
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2016

Entity Linking with Convolutional Neural Network

Xu, Shunyi

Xu, S. (2016). Entity Linking with Convolutional Neural Network (Master's thesis, University of

Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/25915

http://hdl.handle.net/11023/3375

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Entity Linking with Convolutional Neural Network

by

Shunyi Xu

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 2016

c© Shunyi Xu 2016

Abstract

Entities are real world objects such as persons, places, or events that appear in natural language

text such as web pages, news, and journals. Entity Linking, a nascent field in Natural Language

Processing, is the task of linking entities in text to their referent entries in a Knowledge Base

(KB), which is a repository of information such as Wikipedia. There’s a huge application of entity

linking in automatic knowledge base population, prevention of identity crimes, etc. It can also

provide background information about unfamiliar concepts during document reading, rendering a

smooth and joyful reading experience without frequent “context switch”.

This thesis taps into the power of convolutional neural network, and proposes an architecture

that makes use of deep learning layers, convolution, max pooling, and fully-connected neurons

with dropout to approach the problem of entity linking. Based on a pre-trained word2vec word

embedding and another ad-hoc trained layer of word representation, we were able to outperform

previous state-of-art models, which handcrafted a large number of features, by a modest margin.

Visualization of the neural network is also provided in order to understand what happens un-

der the hood. Our experiment showed that it clearly captured the desired features, indicating the

efficacy of neural network in dealing with entity linking.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Reda Alhajj, for his unwavering

support and kind suggestions to my graduate research. His patience and inspiration has been a

beacon to guide me during the ups and downs of the project.

I would like to extend my appreciation to all my friends in the database group. Thanks to Alper,

who flipped my switch on in deep learning. Thanks to Zohbi, who engage me in several sensible

discussions about cultures and languages. Thanks to Abed, we’ve had an interesting experience

TAing python. Thanks to Gabi, Ibrahim, Salim, Omar, Kostas, and Sarhan who have made this

lab lively and laid generous support in coordinating group events and department-wide activities.

Thanks to Tamer, who treated us to a great feast in the group briefing. Thanks to Ayessha for

preparing plentiful materials in the database class, and being a great TA in pointing us in the right

direction. Last but not least, I would like to especially thank Manmeet for proofreading the thesis.

New to the lab, you have brought so much liveliness to our ambiance, and I hope you would realize

your dream of auto-translating novels in the near future.

I am also indebted to my friends in the other lab. Thanks to Linquan for being a good senior

buddy (shixiong), and may your sweet romance with Xueying blossom beautifully in the future.

Thanks to Yuhui for co-working on the deep learning model in CPSC 671. Thanks to Xunrui, Sijia,

Wei, Ruiting, Yang Liu, Yao Zhao for all the good days we’ve been together. I wish the best for

your future studies and career.

Finally, I would like to thank my family for their support through my entire life. This thesis is

dedicated to you.

iii

Table of Contents

Abstract . ii
Acknowledgements . iii
Table of Contents . iv
List of Tables . vi
List of Figures . vii
List of Symbols . viii
1 INTRODUCTION . 1
1.1 Problem Description and Terminology . 4
1.2 Contribution . 6
1.3 Thesis Structure . 8
2 RELATED WORK . 9
2.1 Entity Linking with Handcrafted Features . 9

2.1.1 Initial Effort and Textual Similarity . 9
2.1.2 Semantic Similarity . 10
2.1.3 Presented as Graph Problem . 11
2.1.4 Domains Other than Web Document . 12
2.1.5 Entity Recognition and Entity Linking in One Shot 13

2.2 Neural Network . 15
3 MODEL AND ARCHITECTURE . 17
3.1 Word Embedding . 17
3.2 Convolution and Pooling . 22

3.2.1 Convolution and Activation Layer . 22
3.2.2 Max Pooling Layer . 26
3.2.3 Everything Put Together . 27
3.2.4 Fully Connected Layer and Dropout . 30

4 DATASET AND ENVIRONMENT . 34
4.1 Tools and Environment . 34

4.1.1 TensorFlow . 34
4.1.2 Word2vec . 34
4.1.3 CUDA . 35

4.2 Dataset and Experiment setup . 35
4.2.1 Dataset . 35
4.2.2 Example of Test Data . 35
4.2.3 Problem Description . 36
4.2.4 Test Data Preparation . 37
4.2.5 Training Data Preparation . 39

5 RESULT . 40
5.1 Training and Validation . 40

5.1.1 Loss and Accuracy . 40
5.1.2 Training Set and Validation Set . 41

5.2 Variants of Baseline CNN . 44
5.2.1 Embedding Channels . 45

iv

5.2.2 Convolution Filter Window Size (fh) . 46
5.2.3 Number of Filters . 48
5.2.4 Convolution Layers . 54
5.2.5 Fully Connected Layer . 57
5.2.6 Dropout . 59
5.2.7 Comparison with Previous Approaches 61
5.2.8 A Note on Comparison with Previous Approaches 62

5.3 Visualization . 63
5.3.1 Dimension Reduction and 2D Plane Embedding 63
5.3.2 Occlusion Test . 70

6 CONCLUSION AND FUTURE WORK . 76
6.1 Conclusion . 76
6.2 Future Work . 77
Bibliography . 79

v

List of Tables

3.1 Summary of Variables . 33
3.2 Summary of Aforementioned Hyperparameters 33

4.1 Summary of the Dataset . 35

5.1 Default Hyperparameters Configuration . 44
5.2 Channels Effect on Accuracy . 45
5.3 Filter Window Size . 48
5.4 Number of Filters . 50
5.5 Different Configurations for Fully Connected Layer Neurons Experiment 57
5.6 Different Configurations for Dropout Experiment 59
5.7 Best Model Configuration . 61
5.8 Examples of Visualized Sentences . 64
5.9 The Sentences That Are Outlier . 69
5.10 Words Resulting in Top Probability Decrease in Entities 74

vi

List of Figures and Illustrations

1.1 Document Reader Application . 4
1.2 Entity Linking . 5

2.1 Referent Graph . 11
2.2 Coreference help resolve ambiguous cases of semantic types and 14
2.3 Artificial Neural Network . 15

3.1 Word Embedding . 19
3.2 Skip Gram Architecture . 20
3.3 n Channel Embedding Layer . 22
3.4 3D Convolution . 24
3.5 Sliding Across Input Volume . 25
3.6 Max Pooling with Window Size [2,2] and Stride (2,2) 27
3.7 Convolution and Max Pooling Applied to Embedded Entity/Context Input 29
3.8 Fully Connected Layer and Dropout . 31

4.1 Example of a Test Instance . 36
4.2 Problem Description . 36
4.3 TensorFlow Record . 38
4.4 Example of Augmented Google News as Training Corpus 39

5.1 Accuracy in Train and Validation . 42
5.2 Loss in Training and Validation . 43
5.3 Impact of Number of Filters . 51
5.4 Accuracy Distribution with Respect to Entity and Context Filters Ratio 53
5.5 256 entity filters of size 1 and 64 context filters of each size 2, 3, and 4 55
5.6 2048 entity filters of size 1 and 64 context filters of each size 2, 3, and 4 55
5.7 Performance with Respects to Neurons in Fully Connected Layer 58
5.8 Performance Comparison with Different Dropout Probability 60
5.9 Accuracy Comparison with GLOW and NEREL 62
5.10 Visualization of text on 2D Space with Dimension Reduction 66
5.11 Intra-cluster Distance . 68
5.12 2D Embedding of Entities with Large Intra-cluster Distance 69
5.13 Heatmap of Occlusion Test . 72

vii

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

KB Knowledge Base

NLP Natural Language Processing

NGD Normalized Google Distance

CRF Conditional Random Field

ILP Integer Linear Programming

CNN Convolutional Neural Network

w2v Word2Vec

IQR Interquatile Range

LDC Linguistic Data Consortium

viii

Chapter 1

INTRODUCTION

With the penetration of World Wide Web in our daily life, there is a drastic change in the way

people interact with information and acquire knowledge. Knowledge Base (KB), which is a repos-

itory of information, is a common source people turn to when there is a need to look up terms

or learn facts. Wikipedia is a well known site serving this purpose. Since its creation in 2001, it

has collected 5,223,573 fact entries, and provides reference for hundreds of thousands of visitors

from around the globe everyday. DBpedia [28], which is another site pivoting on similar ideas, is a

refinement based on Wikipedia and other information sources. It contains 4.58 million knowledge

entries, and is able to handle more sophisticated questions from users. Freebase [2], which is a

practical and scalable tuple database used to structure general human knowledge, serves also as a

prominent KB. Thus far, it contains more than 125 million tuples of more than 4000 varying types.

Many of these knowledge bases are built by crowdsourcing, which requires heavy human in-

volvement. The laborious, costly, and tedious process of information/fact extraction and labeling

significantly limits the coverage of knowledge bases. It would be more efficient if we could au-

tomatically populate the knowledge base using facts/information that already exists out there in

the web. Thus came the Automatic Knowledge Base Population, which is a nascent and hot field

in Natural Language Processing (NLP) recently [22] [10] [1] [29] [8]. A lot of KBs sprouted out

under this principle. Typical examples are YAGO [49], NELL [4], and Reverb [12].

Automatic Knowledge Base Population is challenging due to the inherent deficiency of current

web layout. The web is mostly unstructured, with no unified approach to automate the process

of accessing the data/fact/information therein. This calls for the need of appropriate information

retrieval technique, which targets to retrieve the relevant information from unstructured sources.

Information retrieval is often entity-centric. Entities are real world objects such as a person, a

1

place, an organization, etc. Given any document, we are generally concerned about such questions

as what words in the text represent entities, what the relation among them is and what real world

objects they actually refer to. This brings up three important and closely-related tasks that can

form a processing pipeline if necessary.

• Named Entity Recognition: Named Entity Recognition, or NER in short, identi-

fies spans of words in text that refer to some entity, and figures out what type it is.

Common types include People, Location and Organizations. In a special domain,

named entities may also refer to terminologies exclusive to that area. A typical

example would be Genes in bio-informatics.

• Relation Extraction: Given two identified tokens representing entities, relation

extraction aims to figure out the relation between them. For instance, given two

person names about education, identify who is the teacher and who is the student.

Relation extraction can be closed-domain or open-domain. In closed-domain, a

pre-known set of constraints such as fixed type of relation are imposed, while in

open-domain, there’s no such restriction.

• Entity Linking: Both NER and relation extraction deal with type, i.e., is this entity

of type person or are these two entities associated with relation type couple. En-

tity linking answers questions directly about instance, i.e., is this entity Bill Gates

or Steve Jobs. That said, entity linking tries to understand the candidate words,

and maps it to its real world object representative, which is usually an entry in the

knowledge base.

Entity linking is a critical last step in automatic knowledge base population. It aligns what

we find in the document directly with the knowledge base. In addition to many of its inherent

difficulties such as scale of data, this task is mostly complicated by the ambiguities and varieties

of language. For example, the “Clinton”, in the news “Speaking at a community college in Reno,

2

Nevada, Clinton said Trump had brought a racist fringe into the mainstream in a way that no other

major party nominee had in American history”, is clearly a political figure that co-occurs with

Donald Trump quite often. However, it’s not clear whether this Clinton refers to Bill Clinton or

Hillary Clinton. Further context is needed to reveal the true Clinton in this case.

In some situations, the same entity could go by different names. For example, in the text

“There’s no place quite like New York. The Big Apple is the top travel destination in the U.S.” ,

both “New York” and “Big Apple” refer to New York City. Nicknames, in this case, also need to

be resolved to the right entity.

Since the ability to disambiguate a polysemous name or infer whether two orthographically

different mentions are the same entity is involved, the task of entity linking sometimes goes under

the name entity disambiguation. In the remaining parts of this thesis, we will use these two terms

interchangeably.

Outside automatic knowledge base population, entity linking also sees huge applications in

other areas. For example, in health science, it is useful to link documents of patients to some

health repository in order to maintain personal health records. In criminology, linking criminals to

a crime knowledge base may help facilitate research in crimes, prevent identity crime, and support

law enforcement. [38]

Another possible and potentially popular application of entity linking is to bring explanatory

links to named entities in all documents. It saves readers the trouble of manually searching the

Internet to look up terms and makes their reading experience more smooth and joyful.

Figure 1.1 depicts such an application. In a snippet of academic paper, all entities recognized

are highlighted in blue, and if user clicks on one of them, its referent Wikipedia entry pops out.

In this example, singular value decomposition is the entity linked. Readers can quickly grasp

knowledge about it without “context switching” to other tasks. As a result, readers can remain

consistently in the reading session without getting disrupted.

3

Data were preprocessed using statistical parametric mapping software

(SPM12).50 Functional volumes were rst slice-time corrected and then

motion corrected.

There were no signi cant di erences between groups/time in mean

relative motion and max absolute motion (see Supplementary Information

for descriptive statistics).

Processing in both EVC and ROI to voxel analyses We extracted a

principal time series from the white matter (WM) and cerebrospinal uid

using singular value decomposition.

We used these two signals and the motion parameters from the

preprocessing in a multiple linear regression at each voxel. We extracted

the residual time series from each voxel, which represents the time series

Figure 1.1: Document Reader Application

1.1 Problem Description and Terminology

We formalize the entity linking task and the terms involved therein as below.

Definition Entity Mention/Surface Name: Given a snippet of text/document, the phrases suspi-

cious of referring to some entity is called Entity Mention or Surface Name.

For example, in the text “Michael Jordan is a renowned fellow in machine learning”, the

phrase “Michael Jordan” is suspicious of referring to an entity, and is called entity mention or

surface name of some person named “Jordan” in the real world.

Definition Canonical Name/Ground-truth Name: The name phrases used to refer to the real entity

in the knowledge base.

Using the previous example, we know that the surface name “Michael Jordan” actually refers

to the “Michael I. Jordan” who is a professor at University of California, Berkeley and leading

4

researcher in machine learning. So the canonical name, or ground-truth name in the terminology

of labelled/golden dataset, is “Michale I. Jordan”. Usually we make whatever appears as the title

entry in the knowledge base its canonical name. In this work, we make the entry of Wikipedia its

canonical name. Some other examples of entities that go by the surface name of “Michael Jordan”

are: “Michale Jordan (basketball)”, “Mike Jordan (racing driver)”, and “Michael B. Jordan”

(who is an American actor).

Definition Entity Linking: Given a document set D, for each document d ∈ D, which contains an

entity mention m, create a mapping from m to its referent real world entity e in the knowledge base

K.

Figure 1.2: Entity Linking

Figure 1.2 depicts the complete setting of entity linking according to the above definition. The

document set contains multiple documents, and each document comprises of the entity mention

and context. The context is everything other than the entity mention, and it is supposed to help our

model understand what the entity really is, and aid in the linking task. For each mention in every

document, we create a link to its referent entity in the knowledge base.

5

1.2 Contribution

In recent years, many techniques have been proposed to solve entity linking problem using Wikipedia

as the knowledge base. They usually explore three types of features.

