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Abstract 

This thesis examined the performance of two popular fit indices used in structural equation 

modeling: the comparative fit index (CFI) and the root mean square error of approximation 

(RMSEA). Of interest were the indices’ sensitivities to different sources of misspecification as 

well as sensitivities to model components that may affect index behavior over and above 

misspecification. Index performances were evaluated in confirmatory factor analysis models 

involving one of three sources of misspecification: omitted error covariances, omitted cross-

loadings, or an incorrectly modeled latent structure. In addition, model components—including 

model complexity, loading size, factor correlation size, and model balance—were manipulated to 

determine their effects on index behavior. It was revealed that CFI is more sensitive to latent 

misspecifications, while RMSEA is more sensitive to misspecifications due to omitted error 

covariances. Both indices are affected to some extent by model components, particularly model 

complexity and loading size.  
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Chapter One: Introduction 

1.1 Structural Equation Modeling 

 Structural equation modeling (SEM) is a statistical modeling technique that lets 

researchers construct and test causal connections amongst variables. This is done by allowing the 

relationships between the variables to be expressed as functions of the parameters of a 

hypothesized model. In SEM, these relationships are expressed as the covariances (or 

correlations) between the variables.  

 SEM can be used to model relationships between latent variables (factors), between 

observed variables (indicators), or between latent and observed variables. These relationships 

can be expressed as a series of structural equations in which model parameters are estimated. The 

restrictions imposed by these parameters are then applied to a given sample to determine whether 

or not the model suggesting these parameters actually holds in the population from which the 

sample was taken.  

 Because SEM is a general method that comprises multiple different modeling techniques, 

the present research focuses solely on confirmatory factor analysis (CFA), one of the most 

commonly used types of SEM. A structural equation model typically comprises two main 

components: a structural model and a measurement model. In CFA, the structural model 

describes the relationships amongst the k factors while the measurement model represents the set 

of p indicators of the k factors (McDonald and Ho, 2002; Perry et al., 2015). A complete model 

is a combination of the structural model and the measurement model and serves as an expression 

of the causal connections amongst the factors as well as the causal connections between the 

factors and their relevant indicators. These connections are functions of the model parameters.  
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The model itself is a theory-based representation of how the variables within it relate to 

each other in reality. For example, suppose a developmental psychologist suspects that there is a 

relationship between mathematical intelligence and verbal intelligence (both latent factors) and 

that these can be measured by a child’s performance in various school-related processes (reading 

comprehension, math test performance, etc.). The psychologist’s model of the relationship 

amongst the two latent factors and four selected indictor variables is represented in Figure 1.1. 

 

 

Figure 1.1: A structural equation model relating two latent factors, Verbal Intelligence and 
Mathematical Intelligence, to each other and to four indicators (Reading Comprehension 
Score, Vocabulary Test Score, Basic Math Test Score, and Pattern Recognition Score).  

 

 The process of SEM involves estimating model parameters. Often, these model 

parameters include loading size, error variance, and factor correlation. Each indicator variable 

can be said to “load onto” or measure one or more of the latent factors. In the model presented in 

Figure 1.1, Reading Comprehension Score and Vocabulary Test Score both load onto the Verbal 

Intelligence factor, while Basic Math Test Score and Pattern Recognition Score load onto the 

Mathematical Intelligence factor. The values λ1, λ2, λ3, and λ4 represent loading sizes, or the 
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strengths of the relationships between indicators and factors. Loading sizes can be different for 

different pairs of indicator variables and factors.  

 Each indicator variable also has an error variance associated with it. In SEM, error 

variance is the portion of an indicator’s variance that does not covary with the latent factor, such 

as measurement error. In Figure 1.1, the error variances associated with each of the four indicator 

variables are denoted by ψ1, ψ2, ψ3, and ψ4.  

 In some cases, it may be suspected that latent factors are related to some degree. 

Researchers can include one or more factor correlations in their model to represent these 

relationships. In Figure 1.1, the psychologist suspects there is a relationship between Verbal 

Intelligence and Mathematical Intelligence, and this relationship is expressed in the factor 

correlation, φ12, between them.  

 Loading sizes, error variances, and factor correlations are all model parameters that 

represent the relationships amongst factors and indicators. Unless a researcher chooses to fix any 

of these parameters at certain values, the values of these parameters will be estimated in the SEM 

process. This estimation process is discussed in further detail in section 1.4.1.  

 SEM offers the ability to test these theory-driven models against empirical data, which is 

one of the main reasons the technique has grown in popularity amongst scientists in many 

different fields, including psychology, environmental science, and education (Fan et al., 1999). 

Another reason behind its popularity is its allowance for the modeling of latent variables. Many 

research problems, particularly those in the social sciences, require a way of relating measurable 

variables, or indicators, to related latent factors. 

 One of the most important components of the SEM process is assessing model fit: how 

well do the causal inferences contained in a hypothesized model (like the one proposed in Figure 
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1.1) reflect the actual relationships amongst the variables? Traditionally, the chi-square test 

statistic has been the sole criterion by which model fit is judged. However, notable problems 

arise with the test statistic’s performance in both large and small samples, under different 

estimation methods, and in cases where the underlying distributional assumptions are violated.  

 In response to these problems, a multitude of “goodness-of-fit” indices have been 

developed to aid researchers in accurately assessing model fit in situations where the chi-square 

may prove inaccurate. Due to their increased inclusion in popular SEM software, it is not 

uncommon for researchers to report one or two fit index values alongside a chi-square test 

statistic when evaluating the fit of a model.  

 However, use of these indices does not come without its own set of problems. One 

particular problem is the sheer number of indices available. Programs such as SAS, EQS, and 

LISREL are capable of printing upwards of a dozen indices in addition to the chi-square test 

statistic (Fan et al., 1999; Gerbing and Anderson, 1992; Hu and Bentler, 1998). Without proper 

knowledge, it may be difficult for a researcher to know which indices to report (Bollen and 

Long, 1992).  

 An additional problem stems from the fact that not all indices have been developed under 

the same theoretical rationale. For example, some indices have been developed to penalize 

overly-complex models (models with a large number of indicators), while other indices have no 

such penalty. Because of differing theoretical rationales, indices may perform differently under 

certain model structures or misspecification types. These differences in performance could, in 

some cases, lead to conflicting conclusions about the appropriateness of a model’s fit (Fan et al., 

1999).   
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 When using a fit index to determine goodness-of-fit, it is common practice to employ the 

use of a “cutoff value.” Not unlike a significance level for a hypothesis test, a cutoff value is 

used as a threshold of model acceptance/rejection. Different indices have different widely-

accepted cutoff values; however, there have been multiple demonstrations in the literature  

(e.g., Marsh et al., 1988; Beauducel and Wittmann, 2005) indicating that these cutoff values may 

not be generalizable across all modeling situations. Other studies (e.g., Chau and Hocevar, 1995; 

Fan and Sivo, 2007; Hu and Bentler, 1999; Kenny and McCoach, 2003; Marsh et al., 1988) have 

revealed that model components such as sample size, model complexity, and estimation 

procedure all affect how index values change, over and above the effect of misspecification. 

 Thus, while attempts have been made to develop alternatives to the chi-square, there still 

exist problems with the use of fit indices in evaluating model fit, particularly when trying to do 

so across different model and misspecification types. 

 

1.2 Goals of the Present Research    

 The aim of the present research is to investigate the performance of two popular fit 

indices, the comparative fit index (CFI) and the root mean squared error of approximation 

(RMSEA) in various model and misspecification conditions. Specifically, I will examine the 

effects of different sources of misspecification (e.g., omitted error covariances, omitted cross-

loadings) in conjunction with different model components (e.g., model complexity, loading size, 

latent factor correlation) on index values.  

To eliminate any variability in index performance that may be due to sample size, the 

population-based indices are studied. The purpose of this is to contrast the results of the current 

study with previous studies (most of which manipulate sample size), to determine if any general 
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conclusions about fit index behavior, regardless of sample size, can be made. In conducting this 

research, the goal is to address the following four questions: 

 

1. To what extent is fit index value affected by the source of the misspecification? 

2. To what extent is the relationship between the degree of model misspecification and fit 

index value moderated by different model components? 

3. Does the current research support the use of universal cutoff values across different 

model and misspecification types? 

4. Can guidelines for the use of different indices under different models be developed? 

 

In addressing the first question, the hope is to provide a clearer understanding of whether 

either index (RMSEA or CFI) is more sensitive to certain types of misspecification than others. 

RMSEA and CFI values will be evaluated in models with one of three different sources of 

misspecification. The first source of misspecification arises from one or more omitted error 

covariances. That is, a hypothesized model omits one or more error covariances that are present 

in the true (population) model. Using the psychology example presented above and the model in 

Figure 1.1, if the two indicators loading onto Verbal Intelligence were measured using the same 

instrument, it may be expected that their error variances are correlated. Figure 1.1, then, would 

be misspecified in the sense that it omits this error covariance. Because covarying errors are 

common in many disciplines that make use of SEM, it is important that fit indices show worse fit 

for hypothesized models that omit any error covariances (such as the covariance of ψ1 and ψ2) 

that are present in the population. 
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The second source of misspecification arises from one or more omitted cross-loadings. If 

latent factors are strongly correlated in the population, it is likely that an indicator that loads onto 

one of the factors also loads onto the other factor. Again, using the psychology example, suppose 

that Reading Comprehension Score actually loads onto both Verbal Intelligence and 

Mathematical Intelligence (perhaps a child needs good reading comprehension skills to fully 

understand word problems in math). A model would omit this cross-loading if it either omitted 

the loading between Verbal Intelligence and Reading Comprehension Score or Mathematical 

Intelligence and Reading Comprehension Score. If a hypothesized model omits one (or more) 

cross-loadings that are present in the population, this misspecification should ideally be picked 

up by fit indices. 

The third and final source of misspecification arises from a misspecified latent structure. 

This occurs when a hypothesized model includes either more factors or fewer factors than there 

are present in the population. Suppose in the psychology example that there was only one factor 

representing intelligence in the population. If this were the case, Figure 1.1 would have a 

missepecified latent structure, as it includes more factors than there are present in the population. 

Misspecifications of this sort may be considered more serious than those of the previous two, 

since misspecification is not due to an omitted pathway (an error covariance or cross-loading) 

but is instead due to the failure to include the correct number of factors present in the population.  

The second question involves looking at how different model components may affect 

index values. Model components, in the context of this study, are any aspects of the modeling 

procedure that may affect index value over and above the size of the actual misspecification. The 

model components studied here include loading size, factor correlation size (in models with two 

or more latent variables), model complexity, and model balance (in models with two or more 
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latent variables). Model complexity will be judged by the total number of indicator variables, the 

total number of factors, and the ratio of indicators to factors in a given model. The goal is to 

determine which indices are sensitive to which types of model components, and to what degree.  

With respect to the third question, the aim is not to suggest specific cutoff criteria; rather, 

the commonly applied cutoff values for CFI and RMSEA will be evaluated with the goal to 

determine whether the indices behave consistently enough to warrant the use of universal cutoff 

values across varying modeling situations.  

Finally, the goal of the fourth question is to attempt to put forward a set of guidelines 

regarding the use of the two fit indices. Index behavior is examined here in a way that allows 

both the strengths and weaknesses of the indices to be revealed under different misspecification 

types and under the influence of different nuisance parameters.  

 

1.3 Thesis Structure 

In the next section of this chapter, I begin by providing a brief discussion of the steps of a 

typical SEM process. The focus is on the estimation procedure utilized when fitting a 

hypothesized model to sample data. Both the chi-square test statistic and the two fit indices of 

interest (CFI and RMSEA) are introduced. The remaining portion of the chapter is dedicated to a 

review of the previous literature concerning the chi-square and fit indices. I highlight the 

theoretical issues surrounding the use of these measures of goodness-of-fit and review studies 

that have illustrated how CFI and RMSEA are affected by various model components. 

Chapter 2 describes the methodology used in the present study to examine CFI and 

RMSEA performance in models with one of three different misspecification sources. The 
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rationale behind the use of simulations is discussed, as are the details of how the simulations are 

constructed and carried out. 

Chapter 3 focuses on the performances of CFI and RMSEA in several specific 

misspecification scenarios. First, the performances of CFI and RMSEA are examined in CFA 

models in which misspecification is due to one or several omitted error covariances. Second, the 

performances of CFI and RMSEA are examined in two-factor CFA models in which 

misspecification is due to one or several omitted cross-loadings. Finally, I focus on the 

performances of CFI and RMSEA in CFA models with a misspecified latent structure. 

In addition to examining the effect of misspecification type and size on index 

performance, the scenarios also include the manipulation of certain model components in order 

to determine their effects on index performance as well.  

Chapter 4 presents a brief summary of the results of Chapter 3, including a comparison of 

the results of this study to results found in previous literature. I discuss the benefits of 

researchers using CFI and RMSEA in conjunction and offer several recommendations and 

guidelines for the use of these two indices.  

In Chapter 5, practical applications of the recommendations in Chapter 4 is described. 

Using data from two previously published SEM-related studies, I discuss alternative models for 

these datasets and explain how CFI and RMSEA together can be used to possibly identify the 

sources of any model misspecifications. Finally, Chapter 6 consists of a brief review of this 

study’s findings, the limitations of the study design and simulations, and suggestions for relevant 

future research.  
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1.4 The Process of SEM 

 There are five general steps that characterize most applications of SEM (Bollen and 

Long, 1992). The first step, model specification, involves specifying a particular model to 

represent the relationships amongst particular variables of interest. This is often based on 

previous research, theory, and information related to the variables. Figure 1.1, reprinted here, 

represents a model that specifies certain relationships amongst the two factors and four indicator 

variables of interest.  

 

 

Figure 1.1: A structural equation model relating two latent factors, Verbal Intelligence and 
Mathematical Intelligence, to each other and to four indicators (Reading Comprehension 
Score, Vocabulary Test Score, Basic Math Test Score, and Pattern Recognition Score).  

 

Once a model has been specified, the second step of the SEM process, known as model 

identification, can be performed. In SEM, the relationships amongst variables can be written as a 

set of structural equations based on the covariance matrix of the variables in the model. The 

structural equations implied by the hypothesized model are used to construct a model-implied 

covariance matrix (Hu and Bentler, 1999). In the example presented above, the model-implied 
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covariance matrix would be based on the relationships amongst the variables as shown in Figure 

1.1. For a 2-factor model like the one in question, the covariance structure is given by � =
�	�′ + �, where Λ is a p × k matrix of factor loadings, Φ is a k × k matrix of factor 

correlations, and � is the p × p covariance matrix of the residuals, where k represents the 

number of latent factors in the model and p represents the number of indicators in the model. The 

covariance structure implied by Figure 1.1 is given as 

 

� = 
λ� 0λ� 00 λ�0 λ�
� �φ�� 00 φ��� �λ� λ� 0 00 0 λ� λ�� + 
�� 0 0 00 �� 0 00 0 �� 00 0 0 ��

�. 

 

 The third step of the SEM process is estimation. Though SEM seeks to make conclusions 

about the relationships amongst variables in the population, in most cases researchers must rely 

on a sample from the population of interest. Thus, the goal of the estimation step is to find 

parameter values such that the discrepancies between the sample covariance matrix and the 

model-implied covariance matrix are minimized. The parameter values in SEM are often 

comprised of the “pathways” in a hypothesized model. These pathways are usually represented 

by arrows in a diagram of the model. In Figure 1.1, the parameters to be estimated include the 

loadings of the indicators onto their respective factors (the λ terms), the correlation between the 

two factors (φ12), and the error variances (the ψ terms). 

 After a model has been estimated, the fourth step of the SEM processes involves 

determining how well the hypothesized model fits the data. In other words, how well is the 

theoretical model underlying the hypothesized model supported by the data? While a general 
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measure of fit can be obtained by looking at the residuals between the sample covariance matrix 

and the model-implied covariance matrix (Bollen and Long, 1992), more formal measures of fit, 

such as the chi-square test and goodness-of-fit indices, are often used in this step to assess how 

well a proposed model is supported by the data.  

 The final step, which may be repeated multiple times, is model respecification. 

Depending on how well the original hypothesized model fits the data, restructuring the model 

may be necessary. If a model is restructured, the SEM procedure can begin again at step one and 

continue until a model with an acceptable fit is obtained (it should be emphasized, however, that 

any restructuring of a model should be done under the guidance of relevant theory and past 

research). 

 The focus of this thesis is on how well the fit indices CFI and RMSEA accurately reflect 

the degree of misspecification for a given model. In order to gain a better understanding of how 

these indices work within the context of the SEM process, I will discuss steps 3 and 4 (estimation 

and determining fit) in more detail in the following sections.  

 

1.4.1 Estimation 

Sample data based on N = n + 1 subjects and p indicator variables are summarized in a  

p × p sample covariance matrix S. It is hypothesized that a population covariance matrix Σ*  

exists and is generated by q true but unknown parameters. The q × 1 vector of these unknown 

parameters, θ, corresponds to the particular structure of Σ* . If the sample size corresponding to S 

were to increase to infinity, S would converge to Σ*  and its structure would be known (Bentler 

and Bonett, 1980).  
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In order to test the SEM null hypothesis Σ*  = Σ(θ), which states that the population 

covariance matrix Σ*  has the structure implied by the researcher’s hypothesized model, 

estimates of the unknown population parameters θ as well as the matrix Σ*  must be calculated 

under the hypothesized model. Once a vector �� of estimated model parameters has been 

obtained, an estimated covariance matrix �(��) can be constructed as a function of the estimated 

model parameters (Bentler and Bonett, 1980).  

While the ideal case would involve a direct test of Σ*  = Σ(θ), in reality, the true 

population covariance matrix Σ* is never actually known. Instead, researchers must compare the 

hypothesized model’s covariance matrix to the sample matrix S.  

The primary goal of the estimation step is to arrive at parameter estimates �� such that 

�(��), the hypothesized model’s covariance structure based on these estimates, is as similar to the 

structure of S as possible (Moshagen, 2012). Obtaining these parameter estimates is achieved by 

the minimization of some discrepancy function F(θ) which, if given a set of parameters, provides 

an assessment of the difference between the model-implied covariance matrix �(��) and the 

sample covariance matrix S, based on the residuals between these two matrices (Folnes et al., 

2012). 

According to Anderson and Gerbing (1984) and Moshagen (2012), the predominately 

used estimation procedure (and the default estimation method in nearly all major SEM packages) 

is the maximum likelihood (ML) procedure. The traditional maximum likelihood fit function 

FML(θ), hereby written as F(θ), is based on the log likelihood ratio. In the population, this value 

is given by 

 



14 

 

                              F(�) = ln|�(�)| − ln|�∗| + tr!�∗�(�)"#$ − %,                  (1.1) 

 

where Σ(θ) represents the structure of the covariance matrix implied by the hypothesized model, 

Σ*  represents the population covariance matrix, and p is the number of observed variables 

(Bollen and Long, 1992). When Σ*  is not known, the sample covariance matrix S can replace Σ*  

and (1.1) can be expressed as 

 

                               F(�) = ln|�(�)| − ln|'| + tr!'�(�)"#$ − %.                   (1.2) 

 

Minimizing (1.2) yields F(��), hereby written as F), and the corresponding q × 1 vector of 

parameter estimates ��. F) attains the value of 0 if and only if �(�) = '; otherwise, F) is positive 

and increases as the discrepancy between �(�) and S increases (MacCallum et al., 1996). 

 

1.4.2 Assessing Model Fit 

 Once the estimation step has been performed, the result is a vector �� of parameter 

estimates that minimize the fit function F(θ). The corresponding model-implied covariance 

matrix �(��) can be assessed to determine how well it matches the structure of the sample 

covariance S, which in turn is an indication of how well the hypothesized covariance structure is 

supported by the data.  

 Discussed in the following sections are two broad methods of assessing model fit: the use 

of the chi-square test statistic to assess what is known in the literature as “exact fit,” and the use 

of fit indices to assess “close fit.”  
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1.4.2.1 The Chi-Square Test Statistic 

 Traditionally, the assessment of model fit in SEM has been accomplished via the 

dichotomous decision of hypothesis testing. That is, a model is either accepted or rejected based 

on how well it appears to fit the sample data. When assessing model fit, the null hypothesis is the 

claim that Σ* = Σ(θ), or that the hypothesized model’s covariance structure, Σ(θ), exactly 

matches the population covariance matrix of the observed variables, Σ* . Thus, evaluating fit in 

this way is a test of “exact fit” (Bollen and Long, 1992; Hsu et al., 2015).  

 Testing exact fit involves the use of the chi-square test statistic and its associated p-value 

and is based on the minimized fit function F) found in the estimation step (discussed in the 

previous section). The chi-square test statistic is found by multiplying F) by (N – 1) to yield: 

 

   T = (N − 1)F).                                (1.3) 

 

This T statistic is used to test the null hypothesis Σ*  = Σ(θ) (Hu and Bentler, 1999). Under the 

assumptions that the model is correct and that the data are multivariate normal, T has an 

asymptotic ./� distribution with degrees of freedom 0 = 1(12�)� − 3, where p is the number of 

indicator variables in the model and q is the number of unique parameters to be estimated (Hu 

and Bentler, 1998; MacCallum et al., 1996). 

 Larger values of F) correspond to greater discrepancies (greater residuals) between the 

model-implied covariance matrix and the sample covariance matrix (Bentler, 1990). Thus, if the 

residuals are larger than what would be expected due to sampling fluctuation, the T statistic will 

exceed a critical value of the chi-square distribution at a pre-specified α-level (Hu and Bentler, 
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1998). The null hypothesis Σ*  = Σ(θ) will then be rejected, indicating that the hypothesized 

model does not exactly describe the underlying population covariance structure from which the 

sample was drawn. On the other hand, if F) is small, the resulting T will be small as well, leading 

to acceptance of the model if the T value is smaller than the critical value. 

Different estimation methods (generalized least squares, maximum likelihood, etc.) arrive 

at the minimized fit function value F)  in different ways. Therefore, chi-square test statistics 

resulting from different estimation methods have slightly different interpretations. For maximum 

likelihood, the estimation method used in this thesis, the resulting chi-square is a likelihood ratio 

test statistic (Bentler and Bonett, 1980). The likelihood of observing the sample data under the 

hypothesized model is compared to the likelihood of observing the data under a saturated 

model—a model containing as many parameter estimates as degrees of freedom. Small values of 

this ratio imply that the data are as likely to occur under both the saturated model and the 

hypothesized model. Large values, on the other hand, suggest that the structure imposed by the 

hypothesized model, when compared to the saturated model, is not overly restrictive to the point 

that it fails to adequately fit the patterns found in the data (McDonald and Marsh, 1990). 

 

1.4.2.2 Fit Indices 

 As structural equation modeling gained popularity in the 1990s and early 2000s, several 

criticisms arose with respect to the chi-square test as a measure of model fit. One major criticism 

is that the test is highly sensitive to sample size (this will be discussed in a later section). Other 

criticisms relate to the nature of the chi-square as a test of exact fit. It is unrealistic, many argue, 

to assume that any given covariance structure will exactly match that of the population 
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covariance structure; thus, it would be more appropriate to assess the degree of lack of fit rather 

than exact fit (Hsu et al., 2015; Marsh et al., 1988; McDonald and Marsh, 1990).  

Another concern related to the chi-square’s use is the lack of information it provides over 

and above whether the model-implied covariance matrix is equal to the sample covariance 

matrix. In other words, apart from revealing that a model either fits perfectly or does not fit 

perfectly, the chi-square cannot provide any information about the magnitude or cause of the 

misfit, details that would be beneficial to researchers trying to refine their model (Hsu et al., 

2015). 

 In response to these and other problems surrounding the use of the chi-square, a number 

of fit indices have been developed to either replace the use of the chi-square (in cases where 

sample size is an issue) or to be used alongside it as a supplemental way of assessing fit.  

 While the chi-square test leads to a binary fit/no fit decision, most fit indices have been 

developed to represent goodness-of-fit along a continuum rather than to prompt the researcher to 

accept or reject a model based on a prespecified critical value. Thus, fit indices are to be 

interpreted as gauges of “close fit” rather than of exact fit. 

 Like the chi-square test statistic, fit indices make use of the residuals between the sample 

covariance matrix and the model-implied covariance matrix, �4��5, to assess fit. In fact, many 

popular fit indices can be expressed as functions of the chi-square test statistic. Table 1.1 

provides a brief summary of the two indices studied in this thesis— comparative fit index and the 

root mean square error of approximation—and includes their equations both at the sample level 

and at the population level.  
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Table 1.1: Names, sample definitions, and population definitions of CFI and RMSEA. 

Index Name Sample Definition Population Definition 

 Comparative Fit Index (CFI) 
 (χ7� − df7) − (χ� − df)(χ7� − df7)  

 

1 − F)F7�  

 Root Mean Square Error of  
           Approximation (RMSEA) :χ�df − 1n − 1  

: F)df 
 

Note. Where n is the sample size, χ7� and χ� stand for the chi-square values for the independent (baseline) 

model and the hypothesized model, respectively; dfI and df are the degrees of freedom for the 

independent model and the hypothesized model, respectively; F7�  and F) stand for the minimized fit 

function for the independent and hypothesized models, respectively. 

 

 To derive the population equations, F) ∙ N (the minimized fit function multiplied by  

N = n + 1) was used to replace the chi-square values found in the sample definitions of the 

indices. Then n was then allowed to tend to infinity. The value of F) can be utilized in the 

population as a measure of model misspecification. Models that are not exactly true (i.e., that do 

not exactly match the structure of the population covariance matrix) will yield F) values that do 

not equal zero, with increasingly large F) values corresponding to models with increasingly poor 

fit (Bentler, 1990; Steiger et al., 1985).  

