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Abstract
This thesis examined the performance of two pofditlardices used in structural equation
modeling: the comparative fit index (CFI) and thetrmean square error of approximation
(RMSEA). Of interest were the indices’ sensitisti® different sources of misspecification as
well as sensitivities to model components that edégct index behavior over and above
misspecification. Index performances were evaluatewnfirmatory factor analysis models
involving one of three sources of misspecificatiomitted error covariances, omitted cross-
loadings, or an incorrectly modeled latent struetdm addition, model components—including
model complexity, loading size, factor correlatgire, and model balance—were manipulated to
determine their effects on index behavior. It wagealed that CFl is more sensitive to latent
misspecifications, while RMSEA is more sensitivertisspecifications due to omitted error
covariances. Both indices are affected to somenektemodel components, particularly model

complexity and loading size.
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Chapter One: Introduction
1.1 Structural Equation Modeling

Structural equation modeling (SEM) is a statistimadeling technique that lets
researchers construct and test causal connectioosgst variables. This is done by allowing the
relationships between the variables to be expreasdanctions of the parameters of a
hypothesized model. In SEM, these relationshipeapeessed as the covariances (or
correlations) between the variables.

SEM can be used to model relationships betweentlatriables (factors), between
observed variables (indicators), or between laaedtobserved variables. These relationships
can be expressed as a series of structural egsatiavhich model parameters are estimated. The
restrictions imposed by these parameters are thglied to a given sample to determine whether
or not the model suggesting these parameters jchaddls in the population from which the
sample was taken.

Because SEM is a general method that comprisegpheudifferent modeling techniques,
the present research focuses solely on confirméaatgr analysis (CFA), one of the most
commonly used types of SEM. A structural equatiadet typically comprises two main
components: a structural model and a measuremaelimo CFA, the structural model
describes the relationships amongstkifigctors while the measurement model representsaihe
of p indicators of the& factors (McDonald and Ho, 2002; Perry et al., 2J0B5complete model
is a combination of the structural model and thasneement model and serves as an expression
of the causal connections amongst the factors dsawéhe causal connections between the

factors and their relevant indicators. These cotmeg are functions of the model parameters.



The model itself is a theory-based representatidrow the variables within it relate to
each other in reality. For example, suppose a dpwebntal psychologist suspects that there is a
relationship between mathematical intelligence erthal intelligence (both latent factors) and
that these can be measured by a child’s performangaious school-related processes (reading
comprehension, math test performance, etc.). Thehp$ogist’s model of the relationship

amongst the two latent factors and four selectditior variables is represented in Figure 1.1.

@12
Verbal Intelligence |-

N

S\ Vil

Reading Comprsthension Score Vocabulary Test Soore Bazic Math Test Scor= Patter Recosnition Soorz
v Y2 W3 W

Figure 1.1: A structural equation model relating two latent factors, Verbal Intelligence and
Mathematical Intelligence, to each other and to fouindicators (Reading Comprehension
Score, Vocabulary Test Score, Basic Math Test Scorand Pattern Recognition Score).

The process of SEM involves estimating model patars. Often, these model
parameters include loading size, error variance,factor correlation. Each indicator variable
can be said to “load onto” or measure one or mbtbheolatent factors. In the model presented in
Figure 1.1, Reading Comprehension Score and Voaapliest Score both load onto the Verbal
Intelligence factor, while Basic Math Test Score &attern Recognition Score load onto the

Mathematical Intelligence factor. The valuask., A3, andisrepresentoading sizesor the
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strengths of the relationships between indicatodsfactors. Loading sizes can be different for
different pairs of indicator variables and factors.

Each indicator variable also hasemor varianceassociated with it. In SEM, error
variance is the portion of an indicator’s variatitat does not covary with the latent factor, such
as measurement error. In Figure 1.1, the erroemaés associated with each of the four indicator
variables are denoted lpy, y2, y3, andya.

In some cases, it may be suspected that latetaréagre related to some degree.
Researchers can include one or nfaor correlationsn their model to represent these
relationships. In Figure 1.1, the psychologist saspthere is a relationship between Verbal
Intelligence and Mathematical Intelligence, and ti@lationship is expressed in the factor
correlation,p12, between them.

Loading sizes, error variances, and factor caiiela are all model parameters that
represent the relationships amongst factors andatats. Unless a researcher chooses to fix any
of these parameters at certain values, the valutese parameters will be estimated in the SEM
process. This estimation process is discussedtineiudetail in section 1.4.1.

SEM offers the ability to test these theory-driveadels against empirical data, which is
one of the main reasons the technique has growopnlarity amongst scientists in many
different fields, including psychology, environmahscience, and education (Fan et al., 1999).
Another reason behind its popularity is its allos@ffor the modeling of latent variables. Many
research problems, particularly those in the s@tgnces, require a way of relating measurable
variables, or indicators, to related latent factors

One of the most important components of the SEdEgss is assessing model fit: how

well do the causal inferences contained in a hyggted model (like the one proposed in Figure
3



1.1) reflect the actual relationships amongst #réables? Traditionally, the chi-square test
statistic has been the sole criterion by which métes judged. However, notable problems
arise with the test statistic’s performance in datige and small samples, under different
estimation methods, and in cases where the undgrtlistributional assumptions are violated.

In response to these problems, a multitude of dgess-of-fit” indices have been
developed to aid researchers in accurately asgessidel fit in situations where the chi-square
may prove inaccurate. Due to their increased inmtus popular SEM software, it is not
uncommon for researchers to report one or twafiek values alongside a chi-square test
statistic when evaluating the fit of a model.

However, use of these indices does not come witit®own set of problems. One
particular problem is the sheer number of indicgslable. Programs such as SAS, EQS, and
LISREL are capable of printing upwards of a dozedides in addition to the chi-square test
statistic (Fan et al., 1999; Gerbing and Anderd®92; Hu and Bentler, 1998). Without proper
knowledge, it may be difficult for a researchektmw which indices to report (Bollen and
Long, 1992).

An additional problem stems from the fact that @btndices have been developed under
the same theoretical rationale. For example, soiees have been developed to penalize
overly-complex models (models with a large numbendicators), while other indices have no
such penalty. Because of differing theoreticaloraies, indices may perform differently under
certain model structures or misspecification tyddsese differences in performance could, in
some cases, lead to conflicting conclusions allmiappropriateness of a model’s fit (Fan et al.,

1999).



When using a fit index to determine goodness4pitfis common practice to employ the
use of a “cutoff value.” Not unlike a significankeel for a hypothesis test, a cutoff value is
used as a threshold of model acceptance/reje@iffierent indices have different widely-
accepted cutoff values; however, there have bedtipteidemonstrations in the literature
(e.g., Marsh et al., 1988; Beauducel and Wittmad5) indicating that these cutoff values may
not be generalizable across all modeling situati@tier studies (e.g., Chau and Hocevar, 1995;
Fan and Sivo, 2007; Hu and Bentler, 1999; KennyMo@oach, 2003; Marsh et al., 1988) have
revealed that model components such as samplensimiel complexity, and estimation
procedure all affect how index values change, amerabove the effect of misspecification.

Thus, while attempts have been made to develepnalives to the chi-square, there still
exist problems with the use of fit indices in exallng model fit, particularly when trying to do

so across different model and misspecification gype

1.2 Goals of the Present Research

The aim of the present research is to investitpgerformance of two popular fit
indices, the comparative fit index (CFI) and thetnmean squared error of approximation
(RMSEA) in various model and misspecification caiais. Specifically, | will examine the
effects of different sources of misspecificatiorg(gomitted error covariances, omitted cross-
loadings) in conjunction with different model conmemts (e.g., model complexity, loading size,
latent factor correlation) on index values.

To eliminate any variability in index performané@at may be due to sample size, the
population-based indices are studied. The purpb#esois to contrast the results of the current

study with previous studies (most of which manipeisample size), to determine if any general
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conclusions about fit index behavior, regardlessamfiple size, can be made. In conducting this

research, the goal is to address the following fuestions:

1. To what extent is fit index value affected by tleise of the misspecification?

2. To what extent is the relationship between the elegf model misspecification and fit
index value moderated by different model comporients

3. Does the current research support the use of wgaleutoff values across different
model and misspecification types?

4. Can guidelines for the use of different indiceseamdifferent models be developed?

In addressing the first question, the hope is twiple a clearer understanding of whether
either index (RMSEA or CFl) is more sensitive totam types of misspecification than others.
RMSEA and CFI values will be evaluated in modelthwaine of three different sources of
misspecification. The first source of misspecificatarises from one or more omitted error
covariances. That is, a hypothesized model omigsosrmore error covariances that are present
in the true (population) model. Using the psychglegample presented above and the model in
Figure 1.1, if the two indicators loading onto Varintelligence were measured using the same
instrument, it may be expected that their errorarares are correlated. Figure 1.1, then, would
be misspecified in the sense that it omits thisrezovariance. Because covarying errors are
common in many disciplines that make use of SEN4, iftnportant that fit indices show worse fit
for hypothesized models that omit any error covenés (such as the covarianceyofandyy»)

that are present in the population.



The second source of misspecification arises frasmar more omitted cross-loadings. If
latent factors are strongly correlated in the papanh, it is likely that an indicator that loadston
one of the factors also loads onto the other faétgain, using the psychology example, suppose
that Reading Comprehension Score actually loads looth Verbal Intelligence and
Mathematical Intelligence (perhaps a child needsigeading comprehension skills to fully
understand word problems in math). A model wouldtdhis cross-loading if it either omitted
the loading between Verbal Intelligence and Rea@omprehension Score or Mathematical
Intelligence and Reading Comprehension Scorehifmthesized model omits one (or more)
cross-loadings that are present in the populatios misspecification should ideally be picked
up by fit indices.

The third and final source of misspecification esirom a misspecified latent structure.
This occurs when a hypothesized model includegeitiore factors or fewer factors than there
are present in the population. Suppose in the mggl example that there was only one factor
representing intelligence in the population. IGthiere the case, Figure 1.1 would have a
missepecified latent structure, as it includes nfiactors than there are present in the population.
Misspecifications of this sort may be consideredarserious than those of the previous two,
since misspecification is not due to an omittedhpaly (an error covariance or cross-loading)
but is instead due to the failure to include theext number of factors present in the population.

The second question involves looking at how diifiémodel components may affect
index values. Model components, in the contexhisf $tudy, are any aspects of the modeling
procedure that may affect index value over and altlog size of the actual misspecification. The
model components studied here include loading &o#or correlation size (in models with two

or more latent variables), model complexity, anddgidalance (in models with two or more
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latent variables). Model complexity will be judgey the total number of indicator variables, the
total number of factors, and the ratio of indicattw factors in a given model. The goal is to
determine which indices are sensitive to which sypemodel components, and to what degree.

With respect to the third question, the aim istocduggest specific cutoff criteria; rather,
the commonly applied cutoff values for CFl and RMSHill be evaluated with the goal to
determine whether the indices behave consistentygh to warrant the use of universal cutoff
values across varying modeling situations.

Finally, the goal of the fourth question is to atf# to put forward a set of guidelines
regarding the use of the two fit indices. Indexdabr is examined here in a way that allows
both the strengths and weaknesses of the indides tevealed under different misspecification

types and under the influence of different nuisgrer@meters.

1.3 Thesis Structure

In the next section of this chapter, | begin bylng a brief discussion of the steps of a
typical SEM process. The focus is on the estimgtimtedure utilized when fitting a
hypothesized model to sample data. Both the chawsgiest statistic and the two fit indices of
interest (CFl and RMSEA) are introduced. The remngiportion of the chapter is dedicated to a
review of the previous literature concerning thestfuare and fit indices. | highlight the
theoretical issues surrounding the use of thesesunes of goodness-of-fit and review studies
that have illustrated how CFIl and RMSEA are affédig various model components.

Chapter 2 describes the methodology used in theeptestudy to examine CFl and

RMSEA performance in models with one of three ddfe misspecification sources. The



rationale behind the use of simulations is disadisas are the details of how the simulations are
constructed and carried out.

Chapter 3 focuses on the performances of CFl an8BMin several specific
misspecification scenarios. First, the performarufeSFl and RMSEA are examined in CFA
models in which misspecification is due to oneewesal omitted error covariances. Second, the
performances of CFl and RMSEA are examined in tacier CFA models in which
misspecification is due to one or several omitteds-loadings. Finally, | focus on the
performances of CFl and RMSEA in CFA models withiaspecified latent structure.

In addition to examining the effect of misspecifioa type and size on index
performance, the scenarios also include the maatipul of certain model components in order
to determine their effects on index performance/el.

Chapter 4 presents a brief summary of the restili@hapter 3, including a comparison of
the results of this study to results found in poesi literature. | discuss the benefits of
researchers using CFl and RMSEA in conjunctionaffer several recommendations and
guidelines for the use of these two indices.

In Chapter 5, practical applications of the recomdations in Chapter 4 is described.
Using data from two previously published SEM-raleséudies, | discuss alternative models for
these datasets and explain how CFl and RMSEA tegetin be used to possibly identify the
sources of any model misspecifications. Finallyagtler 6 consists of a brief review of this
study’s findings, the limitations of the study dgsiand simulations, and suggestions for relevant

future research.



1.4 The Process of SEM

There are five general steps that characterize apgdications of SEM (Bollen and
Long, 1992). The first step, model specificatiowalves specifying a particular model to
represent the relationships amongst particulaatées of interest. This is often based on
previous research, theory, and information relébettie variables. Figure 1.1, reprinted here,
represents a model that specifies certain relatippsamongst the two factors and four indicator

variables of interest.

@12
Verbal Intellizence |
i \ .
/ Al \:Ll
Reading Comprehenzion Scors Vieecabulary Test Soone Baszic Mzth Test Scor= Battern Fecosnition Score
Y1 Y2 Vs Y4

Figure 1.1: A structural equation model relating two latent factors, Verbal Intelligence and
Mathematical Intelligence, to each other and to fouindicators (Reading Comprehension
Score, Vocabulary Test Score, Basic Math Test Scqorand Pattern Recognition Score).

Once a model has been specified, the second step 8EM process, known asdel
identification can be performed. In SEM, the relationships arsbwgriables can be written as a
set of structural equations based on the covariaratex of the variables in the model. The
structural equations implied by the hypothesizedl@hare used to construct a model-implied

covariance matrix (Hu and Bentler, 1999). In tharagle presented above, the model-implied
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covariance matrix would be based on the relatiggsshmongst the variables as shown in Figure
1.1. For a 2-factor model like the one in questtbe,covariance structure is given by

A®PA’" + P, whereA is ap x kmatrix of factor loadinggp is ak x k matrix of factor

correlations, angp is thep X p covariance matrix of the residuals, whkmepresents the

number of latent factors in the model anepresents the number of indicators in the moides.

covariance structure implied by Figure 1.1 is giasn
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The third step of the SEM procese&imation Though SEM seeks to make conclusions
about the relationships amongst variables in thguladion, in most cases researchers must rely
on a sample from the population of interest. Tlius,goal of the estimation step is to find
parameter values such that the discrepancies betilveesample covariance matrix and the
model-implied covariance matrix are minimized. Pfagameter values in SEM are often
comprised of the “pathways” in a hypothesized mot@leése pathways are usually represented
by arrows in a diagram of the model. In Figure 1h&,parameters to be estimated include the
loadings of the indicators onto their respectivedes (thé\ terms), the correlation between the
two factors ¢12), and the error variances (thhgerms).

After a model has been estimated, the fourth stepe SEM processes involves
determining how well the hypothesized mofitslthe data. In other words, how well is the

theoretical model underlying the hypothesized madeborted by the data? While a general
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measure of fit can be obtained by looking at tisédeals between the sample covariance matrix
and the model-implied covariance matrix (Bollen &dg, 1992), more formal measures of fit,
such as the chi-square test and goodness-of-fiteadare often used in this step to assess how
well a proposed model is supported by the data.

The final step, which may be repeated multipleesmismodel respecification
Depending on how well the original hypothesized gidits the data, restructuring the model
may be necessary. If a model is restructured, B Srocedure can begin again at step one and
continue until a model with an acceptable fit isafed (it should be emphasized, however, that
any restructuring of a model should be done urftegtiidance of relevant theory and past
research).

The focus of this thesis is on how well the fdices CFl and RMSEA accurately reflect
the degree of misspecification for a given modebidder to gain a better understanding of how
these indices work within the context of the SEMaass, | will discuss steps 3 andedtimation

anddetermining fi} in more detail in the following sections.

1.4.1 Estimation

Sample data based on N = n + 1 subjectspandicator variables are summarized in a
p X p sample covariance matr& It is hypothesized that a population covarianegrinX*
exists and is generated fyrue but unknown parameters. Tip& 1 vector of these unknown
parameterd), corresponds to the particular structur&df If the sample size corresponding3o
were to increase to infinitys would converge t&* and its structure would be known (Bentler

and Bonett, 1980).
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In order to test the SEM null hypothe&is = X(0), which states that the population
covariance matrix* has the structure implied by the researcher’s thgsized model,
estimates of the unknown population paramefieas well as the matriX* must be calculated
under the hypothesized model. Once a ve@tof estimated model parameters has been
obtained, an estimated covariance maZ(j@) can be constructed as a function of the estimated
model parameters (Bentler and Bonett, 1980).

While the ideal case would involve a direct tesEdf= X(0), in reality, the true
population covariance matr®* is never actually known. Instead, researchers oarspare the
hypothesized model’s covariance matrix to the seamptrixS.

The primary goal of the estimation step is to @@ parameter estimat@such that
2(0), the hypothesized model’s covariance structuredvas these estimates, is as similar to the
structure ofS as possible (Moshagen, 2012). Obtaining thesenptea estimates is achieved by
the minimization of some discrepancy functio®)Rg¢hich, if given a set of parameters, provides
an assessment of the difference between the mogdied covariance matri®(0) and the
sample covariance matrg based on the residuals between these two ma(foéses et al.,
2012).

According to Anderson and Gerbing (1984) and Moshg@012), the predominately
used estimation procedure (and the default estomaiethod in nearly all major SEM packages)
is the maximum likelihood (ML) procedure. The ttamhal maximum likelihood fit function
FuL(0), hereby written as BY, is based on the log likelihood ratio. In the piapion, this value

is given by
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F(0) = In|Z(0)| — In|Z*| + tr[Z*Z(8)" 1] — p, (1.1)

whereX(0) represents the structure of the covariance metykied by the hypothesized model,
X* represents the population covariance matrix,@isdthe number of observed variables
(Bollen and Long, 1992). Whexr is not known, the sample covariance ma8ixan replac&*

and (1.1) can be expressed as

F(0) = In|x(0)| — In|S| + tr[SZ(0)~1] — p. (1.2)

Minimizing (1.2) yieldsF(8), hereby written a8, and the correspondingx 1 vector of
parameter estimatds F attains the value of 0 if and only3f0) = S; otherwiseF is positive

and increases as the discrepancy betE€8n andS increases (MacCallum et al., 1996).

1.4.2 Assessing Modd Fit

Once the estimation step has been performedethdtiis a vecto® of parameter
estimates that minimize the fit functiondff( The corresponding model-implied covariance
matrix £(8) can be assessed to determine how well it matcleesttiacture of the sample
covariances, which in turn is an indication of how well thegothesized covariance structure is
supported by the data.

Discussed in the following sections are two brosdhods of assessing model fit: the use
of the chi-square test statistic to assess whatas/n in the literature as “exact fit,” and the use

of fit indices to assess “close fit.”
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1.4.2.1The Chi-Square Test Statistic

Traditionally, the assessment of model fit in SEd been accomplished via the
dichotomous decision of hypothesis testing. Thaad imodel is either accepted or rejected based
on how well it appears to fit the sample data. Wassessing model fit, the null hypothesis is the
claim thatx* = X(0), or that the hypothesized model’s covariance sirecx(0), exactly
matches the population covariance matrix of theplesl variables:*. Thus, evaluating fit in
this way is a test of “exact fit” (Bollen and LontP92; Hsu et al., 2015).

Testing exact fit involves the use of the chi-gguast statistic and its associated p-value
and is based on the minimized fit functiBfiound in theestimationstep (discussed in the

previous section). The chi-square test statistiousid by multiplyingF by (N — 1) to yield:

T=(N-1DF. (1.3)

This T statistic is used to test the null hypote&si = X(0) (Hu and Bentler, 1999). Under the

assumptions that the model is correct and thadalte are multivariate normal, T has an

p(p+1)

asymptoticy distribution with degrees of freedadn= — q, wherep is the number of

indicator variables in the model agds the number of unique parameters to be estin{aéted
and Bentler, 1998; MacCallum et al., 1996).

Larger values oF correspond to greater discrepancies (greateruasidbetween the
model-implied covariance matrix and the sample deamae matrix (Bentler, 1990). Thus, if the
residuals are larger than what would be expectedasampling fluctuation, the T statistic will

exceed a critical value of the chi-square distrdyuat a pre-specified-level (Hu and Bentler,
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1998). The null hypothesk* =X(0) will then be rejected, indicating that the hypailzed
model does not exactly describe the underlying [agjmn covariance structure from which the
sample was drawn. On the other hand, i small, the resulting T will be small as wedlatling
to acceptance of the model if the T value is smétlan the critical value.

Different estimation methods (generalized leastseg; maximum likelihood, etc.) arrive
at the minimized fit function valug in different ways. Therefore, chi-square testistias
resulting from different estimation methods havghgly different interpretations. For maximum
likelihood, the estimation method used in this ihethe resulting chi-square is a likelihood ratio
test statistic (Bentler and Bonett, 1980). Theliii@d of observing the sample data under the
hypothesized model is compared to the likelihoodhferving the data under a saturated
model—a model containing as many parameter estinatelegrees of freedom. Small values of
this ratio imply that the data are as likely towcander both the saturated model and the
hypothesized model. Large values, on the other hargbest that the structure imposed by the
hypothesized model, when compared to the saturatetl, is not overly restrictive to the point

that it fails to adequately fit the patterns foundhe data (McDonald and Marsh, 1990).

1.4.2.2Fit Indices

As structural equation modeling gained populartthe 1990s and early 2000s, several
criticisms arose with respect to the chi-squaredes measure of model fit. One major criticism
is that the test is highly sensitive to sample iz will be discussed in a later section). Other
criticisms relate to the nature of the chi-squara gest of exact fit. It is unrealistic, many agu

to assume that any given covariance structureexdctlymatch that of the population
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covariance structure; thus, it would be more appatg@to assess tlieegreeof lack of fit rather
than exact fit (Hsu et al., 2015; Marsh et al.,&34cDonald and Marsh, 1990).

Another concern related to the chi-square’s usiegdack of information it provides over
and above whether the model-implied covarianceiratequal to the sample covariance
matrix. In other words, apart from revealing thamadel either fits perfectly or does not fit
perfectly, the chi-square cannot provide any infation about the magnitude or cause of the
misfit, details that would be beneficial to reséns trying to refine their model (Hsu et al.,
2015).

In response to these and other problems surrogrtdéuse of the chi-square, a number
of fit indices have been developed to either repthe use of the chi-square (in cases where
sample size is an issue) or to be used alongsatedtsupplemental way of assessing fit.

While the chi-square test leads to a binary fifihdecision, most fit indices have been
developed to represent goodness-of-fit along airmamtn rather than to prompt the researcher to
accept or reject a model based on a prespecifiecitvalue. Thus, fit indices are to be
interpreted as gauges of “close fit” rather thaexxct fit.

Like the chi-square test statistic, fit indiceskaase of the residuals between the sample
covariance matrix and the model-implied covariamegrix, Z(8), to assess fit. In fact, many
popular fit indices can be expressed as functidmiseochi-square test statistic. Table 1.1
provides a brief summary of the two indices studirethis thesis— comparative fit index and the
root mean square error of approximation—and indutieir equations both at the sample level

and at the population level.
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Table 1.1: Names, sample definitions, and populatiodefinitions of CFl and RMSEA.

Index Name Sample Definition Population Definition

Comparative Fit Index (CFI)

O — dfp) — (* — df) L F
O — dfy) F
Root Mean Square Error of 2

Approximation (RMSEA) a1

jen}
|
—_
ey

Note.Where n is the sample siz&,and x? stand for the chi-square values for the indepengtaseline)
model and the hypothesized model, respectivelyard df are the degrees of freedom for the
independent model and the hypothesized model, césply; F; andF stand for the minimized fit

function for the independent and hypothesized nsydekpectively.

