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Abstract

Over the last two decades, semiparametric mixture model receives increasing attention, simply due

to the fact that mixture models arise frequently in real life. In this thesis we consider a semipara-

metric two-component location-shifted mixture model. We propose to use the minimum Hellinger

distance estimator (MHDE) to estimate the two location parameters and the mixing proportion. A

MHDE is obtained by minimizing the Hellinger distance between an assumed parametric model

and a nonparametric estimation of the model. MHDE was proved to have asymptotic efficiency

and excellent robustness against small deviations from assumed model. To construct the MHDE,

we propose to use a bounded linear operator introduced by Bordes et al. (2006) to estimate the

unknown nuisance parameter (an unknown function). To facilitate the calculation of the MHDE,

we develop an iterative algorithm and propose a novel initial estimation of the parameters of our

interest. To assess the performance of the proposed estimations, we carry out simulation studies

and a real data analysis and compare the results with those of the minimum profile Hellinger dis-

tance estimator (MPHDE) proposed by Wu et al. (2017) for the same model. The results show that

the MHDE is very competitive with the MPHDE in terms of bias and mean squared error, while

the MHDE is on average about 2.7 times computationally faster than the MPHDE. The simulation

studies also demonstrate that the proposed initial is much more robust than the one used in Wu et

al. (2017).

i



Acknowledgements

First I would like to express my sincere appreciation to my supervisor Dr. Jingjing Wu. When

I got stuck in my research, she always helped me out with her extensive knowledge and extreme

patience. Besides guidance for my academic development, Dr. Wu also gave me many advices for

my life in Canada, which is very helpful and heartwarming for me as a student who studies abroad

for the first time.

I would like to thank my committee members Dr. Haocheng Li and Dr. Shawn Liu for their

careful reading of my thesis and providing me with constructive and thoughtful advices and com-

ments.

I also want to thank Dr. Gemai Chen and Dr. Xuewen Lu. Whenever I went to their office with

my questions, they spared no effort to help me.

I am also grateful to the financial support from the Department of Mathematics and Statistics.

Without it, this work can not happen.

Finally, many thanks go to my friends Heng Zhu, Ji Ruan, Wenyan Zhong, Qicheng Zhang and

Longlong Huang for their support to my research.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two-component location-shifted mixture model . . . . . . . . . . . . . . . . . . . 3
1.3 Proposed research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 MHDE OF LOCATION-SHIFTED MIXTURE MODEL . . . . . . . . . . . . . . 5
2.1 Review of MHDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Estimation of the nuisance parameter f . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 MHDE of the parameter θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Choice of initial parameter estimate . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 NUMERICAL STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Efficiency study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Robustness study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



List of Tables

3.1 B̂ias ( ̂RMS E) of estimations of θ = (π1, µ1, µ2) with n = 50. . . . . . . . . . . . . . 17
3.2 B̂ias ( ̂RMS E) of estimations of θ = (π1, µ1, µ2) with n = 100. . . . . . . . . . . . . 18
3.3 B̂ias ( ̂RMS E) of estimations of θ = (π1, µ1, µ2) with n = 200. . . . . . . . . . . . . 19
3.4 B̂ias ( ̂RMS E) of estimations of θ = (π1, µ1, µ2) for Case 4. . . . . . . . . . . . . . 22
3.5 Estimation for the waiting time data of the Old Faithful Geyser. . . . . . . . . . . . 23
3.6 Estimation for the contaminated waiting time data of the Old Faithful Geyser. . . . 24

iv



List of Figures and Illustrations
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Chapter 1

INTRODUCTION

In this chapter, we introduce the model under our consideration and give a brief description of

the proposed research in this thesis. In Sections 1.1 we review the mixture model and particularly

the semiparametric location-shifted mixture model. In Section 1.2 we present the two-component

location-shifted mixture model that will be discussed throughout the thesis. In Section 1.3, we

describe the proposed research in this thesis and give the structure of the thesis.

1.1 Mixture model

The probability density function (p.d.f.) of m-component mixture model is defined as

h(x) =

m∑
j=1

π j f j(x) (1.1)

where π j’s are the unknown mixture proportions with
m∑

j=1
π j = 1 and f j’s are the unknown p.d.f.s of

the components. It’s common to assume that f j’s belong to a parametric family F = { f (·|ξ), ξ ∈ Rd}

so that h(x) becomes

hθ, f (x) =

m∑
j=1

π j f (x|ξ j), (1.2)

where θ = (π1 . . . πm, ξ1 . . . ξm) is the unknown parameter vector subject to constraint
m∑

j=1
π j = 1 and

f (·|ξ j) is specified up to the unknown parameter ξ j.