 The current study focuses on the performance of fit indices in the population, and thus the 

population definitions in Table 1.1 are used to calculate CFI and RMSEA values in the 

simulations presented later. Properties of the two indices of interest, as well as rationale behind 

their use, will be described in more detail in the following sections.   
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1.5 Literature Review 

 I now turn to a review of the existing literature for a discussion of the issues surrounding 

model fit in SEM. I begin with a brief summary of the literature involving the issues affecting the 

chi-square test statistic, then focus on the literature surrounding the use of the fit indices. I 

present a more in-depth introduction to the two indices of interest in this thesis, then discuss 

concerns regarding the use of these indices as measures of model fit. While the current research 

is concerned with index behavior at the population level, the majority of existing research has 

been carried out at the sample level. Therefore, existing findings on the effects of sample size on 

index behavior are reviewed briefly as well. 

 

1.5.1 Chi-Square 

1.5.1.1 Sample Size 

 As is true with any statistical test, the power of the chi-square test is a direct function of 

the sample size. Thus, as the sample size tends toward infinity, even the smallest difference 

between a proposed model and the true model will be reflected in the chi-square value. In large 

sample, the test statistic may be so sensitive to the size of the sample that conclusions based on 

the chi-square value might not be trusted.  

This sensitivity is well-documented in SEM literature. As early as the 1970’s, researchers 

such as Joreskog (1970) and Bentler and Bonett (1980) have noted that unless a model fits 

perfectly, an increase in sample size will inflate the chi-square value. Thus, in situations 

involving large enough samples, a model with a trivial misspecification may be rejected solely 

due to the chi-square’s sensitivity to sample size rather than due to any actual severe 

misspecification (Hsu et al., 2015; Perry et al., 2015). 
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 The chi-square’s sensitivity to sample size limits its practical use in SEM. This is because 

it is often expected that a hypothesized model will not fit the data exactly (Bearden et al., 1982; 

Gerbing and Anderson 1992). However, a model can fit well enough to warrant its use as an 

appropriate representation of the population covariance structure. Because the chi-square can 

reject even a trivially misspecified model if the sample size is large enough, models that might 

be practically useful may be discarded on the basis that the chi-square test shows that they are a 

poor fit to the data. While one solution to this problem would be to allow the use of 

“appropriate” p-values as cutoff values (e.g., set a lower p-value as the cutoff value so it is more 

difficult to reject a particular model), most studies involving SEM do not employ this technique 

and instead rely on typical cutoff values instead.  

 It is also worth noting that in many hypothesis testing settings (such as regression or 

ANOVA), the goal is to find enough evidence to reject the null. In the context of SEM, however, 

the goal is to retain the null, as the null suggests that the researcher’s model provides a good 

description of the relationship amongst the variables of interest in the population. Thus, a large 

sample size, which is desirable in nearly every application of statistics, may work against the 

goals of a researcher using SEM (Bentler and Bonett, 1980).  

 Problems with the chi-square can also arise when the sample size is small. The T statistic 

defined in (1.3) follows an asymptotic chi-square distribution which may not be well 

approximated in smaller samples (Bentler and Yuan, 1999). Bentler and Yuan (1999), Hooper et 

al. (2008), and Hu et al. (1992), among others, have demonstrated that in small samples, the chi-

square lacks power and tends to over-reject the null. This behavior could lead to incorrect 

conclusions about the adequacy of a model.  
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1.5.1.2 Other Issues  

 The assumption of multivariate normality must also be taken into consideration when 

using the chi-square. Violations of this assumption can lead to severely inflated T statistics, 

resulting in the rejection of models that are properly specified (Hooper et al., 2008; Moshagen, 

2012). The chi-square test statistic is also sensitive to the size of the proposed model. Moshagen, 

(2012) has demonstrated that as the size of the proposed model increases, T will inflate and 

increase rejection rates for models that may be properly specified.  

 

1.5.2 Fit Indices 

 Before reviewing the literature discussing the behavior of fit indices in SEM, I present a 

more in-depth introduction to the two fit indices shown in Table 1.1. Despite there being over 

two dozen indices readily available for use by researchers using SEM, I chose to focus my 

research on CFI and RMSEA for several specific reasons. 

First, while the chi-square test statistic is almost universally reported as a measure of 

model fit, certain fit indices are more commonly used than others. According to McDonald and 

Ho (2002), the most commonly reported fit index in the psychological literature is CFI, followed 

by RMSEA. Rigdon (1996) claims that CFI and RMSEA are two of the most commonly reported 

fit indices across multiple fields. Due to the popularity of these two indices, it was decided that 

the research here should focus on their performances across many different modeling scenarios 

rather than on the performances of several different indices in only a few scenarios. 

Second, the popularity of CFI and RMSEA has led to a great deal of research focusing on 

their behaviors in different modeling situations. This large amount of research allows for a 
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greater number of comparisons that can be made between how the indices performed in other 

studies versus how they perform in the scenarios presented here.  

Finally, despite the fact that both indices are based on the chi-square value, CFI and 

RMSEA evaluate model fit in different ways. CFI is from a family of indices known as relative 

(or incremental) fit indices. These indices evaluate the hypothesized model in relation to a more 

restricted “baseline” model, often a model in which all the observed variables are uncorrelated 

(Themessl-Huber, 2014). Relative fit indices assess how well a hypothesized model fits in 

comparison to the more restricted baseline model, thus requiring more than just the discrepancies 

between a hypothesized model’s covariance matrix and the sample covariance matrix in their 

calculations (Rigdon, 1996). 

RMSEA is from a family of indices known as absolute fit indices. Indices of this family 

evaluate how well a researcher’s hypothesized model reproduces the sample data and is a 

function of the discrepancies between that hypothesized model’s covariance matrix and the 

sample covariance matrix (Hooper et al., 2008; Rigdon, 1996). More will be said on the 

differences between absolute and relative fit indices in the following two sections.   

 

1.5.2.1 Population Definitions 

1.5.2.1.1 Comparative Fit Index (CFI) 

 In the population, CFI can be defined as: 

 

                                                                    CFI = 1 − ?�?@A,                                                           (1.4) 
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where F) is the minimized fit function of the hypothesized model and F7�  is the minimized fit 

function of a baseline model. Commonly, this baseline model is defined as the model in which 

all variables are modeled as mutually uncorrelated, and thus is also known as the “independent 

model” (though the baseline can be any other model selected by the researcher) (Bentler and 

Bonett, 1980; Hooper et al., 2008).  

 Defined as a relative fit index, CFI uses the baseline model as an additional reference 

point for the evaluation of the covariance structure of the hypothesized model. It is expected that 

the value of F7�  is large, indicating poor fit. In addition, it is hoped that the value of F), 

corresponding to the proposed model, is small, indicating good fit. If the hypothesized model fits 

perfectly, the ratio of F) to F7�  will be zero (because F) will equal zero) and CFI will equal one. The 

smaller the CFI value is, the more it suggests that the hypothesized model is no more an adequate 

model for the data than the baseline model (Bentler and Bonett, 1980).  

 CFI is bound by 0 and 1, with larger values indicating better fit. The generally accepted 

cutoff value for the CFI in the literature (e.g., Beauducel and Wittmann, 2005; Hooper et al., 

2008; Hu and Bentler, 1999) is .95, with values greater than .95 indicating good model fit.  

 

1.5.2.1.2 Root Mean Square Error of Approximation (RMSEA) 

   First developed by Steiger and Lind (1980), cited in Steiger (1990), then expanded upon 

and popularized by Browne and Cudeck (1992), RMSEA is an absolute fit index based on the 

minimized fit function F). A population expression of RMSEA can be written as 

 

                                                                RMSEA = G H�IJ ,                                                           (1.5) 
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where df is the degrees of freedom for the hypothesized model. The index is a measure of the 

average discrepancy between the sample covariance matrix and the model-implied covariance 

matrix per degrees of freedom (Hsu et al., 2015). Because the degrees of freedom are a function 

of the number of estimated parameters in a model, RMSEA is said to have a parsimony 

correction, as it penalizes models that are “too large” (i.e., too many parameters to estimate) 

(Hooper et al., 2008; Themessl-Huber, 2014). Often, this means that models with a large number 

of indicators will be penalized more than models with a smaller number of indicators, as more 

indicators implies more loading parameters that need to be estimated. 

When Σ* = Σ(θ), F) = 0; thus, an RMSEA value of zero is achieved when the model fit is 

perfect (RMSEA values cannot be negative, as F) cannot be negative). Because of this, RMSEA 

is often thought of as a measure of “badness of fit,” as its size increases as model fit grows 

worse, though values rarely exceed one (Hu and Bentler, 1999). The most generally accepted 

cutoff value in the literature is .06, as proposed initially by Hu and Bentler (1999). That is, if 

RMSEA of a given model is less than .06, the model is said to be a “close fitting” model and 

accurately describes the relationships amongst the variables in the model.  

 

1.5.2.1.3 Omitted Indices 

 This study omits several commonly used fit indices in favor of being able to focus 

more on the behaviors of two of the most popular indices reported in the literature. In this 

section, I briefly make note of other indices that are often used to assess the goodness of fit of 

models in SEM. For sample and population definitions of these and other commonly used fit 

indices, please see Appendix A.  
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 In addition to the RMSEA, other absolute fit indices include the goodness of fit index 

(GFI) proposed by Jö reskog and Sö rbom (1981) and the adjusted goodness of fit index (AGFI), a 

modified version of the GFI and developed by Jö reskog and Sö rbom (1981) when studies 

revealed that the GFI shows an improvement in model fit as additional parameters were included 

in the model (e.g., Cudeck and Browne, 1983; MacCallum and Hong, 1997). These indices 

calculate the proportion of variance accounted for in the sample covariance matrix by the 

covariance matrix derived from the hypothesized model.  

 Another commonly used absolute fit index is the standardized root mean square residual 

(SRMR), also developed by Jö reskog and Sö rbom (1981). The SRMR assesses the average size 

of the residuals between the sample and hypothesized covariance matrices and is similar to the 

RMSEA in the sense that it is a measure of “badness of fit”—the index value increases as the 

model fit gets worse (Chen et al., 2008).  

 Other relative fit indices frequently reported in the literature include the normed fit index 

(NFI) proposed by Bentler and Bonett (1980), the Bentler-Bonnet Index (BBI) (Bentler and 

Bonett, 1980), and Bollen’s Incremental Fit Index (IFI) (Bollen, 1989). Though the sample 

definitions of these indices differ slightly, at the population level they are all defined with the 

same equation as the CFI. Each of these indices is influenced not only by the goodness of fit of 

the proposed model but also by the choice and fit of the baseline model as well.  

 Several other indices, such as the non-normed fit index (NNFI) proposed by Bentler and 

Bonett (1980) and the Tucker-Lewis Index (TLI) proposed by Tucker and Lewis (1973), are 

slightly modified relative fit indices and include the ratio of the degrees of freedom of the 

proposed and baseline models as well. Indices such as these have also gained popularity in the 

literature.  
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1.5.3 Concerns Regarding the Use of Fit Indices 

 I now turn to a summary of the concerns raised with respect to using fit indices as 

measures of goodness of fit in SEM. In general, fit indices have been developed to compensate 

for some of the shortcomings of the chi-square test when assessing the fit of a model. 

Specifically, many have been designed to be less sensitive to both sample size and model size 

and to be unaffected by estimation method.   

 However, studies addressing index performance across different modeling situations have 

revealed that the indices are not without their own set of problems. Some problems stem from 

how indices are selected and interpreted by researchers. Other problems arise due to how the 

indices perform given different sample sizes, estimation methods, model sizes and types, and 

different misspecification types.  

 I will begin by summarizing the theoretical and methodological concerns pertaining to 

the use of fit indices, focusing mainly on the issue of the cutoff values commonly used to 

determine whether a model’s fit is acceptable. I then turn to the application-related concerns that 

have been addressed in the literature. I summarize relevant studies that examine the behavior of 

fit indices with respect to different aspects of the modeling procedure and different model 

components, including estimation method, sample size, model size, parameter size, and 

misspecification type. I conclude with a summary of the pertinent results and discuss how the 

present research aims to address some of the remaining concerns.  
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1.5.3.1 Theoretical and Methodological Concerns 

1.5.3.1.1 Selecting an Index 

 In SEM, it is considered standard practice to report the chi-square test statistic and its 

associated p-value for a hypothesized model. However, there exist no generally accepted 

guidelines for which index (or indices) to report alongside the chi-square for those who wish to 

do so. As previously mentioned, popular SEM programs are capable of printing more than one 

dozen fit indices by default. Because of this, the issue can arise where printed indices conflict—

some show the model fit is adequate, while others do not. These conflicting results often arise 

because different indices have been designed to assess different criteria of fit (Gerbing and 

Anderson, 1992). Thus, researchers can arrive at different conclusions about a particular model 

depending on which indices they choose to examine (Hu and Bentler, 1998).  

 There have been attempts by researchers in SEM to define guidelines that outline which 

indices to report in which situations; however, there does not appear to be any agreement over 

which indices should always be reported alongside the chi-square. Crowley and Fan (1997) 

suggest that it is necessary to report a variety of indices due to the fact that different indices 

reflect different aspects of model fit. Several index pairings are recommended by Hu and Bentler 

(1999), including pairing the SRMR with the TLI or the RMSEA with the CFI. Others (e.g., 

Hooper et al., 2008; Kline, 2005) suggest different sets of indices to report. The lack of more 

concrete and universal guidelines with respect to index reporting may make it difficult for 

researchers to determine which indices to focus on when assessing model fit.  

 A final concern relates to the use of fit indices by those researchers who are not highly 

familiar with SEM but still utilize the procedure. A researcher who needs to use SEM in one or 

two studies, for example, may not be as familiar with the different fit indices as a researcher who 
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uses SEM more frequently. If presented with a dozen different fit indices for a fitted model, a 

less knowledgeable researcher may be unware of the difference in how model fit is calculated for 

each index and therefore might simply choose to report the indices they may have seen in 

previous papers or, possibly, even just the indices that support their model. Therefore, knowing 

indices’ strengths and weaknesses and making these known to the general academic public is a 

necessity. 

 

1.5.3.1.2 Cutoff Values 

 Another important concern regarding the use fit indices is the application of index cutoff 

values to judge the adequacy of a model. Similar to a significance level in hypothesis testing, a 

cutoff value is a set value for a given fit index that can be used to decide whether or not a model 

adequately fits the data (Marsh et al., 2004). For example, it is common practice to use a cutoff 

value of .95 for most incremental fit indices (such as the CFI), where index values greater than or 

equal to .95 suggest adequate model fit and index values less than .95 suggest a less than optimal 

fit.  

 The use of cutoff values has grown in popularity as fit indices have become more widely 

used in SEM research. Part of the appeal of cutoff values is that they allow researchers to make a 

“yes” or “no” conclusion when determining whether a model exhibits good fit. When reporting 

the value of a fit index, researchers have the cutoff value to compare it to in order to justify their 

conclusion regarding model fit. 

 However, unlike the significance level use in hypothesis testing, there is little to no 

rationale behind why any specific index value is used as the cutoff criterion. For example, while 

there may be agreement among researchers that RMSEA values greater than .06 suggest poor 
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model fit, there are no strong arguments in the literature as to why .06 should be chosen as the 

cutoff value rather than .05 or .07. While a model with an RMSEA value of .062, for example, 

would be rejected using the strict cutoff of .06, there is no evidence to suggest that this model has 

substantially worse fit than a model with an RMSEA value of .058 (which would be accepted 

according to the cutoff criterion).  

 In addition to these concerns, there have been many studies (e.g., Beauducel and 

Wittmann, 2005; Hsu et al., 2015; Marsh et al., 2004; Sivo et al., 2006) demonstrating that a 

single cutoff value cannot be used reliably under all measurement and data conditions. Sivo et al. 

(2006) criticize the use of “universal” cutoff values, noting that sample size and model type both 

affect index behavior. Thus, even within the same index, there is a general lack of comparability 

across different model types and sample sizes, making a universal cutoff value impractical. 

Marsh et al. (1988), Marsh et al. (2004), and Fan et al. (1999) all support this view.  

 Other criticisms of cutoff values stem from the reason fit indices were developed in the 

first place. Initially, many indices were developed to gauge model fit along a continuum from no 

fit to perfect fit (Bentler and Bonett, 1980; Marsh et al., 2004). This provided additional 

information regarding the adequacy of a model’s fit over and above the fit/no fit conclusion 

based on the chi-square test. However, if researchers are using index cutoff criteria in a fashion 

similar to a significance level in hypothesis testing, some argue that fit indices provide no more 

information about model fit over the information provided by the chi-square test (Hu and 

Bentler, 1998).   

Even Hu and Bentler (1998, 1999), whose work had focused on developing more 

appropriate cutoff criteria, argued against using them as “golden rules.” They and others (e.g., 

Fan et al., 1999; Marsh et al., 2004; Perry et al., 2015) emphasize that the purpose of a fit index 
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is to allow researchers to examine the degree of misspecification rather than to come to a strict 

conclusion about accepting or rejecting a model based on its fit. Indices are meant to 

complement the “fit vs. no fit” conclusion of the chi-square rather than to be used as another 

method to come to that conclusion. Thus, while fit indices are still of use in assessing model fit, 

researchers must exercise caution when interpreting index values with respect to commonly used 

cutoff criteria.  

 

1.5.3.2 Application-Related Concerns 

 In addition to the more theoretical and methodological issues surrounding the use of fit 

indices, consideration must also be given to how indices perform given varying aspects of the 

modeling procedure. Previous research has shown that index behavior is affected by such things 

as sample size, estimation method, and various model components such as model size, model 

parameter size, and misspecification type.  

 While it is expected that indices will perform differently under different conditions, it is 

important that researchers are aware of how changes in their modeling procedure (e.g., using 

generalized least squares instead of maximum likelihood as the estimation method) may affect 

index behavior. In the following sections, I summarize several important studies in SEM 

literature that focus on how popular indices are affected by various aspects of the modeling 

procedure.  

 While the effect of sample size is commonly studied with respect to its influence on 

index behavior, the present research addresses the behavior of indices in the population and thus 

is not concerned with the effect of sample size. As such, only a brief overview of the effects of 

sample size will be summarized here. For the remainder of the literature review, the effects of 
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sample size will only be discussed when they are presented in conjunction with other influences 

(such as model size, for example) that remain of interest at the population level.   

 

1.5.3.2.1 Sample Size 

 One of the primary concerns with the chi-square test is its sensitivity to sample size. 

Many fit indices were developed in response to this concern, the goal being to create a test of fit 

that was less sensitive to the effects of sample size. However, research has shown that the 

majority of fit indices are not immune to the effects of sample size, with some indices being just 

as sensitive as the chi-square. 

 In a large study by Marsh et al. (1988), the performances of 29 different fit indices were 

examined to determine which, if any, were relatively independent of sample size. Index 

performance was examined in seven sample size conditions (ranging from n = 25 to n = 1,600) 

when fitting a three-factor model with nine indicator variables (three for each factor) to four 

different sets of data. The variation of an index’s values across the different sample size 

conditions was used to determine to what degree that index was independent of the influence of 

sample size.  

 Of the 29 indices studied, the authors found 24 of them to have values significantly 

affected by sample size. This was true despite the fact that the degree of misspecification in the 

models remained the same. The five indices significantly unaffected by sample size were the TLI 

and the four indices in the study that were based on the TLI.  

 A similar study by Fan et al. (1999) examined the effects of sample size, estimation 

procedure, and model misspecification on the performances of nine popular fit indices. Five 

levels of sample size (from n = 50 to n = 1,000), three levels of misspecification (true model, 
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slightly misspecified model, moderately misspecified model), and two estimation methods 

(maximum likelihood and generalized least squares) were incorporated into the 5 × 3 × 2 design 

carried out by Monte Carlo simulation. Misspecification was achieved by deleting true paths and 

adding false paths (the slightly misspecified model involved deleted paths only; the moderately 

misspecified model involved both deleted paths and false paths). 

The model structure included four factors, each of which had three or four indicators. The 

authors commented that this model structure replicates what is commonly found in SEM in 

practice (specifically, models with two to six factors and three or four indicator variables per 

each factor).  

 The authors found that regardless of estimation method and model misspecification, GFI 

and AGFI were most strongly affected by sample size, showing an increase in fit as the sample 

size increased. While still affected by sample size, RMSEA, CFI, and NNFI were less sensitive 

to its effects than GFI and AGFI. RMSEA, CFI, and NNFI were also most sensitive to the size of 

the misspecification, a desirable result.  

 Another similar study was performed by Sharma et al. (2005) in which the effects of 

sample size, model size, and factor correlations between factors were examined for RNI, TLI, 

RMSEA. The authors used simulations to empirically assess the effects of these factors on fit 

indices as well as on the use of prespecified cutoff values.  

 The models included in the study were two specifications of two-, four-, six-, and eight-

factor CFA models with four indicators per factor. This resulted in a range of relatively small 

models (two factors with eight indicators and one factor correlation) and relatively large models 

(eight factors with 32 indicators and 28 factor correlations). Each model was either correctly 
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specified (the hypothesized model was identical with the population model) or misspecified (the 

hypothesized model was not the same as the population model). 

 The authors found that in the misspecified cases, the results suggested that as the models 

grew larger, a larger sample size was needed before these indices became insensitive to the 

effects of the sample size. However, GFI was most sensitive to sample size regardless of the size 

of the model, while RMSEA was least affected by the interaction between sample size and model 

size. 

 Other studies have been carried out examining fit indices in different modeling scenarios 

(e.g, Anderson and Gerbing, 1984; Bearden et al., 1982; Kenny et al., 2015; La Du and Tanaka, 

1989). In all of these studies, the effects of sample size have been well-documented, suggesting 

that most indices are significantly sensitive to sample size, despite their having been developed 

to be less sensitive than the chi-square to sample size effects.  

 

1.5.3.2.2 Estimation Method 

 In the estimation step of the SEM process (discussed in detail in section 1.4.1 above), the 

minimization of some discrepancy function F(θ) leads to parameter estimates θ) such that the 

hypothesized model’s covariance structure, when based on these estimates, is as similar to the 

structure of the sample covariance matrix S as possible. There exist different estimation methods, 

such as maximum likelihood (ML) and generalized least squares (GLS), that are used to achieve 

the minimization of F(θ). It has been shown that certain indices perform differently depending on 

the estimation method used. This section will provide only a brief summary of studies examining 

this effect, as the current research focuses on index behavior only under ML estimation. 
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 Sugawara and MacCallum (1993) found that absolute indices, such as RMSEA and 

SRMR, have a tendency to behave more consistently across different estimation methods than 

relative fit indices (such as CFI and NNFI). These findings were supported by Fan et al. (1999) 

in the same study described in the previous section. Recall that this study included a true model 

with four latent variables with three or four indicators each, and two misspecified models. 

Misspecification was achieved by deleting true paths and adding false paths; the slightly 

misspecified model involved deleted paths only and the moderately misspecified model involved 

both deleted paths and false paths. Index values were examined at five different sample sizes 

using both ML and GLS estimation procedures.  

 While Fan et al. (1999) found that estimation method had no effect on index value in the 

true model case, when the models were misspecified to any degree, large differences in index 

value were found for NFI, CFI, and NNFI under different estimation procedures, while relatively 

small differences were found for indices not defined as relative fit indices. In general, all indices 

showed better fit under GLS estimation than ML estimation. 

 

1.5.3.2.3 Model Size 

Apart from sample size, perhaps the most researched influence on fit index value is 

model size. Model size can be defined both by the number of factors (k), which is usually 

determined by theory, and by the number of indicator variables (p) in a given model. The issue 

of index sensitivity to model size has raised concern amongst researchers since model size is an 

aspect of a researcher’s model that can be changed relatively easily (in comparison to something 

like the sample size or the size of the parameter estimates).  
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As described in section 1.4.2.1, the traditional method of assessing model fit in SEM is 

by using the T statistic, which has a χI� distribution asymptotically. In addition to this statistic’s 

sensitivity to sample size, it has been documented that it is sensitive to model size as well  

(e.g., Fornell, 1983; Moshagen, 2012). In finite samples, the size of a model has been shown to 

affect the goodness of approximation of the T statistic to the asymptotic chi-square distribution. 

Specifically, the T statistic tends to become “inflated” as more variables are added to the model 

and thus may lead to the rejection of a correct model simply because the model is very large.  

Moshagen (2012) notes that many of the popular fit indices, including RMSEA and CFI, 

are based on the T statistic and might also be misleading when it comes to representing fit for 

larger models. The concern expressed by Moshagen (2012), Kenny and McCoach (2003), Chau 

and Hocevar (1995) and others is that if models with more variables exhibit worse fit, 

researchers may be tempted to adopt a variety of strategies that would reduce the number of 

variables in the model in order to improve fit. For instance, items may be collapsed to form 

parcels, larger models could be broken down into submodels that contain only a subset of the 

variables, or variables could simply be trimmed from the model (Kenny and McCoach, 2003). 

On the other hand, if indices show an improvement in fit when the number of variables 

increase, it could possibly lead to researchers including variables that should not theoretically 

belong in the model but are added solely to improve fit. Because of these concerns, the effect of 

model size on index behavior has been studied from several different aspects.  