To derive the population equatioffs,N (the minimized fit function multiplied by
N =n + 1) was used to replace the chi-square gdtuend in the sample definitions of the
indices. Then n was then allowed to tend to infirfthe value of can be utilized in the
population as a measure of model misspecificaodels that are not exactly true (i.e., that do
not exactly match the structure of the populatiovaciance matrix) will yield® values that do
not equal zero, with increasingly larBevalues corresponding to models with increasinglgrp
fit (Bentler, 1990; Steiger et al., 1985).

The current study focuses on the performance ofdices in the population, and thus the
population definitions in Table 1.1 are used t@okite CFl and RMSEA values in the
simulations presented later. Properties of theitwiices of interest, as well as rationale behind

their use, will be described in more detail in thikowing sections.
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1.5 Literature Review

I now turn to a review of the existing literatdoe a discussion of the issues surrounding
model fit in SEM. | begin with a brief summary bktliterature involving the issues affecting the
chi-square test statistic, then focus on the liteeasurrounding the use of the fit indices. |
present a more in-depth introduction to the twades of interest in this thesis, then discuss
concerns regarding the use of these indices asumgsasf model fit. While the current research
is concerned with index behavior at the populatewel, the majority of existing research has
been carried out at the sample level. Thereforstiag findings on the effects of sample size on

index behavior are reviewed briefly as well.

1.5.1 Chi-Square
1.5.1.1Sample Size

As is true with any statistical test, the powetla chi-square test is a direct function of
the sample size. Thus, as the sample size ten@sdanfinity, even the smallest difference
between a proposed model and the true model wigéthected in the chi-square value. In large
sample, the test statistic may be so sensitived®ize of the sample that conclusions based on
the chi-square value might not be trusted.

This sensitivity is well-documented in SEM litereguAs early as the 1970’s, researchers
such as Joreskog (1970) and Bentler and BonetDj1&8/e noted that unless a model fits
perfectly, an increase in sample size will inflite chi-square value. Thus, in situations
involving large enough samples, a model with adtimisspecification may be rejected solely
due to the chi-square’s sensitivity to sample sitker than due to any actual severe
misspecification (Hsu et al., 2015; Perry et 801%).
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The chi-square’s sensitivity to sample size lintgégpractical use in SEM. This is because
it is often expected that a hypothesized model natl fit the dataexactly(Bearden et al., 1982;
Gerbing and Anderson 1992). However, a model damdil enough to warrant its use as an
appropriate representation of the population cavee structure. Because the chi-square can
reject even a trivially misspecified model if trengple size is large enough, models that might
bepractically useful may be discarded on the basis that thegumre test shows that they are a
poor fit to the data. While one solution to thislglem would be to allow the use of
“appropriate” p-values as cutoff values (e.g.,assktwer p-value as the cutoff value so it is more
difficult to reject a particular model), most steglinvolving SEM do not employ this technique
and instead rely on typical cutoff values instead.

It is also worth noting that in many hypothesiitgy settings (such as regression or
ANOVA), the goal is to find enough evidence to ogjene null. In the context of SEM, however,
the goal is to retain the null, as the null suggé#sat the researcher’s model provides a good
description of the relationship amongst the vagalf interest in the population. Thus, a large
sample size, which is desirable in nearly everyieation of statistics, may work against the
goals of a researcher using SEM (Bentler and Bph88&0).

Problems with the chi-square can also arise whersample size is small. The T statistic
defined in (1.3) follows an asymptotic chi-squaigrtbution which may not be well
approximated in smaller samples (Bentler and Y#889). Bentler and Yuan (1999), Hooper et
al. (2008), and Hu et al. (1992), among otherseldamonstrated that in small samples, the chi-
square lacks power and tends to over-reject tHe This behavior could lead to incorrect

conclusions about the adequacy of a model.
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1.5.1.20ther Issues

The assumption of multivariate normality must ddeaaken into consideration when
using the chi-square. Violations of this assumptian lead to severely inflated T statistics,
resulting in the rejection of models that are propgpecified (Hooper et al., 2008; Moshagen,
2012). The chi-square test statistic is also seedit the size of the proposed model. Moshagen,
(2012) has demonstrated that as the size of thmopeal model increases, T will inflate and

increase rejection rates for models that may bpeaptp specified.

1.5.2 Fit Indices

Before reviewing the literature discussing thegsdr of fit indices in SEM, | present a
more in-depth introduction to the two fit indicd®svn in Table 1.1. Despite there being over
two dozen indices readily available for use by aesleers using SEM, | chose to focus my
research on CFl and RMSEA for several specificasas

First, while the chi-square test statistic is altmosversally reported as a measure of
model fit, certain fit indices are more commonlgdshan others. According to McDonald and
Ho (2002), the most commonly reported fit indexha psychological literature is CFl, followed
by RMSEA. Rigdon (1996) claims that CFl and RMSEA &vo of the most commonly reported
fit indices across multiple fields. Due to the plapity of these two indices, it was decided that
the research here should focus on their perfornsaacess many different modeling scenarios
rather than on the performances of several diftaretices in only a few scenarios.

Second, the popularity of CFl and RMSEA has led geat deal of research focusing on

their behaviors in different modeling situationsidllarge amount of research allows for a
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greater number of comparisons that can be madeebathow the indices performed in other
studies versus how they perform in the scenariesgmted here.

Finally, despite the fact that both indices aresblasn the chi-square value, CFl and
RMSEA evaluate model fit in different ways. CFlfism a family of indices known aglative
(orincrementd) fit indices These indices evaluate the hypothesized modelation to a more
restricted “baseline” model, often a model in whaththe observed variables are uncorrelated
(Themessl-Huber, 2014). Relative fit indices ast@sg well a hypothesized model fits in
comparison to the more restricted baseline moldes tequiring more than just the discrepancies
between a hypothesized model’s covariance matidxtia® sample covariance matrix in their
calculations (Rigdon, 1996).

RMSEA is from a family of indices known absolute fit indicesindices of this family
evaluate how well a researcher’s hypothesized nregebduces the sample data and is a
function of the discrepancies between that hypakdsmodel’s covariance matrix and the
sample covariance matrix (Hooper et al., 2008; Bigd 996). More will be said on the

differences between absolute and relative fit ieglim the following two sections.

1.5.2.1Population Definitions

1.5.2.1.1Comparative Fit Index (CFI)

In the population, CFI can be defined as:

| =

CFl=1-— (1.4)

?\['
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whereF is the minimized fit function of the hypothesizeddel andF; is the minimized fit
function of a baseline model. Commonly, this bametnodel is defined as the model in which
all variables are modeled as mutually uncorrelaged, thus is also known as the “independent
model” (though the baseline can be any other meelekcted by the researcher) (Bentler and
Bonett, 1980; Hooper et al., 2008).

Defined as a relative fit index, CFl uses the hasenodel as an additional reference
point for the evaluation of the covariance struetof the hypothesized model. It is expected that
the value of] is large, indicating poor fit. In addition, it i®ped that the value &f
corresponding to the proposed model, is smallcattig good fit. If the hypothesized model fits
perfectly, the ratio of to F; will be zero (becausk will equal zero) and CFI will equal one. The
smaller the CFl value is, the more it suggeststtiatypothesized model is no more an adequate
model for the data than the baseline model (BeatterBonett, 1980).

CFlis bound by 0 and 1, with larger values intiggbetter fit. The generally accepted
cutoff value for the CFI in the literature (e.gediducel and Wittmann, 2005; Hooper et al.,

2008; Hu and Bentler, 1999) is .95, with valuesaggethan .95 indicating good model fit.

1.5.2.1.2Root Mean Square Error of Approximation (RMSEA)
First developed by Steiger and Lind (1980), cite8teiger (1990), then expanded upon
and popularized by Browne and Cudeck (1992), RM&Ea#n absolute fit index based on the

minimized fit functionF. A population expression of RMSEA can be written a

RMSEA = |—, (1.5)

1=
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wheredf is the degrees of freedom for the hypothesizedemnddhe index is a measure of the
average discrepancy between the sample covariaatemand the model-implied covariance
matrix per degrees of freedom (Hsu et al., 201BraBise the degrees of freedom are a function
of the number of estimated parameters in a moddERA is said to have a parsimony
correction, as it penalizes models that are “togda(i.e., too many parameters to estimate)
(Hooper et al., 2008; Themessl-Huber, 2014). Ofteis,means that models with a large number
of indicators will be penalized more than modelthva smaller number of indicators, as more
indicators implies more loading parameters thatinede estimated.

WhenX* = £(0), F = 0; thus, an RMSEA value of zero is achieved whemtbéel fit is
perfect (RMSEA values cannot be negativel aannot be negative). Because of this, RMSEA
is often thought of as a measure of “badness 0fdf#t its size increases as model fit grows
worse, though values rarely exceed one (Hu and@&@ei®999). The most generally accepted
cutoff value in the literature is .06, as proposetially by Hu and Bentler (1999). That is, if
RMSEA of a given model is less than .06, the magishid to be a “close fitting” model and

accurately describes the relationships amongstahables in the model.

1.5.2.1.30mitted Indices

This study omits several commonly used fit indicefavor of being able to focus
more on the behaviors of two of the most populdrcies reported in the literature. In this
section, | briefly make note of other indices thit often used to assess the goodness of fit of
models in SEM. For sample and population defingiohthese and other commonly used fit

indices, please see Appendix A.
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In addition to the RMSEA, other absolute fit inekdnclude the goodness of fit index
(GFI) proposed by“deskog and Sbom (1981) and the adjusted goodness of fit ifde&xFI), a
modified version of the GFI and developed byedtog and Sbom (1981) when studies
revealed that the GFI shows an improvement in mitida$ additional parameters were included
in the model (e.g., Cudeck and Browne, 1983; Madc@ablnd Hong, 1997). These indices
calculate the proportion of variance accountedrfahe sample covariance matrix by the
covariance matrix derived from the hypothesized @hod

Another commonly used absolute fit index is tl@ndardized root mean square residual
(SRMR), also developed byréskog and Sbom (1981). The SRMR assesses the average size
of the residuals between the sample and hypothlesimeariance matrices and is similar to the
RMSEA in the sense that it is a measure of “badoéBs—the index value increases as the
model fit gets worse (Chen et al., 2008).

Other relative fit indices frequently reportedie literature include the normed fit index
(NFI) proposed by Bentler and Bonett (1980), thate-Bonnet Index (BBI) (Bentler and
Bonett, 1980), and Bollen’s Incremental Fit Ind&) (Bollen, 1989). Though the sample
definitions of these indices differ slightly, aetpopulation level they are all defined with the
same equation as the CFI. Each of these indidafluenced not only by the goodness of fit of
the proposed model but also by the choice and thebaseline model as well.

Several other indices, such as the non-normeuldiéx (NNFI) proposed by Bentler and
Bonett (1980) and the Tucker-Lewis Index (TLI) ppspd by Tucker and Lewis (1973), are
slightly modified relative fit indices and includlee ratio of the degrees of freedom of the
proposed and baseline models as well. Indices asithese have also gained popularity in the

literature.
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1.5.3 Concerns Regarding the Use of Fit Indices

I now turn to a summary of the concerns raisett vaéspect to using fit indices as
measures of goodness of fit in SEM. In generainflices have been developed to compensate
for some of the shortcomings of the chi-squarewdsn assessing the fit of a model.
Specifically, many have been designed to be lassitsee to both sample size and model size
and to be unaffected by estimation method.

However, studies addressing index performancesadifferent modeling situations have
revealed that the indices are not without their @@hof problems. Some problems stem from
how indices are selected and interpreted by reseescOther problems arise due to how the
indices perform given different sample sizes, estiom methods, model sizes and types, and
different misspecification types.

| will begin by summarizing the theoretical andthzelological concerns pertaining to
the use of fit indices, focusing mainly on the ssifi the cutoff values commonly used to
determine whether a model’s fit is acceptableehtturn to the application-related concerns that
have been addressed in the literature. | summeeieeant studies that examine the behavior of
fit indices with respect to different aspects & thodeling procedure and different model
components, including estimation method, sample, siwdel size, parameter size, and
misspecification type. | conclude with a summaryhef pertinent results and discuss how the

present research aims to address some of the riegnaioncerns.
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1.5.3.1Theoretical and Methodological Concerns

1.5.3.1.1Selecting an Index

In SEM, it is considered standard practice to refhee chi-square test statistic and its
associated p-value for a hypothesized model. Howyévere exist no generally accepted
guidelines for which index (or indices) to repddrayside the chi-square for those who wish to
do so. As previously mentioned, popular SEM programe capable of printing more than one
dozen fit indices by default. Because of this,iiseie can arise where printed indices conflict—
some show the model fit is adequate, while othersat. These conflicting results often arise
because different indices have been designed ésssiéferent criteria of fit (Gerbing and
Anderson, 1992). Thus, researchers can arriveffat@ht conclusions about a particular model
depending on which indices they choose to exantiinieafnd Bentler, 1998).

There have been attempts by researchers in SEfitee guidelines that outline which
indices to report in which situations; however réhdoes not appear to be any agreement over
which indices should always be reported alongdiéechi-square. Crowley and Fan (1997)
suggest that it is necessary to report a varietgai€es due to the fact that different indices
reflect different aspects of model fit. Severalargairings are recommended by Hu and Bentler
(1999), including pairing the SRMR with the TLI thre RMSEA with the CFI. Others (e.g.,
Hooper et al., 2008; Kline, 2005) suggest differsats of indices to report. The lack of more
concrete and universal guidelines with respeatdex reporting may make it difficult for
researchers to determine which indices to focugloen assessing model fit.

A final concern relates to the use of fit inditgsthose researchers who are not highly
familiar with SEM but still utilize the procedura.researcher who needs to use SEM in one or

two studies, for example, may not be as familiahwie different fit indices as a researcher who
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uses SEM more frequently. If presented with a daditfarent fit indices for a fitted model, a
less knowledgeable researcher may be unware diiffeeence in how model fit is calculated for
each index and therefore might simply choose tontepe indices they may have seen in
previous papers or, possibly, even just the indicassupport their model. Therefore, knowing
indices’ strengths and weaknesses and making kmesen to the general academic public is a

necessity.

1.5.3.1.2Cutoff Values

Another important concern regarding the use fitdas is the application of index cutoff
values to judge the adequacy of a model. Similar $@nificance level in hypothesis testing, a
cutoff value is a set value for a given fit ind&attcan be used to decide whether or not a model
adequately fits the data (Marsh et al., 2004).e@mple, it is common practice to use a cutoff
value of .95 for most incremental fit indices (sashthe CFl), where index values greater than or
equal to .95 suggest adequate model fit and ind&es less than .95 suggest a less than optimal
fit.

The use of cutoff values has grown in populargyiaindices have become more widely
used in SEM research. Part of the appeal of cutdtfes is that they allow researchers to make a
“yes” or “no” conclusion when determining whethemadel exhibits good fit. When reporting
the value of a fit index, researchers have theftuédue to compare it to in order to justify their
conclusion regarding model fit.

However, unlike the significance level use in hyyasis testing, there is little to no
rationale behind why any specific index value isdias the cutoff criterion. For example, while

there may be agreement among researchers that RM&E#&s greater than .06 suggest poor
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model fit, there are no strong arguments in tlediure as to why .06 should be chosen as the
cutoff value rather than .05 or .07. While a modith an RMSEA value of .062, for example,
would be rejected using the strict cutoff of .d&re is no evidence to suggest that this model has
substantially worse fit than a model with an RMS&#ue of .058 (which would be accepted
according to the cutoff criterion).

In addition to these concerns, there have beery stadies (e.g., Beauducel and
Wittmann, 2005; Hsu et al., 2015; Marsh et al.,£2lvo et al., 2006) demonstrating that a
single cutoff value cannot be used reliably undliemaasurement and data conditions. Sivo et al.
(2006) criticize the use of “universal” cutoff valsi noting that sample size and model type both
affect index behavior. Thus, even within the sanukex, there is a general lack of comparability
across different model types and sample sizes,ngakuniversal cutoff value impractical.

Marsh et al. (1988), Marsh et al. (2004), and Read.€1999) all support this view.

Other criticisms of cutoff values stem from thagen fit indices were developed in the
first place. Initially, many indices were develogedyauge model fit along a continuum from no
fit to perfect fit (Bentler and Bonett, 1980; Marshal., 2004). This provided additional
information regarding the adequacy of a model's¥iér and above the fit/no fit conclusion
based on the chi-square test. However, if reseeg@re using index cutoff criteria in a fashion
similar to a significance level in hypothesis tegfisome argue that fit indices provide no more
information about model fit over the informatioropided by the chi-square test (Hu and
Bentler, 1998).

Even Hu and Bentler (1998, 1999), whose work hadged on developing more
appropriate cutoff criteria, argued against ushreg as “golden rules.” They and others (e.qg.,

Fan et al., 1999; Marsh et al., 2004; Perry eR8l15) emphasize that the purpose of a fit index
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is to allow researchers to examine the degree sdpecification rather than to come to a strict
conclusion about accepting or rejecting a modettham its fit. Indices are meant to
complement the “fit vs. no fit” conclusion of thhiesquare rather than to be used as another
method to come to that conclusion. Thus, whilénfilices are still of use in assessing model fit,
researchers must exercise caution when interpretdex values with respect to commonly used

cutoff criteria.

1.5.3.2Application-Related Concerns

In addition to the more theoretical and methodiglalgssues surrounding the use of fit
indices, consideration must also be given to hadices perform given varying aspects of the
modeling procedure. Previous research has showmttex behavior is affected by such things
as sample size, estimation method, and various Ihcodgonents such as model size, model
parameter size, and misspecification type.

While it is expected that indices will performfeifently under different conditions, it is
important that researchers are aware of how changhsir modeling procedure (e.g., using
generalized least squares instead of maximum hi&ell as the estimation method) may affect
index behavior. In the following sections, | sumiparseveral important studies in SEM
literature that focus on how popular indices afecéd by various aspects of the modeling
procedure.

While the effect of sample size is commonly stddagth respect to its influence on
index behavior, the present research addressé®kbaior of indices in the population and thus
is not concerned with the effect of sample sizeséah, only a brief overview of the effects of

sample size will be summarized here. For the redeaaiof the literature review, the effects of
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sample size will only be discussed when they agegted in conjunction with other influences

(such as model size, for example) that remaintef@st at the population level.

1.5.3.2.1Sample Size

One of the primary concerns with the chi-squaseiteits sensitivity to sample size.
Many fit indices were developed in response to ¢biscern, the goal being to create a test of fit
that was less sensitive to the effects of sampke $iowever, research has shown that the
majority of fit indices are not immune to the eteof sample size, with some indices being just
as sensitive as the chi-square.

In a large study by Marsh et al. (1988), the peninces of 29 different fit indices were
examined to determine which, if any, were relagniabependent of sample size. Index
performance was examined in seven sample sizetamml(ranging from n = 25 to n = 1,600)
when fitting a three-factor model with nine indimavariables (three for each factor) to four
different sets of data. The variation of an indesdtlies across the different sample size
conditions was used to determine to what degrgarntax was independent of the influence of
sample size.

Of the 29 indices studied, the authors found 2thein to have values significantly
affected by sample size. This was true despitdaitiethat the degree of misspecification in the
models remained the same. The five indices sigmtig unaffected by sample size were the TLI
and the four indices in the study that were basethe TLI.

A similar study by Fan et al. (1999) examinedeffects of sample size, estimation
procedure, and model misspecification on the peréorces of nine popular fit indices. Five

levels of sample size (from n = 50 to n = 1,000)e¢ levels of misspecification (true model,
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slightly misspecified model, moderately misspedifirodel), and two estimation methods
(maximum likelihood and generalized least squanesk incorporated into theXs 3 x 2 design
carried out by Monte Carlo simulation. Misspecifioa was achieved by deleting true paths and
adding false paths (the slightly misspecified madeblved deleted paths only; the moderately
misspecified model involved both deleted pathsfalsk paths).

The model structure included four factors, eaciath had three or four indicators. The
authors commented that this model structure regiscahat is commonly found in SEM in
practice (specifically, models with two to six fact and three or four indicator variables per
each factor).

The authors found that regardless of estimatiothatkand model misspecification, GFlI
and AGFI were most strongly affected by sample, shewing an increase in fit as the sample
size increased. While still affected by sample SRIISEA, CFl, and NNFI were less sensitive
to its effects than GFIl and AGFl. RMSEA, CFI, anNM were also most sensitive to the size of
the misspecification, a desirable result.

Another similar study was performed by Sharmd.g2805) in which the effects of
sample size, model size, and factor correlatiomsdxn factors were examined for RNI, TLI,
RMSEA. The authors used simulations to empiricafigess the effects of these factors on fit
indices as well as on the use of prespecified tutdties.

The models included in the study were two speatifons of two-, four-, six-, and eight-
factor CFA models with four indicators per factdhis resulted in a range of relatively small
models (two factors with eight indicators and oaetdr correlation) and relatively large models

(eight factors with 32 indicators and 28 factorretations). Each model was either correctly
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specified (the hypothesized model was identicahwhe population model) or misspecified (the
hypothesized model was not the same as the populicdel).

The authors found that in the misspecified cabestesults suggested that as the models
grew larger, a larger sample size was needed b#fese indices became insensitive to the
effects of the sample size. However, GFl was messisive to sample size regardless of the size
of the model, while RMSEA was least affected byitfteraction between sample size and model
size.

Other studies have been carried out examinirigdites in different modeling scenarios
(e.g, Anderson and Gerbing, 1984; Bearden et @82]1Kenny et al., 2015; La Du and Tanaka,
1989). In all of these studies, the effects of darsjze have been well-documented, suggesting
that most indices are significantly sensitive tmpke size, despite their having been developed

to be less sensitive than the chi-square to sasipdeeffects.

1.5.3.2.2Estimation Method

In the estimation step of the SEM process (dismligs detail in section 1.4.1 above), the
minimization of some discrepancy functiordFleads to parameter estimaesuch that the
hypothesized model’s covariance structure, wherdas these estimates, is as similar to the
structure of the sample covariance matrix S asilplesg here exist different estimation methods,
such as maximum likelihood (ML) and generalizedtesuares (GLS), that are used to achieve
the minimization of R{). It has been shown that certain indices perfoffereéntly depending on
the estimation method used. This section will pdevonly a brief summary of studies examining

this effect, as the current research focuses axibéhavior only under ML estimation.
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Sugawara and MacCallum (1993) found that absahaliees, such as RMSEA and
SRMR, have a tendency to behave more consistetrihga different estimation methods than
relative fit indices (such as CFl and NNFI). Théadings were supported by Fan et al. (1999)
in the same study described in the previous sed®enall that this study included a true model
with four latent variables with three or four indfors each, and two misspecified models.
Misspecification was achieved by deleting true pathd adding false paths; the slightly
misspecified model involved deleted paths only ti@dmoderately misspecified model involved
both deleted paths and false paths. Index values @@mined at five different sample sizes
using both ML and GLS estimation procedures.

While Fan et al. (1999) found that estimation rodthad no effect on index value in the
true model case, when the models were misspeddiady degree, large differences in index
value were found for NFI, CFl, and NNFI under diffet estimation procedures, while relatively
small differences were found for indices not dedias relative fit indices. In general, all indices

showed better fit under GLS estimation than MLmaation.

1.5.3.2.3Model Size

Apart from sample size, perhaps the most reseatiofieénce on fit index value is
model size. Model size can be defined both by thaber of factorsk), which is usually
determined by theory, and by the number of indicasmiables |p) in a given model. The issue
of index sensitivity to model size has raised con@nongst researchers since model size is an
aspect of a researcher’s model that can be chaetgi/ely easily (in comparison to something

like the sample size or the size of the parametigmates).
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As described in section 1.4.2.1, the traditionallrad of assessing model fit in SEM is
by using the T statistic, which hagZdistribution asymptotically. In addition to thitatistic’s
sensitivity to sample size, it has been documetiitatiit is sensitive to model size as well
(e.g., Fornell, 1983; Moshagen, 2012). In finitenpées, the size of a model has been shown to
affect the goodness of approximation of the T stiatio the asymptotic chi-square distribution.
Specifically, the T statistic tends to become ‘atdld” as more variables are added to the model
and thus may lead to the rejection of a correctehsinply because the model is very large.