The first one is entity popularity, which is a statistical feature. It’s based on the simple as-

sumption that the most prominent entity is usually the most likely referent entity for a given entity

mention. The way they justify “prominent” is based on how often the entity uses certain surface

names, and the frequency is counted by making use of the anchor text of a Wikipedia hyperlink.

This is a very simple heuristic approach that may work for many cases. However, it lacks the

intelligent depth and flexibility to work with cases that use more rare surface names. Regardless

of the context that come along, any surface name will be linked to one entity, which is the entity

that uses this name most. As a result, this approach is stranded in one fixed point, and we will see

a unanimous and monotone outcome for the same entity mention.

The second feature is context similarity, which is a textual feature. It complements the first

problem by taking context into consideration. It defines some similarity measure and estimate how

close the text surrounding an entity mention is to the document in the knowledge base describing

the entity. Though the specific similarity measure varies, it largely depends on exact word overlap,

which is often too strict a restriction. It also fails to take the semantic similarity of words into

consideration. For example, “round” and “circle” may be drastically dissimilar because they are

so different literally. However, they are close in semantic sense.

The third feature is called topical coherence. Instead of addressing this task from a word’s

point of view, it abstracts the document on a topic level, and compares their similarity in terms of

topic. The rationale behind this is that the referent entity in the knowledge base should describe

similar topic to that of the entity mention in any unstructured text. This approach has some flavor

of semantic similarity.

Different from all the previous approaches, we propose to use convolutional neural network

to tackle the entity linking problem. We separate entity and context, embed them into a high

6

dimension continuous space, and use convolutional neural network to automatically pick up the

features in the training example. We combine the features generated and use a linear classifier to

assign them to the relevant entity.

What sets us apart from all of the above feature-oriented approaches is that the neural network

can figure out the key features in the training sample, and step on the course it deems appropriate

without human intervention. This saves us a lot of trouble in handcrafting the features, and deciding

which are useful and which need to be discarded. It also removes subjectivity from determining

the fate of features, which is not always correct.

In addition, the convolutional neural network can implicitly calculate the statistical feature of

the samples. Terms that appear more often will assign heavier weights to their connected neurons,

and as we feed tens of thousands of training samples, the network implicitly picks up the statistical

counts for us.

Our neural network can also address the exact-word-overlap problem in the context similarity

approach. Since we used word embedding, it will map words with similar semantic to closer spatial

positions. Hence, instead of working on literate/textual similarity, we are dealing with semantic

similarity.

The neural network is also able to implicitly figure out the topic. Since words that appear more

often in certain entity will be seen by the neural network, they can be interpreted as the topical

words of the entity. For example, the neural network might see Barack Obama co-occur with US

president, Black, and Democrats. These can be seen as the topical words for the entity Barack

Obama and any surface name whose context contains these words is likely to be a well-defined

evidence to refer to Barack Obama.

To some degree, our model could be seen as a superset of these three features, because it

automatically incorporates them, and is not restrained from discovering more. We can rely on the

neural network to discover features for us, and leave it to decide which are important and which

are not.

7

Besides, we constructed a training dataset based on a commonly used test dataset. Previous

test data sets are mostly feature based, and are used with unsupervised approaches. There is a lack

of an appropriate training set in mind. Since training is an inevitable part in neural network, we

constructed a set of training data by crawling Google news. This training dataset could be useful

for future research under similar scope.

1.3 Thesis Structure

The rest of the thesis is structured as following. Chapter 2 provides background and related work

on entity linking. Chapter 3 details the model we propose to use and elaborates on the convolu-

tional architecture we bring forth. Chapter 4 describes the dataset for experimentation and some

pre-processing mechanisms. Chapter 5 illustrates our experiment results, and introduces some vi-

sualization primitives to better understand the neural network. Last but not least, we conclude in

chapter 6 with summaries and future work.

8

Chapter 2

RELATED WORK

We survey some of the related literature in this chapter and present them in the following sections

of Entity Linking with Handcrafted Features and Neural Network.

2.1 Entity Linking with Handcrafted Features

We categorize the work into the following subsections based on the methodologies they use, and

each of these subsections will showcase a separate aspect of the entity linking research. Please be

advised that the categorization is not necessarily disjoint, so some papers may actually have used

a plethora of methodologies.

2.1.1 Initial Effort and Textual Similarity

Wikipedia was first used for entity linking in the work of Bunescu and Pasca [3] in 2006. They

trained a Support Vector Machine (SVM) to exploit the lexical contents of Wikipedia pages. They

made direct textual comparison between the query document and the Wikipedia page with cosine

similarity. However since they needed to train a separate SVM model for each entity mention, their

proposal could only be carried out in a very limited scale.

Subsequently, in the work of “Wikify: linking documents to encyclopedic knowledge” [33],

Mihalcea and Csomai combined keyword extraction and entity disambiguation into one system.

They experimented with two approaches in the disambiguation part, one was to compare the lexical

overlap between the candidate Wikipedia entries and the query document, and the other was to

train a Naive Bayes classifier for each entity mention. Again they suffered the problem faced in [3]

because it requires one classifier per mention.

9

2.1.2 Semantic Similarity

All above methods focus on textual closeness between the query document and knowledge base

entries. They are a) very strict with words overlap and b) fail to measure the semantic similarity

between them. For the latter point, there exists abundant of information in the Wikipedia that was

often neglected by previous methods.

In view of this, Cucerzan [9] presented a large-scale system for entity disambiguation by incor-

porating more non-literate features. They employed a vector based comparison model using the

disambiguation pages, redirects, and categories available on Wikipedia.

Milne and Witten [34] made use of the anchor text in links, and used a self-defined commonness

and relatedness metric [55] [32] to measure the semantic similarity between entity mention and

entity entry in the Wikipedia. They also combined entity linking with entity recognition. Different

from traditional linking cult, which identified the entities first before linking them to the KB, they

linked the entities first and used the linked probability to decide if it’s good enough to get linked

anyway.

Ratinov et al. [39] proposed a local and global approaches to address entity linking problem. In

their phrases, local referred to the textual similarity between entity mention (along with its context)

and the Wikipedia pages and each mention was linked independently. On the other side, global

was a set of features that were based on the entire document and all mentions were disambiguated

concurrently in order to produce coherent results. For example, if a mention of Michael Jordan

refers to the machine learning professor in the document, then the mention of Monte Carlo is ex-

pected to refer to the statistical technique instead of the location. Features used in global approach

are Normalized Google Distance (NGD) and Pointwise Mutual Information [55]. They exploited

the incoming and outgoing link structures of Wikipedia, and it was a refinement of previous works.

10

2.1.3 Presented as Graph Problem

Han and Zhao [17] proposed social relatedness to represent the similarity of entities in the sense

of a potential social network. For instance, in the Wikipedia article of Michael I. Jordan (recall

from our introduction section that this is the machine learning professor instead of the basketball

superstar), it contains a lot of key words related to other machine learning big name such as Andrew

Ng and David Blei. This indicates that the Jordan in any text co-occurring with Andrew Ng or

David Blei is more likely to be referring to the machine learning Michale I. Jordan. Aware of this

concept of similarity, Han and Zhao built a concept graph to represent closeness between entities

keywords. The concept graph features a set of nodes which represent entities in the Wikipedia

repository. The edges between node represent relatedness between concepts. The smaller the

weight, more related the neighboring entities are.

Along the line of presenting the problem as a graph problem comes the work of Han et al.

[16], which incorporated more nodes into the graph. They defined a Reference Graph, which also

incorporated mentions explicitly in the graph.

Figure 2.1: Referent Graph

As shown in Figure 2.1 [16], the entity mentions are denoted in white oval boxes and the

canonical entities are shown in grey rounded rectangular boxes. There are two kinds of edges. The

edges between grey boxes are compatible index. They show how close the referent entities are

11

in real world. The edges between white box and grey box are semantic-related index between a

mention and a canonical entity. Throughout the process, the evidence score of a mention referring

to certain entity is calculated and in the end, the entity that has the highest evidence score multiplied

with some compatible score is the mention’s true canonical entity. The graph’s weight is iteratively

updated, with an initial weight assigned according to the prior importance score to each name

mention based on tf-idf index, which serve as the bootstrap evidence. The evidence is further

propagated through the two kinds of edges in different ways.

Inspired by a similar idea, Hoffart et al. [19] unifies previous approaches into one compre-

hensive framework. It combines the prior probability of an entity being mentioned, the similarity

between context and entity, and coherence among candidate entities for all mentions together.

Different from some of its previous work, it used a knowledge base derived from Wikipedia and

YAGO.

2.1.4 Domains Other than Web Document

Using similar taste of graph, Shen et al. [43] extended the general domain of text, which is usually

in the form of web document, into the world of Tweets. In this special domain, text is notoriously

known for being noisy, short, and informal. Besides, since previous methods largely relied on the

context around entity mention and topical coherence between entities in the documents, the tweet

entity linking task becomes extremely challenging due to insufficient context information in the

tweet. In order to combat this issue, the author assumed that each user has an underlying topic

interest distribution over various named entities, and integrated intra-tweet local information and

inter-tweet user interest into a graph. Throughout the process, an interest score, a weight of node,

is calculated and propagated. In the end, whatever entity that enjoys the highest interest score is

the inferred entity for a given entity mention.

In addition to that, Shen et al. [42] extended the domain into heterogeneous information net-

work, which is a generalization of documents that lack features specific to Wikipedia related

12

knowledge bases such as social media networks and bibliographic networks. They proposed a

probabilistic model to approach the entity linking task under such setting. Particularly, it fea-

tured an entity popularity model that measures how popular an entity is, and an entity object

model that captures the distribution of multi-type objects appearing as context of the entity, which

is generated using some meta-path constrained random walks over the network. They used the

expectation-maximization (EM) algorithm to automatically learn the weights for each meta-path,

which requires no training data.

2.1.5 Entity Recognition and Entity Linking in One Shot

There are also works that combine entity recognition and entity linking together. Different from

previous “combination” such as in [33], which is merely a pipeline that achieves these two tasks

separately, Sil and Yates [44] proposed a probability model that completed these two tasks at the

same time. Besides, it also used a combination of Freebase and Wikipedia as their knowledge

base, because they provide richer type information. Since it performed joint entity recognition and

entity linking, the canonical problem of entity linking was perturbed to a slightly different problem

as such: Given any document d, identify a set of tuple (b,e) where b is some candidate mention in

the document and e is the referent entity in the knowledge base. They decomposed the document

into small connected components, where each connected component is a set of candidate entity

mentions that are within three words apart from each other, a simple heuristic adopted by them in fit

with their dataset. They argued that, candidate mentions that are close can be analysed collectively

because their features can enhance each other’s recognition and linking accuracy. They then used

maximum-entropy model to estimate the posterior probability of a candidate mention b given the

document d and a connected component cc of d, aka p(b|d,cc). The maximum-entropy model will

employ a set of feature functions (such as those features we covered in the introduction chapter),

and each feature is associated with some weight. They took the L2-regularized conditional log

likelihood (i.e., sum of log of all such p(b|d,cc) plus L2 weight sum) as the objective function to

13

maximize in training, in order to learn weights.

Guo et al. [48] also considered joint mention detection and entity disambiguation, but their

technique were suited for microblog texts, which are short, and able to afford more computa-

tionally expensive approaches. They used a structural SVM algorithm [40] [52] [6], which is a

generalized SVM algorithm that can output structured labels. In addition, they used Wikipedia as

the knowledge base.

In a more bold attempt, Durrett and Klein [11] proposed a joint model to address coreference

resolution, entity recognition and entity linking in one joint model. Coreference resolution [46]

[35] [37] is a task to identify cluster of entity mentions in a document referring to the same entity.

This is based on the observation that these three tasks are usually closely related.

Figure 2.2: Coreference help resolve ambiguous cases of semantic types and

entity links

For instance, in the Figure 2.2, The company co-refers to Dell, and we know The company

is clearly describing a company, therefore Dell is of type Organization (in entity recognition’s

type terminology) and the linked entity should be Dell, the company, rather than Dell, the person.

They proposed a structured Conditional Random Field (CRF) to solve this problem. CRF is a

statistical technique introduced in [26] and is widely adopted in applications of [13] [51] [54]. It

uses “neighboring” samples to predict a label for a single sample, so they can produce consistent

outcome.

Similarly, Cheng and Roth [7] unified relation extraction with entity linking. They argued that

14

the relation between entities can provide richer information to augment the entity linking task. As

a result, they formed an Integer Linear Programming (ILP) that incorporates relation inference and

entity linking in one problem.

2.2 Neural Network

Neural Network is a classic technique used in machine learning and pattern recognition [18] [41]

[20] [31] [5].

Figure 2.3: Artificial Neural Network

As demonstrated in Figure 2.3, the neural network features an input layer, a hidden layer of

neurons, and an output layer. Neurons in the hidden layer are fully connected with all input layer

signals and output layer neurons, where each connection features a weight that captures the im-

portance of this connection. Each neuron’s output is based on the weighted sum of its connected

input, following some activation function, which introduces nonlinearity to the entire network. In

the training, calculations propagate from input layer to hidden layer and to the output layer, which

15

is called forward passing, and after some cost function is calculated and the gradients of variables

are known, the gradients are passed back in the reverse direction, which is called back propaga-

tion. Thus, we can adjust the weights of the neural network to optimize some user defined objective

function.

Convolutional Neural Network (CNN) is a variant of the classical neural network. Different

from traditional neural network, CNN uses neurons only to observe a subset of its input volume,

which means it’s not fully connected. As a result, the number of parameters is largely reduced.

We can fuse multiple layers together in CNN, with bottom layers discovering primitive patterns

and top layers constructing sophisticated patterns. CNN has seen tremendous success in computer

vision [25] [24] [27] [23].

There is currently not much work addressing entity linking using convolutional neural network.

We are only aware of three such pieces. Sun et al. [50] proposed using CNN to encode both the

query document and positions therein to a feature vector, and compare it with Wikipedia entries,

encoded by another CNN on its title and type, using cosine similarity. Francis-Landau et al. [14]

proposed to encode entity mention, context, and document level information to a vector using

CNN. They then mapped Wikipedia articles to vectors using a different CNN to encode their titles

and main contents. They compared the mention and candidate Wiki pages using cosine similarity.

Huang et al. [21] combined CNN and Knowledge graph which is a refinement of previous pure

graph based presentation.

Our work differs from [50] and [14] in that we don’t use cosine similarity and we treat it more

as a classification problem rather than a ranking problem. Besides, we are able to construct more

layers than theirs. Our work differs from [21] in that they formulated the problem more as a graph

problem, while we treat it as a classification problem that can be solved with CNN.

