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Abstract

This research work proposes an adaptive optimal Lyapunov control for a Trans-critical Organic

Rankine Cycle (TORC) to address disturbance rejection problem. TORC is a thermodynamic cycle

for converting low temperature heat into electrical power where the system operates with an organic

fluid with low boiling temperature at supercritical or trans-critical conditions. This thermodynamic

cycle is similar to the traditional steam Rankine cycle, but it is capable of recovering low grade heat

into useful power. The control-oriented challenge of utilizing this system at nominal efficiency is

that low grade heat resources have a fluctuating nature which does not allow the heat recovery

system operates at nominal operating conditions. In this regards, a control-oriented nonlinear

model of TORC system is developed, and an Adaptive Variable Structure Control (AVSC) using

Cerebellar Model Articulation Controller (CMAC) neural networks is proposed to maintain the

system at nominal operating conditions while rejecting the disturbances. The variable structure

control is a well known robust control strategy suitable for this application where CMAC neural

network method integrates into the control such that the final control is not only robust but also

adaptive to the disturbances.
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Chapter 1

INTRODUCTION

Energy plays an essential role in all aspect of our life so that it is our responsibility to protect the

energy resources and harness these resources more efficiently. The rate of economic development

in the world over the last century was entangled with the rate of energy consumption. This growth

of energy consumption has been sadly involved with more consumption of fossil fuels and emis-

sion of more carbon dioxide that results in increasing atmospheric pollution, global warming and

so many dramatic consequences on the environments. According to the European Commission

2050 low-carbon economy road-map [1], by 2050 EU should cut carbon emissions to 80% below

1990 levels and the milestones are 40% by 2030 and 60% by 2040 reduction in carbon emission

below 1990 levels. Also, Alberta provincial government in Canada has recently set up a regulation

on reduction of emission of greenhouse gases. This is facility that emits more than 100,000 tonnes

greenhouse gases must reduce their emission to 20% by 2017 and a levy on carbon has been also

imposed as a cost-effective way of reducing carbon emissions [2].

Sustainable use of energy and efficient consumption are the best way of preserving natural

resources for next generations. From the engineering perspective, the sustainable development

of energy resources includes improvement of machine efficiency to minimize waste energy. The

waste energy is usually in the form of thermal energy which is discharged into the environment

through chimneys of factories, exhaust gas, or many other ways. However, the waste heat can be

recovered into a useful type of energy such as electricity by a thermal converter system. The con-

version of thermal energy into electricity has been well developed and utilized for a long time since

the heat engine was invented in 18th century. Eventually, the thermodynamics law continued to

develop gradually such as Carnot’s theorem, entropy principle or second law of thermodynamics.
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Thermodynamics as a major branch of physical science continues developing in collaboration with

other disciplines to design and build advanced thermal systems.

After building a complex system, a perpetual challenge is how to make efficient use of the

system. To tackle such issue, the disciple of Control Systems is a must to get most out of the sys-

tem such that the applied control makes desired behaviors in the system. As a general statement,

the more complex system, the more advanced control system is needed. The Control System is

relatively new engineering field which received significant attention during 20th century due to the

rapid technology advancement . This engineering discipline embraces a wide range of applica-

tions, from a household washing machine to a spacecraft design. This field of engineering is to

thoroughly understand the behavior of a system in the language of mathematics, then to design a

controller towards the desired behavior [3].

As a sustainable development example, a complex thermodynamic system called Organic

Rankine Cycle will be introduced, then its applications and its types will be explained in this

chapter. To make the best use of this system, there are quite a few control-oriented challenges such

as disturbances and model uncertainties. Thus, the challenges will be pointed out, and finally, a

solution for them will be proposed. Control system has shown promising contribution to improve-

ment of power plants net power output that is 2-4% greater power output [3]

1.1 Organic Rankine Cycle

Organic Rankine Cycle (ORC) system is a low temperature thermal power plant which is capable

of converting low quality heat into electricity. The ORC system is conceptually identical to the

traditional steam Rankine cycle shown in figure 1.1 whereas the working fluid is different. The

working fluid in the ORC system is an organic fluid with low boiling temperature which contributes
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to being capable of converting low temperature heat resources into electricity. Similarly, the ORC

system comprises evaporator, condenser, turbine expander and pump such that the ideal Rankine

cycle consists of the following four processes:

1-2 Isentropic compression in the pump,

2-3 Constant pressure heat addition in the evaporator,

3-4 Isentropic expansion in the turbine expander,

4-1 Constant pressure heat rejection in the condenser.
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Pump

Evaporator

12

3

4

Q
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.

Q
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.

Fan

W
expander

.

W
pump
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(a) components of an ideal Rankine cycle
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Q
out

.
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W
expander
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(b) T-s diagram of an ideal Rankine cycle

Figure 1.1: conceptual scheme of an ideal Rankine cycle

Figure 1.1 shows the consisting components and the four processes of an ideal Rankine cycle.

Working fluid enters the pump at state 1 as a saturated liquid, then the pump consumes energy and

compresses the working fluid to the operating pressure of the evaporator, state 2. The working

fluid temperature increases through absorbing heat in the evaporator essential at a constant pres-

sure where the working fluid reaches state 3. Then, it enters the turbine expander where it expands

isentropically and produces mechanical energy which is coupled to an electric generator. Through

this process, pressure and temperature of the working fluid drop to state 4 where it enters the con-

denser for heat rejection. Through rejecting the heat to ambient, the working fluid is condensed at
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constant pressure to state 1 where the cycle has started. Furthermore, the area under the process

curve 2-3 in the T-s diagram represents the heat transferred to the working fluid in the evaporator.

The area under the process curve 4-1 in the T-s diagram represents the heat rejected in the con-

denser. Therefore, the difference between this two area where enclosed by the cycle curve is the

produced net work.

On the other hand, the actual cycle differs from the ideal one due to irreversibilities in the con-

sisting components. Fluid friction and heat loss to the ambient are two sources of irreversibilities.

The fluid friction results in pressure drop in the evaporator, the condenser and the pipeline between

components. The heat loss from the working fluid to the ambient occurs as the working fluid flows

through the components. Hence, these sources of irreversibilities contribute to a decrease in cycle

efficiency. Increasing the Rankine cycle net power output has always been an engineering issue so

that various approaches have been proposed to tackle this issue such as increasing the operating

pressure of the evaporator such that it automatically raises the temperature at which heat is trans-

ferred to the working fluid. In this work, the focus is on efficiency improvement and net power

output enhancement of an Organic Rankine cycle under trans-critical pressure and temperature.

The operating pressure of the evaporators has gradually increased over the years. Nowadays,

there are many modern power plants operate at trans-critical pressure resulting in higher thermal

efficiency [4]. Figure1.2 illustrates the T-s diagram of a Trans-critical Rankine cycle. Beside trans-

critical approach for efficiency improvement, the selection of working fluid is another mean of

increasing the thermal efficiency in agreement with heat source temperature. Studies have shown

when the heat source is classified as low-grade (60◦− 220◦) or as medium-grade (220◦− 450◦),

selection of appropriate working fluid plays an important role to achieve high efficiency. Choice

of organic fluids with lower latent heat and lower pinch points shows better performance than the

water in low temperature applications [5, 6] so that ORC systems are better off with utilizing low
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to medium grade heat resources. In particular, this work addresses efficiency enhancement of a

Trans-critical Organic Rankine Cycle (TORC) where it is more cost-effective than sub-critical Or-

ganic Rankine Cycle (SORC) [7].

Q
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Critical Point

Figure 1.2: T-s diagram of a Trans-critical Rankine cycle

There are essentially two stages to increase the efficiency of TORC systems, design stage and

control stage. The design phase consists of the selection of the working fluid [8, 9, 10]; component

selection and integration into ORC system [11, 12]; parameter optimization [7]; and process inte-

gration of the system [13]. After the design stage, control stage consists of developing a control

system to shape the transient behavior of the system to achieve a desired behavior such that the

system can reach the theoretical performance of the design stage.

Conversion of low temperature heat resources into useful power provide a broad application

for ORC systems such as geothermal energy [14], solar thermal energy [15, 14], biomass product

[8] and waste heat recovery (WHR). Figure 1.3 illustrates how ORC systems can be utilized for

waste heat recovery or solar energy applications. Another ORC system application for WHR is

in heavy-duty vehicles such that reducing heat loss has the most opportunity for overall efficiency
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improvement of the vehicle. Although ORC systems are associated with low efficiency (8%-12%)

[16], this small scale system are relatively easy to manufacture their components. Also, Honda

Motor has built and tested Rankine cycle co-generation unit on their hybrid vehicle by recovering

the waste heat of the exhaust gas to recharge the battery pack. The test has revealed that the use of

WHR unit has improved the engine efficiency by 3.8% in 100 kph constant-speed driving.

Expander

Condenser

PumpEvaporator

Fan

To generator
Collector

Storage

Tank

Sun

(a) application of ORC system in solar energy

Expander

Condenser

PumpEvaporator

Fan

To generator

Factory

(b) application of ORC system in waste heat re-
covery

Figure 1.3: two sample applications of ORC system in low-grade heat resources

In this work, the topics which will be covered comprise control-oriented modeling of ORC systems

including SORC and TORC, control system design including controller design and state estimate

design.

1.2 Control-oriented ORC Model

This section focuses on the methodology of an ORC dynamic modeling suitable for model-based

control purposes. A control-oriented model is based on approaches with trade-offs between ac-

curacy and low computation. In other words, this model is accurate enough to capture dominant

modes of a system while it is not computationally expensive. Hence, to develop a control-oriented

model of a system where the system consists of different components, first, the components must

be classified into a fast dynamic and a slow dynamic categories such that a slow dynamic com-

ponents have a time constant at least 10 times longer than fast dynamic components [17]. This
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reduces the complexity and ill-conditioning level of the model [18]. Then, for control purposes,

dynamic models of the slow dynamic components are derived whereas static models of the fast

dynamic components are considered. Finally, interconnections of the component models build

the overall model of the system. ORC systems comprise sub-systems including heat exchangers,

pump, and turbine expander so that each component must be modeled separately. Given the fast

and slow dynamic classification, static models of pump and turbine expander will be developed

due to their fast dynamic characteristics , and dynamic model of heat exchangers will be derived

due to their slow dynamic characteristics [19, 20].

In modeling of ORC systems, the challenging part is developing the dynamic model of heat ex-

changers for control purposes. In this regards, thermodynamic laws including conservation of mass

and conservation of energy are used to model the heat exchangers. Conservation of momentum is

not considered in this work since pressure drop in heat exchangers are neglected. Dynamic mod-

els of heat exchangers can be classified into three categories: lumped parameters models, moving

boundary models and discretization of PDE models.The discretization of PDE models are close to

the truth model, but they have a high level of complexity so that they are not suitable for control

purposes [21]. The most appropriate control-oriented model is the moving boundary model (MB-

model). However, if the working fluid is in trans-critical condition MB-model cannot be utilized

since there is not phase boundary in a trans-critical fluid. Also, where the accuracy does not matter,

lumped parameters model can be used. For instance, preheater or recuperator in a Rankine cycle

can be modeled by a lumped parameters model.

In this work, the MB-model is based on Jensen’s Ph.D. thesis in 2003 with focus on dynamic

modeling of evaporators [22, 23] although MB-model is known as well-developed old model

for heat exchangers. The MB-model has been widely used including vapor compression cycle

for HVAC systems such as He et al. [24, 25] or Rasmussen [26], and Rankine cycle such as

7



[21, 19, 27, 28]. Furthermore, in the control-oriented modeling of trans-critical heat exchangers,

Rasmussen used a 13th order dynamic model consisting of a single region model for a trans-critical

gas cooler and a lumped parameter model for a preheater in a trans-critical vapor compression cycle

[26]. Note that the vapor compression cycle has a similar structure to Rankine cycle, but Rankine

cycle has an inverse functionality where it is utilized as power generation cycle. Similarly, in this

work, a 13th order dynamic model is developed for TORC system.

Another modeling challenge is the estimation of the model parameters such as heat transfer

coefficients, pump or expander parameters. To estimate heat transfer coefficient for single-phase

flow in a circular tube is calculated by Gnielinski’s correlation where Nussel number is calculated

using Dittus-Boelter equation referred in [29]. For pump and expander semi-empirical static model

is used. Thus, dynamic MB-model for heat exchangers combined with static models of pump and

expander provides a ground for control system design in general. Similarly, Wei et al. [21] used

this approach for WHR ORC model where methodology of selection of thermodynamic state vari-

ables was explained according to Duhem’s theorem which states that the equilibrium state of a

system is completely determined by two independent variables when the initial masses are known

[21]. Therefore, if the conservation of momentum is neglected, there is no need for a third in-

dependent variable to determine the equilibrium state of the system. Ultimately, choosing two

intensive variables among the set of
{

P h ρ u s

}
contributes to 10 possible combinations.

In this work, the pair of
{

P h

}
is selected as state variables in modeling section as this pair leads

to relatively robust model [23]. Similarly, Quoilin et al. [30, 31] developed a dynamic model for

WHR SORC system using a scroll expander where the same modeling approach is utilized for

control purposes.Furthermore, Esposito et al. [28] followed the same modeling approach to design

a nonlinear model predictive control for WHR SORC in automotive engines. Finally, Zhang et al.