Moshagen (2012) notes that many of the populandites, including RMSEA and CFl,
are based on the T statistic and might also beeadghg when it comes to representing fit for
larger models. The concern expressed by Moshagdi2)2Kenny and McCoach (2003), Chau
and Hocevar (1995) and others is that if modelb wibre variables exhibit worse fit,
researchers may be tempted to adopt a varietyaiegies that would reduce the number of
variables in the model in order to improve fit. Fastance, items may be collapsed to form
parcels, larger models could be broken down intmsdels that contain only a subset of the
variables, or variables could simply be trimmedrirthe model (Kenny and McCoach, 2003).

On the other hand, if indices show an improvemeriit when the number of variables
increase, it could possibly lead to researchelsidieg variables that should not theoretically
belong in the model but are added solely to impfdv8ecause of these concerns, the effect of
model size on index behavior has been studied &everal different aspects.

Many studies have been conducted examining thetedfehe number of indicators on
index behavior. A study by Kenny and McCoach (2068dlved simulating perfectly specified
and misspecified models while varying the numbendicators. The study focused on the

performances of TLI, CFl, and RMSEA. For three @iéint sample size conditions (100, 200,
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1,000), a hypothesized 1-factor model had eithé; 40, 12, 14, 20, or 25 indicators and was
either perfectly specified or misspecified in ofie¢hwee ways. The first misspecification
involved the omission of the loadings of a secomtbmpopulation factor. The second
misspecification involved the case where the hypsitted 1-factor model omitted the correlation
between the two factors present in the populafide. third misspecification involved omitted
error covariances amongst the indicators in thedif-factor model.

The authors found that for perfectly specified megd€FI and TLI tended to show worse
fit as model size increased (especially in smatiga size conditions), while RMSEA tended to
show an improvement of fit as the model size ineedabut only in the larger sample size
condition (N = 1,000). As model size increasedhldoF!l and NFI showed a decrease in fit in
both misspecification cases where the misspedificahvolved the latent structure of the model
(the omission of a second minor factor and the simisof a factor correlation), but showed an
increase in fit when the misspecification was duerhitted error covariances.

RMSEA showed an improvement in fit as model sizenlieased regardless of the type of
misspecification. This result is consistent witk tndings of other studies (e.g, Browne, 1987),
supporting the claim that RMSEA shows better fitramlels grow larger. Kenny and McCoach
(2003) suggest that the decline in RMSEA valueicatthg improved fit, is due to the decline in
the ratio of the model chi-square to its degredsaeafdom, since adding more observable
variables to a model increases the degrees ofdnedaster than it increases the chi-square
value.

The effect of the number of indicators on indekdwaor was also examined in a study
by Chau and Hocevar (1995). The authors examinvedaopular fit indices (GFI, AGFI, NFlI,

CFI, and TLI) to determine which were least susbépto the effect of model size on index
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value. Their initial CFA model consisted of 28 icaliors loading on to seven intercorrelated
factors (resulting in four indicators per factdn two subsequent manipulations, the same CFA
model was maintained but the number of observadnliables per factor was reduced by random
deletion down to three per factor (21 indicatotaldoand then down to two per factor (14
indicators total).

The authors found that while all indices in thedgtshowed worse fit for models with
more indicators, CFI, NFI, and TLI were more stabign the others, meaning that as model size
increased, the values of these indices showed Viibtagt did not differ substantially from their
values for smaller models. This suggests that vdiilthese indices are affected by model size to
some degree, the three relative fit indices indu@ad possibly other relative fit indices as well)
may be less sensitive to model size than absalutedfces are.

| point out that in this study by Chau and Hoceid®95) and in the study by Kenny and
McCoach (2003), no effort was made to control toareges in the ratio of indicatons) to
factors K). That is, ap decreased, the ratio pfk decreased as well, from 4:1 to 3:1 to 2:1. In
addition to examining how the number of indicatora model might affect index behavior, the
current study will also examine how the ratigpdf affects the behavior of RMSEA and CFI. A
comparison of my results and the results found bguCand Hocevar (1995) will allow insight as
to whether these indices are sensitive to the odtabservable variables to indicator variables
over and above changesgrfor k) alone.

Other studies have manipulated both the numberdi¢ators as well as the number of
factors. In a simulation study by Sharma et al0OB)0the authors constructed four CFA models
with different numbers of factors (2, 4, 6, andv&h four indicators each (leading to a total of 8,

16, 24, and 32 indicators variables for each madepectively). Two specifications for each
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model were created. In the first specification, tiedel was correctly specified and matched the
population structure perfectly; in the second djeation, the model was not correctly specified
(due to omitted factor correlations). The authdss ananipulated factor loading sizes (.3, .5, .7),
factor correlation sizes (.3, .5, .7), and samess(100, 200, 400, 800). The performances of
RNI, TLI, GFI, and RMSEA were assessed for eaclditmm.

Sharma et al. (2005) found that GFI was signifiyaatfected by both sample size and
model size. Specifically, GFI showed worse fitlas $ample and model size increased for the
misspecified model case. RMSEA was significantfeeted by the size of the model; it showed
an improvement in fit for the misspecified modellzs model size increased.

In contrast to the studies done by Chau and Hodé@®5) and Kenny and McCoach
(2003), I note here that the ratioppk was controlled in this study. That is, the numder
indicators per factor is held constant as the nurobfactors increases, meaning that phie
ratio stays the same as the model increases inl¥ieepresent study will examine the effect of
this ratio in further detail and compare the restdtthe results found by Chau and Hocevar

(1995), Kenny and McCoach (2003), and Sharma €2@05).

1.5.3.2.4Parameter Values

Other model components that may have an effefit oxdex behavior are the values of
the model parameters, such as loading size orrfact@riance size. These values can be
specified (or “fixed”) in a model based on theongan previous research. For example, in
personality psychology, the covariance betweerofadExtraversion and Agreeableness in a
given model may be based on what previous ressaigiests is an appropriately strong

relationship between the two factors. Parametersats be estimated during the modeling
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procedure. Most of the studies addressing the teffemodel parameters on index behavior
focus on the influence of fixed parameters rathanton the influence of estimating parameters.

A recent study by Themessl-Huber (2014) examineceffect of loading size on the
behavior of SRMR, RMSEA, and CFI. The study incldidleree CFA models, each with 24
indicators and three factors (each factor had Ratdrs loading onto it). The first model was a
correctly specified model with uncorrelated factansl no cross-loadings. The second model
was a misspecified version of the first model araduded correlated factors but no cross-
loadings (the factor correlations were .3, .459r The third model was also a misspecified
version of the first model and included cross-logdibut no correlated factors (the primary
loadings were all between .3 and .9, while thesstoadings were no greater than .2).

Index performance in these scenarios was assassgglthe type | and type Il error rates
when model rejection/acceptance was based on fhdaccutoff values for the indices (models
were accepted when RMSEA < .06, SRMR < .08, and>CBb). The author found that when
factor loadings were low or medium (less than (3| had trouble accepting correctly specified
models. RMSEA and SRMR had better rates of acceptér low loadings. However, CFI did
the best of the three indices when it came to tisspecified models, especially when the
loadings were high (.8, .9). That is, even whemlilogs were high in the misspecified models,
CFI still rejected these models due to their pdor f

In general, Themessl-Huber (2014) found that alides had trouble detecting
misspecified models when the factor loadings wewe This finding is cause for concern, as in
certain disciplines where it is common to have loadings (such as psychology), a model could
be accepted as having good fit simply becauseotirigs are small rather than because the

model actually fits the data well.
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Another study by Miles and Shevlin (2007) also sbdwhat index performance can
change due to loading size alone. In the secorfdhaltwo-part study, the authors fit a one-
factor model to two-factor data, fixing the loadsng .8 and the factor correlation to .5. Of the
indices included in their study (RMSEA, CFI, NNBhd RMR), all indices showed the model
fitting the data poorly. However, when they fixé toadings to .5 instead of .8, RMSEA
indicated a well-fitting model. Both CFI and NNERillsshowed a poor fit.

These results suggest that when the loadings ak, #IMSEA may not be sensitive
enough to detect when a model omits a factor, wbahbe considered to be a rather large
misspecification. The authors argue that this figdsupports the use of comparative fit indices
such as the CFI alongside the chi-square to ghettar understanding of the source of model
misspecification.

The modeling scenario presented by Miles and Sn¢2007) is similar to the scenarios
carried out in the present study to explore hovsisise fit indices are to detecting cases of latent
structure misspecification. Given the results @fitistudy, | may expect to find that the
RMSEA'’s ability to detect latent structure missgeaition is in part a function of the size of the

loadings.

1.5.3.2.50ther Model Components

Before | summarize the literature discussing hibwéflex behavior is affected by the
type of model misspecification, | wish to brieflisduss other model components that may play a
role in how fit indices behave.

As discussed in the previous section, researcist@asn that fit index behavior is

affected by model size. Many popular indices, idoig the RMSEA, tend to show a better fit
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for large models over comparable small models. Henevioshagen (2012) notes that the
notion of a “large” model is vague. To some resears, the definition of “large” is based upon
the number of indicators (e.g, Anderson and Gethif§4; Kenny and McCoach, 2003; Marsh
et al., 1998), while to others, the definition &sbd on the number of parameters needed to be
estimated in the model (e.g., Boomsma, 2000; Cwetah, 2002). Some consider the degrees of
freedom to be indicative of model size, as it isdzhon both the number of unique elements of

the covariance matrix and the number of free patarmérecall that the degrees of freedom

d =20 q, wherep is the number of observed variables in the modelas the number of

unique parameters to be estimated).

In CFA, both the number of free parameters andidggees of freedom increase as the
number of indicators increases, which may explaiy there is little concern as to what is
actually meant by a “large” model in the literatur®wever, it should be noted that models with
the same number of indicators can lead to diffedegrees of freedom. Moshagen (2012) offers
the example of model A, which has three correléaetbrs and 10 observable variables each
(here,p = 30,9 = 63 anddf = 402), compared to model B, which has 10 corrdléetors and
three observable variables eaph(30,q = 105, andif = 360).

A limited number of studies have made this digtorcbetween the number of indicators
and the size of the degrees of freedom when asgdssw model size affects index behavior. A
study by Kenny et al. (2015) examined the behavid®MSEA in models with small degrees of
freedom. The study included seven different dego¢é&®edom conditions (1, 2, 3, 5, 10, 20, or
50) and six different sample size conditions (81,1200, 400, 600, or 1,000). All models were

correctly specified.
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The authors found that when both the degreesefivm and the sample size were large,
RMSEA never rejected the model (that is, it showed the model had good fit). This replicated
similar findings by Chen et al. (2008). However, both very small sample sizes (100 or below)
and small degrees of freedom, RMSEA rejected atantial proportion of correctly specified
models. Even with large sample sizes combined svitbll degrees of freedom, RMSEA
suggested poor model fit.

It is noted that while Kenny et al. (2015) focusetthe effect of the degrees of freedom
rather than on the effect of the number of indicgttheir conclusions regarding the behavior of
RMSEA are the same as in the study by Chen e2@08). That is, the larger the degrees of
freedom, the greater the tendency of RMSEA to shoad model fit. Other studies (summarized
above) have shown that the larger the number ofamal's, the greater the tendency of the
RMSEA to show good model fit. This perhaps suggeéstssince the degrees of freedom are in
part a function of the number of indicators that &8A is in fact sensitive to model size in terms
of the number of indicators rather than the degoééseedom.

Another model component that may affect fit indéeskavior is the balance of the
indicators across the different factors in the nholdeall of the simulated models in the studies
summarized above, there is an equal number ofatali loading onto each factor. For example,
if a model has three factors and 12 indicatorsh éactor has four indicators loading onto it.

However, there is nothing to suggest that theegla¢o be an equal number of indicators
per factor in real life models. In an applicatidriS&M, for example, there may be a three-factor
model where one factor has four indicators loadint it, the second factor has two indicators

loading onto it, and the third factor has six irdars loading onto it.
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Despite the fact that such “unbalanced models‘tamepletely reasonable model designs,
there has been no research done on the effectasfdeaon index behavior. The present study
aims to offer some insight as to how CFl and RM3iehAave when the number of indicators is

not equally spread across all factors in a givedeho

1.5.3.2.6Misspecification Type and Severity

While fit indices are designed to measure theegf fit of a model, the previous
sections reveal that indices are sensitive to atimiel components that do not directly involve
the degree of misspecification. Thus, sensitivatgdmponents such as sample size and
estimation method may be considered a weaknessiodices.

However, it is desirable for fit indices to be séwus to the nature and degree of the
misfit between a hypothesized model and the datgraviously stated, many fit indices were
designed to supplement the chi-square. The chireqeaults in a binary fit/no fit decision. It is
not designed to provide any information about th&se of a possible misspecification or how
severe it may be.

If fit indices are sensitive to the source misspeaiion (as well as the severity of the
misspecification), they become more useful as alsapent to the chi-square, as they can
provide information about where a possible misdation may exist (e.g., if it is due to an
omitted error covariance or due to a misspecifedrit structure).

Indices become even more useful if different ingliaee sensitive to different sources of
misspecification. If, for example, it is known tH@Fl is sensitive to a certain type of

misspecification and RMSEA is sensitive to anotigpe, then researchers can examine both
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indices (in addition to the chi-square) to possildyermine where a misspecification may be
occurring in their model.

There have been several studies that have exanmdex sensitivity to misspecification
type and misspecification severity. The earlieshprehensive study was done by Hu and
Bentler (1998), who examined the behavior of 15cesl with respect to the severity of model
misspecification. The goal was to determine whiatides, if any, accurately reflected the degree
of misspecification. The authors examined indexgrarance in CFA models involving three
factors and 15 indicators. For what they called*tivaple” misspecification scenario, there were
three different models: one that was correctly Bgel; one that involved one omitted factor
covariance, and one that omitted two factor covaea. For the “complex” misspecification
scenario, there were also three different models:tbat was correctly specified, on that
involved one omitted cross-loading, and one thattechtwo cross-loadings.

In addition to the differing degrees of misspeatfion, the authors also included three
estimation method conditions (ML, GLS, and asyniptdistribution free (ADF)) and six sample
size conditions (n = 50 to n = 5,000). They measgensitivity to misspecification by using an
ANOVA. The larger the amount of variance accouritedy the model misspecification (and
the smaller the amount of variance accounted fahbysample size and estimation method), the
better and index was said to be.

Results from the study showed that in the casbeofdimple” misspecification (omitted
factor covariances), SRMR, TLI, BL89, RNI, CFI, M|gmma hat, and RMSEA all performed
well in terms of large proportions of their vari@sdeing accounted for by the size of the
misspecification. Other indices, including GFI, AIGRFI, CAK, and CK, were highly affected

by sample size.
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In the case of the “complex” misspecification, thehors found that large proportions of
the variances of TLI BL89, CFI, and RMSEA were agued for by misspecification. Overall,
the authors found that all indices apart from SRM#e more sensitive to misspecifications due
to omitted cross-loadings than those due to omfdetbr covariances. Based on this, they
recommended a two-index presentation in resultsrieyg, coupling SRMR with one other
index.

One criticism of Hu and Bentler’s (1998) study desis that the severity of model
misspecification was neither defined nor contrallEderefore, the simple and complex
misspecificaitons in the study may not have compardegrees of misspecification. Fan and
Sivo (2005) sought to expand upon Hu and Bent{@@98) study by quantifying the degree of
misspecification in each model so as to keep is=bant across the two misspecification types
(simple and complex).

To quantify the degree of misspecification, Fad 8ivo (2005) treated the chi-square
values for the models as noncentrality parametdrat is, these chi-square values (and their
associated degrees of freedom) describe the ambshtift from the central chi-square
distribution to the non-central chi-square disttibns due to model misspecification. Since these
values are blind to the type of misspecificatidr authors argued that they would be a good
way to compare the severity of misspecificationhaf simple and complex cases presented by
Hu and Bentler (1998).

By comparing they? — df) from the different models, they found that the
misspecification was less severe in the “simplesecthan in the “complex” case. Thus, the
results in Hu and Bentler’s (1998) study may haserbpartly due to these differences in

misspecification severity. To determine if this wias case, Fan and Sivo (2005) repeated Hu
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and Bentler’s (1998) original study while controdjifor the severity of model misspecification.
To do so, they adjusted the population model patersié the original designs so that the
models would have comparable degrees of misspatdit

After controlling for the severity of misspecificat, Fan and Sivo (2005) found results
similar to those in the original study. TLI, BL8RNI, CFI, Mc, and RMSEA all appeared more
sensitive to misspecifications due to omitted closslings than misspecifications due to omitted
factor covariances. This suggests that certairc@sdare indeed more sensitive to certain types of
misspecification, even when the degree of missjatién is controlled across the types.

In a follow-up study, Fan and Sivo (2007) soughfurther examine fit index behavior
with respect to the degree of model misspecificatidhey argued that if universal index cutoff
values are to be of any practical use in SEM, iinigortant that fit indices be sensitive to the
severity of model misspecification (regardlesshaf $source) but not be sensitive to different
types of models that have the same degree of nuispdion.

To determine which indices (if any) were sensitvenodel type if the degree of
misspecification was the same across the differetels, the authors constructed two different
CFA models. CFA-a contained misspecifications duenitted cross-loadings, and CFA-b
contained misspecifications due to omitted factivacziances. Both models had three different
levels of misspecification: no misspecificatiorsiagle instance of misspecification (e.g., one
omitted cross-loading), and two instances of misigation (e.g., two omitted cross-loadings).
The degree of misspecification was held constamtsaanodel types for each of the three levels
of misspecification.

Of the twelve indices included in the study, NFH®1, and SRMR were shown to be

most sensitive to model type, with 20% or moreheiiit variation attributable to this component.
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Gamma, Mc, and RMSEA were shown to be the leasitsento model type but most sensitive
to the degree of model misspecification. CFl, wkiasitive to the degree of misspecification,
was also slightly sensitive to the type of modehad.

Fan and Sivo (2007) also included a condition dtudy which compared index
behavior in the original models to index behaviomodels that were smaller but otherwise
similar to the originals. They found that thougk 8geverity of misspecification was the same in
the two smaller models as it was in the originatiels, RMSEA values were dramatically higher
for the smaller models, suggesting that these nsdud a higher degree of misspecification than
the larger models. These results agree with relsédactised on model size and suggest, as other
studies do, that RMSEA is highly sensitive to mazieé.

A more recent study by Heene et al. (2012) alsdoeeg the sensitivity of commonly
used indices under different sources and degree®dél misspecification. The study focused
on the behaviors of RMSEA, SRMR, and CFI for twifedient CFA models with 24 indicators
equally distributed across two correlated fact@nse population model, Model A, contained
three correlated errors between items loading thedwo different factors. The other population
model, Model B, contained six correlated errors.

The study contained five sample size condition®(250, 500, 1,000, and 2,500) and
two factor loadings conditions (one with loadingaging from .3 to .6, the other with slightly
higher loadings ranging from .5 to .8). To cre&te misspecification, the fitted model (fitted to
simulated data from both Model A and Model B) assdrantirely uncorrelated errors.

The authors found that regardless of loading siample size, or degree of
misspecification, both SRMR and RMSEA values wéneags below their commonly used

cutoff values, demonstrating that these indicdedatio reject models that had a large degree of
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misspecification (i.e., six omitted error covariasg CFl values, on the other hand, were almost
always below the suggested cutoff value except thithweakest misspecification and the larger
sample sizes (greater than 500), suggesting thahtiex is sensitive to misspecification due to
omitted error covariances. CFl values were alsbdridindicating better fit) when loadings were
higher, suggesting that this index is also affettgtbading size.

In the present study, one of the focuses will bandex behavior with respect to
misspecification type. Also of interest will be h&@¥l and RMSEA will perform when the
severity of misspecification is altered. The resfiom the current study will be compared to the

results from previous studies to determine if lume conclusions are reached.

1.5.3.3Summary

The above sections discuss the prominent litegdtigusing on fit index behavior and the
aspects of the modeling procedure that affect idiffepopular indices. In this section, | briefly
summarize the results pertaining to the two indafasterest in the current study and discuss
how | expect these indices to behave based onhasabeen demonstrated in the literature.

Previous research points to RMSEA as being vangiee to model size. More
specifically, as the size of a model increases {ldrehat increase is measured by the number of
indicators included in the model or by the degEfeseedom of the model), RMSEA has a
tendency to show an improvement in fit, regarddgbe type of misspecification. This trend is
evident regardless of whether the ratio of indicsato factors:k) is held constant or allowed to
change as the model size increases. (Browne, X381y and McCoach, 2003; Sharma et al.,

2005).
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CFI shows a decrease in model fit as model sizeases, but only when the
misspecification is due to an incorrect latentaice. When the misspecification is due to an
omitted error covariance, CFl shows an improvenefit as model size increases (Kenny and
McCoach, 2003). However, other studies that haydichted this study find that CFI values are
much more stable compared to RMSEA values as nsieincreases (Chau and Hocevar,
1995). Based on this previous research, | expattRMSEA will show an improvement in fit as
model size increases, regardless of the type afpaisfication. However, | suspect that CFI's
behavior as model size increases will be affectethé type of misspecification.

Previous research also shows that both indiceseargtive to loading size. While low
loadings affect CFI's ability to detect correctpyesified models (meaning that low loadings lead
CFl to reject models that fit the data perfectRMSEA is slightly less affected by loadings
(Themessl-Huber, 2014). When loadings are high,i€&ppropriately sensitive, meaning that
the index still rejects models that have poorRMSEA, on the other hand, has a tendency to
show models as having better fit based solely ersire of the loadings (better fit when loadings
are larger), and thus may accept a poorly-fittingged if the loadings are high enough (Miles
and Shevlin, 2007).

Based on what has been found in the literatusaspect that loading size will affect
index behavior regardless of the type of misspeaiibn. Specifically, | anticipate that RMSEA
will show improved fit (at any degree of misspeazation) as loading sizes increase, while CFl
will show significantly worse fit as loading sizdscrease. | also suspect that loading size will
influence behavior regardless of other modelingofiec(e.g., model size).

Finally, previous research shows that while batlides appear to be sensitive to

misspecifications due to omitted factor covarianEddSEA is less sensitive to
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misspecifications due to omitted error covariartbes CFl is (Fan and Sivo, 2005; Heene, et al.,
2012; Hu and Bentler, 1998). While the current gtddes not examine omitted factor
covariances, it does examine misspecified lateatttre, which involves fitting a model with a
certain number of factors to data that comes frgogulation with a greater (or fewer) number
of factors than the fitted model. Based on indexavéor with respect to omitted factor
covariances, | anticipate that both indices willskeasitive to misspecified latent structures, while

CFI will be more sensitive to omitted error covadas than RMSEA.
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Chapter Two: Methods

In this chapter, | discuss the methodology usezhtoy out the simulations presented in
Chapter 3. | begin with a brief overview of tbgtimationandfit assessmerdteps of SEM,
which are discussed in more detail in Chapterthieh describe the simulation methods
employed here, focusing on the construction of'plepulation” and “hypothesized” covariance
matrices, the minimization of the discrepancy fumgtand the plotting of the results. Finally, |

re-state the goals of the present study and deskaty | will attempt to achieve them.

2.1 Estimation and Assessing Model Fit

As discussed in Chapter 1, the null hypothesBEM states that the population
covariance matrix* has the structure implied by the researcher'sottygsized model. That is,
the null claims thaE* = X(0), with 8 being a vector of unknown population parametersrdter
to test this null hypothesis, ballf andé must be calculated under the researcher’s hypatuks
model.

However, since the population covariance ma&tixs not known, we cannot directly
test the null hypothesis that = X(0). Instead, it is assumed that the covariance m3tofka
sample drawn from the population of interest iDadyrepresentation &*. The primary goal of
the estimation step, then, is to find the vectoparameter estimat@such that the difference
betweerZ(8), the hypothesized models’ covariance structuredas these estimates, a®d
the sample covariance matrix, is as small as plessib

These parameter estimates are obtained by mimgi&me discrepancy functiondly(
The most commonly used estimation procedure in $&tke maximum likelihood (ML)

procedure. Recall equation (1.1) from the previchapter:
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F(0) = In|Z(0)| — In|Z*| + tr[Z*Z(8)" 1] — p, (1.1)

whereX(0) represents the structure of the covariance metykied by the hypothesized model,
X* represents the population covariance matrix,@isdthe number of indicator variables. Since

X* is not known, the sample covariance maBpeplacex* and (1.1) is expressed as

F(0) = In|2(0)| — In|S| + tr[SZ(0)~1] — p. (1.2)

When F0) is minimized, we obtaifi and the corresponding vector of parameter ests@ate
F attains the value of zero if and onl\Zif@) = S. OtherwiseF is positive and increases as the
discrepancy betweex(0) andSincreases.