When m is known, model (1.2) has been studied extensively in literatures, such as Frühwirth-

Schnatter (2006), Lindsay (1995), McLachlan and Basford (1988) and McLachlan and Peel (2000).

Model (1.2) can be made more flexible with m unspecified. Many articles discussed the estimation

of m, such as Dacunha-Castelle and Gassiat (1999), Keribin (2000), Roeder (1994) and Saraiva,

Louzada and Milan(2014). Model (1.2) can be applied to many fields such as unsupervised pattern
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recognition, speech recognition and medical imaging. A well known example of its application

is given in Hosmer (1973) where the author used a two-component mixture model to estimate the

proportion of male halibuts with use of observations on length of halibuts.

Since the parametric assumption of model (1.2) can lead to model misspecification while model

(1.1) is nonparametrically unidentifiable, many researchers started to pay more attention on semi-

parametric models. Vaart (1996) considered MLE in several examples of semiparametric mixture

models including the exponential frailty model and the errors-in-variables model. Zou, Fine and

Yandell (2002) studied the partial likelihood for a two-component semiparametric mixture model

in which the component densities are related by an exponential tilt but are unspecified otherwise.

Bordes and Vandekerkhove (2010) studied the semiparametric estimation of a two-component mix-

ture model where one component is known. Xiang (2014) proposed a class of semiparametric

mixture of regression models where the mixing proportions and variances are constants but the

component regression functions are nonparametric functions of a covariate. In this thesis, we will

focus on a semiparametric two-component location-shifted mixture model.

Semiparametric location-shifted mixture model is defined as

h(x) =

m∑
j=1

π j f (x − µ j), (1.3)

where m is known and fixed and the density f is symmetric about 0. We call model (1.3) a semi-

parametric model because we know nothing about f except its symmetry. Bordes et al. (2006)

established the identifiability of (1.3) for m = 2. Hunter, Wang and Hettmansperger (2007) estab-

lished the identifiability of (1.3) for m = 2 and m = 3 and proposed a generalized Hodges-Lehmann

estimator for the unknown parameters. Bordes et al. (2007) used a stochastic EM algorithm for

(1.3). Benaglia, Chauveau and Hunter (2009) eliminated the stochasticity of the algorithm of

Bordes et al. (2007) and proposed a more flexible and easily applicable algorithm which can be

extended to any number of mixture components. That’s to say, we can use this algorithm when

identifiability is difficult to establish conclusively. Seo(2017) proposed an estimation method us-

ing the doubly smoothed maximum likelihood and this method can effectively eliminate potential
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biases while maintaining a high efficiency.

1.2 Two-component location-shifted mixture model

In this thesis we consider model (1.3) with m = 2, i.e. the following semiparametric two-

component location-shifted mixture model:

hθ, f (x) = h(x) = π f (x − µ1) + (1 − π) f (x − µ2), (1.4)

where θ = (π, µ1, µ2) is the unknown parameter vector and f is the unknown p.d.f. symmetric

about 0. Here θ is the parameter of our interest and we treat f as a nuisance parameter which we

are not interested in but will bring difficulty to estimating θ. According to Bordes et al. (2007), for

identifiability we assume θ ∈ Θ with parameter space Θ = {(π, µ1, µ2) : π ∈ (0, 0.5) ∪ (0.5, 1), µ1 <

µ2, µ1, µ2 ∈ R}.

Many attempts have been done to estimate the unknown parameter θ in (1.4). Bordes et

al. (2006) presented a distance-based estimator based on a linear bounded operator and a con-

trast function proposed in the paper. Butucea and Vandekerkhove (2013) proposed a class of

M-estimators based on a Fourier approach. Wu et al. (2017) proposed to use the minimum profile

Hellinger distance (MPHD) to estimate θ in (1.4). The resulted MPHD estimator is very competi-

tive when the components are normal and much better when the components are non-normal, com-

pared to existing methods such as the SPEM proposed by Benaglia, Chauveau and Hunter (2009).

Chee and Wang (2013)presented a semiparametic MLE while Kottas and Fillingham (2012) pro-

posed a Baysian approach to estimate model (1.4).