[32, 33, 20] used this control-oriented modeling approach for SORC system.
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1.3 Control of ORC systems

Heat resources are often unsteady or transient, which causes a lower performance than the nom-

inal one. Therefore, an advanced control system must be designed to maintain the ORC system

at maximum performance. Now that, there are control-oriented challenges which must be taken

into account including disturbance imposed by the transient behavior of the heat source. The dis-

turbance causes the system deviates from the optimal operating conditions results in decreasing

the system efficiency. Thus, the first control objective is to track the optimal set-point while the

disturbance is affecting the system through the fluctuation of heat source temperature. In ORC

systems, not only efficiency is of high importance but safety also is a key factor. The safety factor

is to maintain the proportion of liquid and vapor in the heat exchangers in an acceptable range, oth-

erwise it causes stalling or temperature shocks to the components and damaging the system. For

instance, if an excessive wet flow enters into the turbine expander, it results in bending damages in

the turbine’s blades. Ultimately, all these challenges highlight the importance of a control system

to guarantee safety and performance.

Quoilin et al. [31] proposed an optimal control strategy in SISO control architecture for an

SORC where a static model was utilized to derive the optimal evaporating temperature and super-

heating over a wide range of heat source and heat sink conditions. Expander rotation speed and

pump capacity were the manipulated variables to control superheating and evaporating temperature

as two important variables in SORC systems. Furthermore, two PI controllers were used to track

the calculated optimal set-point. In this SISO strategy, pump capacity controlled the evaporating

temperature which is a function of high pressure, and expander speed controlled the superheating.

Due to the better performance that multivariable control scheme, MIMO, exhibits in ORC ap-

plications, they have got the attention of researchers in control of ORC systems [27]. Zhang et al

[19] developed a dynamic model with moving boundaries for the evaporator and the condenser.
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Afterward, a linear state space model was derived for control system design purposes. Regarding

the overall system efficiency, the degree of superheating in the evaporator and the condenser outlet

temperatures were regulated. A linear quadratic regulator coupled to a PI (proportional-integral)

controller have been designed and simulated for set point changes in the power output and the

throttle valve pressure (i.e., pressure at the entrance of the expander) as well as the superheating

and condenser temperatures. The PI controller maintained the condenser outlet temperature at the

desired level. Likewise, disturbance rejection scenarios were investigated associated with hot gas

stream velocity variation and throttle valve dynamics. Zhang et al [32] extended the previous work.

He developed an extended observer to have an accurate state estimate for the system.

A dynamic model for a waste heat recovery system introduced by Zhang et al. [33] is based on

an ORC system with R245fa as the working fluid. Then, the first principles dynamic model was

converted to a CARIMA (controlled auto-regressive integrated moving average) model for use in a

model predictive control scheme. The system power output, the evaporator pressure, the superheat-

ing temperature, and the condenser temperature were the controlled variables in the multivariable

control scheme. In order to control these variables, the pump and expander rotating speeds and the

air flow in the condenser were utilized. Implementing a constrained generalized predictive con-

troller resulted in having the rejection of disturbances and following the set-point in an efficient

manner. Zhang et al. [20] proposed a constrained generalized predictive controller that took into

account bounds on both the manipulated and controlled variables as well as the rate of change for

the manipulated variables. The performance of the controller has been assessed for disturbances

in the temperature and the flow rate of the heat source stream. Power output was maintained at

the desired level despite the disturbances. Furthermore, the controller could successfully track

the set-point changes for the evaporator pressure, the superheating temperature, and the condenser

temperature.
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Recently, Hou et al. [34] introduced a minimum variance controller with real-time param-

eter estimation for a CARMA (controlled auto-regressive moving average) model. A recursive

least squares technique was implemented for the parameter estimation. But, the proposed control

scheme does not take into account a model for the stochastic disturbances in the system. Since

uncertainties play a major role in the performance of the ORC system; consequently, to monitor

the changes in the dynamic features on-line the measurements from the process should be used.

Moreover, the inherent nonlinearities in the system may lead to having a significant inaccuracy

in the predictions from linearized process models. To do so, Zhang et al. [19] introduced a state

extended observer for the on-line update of states and model parameters. Then, the updated model

is used in a linear quadratic regulator with a PI controller for the plant control.

In conclusion, MIMO control architecture due to the incorporation of the coupling between mul-

tiple inputs and outputs improves the transient behavior of the ORC system in comparison with

SISO control architecture [31]. Relative Gain Array (RGA) analysis [17] shows that there is a

considerable coupling between the control variables- the evaporator outlet temperature and high

pressure. Note that sub-cooling is the other important variable in ORC, but according to RGA

analysis, this variable can be controlled by fan rotation speed with a separate PI controller.

Input Controller Plant Output

State Estimate

+_

Figure 1.4: closed-loop control architecture principle

Figure 1.4 illustrates the principle of a closed-loop control architecture in block diagrams where

the controller uses state error to generate control input of the plant. The state estimator is designed

to provide all system states by output measurements. In this work, the control variables are high

pressure and evaporator outlet temperature. The control inputs are the pump rotation speed and

turbine expander rotation speed. Sources of disturbances to ORC system are the fluctuation of heat

11



source temperature and fluctuation of ambient temperature. Also, due to a negligible frequency of

changes of ambient temperature in comparison with heat source temperature, ambient temperature

is assumed constant in this work. For the control design, an optimal control strategy inspired from

optimal sliding mode control is designed where it guarantees robustness characteristic of the con-

trolled. Then, the optimal controller combined with CMAC neural networks to make the controller

adaptive to deterministic and indeterministic uncertainties and disturbances.

1.4 Motivation and Objective

This work concentrates on semi-model based control of a TORC system since there is a significant

uncertainty in TORC model. Moreover, fluctuation of heat source temperature is a considerable

indeterministic disturbance into the TORC system. To the extent of authors’ knowledge, there are

not any accurate control-oriented models for Trans-critical ORC systems so far. To sum up, the

control-oriented challenges of controlling TORCs are as follows:

• Model Uncertainties: inaccuracy of thermodynamic equation of states (EoS) in

trans-critical conditions resulted in parameter uncertainties, unmodeled dynamics,

neglect of nonlinear terms in linear model, linearization process;

• Disturbance: fluctuation of heat source as a primary contributing factor in model

parameters change (variation of ambient temperature is negligible);

• Sensitivity: high level of sensitivity in high-pressure channel;

• Coupling: high degree of coupling among control variables (high pressure and

evaporator outlet temperature) and control inputs (pump rotation speed and ex-

pander rotation speed);

• Constraints: constraints on control inputs and state variables concerning safety and

efficiency;

12



• Unmeasurable system state: existence of some unmeasurable system states includ-

ing phase boundaries and heat exchanger wall temperatures;

• Measurement noise: existence of measurement noise in system outputs.

Accordingly, the control strategy must address all of these challenges in TORC system. Therefore,

the controller must have the following characteristic to tackle such issues:

• Robustness: to overcome uncertainties and disturbances;

• Adaptability: to adjust to the model parameters change due to the fluctuation of heat

source;

• Semi-model base: to not fully rely on uncertain model;

• Optimality: to penalize the control in case of approaching the constraints;

• MIMO control: to consider the control variables and control inputs couplings;

• State observation: to estimate unmeasurable state variables.

In addition to these objectives, the author is aiming for proposing a means of controlling uncertain

systems in general.

1.5 Treatment Approach and Contributions

To address all of the challenges mentioned above, we propose an adaptive optimal variable struc-

ture control such that a variable control structure is integrated with CMAC neural networks in

which a Kalman filter [35] optimal state observer provides state estimate while rejecting the sensor

noise. The proposed control is an adaptive robust semi-model based MIMO control combined with

Kalman filter estimator chosen as a suitable control approach for set-point tracking and disturbance

rejection. This enables the closed-loop system to follow optimal operating conditions while can-

celing out the effect of uncertainties as a result of adaptation to the level of disturbances through

online training of neural networks. To sum up, the contribution of this work consists of:
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• introducing a control-oriented model for a TORC plant through developing dynamic

models of the heat exchangers and static models of the pump and the turbine ex-

pander as well as estimation of heat transfer coefficient for different thermodynamic

conditions;

• proposing a novel control methodology through the integration of CMAC neural

networks into an optimal variable structure control to design an adaptive optimal ro-

bust control which is a combination of the classical control discipline with the intel-

ligent control discipline for set-point tracking and disturbance rejection of TORC;

• conducting stability analysis of the adaptive VSC design using Lyapunov stability

theory to derive the adaptation laws so that the system can adapt to the model pa-

rameters change due to external disturbances, and nonlinearity imposed by set-point

changes from the nominal operating conditions;

• integration of a Kalman filter as an optimal state observer into the adaptive VSC

design to estimate unmeasurable system states and to enhance the practicality of

the designed controller.
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Chapter 2

MODELING OF ORGANIC RANKINE CYCLE

This chapter shows the modeling methodology of Organic Rankine Cycles in general such that

each component of ORC system will be modeled separately, then all models will be combined into

a global model representing the final model of an ORC system. Furthermore, the last section in this

chapter will show how to model each type of ORC systems, Sub-critical ORC (SORC) and Trans-

critical ORC (TORC). It is noted that in this work, our focus is on TORC system as the TORC

control design is more challenging than SORC control because there is more model uncertainties

are involved in TORC model.

2.1 Heat Exchanger Dynamic Models

This section describes different heat exchanger models which will be utilized to derive the dynamic

model of the ORC system. In general, heat exchangers are the essential part of a thermodynamic

system as they can be utilized as an evaporator, condenser or recuperator. Also, they have relatively

slow dynamic nature in comparison with the other components of the thermodynamic system such

as the pump or turbine expander. From the control design viewpoint, slow dynamic elements of

a system capture the dominant modes of the system. Thus, for a model-based controller, control-

oriented dynamic model of heat exchangers must be derived. In control-oriented models, there is a

trade-off between accuracy and complexity of the model which means the model must be accurate

while simple enough for control design purposes. Given this goal, various control-oriented heat ex-

changer models will be explained in this section. Also, in this section, there are some assumptions

made for the heat exchanger models as follow:

1. long, thin and horizontal tube,
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2. one-dimensional flow,

3. negligible kinetic energy,

4. negligible gravitational forces

5. constant cross-sectional area of the heat exchanger tubes,

6. negligible axial heat conduction in the working fluid and pipe wall,

7. cross flow heat exchangers

8. negligible pressure drop along the heat exchanger tubes so that the momentum bal-

ance is superfluous.

2.1.1 Moving Boundary Model

One of the best control-oriented heat exchanger models is moving boundary (MB) model because

MB model captures the essential dynamic behavior of a heat exchanger through only 7 state vari-

ables in general. In other words, this 7th order model embraces accuracy and simplicity features,

that is appropriate for control system design. On the other hand, this model can only be used for

sub-critical thermodynamic conditions as the boundary of each phase of the working fluid can be

identified only in sub-critical conditions.

Figure (2.1) illustrates a conceptual scheme of a general MB model of a heat exchanger. The

distinct physical behavior among the sub-cooled region, two-phase region, and superheated region

in the two-phase heat exchangers motivates to derive MB-model. For instance, the heat transfer

coefficient may differ significantly from the superheated region to the two-phase region, but with a

good approximation, it is constant in each region so that the heat transfer coefficient in each region

is independent of the spatial axis.

According to the idea of MB-model, the heat exchanger is divided into three regions, sub-

cooled, two-phase and superheated such that the length of each region is dynamically tracked. Each
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Figure 2.1: Schematic of a general MB-model

region is modeled as a control volume (CV) with variable boundaries using average properties

including temperature, enthalpy and density. The governing equations of MB-model are one-

dimensional mass balance (2.1),

∂Aρ

∂ t
+

∂ ṁ
∂ z

= 0 (2.1)

and one-dimensional energy balance neglecting the axial conduction, radiation and the viscous

stresses (2.2),

∂Aρh−Ap
∂ t

+
∂ ṁh
∂ z

= πDα(TwTr) (2.2)

Also, a simplified differential energy balance for the wall of the heat exchanger is derived by

substitution of all flow terms in (2.2) for zero resulted in (2.3),

CwρwAw
∂Tw

∂ t
= αiπDi(Tw f −Tw)+αoπDo(Tamb−Tw) (2.3)

According to the MB-model idea, the equations (2.1),(2.2),(2.3) are integrated over the three re-

gions. Moreover, for the integrations, Leibniz’s integral rule explained in Appendix A is applied

over each region.
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• Superheated region

If the heat exchanger is considered as a condenser, the working fluid entering the condenser is

in the superheated phase so that the first region, L1, indicates the superheated region. Equation

(2.4) shows the integration of the governing mass balance over the first region,∫ L1

0

∂Aρ

∂ t
dz+

∫ L1

0

∂ ṁ
∂ z

dz = 0 (2.4)

Applying Leibniz’s integral rule on (2.4) gives,

A
d
dt

∫ L1

0
ρ dz−AρL1

dL1

dt
+ ṁ12− ṁin = 0 (2.5)

Note that the density at the interface between region 1 and 2 is equal to the saturated vapor

density, ρg, that is,

ρ L1 = ρg (2.6)

Furthermore, pressure, p, and mean enthalpy, h̄, define the state of the superheated region where,

h̄1 =
1
2
(hin +hg) (2.7)

where the inlet enthalpy, hin, is determined from the boundary conditions, and saturated enthalpy,

hg, is only a function of the pressure. Also, the first term can be approximated by mean density

multiplied by length of the region as below,∫ L1

0
ρ dz≈ L1 ρ̄1 (2.8)

In general, all required dependent variables such as the mean density, ρ̄1, and mean temperature,

T̄1, are a function of the pressure and the region mean enthalpy, that is,

ρ̄1 ≈ f (p, h̄1) (2.9)

T̄1 ≈ f (p, h̄1) (2.10)

Eventually, substitution of (2.6) and (2.8) into (2.5) for the superheated region gives