OnceF and® have been found, the next step is to use themsesahow well the
hypothesized model fits the data. Specifically,wmant to compar&(®) to Sin order to
determine how similar they are. Fewer discreparoétween the two matrices suggests that the
proposed model is a good fit to the underlying paipen covariance structure from which the
sample was drawn. The traditional method of assgggodness-of-fit involves using the chi-
square test statistic, which is based on the mignhfit valueF. Recall from Chapter 1 that the

chi-square test statistic T can be expressed as

T=(N-1DF. (1.3)

Most fit indices that are commonly used in SEM rehyF as well, expressed as a chi-

square value.
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2.1.1 Sample versus Population Fit I ndices

Note that in order foF to be expressed as a chi-square value, it mustttéhed by
(N — 1) and thus depends on the sample size (whittirn implies that any fit index based on
Fis also influenced by sample size). Many previdudiss (e.g., Fan et al., 1999; Kenny et al.,
2015; Marsh, et al., 1988) have shown that fit indehavior is, in most cases, heavily
influenced by sample size. In the present studygtial is to examine index behavior
independently of sample size.

In order to do so, the equations for the tworfttices of interest (CFl and RMSEA) must
be re-written so as to not depend on the sampdensiZo derive these population equations,

F- N, where N =n + 1, was used to replace the chivsgualues found in the sample definitions
of the indices. The sample size n was then allowednd to infinity.

The value of, as stated above, is obtained by minimizing tmetion F@), which relies
partially on the sample covariance ma8ixBecausé is affected by nf is still affected by
sample size. Rather than relying on sample covegiamatricesS), | instead define population
covariance matriceX{) whose structures are explicitly defined to reffibe relationships
amongst variables in the population. ThE$ematrices therefore do not rely on n and,
subsequenthyf is independent of sample size in this study. heptvords, | computB based on
equation (1.1) rather than (1.2). Please refemaigafAppendix A for the population values of
commonly used fit indices. The population equatifamn<CFI and RMSEA were used to calculate

the fit index values for the model simulations prgsd in this study.
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2.2 Steps of the Simulation Procedure

The simulations presented in the following chaphlestrate how these indices behave in
specific modeling scenarios. In order to contrel source and severity of misspecification (as
well as different model components, such as loading, model size, factor correlation, etc.), the
simulations involve first creating a “population’oatel and then fitting deliberately misspecified
models to that population model.

All simulations and calculations were carried osihg the statistical software R, and
several randomly chosen points for each scenane warified using EQS 6.3. In cases where
convergence problems were present, the outlielegaliere replaced by the average of the

surrounding values. The steps involved in the satmh procedure are described here.

Step 1: Definition of the Model Components and Isoop

The first step in each simulation is to define ge@eral components of the model that
were fixed (i.e., not manipulated at all during ffivaulation). Depending on the scenario, these
components include any number of the following: tikenber of indicatorspj, the number of
factors k), loading sizes)), and factor correlationp]. For example, Figure 3.1 represents a
scenario in which a hypothesized 1-factor modehBiindicators is misspecified in the sense
that it omits an error covariance that is preserhé population. In this scenario, neither the
number of indicators in the model nor the numbdrofors in the model are changed, so these
values p = 8 andk = 1) are fixed at the beginning of the simulation.

In most simulations, one or two model componergsnaanipulated so that the simulation
produces results for different values of said m@dehponents. In such cases, a loop in the code

is created so that the simulation procedure—smadlyi, the minimization procedure and
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calculation of fit index values—occurs for eachueabf the manipulated component. Using
Figure 3.1 again as an example, it is of inter@see how different loading sizes affected model
fit. Thus, a vector of loading sizes is definéd=(.4, .5, .6, .7, .8, or .9) and a loop is creaed

that the fit function is minimized and CFl and RMS#alues are calculated for each valué.of

Step 2: Construction of the Population Covariancatiik

As previously stated, the goal of the presentaieseis to examine the behavior of CFI
and RMSEA independent of the influence of sampde.sfhus, there is no need to simulate data
in order to carry out the calculations of the papoh CFI and RMSEA values. Instead,
simulations and calculations are carried out $yrizased on covariance matrices constructed
based on an assumed “true” population model arngjpdthesized” model.

Before the construction of these models is dismiss should be noted that the
calculations of the population fit indices can refhtirely upon covariance matrices because the
fit function being minimized only requires threeng@onents: the covariance matrix implied by
the hypothesized model, the population covarianatir) and the number of indicator variables
(see equation (1.1)). Thus, as long as the tworc@wse matrices can be constructed in some
way, there is no need to simulate data in ordgraeduce them.

The first covariance matrix constructed in thewdations isX*. This matrix represents
the “true” or “population” covariance matrix. Totan X*, it is implied that certain relationships
exist amongst variables in the population andttinete relationships can be described by a
structural equation model. For the simulationshis study, the focus is on 1- and 2-factor CFA

models. Therefor&* is calculated either as
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F = + g (2.1)

for a 1-factor model, whefeis ap x 1 vector of population factor loadings agudis thep x p
covariance matrix of the residuals, whpneepresents the number of indicator variables in the
model, or as

' = AGA + (2.2)

for a 2-factor model, wher& is ap x k matrix of population factor loading®, is ak x k matrix
of population factor correlations, agdis thep x p covariance matrix of the residuals, whkre
represents the number of latent factors in the ode

In most scenarios presented in the following ckigphe discrepancy between the
population covariance matr®* and the hypothesized model is due to the hypatedsnodel
failing to include a component of the model undedythe population. Thus, an additional loop
is created within the simulations in order to verg size of this component of interestih to
observe how its omission from the hypothesized raffiects model fit.

For example, in Figure 3.1, there exists a singlereovariance in the population model,
which is in turn reflected i&* (specifically, is not diagonal). The hypothesized model omits
this error covariancalf is diagonal in the hypothesized model), whicleftected in the
estimated covariance matri(@), discussed in Step 4). A visual representaticimef
population model and hypothesized model is giveRigure 2.1.

In the code for Figure 3.1, a loop is inserted gheth model fit is assessed for population
error covariances ranging from 0 to .84, in .0¥enents. That is, for a given loading size, the

fit function minimization is performed and record&sl separate times for the 85 different error
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covariance sizes in the population. The descriptifae specific fit function used in this

simulation is given in the next step.
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Figure 2.1: The hypothesized model for Figure 3.1€ft), omitting the error covariance that
exists in the population model for Figure 3.1 (righ.
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Step 3: Define the Fit Functions to be Minimized

Within the loop described in step 2, the fit fuantmust be minimized in order to obtain
F and the and the correspondipg 1 vector of parameter estima@sused in the estimated
covariance matrix. Note, however, that there ateadly two fit functions to be minimized.
Recall from Chapter 1 that CFI requires informatia only from the hypothesized model but
from a “baseline” or “independent” model as welh& the model most often used for this
baseline model is one in which all observed vaeslalre uncorrelated, this is the model used in
the present study. Thus, fit functions for both lligpothesized model (used for both CFI and
RMSEA calculations) and for the baseline model duse CFIl) are constructed.

For the hypothesized model’s fit function, a sedéstarting values are defined to be

used in the minimization procedure. These stasalges are used to constrik®), the matrix
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based on the hypothesized model’s covariance metitcture. Following this, the fit function

F(0) is defined as in equation (1.1):

F(0) = In|Z(0)| — In|Z*| + tr[Z*Z(@) 1] —p (1.1)

and is minimized using the R functiah m which carries out the minimization of the functio
using a Newton-type algorithm. An additional funcijt r y, is used to handle errors from the
nl mfunction. Specifically, if an error is produced tlym thet r y function allows for an
additional loop to be created in which random sigrvalues are employed until a useable result
from nl mis produced.

For the baseline model’s fit function, the abovecgdures are the same, exce®) is
no longer based on the structure of the hypothésizadel but is instead constructed assuming

that the variables are all uncorrelated (a diagooghriance matrix).

Step 4: Obtain and Store the CFl and RMSEA Values

Minimization of the functions in the above stepgucest and Fj, the minimized fit
functions corresponding to the hypothesized modelthe baseline model, respectively, as well
as® and®, , theq x 1 vectors of parameter estimates responsible foinmiing the fit
functions for the hypothesized and baseline modetgectively. Using the estima@snd the

form of the hypothesized covariance matrix yied®), the hypothesized model’s covariance

matrix that minimizes the differences between d #re population covariance matdx. Also
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computed are the CFl and RMSEA values, calculatesgd on the minimized fit values obtained
in Step 3.

In order to store all the CFl and RMSEA valuesdoiced by the loops in these
simulations, appropriately sized matrices are edkanitially empty, and are subsequently filled
with the CFl and RMSEA values resulting from eambpl. For example, in Figure 3.1, six
different factor loading sizes are considered,ras8a different population error covariance
values. In order to store the CFl and RMSEA vafoegach combination of loading size and
error covariance size, two 866 empty matrices, one for the CFl values and onéhe
RMSEA values, are constructed. These matriceshareftlled with the index values as the code

cycles through the loops.

2.3 Plotting the Results

A unique feature employed in the current studyésuse of continuous curves to
examine and display index performance. Most previesearch has focused on assessing index
performance at a few select values. Here, | plotesishowing index value as a continuous
function of the modeling components of interesthar size of the misspecification (e.g, the size
of the model or the size of an omitted error camaee). This method of presentation was
originally utilized by Savalei (2010) and Mahle0O(2) and allows for a clearer representation of
index performance under the model aspects and eus®ations of interest.

In addition to the curves, horizontal lines indiieg the most commonly agreed upon
cutoff value for each index are plotted as wellisTik done so that index behavior can be
examined against these cutoff values as model coems and misspecifications change. The

most commonly agreed upon cutoff for CFl is .95 ¢eds with CFI values greater than .95 are
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said to fit the data well). The most commonly agrapon cutoff for RMSEA is .06 (models
with RMSEA values less than .06 are said to fitdata well).

In order to increase the ease of comparison bettreeplots of CFl values and the plots
of RMESA values, the (1 — RMSEA) values are plottexfead so that they can be interpreted in
a similar way to the CFI values. That is, thes@i@slshould be interpreted as showing better fit
as values increase (and perfect fit when (1 — RMSEA). RMSEA’s commonly accepted
cutoff value has also been plotted as (1 — .08¥=and the corresponding interpretation should

be that models with (1 — RMSEA) values greater t®dnshow an acceptable degree of fit.

2.4 Research Questions

The goal of the current research is to investigaggerformance of RMSEA and CFl in
various model and misspecification conditions. if@tlthe scope of the study, only CFA models

are considered. Listed here again are the fourtipuesof interest:

1. To what extent is fit index value affected by tleise of the misspecification?

2. To what extent is the relationship between the elegf model misspecification and fit
index value moderated by model components?

3. Does the current research support the use of umibortoff values across different model
and misspecification types?

4. Can guidelines for the use of different indicesemdifferent models be developed?

To address the first question, RMSEA and CFI val#l be evaluated in models with

one of three different sources of misspecificatibime three sources of misspecification covered
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in this study are one or more omitted error covargs, one or more omitted cross-loadings, and
a misspecified latent structure. The behaviorhefihdices will be compared across the different
misspecification sources to determine if eitheexdppears to be more sensitive to certain
misspecifications than others.

To address the second question, various model coemp® are manipulated within the
three different misspecification types. The diffdreodel components addressed in this study
include loading size, factor correlation size (inltiple-factor models), model size (as measured
by the number of indicators, the total number ofdes, and the ratio of indicators to factors),
and model balance (as measured by how equallyditgd indicators are amongst the factors in
a multiple-factor model).

The effect of the size or degree of model misspztibn is also of concern here and will
be manipulated as well. When the source of thepaigication is due to omitted error
covariances or omitted cross-loadings, the sizee@bmitted error covariance (or cross-loading)
or the total number of omitted covariances (or sfloadings) are used to define the size of
misspecification. When the source of misspecifaais due to an incorrect latent structure, the
degree of misspecification is defined by the défere in the number of factors in the fitted
model versus the number of factors in the poputatio

The third question will be addressed by examinimgthier models would be accepted or
rejected in the scenarios presented in this staggd on the most commonly used cutoff values
in the research. This study is not offering to fedeappropriate cutoff values; rather, the aim is
to determine if there is evidence to dissuade Hgeaf the common cutoff values in all modeling

situations.
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Finally, the fourth question will be addressed bynparing the behaviors of RMSEA and
CFI and determining in what cases it might be beiaffor researchers to examine both of these
indices when assessing model fit. It has alrea@y loblwcumented in previous research that these
two indices behave differently under certain maugkonditions. It is one of the goals of this
study to determine if any information can be gatleegarding the source of misspecification in

cases where the two indices disagree about mddel fi
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Chapter Three: Results

In this chapter, the results of the simulatiordsts are presented and summarized. The
chapter is broken into three sections corresponidirtige three sources of misspecification
examined in this study. The first section focusesnisspecification involving one or more
omitted error covariances, the second focuses espacification involving one or more omitted
cross-loadings, and the third focuses on missgetiéitent structures.

In each section, different modeling scenarios aesgnted. These are used to examine
the effects of misspecification type on index baebawith respect to various model components.
These components include model size, loading faz&r correlation (when applicable), and
model balance (when applicable). Plots for both &t RMSEA are presented for each

scenario.

3.1 Misspecification Source: One or More Omitted Error Covariances

The scenarios presented in this section include twoe- and two-factor CFA models.
The covariance structure of a 1-factor model i®gilayX = AX" + , wherer is a
p X 1 vector of factor loadings anl is thep x p covariance matrix of the residuals, where
p represents the number of indicator variables imtbdel. The covariance structure of a
2-factor model is given by = A®A’ + , whereA is ap x k matrix of factor loadingsp is a
k x k matrix of factor correlations, anpl is thep x p covariance matrix of the residuals, whkre
represents the number of latent factors in the tndédeach model, the number of unique
parameters to be estimategjncludes all factor loading& (alues), all residualsy(values),

and, in 2-factor models, the factor correlation
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This section focuses on misspecifications duen®a more omitted error covariances.
This misspecification occurs when a researchedp@sed model fails to include the covariance
of one (or more) pairs of error terms that covarthie true (population) model. In the scenarios
presented here, the covariance matrices correspgtalthe true model are constructed to
include one or more pairs of covarying error tefthat is, is not diagonal). However, the
hypothesized models in this section omit theser @wwariances, suggesting that all residuals are
uncorrelatedy is diagonal in all hypothesized models).
In addition to the size and number of misspeciftcet due to omitted error covariances, the
influence of loading size, model size, factor clatien (in 2-factor models), and model balance

(in 2-factor models) on index behavior are examiagavell.

3.1.1 Effects of Misspecification Size

The first two figures examine the effect of theesof a single omitted error covariance on
index values. Figure 3.1 corresponds to a sceiraraving a hypothesized 1-factor model with
one omitted error covariance. That is, the true elisdtovariance matrix in this scenario is
constructed to represent data from a populatioh wie error covariance. The hypothesized
model omits this error covariance.

The plots of Figure 3.1 show the relationshipsveen index value (plotted on the y-
axes) and the size of the error covariance omitted the model (plotted on the x-axes). The six
colored curves correspond to six loading sized) vatl, orange, green, blue, purple, and black
corresponding to loadings of .4, .5, .6, .7, .& &) respectively. All indicators in the model
have the same loading size. Solid lines represemdel with eight indicator variablep € 8);

dashed lines represent a model with 16 indicatoabkes p = 16). For each plot, a horizontal
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Figure 3.1: Plots of population fit index values vsa single omitted error covariance for a 1-factomodel with 8 indicators
(solid lines) or 16 indicators (dashed lines). Theolored curves correspond to different loading size with red, orange, green,
blue, purple, and black corresponding to loadingsfo.4, .5, .6, .7, .8, and .9, respectively.
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brown line has been drawn to represent the commusdy cutoff value for that index (with .96
used for (1 — RMSEA)). Note that the colored cureed at difference sizes of the omitted error
covariance. This is because the maximum valueebthitted error covariance is a function of
the loading size. Specifically, error covarianciuea exceeding 1 X? result in a nonpositive
definite g matrix corresponding to the true model.

Ideally, fit indices should show worse fit as #iee of the omitted error covariance
increases, regardless of the size of the loadigaever, wherp = 8, CFl shows a non-
monotone relationship between index value anditteecs the omitted error covariances. The
index shows worse fit when the size of the omigadr covariance is moderate (between .4 to
.6, depending on the loading size) and an improweinefit for either small or large omitted
error covariances. This is especially the caséofwer loadings (.4, .5).

Figure 3.1 shows that RMSEA, regardless of loadimg or number of indicators,
behaves properly in that it shows worse fit assiae of the omitted error covariance increases.
RMSEA does, however, appear to be quite sensiiveatding sizes in this situation. When
loadings are higher (.8 or .9), RMSEA shows poowfien the size of the omitted error
covariance is as small as about .08. Howeverpfihgs of .4, the omitted error covariance has
to be larger than about .28 for the model to becte based on the traditional cutoff value.

Figure 3.2 extends the scenario presented in &igurto a 2-factor model. The addition
of a second factor allows for an additional fornmogspecification. That is, an error covariance
can exist between two variables loading onto tieestactor or between two variables loading
onto different factors. Figure 3.2 presents theesaoenario as in Figure 3.1 but for a 2-factor
model with eight indicators (four indicators pectfar). The correlation between the two factors

is held at .4. As in Figure 3.1, the six coloredvess correspond to six loading sizes, with red,
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orange, green, blue, purple, and black correspgrdifoadings of .4, .5, .6, .7, .8, and .9,
respectively. Here, the type of line representsreviiige omitted error covariance is located.
Solid lines correspond to a model that omits aarezovariance between variables loading onto
the same factor. Dashed lines correspond to a ntloaiebmits an error covariance between
variables loading onto different factors.

For both CFl and RMSEA, the curves in Figure 3&2samilar in shape to the curves in
Figure 3.1, suggesting that the addition of a sédantor does not greatly affect the pattern of
the relationships between index values and thedditee omitted error covariance. However,
both indices generally show better fit in the 2témenodel case than in the 1-factor model case.

It is apparent that CFI is more sensitive to anttadierror covariance of any size if the
covariance occurs between variables loading orfterdnt factors (dashed lines). The index
appears far less sensitive to this type of mis§jgation when the covariance occurs between
variables loading onto the same factor (solid jnEsr example, in the 8-indicator 1-factor case
(solid lines in Figure 3.1), CFl values are bel®& for omitted error covariances larger than .3,
regardless of the loading size. However, for thedBeator 2-factor model case, CFl values do
not fall below .95 when the omitted error covariaccurs between variables loading onto the
same factor (solid lines in Figure 2). While RMSHE®#0, appears to be more sensitive to an
omitted error covariance between variables loadimg different factors than one between
variables loading onto the same factor, the diffeeein sensitivity is not as extreme as it is for

CFl.
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Figure 3.2: Plots of population fit index values vsa single omitted error covariance for a 2-factomodel with 8 indicators (4
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and black corresponding to loadings of .4, .5, .67, .8, and .9, respectively.
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3.1.2 Effects of the Number of Misspecifications

In a model with a large number of indicator valésbit is possible that there may be
more than one error covariance present. Thus,ditiad to examining how a single omitted
error covariance affects CFl and RMSEA, it was alsmterest to examine index performance
when the number of omitted error covariances wasipndated. The next two figures show the
effect of an increasing number of omitted errorartances on CFl and RMSEA values.

Figure 3.3 plots fit index values against the nandd omitted error covariances (1 to 10)
in a 1-factor model with 20 indicator variablesrdfrcovariances occur between variables that
do not share error covariances with other variaflaat is, variables 1 and 2 share an error
covariance, variables 3 and 4 share an error coveg| etc. While the number of omitted error
covariances is measured as a categorical varididgeeighboring points in the figure have been
connected for readability. The five colored curgesespond to five loading sizes, with red,
orange, green, blue, and violet correspondingdditgs of .4, .5, .6, .7, and .8, respectively. The
different types of lines correspond to differerziesi of the omitted error covariances. Solid,
dashed, and dotted lines represent the case wheraidied error covariances are set to .05, .2,
and .35, respectively.

Both CFI and RMSEA appropriately show a decreadé as the number of omitted
error covariances—and thus, the degree of misspatifn—increases, both when the omitted
error covariances are of size .2 and .35. Botlceglalso appear to be more sensitive to loading
sizes as the sizes of the omitted error covariamoesase, but not as the number of omitted error
covariances increase. When the omitted error canees are all .05, neither index would reject
the model as being a poor fit for the data, eveamthere are 10 error covariances present in the

population but omitted from the model.
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Figure 3.3: Plots of population fit index values vsthe number of omitted error covariances (1 to 10for a 1-factor model with
20 indicators. The size of the omitted error covaances is set to .05 (solid lines), .2 (dashed linex .35 (dotted lines). The
colored curves correspond to different loading size with red, orange, green, blue, and purple corrg®nding to loadings of .4,
.5, .6, .7, and .8, respectively. Neighboring poisitare connected for readability.
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Figure 3.4 presents the same scenario as Figdrexgept for a model with an additional
latent factor. That is, Figure 3.4 plots index esl@against an increasing number of omitted error
covariances (1 to 10) for a 2-factor model withirdficator variables (10 per factor). As in
Figure 3.3, the five colored curves here corresgorfive loading sizes, with red, orange, green,
blue, and violet corresponding to loadings of54,6, .7, and .8, respectively. The size of the
omitted error covariance has been fixed to .2h@svalue can be considered large enough to be
an omission that may be of concern in a model.ditierent line types in Figure 3.4 represent
different factor correlation sizes, with solid, Had, dotted lines representing factor correlations
of .1, .4, and .7, respectively. Neighboring poimse again been connected for readability.

From Figure 3.4, it appears that regardless o$itre of the factor correlation and loading
size, CFl shows poor model fit as soon as the nuwib@mitted error covariances increases
above three. Comparing CFI's performance in thacer model case (Figure 3.4) with the
1-factor model case when the size of the omittear @ovariances was fixed at .2 (Figure 3.3,
dashed lines), the addition of one more latenbfac the model does not greatly affect CFI's
ability to detect misspecifications due to an iasiag number of omitted error covariances.

RMSEA, too, behaves similarly in the 2-factor caset did in the 1-factor case where
the omitted error covariances were fixed at .2 cBpally, RMSEA shows worsening fit as the
number of omitted error covariances increasesdtfitian, Figure 3.4 also shows that RMSEA
values are not affected by the size of the faaboretation for this type of misspecification, at

least when the model is relatively large (10 inthes per factor).
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Figure 3.4: Plots of population fit index values vsthe number of omitted error covariances (1 to 10jor a 2-factor model with
20 indicators (10 per factor). The size of the ont#d error covariances is fixed at .2. Factor corraltion is set to .1 (solid lines),
.4 (dashed lines), or .7 (dotted lines). The colatecurves correspond to different loading sizes, whtred, orange, green, blue,
and purple corresponding to loadings of .4, .5, .67, and .8, respectively. Neighboring points areoanected for readability.
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3.1.3 Effects of Model Size

In the previous four figures, the effects of timef one omitted error covariance
(Figures 3.1 and 3.2) and an increasing numbemitted error covariances (Figures 3.3 and
3.4) were examined both in 1-factor models andc®sfamodels. Thus, these figures show how
one aspect of model size, the number of latenbfactan influence index behavior when
combined with misspecifications due to one or nmretted error covariances. | now wish to
examine the influence of another aspect of moael, $he number of observable variables, on
index behavior when the misspecification is duart@mitted error covariance.