Many studies have been conducted examining the effect of the number of indicators on 

index behavior. A study by Kenny and McCoach (2003) involved simulating perfectly specified 

and misspecified models while varying the number of indicators. The study focused on the 

performances of TLI, CFI, and RMSEA. For three different sample size conditions (100, 200, 



36 

 

1,000), a hypothesized 1-factor model had either 4, 6, 10, 12, 14, 20, or 25 indicators and was 

either perfectly specified or misspecified in one of three ways. The first misspecification 

involved the omission of the loadings of a second minor population factor. The second 

misspecification involved the case where the hypothesized 1-factor model omitted the correlation 

between the two factors present in the population. The third misspecification involved omitted 

error covariances amongst the indicators in the fitted 1-factor model. 

The authors found that for perfectly specified models, CFI and TLI tended to show worse 

fit as model size increased (especially in small sample size conditions), while RMSEA tended to 

show an improvement of fit as the model size increased, but only in the larger sample size 

condition (N = 1,000). As model size increased, both CFI and NFI showed a decrease in fit in 

both misspecification cases where the misspecification involved the latent structure of the model 

(the omission of a second minor factor and the omission of a factor correlation), but showed an 

increase in fit when the misspecification was due to omitted error covariances.  

RMSEA showed an improvement in fit as model sized increased regardless of the type of 

misspecification. This result is consistent with the findings of other studies (e.g, Browne, 1987), 

supporting the claim that RMSEA shows better fit as models grow larger. Kenny and McCoach 

(2003) suggest that the decline in RMSEA value, indicating improved fit, is due to the decline in 

the ratio of the model chi-square to its degrees of freedom, since adding more observable 

variables to a model increases the degrees of freedom faster than it increases the chi-square 

value.  

 The effect of the number of indicators on index behavior was also examined in a study 

by Chau and Hocevar (1995). The authors examined five popular fit indices (GFI, AGFI, NFI, 

CFI, and TLI) to determine which were least susceptible to the effect of model size on index 
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value. Their initial CFA model consisted of 28 indicators loading on to seven intercorrelated 

factors (resulting in four indicators per factor). In two subsequent manipulations, the same CFA 

model was maintained but the number of observable variables per factor was reduced by random 

deletion down to three per factor (21 indicators total) and then down to two per factor (14 

indicators total).  

The authors found that while all indices in the study showed worse fit for models with 

more indicators, CFI, NFI, and TLI were more stable than the others, meaning that as model size 

increased, the values of these indices showed worse fit but did not differ substantially from their 

values for smaller models. This suggests that while all these indices are affected by model size to 

some degree, the three relative fit indices included (and possibly other relative fit indices as well) 

may be less sensitive to model size than absolute fit indices are. 

 I point out that in this study by Chau and Hocevar (1995) and in the study by Kenny and 

McCoach (2003), no effort was made to control for changes in the ratio of indicators (p) to 

factors (k). That is, as p decreased, the ratio of p:k decreased as well, from 4:1 to 3:1 to 2:1. In 

addition to examining how the number of indicators in a model might affect index behavior, the 

current study will also examine how the ratio of p:k affects the behavior of RMSEA and CFI. A 

comparison of my results and the results found by Chau and Hocevar (1995) will allow insight as 

to whether these indices are sensitive to the ratio of observable variables to indicator variables 

over and above changes in p (or k) alone. 

Other studies have manipulated both the number of indicators as well as the number of 

factors. In a simulation study by Sharma et al. (2005), the authors constructed four CFA models 

with different numbers of factors (2, 4, 6, and 8) with four indicators each (leading to a total of 8, 

16, 24, and 32 indicators variables for each model, respectively). Two specifications for each 
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model were created. In the first specification, the model was correctly specified and matched the 

population structure perfectly; in the second specification, the model was not correctly specified 

(due to omitted factor correlations). The authors also manipulated factor loading sizes (.3, .5, .7), 

factor correlation sizes (.3, .5, .7), and sample sizes (100, 200, 400, 800). The performances of 

RNI, TLI, GFI, and RMSEA were assessed for each condition.  

Sharma et al. (2005) found that GFI was significantly affected by both sample size and 

model size. Specifically, GFI showed worse fit as the sample and model size increased for the 

misspecified model case. RMSEA was significantly affected by the size of the model; it showed 

an improvement in fit for the misspecified model as the model size increased.  

In contrast to the studies done by Chau and Hocevar (1995) and Kenny and McCoach 

(2003), I note here that the ratio of p:k was controlled in this study. That is, the number of 

indicators per factor is held constant as the number of factors increases, meaning that the p:k 

ratio stays the same as the model increases in size. The present study will examine the effect of 

this ratio in further detail and compare the results to the results found by Chau and Hocevar 

(1995), Kenny and McCoach (2003), and Sharma et al. (2005). 

 

1.5.3.2.4 Parameter Values 

 Other model components that may have an effect on fit index behavior are the values of 

the model parameters, such as loading size or factor covariance size. These values can be 

specified (or “fixed”) in a model based on theory and on previous research. For example, in 

personality psychology, the covariance between factors Extraversion and Agreeableness in a 

given model may be based on what previous research suggests is an appropriately strong 

relationship between the two factors. Parameters can also be estimated during the modeling 
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procedure. Most of the studies addressing the effect of model parameters on index behavior 

focus on the influence of fixed parameters rather than on the influence of estimating parameters. 

A recent study by Themessl-Huber (2014) examined the effect of loading size on the 

behavior of SRMR, RMSEA, and CFI. The study included three CFA models, each with 24 

indicators and three factors (each factor had 8 indicators loading onto it). The first model was a 

correctly specified model with uncorrelated factors and no cross-loadings. The second model 

was a misspecified version of the first model and included correlated factors but no cross-

loadings (the factor correlations were .3, .4, or .5). The third model was also a misspecified 

version of the first model and included cross-loadings but no correlated factors (the primary 

loadings were all between .3 and .9, while the cross-loadings were no greater than .2).  

 Index performance in these scenarios was assessed using the type I and type II error rates 

when model rejection/acceptance was based on the popular cutoff values for the indices (models 

were accepted when RMSEA < .06, SRMR < .08, and CFI > .95). The author found that when 

factor loadings were low or medium (less than .6), CFI had trouble accepting correctly specified 

models. RMSEA and SRMR had better rates of acceptance for low loadings. However, CFI did 

the best of the three indices when it came to the misspecified models, especially when the 

loadings were high (.8, .9). That is, even when loadings were high in the misspecified models, 

CFI still rejected these models due to their poor fit. 

In general, Themessl-Huber (2014) found that all indices had trouble detecting 

misspecified models when the factor loadings were low. This finding is cause for concern, as in 

certain disciplines where it is common to have low loadings (such as psychology), a model could 

be accepted as having good fit simply because the loadings are small rather than because the 

model actually fits the data well. 
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Another study by Miles and Shevlin (2007) also showed that index performance can 

change due to loading size alone. In the second half of a two-part study, the authors fit a one-

factor model to two-factor data, fixing the loadings to .8 and the factor correlation to .5. Of the 

indices included in their study (RMSEA, CFI, NNFI, and RMR), all indices showed the model 

fitting the data poorly. However, when they fixed the loadings to .5 instead of .8, RMSEA 

indicated a well-fitting model. Both CFI and NNFI still showed a poor fit.  

These results suggest that when the loadings are small, RMSEA may not be sensitive 

enough to detect when a model omits a factor, which can be considered to be a rather large 

misspecification. The authors argue that this finding supports the use of comparative fit indices 

such as the CFI alongside the chi-square to gain a better understanding of the source of model 

misspecification.  

The modeling scenario presented by Miles and Shevlin (2007) is similar to the scenarios 

carried out in the present study to explore how sensitive fit indices are to detecting cases of latent 

structure misspecification. Given the results of their study, I may expect to find that the 

RMSEA’s ability to detect latent structure misspecification is in part a function of the size of the 

loadings.   

 

1.5.3.2.5 Other Model Components 

 Before I summarize the literature discussing how fit index behavior is affected by the 

type of model misspecification, I wish to briefly discuss other model components that may play a 

role in how fit indices behave.  

 As discussed in the previous section, research has shown that fit index behavior is 

affected by model size. Many popular indices, including the RMSEA, tend to show a better fit 
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for large models over comparable small models. However, Moshagen (2012) notes that the 

notion of a “large” model is vague. To some researchers, the definition of “large” is based upon 

the number of indicators (e.g, Anderson and Gerbing, 1984; Kenny and McCoach, 2003; Marsh 

et al., 1998), while to others, the definition is based on the number of parameters needed to be 

estimated in the model (e.g., Boomsma, 2000; Curran et al., 2002). Some consider the degrees of 

freedom to be indicative of model size, as it is based on both the number of unique elements of 

the covariance matrix and the number of free parameters (recall that the degrees of freedom 

0 = 1(12�)� − 3, where p is the number of observed variables in the model and q is the number of 

unique parameters to be estimated). 

 In CFA, both the number of free parameters and the degrees of freedom increase as the 

number of indicators increases, which may explain why there is little concern as to what is 

actually meant by a “large” model in the literature. However, it should be noted that models with 

the same number of indicators can lead to different degrees of freedom. Moshagen (2012) offers 

the example of model A, which has three correlated factors and 10 observable variables each 

(here, p = 30, q = 63 and df = 402), compared to model B, which has 10 correlated factors and 

three observable variables each (p = 30, q = 105, and df = 360).  

 A limited number of studies have made this distinction between the number of indicators 

and the size of the degrees of freedom when assessing how model size affects index behavior. A 

study by Kenny et al. (2015) examined the behavior of RMSEA in models with small degrees of 

freedom. The study included seven different degrees of freedom conditions (1, 2, 3, 5, 10, 20, or 

50) and six different sample size conditions (50, 100, 200, 400, 600, or 1,000). All models were 

correctly specified. 
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 The authors found that when both the degrees of freedom and the sample size were large, 

RMSEA never rejected the model (that is, it showed that the model had good fit). This replicated 

similar findings by Chen et al. (2008). However, for both very small sample sizes (100 or below) 

and small degrees of freedom, RMSEA rejected a substantial proportion of correctly specified 

models. Even with large sample sizes combined with small degrees of freedom, RMSEA 

suggested poor model fit.  

 It is noted that while Kenny et al. (2015) focused on the effect of the degrees of freedom 

rather than on the effect of the number of indicators, their conclusions regarding the behavior of 

RMSEA are the same as in the study by Chen et al. (2008). That is, the larger the degrees of 

freedom, the greater the tendency of RMSEA to show good model fit. Other studies (summarized 

above) have shown that the larger the number of indicators, the greater the tendency of the 

RMSEA to show good model fit. This perhaps suggests that since the degrees of freedom are in 

part a function of the number of indicators that RMSEA is in fact sensitive to model size in terms 

of the number of indicators rather than the degrees of freedom.  

 Another model component that may affect fit index behavior is the balance of the 

indicators across the different factors in the model. In all of the simulated models in the studies 

summarized above, there is an equal number of indicators loading onto each factor. For example, 

if a model has three factors and 12 indicators, each factor has four indicators loading onto it.  

 However, there is nothing to suggest that there needs to be an equal number of indicators 

per factor in real life models. In an application of SEM, for example, there may be a three-factor 

model where one factor has four indicators loading onto it, the second factor has two indicators 

loading onto it, and the third factor has six indicators loading onto it.  
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Despite the fact that such “unbalanced models” are completely reasonable model designs, 

there has been no research done on the effect of balance on index behavior. The present study 

aims to offer some insight as to how CFI and RMSEA behave when the number of indicators is 

not equally spread across all factors in a given model.  

 

1.5.3.2.6 Misspecification Type and Severity  

 While fit indices are designed to measure the degree of fit of a model, the previous 

sections reveal that indices are sensitive to other model components that do not directly involve 

the degree of misspecification. Thus, sensitivity to components such as sample size and 

estimation method may be considered a weakness of fit indices.  

However, it is desirable for fit indices to be sensitive to the nature and degree of the 

misfit between a hypothesized model and the data. As previously stated, many fit indices were 

designed to supplement the chi-square. The chi-square results in a binary fit/no fit decision. It is 

not designed to provide any information about the source of a possible misspecification or how 

severe it may be.  

If fit indices are sensitive to the source misspecification (as well as the severity of the 

misspecification), they become more useful as a supplement to the chi-square, as they can 

provide information about where a possible misspecification may exist (e.g., if it is due to an 

omitted error covariance or due to a misspecified latent structure).  

Indices become even more useful if different indices are sensitive to different sources of 

misspecification. If, for example, it is known that CFI is sensitive to a certain type of 

misspecification and RMSEA is sensitive to another type, then researchers can examine both 
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indices (in addition to the chi-square) to possibly determine where a misspecification may be 

occurring in their model.  

There have been several studies that have examined index sensitivity to misspecification 

type and misspecification severity. The earliest comprehensive study was done by Hu and 

Bentler (1998), who examined the behavior of 15 indices with respect to the severity of model 

misspecification. The goal was to determine which indices, if any, accurately reflected the degree 

of misspecification. The authors examined index performance in CFA models involving three 

factors and 15 indicators. For what they called the “simple” misspecification scenario, there were 

three different models: one that was correctly specified, one that involved one omitted factor 

covariance, and one that omitted two factor covariances. For the “complex” misspecification 

scenario, there were also three different models: one that was correctly specified, on that 

involved one omitted cross-loading, and one that omitted two cross-loadings.  

In addition to the differing degrees of misspecification, the authors also included three 

estimation method conditions (ML, GLS, and asymptotic distribution free (ADF)) and six sample 

size conditions (n = 50 to n = 5,000). They measured sensitivity to misspecification by using an 

ANOVA. The larger the amount of variance accounted for by the model misspecification (and 

the smaller the amount of variance accounted for by the sample size and estimation method), the 

better and index was said to be.   

Results from the study showed that in the case of the “simple” misspecification (omitted 

factor covariances), SRMR, TLI, BL89, RNI, CFI, Mc, gamma hat, and RMSEA all performed 

well in terms of large proportions of their variances being accounted for by the size of the 

misspecification. Other indices, including GFI, AGFI, NFI, CAK, and CK, were highly affected 

by sample size.  



45 

 

In the case of the “complex” misspecification, the authors found that large proportions of 

the variances of TLI BL89, CFI, and RMSEA were accounted for by misspecification. Overall, 

the authors found that all indices apart from SRMR were more sensitive to misspecifications due 

to omitted cross-loadings than those due to omitted factor covariances. Based on this, they 

recommended a two-index presentation in results reporting, coupling SRMR with one other 

index.  

One criticism of Hu and Bentler’s (1998) study design is that the severity of model 

misspecification was neither defined nor controlled. Therefore, the simple and complex 

misspecificaitons in the study may not have comparable degrees of misspecification. Fan and 

Sivo (2005) sought to expand upon Hu and Bentler’s (1998) study by quantifying the degree of 

misspecification in each model so as to keep it consistent across the two misspecification types 

(simple and complex). 

 To quantify the degree of misspecification, Fan and Sivo (2005) treated the chi-square 

values for the models as noncentrality parameters. That is, these chi-square values (and their 

associated degrees of freedom) describe the amount of shift from the central chi-square 

distribution to the non-central chi-square distributions due to model misspecification. Since these 

values are blind to the type of misspecification, the authors argued that they would be a good 

way to compare the severity of misspecification of the simple and complex cases presented by 

Hu and Bentler (1998). 

By comparing the (χ� − df) from the different models, they found that the 

misspecification was less severe in the “simple” case than in the “complex” case. Thus, the 

results in Hu and Bentler’s (1998) study may have been partly due to these differences in 

misspecification severity. To determine if this was the case, Fan and Sivo (2005) repeated Hu 
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and Bentler’s (1998) original study while controlling for the severity of model misspecification. 

To do so, they adjusted the population model parameters in the original designs so that the 

models would have comparable degrees of misspecification.  

After controlling for the severity of misspecification, Fan and Sivo (2005) found results 

similar to those in the original study. TLI, BL89, RNI, CFI, Mc, and RMSEA all appeared more 

sensitive to misspecifications due to omitted cross-loadings than misspecifications due to omitted 

factor covariances. This suggests that certain indices are indeed more sensitive to certain types of 

misspecification, even when the degree of misspecification is controlled across the types. 

In a follow-up study, Fan and Sivo (2007) sought to further examine fit index behavior 

with respect to the degree of model misspecification. They argued that if universal index cutoff 

values are to be of any practical use in SEM, it is important that fit indices be sensitive to the 

severity of model misspecification (regardless of the source) but not be sensitive to different 

types of models that have the same degree of misspecification.  

To determine which indices (if any) were sensitive to model type if the degree of 

misspecification was the same across the different models, the authors constructed two different 

CFA models. CFA-a contained misspecifications due to omitted cross-loadings, and CFA-b 

contained misspecifications due to omitted factor covariances. Both models had three different 

levels of misspecification: no misspecification, a single instance of misspecification (e.g., one 

omitted cross-loading), and two instances of misspecification (e.g., two omitted cross-loadings). 

The degree of misspecification was held constant across model types for each of the three levels 

of misspecification. 

Of the twelve indices included in the study, NFI, RHO1, and SRMR were shown to be 

most sensitive to model type, with 20% or more of their variation attributable to this component. 
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Gamma, Mc, and RMSEA were shown to be the least sensitive to model type but most sensitive 

to the degree of model misspecification. CFI, while sensitive to the degree of misspecification, 

was also slightly sensitive to the type of model as well.  

Fan and Sivo (2007) also included a condition to the study which compared index 

behavior in the original models to index behavior in models that were smaller but otherwise 

similar to the originals. They found that though the severity of misspecification was the same in 

the two smaller models as it was in the original models, RMSEA values were dramatically higher 

for the smaller models, suggesting that these models had a higher degree of misspecification than 

the larger models. These results agree with research focused on model size and suggest, as other 

studies do, that RMSEA is highly sensitive to model size. 

A more recent study by Heene et al. (2012) also explored the sensitivity of commonly 

used indices under different sources and degrees of model misspecification. The study focused 

on the behaviors of RMSEA, SRMR, and CFI for two different CFA models with 24 indicators 

equally distributed across two correlated factors. One population model, Model A, contained 

three correlated errors between items loading onto the two different factors. The other population 

model, Model B, contained six correlated errors.   

The study contained five sample size conditions (150, 250, 500, 1,000, and 2,500) and 

two factor loadings conditions (one with loadings ranging from .3 to .6, the other with slightly 

higher loadings ranging from .5 to .8). To create the misspecification, the fitted model (fitted to 

simulated data from both Model A and Model B) assumed entirely uncorrelated errors.  

The authors found that regardless of loading size, sample size, or degree of 

misspecification, both SRMR and RMSEA values were always below their commonly used 

cutoff values, demonstrating that these indices failed to reject models that had a large degree of 
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misspecification (i.e., six omitted error covariances). CFI values, on the other hand, were almost 

always below the suggested cutoff value except with the weakest misspecification and the larger 

sample sizes (greater than 500), suggesting that the index is sensitive to misspecification due to 

omitted error covariances. CFI values were also higher (indicating better fit) when loadings were 

higher, suggesting that this index is also affected by loading size.   

In the present study, one of the focuses will be on index behavior with respect to 

misspecification type. Also of interest will be how CFI and RMSEA will perform when the 

severity of misspecification is altered. The results from the current study will be compared to the 

results from previous studies to determine if the same conclusions are reached.  

 

1.5.3.3 Summary 

 The above sections discuss the prominent literature focusing on fit index behavior and the 

aspects of the modeling procedure that affect different popular indices. In this section, I briefly 

summarize the results pertaining to the two indices of interest in the current study and discuss 

how I expect these indices to behave based on what has been demonstrated in the literature. 

 Previous research points to RMSEA as being very sensitive to model size. More 

specifically, as the size of a model increases (whether that increase is measured by the number of 

indicators included in the model or by the degrees of freedom of the model), RMSEA has a 

tendency to show an improvement in fit, regardless of the type of misspecification. This trend is 

evident regardless of whether the ratio of indicators to factors (p:k) is held constant or allowed to 

change as the model size increases. (Browne, 1987; Kenny and McCoach, 2003; Sharma et al., 

2005). 
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 CFI shows a decrease in model fit as model size increases, but only when the 

misspecification is due to an incorrect latent structure. When the misspecification is due to an 

omitted error covariance, CFI shows an improvement in fit as model size increases (Kenny and 

McCoach, 2003). However, other studies that have duplicated this study find that CFI values are 

much more stable compared to RMSEA values as model size increases (Chau and Hocevar, 

1995). Based on this previous research, I expect that RMSEA will show an improvement in fit as 

model size increases, regardless of the type of misspecification. However, I suspect that CFI’s 

behavior as model size increases will be affected by the type of misspecification.  

 Previous research also shows that both indices are sensitive to loading size. While low 

loadings affect CFI’s ability to detect correctly specified models (meaning that low loadings lead 

CFI to reject models that fit the data perfectly), RMSEA is slightly less affected by loadings 

(Themessl-Huber, 2014). When loadings are high, CFI is appropriately sensitive, meaning that 

the index still rejects models that have poor fit. RMSEA, on the other hand, has a tendency to 

show models as having better fit based solely on the size of the loadings (better fit when loadings 

are larger), and thus may accept a poorly-fitting model if the loadings are high enough (Miles 

and Shevlin, 2007).  

 Based on what has been found in the literature, I suspect that loading size will affect 

index behavior regardless of the type of misspecification. Specifically, I anticipate that RMSEA 

will show improved fit (at any degree of misspecification) as loading sizes increase, while CFI 

will show significantly worse fit as loading sizes decrease. I also suspect that loading size will 

influence behavior regardless of other modeling factors (e.g., model size). 

 Finally, previous research shows that while both indices appear to be sensitive to 

misspecifications due to omitted factor covariances, RMSEA is less sensitive to 
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misspecifications due to omitted error covariances than CFI is (Fan and Sivo, 2005; Heene, et al., 

2012; Hu and Bentler, 1998). While the current study does not examine omitted factor 

covariances, it does examine misspecified latent structure, which involves fitting a model with a 

certain number of factors to data that comes from a population with a greater (or fewer) number 

of factors than the fitted model. Based on index behavior with respect to omitted factor 

covariances, I anticipate that both indices will be sensitive to misspecified latent structures, while 

CFI will be more sensitive to omitted error covariances than RMSEA.  
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Chapter Two: Methods 

 In this chapter, I discuss the methodology used to carry out the simulations presented in 

Chapter 3. I begin with a brief overview of the estimation and fit assessment steps of SEM, 

which are discussed in more detail in Chapter 1. I then describe the simulation methods 

employed here, focusing on the construction of the “population” and “hypothesized” covariance 

matrices, the minimization of the discrepancy function, and the plotting of the results. Finally, I 

re-state the goals of the present study and describe how I will attempt to achieve them. 

  

2.1 Estimation and Assessing Model Fit 

 As discussed in Chapter 1, the null hypothesis in SEM states that the population 

covariance matrix Σ* has the structure implied by the researcher’s hypothesized model. That is, 

the null claims that Σ*  = Σ(θ), with θ being a vector of unknown population parameters. In order 

to test this null hypothesis, both Σ*  and θ must be calculated under the researcher’s hypothesized 

model.  

 However, since the population covariance matrix Σ*  is not known, we cannot directly 

test the null hypothesis that Σ*  = Σ(θ). Instead, it is assumed that the covariance matrix S of a 

sample drawn from the population of interest is a good representation of Σ* . The primary goal of 

the estimation step, then, is to find the vector of parameter estimates �� such that the difference 

between �(��), the hypothesized models’ covariance structure based on these estimates, and S, 

the sample covariance matrix, is as small as possible. 

 These parameter estimates are obtained by minimizing some discrepancy function F(θ). 

The most commonly used estimation procedure in SEM is the maximum likelihood (ML) 

procedure. Recall equation (1.1) from the previous chapter:  
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                              F(�) = ln|�(�)| − ln|�∗| + tr!�∗�(�)"#$ − %,                  (1.1) 

  

where Σ(θ) represents the structure of the covariance matrix implied by the hypothesized model, 

Σ*  represents the population covariance matrix, and p is the number of indicator variables. Since 

Σ*  is not known, the sample covariance matrix S replaces Σ*  and (1.1) is expressed as 

 

                               F(�) = ln|�(�)| − ln|'| + tr!'�(�)"#$ − %.                   (1.2) 

 

When F(θ) is minimized, we obtain F) and the corresponding vector of parameter estimates ��.  

F) attains the value of zero if and only if �(�) = '. Otherwise, F) is positive and increases as the 

discrepancy between �(�) and S increases.  

Once F) and �� have been found, the next step is to use them to assess how well the 

hypothesized model fits the data. Specifically, we want to compare �(��) to S in order to 

determine how similar they are. Fewer discrepancies between the two matrices suggests that the 

proposed model is a good fit to the underlying population covariance structure from which the 

sample was drawn. The traditional method of assessing goodness-of-fit involves using the chi-

square test statistic, which is based on the minimized fit value F). Recall from Chapter 1 that the 

chi-square test statistic T can be expressed as 

 

   T = (N − 1)F).                                (1.3) 

 

Most fit indices that are commonly used in SEM rely on F) as well, expressed as a chi-

square value.  
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2.1.1 Sample versus Population Fit Indices 

 Note that in order for F) to be expressed as a chi-square value, it must be multiplied by  

(N – 1) and thus depends on the sample size (which in turn implies that any fit index based on 

F) is also influenced by sample size). Many previous studies (e.g., Fan et al., 1999; Kenny et al., 

2015; Marsh, et al., 1988) have shown that fit index behavior is, in most cases, heavily 

influenced by sample size. In the present study, the goal is to examine index behavior 

independently of sample size.  