A
[

L1
dρ̄1

dt
+(ρ̄1−ρg)

dL1

dt

]
= ṁin− ṁ12 (2.11)
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Given that pressure, mean enthalpy and length of the section are the state variables in each

region, all other dependent variables should be represented by the state variables. (2.11) using

chain rule reads,
dρ̄1

dt
=

∂ ρ̄1

d p

∣∣∣∣
h

d p
dt

+
∂ ρ̄1

dh̄1

∣∣∣∣
p

dh̄1

dt
(2.12)

then substitution of (2.7) into (2.12) results in,

dρ̄1

dt
=

(
∂ ρ̄1

d p

∣∣∣∣
h
+

1
2

∂ ρ̄1

dh̄1

∣∣∣∣
p

)
d p
dt

+
1
2

∂ ρ̄1

dh̄1

∣∣∣∣
p

dhin

dt
(2.13)

where dhin
dt is a boundary condition of the heat exchanger and considered zero in this work

because the changes of enthalpy in the boundary is negligible. Then, (2.13) is inserted into mass

balance equation (2.11) such that the final mass balance equation for the superheated region

becomes,

A

[
L1

(
∂ ρ̄1

d p

∣∣∣∣
h
+

1
2

∂ ρ̄1

dh̄1

∣∣∣∣
p

)
d p
dt

+
1
2

L1
∂ ρ̄1

dh̄1

∣∣∣∣
p

dhin

dt
+(ρ̄1−ρg)

dL1

dt

]
= ṁin− ṁ12 (2.14)

Then, the same integration process is conducted over the energy balance equation (2.2) to trans-

fer the equation into time derivative of the state variables. In this regards, integration of (2.2)

over the superheated region reads,∫ L1

0

∂Aρh−Ap
∂ t

dz+
∫ L1

0

∂ ṁh
∂ z

dz =
∫ L1

0
πDαi(TwTr)dz (2.15)

Again applying Leibniz integral rule on the first term and integrating the other terms by assuming

constant heat transfer coefficient results in,

A
d
dt

∫ L1

0
ρhdz−A(ρL1)(hL1)

dL1

dt
−AL1

d p
dt

+ ṁ12h1− ṁinhin = πDiαi1L1(Tw1− T̄w f 1) (2.16)

where the first integral can be evaluated as,∫ L1

0
ρhdz = L1ρ̄1h̄1 (2.17)

, and the second term can be written as follows,

ρL1 = ρg , hL1 = hg (2.18)
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Thus, inserting (2.18) into (2.16) gives,

A
d(L1ρ̄1h̄1)

dt
−Aρghg

dL1

dt
−AL1

d p
dt

+ ṁ12h1− ṁinhin = πDiαi1L1(Tw1− T̄w f 1) (2.19)

substitution of (2.7) and rearranging (2.19) reads,

A
(

1
2

ρ̄1(hin +hg)−ρghg

)
dL1

dt

+
1
2

AL1

(
ρ̄1 +

1
2
(hin +hg)

∂ ρ̄1

dh̄1

∣∣∣∣
p

)
dhin

dt

+
1
2

AL1

[
ρ̄1

dhg

d p
+(hin +hg)

(
∂ ρ̄1

d p

∣∣∣∣
h
+

1
2

∂ ρ̄1

dh̄1

∣∣∣∣
p

dhg

d p

)]
d p
dt

−AL1
d p
dt

+ ṁ12h1− ṁinhin

= πDiαi1L1(Tw1− T̄w f 1) (2.20)

rewriting (2.20) results in the final energy balance equation for the superheated region as follows,

1
2

A
[
[ρ̄1(hin +hg)−2ρghg]

dL1

dt

+

(
L1ρ̄1 +

∂ ρ̄1

dh

∣∣∣∣
p

)
dhin

dt

+L1

[
ρ̄1

dhg

d p
+(hin +hg)

(
∂ ρ̄1

d p

∣∣∣∣
h
+

1
2

∂ ρ̄1

dh̄1

∣∣∣∣
p

dhg

d p
−2

)]
d p
dt

]
= ṁinhin− ṁ12h1 +πDiαi1L1(Tw1− T̄w f 1) (2.21)

Also, the energy balance in the wall of the superheated region can be formulated as below,

CwρwAw
dTw1

dt
= 2πri αi1(T̄1−Tw1)+2π ro αo(Ta−Tw1). (2.22)

Ultimately, the mass balance and energy balance, (2.21) and (2.14), are all formatted based on

time derivatives of the state variables and the boundary condition representing the dynamic of
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the superheated region, and (2.22) accounts for the dynamic of the wall temperature in this re-

gion.

• Two-phase region

In two-phase region, the procedure is based on the same idea as the superheated region where

the mass balance and the energy balance are integrated over the two-phase region. Conversely,

the difference in this region is the way that the independent variables are calculated since the

mean variable method does not work in the the two-phase region. In this region, the average

density is calculated using average liquid fraction which is defined as follows,

η̄ =
1
L2

∫ L1+L2

L1

η dz (2.23)

where η = Al
At p and η̄ is only a function of the pressure and calculated by Ziki correlation defined

as below,

η̄ = 1−
1−µ2/3

(
1− ln

(
µ2/3

))
(
1−µ2/3

)2 (2.24)

where, µ is density ratio defined as,

µ =
ρg

ρl
(2.25)

The flow in the two-phase region is assumed homogeneous at equilibrium conditions such that

the mean density is,

ρ̄2 = η̄ρg +(1− η̄)ρl (2.26)

Now, the integration of mass balance over the two-phase region (2.27) can be proceeded using

the average liquid fraction method as follows,∫ L1+L2

L1

∂Aρ

∂ t
dz+

∫ L1+L2

L1

∂ ṁ
∂ z

dz = 0 (2.27)

Applying Leibniz integral rule leads to,

A
d
dt

∫ L1+L2

L1

ρ2 dz+Aρl
dL1

dt
−Aρg

d(L1 +L2)

dt
= ṁ12− ṁ23 (2.28)
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where, ∫ L1+L2

L1

ρ2 dz≈ L2ρ̄2 (2.29)

And, using chain rule and the average liquid (2.26), time derivative of ρ̄2 can be written as,

dρ̄2

dt
=

(
η̄

dρl

d p
+(1− η̄)

dρg

d p

)
d p
dt

. (2.30)

Substitution of (2.29) into (2.28) and using (2.30) give the final mass balance equation for the

two-phase region as below,

AcL2

(
η̄

dρg

dP
+(1− η̄)

dρl

dP

)
dP
dt

+Ac (ρg−ρl)
dL1

dt
+Acη̄ (ρg−ρl)

dL2

dt
= ṁint1− ṁint2.

(2.31)

Moreover, the integration of energy balance over the two-phase region represented as below,∫ L1+L2

L1

∂Aρh−Ap
∂ t

dz+
∫ L1+L2

L1

∂ ṁh
∂ z

dz =
∫ L1+L2

L1

πDαi(TwTr)dz, (2.32)

can be formulated as below using Leibniz integral rule,

Ac
d
dt

∫ L1+L2

L1

ρ2h2dz+Acρghg
dL1

dt
−AcL1

dPc

dt
−Acρlhl

d(L1 +L2)

dt
−AcL2

dPc

dt

= ṁint1hg− ṁint2hl +2πri,cL2αi,2(Tw,2−Twf,2). (2.33)

The integral term of (2.33) can be approximated by the following equation,

d
dt

∫ L1+L2

L1

ρ2h2dz =
d
dt

∫ L1+L2

L1

(η̄ρlhl +(1− η̄)ρghg) dz. (2.34)

After taking the integral over left half side and using chain rule, it is reformulated as below,

d
dt

∫ L1+L2

L1

ρ2h2dz = L2

[
η̄

d(ρlhl)

d p
+(1− η̄)

d (ρghg)

d p

]
d p
dt

+{η̄ρlhl +(1− η̄)ρlhl}
dL2

dt
. (2.35)

Substitution of (2.35) into (2.33) gives the final energy balance equation for the two-phase region

as below,

A(ρghg−ρlhl)
dL1

dt
+AcL2

[
η̄

d(ρghg)

d p
+(1− η̄)

d (ρlhl)

d p
−1
]

d p
dt

+Aη̄ (ρghg−ρlhl)
dL2

dt
= ṁint1hg− ṁint2hl +2πri,cL2αi,2(Twf,2−Tw,2). (2.36)
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Also, the energy balance for the wall of the two-phase region can be formulated as below,

CwρwAw
dTw,2

dt
= 2π ri αi2(T̄2−Tw2)+2π ro αo(Ta−Tw2). (2.37)

Ultimately, the two governing equations over the two-phase region, (2.31) and (2.36), represents

the dynamic model of this region, and (2.37) accounts for the dynamic of the wall temperature

in this region.

• Sub-cooled region

The procedure is identical to superheated region for deriving the dynamic equations of the sub-

cooled region. Therefore, for the sake of shortness, the final mass balance (2.38) and energy

balance (2.39) dynamic equations are illustrated,

A(ρl− ρ̄3)
dL1

dt
+A(ρl− ρ̄3)

dL2

dt
+

1
2

AL3
∂ ρ̄3

∂ h̄3

dhout

dt

+AL3

(
1
2

∂ ρ̄3

∂ h̄3

∂hl

∂ p
+

∂ ρ̄3

∂ p

)
d p
dt

= ṁ23− ṁout . (2.38)

And,

A
(

1
2

L3(hl +hout)

(
1
2

∂ ρ̄3

∂ h̄3

∂hl

∂ p
+

∂ ρ̄3

∂ p

)
−1
)

d p
dt

+A
(

ρlhl−
1
2

ρ̄3 (hl +hout)

)
dL1

dt

+A
(

ρlhl−
1
2

ρ̄3 (hl +hout)

)
dL2

dt
+A

(
1
2

ρ̄3L3 +
1
4

L3(hl +hout)
∂ ρ̄3

∂ h̄3

)
dhout

dt

= ṁ23hl− ṁouthout +2πriL3αi,3(Tw,3− T̄3). (2.39)

Also, the energy balance for the wall of the sub-cooled region reads,

CwρwAw
dTw3

dt
= 2π ri αi3(T̄3−Tw3)+2π ro αo(Tamb−Tw3) (2.40)

Ultimately, the mass balance (2.38) and the energy balance (2.39) represents the dynamic of the

sub-cooled region, and (2.40) is the dynamic of the wall temperature in this region.
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To sum up, all 9 final mass and energy balance equations, (2.20), (2.21), (2.22), (2.31), (2.36),

(2.37), (2.38), (2.39) and (2.40) make a system of 9 equations and 7 independent variables (state

variables). The system state is denoted by the vector of x(t),

xT (t) =
[

L1(t) L2(t) p(t) hout(t) Tw1(t) Tw2(t) Tw3(t)

]
.

There are two dummy variables which are ṁ12 and ṁ23 that can be eliminated such that a 7th order

system of ordinary differential equations (ODEs) reveals the nonlinear dynamic model of a sub-

critical heat exchanger. Eventually, the 7th order system of MB-model ODEs can be illustrated as

below,

Θ(x) ẋ(t) = Γ (x,b) (2.41)

where Θ(x) is a 7×7 matrix consisting of dependent variables, D(x), where they are the function

of the state variables, x(t).

D(x) =
{

ρ̄1 ρ̄2 ρ̄3
∂ ρ̄1
dh

∣∣∣
p

∂ ρ̄1
d p

∣∣∣
h

∂ ρ̄2
dh

∣∣∣
p

∂ ρ̄2
d p

∣∣∣
h

∂ ρ̄3
dh

∣∣∣
p

∂ ρ̄3
d p

∣∣∣
h

}
(2.42)

And, Γ (x,b) is a 7×1 vector where it is a function of state variables, x, and boundary conditions,

b =

{
ṁin ṁout hin ḣin Tamb

}
. (2.43)

Since (2.41) is a full rank system of equations, it can be formulated in standard format of first order

ODEs as below,

ẋ(t) =Θ
−1(x)Γ(x,b) (2.44)

where (2.44) will be used as a control-oriented dynamic model of a heat exchanger.

Although the derived model has considered a heat exchanger as a condenser, this dynamic model

is capable of being simply formulated for sub-critical evaporators as well.

2.1.2 Single Region Model

A single region model represents a simple rough dynamic model of a heat exchanger where it is

an appropriate model for control purposes. This dynamic model can be utilized when the work-
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ing fluid is single-phase or in Trans-critical conditions where there are not separate phase regions.

Although this single region model has a potential for control purposes, it is not as accurate as the

MB-model so that it puts the burden on control system design.

The single region dynamic model is derived based on mass balance and energy balance in

working fluid region and also energy balance in the wall of the heat exchanger. A schematic of a

single region model is illustrated in figure 2.2. To derive the dynamic equations, the mass balance

m
in
h
in

m
in
h
out
(t)

L
total

T
wall
(t)

Supercritical Fluid

P(t)

Single-Phase

Figure 2.2: conceptual scheme of a single region model of a heat exchanger

(2.1) and energy balance (2.2) are recalled such that they are integrated over the tube length of the

heat exchanger as below, ∫ L

0

∂Aρ

∂ t
dz+

∫ L

0

∂ ṁ
∂ z

dz = 0 (2.45)

Applying Leibniz’s integral rule on (2.45) gives,

A
d
dt

∫ L

0
ρ dz−AρL

dL
dt

+ ṁout− ṁin = 0 (2.46)

According to the mean variable method explained in MB-model, the integral in (2.46) can be
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formulated as follows,

AL

(
∂ ρ̄

∂ p

∣∣∣∣
h

d p
dt

+
1
2

∂ ρ̄

∂ h̄

∣∣∣∣
p

dhout

dt

)
= ṁin− ṁout (2.47)

where this is the final mass balance equation.

The integration process is carried out over energy balance PDE such that the PDE is transferred

into an ODE. to derive the final energy balance equation for single region model. This ODE

coupled with mass balance ODE capture the working fluid dynamics.