Figure 3.5 plots index values against an increasumber of indicator variables
(p=4,6,8, 10, 12, 14, 16, 18, 20) for a 1-factadel. The five colored curves correspond to
five different sizes of omitted error covariancéhwed, orange, green, blue, and purple
corresponding to omitted error covariance sizegof2, .3, .4, and .5, respectively. Solid lines
correspond to loadings of .4; dashed lines cormedpo loadings of .7. Note that while the
number of indicator variables (represented on thgig) is measured as a categorical variable,
neighboring points are connected for readability.

Figure 3.5 shows that both CFI and RMSEA are gmately sensitive to the size of the
omitted error covariances. That is, regardlese®iumber of indicator variables, the indices
show the worst fit for the largest omitted errovanance sizey = .5) and the best fit for the
smallest omitted error covariance sige<.1). Except when the omitted error covariancé,is
CFl appears to be more sensitive to this type sbpecification when the loadings are lower
(.4, solid lines) than when they are higher (.shdal lines). Regardless of the size of the omitted

error covariance, RMSEA is more sensitive to thgetof misspecification when the loadings
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Figure 3.5: Plots of population fit index values vsan increasing number of indicatorgp = 4, 6, 8, 10, 12, 14, 16, 18, 20) for a
1-factor model. Loadings are .4 (solid lines) or .fdashed lines). The colored curves correspond taferent sizes of the single
omitted error covariance, with red, orange, greenblue, and purple corresponding to omitted error coariances of .1, .2, .3, .4,
and .5, respectively. Neighboring points are conned for readability.
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are higher (.7) than lower (.4), and again appeen® sensitive to loading size overall than CFI.
This is consistent with RMSEA’s behavior in Fig4.

With respect to the number of indicator variab(@B| appears to show a decrease in
model fit as the number of indicators increaseaug tertain point, then appears to show an
improvement in fit as the number of indicators amms to increase. The point at which CFI
changes from showing a decrease to an increagiasrdependent upon both the size of the
omitted error covariance and the size of the logsliwith smaller omitted error covariances and
smaller loadings leading to an improvement in mditlébr a smaller number of indicators For
example, when loadings are .4, CFI starts showmignprovement of fit foxy = .2 atp = .6; for
vy = .5, the improvement in fit doesn’t start upt= 12. In contrast to the non-linear relationship
between CFI and the number of indicators incluaeithé model, RMSEA shows an
improvement in fit ap increases, regardless of loading size or thedfitee omitted error
covariance.

Figure 3.6 extends the scenario presented in € to a 2-factor model. Figure 3.6
plots index values against an increasing numbéarditators p = 4, 6, 8, 10, 12, 14, 16, 18, 20)
for a 2-factor model. For the different model sjzégre are an equal number of indicators
loading onto each factor (e.g., for= 10, each factor has five indicators loading at)tdrhe five
colored curves correspond to five different sizesritted error covariance, with red, orange,
green, blue, and purple corresponding to omitteor @ovariance sizes of .1, .2, .3, .4, and .5,
respectively. Solid lines correspond to loadingsdotiashed lines correspond to loadings of .7.
Neighboring points are connected for readability.

Compared to the 1-factor model scenario examinddgure 3.5, there is higher model

complexity in Figure 3.6 due to the addition ofeaand factor in the model. This added
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complexity affects index behavior when compare#igure 3.5. While there still exists a non-
linear relationship between CFI values and the rermobindicator variables for a 2-factor
model, the relationship is much less dramatic. inflection points at which CFI values cease to
decrease and begin to increase appear at largexsvalp in Figure 3.6 than they do in Figure
3.5, and the non-linear relationship actually dissgys forny = .5.

The addition of a second latent factor also apptmareduce but not eliminate RMSEA'’s
tendency to show an improvement of fit as the nurobendicator variables increases. RMSEA
shows good fit regardless of the size of the maaladept for cases where a higher loading size

(.7) is combined with a larger omitted error cosade size (.3 to .5).
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Figure 3.6: Plots of population fit index values vsan increasing number of indicators § = 4, 6, 8, 10, 12, 14, 16, 18, 20) for a
2-factor model. Loadings are .4 (solid lines) or .fdashed lines). The colored curves correspond taffiérent sizes of the single
omitted error covariance, with red, orange, greenblue, and purple corresponding to omitted error coariances of .1, .2, .3, .4,
and .5, respectively. Neighboring points are conned for readability.

77



3.1.4 Effects of Factor Correlation

In the case of a model with two or more latentdes; the size of the factor correlation(s)
may also affect fit index behavior in certain mmssification scenarios. Figure 3.7 plots index
values against an increasing factor correlatioa €zto 1) for a 2-factor model with eight
indicator variables (four per factor). The five @@d curves correspond to five different sizes for
the single omitted error covariance, with red, gergreen, blue, and purple corresponding to
omitted error covariance sizes of .1, .2, .3, il &. Solid lines correspond to loadings of .4,
dashed lines correspond to loadings of .7.

As is seen in Figure 3.7, both CFl and RMSEA slgoad model fit when the factor
correlation is near zero, but then gradually shaleerease in fit as the factor correlation
increases to one. This suggests, in addition teeselts from Figures 3.1 and 3.2, that both
indices are more sensitive to misspecification tdugn omitted error covariance in a 1-factor
model versus a 2-factor model. As seen in previmois (e.g., Figure 3.5), CFl again appears to
be more sensitive to the misspecification whenilugglare low (.4) rather than high, while
RMSEA appears more sensitive to the misspecifinatiben loadings are high rather than low.
RMSEA again seems more sensitive to loading sizgeiveral than CFl, as the differences
between the. = .4 case (solid lines) and the= .7 case (dashed lines) appear more dramatic for

RMSEA than they do for CFI.
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Figure 3.7: Plots of population fit index values vsan increasingly large factor correlation (0 to 1for a 2-factor model with 8
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omitted error covariance, with red, orange, greenblue, and purple corresponding to omitted error coariances of .1, .2, .3, .4,
and .5, respectively.
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3.1.5 Effects of Model | mbalance

An additional feature unique to multi-factor magled that of model balance, or how the
indicator variables are distributed amongst thentivariables. While it is often the case that
hypothesized models are “balanced,” meaning tleaethre an equal number of indicator
variables loading onto the different factors (@ @-factor model with six indicators total would
be balanced if each factor had three indicatorabdes loading exclusively onto it), there exist
hypothesized models in which certain factors haveenndictors loading onto them than others.
However, previous studies in the literature thareixe index behavior involve balanced models
almost exclusively. In rare cases when an imbalhnoedel is used, it is usually the case that
only one additional indicator loads onto one faetbile the second factor has only one less
indicator. In such cases, the imbalance is notetit® effects are never discussed.

Here, | seek to explore the effect of model baténabalance more thoroughly. Figure
3.8 plots index values against the size of a singiéted error covariance for a 2-factor model
with 24 indicator variables. Factor correlatiorsé to .4 and loadings are set to .4. The six
colored curves correspond to six different degodesodel imbalance. Red corresponds to a
balanced model (12 indicators per factor). Orarggeesponds to a model with 11 and 13
indicators per factor, green corresponds to a meikl10 and 14 indicators per factor, blue
corresponds to a model with 9 and 15 indicatordgeor, purple corresponds to a model with 8
and 16 indicators per factor, and black correspea@smodel with 7 and 17 indicators per
factor. Solid lines correspond to case where thigtednerror covariance occurs between
variables loading onto the “larger” factor; dashiads correspond to the case where the omitted
error covariance occurs between variables loadirtg the “smaller” factor. It is worth clarifying

that the imbalance is modeled correctly. Thaths,dgopulation (true) models for this figure have
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an unequal number of indicators per factor, buthyothesized models accurately represent this
imbalance. Thus, the only source of misspecificaisothe omitted error covariance.

Figure 3.8 reveals that CFl values are highlycéeé by model balance, particularly
when the size of the omitted error covariance islenate to large. For all levels of balance, CFlI
shows good model fit until the omitted error coaare increases above about .25. However,
once the size of the misspecification increases appears much more sensitive to its effects
when the misspecification occurs between varidbliegding onto the “larger” factor (solid lines).
For example, in the most severely imbalanced a@lsere one factor has seven indicators
loading onto it and the other has 17, when thetedhiérror covariance is .7, CFl is about .66
when the misspecification is on the “larger” fachmd about .94 when the misspecification is on
the “smaller” factor. It is also worth noting thae again see the non-linear relationship between
CFl values and the size of the omitted error cavare (as seen in Figure 3.1), regardless of the
balance/imbalance of the model. That is, CFl shioetter fit for smaller and larger omitted error
covariance sizes and worse fit for moderate omgtedr covariance sizes. However, unless the
model is severely imbalanced and the misspecifinaticcurs on the “small” factor (black
dashed line), CFI values do not increase enouggatba researcher to accept a model based on
the commonly used cutoff criterion.

While RMSEA shows a linear decrease in fit forlellels of model imbalance as the size
of the omitted error covariance increases, thexirmdy shows poor fit for the most severely
imbalanced model when the misspecification occarthe “larger” factor (solid black line). This
suggests that RMSEA is not as affected by mode&iamnze as CFl. However, as was seen in
Figures 3.5 and 3.6, RMSEA shows an improvemefit as the number of indicators in a model

increases. Thus, since the model is quite largeisnscenariod = 24), it was suspected that
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Figure 3.8: Plots of population fit index values vsa single omitted error covariance for a 2-factomodel with 24 indicators.
Factor correlation is .4 and loadings are .4. Theatored curves correspond to differently balanced maels, with red
corresponding to the balanced model and black corsponding to the most imbalanced model. Solid linesrrespond to the
case where the error covariance is omitted withinhte larger factor; dashed lines correspond to the s where the error
covariance is omitted within the smaller factor.
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RMSEA's behavior may be due in part to the fact tha index shows better fit for larger
models in general. Thus, an additional model (mes@nted here), identical to Figure 3.8 except
having only eight indicators instead of 24, wasated to determine whether RMSEA'’s behavior
was due solely to the size of the model in Figu& B the smaller model, RMSEA also
appeared to be unaffected by model balance, whigbests that the index’s behavior in Figure

3.8 is due to a general insensitivity to model bedéathan to the size of the model itself.

3.2 Misspecification Source: One or More Omitted Crosd-oadings

This section focuses on misspecifications duenar more omitted cross-loadings.
Recall that an indicator variable can, in someagituns, load onto more than one factor in a
given model. This is especially likely if the twactors are highly correlated. The
misspecifications examined in this section occuemvh researcher’s proposed model fails to
include one (or more) non-zero cross-loadings et in the true (population) model.

The scenarios presented here focus on 2-factor i@édels, as at least two factors are
required for a non-zero cross-loading to existdAscribed in the first section of this chapter, the
covariance structure of a two-factor model is gibgix = A®A’ + P, whereA is ap x k
matrix of factor loadingsP is ak x k matrix of factor correlations, anji is thep x p
covariance matrix of the residuals, whpneepresents the number of indicator variableskand
represents the number of latent factors.

For these misspecifications, the covariance mamoeresponding to the true models are
constructed to include one or more cross-loadimps is reflected in the structure &f For
example, suppose a 2-factor model with eight irtdic@ariables has four indicators loading

exclusively onto the first factor, three indicattyading exclusively onto the second factor, and
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one indicator loading both on the first and secfaatior. The structure of the loadings matkix

may be as follows:

*¥ ¥ ¥ O OO O

*f OO0 O % % ¥ %

where * represents a non-zero value of the loaftinghat indicator onto its corresponding
factor. The hypothesized models in this sectiont oihe cross-loadings that exist in the
population. For example, if the above represented the structure of the loadinggxa the

population, the hypothesizedmight look as follows:

*¥ ¥ ¥ O OO O

O OO O % % % *%

Note that the hypothesizéxdhas the last indicator variable loading only athi® second
factor, whereas in the population, it loads ontthbin addition to the size and number of
misspecifications due to omitted cross-loadings,itiiluence of loading size, model size, factor

correlation, and model balance on index behaviereaamined as well.
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3.2.1 Effects of Misspecification Size

As in the first section of this chapter, | begkamining the effect of a single
misspecification—in this case, a single omittedecovariance—on index behavior. Figure 3.9
plots index values (y-axes) against an increasilaghye omitted cross-loading (x-axes) for a
2-factor model. The four colored curves correspinidur loading sizes (apart from the size of
the cross-loading). Red, orange, green, and bluesmonding to loadings of .4, .5, .6, and .7.
Solid lines correspond to a 2-factor model withheigdicator variables (four per factor), and
dashed lines correspond to a 2-factor model witind&ator variables (eight per factor). The
factor correlation is set to .1.

As in the case with a single increasingly largettad error covariance, we again see a
non-monotone relationship between CFI values aaditte of the omitted cross-loading. When
p = 8, CFl values indicate worse fit as the sizéhefomitted cross-loading increases. However,
at a certain size of the omitted cross-loading ¢aejing on the size of the other loadings), CFlI
starts showing an improvement in fit. It shouldnm¢ed, though, that while CFI values begin to
increase again as the size of the omitted crosirigayrows larger, CFI never increases above
the commonly used cutoff value of .95 for any camaion of model size or loading size. Thus,
there would be no danger in this scenario of aareber accepting a model as having good fit
(based on the cutoff criterion) once the size efdmitted cross-loading was greater than
about .42.

RMSEA shows a steady decrease in model fit asiteeof the omitted cross-loading
increases. This is true for all loading sizes aoith Imodel sizes. However, when loadings are
low (A = .4), RMSEA values fail to indicate poor fit ewehen the omitted cross-loading is as

big as .7, nearly double the size of the rest efitladings. Both indices are less sensitive to the
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Figure 3.9: Plots of population fit index values vsa single omitted cross-loading for a 2-factor maal with 8 indicators (solid
lines) or 16 indicators (dashed lines). The coloreclrves correspond to different loading sizes, withed, orange, green, and
blue corresponding to loadings of .4, .5, .6, and,.respectively.

86



effects of an omitted cross-loading when the nunob@ndicators is increased frop= 8 to
p = 16. This result makes sense, as the effecsofgie omitted cross-loading is likely “diluted”

by the larger number of loadings in the larger nhode

3.2.2 Effects of the Number of Misspecifications

Now | examine the effects of an increasingly langenber of cross-loadings omitted by
the hypothesized model. Figure 3.10 plots indexeslagainst the number of omitted cross-
loadings (1 to 10) in a 2-factor model with 20 wator variables (10 per factor). The four
colored curves correspond to four different loadsizgs, with red, orange, green, and blue
corresponding to loadings of .3, .4, .5, and .6.0Alitted cross-loadings are setite .3. Solid
lines correspond to a factor correlation of .1;haaslines correspond to a factor correlation of .3.

For both CFl and RMSEA, we actually see an increaié as the number of omitted
cross-loadings increases. CFl shows poorest fitnthe number of omitted cross-loadings is
two, three, or four (depending on the loading sibej then shows better fit and finally nearly
perfect fit as the number of omitted cross-loadimgseases to 10.

CFl is more sensitive to the number of omitted sfosdings when the factor correlation
is .3 than when it is .1. The same is true for RMSEuUt the effect of the factor correlation is
less present for RMSEA than for CFI.

RMSEA appears even less sensitive to omitted doastings than CFl. RMSEA values
are smallest when there are four omitted crossihgadand show nearly perfect fit when the
number of omitted cross-loadings is 10. Howevenaapoint are RMSEA values smaller than
the cutoff value of .94. Thus, regardless of thenber of omitted cross-loadings in the

hypothesized model, RMSEA shows this model as lgagood fit when judged by the cutoff
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criterion. While these results may suggest that EN$ insensitive to misspecifications due to
one or multiple omitted cross-loadings, recall i@t model in this scenario has 20 indicator
variables p = 20). As we have seen for larger models (e.dgFigares 3.5 and 3.6), the

sensitivity of RMSEA to any degree of misspecificathas been substantially less than CFI.

3.2.3 Effects of Model Size

After studying the effects of the size and numdfeymitted cross-loadings on index
value, | next examine how the number of indicatmiables in a model might affect indices’
behavior when misspecification is due to an omitiexss-loading. In Figure 3.11, index values
are plotted against an increasing number of indrcadriablesf = 4, 6, 8, 10, 12, 14, 16, 18,
and 20) for a 2-factor model. In the hypothesizexdiet, each factor has an equal number of
indicator variables exclusively loading onto itgeforp = 8, each factor has exactly four
indicators loading onto it). In the true (populadionodel, however, one of the indicators loads
onto both factors. The size of this cross-loadorgitted in the hypothesized model, is
represented by the six colored curves. Red, orajrgen, blue, purple, and black correspond to
the size of the omitted cross-loading being set ta2, .3, .4, .5, or .6, respectively. The size o
the other loadings is set to either .3 (represebyeithie solid lines) or .7 (represented by the
dashed lines). The factor correlation is .1. Negghig points are connected for readability.

Both CFI and RMSEA appropriately show worse fit lerger omitted cross-loadings,
regardless of the number of indicators or the sfabe other loadings (.3 or .7). For all cross-
loading sizes, CFl shows an initial decrease ineh@itlas the number of indicators increases,
but then begins to show an increase in fit as theber of indicators continues to grow. The

inflection point at which CFI changes from decragdo increasing appears to depend on both
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the size of the omitted cross-loading and on the sf the other loadings in the model. This
pattern is less evident when the other loadingh@te (.7) and the omitted cross-loading is high
as well (.5, .6). In general, this non-monotonatiehship between CFl and model size would
not affect a researcher’s decision about a modiebmsed on the commonly used cutoff value
(e.g., a model that omits a cross-loading of size.6 will always be rejected for poor fit, except
in the smallest models). However, in a few casehigiscenario, a model of moderate size with
a certain omitted cross-loading size might be teptas having poor fit, while a model with the
same size omitted cross-loading but with a largenlmer of indicators might be accepted as
having good fit based on the cutoff criterion.

This same pattern is evident for RMSEA, though Imless so when the loadings in the
model are set at .3 rather than .7. When the Igadane .3 (solid lines), RMSEA values fail to
fall below .94 and thus show good fit regardlesthefnumber of indicators or the size of the
omitted cross-loading. When the loadings are .8l{dd lines), RMSEA shows worse fit when
p = 6 (for all omitted cross-loading sizes), butritlsteadily shows an improvement in fit as the
number of indicator variables increases. When itee&f the omitted cross-loading is .5 or .6,

RMSEA shows poor fit for all model sizes, aparnfravhenp = 4.

3.2.4 Effects of Factor Correlation

It is worth acknowledging the role the size of toerelation between factors may play in
determining the severity of a misspecification ttuan omitted cross-loading. An omitted cross-
loading between highly correlated factors mightbesidered more of a severe misspecification
than an omitted cross-loading between slightlyalated factors, due to the fact that if an

indicator variable loads highly onto one factorsitikely it would also load highly onto another
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highly correlated factor. However, the less cotetladwo factors are, the more “obvious” an
omitted cross-loading might be in a model. This rhayecause an indicator variable that
legitimately loads onto two quite different (i.slightly correlated) factors may be an important
and unique feature of a population. If this featisreot included in a hypothesized model, may
render that hypothesized model a poor fit to thgue structure underlying the population.

Figure 3.12 plots index values against an incregfsiotor correlation (0 to 1) for a
2-factor model. The six colored curves correspansix different sizes of the omitted cross-
loading, with red, orange, green, blue, purple, laladk corresponding to omitted cross-loading
sizes of .1, .2, .3, .4, .5, and .6, respectivEhe remaining loadings are set at .4. Solid lines
correspond to a model with eight indicators; dadhress correspond to a model with 16
indicators.

From Figure 3.12, it is clear that both CFI and RMSshow an improvement in fit as
the factor correlation increases from 0 to 1. Qiflers more sensitive to larger omitted cross-
loadings (blue, purple, and black dashed lines)nithe model is larger but more sensitive to
smaller cross-loadings (red and orange solid lim¢®n the model is smaller. However, this
switch in sensitivity is slight and is likely of rpactical concern. For RMSEA, the index is
consistently more sensitive to omitted cross-logsiwwhen the model is smaller (solid lines) than
larger (dashed lines), but this difference is aisxy slight.

Again, we see with RMSEA that index values nevéd@low the cutoff value.

However, this pattern occurs both wien 8 (solid lines) and whem= 16 (dashed lines). Since
a 2-factor model with eight indicator variables htige considered small to moderately-sized,

this suggests that RMSEA'’s lack of sensitivity todvamitted cross-loadings may not be due to
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Figure 3.12: Plots of population fit index values . an increasingly large factor correlation (0 to Lfor a 2-factor model with 8
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an interaction with model size, but instead mighiy indicate that RMSEA is not very

sensitive to this type of misspecification.

3.2.5 Effects of Model | mbalance

Finally, | examine the effects of model balancaratex behavior when the
misspecification is due to an omitted cross-loadkigure 3.13 plots index values against an
increasingly large omitted cross-loading for a @da model with a total of 24 indicator
variables. Loadings (apart from the cross-loadarg)set to .4 and the factor correlation is set
to .1. The six colored curves correspond to sifed#it degrees of model imbalance. Red
corresponds to a balanced model (12 indicatoréaasor). Orange corresponds to a model with
11 and 13 indicators per factor, green corresptmdsmodel with 10 and 14 indicators per
factor, blue corresponds to a model with 9 andntitcators per factor, purple corresponds to a
model with 8 and 16 indicators per factor, and blemrresponds to a model with 7 and 17
indicators per factor.

In the population, one of the 24 indicator vargsbloads onto both factors (regardless of
the balance/imbalance of the model). There aredifferent ways that the hypothesized model
can omit a cross-loading in this scenario. The bypsized model can either fail to include the
cross-loading onto the smaller factor or can faihtclude the cross-loading onto the larger
factor. For example, in the most severely imbalanodel scenario, the larger factor has 17
indicators and the smaller factor has seven. Taekisturves in Figure 3.13 represent these
cases, with solid lines corresponding to the ctoading being omitted from the larger factor;

dashed lines correspond to the cross-loading l@imged from the smaller factor.
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As was the case for Figure 3.8, it is worth clanfyhere that the imbalance is modeled
correctly. The population (true) models for thiguiie have an unequal number of indicators per
factor, but the hypothesized models accurately ihieimbalance. Thus, the only source of
misspecification is the omitted cross-loading.

Appropriately, both CFI and RMSEA show a decreadi &s the size of the omitted
cross-loading increases, regardless of the balaintte model or where the omitted cross-
loading is located. For CFI, both model balance @ods-loading location have little effect on
index value until the size of the omitted crossdiog increases above about .35. Once the
omitted cross-loading is larger than .35, the baddmmodel (red line) shows the poorest fit,
while the best fit is shown for the most imbalanosatel when the cross-loading is omitted
from the smaller factor (black dashed line). Howeitds worth noting that once the omitted
cross-loading increases above .35, CFl values tma@ase above the commonly used cutoff
value of .95.

In contrast, RMSEA only shows poor model fit onlce size of the omitted cross-loading
increases above about .85, and even then onlyéombst imbalanced models and when the
cross-loading is omitted from the larger factorc®again, we see RMSEA exhibiting
insensitivity to misspecifications due to an ondttgoss-loading. RMSEA, in comparison to

CFl, also appears to be less sensitive to modahbalin general.
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3.3 Misspecification Source: Misspecified Latent Struatre

This section focuses on the third and final sowfamisspecification examined in this
thesis: misspecification of the latent structurec&l that the factors of a CFA model are
considered latent variables. Latent variableslawed that cannot be directly observed or
measured, but are inferred through indicator véggmthat can be observed and directly
measured.

Because the factors in a model cannot be diretiberved, situations may arise in which
a researcher’s proposed model does not accuratébgtrthe number of factors in the model
underlying the population. For example, a propasedel may contain only one factor when the
actual population model contains two. The missjpeatibns examined in this section occur
when a researcher’s proposed model fails to incdlbdesame number of factors that exist in the
true (population) model.

As in the previous two sections, we again focu€8® models. In the scenarios
presented here, the covariance matrices correspgptalthe true model are constructed to
include a specific number of factors and the hygsitted models are constructed so as to either
underestimate or overestimate the number of factdris misspecification is reflected in the
covariance structure of the hypothesized model.

To use the example presented above, if there ysamfactor in the population, the
population model has a covariance structure giveh & AA' + , wherel is ap x 1 vector of
factor loadings ang is thep x p covariance matrix of the residuals, whpneepresents the
number of indicator variables in the model.