16

Chapter 3

MODEL AND ARCHITECTURE

3.1 Word Embedding

Word Embedding [30] [15] [36] is a way of distributed representation of words in continuous high

dimension space. Traditionally, words are treated as discrete atomic symbols. The one-hot vector

model, which once gained traction, is a typical representative. In the one-hot vector, each word is

denoted in a Z|V | binary vector, where |V | is the size of vocabulary. 1 only appears at the index of

the word in some sorted vocabulary while the remaining positions are filled with 0. For example,

the word cat, dog, zone will be denoted as following in some made-up vocabulary, where cat, dog,

zone is the first, third, and last word of that vocabulary after sorting.

encode(cat) =



1

0

0
...

0


, encode(dog) =



0

0

1
...

0


, encode(zone) =



0

0

0
...

1


(3.1)

However, these encodings are arbitrary, providing no useful information that reveals their rela-

tion.

encode(cat)T · encode(dog) = encode(cat)T · encode(zone) = 0 (3.2)

For example, in Equation 3.2, the inner product of cat and dog, and that of cat and zone are both

zero, which means they are equivalent from a mathematical perspective. However, cat and dog

share similar meanings, and from a linguistic point of view, their dot product, also known as cosine

17

similarity, should be smaller than that of cat and zone. This is a property that cannot be guaranteed

under one-hot vector model. Besides, discrete data symbols can also lead to data sparsity problem,

which means we will need more data to train the model.

Therefore, we need a better word representation model that can express the similarity of words.

Word embedding is such a model so that similar words could be mapped to close positions in high

dimension space. A reasonable word embedding model could perform the mapping of above three

words into the following vectors.

encode(cat) =



0.3

−0.2

1.4
...

2.33


, encode(dog) =



0.4

−0.1

1.23
...

3.1


, encode(zone) =



0.3

5

−2.5
...

−12


(3.3)

This time, each coordinate of encode(dog) is a slight offset from encode(cat), while that of

encode(zone) is vastly different from encode(cat). One can reasonably deduce that cat and dog are

more closely related than cat and zone.

Turian et al [53] presented a illustration of embedded words after dimension reduction in the

2D space. As shown in the Figure 3.1, similar words such as numbers (three, four) are close to

each other, forming some kind of a number region, while title terms such as president and executive

share a region of themselves on the right side.

Word embedding is usually obtained with neural network training. Two models are particularly

favoured in practice. CBOW (Continuous Bag of Words), is known for generating the middle word

given its left and right context, while Skip-gram features predicting left and right context given

the middle word. Figure 3.2 presents the neural network used in training word embedding under

Skip-gram architecture, because it reportedly does a better job for infrequent words than CBOW 1.

1https://code.google.com/archive/p/word2vec/

18

https://code.google.com/archive/p/word2vec/

Figure 3.1: Word Embedding

In the figure 3.2, W and W ′ are two embedding matrices to be learned, W is the input matrix,

and W ′ is the output matrix, which is used in our next layer. Given a training document of words

sequence wi−C,wi−C+1, · · ·,wi−1,wi,wi+1, · · ·,wi+C−1,wi+C of a left/right context window C, it

seeks to maximize the log probability of context words given the center word wi, under strong

conditional independence assumption (i.e., context words are completely conditional independent

on center word).

The input xi is word wi expressed in one-hot vector mode, and the output y1,y2, · · ·,yC is inter-

preted as the probability distribution among the vocabulary at each context position (for simplicity,

let’s just discuss about the right context for now because the left context is symmetric). In the

training, we get the word embedding ui for word wi via the input embedding matrix W . We have

ui = Wx. This will set hidden layer h = ui. We then get the score for each of the C context

words vi−C, · · ·,vi−1,vi+1, · · ·,vi−C using v = W ′h. We treat this score as unnormalized log prob-

abilities, which means we need to apply softmax function to get the real probability. Hence the

y = so f tmax(v) is used to get the probability. Ideally, we want this y to be like the true probability

where each y is the one hot vector of the actual context words.

That said, the objective function is defined as below, where we can train to get the embedding

19

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

WV * N

V-dim

N-dim

h

Input Layer

xi

Hidden Layer

Output Layer

y1

y2

yC

C * V-dim

W'N * V

W is initial input embedding

W' is output embedding

Both need to be learned

.

.

.

Figure 3.2: Skip Gram Architecture

20

W and W ′ via stochastic gradient descent.

maximize J = logP(wi−C,wi−C+1, · · ·,wi−1,wi+1, · · ·,wi+C−1,wi+C|wi)

= log
2C

∏
j=0, j 6=C

P(wi−C+ j|wi)

= log
2C

∏
j=0, j 6=C

P(vi−C+ j|ui)

= log
2C

∏
j=0, j 6=C

exp((vi−C+ j)
T h)

∑
|V |
k=1 exp((vk)

T h)

The second equality is based on strong conditional independence assumption, the third equality is

due to the embedding of words, and the last equality is the softmax function.

After the embedding matrix W ′ is obtained, we retrieve it to be our first channel of embedding

table. We denote it as our W1, channel 1 lookup table. Given any word wn in the document, W1(wn)

maps the word to Rd , d dimensional space. This serves as our baseline embedding approach. We

could also add another channel of word embedding by using lookup table W2. W2 could be learned

along the way in our entity linking task. Different from W1, which is solely learned in a language

model setting and applied to generic articles, we can mandate W2 to be task specific, its parameters

fine tuned to our entity linking task. One common practice might be to pre-train W1 using the

architecture described in Figure 3.2 and keep its parameters fixed during the entity linking training,

while randomly initializing W2 and adjusting its parameters on the fly during training. This way,

our word embedding not only provides generic semantic word relation known from channel 1, but

also offers task specific word relation from channel 2.

In theory, we could use many number of channels as we want. Figure 3.3 illustrates a uni-

versal architecture for our embedding layer. There are n channels of embedding, where EW1 is

the embedding matrix as described above. EW2, · · ·,EWn could be some other embedding tables.

The document d is taken as input, and it is further split into two subcomponents: context dc and

entity de, with surface names replaced by some placeholder symbol. Each of these subcompo-

21

nents go through the same n embedding tables, producing n channels of encoded result for both

context and entity. We denote xc = [x1
c ,x

2
c , ...,x

n
c] as the n channels encoded context vector and

xd = [x1
d,x

2
d, ...,x

n
d] as the n channels encoded entity vector. xc and xd are further fed into subse-

quent layers for entity linking.

When

Gerald

Ford

took

oath

as

the

president

of

United

States

Figure 3.3: n Channel Embedding Layer

3.2 Convolution and Pooling

3.2.1 Convolution and Activation Layer

Convolution is a mathematical operation applied on two functions that produces a third, modified

function. In 1-D space, the convolution h is expressed in the following in terms of a kernel function

f in domain of [1,m], and an input function g in domain of [1,n].

h(i) = (f ∗g)(i) =
m

∑
k=1

f (k)∗g(i− k+m/2) (3.4)

22

One way to think of convolution is to flip the kernel function, which is a fixed window of length

m according to above definition, and slide it over the input. For each position of the flipped kernel,

we multiply the overlapping values of the flipped kernel and the input, and add up the results.

The convolution can be easily extended to 2D space, especially in image processing. Given a

kernel matrix of shape [mr,mc], and an input image g of shape [nr,nc]. The convolution at position

i, j is as following

h(i, j) = (f ∗g)(i, j) =
mr

∑
k1=1

mc

∑
k2=1

f (k1,k2)∗g(i− k1 +mr/2, j− k2 +mc/2) (3.5)

As with 1D convolution, the 2D convolution can be thought of first flipping the kernel matrix

horizontally and vertically, and then sliding it over the input image to get summation of product

of overlapping values. And again, it is a linear combination of the areas covered in the window of

length [mr,mc] as defined by the kernel f .

In NLP, our input g, which is xc or xd obtained from the last section, contains at least 2 di-

mensions. The first dimension is the number of words in the text, and the second dimension is the

dimension d used in word embedding. In case we use multiple channels of embedding, there is a

third dimension: number of embedding channels. That calls for convolution of 3D space. Similar

to 2D convolution, the 3D convolution is simply a 3D kernel matrix (flipped horizontally, vertically

and depth-wise) applied to a 3D input, where the result is simply a linear combination of values

covered by the sliding window as defined by the 3D kernel matrix.

Figure 3.4 illustrates an example of convolution structure in 3D space. The left light green

volume is the input g (for convenience, we abuse the definition of g, which means function of

input above, to generally refer to input space) with a dimension of [gh,gw,gd], which respectively

represents the dimension along height, width, and depth axis. The blue circles are kernels f . In

the terminology of neural network, it’s neurons that carry out the kernel functions f . There are

n neurons, which indicates that there are n different kernels f1, ..., fn. For any kernel fi, let its

3D flipped matrix be Wi and is of shape [fh, fw, fd]. For any region x ∈ g covered by the kernel

window such as the small green volume in the figure (x is also of shape [fh, fw, fd]) , it computes

23

gw

gh

gd

f1

f2

y1

y2

.
.
.

.
.
.

yn
fn

x

y1
x

y2
x

yn
x

Figure 3.4: 3D Convolution

the convolution as following

hx
i =Wi x+bi (3.6)

where bi is some offset value carried by the neuron, and Wi and x perform dot product.

The output hx
i is further applied on an activation function, which throws off value that isn’t

good enough to pass some threshold. In this model we use rectifier function, which simply cuts

off negative h to zero. A unit performing rectifier function is known as rectified linear unit (relu).

Hence, the output of the neuron is

yx
i = relu(hx

i) = max(0,hx
i) (3.7)

which is the dark green patches on right. Since the neuron not only performs convolution on input

regions, but also discards certain values, it’s essentially a filter that cuts off bad result. Hence

neurons are also called filters. In the sections that ensue, we will abuse this terminology, and call

neurons, kernels, filters interchangeably.

We slide the volume x across the height and width plane (or spatial plane) of input in a left-right

and top-down fashion, convolve each volume with filters, and obtain what is known as the feature

24

map yi for each filter fi. The feature map is simply the conglomerate of all possible yx
i , and it

represents features as seen by filter fi due to convolution, hence the name.

Figure 3.5: Sliding Across Input Volume

There are many ways to slide the volume x across the spatial plane, as mandated by the sliding

parameters sh and sw, the length of one stride along height and width axis. They control the

granularity level on which to perform convolution. As shown in Figure 3.5, volume x2 is the next

to-be-convolved region given a horizontal stride from x1, and x3 is the next to-be-convolved region

given a vertical stride from x1. If sw < fw, there is overlap of regions between two consecutive

convolution horizontally. If sw ≥ fw, no overlap of regions between two consecutive convolution

can happen horizontally. The same is so true vertically with sh and fh. Generally, in complicated

tasks where one doesn’t want to miss any patterns, it makes sense to set both horizontal and vertical

stride to be 1, so that it convolves with every neighboring region. Otherwise, one can set more

lenient stride values to lessen computation burden and save training time.

There is padding (of zero) outside the input region, because we don’t want to miss the con-

volution centered around some of the edge positions. Generally, we make horizontal padding and

25

vertical padding the same, denoted as p in the figure. For any filter fi of shape fh and fw, and stride

parameters sh and sw, let yh and yw denote the height and width of output feature map yi obtained

by convolving fi with the entire input g with padding p. We have

yh =
gh− fh +2p

sh
+1 (3.8)

yw =
gw− fw +2p

sw
+1 (3.9)

In summary, the convolution (and activation) layer of n filters, takes an input of shape [gh,gw,gd]

and produces n feature maps of shape [yh,yw] by convolving each filter with the sub volumes of the

input in a way determined by each filter’s shape and stride parameters. The output feature map is

further fed into the next layer, which we shall explain next.

3.2.2 Max Pooling Layer

The Max Pooling Layer selects the most important features seen from previous convolution layers.

Another effect of this layer is to downsample the input volume spatially, because other lesser

patterns are discarded.

For all the feature map yi generated from previous convolution layer, the max pooling is

parametrized by a pooling window of shape [ph, pw], the height and width of the window, and

stride value of shape (psh, psw), the stride length along height and width axis. For any region

yx
i ∈ yi of shape [ph, pw], the max pooling selects the maximal value in the region yx

i .

zx
i = max

t∈yx
i

t (3.10)

The output of the max pooling area is just a conglomerate of selecting maximal values in all

possible yx
i regions, sampled by window movement as specified by the stride values psh and psw.

The idea is clearly expressed in Figure 3.6, where a pooling window of [ph, pw] = [2,2] and

stride value of (psh, psw) = (2,2) is used. The output z selects the maximal value in each sampled

region. Intuitively it serves the purpose of singling out the most important feature in that window.

26

Figure 3.6: Max Pooling with Window Size [2,2] and Stride (2,2)

The max pooling layer contains no parameters to be learned. Unlike the convolution layer,

which leaves Wi and bi to be figured out by the learning process, there is no variables involved in

any pooling window. The only parameters are shape and stride parameters. Same as the shape and

stride parameters of convolution filters, they are hyperparameters, which are set arbitrarily before

training.

In addition, different from convolution layer which uses zero padding, there’s normally no

padding for max pooling because it computes a fixed function of the input. The pooling also

extends through the full depth of its input, i.e., for all yi, the same pooling window parameters is

used. Hence the pooling is like a max value selection in spatial plane, but independent in the depth

slice of input.

Following our previous notations, let there be n feature maps (y1, ...,yn) produced in the con-

volution layer, and are fed to the pooling area. Let [yh,yw] be the shape of feature map yi, the max

pooling produces an output zi of shape [zh,zw] according to the following equation, and there are n

such zi produced and fed to the next layer.

zh =
yh− ph

psh
+1 (3.11)

zw =
yw− pw

psw
+1 (3.12)

3.2.3 Everything Put Together

Figure 3.7 illustrates the core component of our approach. xe and xc, which are the document

representation after word embedding as described in Section 3.1, are taken as input and shown in

27

an x-y-z 3D space. The first dimension x represents the number of words in a document. The

second axis y is the word embedding dimension d. The third dimension is the number of channels.

xe and xc are respectively fed into entity subnet and context subnet, which is independent of each

other.

Each subnet consists of multiple layers of convolution, activation and max pooling. Each

convolution (activation) layer with a following pooling layer constitutes one layer of ConvPool.

The ConvPool can be used for several times, and the specific number is a hyperparameters set in

the experiment. Inside the subnet, each layer will witness varying number of convolution neurons.

Since words are embedded into the high dimension space as a whole, it doesn’t make sense for

neurons to scan the dimensional space fractionally. Therefore, we make the convolution window

fw = d for all neurons in layer 1 and fw = 1 for all subsequent layers. Similarly, we set pw = d

for max pooling in the first layers and pw = 1 in subsequent layers. Besides, since the neuron only

strides the input along x axis, it means sw = 0, psw = 0. The fh is an arbitrary hyperparameter. If

fh is chosen as 1, it indicates that only one word is covered in the convolution window, hence it

simulates uni-gram model in NLP. If fh is set to 2, it represents bigram, and so on.

