of any security system. Good ran-

domness guarantees the security of cryptographic protocols. User based randomness

generation is preferable to other ways of randomness generation especially in shared

environments like cloud services. In such environments other traditional sources of

entropy (e.g. hardware consisting of CPU and RAM) are shared among users and

consequently user based random generation is the only way that ensures generation

of non-correlated randomness. Moreover, randomness generation from users doesn’t

need any extra hardware for entropy collection which eases its application for various

systems with limited resources, especially hardware.

This work opens a new direction for independent randomness generation in shared

environments without any requirement for extra computational capability or random-

ness generation subsystems.
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6.1.1 Advantages of the Proposed TRNG

The proposed TRNG uses human gameplay, from interesting games, for generating

randomness which is interesting to users. The structure of this TRNG is very flexible

and can be fit to several popular games such as Roshambo. The only condition for

the game is that the optimal strategy requires the players to play uniformly randomly

for winning the game. The basic game of TRNG e↵ectively asks players to choose an

action among a group of alternatives. Although the proposed TRNG can generate

long random sequences, it always provides players with a few alternatives, except in

the initial stage-game. This feature causes human players to play more randomly

since they behave more predictably when choosing among many alternatives.

The game is capable of being played by two users. In this case, the generated

random sequence is completely independent from the computer. However, the game

can be played against a computer player as well. For this purpose, we require a

PRNG to simulate the computer player’s actions. The experimental results showed

that even very weak PRNGs are suitable for being used on the computer player’s

side because the human mind is unable to memorize relatively long patterns and thus

cannot distinguish between truly random sequences and pseudo random ones. In

other words, the experiments show that human players follow their optimal strategy,

which is playing uniformly randomly against a computer even if the computer uses a

weak PRNG for selecting its actions. One can also use a predictor algorithm on the

computer’s side for predicting the human player’s actions. In this case, the human

would play more randomly since the predictor algorithm indeed gives feedback to

the players on their previous actions. To summarize, we can say that dependency of

the proposed TRNG on computer randomness is minimized through an appropriate

game design. This feature is ideal for shared environments in which users require an

independent source of randomness for critical security applications.
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6.2 Future Works

There are a number of extensions and directions for future work. On a theoretical

side, characterizing a randomness extractor with guaranteed min-entropy on its seed

is an interesting open problem. In particular it is challenging to analyze non-uniform

random walks on an expander graph based extractor.

On the implementation and experimental side, for generating large strings, for

example 64 or 80 bit strings, we need to collect as much entropy as possible in the

initial round. Here one needs to find ways for enabling the user to make the initial

selection of the random value with “high” initial min-entropy. In this work, Roshambo

is used as a zero-sum game with 3 choices in walk stage-games. Other interesting

zero-sum games with a greater number of available actions will conclude in faster

randomness generation of the whole game. Creating an interesting game and interface

to encourage random selection will improve the e�ciency of the approach. The strings

generated by sample users were analyzed. Wider user studies are required to measure

min-entropy and statistical properties of strings at di↵erent stages (entropy source,

random walk and final output) as well as usability of the system.

A predictor algorithm such as Iocain Powder used in this experiment improved

human random behaviour by giving indirect feedback of the player’s actions. Better

predictor algorithms for simulating human players in zero-sum games will lead the

player to generate better unpredictable sequences.

Hardware faults or malicious tampering with entropy sources may result in biases

in the randomness source that are not easily detectable. Using human input protects

a system against such faults or malicious tampering. Providing a secure interface

for playing the game by two users allows randomness generation independent of the

computer and improves trustworthiness of the generated randomness.

This work is the first construction of a full TRNG that uses human gameplay as
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the entropy source and the seed for the extractor. Using human users to construct

TRNGs with a higher rate of randomness generation is an interesting direction for

future work.
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