∫ L

0

∂Aρh−Ap
∂ t

dz+
∫ L

0

∂ ṁh
∂ z

dz =
∫ L

0
πDαi(TwTr)dz (2.48)

The same procedure as MB-model is performed to derive the final energy balance equation in an

ODE form so that using Leibniz integral rule and the mean variable method, (2.48) turns into the

following equation,

AL

[(
h̄

∂ ρ̄

∂ p

∣∣∣∣
h
−1
)

d p
dt

+
1
2

(
∂ ρ̄

∂ h̄

∣∣∣∣
p

)
dhout

dt

]
= ṁinhin− ṁouthout +π LDiαi (Tw− T̄ ). (2.49)

where,

h̄ =
1
2
(hout +hin),

ρ̄ = f (p, h̄),

∂ ρ̄

∂ p

∣∣∣∣
h
= f (p, h̄),

and
∂ ρ̄

∂h

∣∣∣∣
p
= f (p, h̄),

Finally, to capture wall temperature dynamics, energy balance equation for the wall using mean

variable method is formulated as a lumped parameters model as below,

CwρwAw
dTw

dt
= 2π ri αi(T̄ −Tw)+2π ro αo(Tamb−Tw) (2.50)
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Ultimately, (2.47),(2.49) and (2.50) represent the single region dynamic model of a heat exchanger

where state vector x(t) is,

xT (t) =
[

p(t) h(t) Tw(t)

]
. (2.51)

The final 3rd order single region dynamic model can be represented as below,

Θ(x) ẋ(t) = Γ (x,b) (2.52)

where Θ(x) is a 3×3 matrix consisting of dependent variables, D(x), where they are the function

of the state variables, x(t).

D(x) =
{

ρ̄ h̄ ∂ ρ̄

dh

∣∣∣
p

∂ ρ̄

d p

∣∣∣
h

}
(2.53)

And, Γ (x,b) is a 3×1 vector where it is a function of state variables, x, and boundary conditions,

b,

b =

{
ṁin ṁout hin Tamb

}
. (2.54)

Since (2.52) is a full rank system of equations, it can be formulated in standard format, a system

of first order ODEs, as below,

ẋ(t) =Θ
−1(x)Γ (x,b) (2.55)

where (2.55) will be used as a control-oriented dynamic model of a heat exchanger.

2.1.3 Lumped Capacitance Model

Lumped capacitance model (LC-model) captures temperature dynamics of hot side, cold side and

wall of the heat exchanger as state variables. This model can be utilized to model a counter flow

recuperator or preheater in a thermal system where either side of the heat exchanger contain a

single-phase flow as shown in figure 2.3. It is worth mentioning that in Trans-critical condition,

this model will be used because the fluid is not in gas phase neither the liquid phase so that LC-

model captures an approximate dynamic behavior of a recuperator.

27



m
h
h
h.out
(t)m

h
h
h,in

m
c
h
c,in
(t)m

c
h
c.out
(t)

T
wall
(t)

Hot fluid

Cold fluid

P
high

T
h,ave
(t)

P
low

T
c,ave
(t)

Figure 2.3: schematic scheme of an LC-model of a counter flow single-phase heat exchanger

In LC-model, energy balance ODEs for hot side, cold side and wall of the heat exchanger are

formed using mean variable method such that they provide a 3rd order dynamic model as follows,

Th,out

dt
= (

2
ρ̄hChAhL

)
[
ṁinCh(Th,in−Th,out)+π LαhDh(Tw− T̄h)

]
, (2.56)

Tc,out

dt
= (

2
ρ̄cCcAcL

) [ṁinCc(Tc,in−Tc,out)+π LαcDc(Tw− T̄c)] , (2.57)

Tw

dt
= (

π

ρwCwAw
) [Dcαc(T̄c−Tw)−Dhαh(Tw− T̄h)] , (2.58)

where,

T̄h =
1
2
(Th,out +Th,in),

and,

T̄c =
1
2
(Tc,out +Tc,in).

Also uniform working fluid pressure is assumed for each side of the heat exchanger. The state

vector x(t) is,

xT (t) =
[

Th,out Tc,out Tw

]
.
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Also, boundary conditions contain,

b =

{
ṁin ṁout Tin ph pc

}
.

Therefore, the dependent variables can be calculated using thermodynamic state equations as fol-

lows,

ρ̄h = f (ph, T̄h), ρ̄c = f (pc, T̄c)

Ultimately, (2.56), (2.57) and (2.58) form a 3rd order LC-model (2.59) of a heat exchanger

where it contains two single-phase counter-cross flows exchanging heat with each other represented

as follows.

ẋ(t) =Θ
−1(x)Γ (x,b) (2.59)

2.1.4 Heat Transfer Coefficient Correlation

Heat transfer coefficient correlation is an algebraic empirical equation. There are a variety of em-

pirical correlations to calculate the heat transfer coefficient for single-phase, two-phase or Trans-

critical conditions. A comprehensive survey is found in [36] where the accuracy of various corre-

lations were investigated. In this work, the single-phase heat transfer coefficient is calculated by

Gnielinski’s correlation referred in [29] as below,

Nu =
Pr(ζ/8)(Re−1000)

1+12.7(ζ/8)1/2(Pr2/3−1)
(2.60)

where Re and Pr are the Reynold number and Prandtl number respectively, and ζ is the Moody

friction factor for smooth pipes such that it can be computed using Petukhov’s correlation [29] as

follows,

ζ = (0.790 ln(Re)−1.64)−2. (2.61)
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And, this equation is valid for 3000 < Re < 5.106 and 0.5 < Pr < 2000 assuming uniform heat

flux and temperature. The Nusselt, Reynold and Prandtl numbers are determined by,

Nu =
αD
λ

, Pr =
ηcp

λ
, Re =

ṁD
Aη

, (2.62)

where λ , η And cp denote the thermal conductivity, the dynamic viscosity, the specific isobaric

heat capacity respectively. Also, A is the tube cross-sectional area. Eventually, using (2.60),(2.61)

and (2.62), the heat transfer coefficient, α , of a single flow in a horizontal tube is derived.

Furthermore, the heat transfer coefficient of a two-phase flow, αt p, for the convective heat

transfer in a horizontal tube can be computed using the single-phase heat transfer coefficient of

liquid phase, αl , and gas phase, αg, using a correlation referred by [23] as below,

αt p = αl

[[
(1− x)+1.2x0.4(1− x)(

ρl

ρg
)0.37

]−2.2

+

[
αg

αl
x0.01

(
1+8(1− x)0.7(

ρl

ρg
)0.67

)]−2
]−0.5

(2.63)

where x is the two-phase flow quality. αl and αg are the saturated liquid density and saturated gas

density respectively.

Ultimately, it is noted that the heat transfer coefficient of the working fluid is a function of its

mass flow rate, average temperature and pressure. As it was mentioned in MB-model, the heat

transfer coefficient is constant in each phase region. Furthermore, Gnielinski’s correlation for heat

transfer coefficient calculation is valid for Trans-critical conditions.

2.2 Turbine Expander Static Model

In a thermal system consist of heat exchangers and expander, the expander dynamic is relatively

negligible in comparison with the heat exchangers so that there is no need of a dynamic model

for the expander. This section focuses on deriving a static model for a volumetric expander, scroll

expander shown in figure 2.4. The volumetric expanders come with an internal built-in volume
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ratio (rv,in) corresponding to the ratio between inlet and outlet pocket volume.

Nozzle

Rotor pack

Exhaust ports

Fluid spirals inwards

Figure 2.4: scroll turbine expander schematic

There are two physical phenomena occur in an expander, under-expansion and over-expansion,

where the expander pressure ratio is not equal to the thermal system pressure ratio. Under-

expansion happens when expander pressure ratio is lower than the system pressure ratio whereas

over-expansion occurs under an opposite condition, which results in some loss rather than isen-

tropic expansion. A semi-empirical thermodynamic model can is suitable such that a generic non-

dimensional efficiency is defined according to a set of empirical data. In this regards, if ambient

heat losses are neglected, a scroll expander can be modeled with isentropic effectiveness and filling

factor where the isentropic effectiveness is defined as below,

ε =
Ẇsh

ṁ(hin−hout,s)
, (2.64)

and the filling factor is defined by,

φ =
ṁνin

V̇s
(2.65)

where νin is the specific volume of the inlet flow, the V̇s is the theoretical swept volume flow rate

of the expander and it quantifies the volumetric performance of the expander.
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The isentropic effectiveness and the filling factor of the scroll expander are calculated using the

empirical data. The isentropic effectiveness enables formulating the outlet enthalpy of the scroll

expander as follows,

hout = hin− ε(hin−hout,s) (2.66)

where hout,s is the expander isentropic outlet enthalpy which is calculated by

hout,s = f (pout ,sin)

where sin = f (pin,hin).

Furthermore, the filling factor defined by (2.65) enables calculating the expander internal mass

flow rate such that the empirical data leads to estimating the filling factor where it is the function

of the rotating speed, N, and the inlet density, ρin. Thus, according to the filling factor definition,

the expander mass flow rate is,

ṁ =
V̇in

νin
(2.67)

where, the expander volume flow rate,V̇in is defined as the product of the swept volume, Vs and the

expander rotational speed (in RPS unit). Note that expander rotational speed is in RPM unit so that

it must be divided by 60 to convert the unit such that,

ṁ = φ
Vs

νin

N
60

(2.68)

Ultimately, equations (2.66) and (2.68) will be used as a static model of a scroll expander

for the final ORC model such that the expander outlet enthalpy defines the inlet enthalpy boundary

condition, hin of the recuperator at hot side, and the expander mass flow rate defines the recuperator

inlet mass flow rate at hot side while defining the boundary condition of the evaporator outlet mass

flow rate, ṁout. Moreover, the expander rotation speed, N, will be one of the control inputs to the

control system where the expander load is achieved through coupling of the turbine expander to

an asynchronous motor used as a generator. Hence, the expander rotational speed can be adjusted
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by a regenerative Variable Frequency Drive (VFD). From the practical viewpoint, extensive power

electronics are utilized to synchronize the generator phase with a power grid where the load system

is connected.

2.3 Pump Static Model

This section provides a semi-empirical static model for a positive-displacement pump where such

pump is characterized by its built-in maximum flow rate, V̇max,pp, and its global isentropic effec-

tiveness, ηpp. This model expresses the internal reversibility of the pumping process along with

the electromechanical losses of the electric motor as a lumped model. Similarly, this model is

based on the same idea as the expander in the previous section.

In this model, the mass flow rate displaced by the pump is calculated as a function of the

capacity fraction, Xpp, which is defined as the ratio between actual volume flow rate and maximum

volume flow rate of the pump. The capacity fraction is adjusted in proportion to the rotation speed

of the pump where a Variable Frequency Drive (VFD) adjusts the pump motor rotation speed. Thus

the pump mass flow rate is calculated by,

ṁ =
XppV̇max,pp

vin
, (2.69)

where vin is the specific volume of the inlet fluid and V̇max,pp is the maximum volume flow rate of

the pump.

Furthermore, if the fluid is assumed incompressible in the pump, the enthalpy of the outlet flow is

determined using the global isentropic effectiveness, ηpp, by a semi-empirical formula as follows

,

hout = hin +
Pout−Pin

ηpp ρin
(2.70)

where hin, Pin and Pout are the boundary conditions, and ρin can be calculated using the thermody-

namic state equation of the working fluid, that is ρin = f (Pin,hin).
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2.4 Organic Rankine Cycle Dynamic Model

This section frames two global model of an ORC system which are Sub-critical Organic Rankine

Cycle (SORC) and Trans-critical Organic Rankine Cycle (TORC). The global models are built

by interconnecting the model of the components developed in previous sections. Due to cyclic

feature of ORC systems, output variables of each element determine the boundary conditions of

the surrounding components. Figure 2.5 illustrates the interconnection of the ORC components

in general. Moreover, heat source temperature and ambient temperature determine the boundary

conditions of the global system where these variables act as the source of disturbance into the ORC

system. Also, the control inputs are the pump rotation speed, the turbine expander rotation speed,

and the condenser fan rotation speed.
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Figure 2.5: ORC global model illustrating the relations among the system components

2.4.1 Sub-critical Organic Rankine Cycle

Sub-critical Organic Rankine Cycle (SORC) is a type of ORC systems where the system operating

conditions are in the sub-critical thermodynamic region shown in the T-s diagram of a sub-critical

ORC system in figure 2.7.
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Figure 2.6: SORC system conceptual scheme

The net power produced by this SORC system is the area surrounded by points 1, 2, 3, 4, 9 and 1.

In SORC systems, there are two sub-critical heat exchangers which are evaporator and condenser

such that the MB-model built in section 2.1.1 are utilized where they make the system dynamic

model whereas the static models of pump and turbine expander connects the heat exchangers as

shown in figure 2.6.

Therefore, a control-oriented model of an SORC system consist of two sets of 7th order sub-

systems where they build a 14th order system which is capable of describing the dominant behav-

ior of the SORC system and is an appropriate choice for control purposes.

2.4.2 Trans-critical Organic Rankine Cycle

Super-critical or Trans-critical Organic Rankine Cycle (TORC) is another type of ORC system

which is our primary focus in this work. The parameters of this TORC system is based on an ORC

system located at North Alberta, Canada. Each component model of the TORC components is

validated according to the literature stated in chapter 1.

Figure 2.7 compares T-s diagram of an SORC with a TORC. Similarly, a qualitative description of

the TORC system is based on the interconnection of each component modeled in previous sections.
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Figure 2.7: T-s diagram of Trans-critical versus Sub-critical ORC

Figure 2.8 illustrates a conceptual scheme of the TORC system which consists of three heat ex-

changers, evaporator, condenser, and recuperator. The recuperator is utilized to increase the cycle

efficiency, and the working fluid is R134a which stands out among isentropic fluids.