A common pooling window of ph = 2 will select the most important feature in two neighboring

positions, and reduce the input by half along the x axis. As we go deeper in layer, we are actually

observing a wider window of the input for more sophisticated patterns, with the lesser features in

a narrower window already filtered by previous pooling layer. For instance, if unigram is used in

conjunction with a 2-max pooling, in the first layer, the network is looking at important features

in a size-2 window. In the second layer, the network looks at whatever size-2 neighboring fea-

tures elected from layer 1, each of which is a result of previous size-2 window comparison with

its neighbors in the input. Hence, the network is actually looking at size-4 window of the input,

because the overall computation spans at most four words. That said, with more layers in the net-

work, it has the capacity to uncover sophisticated n-gram patterns at the later stage of the network,

by making use of shallow, short patterns discovered in preceding layers.

28

Figure 3.7: Convolution and Max Pooling Applied to Embedded Entity/Context Input

29

We make max pooling in all intermediate layers use the same fixed window size such as ph = 2.

In the pooling of the last entity/context ConvPool layer, we take whatever is left in the feature

map, and apply a special max pooling that ends up with only one most important feature per

neuron. Specifically, let the feature map of last layer be of length ŷh (along the height axis), the

max pooling size used in the last layer is then ph = ŷh. We want everything to be covered in one

pooling window so that we can select the most important features from previous convolutions (be

it bigram feature or some mysterious n-gram feature).

In the last, we concatenate the last layer pooling results from both subnets, and make it our

aggregated features. The aggregate features are fed into the next fully connected layer for classifi-

cation and regularization purpose, which we shall elaborate next.

3.2.4 Fully Connected Layer and Dropout

The aggregate features represent all the important features selected by the neurons in the convolu-

tion network. One can think of neurons as templates for features, with each neuron looking for a

unique feature. The combination of all of them contains information as to the presence/absence of

certain clues critical for entity linking.

Figure 3.8 shows the structure for the last component of our network architecture. The aggre-

gated feature is connected to a fully connected layer, where each neuron in that layer is connected

to all features, and each feature is connected to all neurons in the fully connected layer. The

neurons in the fully connected layer are then connected to all entities in the last layer.

Let z∗ denote the aggregate features, W̃ denote the weights between aggregate feature layer

and fully connected layer, and b̃ denote the bias for every neuron in the fully connected layer, the

output (without dropout) of neurons in the fully connected layer z̃ is then

z̃ = relu(W̃ z∗+ b̃) (3.13)

Dropout [47] is a technique used to prevent overfitting and provide regularization. It does so by

30

Figure 3.8: Fully Connected Layer and Dropout

randomly dropping some units in the network during training. This creates different sampling of

“thinned” (subset of original) network from an exponential number of different choices, with each

minibatch likely trained on different “thinned” networks. Therefore, under the original network

lies different “thinned” networks, and we can use one model to simulate multiple choices. In test

time, no units are dropped out, and prediction is made on the original network. By doing so,

we make use of all underlying “thinned” networks, and literally perform an averaging of all the

predictions. This echoes with the principle of “regularization”, whose most ideal situation is to

compute the weighted average of the predictions of all possible settings of the parameters, with

weights set according to each setting’s posterior probability given the training data.

We apply the technique of dropout in the neurons of fully connected layer. Let the dropout

keep probability (the probability of surviving dropout) of each neuron being p. Then

r ∼ Bernoulli(p),

ẑ = r ∗ z̃

where r is a binary vector of length equal to the number of neurons in the fully connected layer.

It takes value 1 with probability p, and 0 with probability 1− p. Multiplying r with z̃ will drop

output of neurons that fail to be selected in the Bernoulli experiment. The real output for the fully

31

connected layer, after applying dropout, is ẑ.

The next step is to feed value ẑ to the last entity layer. Let s be the score of entities, Wf be the

weight between fully connected layer and entity layer, and b f be the offset for each entity in the

entity layer. We have

s =Wf ẑ+b f (3.14)

Note there’s no activation function, because we’re basically performing a linear classifier here,

which requires no non-linearity (activation is used for introducing non-linearity).

Usually s is called the logits, and is treated as unnormalized log probability of the probability

distribution among entities. To get the probability, one can apply softmax function on the score s.

Let pe denote the probability distribution for all entities predicted by our model. Then

pe = so f tmax(s) (3.15)

In training, we can get loss values using pe and ground truth entities. The target during training

is to minimize the loss values over iterations. We can apply stochastic gradient descent to optimize

the training target. In test, we use the latest trained variables to get pe, and select the entity that

has the highest probability among pe as the predicted entity to be linked.

We list all variables in our model in Table 3.1 and hyperparameters that were discussed before

in Table 3.2. There are other hyperparameters, such as the number of neurons in each layer, we

will discuss them in experiment later.

32

Variable Description

EWn

the embedding table of n-th channel. EW1 is initialized from a separate
Skip-gram embedding training, EW2 and above from some other sources.
All can remain static in training or change over training. EW2 and above
has to be learned in training.

Wi,bi
the weight matrix and offset carried by convolution filters. Each filter has
different Wi and bi, and they are to be learned in training.

W̃ , b̃
the weight matrix and offset carried by the fully connected layer neurons,
to be learned in training.

Table 3.1: Summary of Variables

Hyperparameters Description

Embedding chan-
nels

number of channels used in embedding; determines the depth (z axis) of
input to convolution network.

Embedding dimen-
sion d

dimension used in word embedding; determines the width (y axis) of input
to convolution network. We use 50 in our model.

[fh, fw]

height and width of convolution filter window. fw is set to d in the con-
volution layer of the first ConvPool, and 1 for all subsequent convolution
layers. fh indicates the number of words covered in a window, can be tuned
in experiment, specific to each filter.

(sh,sw)

the stride values of convolution filter window along height and width axis.
sw = d for the convolution layer of the first ConvPool and sw = 1 for sub-
sequent convolution layers. sh can be tuned in experiment, specific to each
filter.

[ph, pw]

height and width of max pooling window. pw is set to d in the pooling layer
of the first ConvPool, and 1 for all subsequent pooling layers. ph indicates
the number of words covered in a window, set ph = 2 for all pooling in
non-last ConvPool layers, and set ph to length of last feature map in the last
pooling layer.

(psh, psw)

the stride values of max pooling window along height and width axis. psw =
d for pooling of the first ConvPool layer and psw = 1 for subsequent layers.
Set psh = 2 for all pooling layers.

p dropout keep probability in Bernoulli experiment, usually set to 0.5

Table 3.2: Summary of Aforementioned Hyperparameters

33

Chapter 4

DATASET AND ENVIRONMENT

4.1 Tools and Environment

4.1.1 TensorFlow

We deploy our work using TensorFlow, which is a machine learning platform developed by Google.

The learning process can be embedded in a graph. Nodes in the graph represent mathematical op-

erations, while the graph edges represent the multidimensional data arrays (tensors) communicated

between them. The flexible architecture allows us to deploy computation to one or more CPUs or

GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally devel-

oped by researchers and engineers working on the Google Brain Team within Google’s Machine

Intelligence research organization for the purposes of conducting machine learning and deep neu-

ral networks research, but the system is general enough to be applicable in a wide variety of other

domains as well.

4.1.2 Word2vec

Word2vec (w2v) is a continuous distributed representation of words. It produces word embeddings

such that each word has a vector in the space, and words with similar contexts are located in close

proximity to one another in the space. Unless further specified, we used 50 dimension space w2v,

which contains 400k vocab and was trained over 6 billion tokens from Google News dataset, across

the entire experiment.

34

4.1.3 CUDA

CUDA is a GPU computing platform that drastically increases computing performance, especially

in the case of neural network, where millions of parameters need to be computed efficiently. In

this experiment, we used CUDA 7.5 available from NVIDIA website.

4.2 Dataset and Experiment setup

4.2.1 Dataset

The work was examined over the dataset provided by UIUC. It consists of archived news articles

from MSNBC, an American based agency that provides news coverage and political commentary.

Table 4.1: Summary of the Dataset

Datasets Number of Distinct Entities Test Cases

MSNBC 271 625

The statistics of the dataset is displayed above. There are 271 different entities to be disam-

biguated, and 625 entity instances in total to be linked. Each entity instance is a person, a place

or an event, to which there is a corresponding Wikipedia entry associated. In other words, all

instances can find its way to the knowledge base and none of them is unlinkable.

4.2.2 Example of Test Data

Figure 4.2 illustrates an example of the test cases. The test case is a piece of business news about

Bob Nardelli, who is a CEO of Home Depot Inc. The entity to be linked with Wikipedia entry is

highlighted in red. The remaining text are context to be used for disambiguating Bob Nardelli. It’s

at the discretion of implementation to determine the size of the context window. Note that there

could be multiple instances to be linked in one piece of news. For instance, Home Depot could

also be an instance to be linked with the wikipedia entry The Home Depot.

35

https://cogcomp.cs.illinois.edu/page/resource_view/4
https://en.wikipedia.org/wiki/Robert_Nardelli
https://en.wikipedia.org/wiki/The_Home_Depot

 Home Depot CEO Nardelli quits
--Home-improvement retailer's chief executive had been criticized over pay

ATLANTA - Bob Nardelli abruptly resigned Wednesday as chairman and chief

executive of The Home Depot Inc. after a six-year tenure that saw the world's

largest home improvement store chain post big pro ts but left investors

disheartened by poor stock performance.

Figure 4.1: Example of a Test Instance

4.2.3 Problem Description

The problem descriptions are recorded in separate XML files which specify, in each news file,

position the entity appears at, the canonical name, and the link to its Wikipedia entry. The XML

<ReferenceProblem>

 <ReferenceFileName>

 Bus16451112.txt

 </ReferenceFileName>

 <ReferenceInstance>

 <SurfaceForm>

 Bob Nardelli

 </SurfaceForm>

 <O set>

 117

 </O set>

 <Length>

 12

 </Length>

 <ChosenAnnotation>

 http://en.wikipedia.org/wiki/Robert_Nardelli

 </ChosenAnnotation>

 <NumAnnotators>

 1

 </NumAnnotators>

 <Annotation>

 Robert Nardelli

 </Annotation>

 </ReferenceInstance>

</ReferenceProblem>

Figure 4.2: Problem Description

file contains several key fields: SurfaceForm identifies the name under which the entity appears in

the text; Offset and Length tells the position of the first character of the entity with respects to the

beginning of the news, and the length of the surface name; Annotation is the canonical name of the

entity, and ChosenAnnotation is the link to its associated Wikipedia entry.

36

4.2.4 Test Data Preparation

The raw test data is first normalized. We removed all characters that are not alphanumeric, single

quote or bracket. White spaces, if more than one between words, are truncated so that words are

separated by only one space. Abbreviation such as “I’ll” is expanded to “I ’ll” by adding a space

between them. Similar changes are also done to “I haven’t ” so that it becomes “ I have n’t ”. In

all cases, the abbreviation is separated to become an independent token.

Different from traditional NLP preprocessing, which requires stemmization (change derived

word to their root word such as changing makes to make), and removing stop words (the most

common words in language such as the, which, and who), we are saved of the trouble, because de-

rived words are close to their root words in the space after word embedding. Removing stop words

is unnecessary because the neural network could automatically figure out features that matter. As

a result, stop words, which occur commonly in many articles, won’t be a key feature extracted by

the neural network.

To facilitate data read operation and better organize the test, we convert test cases to the form

of TFRecords, which is a serialized string containing features abiding by the Example protocol

buffer in TensorFlow. Each feature is a key value pair, which allows the storage of large amounts

of typed data.

Figure 4.3 shows a TFRecord of the news snippet above. Entity is the surface name of the

entity to be linked. Context is the words surrounding the entity, and the context window is decided

arbitrarily at runtime. Note the original surface name is replaced with underscore. This is a dummy

placeholder to represent where the entity was in original text. Both of them, being strings, are

stored as bytes list. Label is an integer value signifying the index of the ground-truth annotation.

For example, “Bob Nardelli” is the 123rd entity among all the 271 entity labels.

37

https://www.tensorflow.org/versions/r0.9/how_tos/reading_data/index.html
https://github.com/tensorflow/tensorflow/blob/r0.9/tensorflow/core/example/example.proto

 features {

 feature {

 key: "entity"

 value { bytes_list {

 value: Bob Nardelli

 }}

 }

 feature {

 key: "context"

 value { bytes_list {

 value: "home depot ceo nardelli quits home

 improvement retailer 's chief executive

 had been criticized over pay atlanta ___ abruptly

 resigned wednesday as chairman and chief

 executive of the home depot inc. after a six-year

 tenure that saw the world 's largest home

 improvement store chain post big pro ts but left

 investors disheartened by poor stock performance."

 }}

 }

 feature {

 key: "label"

 value { int64_list {

 value: 123

 }}

 }

 }

Figure 4.3: TensorFlow Record

38

4.2.5 Training Data Preparation

There’s no training dataset accompanying the test dataset. Therefore, we need to manually create

training data in order for our neural network to pick up entity knowledge. There are two sources

where we gather our training corpus from. We grab contents from entities’ wikipedia entry, and

break them into fixed size snippets. Intuitively, the articles in wikipedia is a direct description

of the entities itself and should be good materials for the neural network to understand the enti-

ties. Additionally, we built a web scraper to automatically crawl Google news and augment our

Wikipedia dataset. Between 100 to 500 news articles were obtained for each entity, depending on

the search result.

The rst step may be just admitting there’s a problem.

 If you look at the GOP as a business, says Bob Nardelli,

a former CEO of Home Depot and Chrysler, “the CEO

and the board have been somewhat in denial about

the situation the company is facing.” For example, the

party barely tweaked its approach after Romney’s

presidential trouncing in 2012 even though elements,

like more trade deals and tax cuts for the rich, proved

very unpopular with customers…er, voters.

Bob Nardelli, former CEO of Home Depot (HD) and

Chrysler. Named one of the "Worst American

CEOs of all time" by CNBC after sending

Chrysler into bankruptcy, Nardelli served

as interim CEO for gunmaker Freedom Group

and director of NewPage Corp. He recently stepped

down as CEO of the operations and advisory

company at private equity giant Cerberus Capital

Management, which owned all those companies

Figure 4.4: Example of Augmented Google News as Training Corpus

Figure 4.4 shows two examples of the augmented training data for the entity Bob Nardelli. Af-

ter obtaining the training corpus from Wikipedia and Google news, we converted them to TFRecord

form in same way as the test dataset.

39

Chapter 5

RESULT

5.1 Training and Validation

5.1.1 Loss and Accuracy

Loss is a metric to measure in our experiment. It roughly reveals how confident the model is about

the prediction result. Generally, the loss function represents the cost paid for inaccurate prediction

result, given the batch sample. We sought to minimize the loss function, and in this case, we

adopted entropy loss function given below in 5.1

loss(pe, pt) =−∑
x∈D

pt(x) · log pe(x) (5.1)

pe is the probability prediction by our model, pt is the probability distribution according to

the ground truth, or the target distribution, and x is a document in the training set D. pe(x) gives

the probability prediction for all entities for current document x. In our case, since there’s only

one true entity for a given text, pt(x) has probability 1.0 on the correct entity of document x, and

probability 0 for all other entities.