1.3 Proposed research

In this thesis we propose a new procedure to estimate θ in model (1.4). Wu and Karunamuni (2012)

demonstrated that the minimum Hellinger distance estimation (MHDE) for semiparametric models

is efficient at the assumed model and simultaneously is robust when the true model deviates from
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the assumed model (for example when outlying observations are present). In the construction of

MHDE, an appropriate estimate of the unknown nuisance parameter f is required which may based

on the current sample from the mixture or other resource. Bordes et al. (2006) provided a way to

estimate f based on the current sample from the mixture. They derived the inversion formula of

f from the mixture hθ, f from which f could be recovered. Thus, we can estimate f by applying

this formula, or essentially a bounded linear operator, to a nonparametric estimate of hθ, f . The

proposed estimation of θ in (1.4) will combine the two methods in Wu and Karunamuni (2012)

and Bordes et al. (2006).

This thesis is organized in the following way. In Chapter 2, we propose a MHDE of θ in model

(1.4) and present an algorithm for numerical calculation of the estimator. In Chapter 3, we evaluate

the performance of the proposed estimator through simulation studies and make comparison with

the MPHD estimator in Wu et al. (2017). We also apply the proposed estimation to analyze the

Old Faithful Geyser data. Finally the conclusions and discussions are presented in Chapter 4.
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Chapter 2

MHDE OF LOCATION-SHIFTED MIXTURE MODEL

In this chapter, we propose a MHDE for the two-component location-shifted mixture model (1.4).

In Section 2.1, we review the MHDE for semiparametric models. Since the considered MHDE

requires an appropriate estimate of the nuisance parameter, i.e. f for model (1.4), in Section 2.2

we use an inversion operator to obtain an estimation of f . Based on this estimation, we propose in

Section 2.3 the MHDE of the parameter θ in (1.4) and develop an iterative algorithm to calculate it.

Finally in Section 2.4, we present in detail a novel way to choose initial estimates for the algorithm.

2.1 Review of MHDE

For parametric model of general form, Beran (1977) introduced the very first time the MHDE

based on Hellinger distance. Suppose we observe independent and identically distributed (i.i.d.)

random variables (r.v.s) X1, . . . , Xn with density function a member of the parametric model family

{ fθ : θ ∈ Θ}, where Θ is a compact subset of Rp. The Hellinger distance between two density

functions is defined as the L2-distance between the respective root densities. The MHDE θ̂ of the

unknown parameter θ is defined as

θ̂ = min
t∈Θ
‖ f 1/2

t − f̂ 1/2‖, (2.1)

where ‖ · ‖ denotes the L2-norm, and f̂ is an appropriate nonparametric (e.g. kernel) density esti-

mator based on the sample Xi’s. Beran (1977) proved that the MHDE defined in (2.1) is asymp-

totically efficient under assumed parametric model and simultaneously is minimax robust against

small deviations from assumed parametric model.

MHDE has been studied for various parametric models in the literature. For example, Simpson

(1987) examined MHDE for discrete data models. Yang (1991) and Ying (1992) studied MHDE
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for censored data. Sriram and Vidyashankar (2000) and Woo and Sriram (2006, 2007) investigated

MHDE for branching processes and the mixture complexity in a finite mixture model, respec-

tively. MHDE for finite mixture models and their variants were studied in Woodward et al. (1995),

Cutler and Cordero-Brana (1996), Karlis and Xekalaki (1998), Lu et al. (2003) and Xiang et al.

(2008). Takada (2009), N’drin and Hili (2013) and Prause et al. (2016) studied MHDE in re-

spective stochastic volatility model, one-dimensional diffusion process and bivariate time series.

Karunamuni and Wu (2011) proposed a one-step MHDE to overcome computational drawbacks.

MHDE for semiparametric models hasn’t been fully investigated until recently. Wu and Karuna-

muni (2009, 2012) extended the MHDE from parametric model to semiparametric model of gen-

eral form and the resulted MHDE has been proved to retain the efficiency and robustness properties

under certain conditions. Wu et al. (2010) studied the MHDE in a two-sample semiparametric

model, Zhu et al. (2013) investigated MHDE under the same model but for survival data with

care rate, while Chen and Wu (2013) applied the model to the classification of leukemia patients.