In this TORC system, the evaporator is in contact with a secondary thermodynamic cycle and

the secondary cycle is in direct touch with a heat source. The heat source is the waste heat of

chimneys of a thermal power plant ran by fossil fuel so that using ORC system leads to regenera-

tion of more power to the power grid. Since the ORC system is a regenerative power system, the

power demand is alway assumed maximum value so that the control objective is to maintain the

maximum efficiency of the system.

Since the evaporator and cold side of the recuperator work in trans-critical conditions where

the fluid is not gas neither liquid so that the single region model elaborated in section 2.1.2 must be

used as the dynamic model of the evaporator (2.55), and the lumped capacitance model developed

in section 2.1.3 must be utilized as the dynamic model of the recuperator (2.59). Furthermore,
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Figure 2.8: qualitative description of the TORC system in this work

similar to the SORC model, MB-model developed in section 2.1.1 is used as the dynamic model of

the condenser (2.44). Finally, the static model of pump and turbine expander elaborated in section

2.2 and 2.3 respectively complete the final model of the TORC system. Also, the control inputs are

the pump rotation speed, turbine expander rotation speed and condenser fan rotation speed, similar

to the SORC system control inputs. Eventually, integration of the dynamic models of the heat

exchangers and the static models of the pump and turbine expander provide the nonlinear model

of TORC as follows,

ẋ(t) =Θ
−1(x)Γ (x,b) (2.71)

where x(t) contains 13 state variables of TORC system, and b denotes boundary conditions which

consist of control inputs and external inputs to the TORC system. Variation of external inputs such

as fluctuation of heat source temperature is the source of disturbances into the system.
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The source of disturbances is the fluctuation of heat source and the fluctuation of ambient

temperature. In this work, the variation of ambient temperature is neglected as it does not have

a considerable effect on performance. The fluctuation of heat source is considered as the main

source of external disturbance where the heat source is a secondary thermal cycle. The secondary

cycle works with Therminol 55 as its working fluid where Therminol 55 is a heat transfer fluid

designed to provide consistent cost-effective heat transfer performance over a long life.

Ultimately, given that each component model is validated according to previous research works,

the final TORC model simulations show the same behavior as physical behavior of TORC plants.

For instance, a step change in pump rotation speed results in increasing the high pressure or a step

change in expander results in decreasing the high pressure. This provides qualitative open loop

characteristics of TORC nonlinear model.
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Chapter 3

CONTROL DESIGN: ADAPTIVE OPTIMAL LYAPUNOV

CONTROL USING CMAC NEURAL NETWORKS

This chapter elaborates on control system design for TORC systems. The control system is de-

signed such that it addresses the control-oriented challenges stated in chapter 1. Recalling such

challenges, set-point tracking, and disturbance rejection are the primary control design objectives.

This enables the system to track the optimal operating conditions so that it maximizes system effi-

ciency. First, this chapter explains a method for an optimal hyperplane design in state space where

the optimal hyperplane is a state trajectory. Then, section 2 introduces CMAC as a type of neural

networks and discusses the pros and cons of CMAC. Also, this section looks into the methodology

of CMAC control system design so that it leads to making use of this controller as an adaptive sys-

tem. Then, section 3 is about Kalman filter design where it is utilized as a state estimator for final

control system design. Eventually, section 4 combines all sections to develop the final Adaptive

Variable Structure Controller (AVSC). Ultimately, section 5 analyzes the stability of the designed

control system using Lyapunov stability theory.

3.1 Optimal Hyperplane Design in State Space

In control design, an optimal hyperplane (H) in system state space will be designed such that the

state of the system can have a sliding motion over this hyperplane. This control strategy is in

class of Variable Structure Control (VSC) where this control class provides an effective and robust

means of controlling nonlinear plants with uncertainties and disturbances [37]. The idea of VSC

is to drive the nonlinear plant’s state trajectory onto a designed sub-space of the state space where

the sub-space is referred as a hyperplane in the state space. Thus, the plant dynamics are restricted
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to this hyperplane so that this represents the closed-loop behavior of the plant. In VSC, the control

can changes its structure which means the control is allowed to switch from one member to another

member of a set of control structure. Hence, this ability enables the control system to combine use-

ful properties of each structure although this introduces additional complexity. Moreover, VSC can

reveal new features not presented in any of the structures. For instance, neither of structures may be

asymptotically stable, but the system can be asymptotically stable [38]. In the well-known sliding

mode control (SMC) which is in the VSC class, this hyperplane is called switching surface because

if the state trajectory is above the surface, the control has one gain, while if the state trajectory is

below the surface, the control switches to a different gain.

In 1977, Utkin [38] proposed a method for the VSC class called ”method of equivalent con-

trol” to find ideal sliding motion condition (S = Hx(t) = 0). In this method, a time derivative of

the hyperplane along the system state trajectory is set to zero where the resulting algebraic system

is solved for the control. Eventually, the resulting control called equivalent control, ueq(t), is sub-

stituted into the original system. Once the equivalent control problem is solved where the control

is a linear feedback control, Keq, the attention must be concentrated on reachability problem. This

problem is to select a state feedback control function, ζ (t), denoted as robust term which drives

the state into the designed hyperplane or sub-space and thereafter maintain it within this sub-space.

The function, ζ (t), is essentially a nonlinear function incorporating the discontinuous elements of

the control law such that the final control law consists of the linear state feedback, ueq(t), and the

nonlinear state feedback, ζ (t).

u(t) = ueq(t)+ζ (t), x(t) ∈ℜ
n

From practical viewpoint, to drive the state trajectory onto the hyperplane, the state perpetu-

ally passes backward and forward through a sliding manifold so that the control switches between
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different values repeatedly. This undesirable phenomenon causing physical damage in actuators is

known as Chattering. A simple and practical way of overcoming this issue is to soften the action

of the nonlinear function, ζ (t) which is called smoothing control [39] although there are other

proposed solutions for eliminating Chattering problem. For instance, Pieper 1998 [40] proposed

a modified sliding function such that it effectively eliminated Chattering problem in sliding mode

control.

As it was mentioned, designing the sliding hyperplane is of high importance as it shapes the

system state trajectory or the dynamics behavior of the controlled system. Therefore, the other

problem is to design this hyperplane. Therefore, a hyperplane design method can be carried out by

quadratic minimization of a cost function proposed by Utkin [41]. Similarly, Pieper and Surgenor

1992 [42] developed this approach to design a discrete time sliding mode control. Then the de-

signed controller was applied on a pulse-width modulated gantry crane system, and showed the

effectiveness of this method. This method is conducted through a sequential process such that a

cost function of the system state called cheap cost function (J1) is defined as below,

J1 =
1
2

∫
∞

0
xT Qxdt (3.1)

Solving this Linear Quadratic (LQ) optimization problem provides a initial value for the linear

feedback control (ueq) so that another LQ optimization problem with the actual cost function, J2,

can be solved by substitution of the initial control [39].

J2 =
1
2

∫
∞

0
xT Qx+uT

eqRueq dt (3.2)

Solving this LQ problem gives the optimal hyperplane in the state space, which leads to calculat-

ing the final linear state feedback gain, Keq. Eventually, The linear state feedback, ueq(t) plus the

nonlinear robust term, ζ (t), constructs the optimal sliding mode control law.
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3.1.1 Control Structure

According to chapter 2, the nonlinear dynamic model of the system was developed and then lin-

earized in a state space form as below.

ẋ(t) = Ax(t)+Bu(t) (3.3)

where x ∈ ℜn u ∈ ℜm are the state and control vectors respectively. It is assumed that n>m and

control input matrix, B, is full rank. First, controllability of the system is analyzed according to

linear control systems theory. In this regards, controllability Gramian is constructed to determine

whether the system is controllable. It is worth mentioning that controllability Gramian approach

has an advantageous rather than the controllability matrix analysis approach because estimating

the rank of the controllability matrix is ill-conditioned which is sensitive to roundoff errors and

errors in data. In particular, for the TORC system which has an ill-conditioned linear model,

controllability Gramian is a better approach for controllability analysis.

For a linear time-invariant system (3.1), if all eigenvalues of the system matrix, A, have negative

real part, then the unique solution of Lyapunov equation (3.2), Wc, is positive definite if and only

if the pair (A,B) is controllable.

AWc +WcAT =−BBT (3.4)

Wc is known as controllability Gramian and can also be expressed as,

Wc =
∫

∞

0
eAτBBT eAT τdτ

Analyzing the controllability of TORC through constructing the controllability Gramian reveals

that Wc is positive definite, and the system is fully controllable. This illustrates that all state vari-

ables of the system can be utilized to implement the optimal controller.

Now, the main purpose of a control system design is to regulate the system state from an arbitrary

initial condition, x(0) = x0, asymptotically to the state space origin as t→∞. In this control design,
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the hyperplane, H, is designed such that the system states satisfy equation (3.2),

S .
= {x : h jx = 0}, j = 1,2, ...,m (3.5)

where h j is a row n-vector and m is the number of control inputs. The subspace is the set of x

which makes up S. Accordingly, the ideal case is that the system state slides over each of the

defined hyperplanes, h j. In algebraic terms, the defined subspace S is the null space of H (3.4).

Hx = 0, ∀t > ts (3.6)

where ts is the time at which the sliding mode is reached. In fact, equation 3.4 defines a sliding

motion such that once the sliding mode resides on the hyperplane, condition (3.5), derivation of

sliding motion, will be equal to zero.

Hẋ(t) = 0, ∀t > ts (3.7)

Substitution of linear system model (3.1) gives (3.6).

HAx(t)+HBu(t) = 0, ∀t > ts (3.8)

Then, if |HB| 6= 0 the equivalent control will be in the linear feedback form,

ueq(t) =−Kx(t) (3.9)

where the feedback matrix, K, is given by,

K = (HB)−1HA (3.10)

Eventually, the sliding motion can be represented by the system equation as below,

ẋ(t) = Aeqx(t) = [In−B(HB)−1H]Ax(t) (3.11)

where In is the n× n identity matrix. According to (3.11), motion equation is independent of ac-

tual value of control, u, and only dependent on the constructed hyperplane matrix, H. In fact, the

controls function is to drive and to maintain the state into S.
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3.1.2 Optimal Hyperplane Design

Now, the control design is to construct a hyperplane or subspace in system state space. One method

to build the hyperplane in state space is to define a quadratic cost function of state and controls so

that state and control input constraints can be defined as weight matrices in the cost function. For

hyperplane design, first, the linear system model is transformed into controllable canonical form

by an orthogonal transformation, T , such that,

T B =

 0

B0

 (3.12)

where B0 is an m×m non-singular matrix. Using T transformation matrix, the transformed state

variable x̄ = T x is defined such that the linear system model can be expressed in the following

form,

˙̄x = TAT T x(t)+T Bu(t) (3.13)

Therefore, the transformed sliding condition is,

HT T x(t) = 0 (3.14)

The transformed state, x̄, can be partitioned into two parts,

x̄ =
[

x̄1 x̄2

]
, x̄1 ∈ℜ

n−m, x̄2 ∈ℜ
m (3.15)

and the transformed linear system matrices, TAT T , T B and CT T , can be partitioned accordingly,

˙̄x1 = A11x̄1 +A12x̄2 (3.16)

˙̄x2 = A21x̄1 +A22x̄2 +B0u(t) (3.17)

and,

H1x̄1 +H2x̄2 = 0 (3.18)

where,

TAT T =

A11 A12

A21 A22

 ; HT T = [H1 H2] (3.19)

44



Now, the hyperplane design problem is reduced to selecting H1 and H2. In this regards, recall the

assumption that the product matrix HB is nonsingular (|HB| 6= 0) such that,

|H2B0|= |HT T .T B|= |HB| 6= 0 (3.20)

This implies that the m×m matrix H2 must be non-singular, |H2B0| 6= 0. In other words, according

to the sliding condition 3.18, x̄2 is dependent on x̄1 so that there is an m×m degree of freedom in

selection of the hyperplane, H. Thus, H2 can be chosen in such a way that it reduces computational

burden. In the case of being B0 nonsingular, the appropriate choice is an m×m identity matrix, Im

such that H2 = I.

Restating the hyperplane design problem, the ideal control such that the state slides over the hy-

perplane according to sliding mode condition (3.18) is formulated as below,

˙̄x1(t) = A11x̄1(t)+A12x̄2(t) (3.21)

x̄2(t) =−H1x̄1(t) (3.22)

In other words, the hyperplane design problem is transformed into a linear state feedback problem

such that x2 act as controls of the m× n subsystem where x1 is the subsystem’s state variable.

Hence, the closed loop system will be,

˙̄x1(t) = (A11−A12H1)x̄1(t) (3.23)

where H1 is the state feedback gain matrix and H = [H1 Im]T .

to design the optimal hyperplane in system state space, a cost function , J, is defined where it

put constraints on the state variable.

J =
1
2

∫
∞

0
(xT Qx)dt (3.24)

where Q is a diagonal matrix defined based on state variable constraints, which is that each diagonal

element related to a state variable is determined by the permissible deviation of the state variable
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from its nominal value. If the cost function is expressed in the transformed state form, it will be as

below,

J =
1
2

∫
∞

0
x̄T

1 Q11x̄1 +2x̄T
1 Q12x̄2 + x̄T

2 Q22x̄2 dt (3.25)

where,

T QT T =

Q11 Q12

Q21 Q22

 (3.26)

given that, Q12 = QT
21.

Solving this LQR problem leads to the calculation of an optimal state feedback gain, K0, where

this gain is utilized as an initial guess for calculation of H1. The derived gain, K0, from the initial

LQR problem is used to design the final optimal hyperplane such that another LQR problem is

solved through defining a normalized quadratic cost function where it puts constraints on control

as well as state variables.