Given that, the loss function measures the aggregated probability of each document on their

ground truth entity class, since other irrelevant class has a pt of zero. The higher the probability on

the right class, the lower the loss value (note the negative sign before summation). The optimiza-

tion process will hence penalize documents that have lower probability on its correct class more.

Neurons associated with the documents with an already high probability on its correct class will

receive less, if there is any, adjustment. Since the loss function is also continuous, gradient descent

based optimizer can be employed, which is readily available.

Accuracy is the other and the most important metric in our experiment. It measures the per-

40

centage of test instances that are linked to the correct entity class according the ground truth. It’s

also the benchmark that can be used to compare different models.

5.1.2 Training Set and Validation Set

The core with neural network is its ability to generalize. In some cases, the network may fit

extremely well to the training data, but would fail to work with test corpus.

To monitor this issue, we divide the training data into training set and validation set. Note that

the validation set is from our collected training corpus, but never participates in the training phase.

Instead, it serves the purpose of test data, which is unseen from the perspective of training. Hence

validation can help reveal how well our neural network is able to predict unseen data.

Our entire training time is interleaved with validation phase, where we just feed one minibatch

of validation data, and use the existing parameters trained so far in the network to predict the

validation data. Specifically, we collected accuracy on the training minibatch every step, and

performed validation every 10 steps.

Figure 5.1 shows the accuracy result collected as described above. Figure 5.1a plots the accu-

racy in each step with green curve. There’s some degree of oscillation as the model is adjusting

its neuron weights. However as a general trend, we see that the accuracy in training gradually

improves until getting flat around 500 steps. The red curve plots the average accuracy in latest

10 iterations, it is a much more smooth line showing the average result in latest training, and it

gradually moves up until becoming stable around 500 steps as well.

Figure 5.1b shows the accuracy in validation dataset. In a similar fashion to Figure 5.1a, the

accuracy increases significantly in the initial 400 steps. After that, the model is able to achieve an

accuracy close to 100%. This shows that our model is able to predict very well in the unseen data,

and is very promising if applied in the real test dataset.

Similarly, we plot the loss value in training and validation phase as well in Figure 5.2. Fig-

ure 5.2a shows the loss value of training in each step in green curve, and the average loss value in

41

0 200 400 600 800 1000 1200
Iteration

0

20

40

60

80

100

A
cc

u
ra

cy

training accuracy per iteration

averaged training accuracy in last 10 iterations

(a) Accuracy in Training

(b) Accuracy in Validation

Figure 5.1: Accuracy in Train and Validation

42

0 200 400 600 800 1000 1200
Iteration

0

2

4

6

8

10

12

L
o
ss

training loss per iteration

averaged training loss in last 10 iteration

(a) Loss in Training

0 200 400 600 800 1000 1200
Iteration

0

1

2

3

4

5

L
o
ss

validation loss per 10 iterations

(b) Loss in Validation

Figure 5.2: Loss in Training and Validation

43

the latest 10 iterations is drawn in red. Again, there is some vibration leading to 400 steps, partly

due to the fact that the optimization algorithm may have overshoot, and was trying to change its

course back to the right direction. Overall, the training loss is reduced at the later stage of training,

suggesting that the network is getting mature at fitting data.

Figure 5.2b plots the loss in validation, it follows a similar fashion to that of Figure 5.2a. The

loss value decreases quickly in the initial 400 steps and becomes stabilized after that. We notice that

the stabilized value is very close to zero. This indicates that our model has very good confidence

even in predicting unseen data, and should be very promising when applied to the test dataset. It

confirms the high accuracy achieved in Figure 5.1, and demonstrates a very strong ability: not only

the most probable entity is predicted correctly by our model, but also it has close to 1.0 probability

on the right class. It shows that our model is extremely confident. Otherwise, the aggregated loss

value cannot be close to zero according to the definition of entropy loss in 5.1.

5.2 Variants of Baseline CNN

We next investigate variants of our baseline CNN. We evaluate the dataset on different configu-

rations, and see how different hyperparameters could have varying impact on the performance.

We seek to find the optimal configurations that lead to the best accuracy, and from this point on,

all the accuracy refers to those achieved in the test dataset, not the validation or training dataset.

We trained the model using 1000 iterations, and test the neural network with the latest gained

parameters (weights and biases).

embedding
channel
configuration

entity
filter
size

number
of entity
filters

context
filter
size

number
of context
filters

ConvPool
layers
of entity
subnet

ConvPool
layers of
context
subnet

number of
neurons
in fully
connected
layer

dropout
keep
probability

two nonstatic
channels

2 1024 5 512 1 1 1024 0.5

Table 5.1: Default Hyperparameters Configuration

44

The hyperparameters mentioned in 3.2 are set accordingly because they are predetermined part

of the model. We only investigate hyperprameters that are not set previously, because they bring

about variants of the baseline model and introduce varying entity linking capacity. Table 5.1 sum-

marizes the hyperprameters we will study. In each of the following subsection, we investigate the

impact of one hyperprameters by assigning it different values, while keeping the others constant.

Unless it’s specifically investigated/mentioned, the hyperprameters adopt the default configuration

in Table 5.1.

5.2.1 Embedding Channels

We start by discussing the impact of embedding channels. There are different channel configura-

tions. Single channel is the one where we only have one table of word embedding, whereas double

channels adds an extra layer of embedding table, so that the lookup tables are stacked depthwise.

We can initialize embedding in two ways: one via an established, well-known embedding

word2vec (w2v); the other is via random distribution. Over the course of training, we can keep the

table unmodified/static. We can also keep updating the embedding parameters, and make the table

part of our training variables to optimize over. We call this approach nonstatic.

Configuration Description Accuracy

Single Channel 1 randomly initialized, static 33.5%
Single Channel 2 w2v initialized, static 74.3%
Single Channel 3 w2v initialized, nonstatic 84.5%
Single Channel 4 randomly initialized, nonstatic 72.2%

Double Channel 1
channel 1 w2v initialized and static, channel2 randomly ini-
tialized and static 53.2%

Double Channel 2
channel 1 w2v initialized and static, channel2 randomly ini-
tialized and nonstatic 87.6%

Double Channel 3
channel 1 w2v initialized and nonstatic, channel2 randomly
initialized and static 82.3%

Double Channel 4
channel 1 w2v initialized and nonstatic, channel2 randomly
initialized and nonstatic 92.6%

Table 5.2: Channels Effect on Accuracy

45

Table 5.2 summarizes the accuracy obtained with different aforementioned channel configura-

tions. We noticed several things. First of all, single channel 1 has the worst result amongst all.

This is expected because the table is randomly initialized. It doesn’t convey effective message

about words, and yet it’s prohibited from learning along the way. It’s therefore the least desired

model.

Secondly, in single channel configurations, initializing from w2v and optimizing the table over

training achieves the best result. It indicates that, starting from a reliable source of word embedding

and customizing it over training to fit particular use case, is the recipe for better disambiguation.

This is also seen in the result produced by double channels configuration, with double channels

configuration 4 topping the comparison.

In addition, double channel configurations seems to outperform single channel configuration in

most cases, indicating the benefit of providing more words information. The only two exceptions

are double channel 1 and double channel 3 (worse than single channel 3). In these two cases,

channel 2 are both randomly initialized, and not allowed to evolve over time. Hence although one

more channel is provided, it’s actually backfiring by not providing effective information.

Last but not least, double channel 4 achieves the best result among all configurations. This is

because it takes advantage of reliable embedding table, optimization over training, and an extra

source of information.

5.2.2 Convolution Filter Window Size (fh)

We conduct evaluations on how filter window sizes could have different impact on accuracy. We’ve

used different combinations of window sizes for entity and context texts. Because of the findings in

the last subsection, we use two channel configurations (one initialized from word2vec and the other

initialized randomly, and both channels are allowed to optimize over the training) in all following

subsections. The results are summarized below in Table 5.3.

First of all, we noticed that the combination of entity window size of 1, and context window

46

of size 2, 3, and 4 achieved the best result. It seems a little counter-intuitive to see how a small

entity window size, which is essentially a uni-gram model, achieving this result. We attributed it to

common patterns in our test cases. Many of the entities in tests are one word entity. For example,

in the Bob Nardelli case, one of the test instance goes like this: ”Nardelli has also been under

fire by investors for his hefty pay and is leaving with a severance package valued at about 210

million”. The highlighted word is the surface name to be disambiguated, and yet it consists of only

one word. Although the training corpus includes the full name of Nardelli (Robert Nardelli), the

neural network seems to prefer learning the single most important word in that name. Hence the

size 1 filter window in entity seems to work pretty well in this test dataset.

The second best window size is the combination of entity window size of 1 and 2, and context

window size of 2 and 3. It loses to the best combination only by a slight margin. Yet this combi-

nation includes an entity window of 1 and 2, which caters to many cases where surface names are

two words long.

In addition, we noticed that there’s no good in having too large window sizes for entities. For

example, the models where entity window size is purely 5 has the worst performance among all.

This is intuitive in that, the neural network is trying to find the most important 5-gram feature of

the entity, which is a linear combination of the words in the 5-gram frame. The real differentiating

words in the 5-gram may be diluted as a result of this over generalization. In contrast, models that

consist of a combination of entity window size 5 and other entity window sizes perform better than

a pure 5-gram. This is because there are windows of finer granularity to discover important 2-gram

or 3-gram, which may override the over-generalized 5-gram discoveries in the fully connected

layer. As a result, the model is more reliant on these finer-granularity patterns.

On the other hand, the patterns in context window size is less clear. There are cases where a

larger window size produced better results and also cases where larger window sizes achieved a

lower accuracy. For example, in the model of entity window size 1, and context window size 2

and 3, we see an increasing accuracy when adding another context window of size 4. However,

47

Context Window Size
Entity Win-
dow Sizes 2,3 2,3,4 3,4,5

1 87.50% 90.20% 88.60%
2 86.20% 86.10% 81.90%
3 78.40% 78.70% 74.60%
4 76.60% 77.00% 78.20%
5 73.40% 71.50% 74.60%
1, 2 89.80% 86.90% 84.80%
2, 3 85.40% 85.60% 84.60%
3, 4 77.80% 79.70% 77.80%
4, 5 78.40% 80.00% 74.60%
2,3,4 80.50% 82.90% 81.40%
3,4,5 82.10% 82.60% 78.70%
1,2,3,4 83.70% 85.00% 82.40%
2,3,4,5 81.10% 82.90% 85.10%
1,2,3,4,5 85.40% 83.50% 82.40%

Table 5.3: Filter Window Size

replacing the context window of 2 with a context window of 3 caused the accuracy to drop from

90.2% to 88.6%. Hence, it’s a much more intricate question as to which context window is the

best, as there’s no straightforward patterns observed here.

5.2.3 Number of Filters

We next investigate the interaction between accuracy and number of filters used in the neural

network. We used the entity filter size of 1, and context filter sizes of 2, 3 and 4, which is the best

scenario configuration uncovered in the last subsection. We made filter quantity range from 32,

64, 128, 256, 512, 1024, and 2048, and make all entity filters of size 2, 3 and 4 share the same

quantity in one test. So in one configuration, there could be 32 size 1 entity filters and 128 size

2, 3, and 4 context filter each. In another, there could be 2048 size 1 entity filters and 1024 size

2, 3, and 4 context filters each. We don’t differentiate quantity of different-in-size context filters

48

because there’s no evidence that this minor detail will significantly improve accuracy, and we want

the granularity control to stay in a manageable level.

Table 5.4 summarizes all the configurations used in this experiment and their result. It shows

that the configuration of 2048 entity filters and 64 context filters each of size 2, 3, and 4 gave us the

best accuracy. This makes sense as we have many entity filters to figure out the pattern in surface

names, while a reasonable number of context filters aids with context to disambiguate.

In contrast, it’s a little interesting to see that the configuration featuring 32 entity filters and

2048 context filters of size 2, 3, and 4 gave us the worst result. This seems to indicate that putting a

wrong focus on context wouldn’t do us any good when there is not enough capacity to differentiate

the surface names.

To better unveil the indication of the result, we’ve plotted Figure 5.3. The horizontal plane

represents the number of filters in both entity (size 1) and context (size 2, 3, and 4) setting. The

vertical axis represents the accuracy achieved. The scattered point are the exact result obtained

from the experiment, and the 3D surface is interpolated from theses discrete points. The color on

the surface is positively related to the accuracy. The higher the accuracy is, more redness the patch

receives. As the accuracy decreases, darker shade of blue is drawn.

We’ve had three observations. First, despite the hollow in the middle of the surface and flatness

over the rightmost strip, it seems that for any fixed number of context filters, increasing the number

of entity filters generally improves the accuracy, and for any fixed number of entity filters, decreas-

ing the number of entity filters boosts the accuracy. This is counter the intuition that the both filters

would go neck-to-neck in disambiguating entities. As it turns out, the number of entity filters is

way more important than the number of context filters. We attribute this to the greater power of

recognizing different variance of surface names given by entity filters, which saves the trouble of

relying on context to differentiate. There are only some limited variance of surface names, while

there could be tons of context words surrounding a surface name in the wild world, many of which

hardly relevant to the entity. Context window is only a physical way to fetch context, relying on

49

number of en-
tity filter (size
1)

number of con-
text filters (size
2, size 3, size 4)

Accuracy

32 32,32,32 0.835
32 64,64,64 0.821
32 128,128,128 0.819
32 256,256,256 0.749
32 512,512,512 0.683
32 1024,1024,1024 0.528
32 2048,2048,2048 0.235
64 32,32,32 0.850
64 64,64,64 0.816
64 128,128,128 0.786
64 256,256,256 0.795
64 512,512,512 0.765
64 1024,1024,1024 0.669
64 2048,2048,2048 0.331
128 32,32,32 0.920
128 64,64,64 0.890
128 128,128,128 0.886
128 256,256,256 0.846
128 512,512,512 0.789
128 1024,1024,1024 0.755
128 2048,2048,2048 0.488
256 32,32,32 0.920
256 64,64,64 0.922
256 128,128,128 0.912

number of en-
tity filter (size
1)

number of con-
text filters (size
2, size 3, size4)

Accuracy

256 256,256,256 0.877
256 512,512,512 0.872
256 1024,1024,1024 0.771
256 2048,2048,2048 0.683
512 32,32,32 0.910
512 64,64,64 0.922
512 128,128,128 0.909
512 256,256,256 0.910
512 512,512,512 0.883
512 1024,1024,1024 0.730
512 2048,2048,2048 0.682
1024 32,32,32 0.925
1024 64,64,64 0.931
1024 128,128,128 0.920
1024 256,256,256 0.917
1024 512,512,512 0.899
1024 1024,1024,1024 0.858
1024 2048,2048,2048 0.776
2048 32,32,32 0.933
2048 64,64,64 0.934
2048 128,128,128 0.925
2048 256,256,256 0.928
2048 512,512,512 0.907
2048 1024,1024,1024 0.878
2048 2048,2048,2048 0.798

Table 5.4: Number of Filters

50

2500

2000

1500

number of entity filters

10000.2

0.3

5002500

0.4

number of context filters

2000

0.5

1500

0.6

a
c
c
u
ra

c
y

1000 0

0.7

500

0.8

0

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.3: Impact of Number of Filters

51

an arbitrarily set distance away from the surface name. There’s no guarantee that the real relevant

context information is included in the context window. Hence focusing our limited computing

power on the limited variance of surface names is more cost effective than focusing on the largely

varying contexts, which easily gains us a competitive edge.