If the hypothesized model suggests that therévavéactors underlying the data, it is

overestimating the number of factors in the popoatThe hypothesized model then has a
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covariance structure given By= A®A’ + P, whereA is ap x 2 matrix of factor loadingsp is
a2 x 2 matrix of factor correlations, anpl is thep X p covariance matrix of the residuals. Note
that® is absent from the structure of the true moddéhis example, since there is only one
factor present and thus no factor correlationsetonkeasured.

In addition to the size of the misspecification (aeasured by how different the latent
structure of the hypothesized model is when contpreéhe true model), the influence of

loading size, model size, and factor correlationnalex behavior are examined as well.

3.3.1 Effects of Misspecification Size

For scenarios involving a misspecified latentc&tite, the size of the misspecification
can be defined by how much a hypothesized modekstimates or underestimates the number
of factors in the true (population) model. While thctual number of factors in the population
can never be truly known, it is worth exploring heansitive CFl and RMSEA are to
misspecifications that are strictly due to an “imeat” number of factors included in a
hypothesized model rather than any other sourge @ omitted error covariance or an omitted
cross-loading).

Figure 3.14 plots fit index value against the nundddactors in the true model (2 to 8)
when the hypothesized model includes only one fgcm, the hypothesized model is
underestimatinghe number of factors in the true population). Thenber of indicator variables
is held afp = 24, and the indicators are equally distributedss the factors in the population
(e.g., for the 2-factor population model, eachdatias 12 indicators loading onto it; for the 6-
factor population model, each factor has four iathcs loading onto it). The size of the loadings

(both in the true and hypothesized model) are sgprted by the six colored curves. Red, orange,
98



0.6

<
T 7
) Q 05
"4
0.4
0.3
— A=04
A=05
0.2 A=06
— A=07 — =01
0.1 — A=08|| - =04
— A=09|| =07
0 1 0
2 3 4 5 6 7 8 2 3 4 5 6 7 8
# Factors (in population) # Factors (in population)
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green, blue, purple, and black correspond to lggdof .4, .5, .6, .7, .8, and .9, respectively. The
correlations amongst factors in the populationsateto .1 (solid lines), .4 (dashed lines), or .7
(dotted lines). Note that the legend for CFI wasttad due to lack of space, but that the legend
for the RMSEA plot also applies to the CFl plot.

While it is unlikely that a researcher would hauvelsan extremely misspecified latent
structure as would result from fitting a 1-factooadel to data from a population that actually has
eight factors, the hope is that both CFl and RMS#AIld show a decrease in fit as the 1-factor
model is fit to data from a population with an ieasing number of factors.

Figure 3.14 shows that CFI generally shows a pibarifen misspecification is due to an
underestimation of the number of factors in thedtlgpsized model. CFl is very sensitive to
factor correlations in this scenario. When thedacbrrelations are set to .1 in the population,
CFI shows the worst fit for the 1-factor hypothesiznodel, with the largest CFI value being
about .53. This is an appropriate and desired behaas it suggests that CFl is very sensitive to
a model that fails to incorporate the correct nundbemildly correlated factors in the population.
CFl values are higher, in general, as the factoetations increase. It is worth reiterating here
that the factor correlations are those amongstatters in the true (population) model, and thus
would be unknown to the researcher.

When the factor correlations are either .4 or Hl, €hows an improvement in fit as the
size of the misspecification grows (that is, asrtbmber of population factors increases).
However, this improvement is very slight, and C&lues only increase above the commonly
used cutoff value of .95 for the case wien .4 and the factor correlations are .7. As mereiib

above, a misspecification this severe is highlykety in real research settings.
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RMSEA, on the other hand, shows a slight improvenrefit as the size of the
misspecification increases, regardless of the famioelations in the population. For all factor
correlation sizes and loading sizes, RMSEA appieastow worst fit when the actual number of
factors in the population is three. For the smalleasding included in this scenarib £ .4),
RMSEA would show good model fit regardless of tize f the misspecification. RMSEA
appears much less sensitive to the factor coroalaizes than CFIl. Both fit indices show an
improvement in fit, to some degree, as the sizb®imisspecification grows (though CFI
appears more sensitive than RMSEA to misspecifiszht structures).

A notable concern with the setup of the scenariéigure 3.14 is the fact that tpek
(indicators to factors) ratio is not constant. Rletat the number of indicators in Figure 3.14 is
held constant gt = 24 across all values kf This means, for example, that when 3, the ratio
of indicators to factors is 8:1, while whkrF 6, the ratio is 4:1. Thus, the results obsefugah
this figure may be confounded by the changrigratio.

Figure 3.15 presents the same scenario as Figlde ékcept holding:k constant. As in
Figure 3.14, Figure 3.15 plots index values agandgthcreasing number of factors in the true
model (2 to 8) when the hypothesized model incluaidg one factor. Now, however, instead of
p being held constant at 24, the number of indicadmpropriately increaseslascreases,
keeping theo:k ratio constant. This is done by allowing eitheet) five, or seven indicator
variables to load onto each factor in the true rhotige colored curves correspond to different
loading sizes in both the hypothesized and trueatsoavith red, orange, green, blue, purple, and
black corresponding to loadings of .4, .5, .6,87and .9, respectively. The scenario involving

three indicators per factor is represented by tiid §nes, the scenario involving five
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Figure 3.15: Plots of population fit index values s. the number of latent factors in the population rodel (2 to 8) when the
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indicators per factor is represented by the dakhed, and the scenario involving seven
indicators per factor is represented by the dditexs.

Comparing Figure 3.15 with Figure 3.14, it is cléwat maintaining the:k ratio as the
number of factors increases (Figure 3.15) chargebehavior of CFI from the case where the
p:k ratio decreased as the number of factors incre@sgdre 3.14). In Figure 3.15, a more
desirable behavior is seen for CFl. Specificaligardless of the loading size and the number of
indicators per factor, CFl shows a decrease iasfithe size of the misspecification (the number
of factors in the population) increases. In fdut, largest CFl value in this scenario is about .52,
which suggests that CFl is highly sensitive torthigspecified latent structure in this scenario.

For RMSEA, we again see an improvement in fitessize of the misspecification
increases (as we saw in Figure 3.14). This mayeeta the fact that RMSEA is sensitive to the
number of indicator variables in a model and shawsmprovement in fit as the number of
indicators increases. (the same phenomenon thaseeasin Figures 3.5 and 3.11, for example).
In Figure 3.15, in, order to keep tpek ratio constant als increasesp must get quite large. For
example, whek = 8 and the number of indicators per factor isltatlseven (dotted lines),

p = 56. Thus, the behavior of RMSEA in Figure 3.1&yrbe due more to the increasing model
size rather than the increasingly misspecifiechas¢ructure. However, considering that
RMSEA also showed an improvement in fit in Figur&43 when the size of the hypothesized
model was held constant, these two results combimedsuggest that RMSEA is simply not as

sensitive as CFl is to incorrectly modeled laténictures.
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3.3.2 Effects of Model Size

As was seen in Figure 3.15, it appears that teeddithe model (in terms of the number
of indicators) may affect the behaviors of both @rtl RMSEA in the case of a misspecified
latent structure. In this section, the effect & tlumber of indicator variables is examined in
further detail.

Figure 3.16 plots index values against an incnrgasumber of indicatorp(= 4, 6, 8, 10,
12, 14, 16, 18, and 20) for the case when a hypitbe 1-factor model is fit to 2-factor data.
The six colored curves correspond to six diffeteatling sizes (both in the hypothesized and
true model), with red, orange, green, blue, purghe, black corresponding to loadings of .4, .5,
.6, .7, .8, and .9. The population (true) modeldéector correlation of .1 (solid lines), .4
(dashed lines), or .7 (dotted lines). In the poporemodel, there are an equal number of
indicators per factor (e.g., wherr 10, each factor has five indicators loading at)to

The behavior of CFl is highly influenced by theesof the factor correlation in the
population, a trend that has been seen before Fegure 3.14). When the factor correlation is
low (.1), CFI shows the worst fit, with values b&labout .55 regardless of the number of
indicators. This is desirable behavior, as it sstgyéhat CFl is sensitive to the case where a
model omits a second factor that is quite diffe{@mly slightly correlated) from the first factor.
As the factor correlation increases in size, sthedCFl values. However, the values generally
do not increase above the commonly used cutoBmfThese results suggest that regardless of
model size, CFIl appears to retain its sensitiatynisspecified latent structures and lead to the

decision that the 1-factor model is a poor fit2efactor data.
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Figure 3.16: Plots of population fit index values s. the number of indicators p = 4, 6, 8, 10, 12, 14, 16, 18, 20) when a 1-factor
model is fit to 2-factor data. Factor correlation s .1 (solid lines), .4 (dashed lines), or .7 (dottdéines). The colored curves
correspond to different loading sizes, with red, aange, green, blue, purple, and black correspondintp loadings of .4, .5, .6, .7,
.8, and .9, respectively. Neighboring points are aoected for readability.
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For RMSEA, an improvement in fit is seen as thmber of indicators increases, a
behavior that has been noted in other scenariagthisHowever, except for the case where the
factor correlation is .4 or .7 and the loadingslave (.4, .5), RMSEA values remain below the
commonly used cutoff value, suggesting the modalpsor fit. This indicates that while
RMSEA shows an improvement in fit as the numbendicators increases, this improvement in
fit would, in most cases, not lead a researchactept a model with a larger number of
indicators while rejecting a model with fewer ingliors, holding all other things constant.

In all of the misspecified latent structure scesmpresented thus far, the hypothesized
model has underestimated the number of factofsempopulation. It is also of interest to
examine index behavior when the hypothesized mmdsiestimatethe number of factors in the
population instead. Figure 3.17 is similar to Feg8rl6 in that it plots index values against an
increasing number of indicators € 4, 6, 8, 10, 12, 14, 16, 18, and 20). Now, havewstead
of a hypothesized 1-factor model being fit to 2tbadata, a hypothesized 2-factor model is fit to
1-factor data (only one factor underlying the papioh). As in Figure 3.16, the six colored
curves in Figure 3.17 correspond to six differeatding sizes (both in the hypothesized and true
model), with red, orange, green, blue, purple, l@adk corresponding to loadings of .4, .5, .6, .7,
.8, and .9. The hypothesized model has a factoelation of .1 (solid lines), .4 (dashed lines), or
.7 (dotted lines). In the hypothesized model, tlzgeean equal number of indicators per factor
(e.g., wherp = 10, each factor has five indicators loading atjto

Comparing Figure 3.16 to Figure 3.17, the behawdICFI and RMSEA are fairly
similar across both scenarios. When the hypotheésizadel overestimates the number of factors
in the population (Figure 3.17), CFl values genrgmd not increase above the commonly used

cutoff, similar to when the hypothesized model uedemates the number of factors
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Figure 3.17: Plots of population fit index values s. the number of indicators p = 4, 6, 8, 10, 12, 14, 16, 18, 20) when a 2-factor
model is fit to 1-factor data. Factor correlation s .1 (solid lines), .4 (dashed lines), or .7 (dottdéines). The colored curves
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(Figure 3.16). While CFI appears to show an impnoest in fit in Figure 3.17 as the number of
indicators increases, the only case for which GiHlies are above the cutoff value are when

¢ =.7 and\ = .4. Thus, just as in Figure 3.16, CFl appeargtain its sensitivity to misspecified
latent structures when the hypothesized model stierates the number of parameters in the
population. RMSEA's behavior in Figure 3.17 is ahmlentical to its behavior in Figure 3.16,
suggesting that the fit index is not affected bwhbe latent structure is misspecified

(overestimating or underestimating the number offois in the population).

3.3.3 Effects of Factor Correlation

Figure 3.18 examines the effects of factor coti@han scenarios involving a
misspecified latent structure. Specifically, a &téa model is fit to 2-factor data. Since the
hypothesized model contains only one factor, threetation being manipulated in this scenario
is the correlation between the two factors in thpysation. While this value is, in practice,
unknown, it is of interest to see how the populafactor correlation affects how both CFI and
RMSEA perform for this type of misspecified latsiructure.

Figure 3.18 plots index values against an increggilarge (population) factor
correlation when a hypothesized 1-factor model i®f2-factor data. The six colored curves
correspond to six different loading sizes, with, r@@nge, green, blue, purple, and black
corresponding to loadings of .4, .5, .6, .7, .& & The number of indicator variables is either
12 (solid lines) or 24 (dashed lines). In the 2dapopulation model, there are an equal number

of indicators loading onto both factors.
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Both CFl and RMSEA show desirable behavior in uenario. That is, they show worst fit
when the factor correlation is low, and perfectiten the factor correlation is 1. While both
indices follow the general trend of showing befiieas the factor correlation size increases, CFl
values begin much lower than RMSEA values, and adehwould be accepted as having good
fit according to CFI until the factor correlatiomthe population was above about .7. RMSEA,
on the other hand, shows good model fit when th®facorrelation is as low as about .15 in the
case wher@ = 24 and\ = .4. This contrast between CFl and RMSEA giveth&r evidence to
suggest that CFl is, on average, more sensitive RMSEA to misspecified latent structures.
CFl also appears to be less affected by the mazke(solid and dashed lines) in this scenario
than RMSEA.

In the previous figure, the hypothesized modelenastimates the number of factors in
the population. The last scenario | examine hetedsame setup as the scenario in Figure 3.18,
except now a 2-factor model is fit to 1-factor qapresenting the case when the hypothesized
model overestimates the number of factors in thmufadion. Figure 3.19 plots index values
against an increasingly large factor correlatiorewh hypothesized 2-factor model is fit to
1-factor data. The factor correlation being maraped here is the factor correlation in the
hypothesized model, not the population, since thgufation has only one factor. The six colored
curves correspond to six different loading size#) wed, orange, green, blue, purple, and black
corresponding to loadings of .4, .5, .6, .7, .& & The number of indicator variables is either
12 (solid lines) or 24 (dashed lines). In the 2datiypothesized model, there are an equal

number of indicators loading onto both factors.
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Figure 3.18: Plots of population fit index values s. factor correlation (0 — 1) when a 1-factor modas fit to 2-factor data. The
number of indicators isp = 12 (solid lines) omp = 24 (dashed lines). The colored curves correspotml different loading sizes,
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Figure 3.19: Plots of population fit index values s. factor correlation (0 — 1) when a 2-factor modas fit to 1-factor data. The
number of indicators isp = 12 (solid lines) omp = 24 (dashed lines). The colored curves correspomal different loading sizes,
with red, orange, green, blue, purple, and black aoesponding to loadings of .4, .5, .6, .7, .8, anfl, respectively.
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Comparing Figures 3.18 and 3.19, it is clear biwdh CFI and RMSEA behave similarly
across both scenarios, suggesting that the tyfsesft misspecification (overestimating or
underestimating the number of factors in the pdmiga does not dramatically affect index
behavior. As in Figure 3.18, CFI shows poor fifigure 3.19 until the factor correlation in the
hypothesized model is above about .7. While CRleslare not as low in Figure 3.19 as they are
in Figure 3.18, if a researcher is assessing fiedan the commonly used cutoff value, their
conclusions about fit would remain the same whetifrethypothesized model is overestimating
or underestimating the number of factors in theytapon. RMSEA behaves almost identically
in both scenarios, showing good model fit in theecasherg = 24 and\ = .4, but poor fit in all

other cases.
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Chapter Four: Discussion

In this chapter, a summary of the results of Céaptis provided. | first focus on the
behavior of CFl, broken down by the source of nes#jcation (omitted error covariance,
omitted cross-loading, and misspecified latentcstme). | provide possible explanations for
certain index behaviors, mentioning results thaehaeen seen in the literature as well as any
interesting behaviors that have not been discussprkvious studies. | then present a review of
the behavior of RMSEA in the same fashion.

Following these summaries, | discuss the possitofi combining the use of CFl and
RMSEA when assessing model fit. Combining the dgbese two indices, | claim, will provide
researchers with more information about possibldehmisspecifications over and above any

information given by relying upon either index ¢ own.

4.1 Summarized Results for CFI
4.1.1 Misspecification Source: One or More Omitted Error Covariances

| begin by discussing CFI’'s behavior in situatievtsere misspecification is due to one or
more omitted error covariances. Perhaps the mtstesting result for CFl involves the non-
monotone relationship between index value anditteecf a single omitted error covariance, a
result that has been seen both in Savalei (20kMahler (2011). As seen in Figures 3.1 and
3.2, CFl appears to show worse fit for a “modesdteized omitted error covariance, while
showing better fit both when the omitted error atarece is small and when it is close to .9. This
suggests that relying solely on CFl in a situatidere misspecification may be due to an
omitted error covariance may lead a researcherdep a model with a larger misspecification
(e.g.,y = .8) while rejecting a model with a moderate pessfication (e.g.y = .4).

113



A possible cause for the non-monotone pattern défiCthese figures has to do with how

CFl is calculated. Recall the population definit@inCFI:

CFl=1-% 2.2)
F

In the population, CFl is a function of both thenimized fit function of the hypothesized model
(F) and the minimized fit function of the baselinedab(;). As previously mentioned, the
current study used a baseline model in which dilcator variables are uncorrelated.

It was suspected that the non-monotone relatiortsttiween CFI values and the size of
an omitted error covariance was due to differetgsraf change fof andF;. Thus, | plotted the
values off’ andF, separately against an increasing omitted erroagance in a 1-factor model
with 8 indicators (the same model used in Figuig. Ihese plots revealed thHaandF; indeed
have different rates of change that depend onitieeo$ the omitted error covariance. This
suggests that there is a relationship betweenizbeo§the misspecification and its influence on
the minimized fit functions for both the hypothesizand the baseline model.

Based on the results of Figure 3.1 and FigureiBmight be appealing to discourage the
use of CFl in cases where a researcher may su$gegbssibility of omitted error covariances in
their model. However, there are three things te megjarding CFI's behavior in this situation.
First, while there is a curvilinear relationshipgween CFI values and misspecification size, if a
researcher were to employ the commonly used catiéfrion for CFl, the smaller model in this
scenario | = 8) would be regarded as fitting poorly regarsllekthe loading sizes once the

omitted error covariance rises above about .2. Tim@snon-monotone relationship does not
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affect the cutoff-based decision about the modekdhe omitted error covariance is large
enough.

Second, when the number of indicators is incre&sedp = 8 top = 16, the curvilinear
relationship between CFI values and omitted erovadance size disappears for all but the
smallest loadings case, and the index appropriatedys a decrease in fit as the size of the
omitted error covariance increases. This suggkatgtie non-monotone relationship between
index size and omitted error covariance size nigihiteven be present in models with a larger
number of indicator variables.

Finally, it should be noted that CFI does behgy@apriately when the number of
omitted error covariances increases (Figure 3gyrei3.4). That is, a model with a greater
number of omitted error covariances will be showhave worse fit than a model with a fewer
number of omitted error covariances. This resuleag with findings by Heene et al. (2012). In
addition, CFI did not appear to be overly sensitivenultiple omitted error covariances if the
covariances were quite small € .05). This can be seen as a positive trait ®findex; it
suggests that the omission of a few very smallrewariances, which is likely not to be
considered a severe misspecification, will not@fféFI's value enough to cause the researcher
to reject the model. CFI's sensitivity to more rpissifications is also not greatly affected by the
number of latent variable& € 1 ork = 2).

The influence of the number of indicators in CEhhvior, however, appears to be
confounded with the number of latent variables. @Fially shows a decrease in fit as the
number of indicator variables increases, a treatiitas been observed in previous literature
(e.g., Chau and Hocevar, 1995; Kenny and McCodab3;2Vloshagen, 2012) when the

misspecification was due to omitted error covargndiowever, in the 1-factor model case
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(Figure 3.3), this trend reverses once the numbigrdicator variables reaches a certain amount,
and CFl shows an improvement in fit. In the 2-factmdel case (Figure 3.4), CFl shows a
decrease in fit regardless of the number of indisatwWhile this difference in behavior between
the 1- and 2-factor models is worth noting, itfdittle practical concern. In the scenario
presented in Figure 3.5, the change from a deciedido an improvement in fit does not affect
whether a researcher would reject or accept a nizadeld on the commonly used cutoff value
except in two cases where the omitted error comaega were quite smals(= .2, .3). In such
cases, the misspecification is small enough thagi not even warrant rejecting the model.

A final result worth noting involves CFI's behavio an imbalanced model scenario. As
seen in Figure 3.8, while model imbalance apperadféct CFI values for larger omitted error
covariances, once the size of the omitted erroacamce increases above about .3, CFl shows
poor model fit by the commonly used cutoff valuegardless of the degree of imbalance. This
suggests that researchers need not worry aboutsewenely imbalanced models (e.g., one factor

with 7 indicators and another factor with 17 indaza) greatly affecting CFI values.

4.1.2 Misspecification Source: One or More Omitted Cross-Loadings

Next, | summarize the performance of CFl in situa where misspecification is due to
one or more omitted cross-loadings. As was the wh®n a single error covariance was omitted
from the model, we see another non-linear relatignsetween CFI values and the size of a
single omitted cross-loading (Figure 3.9). Spealficfor thep = 8 scenario, CFl values decrease
until the size of the omitted cross-loading is @xmately .4, then begin to increase again.

It should be noted, however, that CFI values nevaease above the common cutoff

value of .95. Thus, while this non-linear behaviay appear troubling at first, it is of little
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practical concern. Even if a researcher were tol@yrgomore conservative cutoff value (say,
.90), the slight increase in CFI values for vergéacross-loadings would not lead the researcher
to accept the model as having adequate fit in asstelike the one presented in Figure 3.9.

CFI exhibits interesting behavior when the numbesritted cross-loadings increases in
a given model. As the number of omitted cross-logslincreases, CFI actually shows an
improvement in fit, to the point where the indexwis perfect fit in the case where there exist 10
cross-loadings in the true population model bui@lare omitted from the researcher’'s model.
This is concerning, as it implies that a researcbetd, in theory, accept a model that omits as
many as 10 cross-loadings based on the CFI valgh fihdings are not present in previous
literature (e.g., Fan and Sivo, 2007; Hu and Bentl@98), which has demonstrated that CFl is
appropriately sensitive to an increasing numbemoitted cross-loadings.

CFI does exhibit a useful behavior, however, wibpect to the relationship between
factor correlation and cross-loadings. As was sedfgure 3.12, as the correlation between
factors of a 2-factor model increases from 0 tG€HR| shows an improvement from poor fit to
perfect fit, regardless of the number of indicaiarthe model or the size of the omitted cross-
loading. This suggests that CFl appropriately otfiehe “severity” of the misspecification with
respect to how correlated the two factors are. iBpakty, when¢ = 1, the two factors can
essentially be interpreted as being the same facdithe model becomes a 1-factor model.
Thus, there is really no cross-loading presenllaaiad CFI shows perfect fit because nothing is
being omitted. However, as the factors become randemore distincty(decreases), the omitted
cross-loading becomes more obvious, as thereiisdérator loading onto two distinct factors in

the population, but this is not being reflectedhia researcher's model. Thus, model fit decreases
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as the factor correlation decreases, reflectingtifeacross-loading is an important relationship in
the population that is being excluded from the nhode

The effect of the number of indicators on CFI vakisimilar to the effects seen when the
misspecification is due to an omitted cross-loadiritat is, while CFl initially shows a decrease
in fit as the number of indicators increases, ateertain point, it shows fit improving as the
number of indicators continues to increase (Figutd). This effect is likely due to CFI's
sensitivity to model size, which has been docuntemgrevious studies (e.g., Chau and
Hocevar, 1995; Moshagen, 2012). Thus, while thssiltenay not indicate anything specific
about CFI's sensitivity to omitted cross-loadingsioes suggest that researchers should be
aware that model size influences CFl values, rdgssmf the source of any misspecification
their model might have.

In all scenarios examined here, CFl is appropyeatehsitive to the size of the omitted
cross-loading. The larger the omitted cross-loadinthe worse fit CFl shows. This is true
regardless of the size of the other loadings. thtamh, CFl appears to be more sensitive to
misspecifications due to omitted cross-loadingsmihe other loadings in the model are higher
versus when they are lower. This result agrees s@teral previous studies (e.g., Miles and
Shevlin, 2007; Themessl-Huber, 2014), which shothatl CFI is less sensitive to
misspecification when loadings are, on averagdyfliw.