J =
1
2

∫
∞

0
xQxT +ueqRuT

eqdt (3.27)

where Q is defined same as last LQR problem multiplied by a tuning parameter to normalized the

quadratic cost function such that R becomes an 2×2 identity matrix. Also, ueq(t) =−Kx(t) (3.9)

and K = (HB)−1HA (3.10). Substitution of (3.19) provides,

J =
1
2

∫
∞

0
x̄1
[
Q11 +(H1A11 +A21)

T F(H1A11 +A21)
]

x̄T
1 +

2x̄1
[
Q12 +(H1A11 +A21)

T F(H1A12 +A22)
]

x̄T
2 + (3.28)

x̄2
[
Q22 +(H1A12 +A22)

T F(H1A12 +A22)
]

x̄T
2 dt

where F = (B−1
0 )T RB−1

0 .

Solving the second LQR problem leads to the calculation of the final H1 where this will make the

optimal hyperplane in the system state space, H, through minimizing the cost function (3.27).
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Recalling equation (3.9), (3.19) and (3.10) provides the optimal control as below,

ueq =−Kx(t) (3.29)

K = (HB)−1HA (3.30)

H =

[
H1 I

]
T (3.31)

3.1.3 Robust Control

After designing the optimal hyperplane, a robust term is needed such that it guarantees that the

system slides over the optimal hyperplane. Therefore, Lyapunov stability theory provides a ground

on how to robustify the control design. In this regards, a Lyapunov function candidate is chosen as

below,

Vi =
1
2

ST
i Si, i = 1,2 (3.32)

Si = Hix(t), i = 1,2 (3.33)

Thus,

Vi =
1
2

xT HT
i Hix, i = 1,2 (3.34)

According to Lyapunov stability theory, the time derivative of positive definite Lyapunov function

must be V̇ ≤ 0 to guarantee the stability of the system.

V̇i =

ST
i︷ ︸︸ ︷

xT HT
i

Ṡi︷︸︸︷
Hi ẋ , i = 1,2 (3.35)

V̇i = xT HT
i Hi (Ax+Bu+ f (x,u)) (3.36)

where f (x,u)≤ F represents the model uncertainties and nonlinearities and F is a boundary. Thus,

to achieve V̇ = ST Ṡ ≤ 0, S and Ṡ must have an opposite sign so that feedback controls, u plays an

essential role to determine the sign of Ṡ. Therefore, a robust term, ζ (t) must be introduced such

that it leads Ṡ in opposite direction of S. Combining such robust term into the ideal control results

in the robust control law as follows,

u?(t) =−Kx(t)+ζ (t) (3.37)
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therefore, substitution of (3.37) into (3.37) gives,

V̇i = xT HT
i Hi(A−BK)x+ xT HT

i Hi f +XT HT
i HiBζ , i = 1,2 (3.38)

Recall (3.30) so that,

V̇i = xT HT
i Hi Ax− xT HT

i HiB(HiB)−1HiAx+ xT HT
i Hi f + xT HT

i HiBζ , i = 1,2 (3.39)

After simplification of (3.39, the first two terms cancel out each other in the converging phase and

the remaining is,

V̇ = xT (HT
i Hi f +HT

i HiBζ ), i = 1,2 (3.40)

Recall that the multi-product matrix, HiB, is nonsingular, so that ζ must have an opposite sign to

ST = xT HT
i to make the second term negative so that selecting proper boundary for ζ guarantees

bounded stability. To choose a robust term, ζ (t), a sign function of S, sgn(S), can be chosen to

guarantee the stability, but it results in chattering of the controls, u. The chatter of actuators is quite

damaging in ORC system applications, so that the smoothing control introduced in introduction

chapter is done by a saturation function of S, sat(S) to tackle the chattering problem. Figure 3.1)

illustrates a saturation function.

ζ (t) = sat(Si) =



−b, Si ≥ b

Si, −b < Si < b

b, Si ≤−b

(3.41)

where b is a constant positive vector represents boundary of the saturation function. The boundary

parameter must be chosen properly such that it does not allow the system deviates from the optimal

hyperplane in the system state space. Therefore, if b≥F , bounded stability is guaranteed such that,

V̇i ≤ ‖x‖(F−b), ‖Si‖ ≥ b (3.42)

On the other hand, an issue is the bigger b, the more vulnerable to chatter.
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Figure 3.1: saturation function

To sum up, a robust optimal control was designed in this section, but the problem is that if the

bound parameter of the saturation function is chosen too big, the system is susceptible to chatter,

and if the boundary parameter is chosen too small relative to disturbances and uncertainties, it dose

not guarantee robustness of the control system. Hence, in which significant model uncertainties

and disturbances are involved in a system, a solution is that a new term in control law is introduced

such that it adapts to the amount of the uncertainties online. Next section will address this issue

using a neural network technique.

3.2 Adaptive CMAC Neural Networks Design

Tuning of the robust term, ζ (x) is problematic in VSC design because it is proportional to the

disturbances and uncertainties into the controlled system. Thus, if the robust term is too small, the

stability of the closed-loop system will not be guaranteed. On the other hand, if the the robust term

is too large, chattering will be observed. Therefore, an adaptive term can be added to the control

law to cancel out the effect of disturbances and uncertainties.

Kim et al. [43] proposed an intelligent optimal state feedback control using a neural network

technique called Cerebellar Model Arithmetic Computer (CMAC). The proposed controller inte-

grated a linear optimal control and neural network learning methods. The neural network was

used to improve performance in the case of uncertainties and disturbances. There are other works
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that combined optimal control strategy with intelligent control methods to improve performance

[44, 45, 46, 47]. Also, integration of intelligent control technique such as fuzzy logic or neural

networks- with VSC has shown promising improvement in dealing with complex and uncertain

systems [48]. Al-Holou et al. introduced a sliding mode neural network fuzzy logic control with

application in active suspension systems to enhance the ride and comfort.

In particular, CMAC neural network first proposed by Albus 1975 [49] where CMAC has a sim-

ilar architecture to Radial Basis Function network (RBFN). Similar to RBFN, CMAC is among the

category of associative memory neural networks. Originally, CMAC is inspired from the structure

of particular part of the brain known as the cerebellum. CMAC has shown better performance than

RBFN. Taghavipour [50] compared CMAC with RBFN in a hydraulic hybrid vehicle application.

CMAC showed better performance over RBFN proofing higher performance of CMAC. Moreover,

the curse of dimensionality problem is inevitable in RBFN when the number of neural network in-

puts goes beyond 4. Kretchmar 1997 [51] examined the similarity and difference of CMACs and

RBFNs thoroughly in which the curse of dimensionality problem in RBFN was explained in detail.

Comparing CMAC and RBFN with another neural network technique, they exhibit faster conver-

gence/adaptation than the well-known multilayer perceptron back-propagation (MLP) networks so

that this characteristic makes CMAC suitable for online adaptation in control design applications

especially in which the convergence speed is of high importance rather than accuracy. In this work,

an optimal VSC integrated with CMAC neural networks is proposed to cancel out uncertainties and

disturbances in an adaptive way.

First, the control system architecture using CMAC will be introduced to provide an overview

regarding CMAC adaptive control design. Then, CMAC adaptation law will be derived based on

Lyapunov stability analysis such that a Lyapunov function candidate based on energy components

of the system will be proposed to design a stable CMAC neural network architecture.
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3.2.1 CMAC Neural Networks Architecture

The aim of this section is to make the designed robust optimal control system architecture adap-

tive to disturbances. Therefore, the robust term presented in last section must be adaptive to the

disturbances which deviate the system state from sliding over the optimal hyperplane. The idea is

to utilize CMAC neural networks as an adaptive term of the control law where the neural networks

can learn online through feeding the neural networks with the system state. Furthermore, neural

network weights are updated at specific intervals in such a way that the weights are updated based

on penalizing the adaptive term for deviating from the sliding condition (3.6).

As an introduction on CMAC neural networks, CMAC architecture is similar to Radial Basis

Function networks (RBFN) consisting of a weighted sum of basis functions,

f̂ (q) = Ŵ T
Φ(q)

where q ∈ℜn contains inputs, Φ is a row vector of basis functions which is spline function in this

work, and w is a column vector of weights. As shown in figure 3.2, the spline function is governed

by a polynomial presented at (3.43) [52].

Figure 3.2: spline function

y = 16(x2−2x3 + x4) (3.43)
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The input space is divided into Q hypercubes per input, each of which is associated with a

memory cell. The memory cells contain weights which are updated during training in each up-

date interval. Moreover, there are L layers of the input space quantification so that any point

in input space is associated with L memory cells. Finally, CMAC output is a weighted sum of

basis functions in each layer activated by the input. Thus, the total number of cells in CMAC

architecture is LQn where only L basis function need to be calculated in each interval. This is an

advantage of CMAC in comparison with RBFN since the number of basis function calculations

increases exponentially with the number of inputs in RBFN. Figure 3.3 illustrates two examples of

one-dimensional and two-dimensional CMAC with spline basis functions.
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(a) CMAC with spline basis functions, n=1 in-
put, L=3 layers, and Q=5 quantifications

(b) CMAC with spline basis functions, n=2 in-
puts, L=3 layers, and Q=5 quantifications (only
the activated basis functions indexed by the input
are shown)

Figure 3.3: spline CMAC examples

CMAC can be utilized as a real-time universal nonlinear approximator such that it is capable

of approximation of a nonlinear function, f (q), through some training intervals.

f (q) =W T
Φ(q)+ ε(q), ||ε(q)|| ≤ εmax ∀q ∈ D, (3.44)

where ε(q) represents the approximation error in the uniform approximation region D⊂ℜ where

ε(q) is bounded by known constant εmax. In this notation, W contains ideal weights whereas Ŵ
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represents the weight estimates so that there is a weight error denoted by W̃ ,

W̃ =W −Ŵ (3.45)

Therefore, if CMAC output which is approximated nonlinear function is denoted by f̂ (q), approx-

imation error of the nonlinear function can be represented as below,

f (q)− f̂ (q) =
[
W T

Φ(q)+ ε(q)
]
−Ŵ T

Φ(q) = W̃ T
Φ(q)+ ε(q) (3.46)

In this work, CMAC is utilized to approximate disturbances, model uncertainties, external

disturbances and nonlinearities assuming all accumulated in control input channel denoted by a

2× 2, f (x) matrix. Hence, the state space representation of TORC system can be formulated as

follows,

ẋ(t) = Ax(t)+B [u?(t)+ f (x)] (3.47)

where f (x) = (HB)−1 f ′(x) such that according to (3.20), HB is a nonsingular and invertible matrix

which maps model uncertainties onto the control. Also, f ′(x) is a 2× 2 matrix represents model

uncertainties. Now, control law is introduced using CMAC neural network term,

u(t) =−Kx(t)+ζ (x)−Ŵ T
Φ (3.48)

substitution of (3.48) into (3.47) using (3.44) gives,

ẋ(t) = (A−BK)x(t)+Bζ (t)+B
[
W T

Φ(x)+ ε(x)−Ŵ T
Φ
]

(3.49)

According to (3.44), CMAC approximation error of the nonlinear function f (x) can be represented

by [W̃ T Φ(x)+ ε(x)] so that the system error dynamics becomes,

ẋ(t) = (A−BK)x(t)+Bζ (t)+BW̃ T
Φ(x)+Bε(x). (3.50)

To make best use of CMAC, an appropriate weight update law, ˙̂w, must be formulated such that

estimation error converges to zero as time goes by. In this regards, Lyapunov stability theory is used
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by selecting a Lyapunov function representing energy components of the system. An appropriate

Lyapunov function candidate consists of quadratic term of the designed optimal hyperplane and

the weight error,

V =
1
2

ST S+
1

2β
tr(W̃ TW̃ ) (3.51)

where tr(· · ·) denotes matrix trace. Since energy elements of the weight error are accumulated on

the main diagonal, the trace of quadratic term of weight error is a proper candidate for Lyapunov

function. Now, substitution of S = Hx into (3.51) will result in,

V =
1
2

xT HT H x+
1

2β
tr(W̃ TW̃ ) (3.52)

The Lyapunov function representing the energy components of the system must decrease all through

the time to guarantee the stability of the control system so that V̇ < 0,

V̇ = xT HT H ẋ+
1
β

tr(W̃ T ˙̃W ) (3.53)

recall w̃ = w− ŵ , so that,

˙̃w = 0− ˙̂w

recall the error dynamics (3.48) and substitute into (3.53) results in,

V̇ = xT HT H
[
(A−BK)x(t)+Bζ (t)+BW̃ T

Φ(x)+Bε(x)
]
− 1

β
tr(W̃ T ˙̂W ), (3.54)

Then,

V̇ = xT [HT H (A−BK)
]

x+ xT HT H Bζ (x)+ xT HT H Bε(x)+ xT HT H B(W̃ T
Φ)− 1

β
tr(W̃ T . ˙̂W )

(3.55)

Recall H =

[
H1 I

]
T , so that

HB =

[
H1 I

]
T B =

[
H1 I

] 0

B0

= B0.

Therefore,

V̇ = xT [HT H (A−BK)
]

x+ xT HT B0 ζ (x)+ xT HT B0 ε(x)+ xT HT B0 (W̃ T
Φ)− 1

β
tr(W̃ T ˙̂W ).