Secondly, we noticed that the lower left strip of the surface remains largely blue. This is the

region where number of context filters overwhelm number of entity filters. It suggests that without

a large number of entity filters, the context filters cannot alone shoulder the task of entity linking.

Lastly, the middle right region remains largely deep red though their configuration only spells

for a reasonable number of entity filters and small number of context filters. Increasing the number

of entity filters doesn’t significantly improve the accuracy. This might imply the number of entity

filters is not the sole ingredient in improving accuracy. One can achieve a near top result without

wasting lots of computation power.

To further investigate this issue, we’ve plotted Figure 5.4 which illustrates how the ratio of

entity and context filters influences the result. The horizontal axis represents the ratio between

number of entity filters and context filters. There are seven groups of such ratio, according to our

experiment. Each group includes a bunch of experiment configurations where the number of filters

may vary, but their ratio is a constant value. The vertical axis represents the accuracy of these

experiments.

The red line is the median value of a group, the top bar and bottom bar of the rectangular box

represents the third and first quartile of a certain group of configurations. The short horizontal lines

outside the box represents the maximum and minimum value of a group of experiments.

As revealed by the plot, the median accuracy seems to have an exponential relationship with

respect to ratio. As the ratio slightly increase from 1/64, there is a drastic improvement in median

accuracy. Yet when the ratio approaches 4 or 8, the increase becomes flat, and little improvement

is observed beyond this point. This indicates that having entity filters four/eight times the number

of context filters seems to be a good choice for a reasonably top performance. Increasing the ratio

52

Figure 5.4: Accuracy Distribution with Respect to Entity and Context Filters Ratio

53

further on wouldn’t drive the accuracy up by a significant margin.

Another thing we’ve noticed is that, as the ratio increases, the interquartile range (IQR), which

is the distance between the third and first quartile, reduces. This implies, as we increase the ratio,

the accuracy is more stable around median value, and has less variance. Therefore, having a

reasonably high ratio is also recipe for more stable performance.

From the figures above, we conclude that having an entity/context filter ratio of being 4/8 is a

recipe for reasonably high performance. We don’t have to feed 2048 or more filters to the network,

because more filters will require significantly more training time. From an application’s perspec-

tive, having entity filters 4 or 8 times the number of context filters and choosing numbers such as

between 256 and 1024 instead of 2048 may seem like an informed decision without degrading the

performance too much.

5.2.4 Convolution Layers

We next analyse how much effect the number of convolution layers has on performance. We’ve

picked two configurations from our previous observation. One has 2048 entity filters of size 1, and

64 context filters for each size of 2, 3, and 4. This configuration also has the best performance

according to our previous experiment and shall speak for our top-notch configuration so far. The

other has 256 entity filters of size 1, and 64 context filters for each size of 2, 3, and 4. This

configuration has a reasonably good performance in our previous observation, and shall serve as

a representative for medium-high configurations. For each of these two configurations, we vary

the number of layers in entity and context subnet from 1, 2, and 3. In each of these layer, the

input is convolved and down-sampled before feeding the output to the next layer, which repeats

the convolution and max pooling process again.

The result is shown in Figure 5.5 and Figure 5.6. The horizontal plane shows the number of

layers for entity and context subnet, and the vertical axis shows the accuracy. The color of the

mesh grid is plotted according the vertical axis, with higher accuracy being colored more red and

54

0.8
1

0.82

0.84

0.86

1

a
c
c
u

ra
c
y 0.88

0.9

number of context layers

2

0.92

number of entity layers

2

0.94

3 3

0.82

0.84

0.86

0.88

0.9

0.92

Figure 5.5: 256 entity filters of size 1 and 64 context filters of each size 2, 3, and 4

0.82
1

0.84

0.86

1

0.88

a
c
c
u

ra
c
y

0.9

number of context layers

2

0.92

number of entity layers

2

0.94

3 3

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Figure 5.6: 2048 entity filters of size 1 and 64 context filters of each size 2, 3, and 4

55

lower accuracy colored more blue.

As shown in the picture, the highest accuracy is achieved when there is only one convolution

layer in the entity subnet. This is because we only need the most important key word in the surface

names. Having one layer, while using a filter size of 1, will allow us to find the most important

unigram in the surface names. It is bewildering to increase the layers in the entity subnet, because

more layers will allow us to find more sophisticated higher structures at the expense of overfitting.

At a time when most key disambiguating clue hidden in the surface names is one word long,

constructing more layers distracts the neural network from focusing on the real clue, and as a

result, the performance wanes.

Convolution layers in context subnet is, on the other hand, more sophisticated. This is inher-

ent in the varying nature of disambiguating context key words. Some disambiguating context key

words might be far apart from the entity position, and fall outside of the filter window size. Hence

it requires deeper convolution layers to construct high dimension patterns based on preliminary

structures captured directly by filter window. Some disambiguating context key words are close to

the entity, and hence can be directly processed by filter window. Therefore they don’t need deeper

neural network, and constructing more layers would backfire by increasing the risk of overfitting.

This explains the irregular and seemingly patternless surface presented by the figures. An increase

in the number of context layer leads to an increase in accuracy such as the middle point in Fig-

ure 5.6, while an increase in the number of context layer results in a drop of accuracy in others

(such as the middle points in Figure 5.5). The figures show us how intricate it is to capture context

disambiguating key words, and one should be careful in choosing his layers in context subnet.

It’s also worth noting that the worst performance in both experiments occur with 3 entity layers

and 1 context layers. This is reasonable because we give too much computation power where it

needs the least (entity) and too little where it is most sophisticated (context). This indicates that

the design of a neural network must agree with the complexity of test dataset. We don’t want to

misplace the computation power to places where its complexity doesn’t match.

56

5.2.5 Fully Connected Layer

We next investigate the effect of fully connected layers on the overall performance of the network.

We’ve used three different configurations to run our experiments, as summarized in Table 5.5.

config1 is the best model observed so far given our previous experiments, and hence serves as a

representative for our high-end configurations. config2 is almost the complete opposite of config1.

With very few entity filters and many context filters, it’s supposed to represent the low-end config-

uration. config3 is a more mild setup. Its hyperparameters lie between config1 and config3, and it

is meant as a representative of average configurations.

Configuration
Number

entity
filter
size

number of
entity filters

context
filter
size

number of con-
text filters

ConvPool
layers
of entity
subnet

ConvPool
layers of
context
subnet

config1 1 2048 2,3,4 64,64,64 1 1

config2 1 32 2,3,4 2048,2048,2048 3 1

config3 1,2 512,512 2,3,4 512,512,512 2 2

Table 5.5: Different Configurations for Fully Connected Layer Neurons Experiment

For each configuration, we train our neural network using the parameters stated in the table,

and vary the number of neurons in the fully connected layer from 26, 27, 28 all the way to 212. We

are interested to see if the number of neurons in the fully connected layer has a universal impact

pattern on the performance across low-end, average and high-end configurations.

Figure 5.7 illustrates the result we’ve obtained. First of all, we noticed that, the curves all

present an exponential-like relation with regards to the number of neurons in the fully connected

layer. The accuracy increases drastically in the beginning but grows flat at the end. Most of the

increase happens before 256. Recall that we have 271 different entities, it indicates that as long

as the number of neurons in the fully connected layer remains smaller than that of the number of

classes, the full potential of the network is not tapped. This is intuitive in the sense that we can

see each neuron in the last layer as an information aggregation for each class, and the number of

neurons needs to no fewer than the number of classes to clearly differentiate the surface names to

57

64 128 256 512 1024 2048 4096

number of neurons in fully connected layer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

config1

config2

config3

Figure 5.7: Performance with Respects to Neurons in Fully Connected Layer

58

different entity.

Another interesting thing to notice is that, even when the number of neurons in the fully con-

nected layer is low in config1, the accuracy in config1 still outperforms the best ones in config2

and config3. This suggests how important it is to process patterns early on in the ConvPool layer

instead of later at the fully connected layer. Fully connected layer is, after all, an aggregation for

patterns found in previous layer. If patterns are not even discovered early on, there is little chance

of finding anything substantial at later stage. This nicely demonstrates how each layer is geared

into each other, and early loss of information cannot be restored by later layers.

5.2.6 Dropout

Large and deep neural network contains tremendous parameters, which often causes overfitting

problems. Dropout is a simple technique to address this issue. In this subsection, we investigate

how well dropout is able to manage overfitting by running two sets of configurations. The con-

figurations are summarized in Table 5.6. For each configuration, we trained neural network with

dropout keep rate of 0.1, 0.2, 0.3, all the way up to 1. In the last case, there is no dropout because

every neuron in the final fully connected layer is kept.

Configuration
Number

entity
filter
size

number of
entity filters

context
filter size

number of
context filters

convolution
layers
of entity
subnet

convolution
layers of
context
subnet

config1 1 2048 2,3,4 64,64,64 1 1

config2 1,2 512,512 2,3,4 512,512,512 2 2

Table 5.6: Different Configurations for Dropout Experiment

The result is illustrated in Figure 5.8. First of all, we noticed that for all sets of configurations,

using dropout improves accuracy by varying margins. This verifies the effect of dropout as a simple

regularizing technique.

In addition, a small dropout keep probability means a smaller subset of the network is used

in training. This might has the risk of underfitting depending on the initial number of parameters

59

inherent in the network. In our experiment, setting the probability to 0.1 or 0.2 results in significant

lower accuracy than using higher probability. It indicates that the hidden combination of neural

network is not fully exploited, and there’s significant underfitting in the network. However as we

tune the probability to 0.3 and above, the performance gradually improves. There are different

places where you can achieve top performance. For configuration 1, it’s 0.5, and for configuration

2, it’s 0.6. In general, on a larger scale, we find the curve becoming flat in the range of 0.3 to 0.8.

This might imply that the best dropout keep probability lies somewhere in that range. Continuing

to increase the probability beyond that range results in a drop of performance, and using no dropout

(probability 1.0) at all is also inferior to its peak values as well.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dropout Keep Probability

 40%

 50%

 60%

 70%

 80%

 90%

100%

A
c
c
u
ra

c
y

67.4%

78.6%

90.1%
91.0%

93.4% 93.3% 93.1% 92.8%

88.8%
87.0%

61.0%

76.2%

88.2% 88.1%

90.2% 90.6% 90.2% 89.9%

87.9%

85.6%

config1

config2

Figure 5.8: Performance Comparison with Different Dropout Probability

60

5.2.7 Comparison with Previous Approaches

Given our previous experiments, we find the best model to be the one list in Table 5.7. We call it

CNN-link (Convolution Neural Network for entity link)

entity
filter
size

number
of en-
tity
filters

context
filter
size

number
of con-
text
filters

ConvPool
layers of
entity subnet

ConvPool
layers of
context
subnet

number of
neurons
in fully
connected
layer

dropout
keep
probability

1 2048 2,3,4 64,64,64 1 1 2048 0.5

Table 5.7: Best Model Configuration

We compare accuracy of our model with that obtained by GLOW [39] and NEREL [44], which

are the previous state-of-art approaches on the MSNBC dataset respectively in 2011 and 2013.

There are three variants of the GLOW algorithm. The GLOW-local makes use of local features

such as the text similarity between mention and Wikipedia title. The GLOW-global makes use

of global features such as some sophisticated relatedness measure making use of in/out links of

the Wikipedia page. GLOW-local+global is a combination of these two. Either way, the GLOW

approach makes heavy use of man-defined features, and leverages heuristic and empirical design

to link entity mentions to their knowledge base equivalent. Similarly, NEREL also makes use of

numerous features such as capitalization, number of tokens inside mention, and etc.

Figure 5.9 shows the accuracy achieved in four approaches. CNN-link outperforms all variants

of GLOW as well as NEREL. We attribute this to the power of CNN to be able to identify intricate

patterns that are hard to engineer by bare hands. As we have found in earlier subsections, CNN can

automatically single out key words in the text by making use of a wide array of filters (especially

entity filters). Context filters sometimes help, as we will see in later visualization sections, though

their patterns are more intricate to generalize. As a result, words that are more related will receive

higher focus/weights by the neurons, and push the network training to proceed in the direction that

minimize loss (i.e., cost paid for inaccurate prediction). On the other side, handcrafted features

as those perceived in GLOW and NEREL may not capture the key information or could lose the

61

GLOW-local GLOW-global GLOW-all NEREL CNN-link

Algorithms/Models

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

A
c
c
u
ra

c
y

76.0%
77.9% 76.9%

83.4%

93.4%

Figure 5.9: Accuracy Comparison with GLOW and NEREL

information because some lesser features override the key ones.

5.2.8 A Note on Comparison with Previous Approaches

We attempted to compare with [39] and [44] mainly because they are previous state-of-art ap-

proaches in feature based designs on the MSNBC dataset, which is accessible to public. There are

several difficulties in comparing with other approaches mentioned in chapter 2.

The first and foremost reason is that many approaches (such as the more recent neural network

based approaches as in [50]) either didn’t publicize their dataset or used the dataset provided by

LDC (Linguistic Data Consortium), which is an organization that creates and distributes a wide

array of language resources. Unfortunately, University of Calgary is not their member, and we

don’t have access to their dataset (in the entity linking case, it’s the TAC KBP dataset).

Secondly, some of the unified approaches that complete entity linking with other tasks such as

entity recognition and relation extraction [7] used joint measures such as F1 (which is a combina-

tion of precision and recall rate), because their problem involve false positive and false negative.

62

https://cogcomp.cs.illinois.edu/page/resource_view/4

They didn’t mention their accuracy/precision result alone.

Other than that, some approaches used dataset that’s closely bound with other KBs such as

CoNLL-YAGO used in [19], and it’s unfair to compare because their dataset comes with KB specific

attributes.

5.3 Visualization

Neural network is known for its inherent complexity, which involves tremendous parameters that

are hard to interpret. In this section, we provide some visualization primitives to understand our

neural network, and try to unveil what happens under the hood.

5.3.1 Dimension Reduction and 2D Plane Embedding

Our Convolution Neural Network can be seen as a black box function to encode the original input

with some high dimensional representation, which is further used by a linear classifier to link

to different entities. Therefore, we can try to understand its high dimension space topology by

reducing it to two dimensions, which can be then easily plotted in 2D space. The dimension

reduction is such that pairwise distance of points in high dimension space is preserved in the 2D

space, so that the farther apart two points are in the original space, the more distant they will

be in 2D space. There are many existing techniques and tools to help streamline the process of

embedding high dimension space into low dimension space. Among these, we used t-SNE. It is

one of the highly popular tools to produce solid results on 2D plane.