 In order to do so, the equations for the two fit indices of interest (CFI and RMSEA) must 

be re-written so as to not depend on the sample size n. To derive these population equations,  

F) ∙ N, where N = n + 1, was used to replace the chi-square values found in the sample definitions 

of the indices. The sample size n was then allowed to tend to infinity.  

The value of F), as stated above, is obtained by minimizing the function F(θ), which relies 

partially on the sample covariance matrix S. Because S is affected by n, F) is still affected by 

sample size. Rather than relying on sample covariance matrices (S), I instead define population 

covariance matrices (Σ* ) whose structures are explicitly defined to reflect the relationships 

amongst variables in the population. These Σ* matrices therefore do not rely on n and, 

subsequently, F) is independent of sample size in this study. In other words, I compute F) based on 

equation (1.1) rather than (1.2). Please refer again to Appendix A for the population values of 

commonly used fit indices. The population equations for CFI and RMSEA were used to calculate 

the fit index values for the model simulations presented in this study.  
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2.2 Steps of the Simulation Procedure 

 The simulations presented in the following chapter illustrate how these indices behave in 

specific modeling scenarios. In order to control the source and severity of misspecification (as 

well as different model components, such as loading size, model size, factor correlation, etc.), the 

simulations involve first creating a “population” model and then fitting deliberately misspecified 

models to that population model.  

All simulations and calculations were carried out using the statistical software R, and 

several randomly chosen points for each scenario were verified using EQS 6.3. In cases where 

convergence problems were present, the outlier values were replaced by the average of the 

surrounding values. The steps involved in the simulation procedure are described here. 

 

Step 1: Definition of the Model Components and Loops 

The first step in each simulation is to define the general components of the model that 

were fixed (i.e., not manipulated at all during the simulation). Depending on the scenario, these 

components include any number of the following: the number of indicators (p), the number of 

factors (k), loading sizes (λ), and factor correlation (ϕ). For example, Figure 3.1 represents a 

scenario in which a hypothesized 1-factor model with 8 indicators is misspecified in the sense 

that it omits an error covariance that is present in the population. In this scenario, neither the 

number of indicators in the model nor the number of factors in the model are changed, so these 

values (p = 8 and k = 1) are fixed at the beginning of the simulation. 

In most simulations, one or two model components are manipulated so that the simulation 

produces results for different values of said model components. In such cases, a loop in the code 

is created so that the simulation procedure—specifically, the minimization procedure and 
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calculation of fit index values—occurs for each value of the manipulated component. Using 

Figure 3.1 again as an example, it is of interest to see how different loading sizes affected model 

fit. Thus, a vector of loading sizes is defined (λ = .4, .5, .6, .7, .8, or .9) and a loop is created so 

that the fit function is minimized and CFI and RMSEA values are calculated for each value of λ. 

 

Step 2: Construction of the Population Covariance Matrix 

 As previously stated, the goal of the present research is to examine the behavior of CFI 

and RMSEA independent of the influence of sample size. Thus, there is no need to simulate data 

in order to carry out the calculations of the population CFI and RMSEA values. Instead, 

simulations and calculations are carried out strictly based on covariance matrices constructed 

based on an assumed “true” population model and a “hypothesized” model.  

 Before the construction of these models is discussed, it should be noted that the 

calculations of the population fit indices can rely entirely upon covariance matrices because the 

fit function being minimized only requires three components: the covariance matrix implied by 

the hypothesized model, the population covariance matrix, and the number of indicator variables 

(see equation (1.1)). Thus, as long as the two covariance matrices can be constructed in some 

way, there is no need to simulate data in order to produce them.  

 The first covariance matrix constructed in the simulations is Σ* . This matrix represents 

the “true” or “population” covariance matrix. To obtain Σ* , it is implied that certain relationships 

exist amongst variables in the population and that these relationships can be described by a 

structural equation model. For the simulations in this study, the focus is on 1- and 2-factor CFA 

models. Therefore, Σ*  is calculated either as  
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                                                                  �∗ = LLM + �                                                           (2.1) 

 

for a 1-factor model, where λ is a p × 1 vector of population factor loadings and � is the p × p 

covariance matrix of the residuals, where p represents the number of indicator variables in the 

model, or as  

                                                                �∗ = �	�′ + �                                                         (2.2) 

 

for a 2-factor model, where Λ is a p × k matrix of population factor loadings, Φ is a k × k matrix 

of population factor correlations, and � is the p × p covariance matrix of the residuals, where k 

represents the number of latent factors in the model.  

 In most scenarios presented in the following chapter, the discrepancy between the 

population covariance matrix Σ*  and the hypothesized model is due to the hypothesized model 

failing to include a component of the model underlying the population. Thus, an additional loop 

is created within the simulations in order to vary the size of this component of interest in Σ*  to 

observe how its omission from the hypothesized model affects model fit.  

For example, in Figure 3.1, there exists a single error covariance in the population model, 

which is in turn reflected in Σ*  (specifically, � is not diagonal). The hypothesized model omits 

this error covariance (� is diagonal in the hypothesized model), which is reflected in the 

estimated covariance matrix (�(��), discussed in Step 4). A visual representation of the 

population model and hypothesized model is given in Figure 2.1.  

In the code for Figure 3.1, a loop is inserted such that model fit is assessed for population 

error covariances ranging from 0 to .84, in .01 increments. That is, for a given loading size, the 

fit function minimization is performed and recorded 85 separate times for the 85 different error 
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covariance sizes in the population. The description of the specific fit function used in this 

simulation is given in the next step. 

 

 

Figure 2.1: The hypothesized model for Figure 3.1 (left), omitting the error covariance that 
exists in the population model for Figure 3.1 (right).  

 

Step 3: Define the Fit Functions to be Minimized 

 Within the loop described in step 2, the fit function must be minimized in order to obtain 

F) and the and the corresponding q × 1 vector of parameter estimates ��, used in the estimated 

covariance matrix. Note, however, that there are actually two fit functions to be minimized. 

Recall from Chapter 1 that CFI requires information not only from the hypothesized model but 

from a “baseline” or “independent” model as well. Since the model most often used for this 

baseline model is one in which all observed variables are uncorrelated, this is the model used in 

the present study. Thus, fit functions for both the hypothesized model (used for both CFI and 

RMSEA calculations) and for the baseline model (used for CFI) are constructed.  

For the hypothesized model’s fit function, a series of starting values are defined to be 

used in the minimization procedure. These starting values are used to construct Σ(θ), the matrix 
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based on the hypothesized model’s covariance matrix structure. Following this, the fit function 

F(�) is defined as in equation (1.1): 

 

 

                              F(�) = ln|�(�)| − ln|�∗| + tr!�∗�(�)"#$ − %                  (1.1) 

 

and is minimized using the R function nlm, which carries out the minimization of the function 

using a Newton-type algorithm. An additional function, try, is used to handle errors from the 

nlm function. Specifically, if an error is produced by nlm, the try function allows for an 

additional loop to be created in which random starting values are employed until a useable result 

from nlm is produced.  

 For the baseline model’s fit function, the above procedures are the same, except Σ(θ) is 

no longer based on the structure of the hypothesized model but is instead constructed assuming 

that the variables are all uncorrelated (a diagonal covariance matrix).  

 

Step 4: Obtain and Store the CFI and RMSEA Values  

 Minimization of the functions in the above step produces F) and F7� , the minimized fit 

functions corresponding to the hypothesized model and the baseline model, respectively, as well 

as �� and ��N , the q × 1 vectors of parameter estimates responsible for minimizing the fit 

functions for the hypothesized and baseline models, respectively. Using the estimates �� and the 

form of the hypothesized covariance matrix yields �(��), the hypothesized model’s covariance 

matrix that minimizes the differences between it and the population covariance matrix Σ* . Also 
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computed are the CFI and RMSEA values, calculated based on the minimized fit values obtained 

in Step 3.   

 In order to store all the CFI and RMSEA values produced by the loops in these 

simulations, appropriately sized matrices are created, initially empty, and are subsequently filled 

with the CFI and RMSEA values resulting from each loop. For example, in Figure 3.1, six 

different factor loading sizes are considered, as are 85 different population error covariance 

values. In order to store the CFI and RMSEA values for each combination of loading size and 

error covariance size, two 85 × 6 empty matrices, one for the CFI values and one for the 

RMSEA values, are constructed. These matrices are then filled with the index values as the code 

cycles through the loops. 

 

2.3 Plotting the Results 

 A unique feature employed in the current study is the use of continuous curves to 

examine and display index performance. Most previous research has focused on assessing index 

performance at a few select values. Here, I plot curves showing index value as a continuous 

function of the modeling components of interest or the size of the misspecification (e.g, the size 

of the model or the size of an omitted error covariance). This method of presentation was 

originally utilized by Savalei (2010) and Mahler (2011) and allows for a clearer representation of 

index performance under the model aspects and misspecifications of interest. 

 In addition to the curves, horizontal lines indicating the most commonly agreed upon 

cutoff value for each index are plotted as well. This is done so that index behavior can be 

examined against these cutoff values as model components and misspecifications change. The 

most commonly agreed upon cutoff for CFI is .95 (models with CFI values greater than .95 are 
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said to fit the data well). The most commonly agreed upon cutoff for RMSEA is .06 (models 

with RMSEA values less than .06 are said to fit the data well). 

In order to increase the ease of comparison between the plots of CFI values and the plots 

of RMESA values, the (1 – RMSEA) values are plotted instead so that they can be interpreted in 

a similar way to the CFI values. That is, these values should be interpreted as showing better fit 

as values increase (and perfect fit when (1 – RMSEA) = 1). RMSEA’s commonly accepted 

cutoff value has also been plotted as (1 – .06) = .94, and the corresponding interpretation should 

be that models with (1 – RMSEA) values greater than .94 show an acceptable degree of fit.  

 

2.4 Research Questions 

The goal of the current research is to investigate the performance of RMSEA and CFI in 

various model and misspecification conditions. To limit the scope of the study, only CFA models 

are considered. Listed here again are the four questions of interest: 

 

1. To what extent is fit index value affected by the source of the misspecification? 

2. To what extent is the relationship between the degree of model misspecification and fit 

index value moderated by model components? 

3. Does the current research support the use of uniform cutoff values across different model 

and misspecification types? 

4. Can guidelines for the use of different indices under different models be developed? 

 
 To address the first question, RMSEA and CFI values will be evaluated in models with 

one of three different sources of misspecification. The three sources of misspecification covered 
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in this study are one or more omitted error covariances, one or more omitted cross-loadings, and 

a misspecified latent structure. The behaviors of the indices will be compared across the different 

misspecification sources to determine if either index appears to be more sensitive to certain 

misspecifications than others.  

To address the second question, various model components are manipulated within the 

three different misspecification types. The different model components addressed in this study 

include loading size, factor correlation size (in multiple-factor models), model size (as measured 

by the number of indicators, the total number of factors, and the ratio of indicators to factors), 

and model balance (as measured by how equally distributed indicators are amongst the factors in 

a multiple-factor model).   

The effect of the size or degree of model misspecification is also of concern here and will 

be manipulated as well. When the source of the misspecification is due to omitted error 

covariances or omitted cross-loadings, the size of the omitted error covariance (or cross-loading) 

or the total number of omitted covariances (or cross-loadings) are used to define the size of 

misspecification. When the source of misspecification is due to an incorrect latent structure, the 

degree of misspecification is defined by the difference in the number of factors in the fitted 

model versus the number of factors in the population. 

The third question will be addressed by examining whether models would be accepted or 

rejected in the scenarios presented in this study based on the most commonly used cutoff values 

in the research. This study is not offering to redefine appropriate cutoff values; rather, the aim is 

to determine if there is evidence to dissuade the use of the common cutoff values in all modeling 

situations. 
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Finally, the fourth question will be addressed by comparing the behaviors of RMSEA and 

CFI and determining in what cases it might be beneficial for researchers to examine both of these 

indices when assessing model fit. It has already been documented in previous research that these 

two indices behave differently under certain modeling conditions. It is one of the goals of this 

study to determine if any information can be gathered regarding the source of misspecification in 

cases where the two indices disagree about model fit. 
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Chapter Three: Results 

 In this chapter, the results of the simulation studies are presented and summarized. The 

chapter is broken into three sections corresponding to the three sources of misspecification 

examined in this study. The first section focuses on misspecification involving one or more 

omitted error covariances, the second focuses on misspecification involving one or more omitted 

cross-loadings, and the third focuses on misspecified latent structures.  

In each section, different modeling scenarios are presented. These are used to examine 

the effects of misspecification type on index behavior with respect to various model components. 

These components include model size, loading size, factor correlation (when applicable), and 

model balance (when applicable). Plots for both CFI and RMSEA are presented for each 

scenario.  

 

3.1 Misspecification Source: One or More Omitted Error Covariances 

 The scenarios presented in this section include both one- and two-factor CFA models. 

The covariance structure of a 1-factor model is given by � = LLM + �, where λ is a  

p × 1 vector of factor loadings and � is the p × p covariance matrix of the residuals, where  

p represents the number of indicator variables in the model. The covariance structure of a  

2-factor model is given by � = �	�′ + �, where Λ is a p × k matrix of factor loadings, Φ is a  

k × k matrix of factor correlations, and � is the p × p covariance matrix of the residuals, where k 

represents the number of latent factors in the model. In each model, the number of unique 

parameters to be estimated, q, includes all factor loadings (λ values), all residuals (ψ values), 

and, in 2-factor models, the factor correlation φ.  
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 This section focuses on misspecifications due to one or more omitted error covariances. 

This misspecification occurs when a researcher’s proposed model fails to include the covariance 

of one (or more) pairs of error terms that covary in the true (population) model. In the scenarios 

presented here, the covariance matrices corresponding to the true model are constructed to 

include one or more pairs of covarying error terms (that is, � is not diagonal). However, the 

hypothesized models in this section omit these error covariances, suggesting that all residuals are 

uncorrelated (� is diagonal in all hypothesized models). 

In addition to the size and number of misspecifications due to omitted error covariances, the 

influence of loading size, model size, factor correlation (in 2-factor models), and model balance 

(in 2-factor models) on index behavior are examined as well.  

 

3.1.1 Effects of Misspecification Size 

 The first two figures examine the effect of the size of a single omitted error covariance on 

index values. Figure 3.1 corresponds to a scenario involving a hypothesized 1-factor model with 

one omitted error covariance. That is, the true model’s covariance matrix in this scenario is 

constructed to represent data from a population with one error covariance. The hypothesized 

model omits this error covariance.  

 The plots of Figure 3.1 show the relationships between index value (plotted on the y-

axes) and the size of the error covariance omitted from the model (plotted on the x-axes). The six 

colored curves correspond to six loading sizes, with red, orange, green, blue, purple, and black 

corresponding to loadings of .4, .5, .6, .7, .8, and .9, respectively. All indicators in the model 

have the same loading size. Solid lines represent a model with eight indicator variables (p = 8); 

dashed lines represent a model with 16 indicator variables (p = 16). For each plot, a horizontal 
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Figure 3.1: Plots of population fit index values vs. a single omitted error covariance for a 1-factor model with 8 indicators 
(solid lines) or 16 indicators (dashed lines). The colored curves correspond to different loading sizes, with red, orange, green, 
blue, purple, and black corresponding to loadings of .4, .5, .6, .7, .8, and .9, respectively.  

Error Covariance

C
F

I

.0 .1 .2 .3 .4 .5 .6 .7 .8
0.4

0.5

0.6

0.7

0.8

0.9

1

λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.7
λ = 0.8
λ = 0.9

p = 8
p = 16

Error Covariance

R
M

S
E

A

.0 .1 .2 .3 .4 .5 .6 .7 .8
0.4

0.5

0.6

0.7

0.8

0.9

1

λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.7
λ = 0.8
λ = 0.9

p = 8
p = 16



66 

 

brown line has been drawn to represent the commonly used cutoff value for that index (with .96 

used for (1 – RMSEA)). Note that the colored curves end at difference sizes of the omitted error 

covariance. This is because the maximum value of the omitted error covariance is a function of 

the loading size. Specifically, error covariance values exceeding 1 – λ2 result in a nonpositive 

definite � matrix corresponding to the true model.  

 Ideally, fit indices should show worse fit as the size of the omitted error covariance 

increases, regardless of the size of the loadings. However, when p = 8, CFI shows a non-

monotone relationship between index value and the size of the omitted error covariances. The 

index shows worse fit when the size of the omitted error covariance is moderate (between .4 to 

.6, depending on the loading size) and an improvement in fit for either small or large omitted 

error covariances. This is especially the case for lower loadings (.4, .5).  

 Figure 3.1 shows that RMSEA, regardless of loading size or number of indicators, 

behaves properly in that it shows worse fit as the size of the omitted error covariance increases. 

RMSEA does, however, appear to be quite sensitive to loading sizes in this situation. When 

loadings are higher (.8 or .9), RMSEA shows poor fit when the size of the omitted error 

covariance is as small as about .08. However, for loadings of .4, the omitted error covariance has 

to be larger than about .28 for the model to be rejected based on the traditional cutoff value.  

 Figure 3.2 extends the scenario presented in Figure 3.1 to a 2-factor model. The addition 

of a second factor allows for an additional form of misspecification. That is, an error covariance 

can exist between two variables loading onto the same factor or between two variables loading 

onto different factors. Figure 3.2 presents the same scenario as in Figure 3.1 but for a 2-factor 

model with eight indicators (four indicators per factor). The correlation between the two factors 

is held at .4. As in Figure 3.1, the six colored curves correspond to six loading sizes, with red, 
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orange, green, blue, purple, and black corresponding to loadings of .4, .5, .6, .7, .8, and .9, 

respectively. Here, the type of line represents where the omitted error covariance is located. 

Solid lines correspond to a model that omits an error covariance between variables loading onto 

the same factor. Dashed lines correspond to a model that omits an error covariance between 

variables loading onto different factors.  

 For both CFI and RMSEA, the curves in Figure 3.2 are similar in shape to the curves in 

Figure 3.1, suggesting that the addition of a second factor does not greatly affect the pattern of 

the relationships between index values and the size of the omitted error covariance. However, 

both indices generally show better fit in the 2-factor model case than in the 1-factor model case.   

It is apparent that CFI is more sensitive to an omitted error covariance of any size if the 

covariance occurs between variables loading onto different factors (dashed lines). The index 

appears far less sensitive to this type of misspecification when the covariance occurs between 

variables loading onto the same factor (solid lines). For example, in the 8-indicator 1-factor case 

(solid lines in Figure 3.1), CFI values are below .95 for omitted error covariances larger than .3, 

regardless of the loading size. However, for the 8-indicator 2-factor model case, CFI values do 

not fall below .95 when the omitted error covariance occurs between variables loading onto the 

same factor (solid lines in Figure 2). While RMSEA, too, appears to be more sensitive to an 

omitted error covariance between variables loading onto different factors than one between 

variables loading onto the same factor, the difference in sensitivity is not as extreme as it is for 

CFI. 
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Figure 3.2: Plots of population fit index values vs. a single omitted error covariance for a 2-factor model with 8 indicators (4 
per factor). The omitted error covariance occurs either between indicators of the same factor (solid lines) or indicators of 
different factors (dashed lines). The colored curves correspond to different loading sizes, with red, orange, green, blue, purple, 
and black corresponding to loadings of .4, .5, .6, .7, .8, and .9, respectively.  
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3.1.2 Effects of the Number of Misspecifications 

 In a model with a large number of indicator variables, it is possible that there may be 

more than one error covariance present. Thus, in addition to examining how a single omitted 

error covariance affects CFI and RMSEA, it was also of interest to examine index performance 

when the number of omitted error covariances was manipulated. The next two figures show the 

effect of an increasing number of omitted error covariances on CFI and RMSEA values. 

 Figure 3.3 plots fit index values against the number of omitted error covariances (1 to 10) 

in a 1-factor model with 20 indicator variables. Error covariances occur between variables that 

do not share error covariances with other variables. That is, variables 1 and 2 share an error 

covariance, variables 3 and 4 share an error covariance, etc. While the number of omitted error 

covariances is measured as a categorical variable, the neighboring points in the figure have been 

connected for readability. The five colored curves correspond to five loading sizes, with red, 

orange, green, blue, and violet corresponding to loadings of .4, .5, .6, .7, and .8, respectively. The 

different types of lines correspond to different sizes of the omitted error covariances. Solid, 

dashed, and dotted lines represent the case where all omitted error covariances are set to .05, .2, 

and .35, respectively.  

 Both CFI and RMSEA appropriately show a decrease in fit as the number of omitted 

error covariances—and thus, the degree of misspecification—increases, both when the omitted 

error covariances are of size .2 and .35. Both indices also appear to be more sensitive to loading 

sizes as the sizes of the omitted error covariances increase, but not as the number of omitted error 

covariances increase. When the omitted error covariances are all .05, neither index would reject 

the model as being a poor fit for the data, even when there are 10 error covariances present in the 

population but omitted from the model.
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Figure 3.3: Plots of population fit index values vs. the number of omitted error covariances (1 to 10) for a 1-factor model with 
20 indicators. The size of the omitted error covariances is set to .05 (solid lines), .2 (dashed lines), or .35 (dotted lines). The 
colored curves correspond to different loading sizes, with red, orange, green, blue, and purple corresponding to loadings of .4, 
.5, .6, .7, and .8, respectively. Neighboring points are connected for readability.  
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 Figure 3.4 presents the same scenario as Figure 3.3, except for a model with an additional 

latent factor. That is, Figure 3.4 plots index values against an increasing number of omitted error 

covariances (1 to 10) for a 2-factor model with 20 indicator variables (10 per factor). As in 

Figure 3.3, the five colored curves here correspond to five loading sizes, with red, orange, green, 

blue, and violet corresponding to loadings of .4, .5, .6, .7, and .8, respectively. The size of the 

omitted error covariance has been fixed to .2, as this value can be considered large enough to be 

an omission that may be of concern in a model. The different line types in Figure 3.4 represent 

different factor correlation sizes, with solid, dashed, dotted lines representing factor correlations 

of .1, .4, and .7, respectively. Neighboring points have again been connected for readability.  

 From Figure 3.4, it appears that regardless of the size of the factor correlation and loading 

size, CFI shows poor model fit as soon as the number of omitted error covariances increases 

above three. Comparing CFI’s performance in the 2-factor model case (Figure 3.4) with the  

1-factor model case when the size of the omitted error covariances was fixed at .2 (Figure 3.3, 

dashed lines), the addition of one more latent factor to the model does not greatly affect CFI’s 

ability to detect misspecifications due to an increasing number of omitted error covariances.  

 RMSEA, too, behaves similarly in the 2-factor case as it did in the 1-factor case where 

the omitted error covariances were fixed at .2. Specifically, RMSEA shows worsening fit as the 

number of omitted error covariances increases. In addition, Figure 3.4 also shows that RMSEA 

values are not affected by the size of the factor correlation for this type of misspecification, at 

least when the model is relatively large (10 indicators per factor). 
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Figure 3.4: Plots of population fit index values vs. the number of omitted error covariances (1 to 10) for a 2-factor model with 
20 indicators (10 per factor). The size of the omitted error covariances is fixed at .2. Factor correlation is set to .1 (solid lines), 
.4 (dashed lines), or .7 (dotted lines). The colored curves correspond to different loading sizes, with red, orange, green, blue, 
and purple corresponding to loadings of .4, .5, .6, .7, and .8, respectively. Neighboring points are connected for readability. 
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3.1.3 Effects of Model Size 

 In the previous four figures, the effects of the size of one omitted error covariance 

(Figures 3.1 and 3.2) and an increasing number of omitted error covariances (Figures 3.3 and 

3.4) were examined both in 1-factor models and 2-factor models. Thus, these figures show how 

one aspect of model size, the number of latent factors, can influence index behavior when 

combined with misspecifications due to one or more omitted error covariances. I now wish to 

examine the influence of another aspect of model size, the number of observable variables, on 

index behavior when the misspecification is due to an omitted error covariance.   

 Figure 3.5 plots index values against an increasing number of indicator variables  

(p = 4, 6, 8, 10, 12, 14, 16, 18, 20) for a 1-factor model. The five colored curves correspond to 

five different sizes of omitted error covariance, with red, orange, green, blue, and purple 

corresponding to omitted error covariance sizes of .1, .2, .3, .4, and .5, respectively. Solid lines 

correspond to loadings of .4; dashed lines correspond to loadings of .7. Note that while the 

number of indicator variables (represented on the x-axis) is measured as a categorical variable, 

neighboring points are connected for readability.  

 Figure 3.5 shows that both CFI and RMSEA are appropriately sensitive to the size of the 

omitted error covariances. That is, regardless of the number of indicator variables, the indices 

show the worst fit for the largest omitted error covariance size (ψ = .5) and the best fit for the 

smallest omitted error covariance size (ψ = .1). Except when the omitted error covariance is .5, 

CFI appears to be more sensitive to this type of misspecification when the loadings are lower  

(.4, solid lines) than when they are higher (.7, dashed lines). Regardless of the size of the omitted 

error covariance, RMSEA is more sensitive to this type of misspecification when the loadings 
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Figure 3.5: Plots of population fit index values vs. an increasing number of indicators (p = 4, 6, 8, 10, 12, 14, 16, 18, 20) for a  
1-factor model. Loadings are .4 (solid lines) or .7 (dashed lines). The colored curves correspond to different sizes of the single 
omitted error covariance, with red, orange, green, blue, and purple corresponding to omitted error covariances of .1, .2, .3, .4, 
and .5, respectively. Neighboring points are connected for readability.  
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are higher (.7) than lower (.4), and again appears more sensitive to loading size overall than CFI. 