(3.56)
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According to (3.40), HT H (A−BK) = 0 so that,

V̇ = xT HT B0ζ (x)+ xT HT B0 ε(x)+ tr
(

W̃ T
(

ΦBT
0 Hx − 1

β

˙̂W
))

(3.57)

Given that the Lyapunov stability condition, V̇ ≤ 0, must be met and the stability of the VSC has

already been investigated in last section, xT HT ζ (x) is negative semi-definite and the last term

representing the energy components of the weight error is for what CMAC control design is con-

cerned. To satisfy the Lyapunov stability condition, the weight update law, ˙̂W , is selected in such a

way that non-negative definite term, xT HT B0 (Ŵ T Φ) is canceled out. Thus, the weight update law

is introduced as below,

˙̂W = β
(
Φ BT

0 H x−ν ‖x‖Ŵ
)

(3.58)

where the term, ν‖x‖Ŵ , is a robust term called e-modification which prevents the weight drift

toward instability [52]. Also, ν is a constant vector for tuning of the robust term, and β is a tuning

parameter which denotes neural network weight update speed or adaptation rate. Now substitution

of 3.58 into 3.57 results in,

V̇ = xT HT B0 ζ (x)+ xT HT B0 ε(x)+ tr
(
W̃ T (−ν ‖x‖Ŵ

))
. (3.59)

Given that ζ (x) has an opposite sign of xT HT , the first term is negative so that the following

inequality can be obtained using 3.45 in the region ‖S‖ ≥ b,

V̇ ≤−‖x‖ζmax +‖x‖εmax +ν ‖x‖
(
‖W̃‖FWF −‖W̃‖2

F
)
, ‖S‖ ≥ b (3.60)

where the following inequality is utilized using Frobenius norm,

tr(W̃ T (W −W̃ )) =
〈
W̃ ,W

〉
F −‖W̃‖

2
F ≤

(
‖W̃‖FWF −‖W̃‖2

F
)

(3.61)

Now, completing the square terms gives,

V̇ ≤−‖x‖

[
ζmax− εmax +ν

(
‖W̃‖F −

1
2

WF

)2

− 1
4

ν W 2
F

]
, ‖S‖ ≥ b (3.62)
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which shows whenever ‖S(0)‖ > b, ‖S(t)‖ will be strictly decreasing until it reaches the set{
‖S‖ ≤ b

}
in finite time and remains inside thereafter, such that,

‖x‖ ≥
εmax +

1
4ν W 2

F

ζmax
≡ Bx |W̃‖F ≥

√
εmax +

1
4

ν W 2
F +

1
2

WF ≡ Bw (3.63)

where Bx and Bw are the convergence region or boundary layer, and it demonstrates Uniformly

Ultimately Boundedness (UUB) of x(t) and W̃ (t).

Aside from the Lyapunov stability analysis, the objective is to slide over the optimal hyper-

plane, and the sliding condition or performance criteria is Hx(t) = 0 so that this term in weight

update law penalizes the neural network weights if they deviate from the sliding condition. To sum

up, the CMAC neural networks combined with the optimal control is contributed to an adaptive

optimal control system design. Hence, the controlled system can slide over the optimal hyperplane

in the system state space despite the fact that disturbances, model uncertainties, and nonlinearity

must be canceled out such that the nominal optimal controller maintains its nominal performance

through set-point tracking and disturbance rejection.

3.3 Kalman Filter Optimal State Estimator Design

This section addresses as issue in previous control system design which is that some of the system

states are not measurable. The lack of full measurement data can be solved by an state estimator

so that Kalman Filter (KF) [35] is utilized. KF is a powerful tool for state estimation as the sensor

measurement noise, model uncertainties and disturbances are considered in KF design. Further-

more, ORC system is a relatively slow dynamic system in comparison with robotic applications

such that it enables using a fast dynamic or high gain estimator regardless of the model accuracy.

KF design is quite similar to an LQR problem as a cost function is defined where model un-

certainties, disturbances and measurement noise is taken into account. This optimization problem
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is solved through solving an Algebraic Riccati Equation (ARE). It is worth mentioning that the

measurement noise is assumed as white noise in KF design. To design a KF, the linear model of

the system is considered as below,

ẋ(t) = Ax(t)+B1u(t)+B2w(t) (3.64)

y(t) =Cx(t)+ v(t) (3.65)

where x(t) ∈ ℜn and u(t) ∈ ℜm are system state and controls respectively, w(t) ∈ ℜn contains

model uncertainties, and disturbances, y(t) ∈ℜp is the measurement output, and v(t) ∈ℜp is the

white noise added to the measurement output. w and v are assumed to be uncorrelated zero-mean

Gaussian stochastic processes so that,

E [w(t)] = 0 E [v(t)] = 0 E
[
w(t)vT (t)

]
= 0 (3.66)

E
[
w(t)wT (t)

]
= Qest δ (t− τ) E

[
v(t)vT (t)

]
= Rest δ (t− τ) (3.67)

where δ is Dirak delta function. T here are two approaches for KF design, stochastic and deter-

ministic. In this work, the deterministic interpretation of the KF design is used so that the process

is similar to LQR problem. The KF dynamic model is formulated as below,

˙̂x(t) = Ax̂(t)+Bu(t)+L(y(t)−Cx̂(t)) (3.68)

Or,

˙̂x(t) = (A−LC) x̂(t)+Bu(t)+Ly(t) (3.69)

where x̂ ∈ℜn is the state estimate vector and L is the KF gain. Now, the KF design can be cast as

an optimization problem to calculate L in such a way that (3.69) is stable. First, a cost function is

defined such that the model uncertainties, disturbances, and sensor noise is taken into account,

Je =
1
2

∫
∞

0
x̃T Qest x̃+ vT Restv, (3.70)

where,

x̃ = x− x̂.
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To minimize the defined cost function, the ARE (3.71) is solved,

AS+SAT −SCT RestC S+Qest = 0 (3.71)

where S solves the ARE, and S is used to calculate the KF gain, L such that,

L = SCT R−1
est (3.72)

L makes the optimal observer stable as long as the pair of (AT ,CT ) is stabilizable, and the pair of

(AT ,Q
1
2
est) is detectable.

3.4 Adaptive Variable Structure Control

This section combines all previous designs into an adaptive variable structure controller (AVSC).

In CMAC design section, The designed optimal controller was combined with CMAC to make the

optimal controller adaptive to disturbances and uncertainties. In this regards, all states have to be

measurable such that state error can be used for CMAC weight updates. However, measurements

of all state variables are viable but not cost-effective. Therefore, a Kalman filter was designed

for state estimation so that given output variables, all the state variables can be estimated by the

Kalman filter.

To reach this goal, the control law is modified as below,

u(t) =−Kx̂(t)+ζ (t)−W̃ T
Φ (3.73)

where x̂(t) is the state estimate calculated by Kalman filter. Furthermore, CMAC weight update

law must be modified accordingly, which is represented as below,

˙̂W = β
(
Φ BT

0 H x̂−ν ‖x̂‖Ŵ
)

(3.74)

It is worth restating that CMAC weight is updated each 0.2 second whereas time step is 0.1 second

in this work.
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Chapter 4

SIMULATION RESULT OF DESIGNED CONTROLLER

This chapter presents simulation results of the designed controllers in TORC system such that set-

point tracking and disturbance rejection are examined as fundamental performance indicators in

control systems. In this regards, first CMAC neural network adaptability are tested such that pa-

rameters of CMAC are tuned to achieve a fast and stable convergence. Then, set-point tracking and

disturbance rejection performance of AVSC control are compared with VSC. Furthermore, AVSC

is compared with well-known H∞ control where H∞ control is considered as a robust control strat-

egy where it relies on linear model. In addition, H∞ synthesis is briefly explained such that features

of H∞ control as well as tuning parameters are pointed out. Ultimately, AVSC is compared with

the industrial accepted PI control where it is tuned by IMC-PID tuning rules.

4.1 Adaptive Variable Structure Control Performance

The designed control consisting of the VSC term (−Kx+ ζ (x)) and the CMAC neural network

term (W T Φ) is tuned such that the VSC control does not cause chattering problem since chattering

must be avoided in this industrial application. First, the diagonal Q, matrix in the normalized cost

function is tuned in such a way that the allowable state variation is embedded into that as follows,

qii =
1

∆xi
, i = 1, . . . ,13

As this is a normalized cost function, R is a 2×2 identity matrix and Q is multiplied by a constant,

r, which is tune according to allowable variations of MVs. Thus, the optimal hyper plane in the

system state space is derived through solving two LQR problem explained in the hyper plane

design section, and using the calculated optimal hyper plane, K is calculated by 3.32.
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Furthermore, the same method is used to tune diagonal matrix, Qest in the normalized cost function

of the Kalman filter design. Then, unmeasurable estimated states are substituted into the control

law.

Now that the VSC term is calculated, the adaptive CMAC neural network term in control law

must be tuned to achieve a fast and stable convergence. First, the control loop time step and CMAC

training intervals are chosen. The control loop time step is 0.1 second whereas the neural network

term in control law, W̃ T Φ , updates every 0.2 second due to the slow dynamic nature of disturbance

and lower computational burden. In addition, the best practice to choose a time step is that the

time step should be 10 times per process time constant. According to the simulation results, the

process dominant time constant of the studied TORC system is approximately 8 seconds so that 0.1

second time step is a prudent choice. Then, the parameters of CMAC neural networks are tuned as

follows,

N = 6, Q = 10, L = 60, β =

10

15

×10−2, ν =

10−6

10−6


where N is the number of CMAC inputs which partial state variables are used to reduce computa-

tional burden. Q is the quantification number showing the hypercubes per input; L is the number of

layers or number of basis functions; β is CMAC the weigh update rate where it is tuned in such a

way that aggressive weight update is not observed; ν is the robust term constant in weight updates

law.

Now that all terms of AVSC are tuned, the disturbance rejection and set-point tracking perfor-

mance can be examined so that sine wave disturbance to heat source is considered in two scenarios:

1. Disturbance to heat source where control variables track a constant set-point as their

nominal operating conditions,

2. Disturbance to heat source where control variables track a trajectory.
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4.1.1 Disturbance Rejection Performance in Constant Operating Conditions

Recalling the control design objectives, an essential test is to examine how well the controller can

reject the disturbances. According to adaptability of the designed controller, the controller are

trained by different disturbance scenarios. The disturbances including fluctuation of heat source

temperature and mass flow rate consist of various frequencies. In this test, sine wave disturbances

shown in figure 4.1 are imposed to the system where the control objective is to maintain CVs at

their nominal operating conditions. Figure 4.1 shows sine wave disturbances to heat source in 3

difference scenarios for 300 seconds which is considered as one trial epoch:

1. 1◦ sine wave disturbance with frequency of 0.1 rad/sec to heat source temperature

when t < 100 seconds.

2. 0.05 Kg/sec sine wave disturbance with frequency of 0.1 rad/sec to heat source mass

flow rate when 100 < t < 200 seconds.

3. 1◦ sine wave disturbance with frequency of 0.1 rad/sec to heat source temperature

and 0.05 Kg/sec sine wave disturbance with frequency of 0.1 rad/sec to heat source

mass flow rate when 200 < t < 300 seconds.

These disturbances are not only external disturbances but they also contribute to changing system

parameters. The most important change is attributed to heat transfer coefficients of evaporator

which are sensitive to mass flow rate and temperature according to modeling chapter 2.1.4. There-

fore, the disturbances result in model uncertainties.
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Figure 4.1: 3 different sine wave disturbance scenarios to heat source temperature and heat source

mass flow rate

After 50 trials through the imposition of these situations, figure 4.2 illustrates weight conver-

gence of CMAC neural networks where they adapt to the disturbances such that the CMAC term

in control law can cancel out the effect of these disturbances. Moreover, figure 4.3 shows RMS

error calculated by:

RMS =

(
1
n

n

∑
i=1

(yd
i − yi)

2

) 1
2

(4.1)

where yd
i is the desired output and n is the number of trials.
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Figure 4.2: RMS error of each channel versus trials
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Figure 4.3: convergence of norm of weights versus trials

Figure 4.4 shows CVs where the disturbance rejection of AVSC in last training is compared

with VSC revealing that adaptability of CMAC neural network integrated into VSC has improved

the disturbance rejection performance and robustness margin of VSC design. Moreover, integra-
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tion of CMAC neural networks into VSC design results in smoother control which is desired for

this application where figure 4.5 compares MVs of AVSC and VSC design.
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Figure 4.4: comparison of disturbance rejection performance between AVSC and VSC in constant

set-point
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Figure 4.5: comparison of MVs between AVSC and VSC in constant set-point

64



In addition, figure 4.6 illustrates the CMAC neural networks outputs in the last training inter-

val. According to the control law, the adapted CMAC output is subtracted from the VSC output

contributing to canceling out the effect of disturbances and uncertainties.
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Figure 4.6: CMAC outputs

Furthermore, sliding mode condition, Hx = 0, is another performance indicator which reveals

that integration of CMAC neural networks into VSC has improved the disturbance rejection per-

formance. Figure 4.7 illustrates that system state can slide along the optimal hyperplane with a

smaller error.
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Figure 4.7: comparison of sliding mode performance between AVSC and VSC

4.1.2 Set-point Tracking Performance

After training the CMAC neural network by three disturbance scenarios, the same CMAC weights

are utilized as initial CMAC weights for set-point tracking. In this test, ramp set-point changes

in 250 seconds periodic interval are chosen as CMAC training epoch while the last disturbance

scenarios are still imposing. Therefore, the CMAC should adapt to the new operating conditions

where figure 4.8 shows weight convergence of CMAC and figure 4.9 the RMS error convergence

for the new operating conditions in 10 trials.
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Figure 4.8: CMAC weight convergence for new set-point changes in 10 trials
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Figure 4.9: RMS error convergence for new set-point changes in 10 trials

Also, figure 4.10 illustrates improved set-point tracking performance of AVSC versus VSC

after these 10 trials. Also, figure 4.11 illustrates MVs of AVSC versus VSC.
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Figure 4.10: comparison of disturbance rejection performance between AVSC and VSC while

tracking the set-point
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Figure 4.11: comparison of MVs between AVSC and VSC in set-point tracking

Similar to the previous test, CMAC neural networks outputs are shown in figure 4.12 where

CMAC outputs is subtracted from the VSC term according to the control law.
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Figure 4.12: CMAC outputs

Finally, the sliding mode condition, Hx = 0, as a performance indicator is shown in figure 4.11

where the AVSC reveals smaller error than VSC in pressure channel.
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Figure 4.13: comparison of sliding mode performance between AVSC and VSC
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4.2 Comparison with H∞ Control

This section provides a brief introduction about H∞ control synthesis and properties. H∞ robust

optimal control is one of the fundamental control strategies where it is an appropriate choice for

TORC systems since significant uncertainties and disturbances are involved. Therefore, this con-

trol strategy is a fair choice for the sake of comparison with adaptive VSC.