Xiang et al. (2014) and Wu et al. (2017) examined the MHDE under two different semiparametric

mixture models. Karunamuni and Wu (2017) examined the hypothesis testing based on MHDE in

seminparametric models.

Suppose we observe i.i.d. r.v.s X1, . . . , Xn with density g0 = fθ,η being a member of the follow-

ing general semiparametric model

F = { ft,h : θ ∈ Θ, η ∈ H}, (2.2)

where Θ is a compact subset of Rp and H is an arbitrary set of infinite dimension. In general,

θ is the parameter of interest with η the nuisance parameter. To make estimating θ meaningful,

assume F is identifiable in the sense that, if the Hellinger distance between ft1,h1 and ft2,h2 is 0, i.e.

‖ f 1/2
t1,h1
− f 1/2

t2,h2
‖ = 0, then t1 = t2 and h1 = h2.

For model (2.2), Wu and Karunamuni (2012) focused on the case when an estimator η̂ of η,

based on either the same data or other resource, is available. They proposed a plug-in MHDE given
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by

θ̂ = arg min
t∈Θ

‖ f 1/2
t,η̂ − f̂ 1/2‖

and proved under certain conditions that this MHDE has good properties such as consistency,

asymptotic normality, efficiency and robustness.

For model (2.2), if an estimator of η is not available, Wu and Karunamuni (2015) first intro-

duced the MPHDE. The MPHDE is obtained by first profiling out the infinite-dimensional nui-

sance parameter and then minimizing the profiled Hellinger distance. Wu et al. (2017) applied the

MPHDE to the two-component location-shifted mixture model in (1.4) and developed an algorithm

to calculate the MPHDE. Their results showed that the MPHDE is very competitive under model

assumption than some existing methods such as MLE while it has much better performance when

outliers are present. However their algorithm involves updating the nuisance parameter estimate

through an optimization which is comparatively computing extensive. In this thesis we explore

an alternative of their estimation which is computationally easier. For model (1.4), we follow the

outline of Wu and Karunamuni (2012) and propose to use a particular estimator of f , based on the

same data sample, to construct a plug-in MHDE of the parameter θ = (π, µ1, µ2)T .

2.2 Estimation of the nuisance parameter f

For model (1.4), Bordes et al. (2006) expressed f as a function of h and θ by inverting. The key

idea is to rewrite (1.4) as

f (x) =
1

1 − π
h(x + µ2) +

−π

1 − π
f (x + δ), ∀x ∈ R, (2.3)

where δ = µ2 − µ1 , 0, and then use (2.3) as a recurrence formula. Let m be a positive integer. By

using (2.3) m times, we have

f (x) =
1

1 − π

m−1∑
i=0

(
−π

1 − π

)i
h(x + µ2 + iδ) +

(
−π

1 − π

)m
f (x + mδ), ∀x ∈ R. (2.4)
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Let us show that when π ∈ (0, 0.5),

f (x) =
1

1 − π

∑
i≥0

(
−π

1 − π

)i
h(x + µ2 + iδ) for almost all x ∈ R. (2.5)

Let ‖ · ‖1 denote the L1-norm. If we denote by g(x) the right-hand side in (2.5), then by (2.4) and

π ∈ (0, 0.5) we have, for all m ≥ 1,

‖ f − g‖1 =

∥∥∥∥∥∥∥ 1
1 − π

m−1∑
i=0

(
−π

1 − π

)i
h(x + µ2 + iδ) +

(
−π

1 − π

)m
f (x + mδ)

−
1

1 − π

∑
i≥0

(
−π

1 − π

)i
h(x + µ2 + iδ)

∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥
(
−π

1 − π

)m
f (x + mδ) −

1
1 − π

∑
i≥m

(
−π

1 − π

)i
h(x + µ2 + iδ)

∥∥∥∥∥∥∥
1

≤

∣∣∣∣∣( −π1 − π

)m∣∣∣∣∣ · ‖ f (x + mδ)‖1 +
1

1 − π

∑
i≥m

∣∣∣∣∣( −π1 − π

)i∣∣∣∣∣ · ‖h(x + µ2 + iδ)‖1

=

(
π

1 − π

)m
+

1
1 − π

∑
i≥m

(
π

1 − π

)i

=

(
π

1 − π

)m
+

(
1

1 − 2π

) (
π

1 − π

)m

=
2(1 − π)
1 − 2π

(
π

1 − π

)m
.