This is consistent with RMSEA’s behavior in Figure 3.1.  

 With respect to the number of indicator variables, CFI appears to show a decrease in 

model fit as the number of indicators increase up to a certain point, then appears to show an 

improvement in fit as the number of indicators continues to increase. The point at which CFI 

changes from showing a decrease to an increase in fit is dependent upon both the size of the 

omitted error covariance and the size of the loadings, with smaller omitted error covariances and 

smaller loadings leading to an improvement in model fit for a smaller number of indicators For 

example, when loadings are .4, CFI starts showing an improvement of fit for ψ = .2 at p = .6; for 

ψ = .5, the improvement in fit doesn’t start until p = 12. In contrast to the non-linear relationship 

between CFI and the number of indicators included in the model, RMSEA shows an 

improvement in fit as p increases, regardless of loading size or the size of the omitted error 

covariance.  

 Figure 3.6 extends the scenario presented in Figure 3.5 to a 2-factor model. Figure 3.6 

plots index values against an increasing number of indicators (p = 4, 6, 8, 10, 12, 14, 16, 18, 20) 

for a 2-factor model. For the different model sizes, there are an equal number of indicators 

loading onto each factor (e.g., for p = 10, each factor has five indicators loading onto it). The five 

colored curves correspond to five different sizes of omitted error covariance, with red, orange, 

green, blue, and purple corresponding to omitted error covariance sizes of .1, .2, .3, .4, and .5, 

respectively. Solid lines correspond to loadings of .4; dashed lines correspond to loadings of .7. 

Neighboring points are connected for readability.  

 Compared to the 1-factor model scenario examined in Figure 3.5, there is higher model 

complexity in Figure 3.6 due to the addition of a second factor in the model. This added 
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complexity affects index behavior when compared to Figure 3.5. While there still exists a non-

linear relationship between CFI values and the number of indicator variables for a 2-factor 

model, the relationship is much less dramatic. The inflection points at which CFI values cease to 

decrease and begin to increase appear at larger values of p in Figure 3.6 than they do in Figure 

3.5, and the non-linear relationship actually disappears for ψ = .5.   

 The addition of a second latent factor also appears to reduce but not eliminate RMSEA’s 

tendency to show an improvement of fit as the number of indicator variables increases. RMSEA 

shows good fit regardless of the size of the model, except for cases where a higher loading size 

(.7) is combined with a larger omitted error covariance size (.3 to .5). 
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Figure 3.6: Plots of population fit index values vs. an increasing number of indicators (p = 4, 6, 8, 10, 12, 14, 16, 18, 20) for a  
2-factor model. Loadings are .4 (solid lines) or .7 (dashed lines). The colored curves correspond to different sizes of the single 
omitted error covariance, with red, orange, green, blue, and purple corresponding to omitted error covariances of .1, .2, .3, .4, 
and .5, respectively. Neighboring points are connected for readability. 
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3.1.4 Effects of Factor Correlation 

 In the case of a model with two or more latent factors, the size of the factor correlation(s) 

may also affect fit index behavior in certain misspecification scenarios. Figure 3.7 plots index 

values against an increasing factor correlation size (0 to 1) for a 2-factor model with eight 

indicator variables (four per factor). The five colored curves correspond to five different sizes for 

the single omitted error covariance, with red, orange, green, blue, and purple corresponding to 

omitted error covariance sizes of .1, .2, .3, .4, and .5. Solid lines correspond to loadings of .4, 

dashed lines correspond to loadings of .7.   

 As is seen in Figure 3.7, both CFI and RMSEA show good model fit when the factor 

correlation is near zero, but then gradually show a decrease in fit as the factor correlation 

increases to one. This suggests, in addition to the results from Figures 3.1 and 3.2, that both 

indices are more sensitive to misspecification due to an omitted error covariance in a 1-factor 

model versus a 2-factor model. As seen in previous plots (e.g., Figure 3.5), CFI again appears to 

be more sensitive to the misspecification when loadings are low (.4) rather than high, while 

RMSEA appears more sensitive to the misspecification when loadings are high rather than low. 

RMSEA again seems more sensitive to loading size in general than CFI, as the differences 

between the λ = .4 case (solid lines) and the λ = .7 case (dashed lines) appear more dramatic for 

RMSEA than they do for CFI.  
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Figure 3.7: Plots of population fit index values vs. an increasingly large factor correlation (0 to 1) for a 2-factor model with 8 
indicators. Loadings are .4 (solid lines) or .7 (dashed lines). The colored curves correspond to different sizes of the single 
omitted error covariance, with red, orange, green, blue, and purple corresponding to omitted error covariances of .1, .2, .3, .4, 
and .5, respectively. 
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3.1.5 Effects of Model Imbalance 

 An additional feature unique to multi-factor models is that of model balance, or how the 

indicator variables are distributed amongst the latent variables. While it is often the case that 

hypothesized models are “balanced,” meaning that there are an equal number of indicator 

variables loading onto the different factors (e.g, a 2-factor model with six indicators total would 

be balanced if each factor had three indicator variables loading exclusively onto it), there exist 

hypothesized models in which certain factors have more indictors loading onto them than others. 

However, previous studies in the literature that examine index behavior involve balanced models 

almost exclusively. In rare cases when an imbalanced model is used, it is usually the case that 

only one additional indicator loads onto one factor while the second factor has only one less 

indicator. In such cases, the imbalance is noted, but its effects are never discussed.  

 Here, I seek to explore the effect of model balance/imbalance more thoroughly. Figure 

3.8 plots index values against the size of a single omitted error covariance for a 2-factor model 

with 24 indicator variables. Factor correlation is set to .4 and loadings are set to .4. The six 

colored curves correspond to six different degrees of model imbalance. Red corresponds to a 

balanced model (12 indicators per factor). Orange corresponds to a model with 11 and 13 

indicators per factor, green corresponds to a model with 10 and 14 indicators per factor, blue 

corresponds to a model with 9 and 15 indicators per factor, purple corresponds to a model with 8 

and 16 indicators per factor, and black corresponds to a model with 7 and 17 indicators per 

factor. Solid lines correspond to case where the omitted error covariance occurs between 

variables loading onto the “larger” factor; dashed lines correspond to the case where the omitted 

error covariance occurs between variables loading onto the “smaller” factor. It is worth clarifying 

that the imbalance is modeled correctly. That is, the population (true) models for this figure have 
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an unequal number of indicators per factor, but the hypothesized models accurately represent this 

imbalance. Thus, the only source of misspecification is the omitted error covariance.  

 Figure 3.8 reveals that CFI values are highly affected by model balance, particularly 

when the size of the omitted error covariance is moderate to large. For all levels of balance, CFI 

shows good model fit until the omitted error covariance increases above about .25. However, 

once the size of the misspecification increases, CFI appears much more sensitive to its effects 

when the misspecification occurs between variables loading onto the “larger” factor (solid lines). 

For example, in the most severely imbalanced case, where one factor has seven indicators 

loading onto it and the other has 17, when the omitted error covariance is .7, CFI is about .66 

when the misspecification is on the “larger” factor and about .94 when the misspecification is on 

the “smaller” factor. It is also worth noting that we again see the non-linear relationship between 

CFI values and the size of the omitted error covariance (as seen in Figure 3.1), regardless of the 

balance/imbalance of the model. That is, CFI shows better fit for smaller and larger omitted error 

covariance sizes and worse fit for moderate omitted error covariance sizes. However, unless the 

model is severely imbalanced and the misspecification occurs on the “small” factor (black 

dashed line), CFI values do not increase enough to lead a researcher to accept a model based on 

the commonly used cutoff criterion.  

 While RMSEA shows a linear decrease in fit for all levels of model imbalance as the size 

of the omitted error covariance increases, the index only shows poor fit for the most severely 

imbalanced model when the misspecification occurs on the “larger” factor (solid black line). This 

suggests that RMSEA is not as affected by model imbalance as CFI. However, as was seen in 

Figures 3.5 and 3.6, RMSEA shows an improvement in fit as the number of indicators in a model 

increases. Thus, since the model is quite large in this scenario (p = 24), it was suspected that 



82 

 

 

Figure 3.8: Plots of population fit index values vs. a single omitted error covariance for a 2-factor model with 24 indicators. 
Factor correlation is .4 and loadings are .4. The colored curves correspond to differently balanced models, with red 
corresponding to the balanced model and black corresponding to the most imbalanced model. Solid lines correspond to the 
case where the error covariance is omitted within the larger factor; dashed lines correspond to the case where the error 
covariance is omitted within the smaller factor. 
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RMSEA’s behavior may be due in part to the fact that the index shows better fit for larger 

models in general. Thus, an additional model (not presented here), identical to Figure 3.8 except 

having only eight indicators instead of 24, was created to determine whether RMSEA’s behavior 

was due solely to the size of the model in Figure 3.8. In the smaller model, RMSEA also 

appeared to be unaffected by model balance, which suggests that the index’s behavior in Figure 

3.8 is due to a general insensitivity to model balance than to the size of the model itself. 

 

3.2 Misspecification Source: One or More Omitted Cross-Loadings 

 This section focuses on misspecifications due to one or more omitted cross-loadings. 

Recall that an indicator variable can, in some situations, load onto more than one factor in a 

given model. This is especially likely if the two factors are highly correlated. The 

misspecifications examined in this section occur when a researcher’s proposed model fails to 

include one (or more) non-zero cross-loadings that exist in the true (population) model.  

 The scenarios presented here focus on 2-factor CFA models, as at least two factors are 

required for a non-zero cross-loading to exist. As described in the first section of this chapter, the 

covariance structure of a two-factor model is given by � = �	�′ + �, where Λ is a p × k 

matrix of factor loadings, Φ is a k × k matrix of factor correlations, and � is the p × p 

covariance matrix of the residuals, where p represents the number of indicator variables and k 

represents the number of latent factors.  

For these misspecifications, the covariance matrices corresponding to the true models are 

constructed to include one or more cross-loadings. This is reflected in the structure of Λ. For 

example, suppose a 2-factor model with eight indicator variables has four indicators loading 

exclusively onto the first factor, three indicators loading exclusively onto the second factor, and 
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one indicator loading both on the first and second factor. The structure of the loadings matrix Λ 

may be as follows: 

 

� =
OPP
PPP
PQ∗ 0∗ 0∗ 0∗ 00 ∗0 ∗0 ∗∗ ∗RSS

SSS
ST
 

 

where * represents a non-zero value of the loading for that indicator onto its corresponding 

factor. The hypothesized models in this section omit the cross-loadings that exist in the 

population. For example, if the Λ above represented the structure of the loadings matrix in the 

population, the hypothesized Λ might look as follows:  

 

� =
OPP
PPP
PQ∗ 0∗ 0∗ 0∗ 00 ∗0 ∗0 ∗0 ∗RSS

SSS
ST
 

 

 Note that the hypothesized Λ has the last indicator variable loading only onto the second 

factor, whereas in the population, it loads onto both. In addition to the size and number of 

misspecifications due to omitted cross-loadings, the influence of loading size, model size, factor 

correlation, and model balance on index behavior are examined as well.  
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3.2.1 Effects of Misspecification Size 

 As in the first section of this chapter, I begin examining the effect of a single 

misspecification—in this case, a single omitted error covariance—on index behavior. Figure 3.9 

plots index values (y-axes) against an increasingly large omitted cross-loading (x-axes) for a  

2-factor model. The four colored curves correspond to four loading sizes (apart from the size of 

the cross-loading). Red, orange, green, and blue corresponding to loadings of .4, .5, .6, and .7. 

Solid lines correspond to a 2-factor model with eight indicator variables (four per factor), and 

dashed lines correspond to a 2-factor model with 16 indicator variables (eight per factor). The 

factor correlation is set to .1.  

 As in the case with a single increasingly large omitted error covariance, we again see a 

non-monotone relationship between CFI values and the size of the omitted cross-loading. When 

p = 8, CFI values indicate worse fit as the size of the omitted cross-loading increases. However, 

at a certain size of the omitted cross-loading (depending on the size of the other loadings), CFI 

starts showing an improvement in fit. It should be noted, though, that while CFI values begin to 

increase again as the size of the omitted cross-loading grows larger, CFI never increases above 

the commonly used cutoff value of .95 for any combination of model size or loading size. Thus, 

there would be no danger in this scenario of a researcher accepting a model as having good fit 

(based on the cutoff criterion) once the size of the omitted cross-loading was greater than  

about .42. 

 RMSEA shows a steady decrease in model fit as the size of the omitted cross-loading 

increases. This is true for all loading sizes and both model sizes. However, when loadings are 

low (λ = .4), RMSEA values fail to indicate poor fit even when the omitted cross-loading is as 

big as .7, nearly double the size of the rest of the loadings. Both indices are less sensitive to the 
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Figure 3.9: Plots of population fit index values vs. a single omitted cross-loading for a 2-factor model with 8 indicators (solid 
lines) or 16 indicators (dashed lines). The colored curves correspond to different loading sizes, with red, orange, green, and 
blue corresponding to loadings of .4, .5, .6, and .7, respectively. 

Cross-Loading

C
F

I

.0 .1 .2 .3 .4 .5 .6 .7
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.7

p = 8
p = 16

Cross-Loading

R
M

S
E

A

.0 .1 .2 .3 .4 .5 .6 .7
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.7

p = 8
p = 16



87 

 

effects of an omitted cross-loading when the number of indicators is increased from p = 8 to  

p = 16. This result makes sense, as the effect of a single omitted cross-loading is likely “diluted” 

by the larger number of loadings in the larger model. 

 

3.2.2 Effects of the Number of Misspecifications 

 Now I examine the effects of an increasingly large number of cross-loadings omitted by 

the hypothesized model. Figure 3.10 plots index values against the number of omitted cross-

loadings (1 to 10) in a 2-factor model with 20 indicator variables (10 per factor). The four 

colored curves correspond to four different loading sizes, with red, orange, green, and blue 

corresponding to loadings of .3, .4, .5, and .6. All omitted cross-loadings are set to λ = .3. Solid 

lines correspond to a factor correlation of .1; dashed lines correspond to a factor correlation of .3.  

For both CFI and RMSEA, we actually see an increase in fit as the number of omitted 

cross-loadings increases. CFI shows poorest fit when the number of omitted cross-loadings is 

two, three, or four (depending on the loading size), but then shows better fit and finally nearly 

perfect fit as the number of omitted cross-loadings increases to 10.  

CFI is more sensitive to the number of omitted cross-loadings when the factor correlation 

is .3 than when it is .1. The same is true for RMSEA, but the effect of the factor correlation is 

less present for RMSEA than for CFI.  

 RMSEA appears even less sensitive to omitted cross-loadings than CFI. RMSEA values 

are smallest when there are four omitted cross-loadings and show nearly perfect fit when the 

number of omitted cross-loadings is 10. However, at no point are RMSEA values smaller than 

the cutoff value of .94. Thus, regardless of the number of omitted cross-loadings in the 

hypothesized model, RMSEA shows this model as having good fit when judged by the cutoff 
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Figure 3.10: Plots of population fit index values vs. the number of omitted cross-loadings (1 to 10) for a 2-factor model with 20 
indicators (10 per factor). The size of the omitted cross-loadings is fixed at .3. Factor correlation is set to .1 (solid lines) or .3 
(dashed lines). The colored curves correspond to different loading sizes (except for the omitted cross-loading), with red, 
orange, green, and blue corresponding to loadings of 0.3, .4, .5, and .6, respectively. Neighboring points are connected for 
readability. 
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criterion. While these results may suggest that RMSEA is insensitive to misspecifications due to 

one or multiple omitted cross-loadings, recall that the model in this scenario has 20 indicator 

variables (p = 20). As we have seen for larger models (e.g., in Figures 3.5 and 3.6), the 

sensitivity of RMSEA to any degree of misspecification has been substantially less than CFI.  

 

3.2.3 Effects of Model Size 

 After studying the effects of the size and number of omitted cross-loadings on index 

value, I next examine how the number of indicator variables in a model might affect indices’ 

behavior when misspecification is due to an omitted cross-loading. In Figure 3.11, index values 

are plotted against an increasing number of indicator variables (p = 4, 6, 8, 10, 12, 14, 16, 18, 

and 20) for a 2-factor model. In the hypothesized model, each factor has an equal number of 

indicator variables exclusively loading onto it (e.g., for p = 8, each factor has exactly four 

indicators loading onto it). In the true (population) model, however, one of the indicators loads 

onto both factors. The size of this cross-loading, omitted in the hypothesized model, is 

represented by the six colored curves. Red, orange, green, blue, purple, and black correspond to 

the size of the omitted cross-loading being set to .1, .2, .3, .4, .5, or .6, respectively. The size of 

the other loadings is set to either .3 (represented by the solid lines) or .7 (represented by the 

dashed lines). The factor correlation is .1. Neighboring points are connected for readability. 

 Both CFI and RMSEA appropriately show worse fit for larger omitted cross-loadings, 

regardless of the number of indicators or the size of the other loadings (.3 or .7). For all cross-

loading sizes, CFI shows an initial decrease in model fit as the number of indicators increases, 

but then begins to show an increase in fit as the number of indicators continues to grow. The 

inflection point at which CFI changes from decreasing to increasing appears to depend on both 
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Figure 3.11: Plots of population fit index values vs. an increasing number of indicators (p = 4, 6, 8, 10, 12, 14, 16, 18, 20) for a  
2-factor model. Loadings are .3 (solid lines) or .7 (dashed lines). The colored curves correspond to different sizes of the single 
omitted cross-loading, with red, orange, green, blue, purple, and black corresponding to omitted cross-loadings of .1, .2, .3, .4, 
.5, and .6, respectively. Neighboring points are connected for readability. 
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the size of the omitted cross-loading and on the size of the other loadings in the model. This 

pattern is less evident when the other loadings are high (.7) and the omitted cross-loading is high 

as well (.5, .6). In general, this non-monotone relationship between CFI and model size would 

not affect a researcher’s decision about a model’s fit based on the commonly used cutoff value 

(e.g., a model that omits a cross-loading of size λ = .6 will always be rejected for poor fit, except 

in the smallest models). However, in a few cases in this scenario, a model of moderate size with 

a certain omitted cross-loading size might be rejected as having poor fit, while a model with the 

same size omitted cross-loading but with a larger number of indicators might be accepted as 

having good fit based on the cutoff criterion.  

 This same pattern is evident for RMSEA, though much less so when the loadings in the 

model are set at .3 rather than .7. When the loadings are .3 (solid lines), RMSEA values fail to 

fall below .94 and thus show good fit regardless of the number of indicators or the size of the 

omitted cross-loading. When the loadings are .7 (dashed lines), RMSEA shows worse fit when  

p = 6 (for all omitted cross-loading sizes), but then steadily shows an improvement in fit as the 

number of indicator variables increases. When the size of the omitted cross-loading is .5 or .6, 

RMSEA shows poor fit for all model sizes, apart from when p = 4.  

 

3.2.4 Effects of Factor Correlation 

It is worth acknowledging the role the size of the correlation between factors may play in 

determining the severity of a misspecification due to an omitted cross-loading. An omitted cross-

loading between highly correlated factors might be considered more of a severe misspecification 

than an omitted cross-loading between slightly correlated factors, due to the fact that if an 

indicator variable loads highly onto one factor, it is likely it would also load highly onto another 



92 

 

highly correlated factor. However, the less correlated two factors are, the more “obvious” an 

omitted cross-loading might be in a model. This may be because an indicator variable that 

legitimately loads onto two quite different (i.e., slightly correlated) factors may be an important 

and unique feature of a population. If this feature is not included in a hypothesized model, may 

render that hypothesized model a poor fit to the unique structure underlying the population.  

Figure 3.12 plots index values against an increasing factor correlation (0 to 1) for a  

2-factor model. The six colored curves correspond to six different sizes of the omitted cross-

loading, with red, orange, green, blue, purple, and black corresponding to omitted cross-loading 

sizes of .1, .2, .3, .4, .5, and .6, respectively. The remaining loadings are set at .4. Solid lines 

correspond to a model with eight indicators; dashed lines correspond to a model with 16 

indicators.  

From Figure 3.12, it is clear that both CFI and RMSEA show an improvement in fit as 

the factor correlation increases from 0 to 1. CFI appears more sensitive to larger omitted cross-

loadings (blue, purple, and black dashed lines) when the model is larger but more sensitive to 

smaller cross-loadings (red and orange solid lines) when the model is smaller. However, this 

switch in sensitivity is slight and is likely of no practical concern. For RMSEA, the index is 

consistently more sensitive to omitted cross-loadings when the model is smaller (solid lines) than 

larger (dashed lines), but this difference is also very slight.  

Again, we see with RMSEA that index values never fall below the cutoff value. 

However, this pattern occurs both when p = 8 (solid lines) and when p = 16 (dashed lines). Since 

a 2-factor model with eight indicator variables might be considered small to moderately-sized, 

this suggests that RMSEA’s lack of sensitivity toward omitted cross-loadings may not be due to 



93 

 

  

Figure 3.12: Plots of population fit index values vs. an increasingly large factor correlation (0 to 1) for a 2-factor model with 8 
indicators (solid lines) or 16 indicators (dashed lines). Loadings are .4. The colored curves correspond to different sizes of the 
single omitted cross-loading, with red, orange, green, blue, and purple corresponding to omitted cross-loadings of .1, .2, .3, .4, 
and .5, respectively. 
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an interaction with model size, but instead might simply indicate that RMSEA is not very 

sensitive to this type of misspecification. 

 

3.2.5 Effects of Model Imbalance 

 Finally, I examine the effects of model balance on index behavior when the 

misspecification is due to an omitted cross-loading. Figure 3.13 plots index values against an 

increasingly large omitted cross-loading for a 2-factor model with a total of 24 indicator 

variables. Loadings (apart from the cross-loading) are set to .4 and the factor correlation is set  

to .1. The six colored curves correspond to six different degrees of model imbalance. Red 

corresponds to a balanced model (12 indicators per factor). Orange corresponds to a model with 

11 and 13 indicators per factor, green corresponds to a model with 10 and 14 indicators per 

factor, blue corresponds to a model with 9 and 15 indicators per factor, purple corresponds to a 

model with 8 and 16 indicators per factor, and black corresponds to a model with 7 and 17 

indicators per factor.  

 In the population, one of the 24 indicator variables loads onto both factors (regardless of 

the balance/imbalance of the model). There are two different ways that the hypothesized model 

can omit a cross-loading in this scenario. The hypothesized model can either fail to include the 

cross-loading onto the smaller factor or can fail to include the cross-loading onto the larger 

factor. For example, in the most severely imbalance model scenario, the larger factor has 17 

indicators and the smaller factor has seven. The black curves in Figure 3.13 represent these 

cases, with solid lines corresponding to the cross-loading being omitted from the larger factor; 

dashed lines correspond to the cross-loading being omitted from the smaller factor. 
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Figure 3.13: Plots of population fit index values vs. a single omitted cross-loading for a 2-factor model with 24 indicators. 
Factor correlation is .1 and loadings are .4. The colored curves correspond to differently balanced models, with red 
corresponding to the balanced model and black corresponding to the most imbalanced model. Solid lines correspond to the 
case where the cross-loading is omitted from the larger factor; dashed lines correspond to the case where the cross-loading is 
omitted from the smaller factor. 
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As was the case for Figure 3.8, it is worth clarifying here that the imbalance is modeled 

correctly. The population (true) models for this figure have an unequal number of indicators per 

factor, but the hypothesized models accurately model this imbalance. Thus, the only source of 

misspecification is the omitted cross-loading.   

Appropriately, both CFI and RMSEA show a decrease in fit as the size of the omitted 

cross-loading increases, regardless of the balance of the model or where the omitted cross-

loading is located. For CFI, both model balance and cross-loading location have little effect on 

index value until the size of the omitted cross-loading increases above about .35. Once the 

omitted cross-loading is larger than .35, the balanced model (red line) shows the poorest fit, 

while the best fit is shown for the most imbalanced model when the cross-loading is omitted 

from the smaller factor (black dashed line). However, it is worth noting that once the omitted 

cross-loading increases above .35, CFI values do not increase above the commonly used cutoff 

value of .95.  

In contrast, RMSEA only shows poor model fit once the size of the omitted cross-loading 

increases above about .85, and even then only for the most imbalanced models and when the 

cross-loading is omitted from the larger factor. Once again, we see RMSEA exhibiting 

insensitivity to misspecifications due to an omitted cross-loading. RMSEA, in comparison to 

CFI, also appears to be less sensitive to model balance in general. 
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3.3 Misspecification Source: Misspecified Latent Structure 

 This section focuses on the third and final source of misspecification examined in this 

thesis: misspecification of the latent structure. Recall that the factors of a CFA model are 

considered latent variables. Latent variables are those that cannot be directly observed or 

measured, but are inferred through indicator variables that can be observed and directly 

measured. 

 Because the factors in a model cannot be directly observed, situations may arise in which 

a researcher’s proposed model does not accurately reflect the number of factors in the model 

underlying the population. For example, a proposed model may contain only one factor when the 

actual population model contains two. The misspecifications examined in this section occur 

when a researcher’s proposed model fails to include the same number of factors that exist in the 

true (population) model. 