In this subsection, we use the output of the last fully connected layer (without dropout) as the

encoded code of a text containing entity. We call this the CNN code of the text. We used 1024

neurons in the last fully connected layer, therefore each text is represented by a 1024-dimension

vector. We chose five entities to visualize and some examples of the visualized sentence is shown

in Table 5.8. The bold texts are surface names identified in the dataset, and their canonical names

are listed in the rightmost columns.

63

Text Examples
Canonical Entity
Name

Bayh decided not to run. ”Washington does not make the case”,
said dan pfeiffer who worked for Bayh

Dan Pfeiffer

one thing for sure, says pfeiffer, voters are tired of arguing
about the culture of the 1960s and other Boomer issues

Dan Pfeiffer

she traveled all night from the central Indian state of Mad-
hya Pradesh to bathe in the Ganges, as she has done at every
kumbh mela over the last 25 years

Kumbh Mela

Garuda’s flight lasted 12 divine days, or 12 years of mortal
time, hence the celebration of ”Maha Kumbh Mela” every 12
years.

Kumbh Mela

A draft portion of the report obtained Tuesday by The Associ-
ated Press gives the best ratings to the Washington, D.C., area;
San Diego; Minneapolis-St. Paul; Columbus, Ohio; Sioux
Falls, S.D.; and Laramie County, Wyo.

Minneapolis Saint
Paul

Light, sweet crude settled 2.73 to 58.32 per barrel on the New
York Mercantile Exchange as mild weather continued its hold
over much of the United States, cutting demand for heating oil
and natural gas.

United States

The battle began on Wednesday’s show, when a peeved
O’Donnell said: “(He) left the first wife had an affair. (He)
had kids both times, but he’s the moral compass for 20-year-
olds in America. Donald, sit and spin, my friend.”

United States

The gap between the Medicaid and private health insurance
leaves up to 9 million U S children uninsured

United States

Instead, Americans chose Jimmy Carter, a peanut farmer who
had never worked in Washington, and who promised never to
lie to the American people

Washington

Table 5.8: Examples of Visualized Sentences

64

Table 5.8 well illustrates a subset of problems we need to resolve in entity linking, which are

also common intricacy in surface names. This includes, but is not limited to, partial name vs full

name (Dan Pfeiffer vs Pfeiffer), irregularities(Minneapolis-St. vs Minneapolis Saint), synonym

(America vs US) and abbreviation (US vs United States).

Ideally, a good neural network should produce CNN code such that all the surface names of

the same entity would end up being closer to each other in the high dimension space, forming a

group of itself, and being well separated from other groups. In that sense, we borrow the concept

of cluster from data mining, and denote each entity as one cluster. Every test instance is assigned

a cluster membership ID based on what its containing surface names refer to, as per the ground

truth. Since the membership is pre-assigned, our convolution neural network is more or less per-

forming a supervised clustering process. Though we are not changing the cluster membership id

throughout the training process, we are iteratively changing the position, in the 1024 dimension

space, of each minibatch example in the training phase, so that the network can develop some idea

of high dimensional regions belonging to each different entity. Our test cases are simply mapped to

positions in the 1024 dimension space to see how good our network develops the idea of regions,

or clusters.

Figure 5.10 shows the result we’ve obtained after embedding high dimensional positions ex-

pressed as CNN code into 2D space. Each bubble represents a text that contain certain entity, and

the same entities are colored with the same color. The colorbar on the side shows which color is

used for entities.

Figure 5.10a is the baseline approach that we compare with. It simply does a word embedding

for all words in the text and then averages them to get the vector which represents the position of

the sentence, in order to be reduced in dimension by t-SNE. Figure 5.10b is produced by treating

the CNN code as the position of text, followed by the same dimension reduction carried out by

t-SNE.

As seen clearly from the figures, Figure 5.10a demonstrates a messy, seemingly random clus-

65

− 20 − 15 − 10 − 5 0 5 10 15 20 25

X

− 30

− 20

− 10

0

10

20

30

Y

DAN PFEIFFER

KUMBH MELA

MINNEAPOLIS-ST. PAUL

UNITED STATES

WASHINGTON, D.C.

(a) Visualization of text based on averaging word embedding

− 30 − 25 − 20 − 15 − 10 − 5 0 5 10 15

X

− 15

− 10

− 5

0

5

10

15

20

Y

Docum ents em bedding based on last layer codes

DAN PFEIFFER

KUMBH MELA

MINNEAPOLIS-ST. PAUL

UNITED STATES

WASHINGTON, D.C.

(b) Visualization of text based on last layer codes

Figure 5.10: Visualization of text on 2D Space with Dimension Reduction

66

tering. Texts which contain the same entities are scattered across the space, with no clear convex

hull formed that is well separated from the others. It shows that the baseline has a very bad idea

about entity and its topological shape/closure.

On the other side, Figure 5.10b clearly separate different entities into further apart regions,

forming a convex hull that fully closes the shape. There is no intersection between regions, and

there’s no bubble that is far away from its owning cluster. Figure 5.10b well demonstrates the

capacity of convolutional neural network in recognizing entities, forming high dimensional topo-

logical closures. The CNN code hence looks robust.

Figure 5.10 gives us a qualitative appreciation of neural network’s inherent ability to learn

topological shapes. In order to gain a quantitative measure of how well the clustering is, we resort

to some common measures popularly used in the field of data mining. One of these measures is

intra-cluster distance. There are many different definitions about intra-cluster distance. We used

the definition as in 5.2.

intra-cluster distanceA = maxd(x,uA),∀x ∈A , where uA is the arithmetic mean of cluster A

(5.2)

It’s also known as the radius of a cluster, because it measures the distance between a cluster’s center

to its most off point. The smaller the radius, all points are more compactly squashed together, with

no outliers.

Figure 5.11 plots the intra-cluster distance of every cluster/entity. There are some clusters that

have 0 intra-cluster distance. It’s either because all their test instances are mapped to indifferen-

tiable 2D positions or there’s only one test instance in that entity so that the center and far-off point

of the cluster is the same.

Most of the clusters have very low intra cluster distances, with their values below 0.5. There

are, though, a fair number of clusters having between 1 to 2 units of intra-cluster distance. The

highest number is 2.5, achieved at cluster ID 59, which is entity ’Donald Trump’.

To get a better sense of how good/bad those values are, we’ve taken the clusters with top 3

67

50 100 150 200 250

Ent ity ID

0.0

0.5

1.0

1.5

2.0

2.5

In
tr

a
-c

lu
s
te

r
D

is
ta

n
c
e

Figure 5.11: Intra-cluster Distance

68

intra-cluster distances and plot them in to a 2D plane as we’ve done before.

− 20 − 15 − 10 − 5 0 5 10 15 20 25

X

− 15

− 10

− 5

0

5

10

15

20

25

Y

DONALD TRUMP

MIAMI DOLPHINS

INSTITUTE FOR SUPPLY MANAGEMENT

Figure 5.12: 2D Embedding of Entities with Large Intra-cluster Distance

Figure 5.12 shows the embedded plot. Entity ’Donald Trump’ and entity ’MIAMI DOLPHINS’

seems to be nicely grouped together except for one instance each. Those two outliers are far apart

from their counterparts, indicating an error in linking the entity.

Text
Ground Truth
Entity

Classified
Entity

Alabama Sweetened an offer that will make him the
highest-paid coach in college football. He has three years
remaining on his Miami contract at 4.5 million a year

Miami Dolphin
Miami,
Florida

Walters also took a moment to try to smooth things over
with The Donald, who got all riled up when O’Donnell
said on ”The View” that he had been ”bankrupt so many
times.”

Donald Trump
The Associ-
ated Press

Table 5.9: The Sentences That Are Outlier

We put the two outliers in Table 5.9. It shows that Miami is mis-linked to Miami, Florida when

it should be linked to Miami Dolphin, the football team in Miami. This is more of an intricate

question, because interpreting Miami as Miami, the city makes sense as well, though it may not

69

be as informed as Miami, the football team in this context. However, to sort out this delicacy

involves some deeper level reasoning, and we are afraid that it goes beyond the capacity of our

convolutional neural network.

The Donald is mis-linked to The Associated Press when it should be linked to Donald Trump.

This looks more like a mistake of the neural network. The annotator of the dataset includes one

more word ’The’ into the more common surface name ’Donald’, and we suspect it causes the

neural network to shift away from the promising course, and end up with The Associated Press.

We believe this error could be more or less corrected by involving training dataset that goes by the

surface name of ’The Donald’. The neural network can learn that the differentiating term The not

only appears in The Associated Press but can also appear in Donald Trump. It will learn to be more

cautious in choosing which one is the right entity to link.

In sharp contrast to the two wild off entities, the entity of Institute for supply management

seems to have an acceptable clustering result. The two test instances are relatively close to each

other. The reason that they still contribute to a third largest intra-cluster distance might be that, in

one test case, the surface name is the abbreviation ISM while in the other, the surface name is the

full name. Different names, especially those involving shorthands and looking like very irrelevant,

will have far initial distance after word embedding. Neural network learns to pull them closer, but

still it is a complicate function of initial word embedding and the neural network that decides their

final position in the 1024 dimension vector space.

Since we know that ”Institute for supply management” already has the third largest intra-

cluster distance, and it doesn’t look too bad on the embedded 2D space. We are assured that other

clusters shouldn’t have too loose closures, and the topological clustered result is good.

5.3.2 Occlusion Test

Occlusion test is a technique proposed in computer vision [56]. It seeks to know if the model

is able to locate the object in the images that provide key identification clues. It can also show

70

whether the surrounding context has a role to play in image classification. In occlusion test, a grey

patch is gradually slided across the image, each time occluding part of the image, and one can

observe how the probability of the class of interest, such as its correct class, changes as a function

of the occluded portion.

Ideally, if the key part of the object is occluded, say the head of a dog image, the probability of

the object belonging to the class of interest, say the class dog, will plummet. Hence, one can plot

a heatmap, showing the probability of class of interest as a function of different occluded image

patches.

In the context of entity linking, we can slide the occluder across the sentence, hiding one word

each time, and observe how the probability of the correct entity changes as different words become

invisible.

In our occlusion experiment, for each test sentence of n words, we generate n occlusion test

instances, each replacing one different word with our predefined padding symbol word. We used

padding word because padding is normally done at the end of each sentence to keep all sentences

of equal length, and our neural network is supposed to learn that the padding word means nothing.

This is analogous to the grey patch used in image classification, which simply means nothing of

particular interest is here, and the neural network should be intelligent enough to move on.

To get the probabilities of class of interest, we took the final output of our neural network, note

that this is the logit applied to a softmax function. It is a huge matrix that contains probability

for all test instances and all entity classes. We then took the slice of probability that belongs only

to the correct entity (class) of each text. So each test instance will have a different slice to take

depending on their ground truth entity.

We took four examples and show their heatmap in Figure 5.13. Note the difference between our

heatmap and that of the computer vision is that since the sentence is one dimension, i.e., you can

only move the occluder across the words, the resulting heatmap is one dimension, instead of two

dimensions in computer vision because you can move occluder horizontally and vertically across

71

o
th
e
r

tw
o

ca
te
g
o
ri
e
s

ch
ic
a
g
o

cl
e
v
e
la
n
d

a
n
d

b
a
to
n

ro
u
g
e

fo
r

e
x
a
m
p
le

w
e
re

ju
d
g
e
d to

h
a
v
e

Entity: BATON ROUGE, LOUISIANA

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Heatmap for Entity ’Baton Rouge, Lou-
siana’

cl
o
se

d

tu
e
sd

a
y to

m
a
rk

th
e

fu
n
e
ra
l

o
f

p
re
si
d
e
n
t

g
e
ra
ld r

fo
rd

w
a
ll

st
re
e
t

re
tu
rn

e
d

fr
o
m it
s

Entity: GERALD FORD

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(b) Heatmap for Entity ’Gerald Ford’

th
e
m a

sh
re
w
d

st
u
d
e
n
t o
f

th
e

a
m
e
ri
ca

n

m
o
o
d

sc
h
u
m
e
r is

a
im

in
g in

th
e

ri
g
h
t

d
ir
e
ct
io
n

th
e

Entity: CHARLES SCHUMER

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

(c) Heatmap for Entity ’Charles Schumer’

te
a
m
s o
f

1
9
3
2

a
n
d

1
9
3
3 i

g
re
w u
p in

g
ra
n
d

ra
p
id
s

a
n
d

p
re
si
d
e
n
t

fo
rd

w
a
s

o
u
r

Entity: GRAND RAPIDS, MICHIGAN

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

(d) Heatmap for Entity ’Grand Rapids, Michi-
gan’

Figure 5.13: Heatmap of Occlusion Test

72

the image.

The colorbar at the side shows the color associated with the probability. The lower the proba-

bility, more red is shown, and the higher the probability, the more blue is drawn.

For Figure 5.13a, we noticed that there is a drastic decrease in probability as the word baton or

rouge is occluded. It drops to as low as somewhere between 0.55 and 0.7, which is in clear contrast

to when the other words of this sentence are occluded. It shows that our model is able to identify

the key words in the sentence that differentiate themselves from others. There is hardly any drop

in probability as we occlude words such as other, two and example. It indicates that they probably

don’t have any context clue to offer in disambiguating the surface name Baton, Rouge.

For Figure 5.13b, again, a sudden drop of probability is captured as we occlude Gerald or Ford.

It makes sense as they are a common name the entity goes by. What is interesting though, is that

although the word r stands for the middle name and it’s part of in the surface name, occluding

it doesn’t lead to a significant decrease in probability. This well demonstrates neural network’s

ability to match men’s reasoning behaviour as we can still recognize a person even without his/her

middle name.

In addition, we find that occluding president leads to a lower probability than occluding other

context words. This shows that president is an important attribute of the entity Gerald Ford. As

we know, Gerald Ford is the 38th president of the United States, and our neural network, in this

case, is able to find key context information about the entity.

Figure 5.13c shows the heatmap for entity Charles Schumer, and as with previous examples,

occluding the keyword Schumer decreases the probability to a great extent. We are not sure why

occluding the word a results in a larger drop of probability than occluding other context words.

This shows that the neural network is not quite mature and stable in picking the context word, and

it needs to be improved, either with the model itself or with the dataset used in training.

Figure 5.13d shows the heatmap for entity Grand Rapids, Michigan, which is the second largest

city in Michigan, and it has a library named after president Gerald Ford within the city. As before,

73

there’s a significant drop of probability when Grand Rapid is occluded, which is reasonable. We

are, however, delighted to find that the probability drops by a larger margin when the word presi-

dent is gone than when the other context words are hidden. This shows that the our neural network

might have some intuition of the Gerald Ford Library within its city, and it learns from the training

corpus that the library is named after one of the presidents of United States.