By π ∈ (0, 0.5) again we have

0 ≤ ‖ f − g‖1 ≤ lim
m→∞

2(1 − π)
1 − 2π

(
π

1 − π

)m
= 0,

i.e. ‖ f (x) − g(x)‖1 = 0. Thus f (x) = g(x) for almost every x ∈ R, i.e. (2.5) holds.

Note that (2.5) is valid only for π ∈ (0, 0.5). Since the parameter space for π in model (1.4) is

(0, 0.5) ∪ (0.5, 1), we now consider the case of π ∈ (0.5, 1). Because model (1.4) is invariant by

permutation of (π, µ1, µ2) and (1 − π, µ2, µ1), by replacing (π, µ1, µ2) with (1 − π, µ2, µ1) in (2.5) we

can easily obtain the inversion formula for π ∈ (0.5, 1) as

f (x) =
1
π

∑
i≥0

(
π − 1
π

)i

h(x + µ1 + i(µ1 − µ2)) for almost all x ∈ R.

Suppose we have an appropriate nonparametric estimator ĥ of h and a consistent estimator

θ̂(0) = (π̂(0), µ̂(0)
1 , µ̂(0)

2 )T of θ = (π, µ1, µ2)T . If π̂(0) < 0.5, then by applying (2.5) to ĥ we can estimate

8



f by

f̃ (x) =
1

1 − π̂(0)

∑
i≥0

(
−π̂(0)

1 − π̂(0)

)i

ĥ
(
x + µ̂(0)

2 + i(µ̂(0)
2 − µ̂

(0)
1 )

)
. (2.6)

Similarly, if π̂(0) > 0.5 then we estimate f by

f̃ (x) =
1
π̂(0)

∑
i≥0

(
π̂(0) − 1
π̂(0)

)i

ĥ
(
x + µ̂(0)

1 + i(µ̂(0)
1 − µ̂

(0)
2 )

)
. (2.7)

Since f in model (1.4) is symmetric about 0, we can symmetrize f̃ and thus estimate f by

f̃1(x) =
f̃ (−x) + f̃ (x)

2
. (2.8)

Though h belongs to the mixture model (1.4), this is no longer true for its approximate ĥ and, as a

result, f̃1 given in (2.8) through (2.6) or (2.7) can not be a p.d.f.. Even though f̃1 still has integral

1, but it is not non-negative. To resolve this problem, Bordes et al. (2006) transformed f̃1 into a

density given by

f̂ (x) =
f̃1(x)I{ f̃1(x)≥0}∫
f̃1(x)I{ f̃1(x)≥0}dx

(2.9)

with IA the indicator function over set A. Bordes et al. (2006) showed that ‖ f̂ − f ‖1 → 0 almost

surely.

2.3 MHDE of the parameter θ

Suppose a random sample X1, . . . , Xn is from the population hθ, f given in (1.4). Based on this

random sample, we can estimate hθ, f nonparametrically by

ĥ(x) =
1

nbn

n∑
j=1

K
(

x − X j

bn

)
, (2.10)

where K(·) is a kernel density function and bn is a sequence of bandwidths satisfying bn → 0 and

nbn → ∞ as n → ∞.In this thesis,we use Gaussian density for K(·) With this ĥ and some initial

estimate θ̂(0) = (π̂(0), θ̂(0)
1 , θ̂(0)

2 )T , we can calculate the estimate f̂ given in (2.9). Finally the MHDE

of θ is given by

θ̂ = arg min
θ∈Θ

‖h1/2
θ, f̂
− ĥ1/2‖. (2.11)
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Since the MHDE θ̂ defined in (2.11) doesn’t have an explicit expression, we will do the op-

timization numerically. In addition, to relax the dependence on the initial estimate θ̂(0), we will

do iterations to update f̂ and θ̂ until the latter converges. Therefore, we propose the following

iterative algorithm to calculate the MHDE θ̂. Suppose the kth estimates of θ = (π, µ1, µ2)T and f

are respectively θ̂(k) = (π̂(k), µ̂(k)
1 , µ̂

(k)
2 )T and f̂ (k), and ĥ is the kernel estimate of h given in (2.10).