 As in the previous two sections, we again focus on CFA models. In the scenarios 

presented here, the covariance matrices corresponding to the true model are constructed to 

include a specific number of factors and the hypothesized models are constructed so as to either 

underestimate or overestimate the number of factors. This misspecification is reflected in the 

covariance structure of the hypothesized model.  

To use the example presented above, if there is only one factor in the population, the 

population model has a covariance structure given by � = LLM + �, where λ is a p × 1 vector of 

factor loadings and � is the p × p covariance matrix of the residuals, where p represents the 

number of indicator variables in the model.  

If the hypothesized model suggests that there are two factors underlying the data, it is 

overestimating the number of factors in the population. The hypothesized model then has a 
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covariance structure given by � = �	�′ + �, where Λ is a p × 2 matrix of factor loadings, Φ is 

a 2 × 2 matrix of factor correlations, and � is the p × p covariance matrix of the residuals. Note 

that Φ is absent from the structure of the true model in this example, since there is only one 

factor present and thus no factor correlations to be measured.  

 In addition to the size of the misspecification (as measured by how different the latent 

structure of the hypothesized model is when compared to the true model), the influence of 

loading size, model size, and factor correlation on index behavior are examined as well. 

 

3.3.1 Effects of Misspecification Size 

 For scenarios involving a misspecified latent structure, the size of the misspecification 

can be defined by how much a hypothesized model overestimates or underestimates the number 

of factors in the true (population) model. While the actual number of factors in the population 

can never be truly known, it is worth exploring how sensitive CFI and RMSEA are to 

misspecifications that are strictly due to an “incorrect” number of factors included in a 

hypothesized model rather than any other source (e.g., an omitted error covariance or an omitted 

cross-loading). 

Figure 3.14 plots fit index value against the number of factors in the true model (2 to 8) 

when the hypothesized model includes only one factor (i.e., the hypothesized model is 

underestimating the number of factors in the true population). The number of indicator variables 

is held at p = 24, and the indicators are equally distributed across the factors in the population 

(e.g., for the 2-factor population model, each factor has 12 indicators loading onto it; for the 6-

factor population model, each factor has four indicators loading onto it). The size of the loadings 

(both in the true and hypothesized model) are represented by the six colored curves. Red, orange, 
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Figure 3.14: Plots of population fit index values vs. the number of latent factors in the population model (2 to 8) when the 
hypothesized model is a 1-factor model. The number of indicators is held at 24. Correlations amongst latent factors are set at 
.1 (solid lines), .4 (dashed lines), or .7 (dotted lines). The colored curves correspond to different loading sizes, with red, orange, 
green, blue, purple, and black corresponding to loadings of .4, .5, .6, .7, .8, and .9, respectively.  
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green, blue, purple, and black correspond to loadings of .4, .5, .6, .7, .8, and .9, respectively. The 

correlations amongst factors in the population are set to .1 (solid lines), .4 (dashed lines), or .7 

(dotted lines). Note that the legend for CFI was omitted due to lack of space, but that the legend 

for the RMSEA plot also applies to the CFI plot.  

While it is unlikely that a researcher would have such an extremely misspecified latent 

structure as would result from fitting a 1-factor model to data from a population that actually has 

eight factors, the hope is that both CFI and RMSEA would show a decrease in fit as the 1-factor 

model is fit to data from a population with an increasing number of factors.  

Figure 3.14 shows that CFI generally shows a poor fit when misspecification is due to an 

underestimation of the number of factors in the hypothesized model. CFI is very sensitive to 

factor correlations in this scenario. When the factor correlations are set to .1 in the population, 

CFI shows the worst fit for the 1-factor hypothesized model, with the largest CFI value being 

about .53. This is an appropriate and desired behavior, as it suggests that CFI is very sensitive to 

a model that fails to incorporate the correct number of mildly correlated factors in the population. 

CFI values are higher, in general, as the factor correlations increase. It is worth reiterating here 

that the factor correlations are those amongst the factors in the true (population) model, and thus 

would be unknown to the researcher. 

When the factor correlations are either .4 or .7, CFI shows an improvement in fit as the 

size of the misspecification grows (that is, as the number of population factors increases). 

However, this improvement is very slight, and CFI values only increase above the commonly 

used cutoff value of .95 for the case when λ = .4 and the factor correlations are .7. As mentioned 

above, a misspecification this severe is highly unlikely in real research settings.  
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RMSEA, on the other hand, shows a slight improvement in fit as the size of the 

misspecification increases, regardless of the factor correlations in the population. For all factor 

correlation sizes and loading sizes, RMSEA appears to show worst fit when the actual number of 

factors in the population is three. For the smallest loading included in this scenario (λ = .4), 

RMSEA would show good model fit regardless of the size of the misspecification. RMSEA 

appears much less sensitive to the factor correlation sizes than CFI. Both fit indices show an 

improvement in fit, to some degree, as the size of the misspecification grows (though CFI 

appears more sensitive than RMSEA to misspecified latent structures).  

A notable concern with the setup of the scenario in Figure 3.14 is the fact that the p:k 

(indicators to factors) ratio is not constant. Recall that the number of indicators in Figure 3.14 is 

held constant at p = 24 across all values of k. This means, for example, that when k = 3, the ratio 

of indicators to factors is 8:1, while when k = 6, the ratio is 4:1. Thus, the results observed from 

this figure may be confounded by the changing p:k ratio.   

 Figure 3.15 presents the same scenario as Figure 3.14, except holding p:k constant. As in 

Figure 3.14, Figure 3.15 plots index values against an increasing number of factors in the true 

model (2 to 8) when the hypothesized model includes only one factor. Now, however, instead of 

p being held constant at 24, the number of indicators appropriately increases as k increases, 

keeping the p:k ratio constant. This is done by allowing either three, five, or seven indicator 

variables to load onto each factor in the true model. The colored curves correspond to different 

loading sizes in both the hypothesized and true models, with red, orange, green, blue, purple, and 

black corresponding to loadings of .4, .5, .6, .7, .8, and .9, respectively. The scenario involving 

three indicators per factor is represented by the solid lines, the scenario involving five
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Figure 3.15: Plots of population fit index values vs. the number of latent factors in the population model (2 to 8) when the 
hypothesized model is a 1-factor model. The ratio of indicators to factors is held constant, with either 3, 5, or 7 indicators per 
factor (solid, dashed, and dotted lines, respectively). The colored curves correspond to different loading sizes, with red, orange, 
green, blue, purple, and black corresponding to loadings of .4, .5, .6, .7, .8, and .9, respectively.  
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indicators per factor is represented by the dashed lines, and the scenario involving seven 

indicators per factor is represented by the dotted lines. 

 Comparing Figure 3.15 with Figure 3.14, it is clear that maintaining the p:k ratio as the 

number of factors increases (Figure 3.15) changes the behavior of CFI from the case where the 

p:k ratio decreased as the number of factors increased (Figure 3.14). In Figure 3.15, a more 

desirable behavior is seen for CFI. Specifically, regardless of the loading size and the number of 

indicators per factor, CFI shows a decrease in fit as the size of the misspecification (the number 

of factors in the population) increases. In fact, the largest CFI value in this scenario is about .52, 

which suggests that CFI is highly sensitive to the misspecified latent structure in this scenario.   

 For RMSEA, we again see an improvement in fit as the size of the misspecification 

increases (as we saw in Figure 3.14). This may be due to the fact that RMSEA is sensitive to the 

number of indicator variables in a model and shows an improvement in fit as the number of 

indicators increases. (the same phenomenon that was seen in Figures 3.5 and 3.11, for example). 

In Figure 3.15, in, order to keep the p:k ratio constant as k increases, p must get quite large. For 

example, when k = 8 and the number of indicators per factor is held at seven (dotted lines),  

p = 56. Thus, the behavior of RMSEA in Figure 3.15 may be due more to the increasing model 

size rather than the increasingly misspecified latent structure. However, considering that 

RMSEA also showed an improvement in fit in Figure 3.14, when the size of the hypothesized 

model was held constant, these two results combined may suggest that RMSEA is simply not as 

sensitive as CFI is to incorrectly modeled latent structures. 
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3.3.2 Effects of Model Size 

 As was seen in Figure 3.15, it appears that the size of the model (in terms of the number 

of indicators) may affect the behaviors of both CFI and RMSEA in the case of a misspecified 

latent structure. In this section, the effect of the number of indicator variables is examined in 

further detail.  

 Figure 3.16 plots index values against an increasing number of indicators (p = 4, 6, 8, 10, 

12, 14, 16, 18, and 20) for the case when a hypothesized 1-factor model is fit to 2-factor data. 

The six colored curves correspond to six different loading sizes (both in the hypothesized and 

true model), with red, orange, green, blue, purple, and black corresponding to loadings of .4, .5, 

.6, .7, .8, and .9. The population (true) model has a factor correlation of .1 (solid lines), .4 

(dashed lines), or .7 (dotted lines). In the population model, there are an equal number of 

indicators per factor (e.g., when p = 10, each factor has five indicators loading onto it).   

 The behavior of CFI is highly influenced by the size of the factor correlation in the 

population, a trend that has been seen before (e.g., Figure 3.14). When the factor correlation is 

low (.1), CFI shows the worst fit, with values below about .55 regardless of the number of 

indicators. This is desirable behavior, as it suggests that CFI is sensitive to the case where a 

model omits a second factor that is quite different (only slightly correlated) from the first factor. 

As the factor correlation increases in size, so do the CFI values. However, the values generally 

do not increase above the commonly used cutoff of .95. These results suggest that regardless of 

model size, CFI appears to retain its sensitivity to misspecified latent structures and lead to the 

decision that the 1-factor model is a poor fit for 2-factor data. 
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Figure 3.16: Plots of population fit index values vs. the number of indicators (p = 4, 6, 8, 10, 12, 14, 16, 18, 20) when a 1-factor 
model is fit to 2-factor data. Factor correlation is .1 (solid lines), .4 (dashed lines), or .7 (dotted lines). The colored curves 
correspond to different loading sizes, with red, orange, green, blue, purple, and black corresponding to loadings of .4, .5, .6, .7, 
.8, and .9, respectively. Neighboring points are connected for readability.  
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 For RMSEA, an improvement in fit is seen as the number of indicators increases, a 

behavior that has been noted in other scenarios as well. However, except for the case where the 

factor correlation is .4 or .7 and the loadings are low (.4, .5), RMSEA values remain below the 

commonly used cutoff value, suggesting the model is a poor fit. This indicates that while 

RMSEA shows an improvement in fit as the number of indicators increases, this improvement in 

fit would, in most cases, not lead a researcher to accept a model with a larger number of 

indicators while rejecting a model with fewer indicators, holding all other things constant.  

 In all of the misspecified latent structure scenarios presented thus far, the hypothesized 

model has underestimated the number of factors in the population. It is also of interest to 

examine index behavior when the hypothesized model overestimates the number of factors in the 

population instead. Figure 3.17 is similar to Figure 3.16 in that it plots index values against an 

increasing number of indicators (p = 4, 6, 8, 10, 12, 14, 16, 18, and 20). Now, however, instead 

of a hypothesized 1-factor model being fit to 2-factor data, a hypothesized 2-factor model is fit to 

1-factor data (only one factor underlying the population). As in Figure 3.16, the six colored 

curves in Figure 3.17 correspond to six different loading sizes (both in the hypothesized and true 

model), with red, orange, green, blue, purple, and black corresponding to loadings of .4, .5, .6, .7, 

.8, and .9. The hypothesized model has a factor correlation of .1 (solid lines), .4 (dashed lines), or 

.7 (dotted lines). In the hypothesized model, there are an equal number of indicators per factor 

(e.g., when p = 10, each factor has five indicators loading onto it).   

 Comparing Figure 3.16 to Figure 3.17, the behaviors of CFI and RMSEA are fairly 

similar across both scenarios. When the hypothesized model overestimates the number of factors 

in the population (Figure 3.17), CFI values generally do not increase above the commonly used 

cutoff, similar to when the hypothesized model underestimates the number of factors 
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Figure 3.17: Plots of population fit index values vs. the number of indicators (p = 4, 6, 8, 10, 12, 14, 16, 18, 20) when a 2-factor 
model is fit to 1-factor data. Factor correlation is .1 (solid lines), .4 (dashed lines), or .7 (dotted lines). The colored curves 
correspond to different loading sizes, with red, orange, green, blue, purple, and black corresponding to loadings of .4, .5, .6, .7, 
.8, and .9, respectively. Neighboring points are connected for readability.  

# Indicators

C
F

I

4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.7
λ = 0.8
λ = 0.9

φ  = 0.1
φ  = 0.4
φ  = 0.7

# Indicators

R
M

S
E

A

4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.7
λ = 0.8
λ = 0.9

φ = 0.1
φ = 0.4
φ = 0.7



 

108 

 

(Figure 3.16). While CFI appears to show an improvement in fit in Figure 3.17 as the number of 

indicators increases, the only case for which CFI values are above the cutoff value are when  

ϕ = .7 and λ = .4. Thus, just as in Figure 3.16, CFI appears to retain its sensitivity to misspecified 

latent structures when the hypothesized model overestimates the number of parameters in the 

population. RMSEA’s behavior in Figure 3.17 is almost identical to its behavior in Figure 3.16, 

suggesting that the fit index is not affected by how the latent structure is misspecified 

(overestimating or underestimating the number of factors in the population).  

 

3.3.3 Effects of Factor Correlation 

 Figure 3.18 examines the effects of factor correlation in scenarios involving a 

misspecified latent structure. Specifically, a 1-factor model is fit to 2-factor data. Since the 

hypothesized model contains only one factor, the correlation being manipulated in this scenario 

is the correlation between the two factors in the population. While this value is, in practice, 

unknown, it is of interest to see how the population factor correlation affects how both CFI and 

RMSEA perform for this type of misspecified latent structure. 

 Figure 3.18 plots index values against an increasingly large (population) factor 

correlation when a hypothesized 1-factor model is fit to 2-factor data. The six colored curves 

correspond to six different loading sizes, with red, orange, green, blue, purple, and black 

corresponding to loadings of .4, .5, .6, .7, .8, and .9. The number of indicator variables is either 

12 (solid lines) or 24 (dashed lines). In the 2-factor population model, there are an equal number 

of indicators loading onto both factors.    
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Both CFI and RMSEA show desirable behavior in this scenario. That is, they show worst fit 

when the factor correlation is low, and perfect fit when the factor correlation is 1. While both 

indices follow the general trend of showing better fit as the factor correlation size increases, CFI 

values begin much lower than RMSEA values, and no model would be accepted as having good 

fit according to CFI until the factor correlation in the population was above about .7. RMSEA, 

on the other hand, shows good model fit when the factor correlation is as low as about .15 in the 

case where p = 24 and λ = .4. This contrast between CFI and RMSEA gives further evidence to 

suggest that CFI is, on average, more sensitive than RMSEA to misspecified latent structures. 

CFI also appears to be less affected by the model size (solid and dashed lines) in this scenario 

than RMSEA. 

 In the previous figure, the hypothesized model underestimates the number of factors in 

the population. The last scenario I examine here is the same setup as the scenario in Figure 3.18, 

except now a 2-factor model is fit to 1-factor data, representing the case when the hypothesized 

model overestimates the number of factors in the population. Figure 3.19 plots index values 

against an increasingly large factor correlation when a hypothesized 2-factor model is fit to  

1-factor data. The factor correlation being manipulated here is the factor correlation in the 

hypothesized model, not the population, since the population has only one factor. The six colored 

curves correspond to six different loading sizes, with red, orange, green, blue, purple, and black 

corresponding to loadings of .4, .5, .6, .7, .8, and .9. The number of indicator variables is either 

12 (solid lines) or 24 (dashed lines). In the 2-factor hypothesized model, there are an equal 

number of indicators loading onto both factors. 
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Figure 3.18: Plots of population fit index values vs. factor correlation (0 – 1) when a 1-factor model is fit to 2-factor data. The 
number of indicators is p = 12 (solid lines) or p = 24 (dashed lines). The colored curves correspond to different loading sizes, 
with red, orange, green, blue, purple, and black corresponding to loadings of .4, .5, .6, .7, .8, and .9, respectively.  
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Figure 3.19: Plots of population fit index values vs. factor correlation (0 – 1) when a 2-factor model is fit to 1-factor data. The 
number of indicators is p = 12 (solid lines) or p = 24 (dashed lines). The colored curves correspond to different loading sizes, 
with red, orange, green, blue, purple, and black corresponding to loadings of .4, .5, .6, .7, .8, and .9, respectively.
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 Comparing Figures 3.18 and 3.19, it is clear that both CFI and RMSEA behave similarly 

across both scenarios, suggesting that the type of latent misspecification (overestimating or 

underestimating the number of factors in the population) does not dramatically affect index 

behavior. As in Figure 3.18, CFI shows poor fit in Figure 3.19 until the factor correlation in the 

hypothesized model is above about .7. While CFI values are not as low in Figure 3.19 as they are 

in Figure 3.18, if a researcher is assessing fit based on the commonly used cutoff value, their 

conclusions about fit would remain the same whether the hypothesized model is overestimating 

or underestimating the number of factors in the population. RMSEA behaves almost identically 

in both scenarios, showing good model fit in the case where p = 24 and λ = .4, but poor fit in all 

other cases.  
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Chapter Four:  Discussion  

 In this chapter, a summary of the results of Chapter 3 is provided. I first focus on the 

behavior of CFI, broken down by the source of misspecification (omitted error covariance, 

omitted cross-loading, and misspecified latent structure). I provide possible explanations for 

certain index behaviors, mentioning results that have been seen in the literature as well as any 

interesting behaviors that have not been discussed in previous studies. I then present a review of 

the behavior of RMSEA in the same fashion. 

 Following these summaries, I discuss the possibility of combining the use of CFI and 

RMSEA when assessing model fit. Combining the use of these two indices, I claim, will provide 

researchers with more information about possible model misspecifications over and above any 

information given by relying upon either index on its own.  

 

4.1 Summarized Results for CFI 

4.1.1 Misspecification Source: One or More Omitted Error Covariances 

 I begin by discussing CFI’s behavior in situations where misspecification is due to one or 

more omitted error covariances. Perhaps the most interesting result for CFI involves the non-

monotone relationship between index value and the size of a single omitted error covariance, a 

result that has been seen both in Savalei (2010) and Mahler (2011). As seen in Figures 3.1 and 

3.2, CFI appears to show worse fit for a “moderately” sized omitted error covariance, while 

showing better fit both when the omitted error covariance is small and when it is close to .9. This 

suggests that relying solely on CFI in a situation where misspecification may be due to an 

omitted error covariance may lead a researcher to accept a model with a larger misspecification 

(e.g., ψ = .8) while rejecting a model with a moderate misspecification (e.g., ψ = .4). 
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A possible cause for the non-monotone pattern of CFI in these figures has to do with how 

CFI is calculated. Recall the population definition of CFI:  

 

                                                       CFI = 1 − H�H@A.                                                                   (2.2) 

 

In the population, CFI is a function of both the minimized fit function of the hypothesized model 

(U)) and the minimized fit function of the baseline model (UV� ). As previously mentioned, the 

current study used a baseline model in which all indicator variables are uncorrelated.  

It was suspected that the non-monotone relationship between CFI values and the size of 

an omitted error covariance was due to different rates of change for U) and UV� . Thus, I plotted the 

values of U) and UV�  separately against an increasing omitted error covariance in a 1-factor model 

with 8 indicators (the same model used in Figure 3.1). These plots revealed that U) and UV�  indeed 

have different rates of change that depend on the size of the omitted error covariance. This 

suggests that there is a relationship between the size of the misspecification and its influence on 

the minimized fit functions for both the hypothesized and the baseline model.  

 Based on the results of Figure 3.1 and Figure 3.2, it might be appealing to discourage the 

use of CFI in cases where a researcher may suspect the possibility of omitted error covariances in 

their model. However, there are three things to note regarding CFI’s behavior in this situation. 

First, while there is a curvilinear relationship between CFI values and misspecification size, if a 

researcher were to employ the commonly used cutoff criterion for CFI, the smaller model in this 

scenario (p = 8) would be regarded as fitting poorly regardless of the loading sizes once the 

omitted error covariance rises above about .2. Thus, the non-monotone relationship does not 
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affect the cutoff-based decision about the model once the omitted error covariance is large 

enough. 

 Second, when the number of indicators is increased from p = 8 to p = 16, the curvilinear 

relationship between CFI values and omitted error covariance size disappears for all but the 

smallest loadings case, and the index appropriately shows a decrease in fit as the size of the 

omitted error covariance increases. This suggests that the non-monotone relationship between 

index size and omitted error covariance size might not even be present in models with a larger 

number of indicator variables.  

 Finally, it should be noted that CFI does behave appropriately when the number of 

omitted error covariances increases (Figure 3.3, Figure 3.4). That is, a model with a greater 

number of omitted error covariances will be shown to have worse fit than a model with a fewer 

number of omitted error covariances. This result agrees with findings by Heene et al. (2012). In 

addition, CFI did not appear to be overly sensitive to multiple omitted error covariances if the 

covariances were quite small (ψ = .05). This can be seen as a positive trait of the index; it 

suggests that the omission of a few very small error covariances, which is likely not to be 

considered a severe misspecification, will not affect CFI’s value enough to cause the researcher 

to reject the model. CFI’s sensitivity to more misspecifications is also not greatly affected by the 

number of latent variables (k = 1 or k = 2). 

 The influence of the number of indicators in CFI behavior, however, appears to be 

confounded with the number of latent variables. CFI initially shows a decrease in fit as the 

number of indicator variables increases, a trend that has been observed in previous literature 

(e.g., Chau and Hocevar, 1995; Kenny and McCoach, 2003; Moshagen, 2012) when the 

misspecification was due to omitted error covariances. However, in the 1-factor model case 
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(Figure 3.3), this trend reverses once the number of indicator variables reaches a certain amount, 

and CFI shows an improvement in fit. In the 2-factor model case (Figure 3.4), CFI shows a 

decrease in fit regardless of the number of indicators. While this difference in behavior between 

the 1- and 2-factor models is worth noting, it is of little practical concern. In the scenario 

presented in Figure 3.5, the change from a decrease in fit to an improvement in fit does not affect 

whether a researcher would reject or accept a model based on the commonly used cutoff value 

except in two cases where the omitted error covariances were quite small (ψ = .2, .3). In such 

cases, the misspecification is small enough that it may not even warrant rejecting the model. 

 A final result worth noting involves CFI’s behavior in an imbalanced model scenario. As 

seen in Figure 3.8, while model imbalance appears to affect CFI values for larger omitted error 

covariances, once the size of the omitted error covariance increases above about .3, CFI shows 

poor model fit by the commonly used cutoff value, regardless of the degree of imbalance. This 

suggests that researchers need not worry about even severely imbalanced models (e.g., one factor 

with 7 indicators and another factor with 17 indicators) greatly affecting CFI values.   

 

4.1.2 Misspecification Source: One or More Omitted Cross-Loadings 

 Next, I summarize the performance of CFI in situations where misspecification is due to 

one or more omitted cross-loadings. As was the case when a single error covariance was omitted 

from the model, we see another non-linear relationship between CFI values and the size of a 

single omitted cross-loading (Figure 3.9). Specifically for the p = 8 scenario, CFI values decrease 

until the size of the omitted cross-loading is approximately .4, then begin to increase again.  

It should be noted, however, that CFI values never increase above the common cutoff 

value of .95. Thus, while this non-linear behavior may appear troubling at first, it is of little 
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practical concern. Even if a researcher were to employ a more conservative cutoff value (say, 

.90), the slight increase in CFI values for very large cross-loadings would not lead the researcher 

to accept the model as having adequate fit in a scenario like the one presented in Figure 3.9. 

CFI exhibits interesting behavior when the number of omitted cross-loadings increases in 

a given model. As the number of omitted cross-loadings increases, CFI actually shows an 

improvement in fit, to the point where the index shows perfect fit in the case where there exist 10 

cross-loadings in the true population model but all 10 are omitted from the researcher’s model. 

This is concerning, as it implies that a researcher could, in theory, accept a model that omits as 

many as 10 cross-loadings based on the CFI value. Such findings are not present in previous 

literature (e.g., Fan and Sivo, 2007; Hu and Bentler, 1998), which has demonstrated that CFI is 

appropriately sensitive to an increasing number of omitted cross-loadings.  

CFI does exhibit a useful behavior, however, with respect to the relationship between 

factor correlation and cross-loadings. As was seen in Figure 3.12, as the correlation between 

factors of a 2-factor model increases from 0 to 1, CFI shows an improvement from poor fit to 

perfect fit, regardless of the number of indicators in the model or the size of the omitted cross-

loading. This suggests that CFI appropriately reflects the “severity” of the misspecification with 

respect to how correlated the two factors are. Specifically, when ϕ = 1, the two factors can 

essentially be interpreted as being the same factor and the model becomes a 1-factor model. 

Thus, there is really no cross-loading present at all, and CFI shows perfect fit because nothing is 

being omitted. However, as the factors become more and more distinct (ϕ decreases), the omitted 

cross-loading becomes more obvious, as there is an indicator loading onto two distinct factors in 

the population, but this is not being reflected in the researcher’s model. Thus, model fit decreases 
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as the factor correlation decreases, reflecting that the cross-loading is an important relationship in 

the population that is being excluded from the model.  