Finally, | note the result of model imbalance on 6&havior. As Figure 3.13 shows, CFlI
values are affected by the location of the omittexss-loading. Specifically, when the cross-
loading is omitted from the factor with fewer indtor variables, CFl appears less sensitive to
the misspecification than when the cross-loadimgmstted from the factor with more indicator

variables. However, similar to the imbalanced madsle when the misspecification was due to
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an omitted error covariance, CFl shows poor matetfardless of either the location of the
misspecification or the degree of imbalance oneeothitted cross-loading is larger than
about .4. Thus, this suggests that while model iarze and the location of the omitted cross-
loading do affect CFI values, they do not do sa imay that would practically affect the

selection or rejection of a model.

4.1.3 Misspecification Source: Misspecified Latent Structure

As was mentioned in the previous chapter, whigeattual number of factors in the
population can never be truly known, it is wortlpkxing how sensitive CFl and RMSEA are to
cases where a hypothesized model either overesmoatunderestimates the true number of
factors in a population to see if either indexastigularly useful in detecting this sort of
misspecification.

In Figure 3.14, a 1-factor hypothesized modeiti®fdata arising from a population with
an increasing number of factors, from two to eifteégardless of loading size or factor
correlation size, CFl appears to be very sensitvwaisspecified latent structure, even when the
discrepancy between the number of factors in tipotihesized model and the number of factors
underlying the population is “small” (e.g., a 1#@cmodel fit to 2-factor data). In the scenario
presented in Figure 3.14, there is no combinatidaaior correlation and loading size for which
CFI shows good model fit when the number of popartatactors is anywhere from two to six.
This indicates that CFI will reflect a misspecifident structure even if that misspecification is
“small”.

CFI does appear to show slight improvement indithee misspecification increases for

moderate or high factor correlatiop £ .4 or¢ = .7). However, this slight increase in CFl values
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may be due to the fact that in Figure 3.14, thelmemof indicator variables was held constant at
24. Thus, for thé& = 2 model, each factor had 12 indicators loadinig d@, while in thek = 8
model, each factor only had three indicators logdinto it. That is, the fact that tpek ratio is

not constant may affect CFI's behavior in the aafs& misspecified latent structure.

To determine if this is true, Figure 3.15 involubeé same scenario as Figure 3.14, except
thep:k ratio was held constant. The results indicatetl@# is even more sensitive to
misspecified latent structure when, overall, a nhaglarger (more indicator variables when
there are a larger number of factors). This is ist@st with findings by Chau and Hocevar
(1995) and Sharma et al. (2005). CFI shows a d#sidecrease in fit as the size of the
misspecification increases, regardless of loadirgy and regardless of the number of indicators
loading onto each factor.

The effect of the number of indicator variablemalovas also examined, and it was
found that CFI tends to be rather insensitive @angfes in the number of indicator variables
when latent misspecification exists. This behawas noted in a study by Chau and Hocevar
(1995). As Figures 3.16 and 3.17 show, CFI stitlves poor fit (values below the common
cutoff value) when a 1-factor model is fit to 24#@cdata and when a 2-factor model is fit to
1-factor data. The CFI values are generally uncedmggardless of the number of indicator
variables included in the hypothesized model ihezitase. This is a desirable result, as it
suggests that for both small and large models,appears to be highly sensitive to a
misspecified latent structure, regardless of wiretthe misspecification is due to the
hypothesized model overestimating the number ofifaion factors or underestimating the

number of population factors.

120



Finally, Figures 3.18 and 3.19 show that when acteir model is fit to 2-factor data or
when a 2-factor model is fit to 1-factor data, GRbws very poor fit when the two factors are
slightly correlated, but shows perfect fit when thetors have a perfect correlation (when,
essentially, there is only one factor). This iseaichble result. If the two factors in the popuati
are only slightly correlated, fitting a 1-factor de to data from this population (Figure 3.18)
can be considered a larger misspecification th#india 1-factor model to data from a
population with moderately- or highly-correlatedtfars. Similarly, if the two factors in a
hypothesized model are only slightly correlatetfinfy this model to data with 1-factor (Figure
3.19) can be considered a larger misspecificatian fitting a 2-factor model with highly

correlated factors to 1-factor data.

4.1.4 Summary

From the results of the various scenarios predantthis study, a general summary of
CFI's behavior in different misspecification circatances can be obtained. When model
misspecification is due to either one or more cedigrror covariances or one or more omitted
cross-loadings, the relationship between CFl andsé#verity of the misspecification appears to
be non-linear. Specifically, CFl shows good moddbdth when the misspecification is small
(an omitted error covariance of .2, for example) aen the misspecification can be considered
large (an omitted error covariance of .9, for exeEhprhe index shows worst fit when the
misspecification is moderate.

For the scenarios presented here, this non-linefaavior would not affect a researcher’s
decision to reject or fail to reject a model basedhe commonly used cutoff of .95. That is,

even though CFI showed an improvement in fit asstheerity of the misspecification increased,
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CFl values did not increase above .95 in situatiwngre an omitted error covariance or an
omitted cross-loading was large. However, it shdaddhoted that such non-linear behavior may
affect a researcher’s decision for models thaediifom the specific ones presented here. For
example, in Figure 3.1, only models of size 8 andp = 16 were examined. If a researcher were
to have a model with fewer indicator variablesyehis the chance that the non-linear behavior of
CFI may cause the researcher to accept a modealinomg a severe misspecification (an omitted
error covariance of .9, for example).

In addition to this, the results in this studywid that while CFI did show worse fit as
the number of omitted error covariances increasedmodel, it showed better fit as the number
of omitted cross-loadings increased in a models&hesults, combined with the non-linear
behavior, may suggest that CFl may not accuraeflgat how well a model fits (or fails to fit) if
misspecification is due to omitted error covariamoeto omitted cross-loadings.

In contrast, however, the behavior of CFl in cashere models have a misspecified
latent structure suggests that this index is higelysitive to misspecifications of this type.
Regardless of model size, loading size, and theeladions between factors in the population,
CFl appears to show poor model fit when a 1-fagtodel is fit to data from a population with
more than one factor and when a 2-factor modd is flata from a population with only one
factor. Considering that a misspecified latenttice can be considered a more severe form of
misspecification than one due to omitted error cavees or cross-loadings, these findings
indicate that CFI can be a useful tool in detectimgspecifications of this type.

The influence of other modeling components (maded, factor loadings, etc.) can also
be summarized here. In general, higher factor togglincrease CFI’s sensitivity to

misspecifications arising from any source. Thathis, higher the factor loadings, the lower CFI
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values will be for a misspecified model. While Gféinerally shows better fit as more indicators
are added to a model, this trend appears to beygssent in models with more factors and is
not as severe as for RMSEA (discussed below). lyinabppears that CFl is not highly affected

by model balance.

4.2 Summarized Results for RMSEA
4.2.1 Misspecification Source: One or More Omitted Error Covariances

In contrast to the non-linear behavior presente@Bl, RMSEA behaves more
appropriately fit in situations where misspecifioatis due to an omitted error covariance.
RMSEA shows a decrease in fit as the size of thit@drerror covariance increases. This is the
case for 1-factor and 2-factor models (FiguresaBd 3.2). In addition, Figures 3.3 and 3.4
showed that RMSEA also shows worse fit as the nummbemitted error covariances increases.
These results are consistent with findings by Hii Bentler (1998) and Sharma et al. (2005).
Like CFI, RMSEA does not appear to be overly séresib multiple omitted error covariances if
the covariances are quite small£ .05).

It is important, however, to note RMSEA'’s senstino loading sizes in these scenarios.
RMSEA appears to be more sensitive to loadings @fns, at least when misspecification is
due to one or more omitted error covariances. f@same severity of misspecification, a model
with low factor loadings (.4) may be accepted asrtagood fit according to the commonly
used cutoff, while a model with higher factor laaghs (.8 or .9) would be rejected as having poor
fit. This specific sensitivity to loading size hasen observed in previous studies as well
(e.g., Miles and Shevlin, 2007; Themessl-Huber42@hd may suggest that a universal cutoff
value may not be appropriate for RMSEA across giffeloading sizes.
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Another important result involves RMSEA'’s sensiiwio model size (as measured by
the number of indicator variables). When misspeatfon is due to an omitted error covariance,
regardless of loading size or the severity of tigspecification, RMSEA shows an improvement
in fit as more indicator variables are includedimodel, regardless if the number of factors was
one (Figure 3.5) or two (Figure 3.6), though theafwas lessened by the addition of another
factor. This behavior is expected, as previousarese(e.g., Browne, 1987; Kenny and
McCoach, 2003; Sharma et al., 2005), has demoedttaait RMSEA tends to show better fit as
model size increases. This improvement in fip &screases, both for RMSEA and CFI, might be
due to the fact that as the model gets largeradlaition of more indicators “dilutes” the
misspecification and thus masks its effects.

Finally, as was the case for CFl, the effect of eldmhlance does not highly influence
RMSEA values when misspecification is due to antmdierror covariance (Figure 3.8). This
indicates that even in models as imbalanced asrtbs included in this study (e.g., one factor
having seven indicators loading onto it and thepfactor having 17 indicators loading onto it),

RMSEA values will not be significantly influenceg the imbalance.

4.2.2 Misspecification Source: One or More Omitted Cross-Loadings

When misspecification is due to a single omittezss-loading, RMSEA shows an
appropriate decrease in fit as the size of thetethitross-loading increases (Figure 3.9), which
is consistent with findings by Hu and Bentler (1p88d Fan and Sivo (2007). However, similar
to CFl, when the number of omitted cross-loadimgsaases, RMSEA shows an improvement in

fit.
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In fact, in the scenario presented in Figure 3al&searcher would fail to reject a model
as having poor fit no matter how many cross-loaslingve been omitted from it. This is true
regardless of factor correlation size and loading.dHowever, it should be noted that there are a
total of 20 indicatorsg= 20) in the model in Figure 3.10. Thus, RMSEAisensitivity to the
number of omitted cross-loadings may be cancelétythe fact that RMSEA tends to show
better fit in larger models, regardless of the pessfication type or size.

In Figure 3.11, the effect of the number of indicatwas explicitly examined in the
omitted cross-loading misspecification. As wasadase with CFl, as the number of indicator
variables increased, RMSEA began to show an impnew¢ in fit once the number of indicators
rose above six. This was true regardless of treecdithe omitted cross-loading.

However, the sizes of the other loadings appearbéave a large effect on RMSEA
values. When loadings (apart from the cross-logdiveye low, RMSEA failed to show poor fit,
regardless of the size of the model and the sizbeobmitted cross-loading. But when the other
loadings were high (.7), RMSEA appeared to be sigadb the omitted cross-loading in smaller
models, but then still show an improvement in mdidels the number of indicator variables
increased. This may suggest that RMSEA'’s sengitteibmitted cross-loadings may be
influenced not only by the number of indicator@imodel but also by the size of the other
loadings. Previous work by Themessl-Huber (2014l) Miies and Shevlin (2007) also show that
RMSEA appears to be less sensitive to misspedticsin general when the loadings are, on
average, low.

Figure 3.12 shows the effect of factor correlafiionthe population) on index’ ability to
detect misspecification due to an omitted crosshfua While RMSEA exhibits the same

general pattern as CFl—showing better fit as tlofecorrelation increases—it should be noted
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that RMSEA values failed to suggest good modeldiording to the commonly used cutoff
value, regardless of the factor correlation ordize of the omitted cross-loading.

Finally, as was the case when misspecificationdugsto an omitted error covariance,
model balance does not appear to affect RMSEA sgatuany significant degree (Figure 3.13),
which suggests that any imbalance in the numbardidators per factor will not highly affect

RMSEA values.

4.2.3 Misspecification Source: Misspecified Latent Structure

Finally, | discuss the behavior of RMSEA in sceosunvolving a misspecified latent
structure. Figure 3.14 shows a 1-factor model bétrig data from a population with more than
one factor. In this figure, the lines of the RMSE&Aues appear to be flat (or increasing only
slightly) as the discrepancy between the numbéaaibrs in the hypothesized model and the
number of factors underlying the population incesasn addition, for smaller loading sizes
(A = .4), RMSEA indicates good model fit regardleEhawv many factors are in the population
model and the degree to which they are correldteese results are similar to those achieved by
Miles and Shevlin (2007) and may suggest that RM&E & general, not highly sensitive to
latent structure misspecifications.

However, as was noted in the summary of CFI's ienathep:k ratio in Figure 3.14 is
not held constant; thus, RMSEA’s behavior may h#igdly due to the inconsisteptk ratio ask
increases anpd remains the same. In Figure 3.15, this ratio vedd bonstant by increasinyas
kincreased, so as to have three, five, or seenatai per factor, regardless of the number of

factors.
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In Figure 3.15, RMSEA actually shows an improvemetiit as the discrepancy between
the number of factors in the hypothesized modelthachumber of factors in the true population
increases. That is, regardless of loading sizeaaof correlation size, a 1-factor model fit to
2-factor data fits worse than a 1-factor modeidi8-factor data, according to RMSEA. A
possible explanation for this behavior again gaesktio the well-documented fact that RMSEA
is highly sensitive to model size, showing betieinffor models with more indicators, all other
things held constant. In Figure 3.JBmust be substantially increased with each incréahen
increase ok in order to keep thp:k ratio constant. For example, whies 2 and there are seven
indicators per factop = 14. However, ik = 8 and there are seven indicators per facton, the
p = 56. There is a large difference in the sizenee models, which may explain why RMSEA
shows a better fit for largér In fact, the results of Figure 3.15 are consistéth results of a
similar setup by Sharma et al. (2005).

The effect of model size was also examined in fég3.16 and 3.17, and the same trend
is observed. When a 1-factor model is fit to 2-dactata and when a 2-factor model is fit to
1-factor data, RMSEA shows better fit for largerdals, regardless of loading size and factor
correlation size. However, it should be noted thatept when loadings are small{ .4), a
researcher would still reject these models as lgguaor fit.

Finally, similar to CFI, RMSEA behaves appropriatsith respect to the relationship
between the degree of misspecification and thedigee population factor correlations. In
Figures 3.18 and 3.19, a 1-factor model is fitfa@&or data (Figure 3.18) and a 2-factor model
is fit to 1-factor data (Figure 3.19). RMSEA shopeor fit when the factor correlation is small,
but increases to show perfect fit when the factoredation is one. This is useful behavior, as it

suggests that RMSEA would be more sensitive to eerfgevere” misspecification (modeling
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one factor when the population involves two higtiifferent factors, or modeling two highly
different factors when the population involves oohe factor) than a less severe
misspecification (modeling one factor when the papon involves two very correlated factors,

or modeling two very correlated factors when thpydation involves only one factor).

4.2.4 Summary

When misspecification is due to one or more omi#eor covariances, RMSEA shows
worse fit as the size of a single omitted errorac@nce increases as well as when more error
covariances are omitted from a hypothesized mddes indicates that RMSEA appropriately
reflects a lack of fit when a hypothesized modé#sft include the correct number of error
covariances that exist in the population.

While RMSEA shows a decrease in fit as the sizenodbmitted cross-loading increases, it
actually shows an improvement in fit as more closslings are omitted from a hypothesized
model. In addition, RMSEA values tend to suggestdgmodel fit according to the common
cutoff value when misspecification is due to antbedi cross-loading. This suggests that
regardless of other modeling components (e.g.ofaxdrrelation size, model size), RMSEA is
not very sensitive to omitted cross-loadings. Tlifus researcher were to rely solely on RMSEA
when assessing model fit, a model may be acceptbd\ang good fit even if there is a rather
large misspecification due to one or more omittes-loadings.

RMSEA also does not appear to reflect the sevefitpisspecification when a model
fails to include an accurate number of latent fieect8pecifically, in the scenario presented here,

RMSEA values are similar for a 1-factor model ditz-factor data and a 1-factor model fit to
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8-factor data. The fact that it is not sensitivéhie difference in severity of these
misspecifications suggests that RMSEA should natdssl in situations where competing
models with different latent structures exist arrésearcher is trying to determine which has
better fit.

Despite RMSEA's insensitivity to the severity ofmgsspecified latent structure, the
index in general shows poor fit when this type agspecification is present, which suggests that
it can be a useful tool when detecting misspedifics of this type.

In addition to the influence of different misspéxdtion types on RMSEA’s behavior, it
is important to note the effects of different madglcomponents, such as loading size, model
size, and model balance. In comparison to CFl, RM&gpears to be more heavily influenced
by loading size. Both indices tend to be more $mm@sio misspecifications when loadings are
higher (.8, .9) versus when they are lower (,4,Hswever, for RMSEA, the differences
between index values for different loading sizesi@e dramatic.

This sensitivity, combined with the use of a cutadfue to determine if a model fits or
not, might lead a researcher to accept a particotatel if that model had small enough loadings,
but would lead them to reject the same model if thadel included higher loadings. While it is
unlikely that a given researcher would have two petimg models that only differ in loading
sizes, the fact that RMSEA is so sensitive to iigleling component may suggest that a
universal cutoff value is not appropriate when assg model fit. Instead, consideration should
perhaps be given to the average loading sizesmirgsa model before a cutoff-like value is
selected.

RMSEA is also highly sensitive to model size, agsueed by the number of indicator

variables in a model. As has been shown in segéudies prior to this one, RMSEA shows an
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improvement in fit as the number of indicators @ases. This is true regardless of the source of
misspecification and regardless of the ratio ofrthmber of indicators to the number of factors,
and suggests that researchers should not relysmldRMSEA to accurately assess fit in larger
models and should be aware that adding more iradigatiables will likely artificially improve

model fit according to RMSEA.

4 .3 Recommendations

Based on the summaries presented above, it istbi@aCFl and RMSEA perform
differently in certain modeling scenarios that ud# different modeling components and sources
of misspecification. This study backs up previoesearch that has shown that neither index
performs universally “better” than the other. Howguhe fact that CFI's and RMSEA'’s
behaviors tend to complement each other in sedéfatent cases suggests that researchers may
gain a better understanding of a hypothesized mbtledy were to use both CFl and RMSEA in
conjunction.

While the idea of combining the use of fit indigesiot a new one, and has in fact been
mentioned multiple times in the literature, lithas been said about combining CFl and RMSEA,
and to my knowledge, nothing has been publisheldoonbest to interpret their combined values
in order to assess what might be the cause of @&ifsadisspecification.

In this section, | briefly reiterate the previdiisrature on index combining, as first
discussed in Chapter 1, then present ways of WSkigand RMSEA in conjunction in order to

best understand the possible sources of misspeaiicin a hypothesized model.
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4.3.1 A Brief Recap of Previous Research on Combining I ndices

The fact that different indices appear to be $emesio different sources of
misspecification (as well as to different modeloomponents) has been used in previous studies
to justify the claim that more than one index skdu reported when stating the fit of a
hypothesized model.

Hu and Bentler (1999) make one of the earlieshwdahat a presentation of two fit
indices rather than one might better reflect the fit of a given model. They recommend
pairing either CFl and SRMR or RMSEA and SRMR, mgtihat SRMR was the only index
studied whose sensitivity to certain misspecifmatiypes was significantly different than other
indices’ sensitivities. Hu and Bentler (1999) adsiggest using stricter cutoff values, with .96
being used for CFl and .05 for RMSEA. It shouldnio¢ed, though, that the main sources of
misspecification in Hu and Bentler's (1999) studgrevmisspecified factor covariances and
misspecified factor loadings, which are differddrt the misspecifications included in this
study.

Other authors recommend combining indices baseddax type. Hooper et al. (2008),
Kline, 2005, and Boomsma (2000) suggest reportifg RMSEA, and SRMR in addition to the
chi-square. Since each of these three indices dereloped under a different philosophy of
measuring model fit, these authors argue that ealdx should be sensitive to different types of
misspecification. Combining their results shouldalresearchers to better assess how well a
model fits as well as what might be the sourcermhny degree of misfit.

While these authors recommend reporting multiglenlices, little to nothing is said
about what might be the reasons behind possibteegiancies amongst the indices (e.g., if

RMESA shows good fit but SRMR does not) or hownteiipret such discrepancies if they are
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witnessed. More importantly, nothing is said aboaw researchers could actually benefit from
observing discrepancies amongst fit indices in ora@ossibly improve their model to better
reflect what is going on in the population.

Based on the current study, | suggest the use ba@FRMSEA in conjunction when
assessing model fit, and attempt to provide asefigeneral guidelines for researchers to
interpret what certain discrepancies between theBees might mean and how they can use this

information to possibly improve the fit of their ohel.

4.3.2 Combining CFl and RMSEA

From the results of the present study, CFl and EM&ppear to be sensitive to different
sources of misspecification as well as to differaoteling components, such as model size,
loading size, and factor correlation (in modelswiwo or more factors). These results suggest
that combining CFl and RMSEA when assessing madeidy not only help a researcher back
up their claim of having a well-fitting model whéme indices both show good fit, but can also
help them better understand the possible souroé(sjsspecification if one or both indices
show poor fit. Here, | discuss some general guigsliand suggestions based on the results of the

simulations presented above.

4.3.2.1CFIl Shows Good Fit, RMSEA Shows Poor Fit

It may be the case for a given model that CFI shgaod fit (> .95) while RMSEA
shows poor fit (> .06). If this is the situatiohmay be worth examining possible sources of
misspecification. If it is suspected that the la&nucture of the hypothesized model is correct, a

possible source of the discrepancy between CFRMSEA may be the omission of one or
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more error covariances. As the results in the prtestedy show, CFIl has a tendency to suggest
good fit (values just slightly greater than .95¢e\f an error covariance of .9 is omitted from the
hypothesized model. RMSEA, on the other hand, shames fit when a large error covariance is
omitted. Thus, it is a possibility that misspeatfion is due to a large omitted error covariance,
but this misspecification is simply not being pidkegp by CFI. This may be especially likely in
smaller models (models with fewer than eight inttics), as the nonlinear relationship between
CFI and the size of an omitted error covarianceeappto be more exaggerated the fewer
indicator variables there are in a given model.

Another possible cause of this type of discrepanay simply be the loading sizes. As
previously stated, while both CFl and RMSEA becaonwee sensitive to any type of
misspecification if the loadings in a model arehag(.7, .8, .9), RMSEA appears much more
influenced by loading sizes than CFI. If a researdbserves a discrepancy between CFl and
RMSEA where CFl is showing good fit but RMSEA isling poor fit, it might be worth
taking note of the size of the loadings in the nhold¢he loadings are generally high, then the
cause of the discrepancy may simply be RMSEA'sHteiged sensitivity to misspecifications in

models with higher loadings.

4.3.2.2CFIl Shows Poor Fit, RMSEA Shows Good Fit

For some models, it may be the case that CFI slpowsfit (< .95) while RMSEA shows
good fit (< .06). The present research has shoattiiere may be several causes for this type of
discrepancy. First, while neither index appearedettighly sensitive to misspecification due to
one or more omitted cross-loadings, CFl was shaAbetmore sensitive to this type of

misspecification than RMSEA. For example, whenfa@er model with 10 indicators per factor
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omitted three cross-loadings that exist in the petpan, CFl showed the model as having poor
fit when the loadings and omitted cross-loadingseved! .3. However, RMSEA still showed the
model as having good fit. CFl also appears morsigea to omitted cross-loadings regardless of
loading size or model size. If a researcher susgepbssible omitted cross-loading as a source
of misspecification and observes poor fit with @Rd good fit with RMSEA, this may suggest
that a cross-loading is, in fact, not present ehipothesized model when it should be.

As was shown in the previous chapter, CFl appeaoe more sensitive than RMSEA to
misspecified latent structures. While both indiseewed poor fit when a 1-factor model was fit
to 2-factor data (Figure 3.18) and when a 2-fagtodel was fit to 1-factor data (Figure 3.19),
the values of CFI were very low (as low as .27)jeating much worse fit than the RMSEA
values, which never decreased below .55. If a reeeawere in a situation where both CFl and
RMSEA showed poor fit, but CFI showed much worséhfan RMSEA, it might indicate that
the poor fit is due to a misspecified latent stuoet Looking for this pattern with CFl and
RMSEA can be especially helpful if it is suspedieat the latent structure may not be accurate.