In this work, H∞ control is based on Glover and Doyle 1988 [53] and Doyle et al [54] such

that a linear state space model is used for control synthesis. First, A state-space realization of the

generalized plant can be formulated as below to cast H∞ control,

ẋ = Ax+B1w+B2u (4.2)

z =C1x+D11w+D12u (4.3)

y =C2x+D21w+D22u (4.4)

where w represents model uncertainties and disturbances in equation (4.2) whereas it represents

white noise in (4.4). z error vector representing performance which should be minimized. y is the

measurable output vector, and x is the state variable vector. Also, B1 represents the defined uncer-

tainty bounds of each dynamic equation and external disturbance, B2 is the control input matrix,

C1 is constraints on state variables, C2 is the output matrix.

H∞ control is minimization of H∞ norm of the closed-loop transfer function from w to z through

stabilizing control, C∞.

||Gwz||∞ ≡ sup
{

φmax (Gwz( jω))

}
(4.5)

where φmax denoted maximum singular value. Moreover, there are some assumption typically

made in H∞ problems as follows:

1. The system is detectable and stabilizable,
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2. D12 and D21 are full rank,

3. D11 = 0 and D22 = 0,

4. DT
12C1 = 0 and B1DT

21 = 0,

5. (A,B1) is stabilizable and (A,C1) is detectable.

Also,

D12 =

0

I

 and D21 =

[
0 I

]
are assumed being normalized. Now, the general H∞ control which has the same order as the

system (13th order) is defined as below,

˙̂x = A∞ +B∞(y− r) (4.6)

u =C∞x̂ (4.7)

Where,

B∞ =−S∞CT
2 (I−λ

−2S∞P∞)
−1,

C∞ =−BT
2 P∞,

A∞ = A+λ
−2BT

1 B1P∞ +B2C∞ +B∞C2,

and λ is the value of H∞ norm of closed-loop transfer function from z to w. λ is derived iteratively

for all stabilizing control, H∞, such that

||Gwz||∞ < λ (4.8)

Also, symmetric matrices, P∞ and S∞, are the solutions of Algebraic Riccati Equations (ARE) in

the sense of H∞ control structure,

AT P∞ +P∞A+CT
1 C1 +P∞(λ

−2BT
1 B1−B2BT

2 )P∞ = 0
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Such that

Re
{

λi(A+(λ−2BT
1 B1−B2BT

2 )P∞)

}
< 0 ∀i

and,

AS∞ +S∞AT +CT
1 C1 +S∞(λ

−2CT
1 C1−CT

2 C2)S∞ = 0

Such that,

Re
{

λi(A+S∞(λ
−2CT

1 C1−CT
2 C2))

}
< 0 ∀ i.

It is noted that Hamiltonian matrix of this system has eigenvalues close to imaginary axis so that

Schur method is used to solve two AREs [55, 56]. Finally, the controller is stabilizing if and only

if P∞ > 0, S∞ > 0 satisfying AREs,

ρ(P∞S∞)< λ
2

Where, ρ(· · ·) is an operator denoting the largest eigenvalue.

Recall that two crucial variables, evaporating pressure and evaporator outlet temperature, must

be controlled concerning system performance and safety. Also, changes of pump rotation speed

and turbine rotation speed are the control inputs, u(t). According to the linearized model of TORC

system, (4.2), (4.3) and (4.4), constraints on state variables are defined in matrix C1. Also, the

uncertainties and disturbance boundaries are determined in matrix B1 so that the H∞ controller

(4.6)(4.7) is synthesized accordingly. To have a fair comparison, the performance indicator matrix,

C1, is determined according to the normalized cost function (3.27) in VSC design such that,

Q =CT
1 C1.

Also, the uncertainties matrix, B1, is determined according to the normalized cost function (3.71)

in Kalman filter design such that,

Qest = B1BT
1 .

Finally, the time step is set to 0.1 seconds same as previous simulations. As a result shown in figure

4.14, the H∞ controller can follow the set-point without any external disturbances.
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Figure 4.14: CVs of H∞ control without disturbance
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Figure 4.15: MVs of H∞ control without disturbance
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4.2.1 Disturbance Rejection Performance Comparison

Sine wave External disturbances in three different scenarios are imposed onto heat source tem-

perature and heat source mass flow rate shown in figure 4.16. Then the disturbance rejection

performance of AVSC after 50 trials is compared with H∞ control. Figure 4.17 illustrates pressure

and the outlet temperature of the evaporator as controlled variables in AVSC and H∞ control while

rejecting the imposed disturbances. As it is shown in the figure, the H∞ control is not robust enough

for this level of disturbance so that it does not show a satisfactory performance. On the other hand,

AVSC can cancel out the effect of this disturbance and outperforms H∞ control.

time [sec]
0 50 100 150 200 250 300

T
 [C

]

-5

0

5

time [sec]
0 50 100 150 200 250 300

m
do

t [
kg

/s
ec

]

-0.2

0

0.2

Figure 4.16: external disturbance on heat source temperature and mass flow rate
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Figure 4.17: CVs of AVSC compared with H∞ control while rejecting the disturbances
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Figure 4.18: MVs of AVSC compared with H∞ control while rejecting the disturbances

4.2.2 Set-point Tracking Performance Comparison

After comparing disturbance rejection performance in a constant operating condition, set-point

tracking performance is also compared. This test compares the set-point tracking performance
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while the same external disturbances shown in figure 4.16 are imposing into the system and the

trained weight from the last test is used to initialize CMAC weights. Figure 4.19 illustrates the

controlled variables, and figure 4.20 compares the manipulated variables where blue lines represent

AVSC and red dashed lines represent H∞ control. As it is shown in the figures, AVSC outperforms

where blue lines represent AVSC and red dashed lines represent H∞ control for these imposed

disturbances.
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Figure 4.19: CVs of AVSC compared with H∞ control in set-point tracking while rejecting the

disturbances
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Figure 4.20: MVs of AVSC compared with H∞ control in set-point tracking while rejecting the

disturbances

4.3 Comparison with PI Control

This section compares the performance of AVSC with industrially accepted PI controls where the

PI controls are tuned by IMC-PID tuning method [57]. In IMC tuning rule, two PI controllers

are tuned for pressure and temperature channel where expander controls the pressure and pump

controls the temperature [31]. The IMC method for second order processes is used to tune a PI

controller for controlling the temperature channel,

T (s)
Upp(s)

=
kp

(τ1s+1)(τ2s+1)
(4.9)

Also, the IMC method for first order processes is used to tune another PI controller for controlling

the pressure channel.
P(s)

Uexp(s)
=

kp

τs+1
(4.10)

The transfer function corresponding to the PI control is as follows,

gc(s) = kc
τIs+1

τIs
(4.11)
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where for the second order process,

kc =
τ1 + τ2

kpλ
, τI = τ1 + τ2 (4.12)

And for the first order process,

kc =
τ

kpλ
, τI = τ (4.13)

where λ is the tuning parameter in IMC-tuning method. Figure 4.21 and 4.22 illustrate CVs and

MVs where the tuned PI is controlling the closed-loop system without imposing external distur-

bances. According to the simulations, the PI controllers are well-tuned for controlling the plant.
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Figure 4.21: CVs of PI control without imposing external disturbances
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Figure 4.22: MVs of PI control without imposing external disturbances

4.3.1 Disturbance Rejection Performance Comparison

Sine wave External disturbances in three different scenarios are imposed onto heat source tem-

perature and heat source mass flow rate shown in figure 4.16. Then the disturbance rejection

performance of AVSC after 50 trials is compared with PI control. Figure 4.23 illustrates the CVs

in AVSC and PI control while rejecting the imposed disturbances. As it is shown in the figure,

AVSC can cancel out the effect of this disturbance and outperforms the PI control.
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Figure 4.23: CVs of AVSC compared with PI control while rejecting the disturbances
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Figure 4.24: MVs of AVSC compared with PI control while rejecting the disturbances

4.3.2 Set-point Tracking Performance Comparison

After comparing disturbance rejection performance in a constant operating condition, set-point

tracking performance is also compared. This test compares the set-point tracking performance
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while the same external disturbances shown in figure 4.16 are imposing into the system and the

trained weight from last test is used to initialize CMAC weights. Figure 4.25 illustrates the con-

trolled variables, and figure 4.26 compares the CVs where blue lines represent AVSC and red

dashed lines represent PI control. As it is shown in the figures, AVSC outperforms PI control in

terms of set-point tracking and disturbance rejection.
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Figure 4.25: CVs of AVSC compared with PI control in set-point tracking while rejecting the

disturbances

81



t [sec]
0 50 100 150 200 250 300

N
p
 [R

P
M

]

-5000

0

5000
AVSC PI

t [sec]
0 50 100 150 200 250 300

N
e
 [R

P
M

]

-4000

-2000

0

2000
AVSC PI

Figure 4.26: MVs of AVSC compared with PI control in set-point tracking while rejecting the

disturbances
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Chapter 5

CONCLUSION AND RECOMMENDATION

Disturbance rejection in TORC system resulted in performance optimization and net power out-

put enhancement is an enabling key of co-generation systems. This thesis addressed such issue in

TORC systems through a systematic process of control system design such that control-oriented

model of TORC system was developed. Then, an adaptive robust optimal controller was designed

such that the system could track optimal operating conditions while rejecting the disturbances to

maximize the net power output. Moreover, the controller was effective despite model uncertainties

since the controller was able to learn online through CMAC neural networks. Hence, the CMAC

neural networks term canceled out the model nonlinearities, model uncertainties, and external dis-

turbances.

5.1 Contributions

The aim of this thesis was to design an adaptive robust optimal control structure to mitigate the dis-

turbances imposed by the heat source or model uncertainties. In this regards, the thesis approached

the problem as follows:

• Due to lack of control-oriented models for TORC systems, a model was developed

and proposed such that dynamic models of heat exchangers and semi-empirical

static models of turbine expander and pump were derived due to slow dynamics of

heat exchangers relative to fast dynamics of expander and pump. Therefore, MB-

model for the condenser, a single region model for the evaporator and an LC-model

for the recuperator constructed the dynamic model where the static model of the

turbine expander and the pump were integrated into the dynamic model. In addition,

83



heat transfer coefficient of heat exchangers are calculated for single-phase and two-

phase flow using a semi-empirical static correlation. Eventually, integration of all

components’ model built the final model of an SORC and a TORC.

• The controllability, observability, level of coupling among control inputs and con-

trol variables for the developed model were analyzed. Furthermore, the primary

source of external disturbance to the TORC system and uncertainties were inves-

tigated such that rejection of them can improve the performance and enhance the

net output power of TORC. Hence, addressing this problem leads us to determine

control system design goal.

• Then, an optimal VSC as a robust control strategy was synthesized based on the de-

veloped model through developing an optimal hyperplane in the system state space

where a quadratic cost function comprising state variable and control input con-

straints was minimized. Furthermore, a smoothing control technique was used to

tackle chattering problem in VSC design such that a saturation function was se-

lected as the robust term in the control law. Moreover, the stability of VSC was

analyzed based on Lyapunov stability theory where it was shown that the control

system was asymptotically stable. To improve robustness margin of the VSC de-

sign, CMAC neural network method was integrated into the VSC to make the con-

trol system adaptive to the disturbances and uncertainties.

• CMAC neural network due to fast adaptability and low computational burden was

selected as a proper choice such that it was trained online by partial system state.

The adaptive rule or weight update law was derived based on Lyapunov stability

theory where a quadratic Lyapunov function representing energy elements of the

system was introduced where the quadratic term of the optimal hyperplane and

the quadratic term of the CMAC weight error constructed the Lyapunov function.

According to Lyapunov theory, the proposed Lyapunov function must be dissipative
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as time goes by to guarantee the stability of the system. Therefore, the adaptive

rule was derived such that it makes time derivative of the Lyapunov function semi-

negative definite which means the control system is Uniformly Ultimately Bounded

(UUB).

• Also, to estimate unmeasurable state variables and filter out measurement noises, a

Kalman filter was utilized to design an optimal state observer. Then, the observed

state fed the adaptive VSC design to improve the practicality aspect. To the extent

of our knowledge, there is no stability proof for integration of an observer into the

control system so far, and it has been a well-known problem in control system area.

Hence the observer design left without stability analysis.

• Ultimately, the proposed control is not only suitable for TORC application but also

provides a methodology for the class of uncertain systems.

.

5.2 Recommendations and Future Work

The next step of this research work may be to examine the performance of the proposed adaptive

VSC on a physical set-up. CMAC neural network has already been tested on a robotic arm where

it shows effective control performance in case of model uncertainties and external disturbances.

Also, modern computer technology has made real-time utilization of CMAC neural network with

quite a few of inputs viable.

As a future frontier of this research work, the heat source can be studied and modeled so that

considering the heat source dynamics may improve the robustness margin of the control system.

For instance, in this application, the heat source is a secondary cycle where the mass flow rate of

its working fluid can be controlled by a pump.
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