The effect of the number of indicators on CFI value is similar to the effects seen when the 

misspecification is due to an omitted cross-loading. That is, while CFI initially shows a decrease 

in fit as the number of indicators increases, after a certain point, it shows fit improving as the 

number of indicators continues to increase (Figure 3.11). This effect is likely due to CFI’s 

sensitivity to model size, which has been documented in previous studies (e.g., Chau and 

Hocevar, 1995; Moshagen, 2012). Thus, while this result may not indicate anything specific 

about CFI’s sensitivity to omitted cross-loadings, it does suggest that researchers should be 

aware that model size influences CFI values, regardless of the source of any misspecification 

their model might have. 

In all scenarios examined here, CFI is appropriately sensitive to the size of the omitted 

cross-loading. The larger the omitted cross-loading is, the worse fit CFI shows. This is true 

regardless of the size of the other loadings. In addition, CFI appears to be more sensitive to 

misspecifications due to omitted cross-loadings when the other loadings in the model are higher 

versus when they are lower. This result agrees with several previous studies (e.g., Miles and 

Shevlin, 2007; Themessl-Huber, 2014), which showed that CFI is less sensitive to 

misspecification when loadings are, on average, fairly low. 

Finally, I note the result of model imbalance on CFI behavior. As Figure 3.13 shows, CFI 

values are affected by the location of the omitted cross-loading. Specifically, when the cross-

loading is omitted from the factor with fewer indicator variables, CFI appears less sensitive to 

the misspecification than when the cross-loading is omitted from the factor with more indicator 

variables. However, similar to the imbalanced model case when the misspecification was due to 
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an omitted error covariance, CFI shows poor model fit regardless of either the location of the 

misspecification or the degree of imbalance once the omitted cross-loading is larger than  

about .4. Thus, this suggests that while model imbalance and the location of the omitted cross-

loading do affect CFI values, they do not do so in a way that would practically affect the 

selection or rejection of a model. 

 

4.1.3 Misspecification Source: Misspecified Latent Structure 

 As was mentioned in the previous chapter, while the actual number of factors in the 

population can never be truly known, it is worth exploring how sensitive CFI and RMSEA are to 

cases where a hypothesized model either overestimates or underestimates the true number of 

factors in a population to see if either index is particularly useful in detecting this sort of 

misspecification. 

 In Figure 3.14, a 1-factor hypothesized model is fit to data arising from a population with 

an increasing number of factors, from two to eight. Regardless of loading size or factor 

correlation size, CFI appears to be very sensitive to misspecified latent structure, even when the 

discrepancy between the number of factors in the hypothesized model and the number of factors 

underlying the population is “small” (e.g., a 1-factor model fit to 2-factor data). In the scenario 

presented in Figure 3.14, there is no combination of factor correlation and loading size for which 

CFI shows good model fit when the number of population factors is anywhere from two to six. 

This indicates that CFI will reflect a misspecified latent structure even if that misspecification is 

“small”. 

CFI does appear to show slight improvement in fit as the misspecification increases for 

moderate or high factor correlation (ϕ = .4 or ϕ = .7). However, this slight increase in CFI values 
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may be due to the fact that in Figure 3.14, the number of indicator variables was held constant at 

24. Thus, for the k = 2 model, each factor had 12 indicators loading onto it, while in the k = 8 

model, each factor only had three indicators loading onto it. That is, the fact that the p:k ratio is 

not constant may affect CFI’s behavior in the case of a misspecified latent structure. 

To determine if this is true, Figure 3.15 involved the same scenario as Figure 3.14, except 

the p:k ratio was held constant. The results indicated that CFI is even more sensitive to 

misspecified latent structure when, overall, a model is larger (more indicator variables when 

there are a larger number of factors). This is consistent with findings by Chau and Hocevar 

(1995) and Sharma et al. (2005). CFI shows a desirable decrease in fit as the size of the 

misspecification increases, regardless of loading size and regardless of the number of indicators 

loading onto each factor.  

The effect of the number of indicator variables alone was also examined, and it was 

found that CFI tends to be rather insensitive to changes in the number of indicator variables 

when latent misspecification exists. This behavior was noted in a study by Chau and Hocevar 

(1995). As Figures 3.16 and 3.17 show, CFI still shows poor fit (values below the common 

cutoff value) when a 1-factor model is fit to 2-factor data and when a 2-factor model is fit to  

1-factor data. The CFI values are generally unchanged regardless of the number of indicator 

variables included in the hypothesized model in either case. This is a desirable result, as it 

suggests that for both small and large models, CFI appears to be highly sensitive to a 

misspecified latent structure, regardless of whether the misspecification is due to the 

hypothesized model overestimating the number of population factors or underestimating the 

number of population factors.  
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Finally, Figures 3.18 and 3.19 show that when a 1-factor model is fit to 2-factor data or 

when a 2-factor model is fit to 1-factor data, CFI shows very poor fit when the two factors are 

slightly correlated, but shows perfect fit when the factors have a perfect correlation (when, 

essentially, there is only one factor). This is a desirable result. If the two factors in the population 

are only slightly correlated, fitting a 1-factor model to data from this population (Figure 3.18) 

can be considered a larger misspecification than fitting a 1-factor model to data from a 

population with moderately- or highly-correlated factors. Similarly, if the two factors in a 

hypothesized model are only slightly correlated, fitting this model to data with 1-factor (Figure 

3.19) can be considered a larger misspecification than fitting a 2-factor model with highly 

correlated factors to 1-factor data.  

 

4.1.4 Summary 

 From the results of the various scenarios presented in this study, a general summary of 

CFI’s behavior in different misspecification circumstances can be obtained. When model 

misspecification is due to either one or more omitted error covariances or one or more omitted 

cross-loadings, the relationship between CFI and the severity of the misspecification appears to 

be non-linear. Specifically, CFI shows good model fit both when the misspecification is small 

(an omitted error covariance of .2, for example) and when the misspecification can be considered 

large (an omitted error covariance of .9, for example). The index shows worst fit when the 

misspecification is moderate.  

 For the scenarios presented here, this non-linear behavior would not affect a researcher’s 

decision to reject or fail to reject a model based on the commonly used cutoff of .95. That is, 

even though CFI showed an improvement in fit as the severity of the misspecification increased, 
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CFI values did not increase above .95 in situations where an omitted error covariance or an 

omitted cross-loading was large. However, it should be noted that such non-linear behavior may 

affect a researcher’s decision for models that differ from the specific ones presented here. For 

example, in Figure 3.1, only models of size p = 8 and p = 16 were examined. If a researcher were 

to have a model with fewer indicator variables, there is the chance that the non-linear behavior of 

CFI may cause the researcher to accept a model containing a severe misspecification (an omitted 

error covariance of .9, for example).  

 In addition to this, the results in this study showed that while CFI did show worse fit as 

the number of omitted error covariances increased in a model, it showed better fit as the number 

of omitted cross-loadings increased in a model. These results, combined with the non-linear 

behavior, may suggest that CFI may not accurately reflect how well a model fits (or fails to fit) if 

misspecification is due to omitted error covariances or to omitted cross-loadings. 

 In contrast, however, the behavior of CFI in cases where models have a misspecified 

latent structure suggests that this index is highly sensitive to misspecifications of this type. 

Regardless of model size, loading size, and the correlations between factors in the population, 

CFI appears to show poor model fit when a 1-factor model is fit to data from a population with 

more than one factor and when a 2-factor model is fit to data from a population with only one 

factor. Considering that a misspecified latent structure can be considered a more severe form of 

misspecification than one due to omitted error covariances or cross-loadings, these findings 

indicate that CFI can be a useful tool in detecting misspecifications of this type. 

 The influence of other modeling components (model size, factor loadings, etc.) can also 

be summarized here. In general, higher factor loadings increase CFI’s sensitivity to 

misspecifications arising from any source. That is, the higher the factor loadings, the lower CFI 
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values will be for a misspecified model. While CFI generally shows better fit as more indicators 

are added to a model, this trend appears to be less apparent in models with more factors and is 

not as severe as for RMSEA (discussed below). Finally, it appears that CFI is not highly affected 

by model balance. 

 

4.2 Summarized Results for RMSEA 

4.2.1 Misspecification Source: One or More Omitted Error Covariances 

 In contrast to the non-linear behavior presented by CFI, RMSEA behaves more 

appropriately fit in situations where misspecification is due to an omitted error covariance. 

RMSEA shows a decrease in fit as the size of the omitted error covariance increases. This is the 

case for 1-factor and 2-factor models (Figures 3.1 and 3.2). In addition, Figures 3.3 and 3.4 

showed that RMSEA also shows worse fit as the number of omitted error covariances increases. 

These results are consistent with findings by Hu and Bentler (1998) and Sharma et al. (2005). 

Like CFI, RMSEA does not appear to be overly sensitive to multiple omitted error covariances if 

the covariances are quite small (ψ = .05).  

It is important, however, to note RMSEA’s sensitivity to loading sizes in these scenarios. 

RMSEA appears to be more sensitive to loadings than CFI is, at least when misspecification is 

due to one or more omitted error covariances. For the same severity of misspecification, a model 

with low factor loadings (.4) may be accepted as having good fit according to the commonly 

used cutoff, while a model with higher factor loadings (.8 or .9) would be rejected as having poor 

fit. This specific sensitivity to loading size has been observed in previous studies as well  

(e.g., Miles and Shevlin, 2007; Themessl-Huber, 2014) and may suggest that a universal cutoff 

value may not be appropriate for RMSEA across different loading sizes.  
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Another important result involves RMSEA’s sensitivity to model size (as measured by 

the number of indicator variables). When misspecification is due to an omitted error covariance, 

regardless of loading size or the severity of the misspecification, RMSEA shows an improvement 

in fit as more indicator variables are included in a model, regardless if the number of factors was 

one (Figure 3.5) or two (Figure 3.6), though the effect was lessened by the addition of another 

factor. This behavior is expected, as previous research (e.g., Browne, 1987; Kenny and 

McCoach, 2003; Sharma et al., 2005), has demonstrated that RMSEA tends to show better fit as 

model size increases. This improvement in fit as p increases, both for RMSEA and CFI, might be 

due to the fact that as the model gets larger, the addition of more indicators “dilutes” the 

misspecification and thus masks its effects. 

Finally, as was the case for CFI, the effect of model balance does not highly influence 

RMSEA values when misspecification is due to an omitted error covariance (Figure 3.8). This 

indicates that even in models as imbalanced as the ones included in this study (e.g., one factor 

having seven indicators loading onto it and the other factor having 17 indicators loading onto it), 

RMSEA values will not be significantly influenced by the imbalance. 

 

4.2.2 Misspecification Source: One or More Omitted Cross-Loadings 

 When misspecification is due to a single omitted cross-loading, RMSEA shows an 

appropriate decrease in fit as the size of the omitted cross-loading increases (Figure 3.9), which 

is consistent with findings by Hu and Bentler (1998) and Fan and Sivo (2007). However, similar 

to CFI, when the number of omitted cross-loadings increases, RMSEA shows an improvement in 

fit.  
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In fact, in the scenario presented in Figure 3.10, a researcher would fail to reject a model 

as having poor fit no matter how many cross-loadings have been omitted from it. This is true 

regardless of factor correlation size and loading size. However, it should be noted that there are a 

total of 20 indicators (p = 20) in the model in Figure 3.10. Thus, RMSEA’s insensitivity to the 

number of omitted cross-loadings may be canceled out by the fact that RMSEA tends to show 

better fit in larger models, regardless of the misspecification type or size.  

In Figure 3.11, the effect of the number of indicators was explicitly examined in the 

omitted cross-loading misspecification. As was the case with CFI, as the number of indicator 

variables increased, RMSEA began to show an improvement in fit once the number of indicators 

rose above six. This was true regardless of the size of the omitted cross-loading.  

However, the sizes of the other loadings appeared to have a large effect on RMSEA 

values. When loadings (apart from the cross-loading) were low, RMSEA failed to show poor fit, 

regardless of the size of the model and the size of the omitted cross-loading. But when the other 

loadings were high (.7), RMSEA appeared to be sensitive to the omitted cross-loading in smaller 

models, but then still show an improvement in model fit as the number of indicator variables 

increased. This may suggest that RMSEA’s sensitivity to omitted cross-loadings may be 

influenced not only by the number of indicators in a model but also by the size of the other 

loadings. Previous work by Themessl-Huber (2014) and Miles and Shevlin (2007) also show that 

RMSEA appears to be less sensitive to misspecifications in general when the loadings are, on 

average, low.  

Figure 3.12 shows the effect of factor correlation (in the population) on index’ ability to 

detect misspecification due to an omitted cross-loading. While RMSEA exhibits the same 

general pattern as CFI—showing better fit as the factor correlation increases—it should be noted 
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that RMSEA values failed to suggest good model fit according to the commonly used cutoff 

value, regardless of the factor correlation or the size of the omitted cross-loading.  

Finally, as was the case when misspecification was due to an omitted error covariance, 

model balance does not appear to affect RMSEA values to any significant degree (Figure 3.13), 

which suggests that any imbalance in the number of indicators per factor will not highly affect 

RMSEA values. 

  

4.2.3 Misspecification Source: Misspecified Latent Structure 

 Finally, I discuss the behavior of RMSEA in scenarios involving a misspecified latent 

structure. Figure 3.14 shows a 1-factor model being fit to data from a population with more than 

one factor. In this figure, the lines of the RMSEA values appear to be flat (or increasing only 

slightly) as the discrepancy between the number of factors in the hypothesized model and the 

number of factors underlying the population increases. In addition, for smaller loading sizes  

(λ = .4), RMSEA indicates good model fit regardless of how many factors are in the population 

model and the degree to which they are correlated. These results are similar to those achieved by 

Miles and Shevlin (2007) and may suggest that RMSEA is, in general, not highly sensitive to 

latent structure misspecifications. 

 However, as was noted in the summary of CFI’s behavior, the p:k ratio in Figure 3.14 is 

not held constant; thus, RMSEA’s behavior may be partially due to the inconsistent p:k ratio as k 

increases and p remains the same. In Figure 3.15, this ratio was held constant by increasing p as 

k increased, so as to have three, five, or seen indicators per factor, regardless of the number of 

factors. 
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 In Figure 3.15, RMSEA actually shows an improvement in fit as the discrepancy between 

the number of factors in the hypothesized model and the number of factors in the true population 

increases. That is, regardless of loading size or factor correlation size, a 1-factor model fit to  

2-factor data fits worse than a 1-factor model fit to 8-factor data, according to RMSEA. A 

possible explanation for this behavior again goes back to the well-documented fact that RMSEA 

is highly sensitive to model size, showing better fit in for models with more indicators, all other 

things held constant. In Figure 3.15, p must be substantially increased with each incremental 

increase of k in order to keep the p:k ratio constant. For example, when k = 2 and there are seven 

indicators per factor, p = 14. However, if k = 8 and there are seven indicators per factor, then  

p = 56. There is a large difference in the size of these models, which may explain why RMSEA 

shows a better fit for larger k. In fact, the results of Figure 3.15 are consistent with results of a 

similar setup by Sharma et al. (2005). 

 The effect of model size was also examined in Figures 3.16 and 3.17, and the same trend 

is observed. When a 1-factor model is fit to 2-factor data and when a 2-factor model is fit to  

1-factor data, RMSEA shows better fit for larger models, regardless of loading size and factor 

correlation size. However, it should be noted that except when loadings are small (λ = .4), a 

researcher would still reject these models as having poor fit. 

 Finally, similar to CFI, RMSEA behaves appropriately with respect to the relationship 

between the degree of misspecification and the size of the population factor correlations. In 

Figures 3.18 and 3.19, a 1-factor model is fit to 2-factor data (Figure 3.18) and a 2-factor model 

is fit to 1-factor data (Figure 3.19). RMSEA shows poor fit when the factor correlation is small, 

but increases to show perfect fit when the factor correlation is one. This is useful behavior, as it 

suggests that RMSEA would be more sensitive to a more “severe” misspecification (modeling 
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one factor when the population involves two highly different factors, or modeling two highly 

different factors when the population involves only one factor) than a less severe 

misspecification (modeling one factor when the population involves two very correlated factors, 

or modeling two very correlated factors when the population involves only one factor). 

  

4.2.4 Summary 

 When misspecification is due to one or more omitted error covariances, RMSEA shows 

worse fit as the size of a single omitted error covariance increases as well as when more error 

covariances are omitted from a hypothesized model. This indicates that RMSEA appropriately 

reflects a lack of fit when a hypothesized model fails to include the correct number of error 

covariances that exist in the population.  

 While RMSEA shows a decrease in fit as the size of an omitted cross-loading increases, it 

actually shows an improvement in fit as more cross-loadings are omitted from a hypothesized 

model. In addition, RMSEA values tend to suggest good model fit according to the common 

cutoff value when misspecification is due to an omitted cross-loading. This suggests that 

regardless of other modeling components (e.g., factor correlation size, model size), RMSEA is 

not very sensitive to omitted cross-loadings. Thus, if a researcher were to rely solely on RMSEA 

when assessing model fit, a model may be accepted as having good fit even if there is a rather 

large misspecification due to one or more omitted cross-loadings. 

 RMSEA also does not appear to reflect the severity of misspecification when a model 

fails to include an accurate number of latent factors. Specifically, in the scenario presented here, 

RMSEA values are similar for a 1-factor model fit to 2-factor data and a 1-factor model fit to  
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8-factor data. The fact that it is not sensitive to the difference in severity of these 

misspecifications suggests that RMSEA should not be used in situations where competing 

models with different latent structures exist and a researcher is trying to determine which has 

better fit.  

Despite RMSEA’s insensitivity to the severity of a misspecified latent structure, the 

index in general shows poor fit when this type of misspecification is present, which suggests that 

it can be a useful tool when detecting misspecifications of this type.  

In addition to the influence of different misspecification types on RMSEA’s behavior, it 

is important to note the effects of different modeling components, such as loading size, model 

size, and model balance. In comparison to CFI, RMSEA appears to be more heavily influenced 

by loading size. Both indices tend to be more sensitive to misspecifications when loadings are 

higher (.8, .9) versus when they are lower (,4, .5). However, for RMSEA, the differences 

between index values for different loading sizes is more dramatic.  

This sensitivity, combined with the use of a cutoff value to determine if a model fits or 

not, might lead a researcher to accept a particular model if that model had small enough loadings, 

but would lead them to reject the same model if that model included higher loadings. While it is 

unlikely that a given researcher would have two competing models that only differ in loading 

sizes, the fact that RMSEA is so sensitive to this modeling component may suggest that a 

universal cutoff value is not appropriate when assessing model fit. Instead, consideration should 

perhaps be given to the average loading sizes present in a model before a cutoff-like value is 

selected. 

RMSEA is also highly sensitive to model size, as measured by the number of indicator 

variables in a model. As has been shown in several studies prior to this one, RMSEA shows an 
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improvement in fit as the number of indicators increases. This is true regardless of the source of 

misspecification and regardless of the ratio of the number of indicators to the number of factors, 

and suggests that researchers should not rely solely on RMSEA to accurately assess fit in larger 

models and should be aware that adding more indicator variables will likely artificially improve 

model fit according to RMSEA. 

 

4.3 Recommendations  

 Based on the summaries presented above, it is clear that CFI and RMSEA perform 

differently in certain modeling scenarios that include different modeling components and sources 

of misspecification. This study backs up previous research that has shown that neither index 

performs universally “better” than the other. However, the fact that CFI’s and RMSEA’s 

behaviors tend to complement each other in several different cases suggests that researchers may 

gain a better understanding of a hypothesized model if they were to use both CFI and RMSEA in 

conjunction. 

 While the idea of combining the use of fit indices is not a new one, and has in fact been 

mentioned multiple times in the literature, little has been said about combining CFI and RMSEA, 

and to my knowledge, nothing has been published on how best to interpret their combined values 

in order to assess what might be the cause of a model’s misspecification.  

 In this section, I briefly reiterate the previous literature on index combining, as first 

discussed in Chapter 1, then present ways of using CFI and RMSEA in conjunction in order to 

best understand the possible sources of misspecification in a hypothesized model. 
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4.3.1 A Brief Recap of Previous Research on Combining Indices 

 The fact that different indices appear to be sensitive to different sources of 

misspecification (as well as to different modeling components) has been used in previous studies 

to justify the claim that more than one index should be reported when stating the fit of a 

hypothesized model.   

Hu and Bentler (1999) make one of the earliest claims that a presentation of two fit 

indices rather than one might better reflect the true fit of a given model. They recommend 

pairing either CFI and SRMR or RMSEA and SRMR, noting that SRMR was the only index 

studied whose sensitivity to certain misspecification types was significantly different than other 

indices’ sensitivities. Hu and Bentler (1999) also suggest using stricter cutoff values, with .96 

being used for CFI and .05 for RMSEA. It should be noted, though, that the main sources of 

misspecification in Hu and Bentler’s (1999) study were misspecified factor covariances and 

misspecified factor loadings, which are different than the misspecifications included in this 

study.  

Other authors recommend combining indices based on index type. Hooper et al. (2008), 

Kline, 2005, and Boomsma (2000) suggest reporting CFI, RMSEA, and SRMR in addition to the 

chi-square. Since each of these three indices were developed under a different philosophy of 

measuring model fit, these authors argue that each index should be sensitive to different types of 

misspecification. Combining their results should allow researchers to better assess how well a 

model fits as well as what might be the source behind any degree of misfit.  

While these authors recommend reporting multiple fit indices, little to nothing is said 

about what might be the reasons behind possible discrepancies amongst the indices (e.g., if 

RMESA shows good fit but SRMR does not) or how to interpret such discrepancies if they are 
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witnessed. More importantly, nothing is said about how researchers could actually benefit from 

observing discrepancies amongst fit indices in order to possibly improve their model to better 

reflect what is going on in the population.  

Based on the current study, I suggest the use of CFI and RMSEA in conjunction when 

assessing model fit, and attempt to provide a series of general guidelines for researchers to 

interpret what certain discrepancies between these indices might mean and how they can use this 

information to possibly improve the fit of their model. 

 

4.3.2 Combining CFI and RMSEA 

 From the results of the present study, CFI and RMSEA appear to be sensitive to different 

sources of misspecification as well as to different modeling components, such as model size, 

loading size, and factor correlation (in models with two or more factors). These results suggest 

that combining CFI and RMSEA when assessing model fit may not only help a researcher back 

up their claim of having a well-fitting model when the indices both show good fit, but can also 

help them better understand the possible source(s) of misspecification if one or both indices 

show poor fit. Here, I discuss some general guidelines and suggestions based on the results of the 

simulations presented above. 

 

4.3.2.1 CFI Shows Good Fit, RMSEA Shows Poor Fit 

 It may be the case for a given model that CFI shows good fit (> .95) while RMSEA 

shows poor fit (> .06). If this is the situation, it may be worth examining possible sources of 

misspecification. If it is suspected that the latent structure of the hypothesized model is correct, a 

possible source of the discrepancy between CFI and RMSEA may be the omission of one or 
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more error covariances. As the results in the present study show, CFI has a tendency to suggest 

good fit (values just slightly greater than .95) even if an error covariance of .9 is omitted from the 

hypothesized model. RMSEA, on the other hand, shows poor fit when a large error covariance is 

omitted. Thus, it is a possibility that misspecification is due to a large omitted error covariance, 

but this misspecification is simply not being picked up by CFI. This may be especially likely in 

smaller models (models with fewer than eight indicators), as the nonlinear relationship between 

CFI and the size of an omitted error covariance appears to be more exaggerated the fewer 

indicator variables there are in a given model.  

 Another possible cause of this type of discrepancy may simply be the loading sizes. As 

previously stated, while both CFI and RMSEA become more sensitive to any type of 

misspecification if the loadings in a model are higher (.7, .8, .9), RMSEA appears much more 

influenced by loading sizes than CFI. If a researcher observes a discrepancy between CFI and 

RMSEA where CFI is showing good fit but RMSEA is showing poor fit, it might be worth 

taking note of the size of the loadings in the model. If the loadings are generally high, then the 

cause of the discrepancy may simply be RMSEA’s heightened sensitivity to misspecifications in 

models with higher loadings.  

 

4.3.2.2 CFI Shows Poor Fit, RMSEA Shows Good Fit 

 For some models, it may be the case that CFI shows poor fit (< .95) while RMSEA shows 

good fit (< .06). The present research has shown that there may be several causes for this type of 

discrepancy. First, while neither index appeared to be highly sensitive to misspecification due to 

one or more omitted cross-loadings, CFI was shown to be more sensitive to this type of 

misspecification than RMSEA. For example, when a 2-factor model with 10 indicators per factor 
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omitted three cross-loadings that exist in the population, CFI showed the model as having poor 

fit when the loadings and omitted cross-loadings were all .3. However, RMSEA still showed the 

model as having good fit. CFI also appears more sensitive to omitted cross-loadings regardless of 

loading size or model size. If a researcher suspects a possible omitted cross-loading as a source 

of misspecification and observes poor fit with CFI and good fit with RMSEA, this may suggest 

that a cross-loading is, in fact, not present in the hypothesized model when it should be. 

 As was shown in the previous chapter, CFI appears to be more sensitive than RMSEA to 

misspecified latent structures. While both indices showed poor fit when a 1-factor model was fit 

to 2-factor data (Figure 3.18) and when a 2-factor model was fit to 1-factor data (Figure 3.19), 

the values of CFI were very low (as low as .27), indicating much worse fit than the RMSEA 

values, which never decreased below .55. If a researcher were in a situation where both CFI and 

RMSEA showed poor fit, but CFI showed much worse fit than RMSEA, it might indicate that 

the poor fit is due to a misspecified latent structure. Looking for this pattern with CFI and 

RMSEA can be especially helpful if it is suspected that the latent structure may not be accurate. 