Step 1. For fixed π̂(k), µ̂(k)
1 and µ̂(k)

2 , find f̂ (k+1) in the following way:

If π̂(k) < 0.5, then

f̃ (k+1)(x) =
1

1 − π̂(k)

∑
i≥0

(
−π̂(k)

1 − π̂(k)

)i

ĥ
(
x + µ̂(k)

2 + i(µ̂(k)
2 − µ̂

(k)
1 )

)
.

If 0.5 < π̂(k) < 1, then

f̃ (k+1)(x) =
1
π̂(k)

∑
i≥0

(
π̂(k) − 1
π̂(k)

)i

ĥ
(
x + µ̂(k)

1 + i(µ̂(k)
1 − µ̂

(k)
2 )

)
.

Then calculate

f̃ (k+1)
1 (x) =

f̃ (k+1)(−x) + f̃ (k+1)(x)
2

,

f̂ (k+1)(x) =
f̃ (k+1)
1 (x)I

{ f̃ (k+1)
1 (x)≥0}∫

f̃ (k+1)
1 (x)I

{ f̃ (k+1)
1 (x)≥0}dx

.

Step 2. For fixed f̂ (k+1), find π̂(k+1), µ̂(k+1)
1 and µ̂(k+1)

2 by minimizing

∥∥∥∥[π̂(k+1) f̂ (k+1)(· − µ̂(k+1)
1 ) + (1 − π̂(k+1)) f̂ (k+1)(· − µ̂(k+1)

2 )
]1/2
− ĥ1/2(·)

∥∥∥∥ .
Then go to Step 1.

In Step 2, we use the package ‘fminsearch’ in Matlab to minimize the Hellinger distance.

2.4 Choice of initial parameter estimate

In this thesis, the method used to obtain initial estimates of θ = (π, µ1, µ2) is based on an intuitive

idea. The idea is that if we plot the kernel density estimate ĥ given in (2.10) and see a bi-mode
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shape, then we expect that µ1 and µ2 are the two modes of h and thus can use the two modes of ĥ

to estimate µ1 and µ2. To practically implement this idea, we find the point µ̂ at which the global

maximum of ĥ is obtained. To determine whether µ̂ is a more reasonable estimate of µ1 or µ2,

we calculate
∫ ∞
µ̂

ĥ(x)dx. If this integral is greater than 0.5, then we set the initial estimate of µ1

as µ̂(0)
1 = µ̂, otherwise µ̂(0)

2 = µ̂. In practice this integral could be replaced by its approximation∫ X(n)+5bn

µ̂
ĥ(x)dx, where X(n) is the nth order statistic (the maximum) of the observations and bn is

the bandwidth used in ĥ. An example is given in Figure 2.1 where µ̂ = 1.9963 and the area of the

shaded tail is 0.338. Thus we use 1.9963 as the initial estimate of µ2.

Figure 2.1: An example of bi-model ĥ.

Now we assume µ̂(0)
2 = µ̂ and discuss how to choose µ̂(0)

1 , and the process will be similar for

the case that µ̂(0)
1 = µ̂. For ideal cases such as the one shown in Figure 2.1, there exist at least one

local maximum less than µ̂(0)
2 and among those local maxima we take the point at which the highest

value is obtained as ĥ(x) as µ(0)
1 . If there is no local maximum less than µ̂(0)

2 , like the ĥ displayed in

Figure 2.2, we will use the following ‘reflection’ method to find µ̂(0)
1 . We first find the reflection of

11



ĥ(x) over x ∈ [µ̂(0)
2 ,∞) with respect to x = µ̂(0)

2 , and we denote it as t(x). In practice we only need

to find the reflection of ĥ over a large enough interval, say, [µ̂(0)
2 , X(n) + 5bn] instead of [µ̂(0)

2 ,∞) for

simpler calculation but still with good accuracy. An example of t(x) is shown in Figure 2.2 as the

dotted line. Now we define a new function r(x) as

r(x) =


ĥ(x), if x ≤ 2µ̂(0)

2 − X(n) − 5bn,

ĥ(x) − t(x), if 2µ̂(0)
2 − X(n) − 5bn < x ≤ µ̂(0)

2 .

In another word, r(x) is the function over (−∞, µ̂(0)
2 ] that measures the difference between ĥ and

t. The function r(x) ‘wipe off’ the weighted second component (1 − π) f (x − µ2) from h and thus

serves as a crude estimate of the weighted first component π f (x − µ1). Finally we use the mode of

r(x) as µ̂(0)
1 , the initial estimate of µ1. The corresponding function r of the example in Figure 2.2 is

given in Figure 2.3.