Entities Keyword

Automatic Data Processing automatic, data, processing, report, payroll

British Airways airways, airline, planes, freight, condition

Cameron Diaz Timberlake, breakup, magazine, star

Donal Trump bankruptcy, underage, moral

Frank Blake experts, home, depot, Nardelli, company

FBI officials, interrogate, border

George W. Bush idea, Iraq, troops

Gerald Ford form, president, waited, Reagan, Nixon

Heathrow Airport airline, luggage, terminal, fog

Saddam Hussein execution, arrested, leaked, cell, Iraq

Table 5.10: Words Resulting in Top Probability Decrease in Entities

We summarize the context words in test corpus that lead to significant probability decrease

for some entities as above in Table 5.10. For each entity, the keywords are compiled across all

test instances of the same entity. It illustrates an interesting concept/impression of the following

entities developed by our neural network during training. Here’s what we’ve found:

• Automatic Data Processing, an American company specialized in providing human

resources management software and services, leaves an impression on our convolu-

tional neural network that embodies automatic, data, processing, report and payroll.

• British Airways, an airline company, pivots around airlines, planes, etc.

• Cameron Diaz, who is an American actress, model, and known for her relationship

with Justin Timberlake, would find her romantic story well picked up by our neural

74

network, with Timberlake shown up in one of keywords. Our neural network also

learns that she’s a star.

• Donald Trump is besieged with negative words such as bankruptcy and underage.

• Frank Blake, a former CEO of Home Depot Company, is associated with this com-

pany and his predecessor Robert Nardelli.

• FBI, features on officials and interrogate

• Bush, features on his idea of sending troops into Iraq.

• Gerald Ford, features on being a former president and being well associated with his

predecessor Richard Nixon and his opponent in the 1976 GOP presidential primary

campaign, whom he defeated.

• Heathrow Airport, a major international airport in London, pivots around airlines

and luggage, etc.

• Saddam Hussein, the infamous president of Iraq, is known by our neural network

to have execution, arrested, leaked on his keyword list.

75

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis discusses the entity linking problem, which sees huge applications in areas such as au-

tomatic knowledge base populating, healthcare, and identity crime prevention. It can also improve

people’s experience of reading documents by enabling concept lookup in place, saving the trouble

of unnecessary context-switching during reading.

Different from previous approaches which heavily relied on handcrafted features, including

textual similarity and semantic closeness, our model used convolutional neural network to address

the entity linking problem without the need to manually select the features to incorporate. In

contrast, our model can implicitly figure out the useful features such as semantic similarity of

words, topic key words, etc.

Our model makes use of word embedding to turn semantically similar words to closer con-

tinuous high dimensional space. We feed entity mention and context words via word embedding

independently to the convolution neural network, which consists of two subnets of convolution and

max pooling layers. Convolution uses a lot of neurons filters that scan through the spatial plane of

the input, and collect preliminary feature information. Max Pooling filters out the most important

feature in a given window and feed the output to the next interconnecting layers. In general, this

architecture of convolution and max pooling can be repeated several times, independent in each

subnet, to build more sophisticated patterns in deeper layers. The max pooling in each subnet’s

last layer employs a “max only” pooling which ends up with only one maximal feature per filter

from last layer. All the remaining features of two subnets are further combined to produce the fea-

tures representing the query document. The combined features then go through a fully connected

76

dropout layer before being linked to its referent entity using a fully connected linear classifier.

We performed extensive experiment to evaluate our model using the MSNBC dataset. We

showed that using two channels of word embedding with each embedding matrix customized dur-

ing the training produced better result than other alternatives. Our top model features one layer

of entity subnet of 2048 size-1 filters, one layer of context subnet of 64 filters of size 2, 3, and 4

respectively, and 2048 neurons in the fully connected layer with dropout keep probability of 0.5.

This top model can achieve an accuracy of 93.4% which stands out by a large margin from its

comparator.

We also provided visualization to better understand the neural network mechanism. We retrieve

the last layer output of neural network as the document code (CNN code), and visualize them in

a 2D space via t-SNE. The result showed that entity mentions sharing the same canonical entity

are closely clustered with small intra-cluster distance. We also performed occlusion test which

draws the heatmap of the probability of right entity as a function of occluding different words in

the query document. It reveals interesting context words for entity disambiguation, and they can

be interpreted as the key topical words, when comparing entities to topics.

6.2 Future Work

There are several ways to extend the current line of work, and expand the scope of coverage. We

explain them as following:

First of all, we can extend the domain of general web documents to special heterogeneous

domains such as social network and bibliographic network. Under those settings, there is a cult of

more noisy and informal wording. We can see if our model would be powerful enough to deal with

such challenging environment.

Secondly, all we’ve been making use of so far is training set constructed from Google news

and Wikipedia articles. We haven’t exploited any structural and type information provided by

Wikipedia (such as Wikipedia’s infobox which provides type information). We might be able to

77

figure out a way to incorporate this information to further improve our model. Also we can include

Freebase or other KBs to orchestrate better model.

In addition, we can look for a larger test dataset and cover more types of entities. The current

test dataset only have entity types that typically appear in news such as political figures and places.

By having a richer dataset, we can see if our model is flexible enough to deal with the complexity

and intricacy presented by the real world.

We could also construct more visualization primitives. There’s work in computer vision that

provides de-conv [56] [45] techniques to synthesize input signals that maximally activate neurons.

By presenting this synthetic signals, which in our case is a synthetic document, we can understand

the “template of entities” developed by the neural network, and see if it matches our understand of

entities.

Last but not least, we might be able to build an online document reader that pops up a window

whenever the user choose to disambiguate a given span of textual words. The popped window will

show the Wikipedia article of the linked entity, if the selected words can be linked. However this

requires a robust model that properly trains for all Wikipedia entries, which means the model needs

to scale well. It would need a better way to construct the training dataset if it’s to be deployed with

all the Wikipedia entries. Making use of the anchor text within the Wikipedia might be a good

starter, but it is of limited coverage and there may not be enough number of samples for each entity

entry. As a result, underfitting is expected, which should be addressed in future work.

78

Bibliography

[1] H. Alani, S. Kim, D. E. Millard, M. J. Weal, W. Hall, P. H. Lewis, and N. R. Shadbolt. Auto-

matic ontology-based knowledge extraction from web documents. IEEE Intelligent Systems,

18(1):14–21, 2003.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A collaboratively

created graph database for structuring human knowledge. In Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’08, pages 1247–

1250, New York, NY, USA, 2008. ACM.

[3] R. Bunescu and M. Pasca. Using encyclopedic knowledge for named entity disambigua-

tion. In Proceesings of the 11th Conference of the European Chapter of the Association for

Computational Linguistics (EACL-06), pages 9–16, Trento, Italy, 2006.

[4] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, Jr., and T. M. Mitchell.

Toward an architecture for never-ending language learning. In Proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence, AAAI’10, pages 1306–1313. AAAI Press,

2010.

[5] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen. Fuzzy artmap:

A neural network architecture for incremental supervised learning of analog multidimen-

sional maps. IEEE Transactions on neural networks, 3(5):698–713, 1992.

[6] M.-W. Chang, V. Srikumar, D. Goldwasser, and D. Roth. Structured output learning with in-

direct supervision. In Proceedings of the 27th International Conference on Machine Learning

(ICML-10), pages 199–206, 2010.

[7] X. Cheng and D. Roth. Relational inference for wikification. Urbana, 51:61801, 2013.

79

[8] O. Cordón, F. Herrera, and P. Villar. Generating the knowledge base of a fuzzy rule-

based system by the genetic learning of the data base. IEEE Transactions on fuzzy systems,

9(4):667–674, 2001.

[9] S. Cucerzan. Large-scale named entity disambiguation based on Wikipedia data. In Proceed-

ings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning (EMNLP-CoNLL), pages 708–716, Prague,

Czech Republic, June 2007. Association for Computational Linguistics.

[10] M. Dredze, P. McNamee, D. Rao, A. Gerber, and T. Finin. Entity disambiguation for knowl-

edge base population. In Proceedings of the 23rd International Conference on Computational

Linguistics, pages 277–285. Association for Computational Linguistics, 2010.

[11] G. Durrett and D. Klein. A joint model for entity analysis: Coreference, typing, and linking.

Transactions of the Association for Computational Linguistics, 2:477–490, 2014.

[12] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extraction.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing,

EMNLP ’11, pages 1535–1545, Stroudsburg, PA, USA, 2011. Association for Computational

Linguistics.

[13] J. R. Finkel, A. Kleeman, and C. D. Manning. Efficient, feature-based, conditional random

field parsing. In Proceedings of ACL-08: HLT, pages 959–967, Columbus, Ohio, June 2008.

Association for Computational Linguistics.

[14] M. Francis-Landau, G. Durrett, and D. Klein. Capturing semantic similarity for entity linking

with convolutional neural networks. CoRR, abs/1604.00734, 2016.

[15] Y. Goldberg and O. Levy. word2vec explained: deriving mikolov et al.’s negative-sampling

word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

80

[16] X. Han, L. Sun, and J. Zhao. Collective entity linking in web text: A graph-based method. In

Proceedings of the 34th International ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR ’11, pages 765–774, New York, NY, USA, 2011. ACM.

[17] X. Han and J. Zhao. Named entity disambiguation by leveraging wikipedia semantic knowl-

edge. In Proceedings of the 18th ACM Conference on Information and Knowledge Manage-

ment, CIKM ’09, pages 215–224, New York, NY, USA, 2009. ACM.

[18] S. Haykin and N. Network. A comprehensive foundation. Neural Networks, 2(2004), 2004.

[19] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, B. Taneva, S. Thater,

and G. Weikum. Robust disambiguation of named entities in text. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pages 782–

792, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[20] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366, 1989.

[21] H. Huang, L. Heck, and H. Ji. Leveraging deep neural networks and knowledge graphs for

entity disambiguation. CoRR, abs/1504.07678, 2015.

[22] H. Ji and R. Grishman. Knowledge base population: Successful approaches and challenges.

In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies-Volume 1, pages 1148–1158. Association for Computational

Linguistics, 2011.

[23] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action

recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221–

231, 2013.

[24] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale

81

video classification with convolutional neural networks. In Proceedings of the IEEE confer-

ence on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-

tional neural networks. In Advances in neural information processing systems, pages 1097–

1105, 2012.

[26] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In Proceedings of the Eighteenth Inter-

national Conference on Machine Learning, ICML ’01, pages 282–289, San Francisco, CA,

USA, 2001. Morgan Kaufmann Publishers Inc.

[27] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series. The

handbook of brain theory and neural networks, 3361(10):1995, 1995.

[28] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,

M. Morsey, P. van Kleef, S. Auer, et al. Dbpedia–a large-scale, multilingual knowledge base

extracted from wikipedia. Semantic Web, 6(2):167–195, 2015.

[29] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,

M. Morsey, P. van Kleef, S. Auer, et al. Dbpedia–a large-scale, multilingual knowledge base

extracted from wikipedia. Semantic Web, 6(2):167–195, 2015.

[30] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. In Ad-

vances in neural information processing systems, pages 2177–2185, 2014.

[31] C.-T. Lin and C. S. G. Lee. Neural-network-based fuzzy logic control and decision system.

IEEE Transactions on computers, 40(12):1320–1336, 1991.

[32] O. Medelyan, I. H. Witten, and D. Milne. Topic indexing with wikipedia.

82

[33] R. Mihalcea and A. Csomai. Wikify!: Linking documents to encyclopedic knowledge. In

Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge

Management, CIKM ’07, pages 233–242, New York, NY, USA, 2007. ACM.

[34] D. Milne and I. H. Witten. Learning to link with wikipedia. In Proceedings of the 17th ACM

Conference on Information and Knowledge Management, CIKM ’08, pages 509–518, New

York, NY, USA, 2008. ACM.

[35] V. Ng. Supervised noun phrase coreference research: The first fifteen years. In Proceedings

of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pages

1396–1411, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

[36] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.

In EMNLP, volume 14, pages 1532–43, 2014.

[37] S. Pradhan, L. Ramshaw, M. Marcus, M. Palmer, R. Weischedel, and N. Xue. Conll-2011

shared task: Modeling unrestricted coreference in ontonotes. In Proceedings of the Fifteenth

Conference on Computational Natural Language Learning: Shared Task, CONLL Shared

Task ’11, pages 1–27, Stroudsburg, PA, USA, 2011. Association for Computational Linguis-

tics.

[38] D. Rao, P. McNamee, and M. Dredze. Entity Linking: Finding Extracted Entities in a Knowl-

edge Base, pages 93–115. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[39] L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms for disam-

biguation to wikipedia. In ACL, 2011.

[40] B. T. C. G. D. Roller. Max-margin markov networks. Advances in neural information pro-

cessing systems, 16:25, 2004.

[41] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Trans-

actions on pattern analysis and machine intelligence, 20(1):23–38, 1998.

83

[42] W. Shen, J. Han, and J. Wang. A probabilistic model for linking named entities in web

text with heterogeneous information networks. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’14, pages 1199–1210, New

York, NY, USA, 2014. ACM.

[43] W. Shen, J. Wang, P. Luo, and M. Wang. Linking named entities in tweets with knowledge

base via user interest modeling. In Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’13, pages 68–76, New York,

NY, USA, 2013. ACM.

[44] A. Sil and A. Yates. Re-ranking for joint named-entity recognition and linking. In Pro-

ceedings of the 22nd ACM international conference on Conference on information &

knowledge management, CIKM ’13, pages 2369–2374, New York, NY, USA, 2013. ACM.

[45] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[46] W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine learning approach to coreference

resolution of noun phrases. Comput. Linguist., 27(4):521–544, Dec. 2001.

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A

simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–

1958, Jan. 2014.

[48] E. K. Stephen Guo, Ming-Wei Chang. To link or not to link? a study on end-to-end tweet

entity linking. In NAACL-HLT 2013, June 2013.

[49] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of semantic knowledge. In

Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pages

697–706, New York, NY, USA, 2007. ACM.

84

[50] Y. Sun, L. Lin, D. Tang, N. Yang, Z. Ji, and X. Wang. Modeling mention, context and entity

with neural networks for entity disambiguation. In IJCAI, 2015.

[51] C. Sutton and A. McCallum. An introduction to conditional random fields. Found. Trends

Mach. Learn., 4(4):267–373, Apr. 2012.

[52] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for

structured and interdependent output variables. Journal of Machine Learning Research,

6(Sep):1453–1484, 2005.

[53] J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simple and general method

for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Associa-

tion for Computational Linguistics, ACL ’10, pages 384–394, Stroudsburg, PA, USA, 2010.

Association for Computational Linguistics.

[54] Y. Wang, K.-F. Loe, and J.-K. Wu. A dynamic conditional random field model for foreground

and shadow segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(2):279–289, 2006.

[55] I. Witten and D. Milne. An effective, low-cost measure of semantic relatedness obtained from

Wikipedia links. In Proceeding of AAAI Workshop on Wikipedia and Artificial Intelligence:

an Evolving Synergy, AAAI Press, Chicago, USA, pages 25–30, 2008.

[56] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR,

abs/1311.2901, 2013.

85