Finally, an additional cause of this type of degancy may be the size of the model in
guestion. The present research confirms what f@squsly been shown in the literature:
regardless of the source of misspecification, RM3&#ds to show better fit for models with a
large amount of indicator variables. This is espi&ctrue when loadings are high (.7, .8, .9).
While CFI also shows a similar trend, it is mucssl@ronounced and actually disappears with
larger loadings. Thus, if a researcher has a velgtiarge amount of indicator variables in a
specific model and observes that CFl is showing fibahile RMSEA is showing good fit, the
discrepancy may simply be due to the fact thatdlge number of indicators is artificially

improving fit for RMSEA while not affecting CFI tine same extent. If the researcher has no
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cause to suspect any major misspecification, n&RIMPHEA’s decreased sensitivity to
misspecification in large models can help the nedea explain the discrepancy between CFI’s
poor fit and RMSEA'’s good fit.

4.3.2.3Both CFl and RMSEA Show Poor Fit

In the present study, there was not a scenasdioh both CFl and RMSEA showed
poor fit without there being a rather serious messfication. Thus, if a researcher observes both
CFl and RMSEA indicating poor fit, it is likely théhere is something legitimately wrong with
the hypothesized model in question.

However, when both show poor fit, it may be moféaiilt to determine what is causing
the misspecification in the first place based sotel the index values themselves. Thus, the best
course of action in such a situation may be for#searcher to either refer to other SEM studies
conducted on the topic of interest or to re-exantieetheory behind the topic and determine if

any reasonable adjustments to the model can be.made

4.3.2.4Both CFl and RMSEA Show Good Fit

If both CFI and RMSEA show good fit, it is liketlie case that the model in question is a
good representation of the covariance structureyidg the population. However, | make note
of two model components that may, in certain caséisence both CFl and RMSEA to the
extent that they indicate good fit when, in fabere is at least a moderate degree of
misspecification.

The first model component that researchers shaluldys take note of is the size of the
loadings. As shown in this study, both CFl and RMSA&lues are influenced by loading size.

The lower the average loadings are in a modelegdesensitive these indices are to any type of
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misspecification. Thus, if a particular model hasywlow loadings on average (e.g., most
loadings are around .2), it may be the case that®61 and RMSEA are unable to detect even
moderately-sized misspecifications.

A second model component is the size of the madeteasured by the number of
indicator variables. As discussed in previous sesti RMSEA shows better fit for larger
models, regardless of the source or size of migspegeon. While this behavior is much less
pronounced for CFI (and in fact is hardly presehemwthe source of misspecification is a
misspecified latent structure), there may be cagese models consist of enough indicators to

cause both CFl and RMSEA to show good fit wheriaat, a misspecification is present.
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Chapter Five: Application

Discussed in the previous chapter were variougestgpns of how to interpret CFl and
RMSEA values in order to determine the source od@haisspecification. In this chapter, the
goal is to provide some applications of these ssigges to real-life data. | will present data from
two different studies and discuss competing mofielsach set of data. | wish to show that
examining both the CFl and RMSEA values for speciibdels may help guide a researcher to
the source or sources of possible misspecification.

For each of the two sets of data, | first givaiaftoverview of the purpose and
importance of the original studies, as well as sbaxkground on the data involved. | then
discuss different proposed models, computing thea@# RMSEA values and using them to

attempt to explain any possible sources of modespdcification.

5.1 The Causal Dimension Scale (McAuley, et. al.)

The first data come from a paper by McAuley e{H92), titledVieasuring Causal
Attributions: The Revised Causal Dimension Sca@S(D). In psychology, Attribution Theory
seeks to explain why people behave the way theYlde theory reduces the causes of behavior
to three dimensiongocus of causalityis the cause internal or external to the persat&bility
(is the cause constant over time or changeable@);antrol (can the cause be controlled?)
(Weiner, 1985).

The Causal Dimension Scale (Russell, 1982) wasloleee to measure how individuals
perceived causes in terms of these three dimenstamse the development of this scale,
however, several researchers (e.g., McAuley and$;®83; Russell et al., 1987) have

expressed concerns regarding the scale’s stru@peifically, they claim that theontrol
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dimension tends to correlate highly with tbeus of causalitglimension and that thentrol
dimension lacks internal consistency. In additmmcerns have been raised over whether the
difference between personal control versus extermatrol should be addressed within the
control dimension.

In response to these concerns, McAuley et al. (198dght to examine treontrol
dimension in further detail by creating a new vémia of the Causal Dimension Scale (which
they denoted as CDSII). In addition to three itea®sessing locus of causality and three items
assessing stability, the authors included six iteoressess control. Three of these items were
specifically created to measure personal contral,three were specifically created to measure
external control. After examining four differencfar structures of the 12-item CDSII, the
authors concluded that a model consisting of faatdrs—ocus of causalitystability, external

control, andinternal contro—was the best fit to the data.

5.1.1 Moddl 1

In a paper overviewing the use of factor analysithePersonality and Social
Psychology BulletinRussell (2002) takes a closer look at the reatatip between thecus of
causalityand thestability subscales of the CDSII developed by McAuley e(1892). Russell
claims that in a typical multifactor CFA model,rits typically have non-zero loadings onto their
respective factors and zero loadings onto any ddwtors present in the model. He uses the
items and factors of tHecus of causalityandstability subscales as defined in McAuley et al.
(1992) to demonstrate such a model. Note thatatiefs are modeled as being orthogonal

(uncorrelated).
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Figure 5.1: A visual representation of Russell’s (@02) hypothesized relationship between
the factorslocus of causality and stability, determined to be orthogonal, and six subscale
items from McAuley et al. (1992).

Russell (2002) then tests this model using the diatgnally obtained by McAuley et al.
(1992) (n = 380 college students). The resultcete that the model fits the data, with
7%(9) = 14.44p = .11. These values were obtained using LISRELI&8nfirmed these values
using EQS 6.3 and also obtained the values of CB85 and RMSEA = .039. Both fit indices
also suggest good model fit, as CFl is larger thercommonly used cutoff (.95) and RMSEA is
smaller than the commonly used cutoff (.06).

Based on the suggestions offered at the end oft€hdmf this thesis, it is likely that this
model is indeed a good representation of the caneé structure underlying the population.
Recall that both loading sizes and model size myeance both indices to show good fit when
there is actually a substantial misspecificatigreically, models with low loadings as well as
models with a large number of indicator variables/reshow good fit regardless of the size of

any misspecifications. However, in this particudase, loading sizes estimated to be average to
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high (all greater than .53) and the model is smatrms of the number of indicatos£ 6).
Thus, this model is likely a good representatiothefrelationship amongst these variables and

factors in the population.

5.1.2 Moddl 2

Russell (2002) offers an additional model of thkationship of théocus of causalityand
stability subsets. This second model is identical to theppesented above, except the two
factors are allowed to correlate. The author’sifigstion for this change is to see if allowing the

correlation will significantly improve the fit ohe model.
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Figure 5.2: A visual representation of Russell's (@02) hypothesized relationship between
the factorslocus of causality and stability, with the factors allowed to correlate, and six
subscale items from McAuley et al. (1992).
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For this model, the resulting chi-square indicated it also fits the data, with
2%(8) = 14.39p = .07. This result was confirmed using EQS 6.3 thiedndex values of
CFI =.982 and RMSEA = .045 were also computediffer@nce in chi-square values between
this model and the previous was also given by RUG¥02) as/?(1) = .05,p = .82, suggesting

that this second model does not lead to a sigmifizaprovement in fit over the first model.

5.1.3 Modd 3

In the model in which thiecus of causalityndstability factors were permitted to
correlate, the author allowed for LISREL 8.3 tareste the value of the correlation. It was
found that this correlation, estimated at .02, was nonsignificant. This, combined with thet
that the model with two uncorrelated factors appéao fit the data well, suggests that it is likely
that two distinct factors do exist in the populatio

As mentioned in the beginning of this sectionréhiegas been debate surrounding the
structure of the Causal Dimension Scale, partibutagarding the relationships amongst the
three proposed dimensions. Suppose, as in thenafigfudy by McAuley et al. (1992), that a
researcher wishes to test other possible modetbi®scale. Specifically, suppose they
suspected that there was one underlying factaalfaix items (indicators) presented in the
previous models. That is, instead of three iteraglilog on to théocusof causalityfactor and

three items loading onto tlstability factor, all six items loaded onto one common facto
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Figure 5.3: A visual representation of an alternatre 1-factor model with six subscale items
from McAuley et al. (1992).

Testing this model using EQS 6.3, | obtgi(®) = 186.599p < .001, with CFI = .502 and
RMSEA = .228. Judging by the value of the chi-squast statistic alone, this model does not fit
the data well. However, the information given tdoyghe CFl and RMSEA values can be used
to try and determine what the source or sourcesisgpecification might be.

In this case, both fit indices show poor fit (GFI95, RMSEA > .06). As was mentioned
at the end of the previous chapter of this theden both indices show poor fit, it is likely that
there is a serious misspecification in the modelsT it can be useful to take a closer look at
how both indices are behaving in order to deterrifing can figure out a possible source of
misspecification.

Notice in this scenario that while both indiceswhpoor fit, the value of CFl, .502, is
quite low when compared to the commonly used cutbf®5. The simulations carried out in this
thesis (specifically, 3.16, 3.17, 3.18, 3.19) showeat CFl is highly sensitive to latent structure
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misspecifications, to the point that the index’&sea will show very poor fit when a model is
omitting a latent factor that exists in the popiolat

Given what we already know about the fit of theti&ctor model in this scenario, the
high value of RMSEA combined with the very low valof CFI might suggest to us that this is a
case where the latent structure of the proposecehames not match the latent structure
underlying the population. Specifically, the propdsnodel is not including the correct number

of latent factors.

5.2 Reliability and Stability in Panel Models (Wheaton,et. al.)

The second set of data come frAssessing Reliability and Stability in Panel Modgjs
Wheaton, et al. (1977). When individuals are messon certain constructs of interest (or
factors) over time, the result is referred to asgbaata (or longitudinal data). It is often of
interest to study the relationships amongst vaemblkross time points. These relationships
amongst indicator variables and the underlyingdiscare often represented by a measurement
model.

In many cases, the factors have multiple indicgperstime point. For example, suppose
the factor of interest is general intelligence aow it changes throughout childhood and
adolescence. A researcher who is interested inthmwactor changes over time may measure a
number of indicator variables assumed to load getteral intelligence (such as the scores on a
vocabulary test, scores on a math test, and valtbldly) at different ages to determine if there is
a pattern of change.

Of concern to those working with panel data isgpecification of this measurement

model to best explain the relationships betweerabi®rs and indicator variables in such a
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situation where measurements are taken acrosspiauitne points. Wheaton, et al. (1977)
address the issue of representing not only théeekhips amongst indicator variables but
relationships amongst factors as well in the camépanel data.

A component of their original article involves détam a longitudinal study of the
effects of industrial development on individualsainural part of lllinois. The authors wished to
determine if certain social attitudes were stabler dime or if they were prone to change with
changes in the environment (the change, in this,dasing the industrial development). Six
attitude scales, along with a measure of educatmha measure of socioeconomic standing,
were administered to n = 932 individuals at thrifeint time points: 1966, 1967, and 1971.

While Wheaton, et al. (1977) developed and testz@ral different models to represent
the relationships amongst the variables of intethsse models were ultimately more complex
than the simulated models presented in this stadyaa a consequence contained modeling
components that were not examined in this thadmwever, the data used in the original study
have been used by various other researchers mpzttte model the relationships amongst the
variables of interest. A portion of the originataand variables are even used in the Lisrel (EQS
6) Program Model (Bentler, 2006) as a demonstration

Thus, the two models | discuss in the followingtems are those developed by other

authors for subsets of the original sets of vaesbl

5.2.1 Moddl 1

The first model of interest comes from Gonzaled @niffin (2001). An adaptation of the
data presented in the Lisrel Program Manual (Ber2@06), originally from Wheaton, et al.

(1977), here the authors focus only on four vaeshf interest: the scores on the Anomie scale
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as measured in 1967 (labeled “X1"), the scoresherPowerlessness scale as measured in 1967
(“X27), the scores on the Anomie scale as measird®71 (“X3"), and the scores on the
Powerlessness scale as measured in 1971 (“X47).

In the model presented by Gonzalez and Griffir0@0two latent factors are included,
one of which with the two Anomie scale variablezdimg onto it and the other with the two
Powerlessness scale variables loading onto it.atitigors allow the latent factors to correlate
and, based on the fact that the data are panelalima the error variances of the two Anomie
scale variables to covary with each other and the gariances of the two Powerlessness scale
variables to covary with each other as well. Nbt the loadings and error variances for each of
the two scale measurements are set to be equal.

P12

i i ; i
\;4/

Figure 5.4: Figure from Gonzalez and Griffin (2001) showing two latent factors, with two
indicator variables each. The model includes two eor covariance terms.
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Fitting this model to the data, the authors ol#dia non-statistically significant
chi-square test statistic valyg(@) = 2.969p = .563), suggesting that the model is a gooabfit f
the data. | verified this result using EQS 6.3, alsh obtained CFI = 1 and RMSEA = 0. Given
that both fit indices are at the extreme “good éitids of their respective scales, there is good
evidence to suggest that this two-factor model watrelated error variances is an accurate

representation of the relationships amongst thasahles in the population.

5.2.2 Moddl 2

Given the setup of the panel data used by Gonzaalezriffin (2001), it makes sense for
the authors to include the two error covariancebéir proposed model. Since X1 and X3 are
the same variable measured at different times (s@theX2 and X4), it is likely that there exists
some covariance between their error terms.

However, the case may arise in which an individwakking with this same set of data,
may not recognize the need to include covaryingréarms in their model. Suppose that
Gonzalez and Griffin’s (2001) original model isagesated by another researcher, the only

difference being that the two error covariancesoanéted.
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Figure 5.5: The same model as in Figure 5.4, excepith the two error covariance terms
omitted.

Testing this model using EQS 6.3, | obtained asttedlly significant chi-square test
statistic ¢?(5) = 63.868p < .001), suggesting that this model is a podiofitthe data. In
addition, 1 obtained CFI = .962 and RMSEA = .113slinteresting to note that in this case, both
the chi-square test statistic and RMSEA both shewntodel as having poor fit, while CFlI
shows good fit using the commonly used cutoff &6f While this model would be rejected based
on the chi-square value, it is of interest to skatwmight be causing the discrepancy between the
CFl and RMSEA values to possibly determine the s@off the misspecification.

In the previous chapters, it was found that RMSEBAare so than CFl, is sensitive to
misspecifications due to omitted error covarianespgcially in models with a small number of
indicator variables. Given that both the chi-squase statistic and RMSEA suggest that this
model is a poor fit to the data, it may be the ¢haéthis model fails to include covariance terms
that exist in the population.

Another possible source for the discrepancy betvid@nrand RMSEA values may be the

average loading sizes in the model. As was shovpnanious chapters, RMSEA appears to be
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affected by loading sizes, in that if loadings siaee large on average in a given model, RMSEA
is prone to being more sensitive to any sourceis$pecification. Again, however, it is useful to
note that RMSEA agrees with the chi-square teisitain this case. Given what we know

about the variables in this particular situatidre tiscrepancy between CFl and RMSEA likely
points to the omission of one or more error covan@s that should, in fact, be included in the

model.
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Chapter Six: Conclusion

In the final chapter of this thesis, | focus omtmain topics. First, | revisit the questions
of interest in this study, as first presented irakr 1, and discuss briefly how these questions
were addressed. Second, | discuss the limitatibtiteeacurrent study and offer suggestions for

possible future research.

6.1 Revisiting the Questions of the Study

In Chapter 1, four questions of interest werestisivith the goal of the present study
being to address each of these questions. In daminthe hope was that more information could
be gathered regarding how both CFl and RMSEA behatverespect to different modeling

conditions as well as different sources of misdpEation.

Question 1: To what extent is fit index value aéddy the source of the misspecification?
As has been shown in the previous chapters, CFRMSEA appear to be sensitive to
different sources of misspecification. SpecificaRMSEA seems to be more sensitive to
misspecifications due to omitted error covarianedsle CFl is more sensitive to
misspecifications of the latent structure of a modkis difference in sensitivity suggests that
combining the results of CFl and RMSEA when assgssiodel fit can help a researcher
determine the possible source of any misspecifindti a given model. Guidelines for

interpreting combinations of CFl and RMSEA valuesevgiven in Chapter 4, section 3.2.
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Question 2: To what extent is the relationship leetwthe degree of model misspecification and
fit index value moderated by different model coneptsf?

A key component to the present research was imgdualwide variety of models in terms
of different model components. Recall that modehponents, as defined within this study, are
any aspects of the modeling procedure that magtafidex value over and above any actual
misspecification. The model components of inteireshis study included loading size, factor
correlation size (in models with two or more lateatiables), model complexity, and model
balance (in models with two or more latent varighle

As was demonstrated in the previous chapters, ®btrand RMSEA are sensitive to
changes in certain model components, regardleteddize or type of model misspecification.
While such sensitivities cannot practically be akeai in many research settings (e.g., it may not
be ethical to increase the number of indicatos mnodel in order for RMSEA to show a better
fit), it is useful for researchers to know thaniyg such as model complexity and loading sizes
may have an effect on the behavior of CFl or RM3#&Ar and above any effects due to model

misspecification.

Question 3: Does the current research support geaf universal cutoff values across different
model and misspecification types?

It is clear from the results of this research #acific, universally applied cutoff values
for either CFl or RMSEA may not be the most appiaiprmethod of distinguishing between a
well-fitting model and a poor-fitting one. Whileishstudy did not examine the appropriateness
of the most commonly used cutoff values (.95 fot,dF6 for RMSEA), the wide range of

values attained by the fit indices across the waridifferent models suggests that any universally
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applied cutoff value would, in some cases, eithadla researcher to reject a model with only a
slight misspecification or to retain a model witkevere misspecification.

If any guidance can be given with respect to $eaf cutoff values, it relates to the
influence of loading size on fit index value. Inanly all modeling scenarios presented in this
study, loading size affected the sensitivity oftb@Fl and RMSEA to model misspecification. In
particular, lower loadings tended to corresponig$s sensitivity to misspecifications of any
type, while higher loadings tended to correspongréater sensitivity to misspecificaitons of any
type. Thus, as far as a broad guideline for theofiseitoffs, | recommend the use of stricter
cutoffs for models that contain, on average, lolwadings, and more relaxed cutoffs for models

that contain, on average, higher loadings.

Question 4: Can guidelines for the use of differadices under different models be developed?

This study revealed that CFl and RMSEA differ @msitivity to different combinations
of misspecification type and model components. Thu€hapter 4, a loose set of guidelines was
presented on how to interpret the combination df &l RMSEA values. In particular, when
the two indices disagree (e.g., CFl shows podsditRMSEA shows good fit), the guidelines
suggest a possible underlying source of misspeatidia.

While it is not possible in a real-life researetttisig to determine the actual cause of
model misspecification, such guidelines as preskint€hapter 4 allow for a “starting point” as
to what a possible source of misspecification mightThis is an improvement over simply
relying on the chi-square test statistic’s bindiy/ or “no fit” decision, as it allows for

researchers to locate possible points of modejustdent if it is deemed appropriate.
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6.2 Limitations of the Current Study and Possible Futue Research

The current study is limited in the sense thafoitsis was solely on confirmatory factor
analysis (CFA) models. The methodology of strudtaguation modeling encompasses a wide
range of model types, including path analysis nsdstuctural regression models, and latent
change models, among others. Since these othersnede= not included in the present study, it
cannot be said whether the results found here egyeberalized beyond CFA models, or even to
more complex CFA models (for example, models incvhatent factors load onto other latent
factors).

While most other research that examines fit ingetxavior has done so using CFA
models, as this study has done, there have beer f#udies that focus on how these indices
perform in different types of models, and to my Wiexige, no studies that examine performance
in as many modeling scenarios as presented hgves#ible direction for future research,
therefore, would be to examine the performancekifadd RMSEA in these other types of
models, particularly focusing on similar model caments (such as model complexity or
loading size) and their effects on index behavior.

Another limitation of the present study is theuds®n only three sources of model
misspecification, and each one in isolation. Teaeach source of misspecification—omitted
error covariance, omitted cross-loading, or missjgeclatent structure—occurred in a model in
which there was no other source of misspecificati@rmbinations of misspecifications, such as
a model containing an omitted error covarianceamdmitted cross-loading, were not examined
here. In reality, it is possible that a model magtain multiple sources of misspecification.

This leads to another direction of possible fune@gearch: examining the effects of

multiple sources of misspecification on index bebavSimilar models to the ones in this study
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could be examined, but containing not just one@of misspecification but perhaps two or
three. Examining multiple, simultaneous differemtires of misspecification is not something
that has been examined in much detail in the ctufiterature; thus, studying the effects of
multiple sources of misspecification on index bebrais somewhat of a new research direction.

A final limitation of this study worth mentionirig a limitation common to SEM
simulations such as those presented here. Becatise way the “hypothesized” and “true”
models were constructed in this study, | was abkntrol the source and severity of the
misspecification in every model. Thus, for any give/pothesized model, | knew the exact cause
of the misspecification as well as the degree efrtiisspecification’s severity, and was able to
generate guidelines on how to best combine CFIRIM&EA to determine possible sources of
model misspecification based on the simulationltesu

In reality, however, the “true” model is neverwadty known, and thus a possible
limitation of this study is that it may be difficub generalize my suggested guidelines to real
life modeling situations in which the source ore®s of misspecification may be more
complex.

An attempt to overcome this limitation was madermyuding models based on actual
theories and data in Chapter 5. In these applisds;dhe “true” model can never actually be
known. However, in Chapter 5, | first examined egsh-based models that appeared to
accurately represent the relationships amongsabigs in the population, and then compared
these models’ fit indices to other models that wbesed on theory, a “worse fit” than the well-
fitting models. The well-fitting models thus actasl good approximations to the “true” models,
and allowed me to compare more misspecified mddelsem to determine if my suggested

guidelines were useful in determining possible sesiof misspecification.
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Further research could be carried out in a sinfdghion: find models in the literature
that are well-established and considered to beratztepresentations of the population, obtain
other possible models that differ from the wellifiy model in certain ways (e.qg., a different
number of factors, different loadings, etc.), anthpare the CFl and RMSEA values of these
models to assess how well the guidelines givehigithesis can help aid researchers in assessing

the cause of misspecification in hypothesized nadel
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APPENDIX A: NAMES, SAMPLE DEFINITIONS, AND POPULATION DEFINITIO NS

OF COMMONLY USED FIT INDICES

Index Name(s) Sample Definition Population Defuriti

Comparative Fit Index (CFI)

t—df) — & —df) _F
i —dfy) F
Normed Fit Index (NFI)
Bentler-Bonnet Index (BBI)

o6 xi—x _F
BL XIZ Fy
Bollen’s Fit Index
A1
Bollen’s Incremental Fit Index
(IF1) xP—x? . E
BL89 xi —af
Normed Fit Index 2 (NFI2)
ip)

Non-Normed Fit Index (NNFI)
k i Xlz x
Tucker-Lewis Index (TLI) af ~dr . 5 de
Bentler-Bonnet Non-Normed Fit % _ df
I
Index (BBNFI)
Bollen86
2 2
o F‘ d
Relative Fit Index (RFI) dfl df ]
P “ar
AL
df;
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Appendix A (Continued)

Index Name(s) Sample Definition Population Defamiti

Root Mean Square Error of £
Approximation (RMSEA) E
Goodness of Fit Index (GFI) . X Tr[(z(‘g)—l(z*_z(@)))z]

x? T TrE® )
Adjusted Goodness of Fit Index 1 — CFI x (§> 1 _p(zz);;l) « (1= GFI)
(AGFI) !
Standardized Root Mean Square 2 ani(s.. e (R — R(D))?
Residual (SRMR) nn+1)Lay £uj VY p(p+1)
Gamma p p
2—-d + 2df (RMSEA?
pradi=gh PR )

Note.Wherep is the number of indicators,is the sample sizg? and y? stand for the chi-square
values for the independent (baseline) model anthypethesized model, respectivetif; anddf are
the degrees of freedom for the independent moaktramhypothesized model, respectivélyand

F, stand for the minimized fit function for the hypesized and independent models, respectively;

R* is the population correlation matrix, aR@d) is the model-predicted correlation matrix.
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