To give the initial estimate π̂(0) of π, note that

h(µ1)
h(µ1) + h(µ2)

− π =
π f (0) + (1 − π) f (µ1 − µ2)

f (0) + f (µ1 − µ2)
− π

=
(1 − 2π) f (µ1 − µ2)
f (0) + f (µ1 − µ2)

.
(2.12)

If π is close to 0.5 or if f is uni-model and µ1 is quite different from µ2, then the quantity calculated

in (2.12) will be close to 0. So intuitively we can use

π̂(0) =
ĥ(µ̂(0)

1 )

ĥ(µ̂(0)
1 ) + ĥ(µ̂(0)

2 )

as the initial estimate of π. Note that we don’t need the initial estimate of f and the first estimate

of f is f̂ (1) calculated based on ĥ given in (2.10) and the initial estimates µ̂(0)
1 , µ̂(0)

2 and π̂(0).
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Figure 2.2: An example of ĥ that uses the reflection technique.

Figure 2.3: The function r(x) of the example in Figure 2.2.

13



Chapter 3

NUMERICAL STUDIES

In this chapter, we use simulation studies to assess the performance of the proposed MHDE given

in (2.11) and the iterative algorithm for calculating it. We analyze the Old Faithful Geyser data

to illustrate the application of the proposed methodology. Particularly we compare the proposed

MHDE with the MPHDE in Wu et al. (2017) through both simulation studies and real data analysis.

In Section 3.1 we study the efficiency of the MHDE when the assumed model (1.4) is strictly

correct. In Section 3.2 we explore the robustness properties (particularly resistance to outliers) of

the MHDE when data is contaminated by outlying observations. Finally in Section 3.3, we analyze

the waiting time between eruptions of the Old Faithful Geyser.

3.1 Efficiency study

To assess efficiency, we simulate the data strictly from the assumed two-component location-

shifted model (1.4). In our simulation we consider mixtures of normal distributions, t distributions

and uniform distributions. Specifically we assume the i.i.d. random samples are from one of the

following populations:

Case 1: X ∼ πN(−1, 1) + (1 − π)N(2, 1) =⇒ f = N(0, 1), µ1 = −1, µ2 = 2.

Case 2: f ∼ t5, µ1 = 0, µ2 = 3.

Case 3: X ∼ πU(−1, 1) + (1 − π)U(0, 2) =⇒ f = U(−1, 1), µ1 = 0, µ2 = 1.

For every case, we consider varying π values: 0.15, 0.3 and 0.45. For cases π > 0.5, the simulation

results are similar. Case 1 is used to test the efficiency of our proposed MHDE in normal cases.

We use Cases 2 and 3 to demonstrate that the proposed MHDE can be adaptive to the non-normal

component densities.
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The measurements used to assess the efficiency of the MHDE given in (2.11) are the estimated

bias and root mean squared error (RMSE) given respectively by

B̂ias(θ̂) =
1
N

N∑
t=1

(
θ̂t − θ

)
,

̂RMS E(θ̂) =

√√
1
N

N∑
t=1

(
θ̂t −

¯̂θ
)2
,

where N is the number of repetitions, θ̂t is the estimate based on tth replication and ¯̂θ is the average

of θ̂ over the N repetitions. Here we take N = 200.

We compare the simulation results of the proposed MHDE θ̂ given in (2.11) with those of the

MPHDE θ̃ presented in Wu et al. (2017). The reason why we compare it with MPHDE only but

not with some other popular estimations, such as MLE, is that in Wu et al. (2017) the authors

have already compared the MPHDE with MLE and SPEM (Benaglia et al., 2009). So the results

presented below indicate the comparison of the MHDE with MLE. On the other hand, as initial

value affects the performance of an estimator, we compare the proposed initial estimator θ̂(0) given

in Section 2.3 with that in Wu et al. (2017), denoted by θ̃(0), which is another special MHDE of θ

calculated with E-M algorithm. It is obvious that θ̂(0) is computational easier than θ̃(0). Considering

different combinations, the simulation studies compare four estimations M1-M4:

M1: θ̃ with initial estimate θ̃(0).

M2: θ̂ with initial estimate θ̃(0).

M3: θ̂ with initial estimate θ̂(0).

M4: modified M3.

M1’: modified M1.