 Finally, an additional cause of this type of discrepancy may be the size of the model in 

question. The present research confirms what has previously been shown in the literature: 

regardless of the source of misspecification, RMSEA tends to show better fit for models with a 

large amount of indicator variables. This is especially true when loadings are high (.7, .8, .9). 

While CFI also shows a similar trend, it is much less pronounced and actually disappears with 

larger loadings. Thus, if a researcher has a relatively large amount of indicator variables in a 

specific model and observes that CFI is showing poor fit while RMSEA is showing good fit, the 

discrepancy may simply be due to the fact that the large number of indicators is artificially 

improving fit for RMSEA while not affecting CFI to the same extent. If the researcher has no 
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cause to suspect any major misspecification, noting RMSEA’s decreased sensitivity to 

misspecification in large models can help the researcher explain the discrepancy between CFI’s 

poor fit and RMSEA’s good fit. 

4.3.2.3 Both CFI and RMSEA Show Poor Fit 

 In the present study, there was not a scenario in which both CFI and RMSEA showed 

poor fit without there being a rather serious misspecification. Thus, if a researcher observes both 

CFI and RMSEA indicating poor fit, it is likely that there is something legitimately wrong with 

the hypothesized model in question.  

However, when both show poor fit, it may be more difficult to determine what is causing 

the misspecification in the first place based solely on the index values themselves. Thus, the best 

course of action in such a situation may be for the researcher to either refer to other SEM studies 

conducted on the topic of interest or to re-examine the theory behind the topic and determine if 

any reasonable adjustments to the model can be made. 

 

4.3.2.4 Both CFI and RMSEA Show Good Fit 

 If both CFI and RMSEA show good fit, it is likely the case that the model in question is a 

good representation of the covariance structure underlying the population. However, I make note 

of two model components that may, in certain cases, influence both CFI and RMSEA to the 

extent that they indicate good fit when, in fact, there is at least a moderate degree of 

misspecification. 

 The first model component that researchers should always take note of is the size of the 

loadings. As shown in this study, both CFI and RMSEA values are influenced by loading size. 

The lower the average loadings are in a model, the less sensitive these indices are to any type of 
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misspecification. Thus, if a particular model has very low loadings on average (e.g., most 

loadings are around .2), it may be the case that both CFI and RMSEA are unable to detect even 

moderately-sized misspecifications.  

 A second model component is the size of the model, as measured by the number of 

indicator variables. As discussed in previous sections, RMSEA shows better fit for larger 

models, regardless of the source or size of misspecification. While this behavior is much less 

pronounced for CFI (and in fact is hardly present when the source of misspecification is a 

misspecified latent structure), there may be cases where models consist of enough indicators to 

cause both CFI and RMSEA to show good fit when, in fact, a misspecification is present.  
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Chapter Five: Application 

 Discussed in the previous chapter were various suggestions of how to interpret CFI and 

RMSEA values in order to determine the source of model misspecification. In this chapter, the 

goal is to provide some applications of these suggestions to real-life data. I will present data from 

two different studies and discuss competing models for each set of data. I wish to show that 

examining both the CFI and RMSEA values for specific models may help guide a researcher to 

the source or sources of possible misspecification.  

 For each of the two sets of data, I first give a brief overview of the purpose and 

importance of the original studies, as well as some background on the data involved. I then 

discuss different proposed models, computing the CFI and RMSEA values and using them to 

attempt to explain any possible sources of model misspecification.  

 

5.1 The Causal Dimension Scale (McAuley, et. al.) 

 The first data come from a paper by McAuley et al. (1992), titled Measuring Causal 

Attributions: The Revised Causal Dimension Scale (CDSII). In psychology, Attribution Theory 

seeks to explain why people behave the way they do. The theory reduces the causes of behavior 

to three dimensions: locus of causality (is the cause internal or external to the person?), stability 

(is the cause constant over time or changeable?), and control (can the cause be controlled?) 

(Weiner, 1985). 

The Causal Dimension Scale (Russell, 1982) was developed to measure how individuals 

perceived causes in terms of these three dimensions. Since the development of this scale, 

however, several researchers (e.g., McAuley and Gross, 1983; Russell et al., 1987) have 

expressed concerns regarding the scale’s structure. Specifically, they claim that the control 
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dimension tends to correlate highly with the locus of causality dimension and that the control 

dimension lacks internal consistency. In addition, concerns have been raised over whether the 

difference between personal control versus external control should be addressed within the 

control dimension. 

In response to these concerns, McAuley et al. (1992) sought to examine the control 

dimension in further detail by creating a new variation of the Causal Dimension Scale (which 

they denoted as CDSII). In addition to three items assessing locus of causality and three items 

assessing stability, the authors included six items to assess control. Three of these items were 

specifically created to measure personal control, and three were specifically created to measure 

external control. After examining four different factor structures of the 12-item CDSII, the 

authors concluded that a model consisting of four factors—locus of causality, stability, external 

control, and internal control—was the best fit to the data. 

 

5.1.1 Model 1 

 In a paper overviewing the use of factor analysis in the Personality and Social 

Psychology Bulletin, Russell (2002) takes a closer look at the relationship between the locus of 

causality and the stability subscales of the CDSII developed by McAuley et al. (1992). Russell 

claims that in a typical multifactor CFA model, items typically have non-zero loadings onto their 

respective factors and zero loadings onto any other factors present in the model. He uses the 

items and factors of the locus of causality and stability subscales as defined in McAuley et al. 

(1992) to demonstrate such a model. Note that the factors are modeled as being orthogonal 

(uncorrelated).  
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Figure 5.1: A visual representation of Russell’s (2002) hypothesized relationship between 
the factors locus of causality and stability, determined to be orthogonal, and six subscale 
items from McAuley et al. (1992). 

 

Russell (2002) then tests this model using the data originally obtained by McAuley et al. 

(1992) (n = 380 college students). The results indicate that the model fits the data, with  

χ2(9) = 14.44, p = .11. These values were obtained using LISREL 8.3. I confirmed these values 

using EQS 6.3 and also obtained the values of CFI = .985 and RMSEA = .039. Both fit indices 

also suggest good model fit, as CFI is larger than the commonly used cutoff (.95) and RMSEA is 

smaller than the commonly used cutoff (.06).  

Based on the suggestions offered at the end of Chapter 4 of this thesis, it is likely that this 

model is indeed a good representation of the covariance structure underlying the population. 

Recall that both loading sizes and model size may influence both indices to show good fit when 

there is actually a substantial misspecification. Specifically, models with low loadings as well as 

models with a large number of indicator variables may show good fit regardless of the size of 

any misspecifications. However, in this particular case, loading sizes estimated to be average to  
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high (all greater than .53) and the model is small in terms of the number of indicators (p = 6). 

Thus, this model is likely a good representation of the relationship amongst these variables and 

factors in the population. 

 

5.1.2 Model 2 

 Russell (2002) offers an additional model of the relationship of the locus of causality and 

stability subsets. This second model is identical to the one presented above, except the two 

factors are allowed to correlate. The author’s justification for this change is to see if allowing the 

correlation will significantly improve the fit of the model. 

 

 

Figure 5.2: A visual representation of Russell’s (2002) hypothesized relationship between 
the factors locus of causality and stability, with the factors allowed to correlate, and six 
subscale items from McAuley et al. (1992). 
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For this model, the resulting chi-square indicates that it also fits the data, with  

χ2(8) = 14.39, p = .07. This result was confirmed using EQS 6.3 and the index values of  

CFI = .982 and RMSEA = .045 were also computed. A difference in chi-square values between 

this model and the previous was also given by Russell (2002) as χ2(1) = .05, p = .82, suggesting 

that this second model does not lead to a significant improvement in fit over the first model.  

 

5.1.3 Model 3 

 In the model in which the locus of causality and stability factors were permitted to 

correlate, the author allowed for LISREL 8.3 to estimate the value of the correlation. It was 

found that this correlation, estimated at r = .02, was nonsignificant. This, combined with the fact 

that the model with two uncorrelated factors appeared to fit the data well, suggests that it is likely 

that two distinct factors do exist in the population.  

 As mentioned in the beginning of this section, there has been debate surrounding the 

structure of the Causal Dimension Scale, particularly regarding the relationships amongst the 

three proposed dimensions. Suppose, as in the original study by McAuley et al. (1992), that a 

researcher wishes to test other possible models for this scale. Specifically, suppose they 

suspected that there was one underlying factor for all six items (indicators) presented in the 

previous models. That is, instead of three items loading on to the locus of causality factor and 

three items loading onto the stability factor, all six items loaded onto one common factor.  
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Figure 5.3: A visual representation of an alternative 1-factor model with six subscale items 
from McAuley et al. (1992). 

 

Testing this model using EQS 6.3, I obtain χ2(9) = 186.599, p < .001, with CFI = .502 and 

RMSEA = .228. Judging by the value of the chi-square test statistic alone, this model does not fit 

the data well. However, the information given to us by the CFI and RMSEA values can be used 

to try and determine what the source or sources of misspecification might be.  

 In this case, both fit indices show poor fit (CFI < .95, RMSEA > .06). As was mentioned 

at the end of the previous chapter of this thesis, when both indices show poor fit, it is likely that 

there is a serious misspecification in the model. Thus, it can be useful to take a closer look at 

how both indices are behaving in order to determine if we can figure out a possible source of 

misspecification.  

Notice in this scenario that while both indices show poor fit, the value of CFI, .502, is 

quite low when compared to the commonly used cutoff of .95. The simulations carried out in this 

thesis (specifically, 3.16, 3.17, 3.18, 3.19) showed that CFI is highly sensitive to latent structure 
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misspecifications, to the point that the index’s values will show very poor fit when a model is 

omitting a latent factor that exists in the population.  

 Given what we already know about the fit of the two-factor model in this scenario, the 

high value of RMSEA combined with the very low value of CFI might suggest to us that this is a 

case where the latent structure of the proposed model does not match the latent structure 

underlying the population. Specifically, the proposed model is not including the correct number 

of latent factors.  

 

5.2 Reliability and Stability in Panel Models (Wheaton, et. al.) 

 The second set of data come from Assessing Reliability and Stability in Panel Models by 

Wheaton, et al. (1977). When individuals are measured on certain constructs of interest (or 

factors) over time, the result is referred to as panel data (or longitudinal data). It is often of 

interest to study the relationships amongst variables across time points. These relationships 

amongst indicator variables and the underlying factors are often represented by a measurement 

model. 

In many cases, the factors have multiple indicators per time point. For example, suppose 

the factor of interest is general intelligence and how it changes throughout childhood and 

adolescence. A researcher who is interested in how this factor changes over time may measure a 

number of indicator variables assumed to load onto general intelligence (such as the scores on a 

vocabulary test, scores on a math test, and verbal ability) at different ages to determine if there is 

a pattern of change. 

Of concern to those working with panel data is the specification of this measurement 

model to best explain the relationships between the factors and indicator variables in such a 
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situation where measurements are taken across multiple time points. Wheaton, et al. (1977) 

address the issue of representing not only the relationships amongst indicator variables but 

relationships amongst factors as well in the context of panel data.  

A component of their original article involves data from a longitudinal study of the 

effects of industrial development on individuals in a rural part of Illinois. The authors wished to 

determine if certain social attitudes were stable over time or if they were prone to change with 

changes in the environment (the change, in this case, being the industrial development). Six 

attitude scales, along with a measure of education and a measure of socioeconomic standing, 

were administered to n = 932 individuals at three different time points: 1966, 1967, and 1971.  

 While Wheaton, et al. (1977) developed and tested several different models to represent 

the relationships amongst the variables of interest, these models were ultimately more complex 

than the simulated models presented in this study and as a consequence contained modeling 

components that were not examined in this thesis.  However, the data used in the original study 

have been used by various other researchers in attempt to model the relationships amongst the 

variables of interest. A portion of the original data and variables are even used in the Lisrel (EQS 

6) Program Model (Bentler, 2006) as a demonstration.  

 Thus, the two models I discuss in the following sections are those developed by other 

authors for subsets of the original sets of variables.  

 

5.2.1 Model 1 

 The first model of interest comes from Gonzalez and Griffin (2001). An adaptation of the 

data presented in the Lisrel Program Manual (Bentler, 2006), originally from Wheaton, et al. 

(1977), here the authors focus only on four variables of interest: the scores on the Anomie scale 
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as measured in 1967 (labeled “X1”), the scores on the Powerlessness scale as measured in 1967 

(“X2”), the scores on the Anomie scale as measured in 1971 (“X3”), and the scores on the 

Powerlessness scale as measured in 1971 (“X4”).  

 In the model presented by Gonzalez and Griffin (2001), two latent factors are included, 

one of which with the two Anomie scale variables loading onto it and the other with the two 

Powerlessness scale variables loading onto it. The authors allow the latent factors to correlate 

and, based on the fact that the data are panel data, allow the error variances of the two Anomie 

scale variables to covary with each other and the error variances of the two Powerlessness scale 

variables to covary with each other as well. Note that the loadings and error variances for each of 

the two scale measurements are set to be equal.  

 

Figure 5.4: Figure from Gonzalez and Griffin (2001), showing two latent factors, with two 
indicator variables each. The model includes two error covariance terms. 
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 Fitting this model to the data, the authors obtained a non-statistically significant  

chi-square test statistic value (χ2(4) = 2.969, p = .563), suggesting that the model is a good fit for 

the data. I verified this result using EQS 6.3, and also obtained CFI = 1 and RMSEA = 0. Given 

that both fit indices are at the extreme “good fit” ends of their respective scales, there is good 

evidence to suggest that this two-factor model with correlated error variances is an accurate 

representation of the relationships amongst these variables in the population.   

 

5.2.2 Model 2 

 Given the setup of the panel data used by Gonzalez and Griffin (2001), it makes sense for 

the authors to include the two error covariances in their proposed model. Since X1 and X3 are 

the same variable measured at different times (same with X2 and X4), it is likely that there exists 

some covariance between their error terms.  

 However, the case may arise in which an individual, working with this same set of data, 

may not recognize the need to include covarying error terms in their model. Suppose that 

Gonzalez and Griffin’s (2001) original model is re-created by another researcher, the only 

difference being that the two error covariances are omitted.  
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Figure 5.5: The same model as in Figure 5.4, except with the two error covariance terms 
omitted.  

 

Testing this model using EQS 6.3, I obtained a statistically significant chi-square test 

statistic (χ2(5) = 63.868, p < .001), suggesting that this model is a poor fit for the data. In 

addition, I obtained CFI = .962 and RMSEA = .112. It is interesting to note that in this case, both 

the chi-square test statistic and RMSEA both show the model as having poor fit, while CFI 

shows good fit using the commonly used cutoff of .95. While this model would be rejected based 

on the chi-square value, it is of interest to see what might be causing the discrepancy between the 

CFI and RMSEA values to possibly determine the source of the misspecification. 

In the previous chapters, it was found that RMSEA, more so than CFI, is sensitive to 

misspecifications due to omitted error covariances, especially in models with a small number of 

indicator variables. Given that both the chi-square test statistic and RMSEA suggest that this 

model is a poor fit to the data, it may be the case that this model fails to include covariance terms 

that exist in the population.  

Another possible source for the discrepancy between CFI and RMSEA values may be the 

average loading sizes in the model. As was shown in previous chapters, RMSEA appears to be 
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affected by loading sizes, in that if loadings sizes are large on average in a given model, RMSEA 

is prone to being more sensitive to any source of misspecification. Again, however, it is useful to 

note that RMSEA agrees with the chi-square test statistic in this case. Given what we know 

about the variables in this particular situation, the discrepancy between CFI and RMSEA likely 

points to the omission of one or more error covariances that should, in fact, be included in the 

model.  
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Chapter Six: Conclusion 

 In the final chapter of this thesis, I focus on two main topics. First, I revisit the questions 

of interest in this study, as first presented in Chapter 1, and discuss briefly how these questions 

were addressed. Second, I discuss the limitations of the current study and offer suggestions for 

possible future research.  

 

6.1 Revisiting the Questions of the Study 

 In Chapter 1, four questions of interest were listed with the goal of the present study 

being to address each of these questions. In doing so, the hope was that more information could 

be gathered regarding how both CFI and RMSEA behave with respect to different modeling 

conditions as well as different sources of misspecification. 

 

Question 1: To what extent is fit index value affected by the source of the misspecification? 

As has been shown in the previous chapters, CFI and RMSEA appear to be sensitive to 

different sources of misspecification. Specifically, RMSEA seems to be more sensitive to 

misspecifications due to omitted error covariances, while CFI is more sensitive to 

misspecifications of the latent structure of a model. This difference in sensitivity suggests that 

combining the results of CFI and RMSEA when assessing model fit can help a researcher 

determine the possible source of any misspecification in a given model. Guidelines for 

interpreting combinations of CFI and RMSEA values were given in Chapter 4, section 3.2.  
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Question 2: To what extent is the relationship between the degree of model misspecification and 

fit index value moderated by different model components? 

 A key component to the present research was including a wide variety of models in terms 

of different model components. Recall that model components, as defined within this study, are 

any aspects of the modeling procedure that may affect index value over and above any actual 

misspecification. The model components of interest in this study included loading size, factor 

correlation size (in models with two or more latent variables), model complexity, and model 

balance (in models with two or more latent variables).  

 As was demonstrated in the previous chapters, both CFI and RMSEA are sensitive to 

changes in certain model components, regardless of the size or type of model misspecification. 

While such sensitivities cannot practically be avoided in many research settings (e.g., it may not 

be ethical to increase the number of indicators in a model in order for RMSEA to show a better 

fit), it is useful for researchers to know that things such as model complexity and loading sizes 

may have an effect on the behavior of CFI or RMSEA over and above any effects due to model 

misspecification.  

 

Question 3: Does the current research support the use of universal cutoff values across different 

model and misspecification types? 

 It is clear from the results of this research that specific, universally applied cutoff values 

for either CFI or RMSEA may not be the most appropriate method of distinguishing between a 

well-fitting model and a poor-fitting one. While this study did not examine the appropriateness 

of the most commonly used cutoff values (.95 for CFI, .06 for RMSEA), the wide range of 

values attained by the fit indices across the various different models suggests that any universally 
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applied cutoff value would, in some cases, either lead a researcher to reject a model with only a 

slight misspecification or to retain a model with a severe misspecification. 

 If any guidance can be given with respect to the use of cutoff values, it relates to the 

influence of loading size on fit index value. In nearly all modeling scenarios presented in this 

study, loading size affected the sensitivity of both CFI and RMSEA to model misspecification. In 

particular, lower loadings tended to correspond to less sensitivity to misspecifications of any 

type, while higher loadings tended to correspond to greater sensitivity to misspecificaitons of any 

type. Thus, as far as a broad guideline for the use of cutoffs, I recommend the use of stricter 

cutoffs for models that contain, on average, lower loadings, and more relaxed cutoffs for models 

that contain, on average, higher loadings.  

 

Question 4: Can guidelines for the use of different indices under different models be developed? 

 This study revealed that CFI and RMSEA differ in sensitivity to different combinations 

of misspecification type and model components. Thus, in Chapter 4, a loose set of guidelines was 

presented on how to interpret the combination of CFI and RMSEA values. In particular, when 

the two indices disagree (e.g., CFI shows poor fit but RMSEA shows good fit), the guidelines 

suggest a possible underlying source of misspecification.  

 While it is not possible in a real-life research setting to determine the actual cause of 

model misspecification, such guidelines as presented in Chapter 4 allow for a “starting point” as 

to what a possible source of misspecification might be. This is an improvement over simply 

relying on the chi-square test statistic’s binary “fit” or “no fit” decision, as it allows for 

researchers to locate possible points of model readjustment if it is deemed appropriate.  
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6.2 Limitations of the Current Study and Possible Future Research 

 The current study is limited in the sense that its focus was solely on confirmatory factor 

analysis (CFA) models. The methodology of structural equation modeling encompasses a wide 

range of model types, including path analysis models, structural regression models, and latent 

change models, among others. Since these other models were not included in the present study, it 

cannot be said whether the results found here can be generalized beyond CFA models, or even to 

more complex CFA models (for example, models in which latent factors load onto other latent 

factors).  

 While most other research that examines fit index behavior has done so using CFA 

models, as this study has done, there have been fewer studies that focus on how these indices 

perform in different types of models, and to my knowledge, no studies that examine performance 

in as many modeling scenarios as presented here. A possible direction for future research, 

therefore, would be to examine the performance of CFI and RMSEA in these other types of 

models, particularly focusing on similar model components (such as model complexity or 

loading size) and their effects on index behavior. 

 Another limitation of the present study is the focus on only three sources of model 

misspecification, and each one in isolation. That is, each source of misspecification—omitted 

error covariance, omitted cross-loading, or misspecified latent structure—occurred in a model in 

which there was no other source of misspecification. Combinations of misspecifications, such as 

a model containing an omitted error covariance and an omitted cross-loading, were not examined 

here. In reality, it is possible that a model may contain multiple sources of misspecification.  

 This leads to another direction of possible future research: examining the effects of 

multiple sources of misspecification on index behavior. Similar models to the ones in this study 
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could be examined, but containing not just one source of misspecification but perhaps two or 

three. Examining multiple, simultaneous different sources of misspecification is not something 

that has been examined in much detail in the current literature; thus, studying the effects of 

multiple sources of misspecification on index behavior is somewhat of a new research direction.  

 A final limitation of this study worth mentioning is a limitation common to SEM 

simulations such as those presented here. Because of the way the “hypothesized” and “true” 

models were constructed in this study, I was able to control the source and severity of the 

misspecification in every model. Thus, for any given hypothesized model, I knew the exact cause 

of the misspecification as well as the degree of the misspecification’s severity, and was able to 

generate guidelines on how to best combine CFI and RMSEA to determine possible sources of 

model misspecification based on the simulation results.  

 In reality, however, the “true” model is never actually known, and thus a possible 

limitation of this study is that it may be difficult to generalize my suggested guidelines to real 

life modeling situations in which the source or sources of misspecification may be more 

complex.  

An attempt to overcome this limitation was made by including models based on actual 

theories and data in Chapter 5. In these applied cases, the “true” model can never actually be 

known. However, in Chapter 5, I first examined research-based models that appeared to 

accurately represent the relationships amongst variables in the population, and then compared 

these models’ fit indices to other models that were, based on theory, a “worse fit” than the well-

fitting models. The well-fitting models thus acted as good approximations to the “true” models, 

and allowed me to compare more misspecified models to them to determine if my suggested 

guidelines were useful in determining possible sources of misspecification.  
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Further research could be carried out in a similar fashion: find models in the literature 

that are well-established and considered to be accurate representations of the population, obtain 

other possible models that differ from the well-fitting model in certain ways (e.g., a different 

number of factors, different loadings, etc.), and compare the CFI and RMSEA values of these 

models to assess how well the guidelines given in this thesis can help aid researchers in assessing 

the cause of misspecification in hypothesized models. 
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APPENDIX A:  NAMES, SAMPLE DEFINITIONS, AND POPULATION DEFINITIO NS 

OF COMMONLY USED FIT INDICES 

Index Name(s) Sample Definition Population Definition 

 Comparative Fit Index (CFI) 
 (.V�−0WV) − (.� − 0W)(.V� − 0WV)  

 

1 − U)UV�  

 Normed Fit Index (NFI) 

 Bentler-Bonnet Index (BBI) 

 BL86 

 Bollen’s Fit Index 

 Δ1 

 
 

.V�−.�.V�  

 
 

1 − U)UV�  

 Bollen’s Incremental Fit Index 

(IFI) 

 BL89 

 Normed Fit Index 2 (NFI2) 

 Δ2 

 

.V�−.�.V� − 0W 

 

1 − UV�U)  

 Non-Normed Fit Index (NNFI) 

 Tucker-Lewis Index (TLI) 

 Bentler-Bonnet Non-Normed Fit  

         Index (BBNFI) 

 .V�0WV − .20W.V�0WV − 1  

 

1 − UV�U) × 0WV0W  

 Bollen86 

 Relative Fit Index (RFI) 

 .V�0WV − .20W.V�0WV
 

 

 1 − UV�U) × 0WV0W  
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Appendix A (Continued) 

Index Name(s) Sample Definition Population Definition 

 

 

 

 

 Root Mean Square Error of  

           Approximation (RMSEA) Y.�0W − 1Z − 1  
: U)0W 

 Goodness of Fit Index (GFI) 

  

1 −  .2.V� 1 − [\!]^(_�)`a4^∗"^(_�)5bc$[\((^(_�)`a^∗)c)   

 Adjusted Goodness of Fit Index       

           (AGFI) 

1 −  dUe × f0W0WVg 

 

1 − %(% + 1)20W × (1 − dUe) 

 Standardized Root Mean Square  

           Residual (SRMR) 
: 2Z(Z + 1) h h (ijk − ljk)�j

k
m
j :∑(o∗ − o(p)))�%(% + 1)  

 Gamma 
 %% + 2(.� − 0WZ − 1 ) 

 %% + 20W(oqrst�) 
Note. Where p is the number of indicators, n is the sample size, .V� and .� stand for the chi-square 

values for the independent (baseline) model and the hypothesized model, respectively; dfI and df are 

the degrees of freedom for the independent model and the hypothesized model, respectively; U) and 

UV�  stand for the minimized fit function for the hypothesized and independent models, respectively; 

R* is the population correlation matrix, and o(p)) is the model-predicted correlation matrix. 

 