Estimations M4 and M1’ are modified M3 and M1 respectively with the same modification tech-

nique used in Wu et al. (2017). In another word, M1’ is the final estimation given by Wu et al.

(2017) while M4 is our final proposed estimation. Taking M4 as example, the modification is

described as following. If the resulted estimate makes the Hellinger distance (the objective func-

tion (2.11)) less than a predetermined small value ε, then we take it as the final MHDE θ̂ of θ.
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Otherwise, we randomly choose another initial estimate, from the interval formed by the range of

data, to carry out the calculation of MHDE. We repeatedly choose random initial estimates until

the resulted MHDE makes the Hellinger distance in (2.11) less than ε. To limit computational

expense, we allow maximum 49 repetitions of this recalculation of MHDE. After 49 repetitions if

we still have no Hellinger distance less than ε, then we take the estimate that gives the smallest

Hellinger distance among the 50 (49 repetitions plus the original one with θ̂(0) as the initial) as our

final MHDE θ̂.

Tables 3.1, 3.2 and 3.3 show the simulation results for n = 50, 100 and 200 respectively. We

make pairwise comparisons of M1 vs M2, M2 vs M3, M3 vs M4, and M4 vs M1’ for the reason

that we want to see the separate effect of the proposed MHDE θ̂ compared with θ̃ and that of the

proposed initial θ̂(0) compared with θ̃(0). The comparison of M1 vs M2 tells the difference between

the proposed MHDE θ̂ and the MPHDE θ̃ in Wu et al. (2017). The comparison of M2 vs M3 tells

the difference between the proposed initial θ̂(0) and the θ̃(0) in Wu et al. (2017), when applied to the

proposed MHDE. The comparison of M3 vs M4 tells the performance of the proposed modification

to MHDE θ̂ with initial θ̂(0). The comparison of M4 vs M1’ tells the difference between our final

proposed MHDE and the final proposed MPHDE in Wu et al. (2017).

M1 vs M2: When sample size is small (n = 50), the proposed MHDE θ̂ tend to give larger bias

but smaller RMSE than the MPHDE θ̃. The difference diminishes as sample size

increases (n = 100, 200) and when n = 200 the two estimators perform equivalently

well. From the comparison between M1 and M2 we can see that the proposed

MHDE θ̂ is very competitive with the MPHDE θ̃ in Wu et al. (2017).

In terms of computing time, M2 is on average 2.7 times faster than M1.

M2 vs M3: When sample size is small (n = 50), the proposed initial estimate θ̂(0) performs

slightly better than the initial θ̃(0) used in Wu et al. (2017), when used to calculate

the MHDE, in terms of both bias and RMSE. Reversely, when sample size is large

(n = 100, 200) θ̃(0) performs slightly better than θ̂(0) in terms of both bias and RMSE.
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Table 3.1: B̂ias ( ̂RMS E) of estimations of θ = (π1, µ1, µ2) with n = 50.

Component
density

Parameters M1 M2 M3 M4 M1’

Normal

µ1 = −1 .148 (.640) .081 (.619) .306 (.891) .105 (.658) .203(.688)
µ2 = 2 .028 (.221) .034 (.236) .127 (.398) .042 (.235) .028(.230)
π = 0.15 .017 (.085) .020 (.093) .075 (.168) .027 (.101) .020( .094)
µ1 = −1 .057 (.431) .004 (.407) .003 (.403) .006 (.410) .069(.486)
µ2 = 2 -.027 (.250) .033 (.256) .013 (.235) .016 (.233) -.071(.325)
π = 0.3 .004 (.090) .018 (.096) .014 (.080) .016 (.088) .000(.124)
µ1 = −1 .090 (.455) -.000 (.389) .015 (.399) .021 (.438) .298(.647)
µ2 = 2 -.095 (.492) .048 (.379) -.009 (.341) -.000 (.370) -.333(.554)
π = 0.45 -.007 (.114) .016 (.111) .012 (.119) .015 (.130) -.004(.211)

t5

µ1 = 0 -.002 (1.919) -.129 (1.651) -.059 (1.410) .059 (.948) .128(1.032)
µ2 = 3 .392 (1.394) .479 (1.436) .156 (.532) .188 (.660) .050(.036)
π = 0.15 .055 (.189) .097 (.258) .072 (.181) .064 (.183) .044(.149)
µ1 = 0 .120 (1.735) -.140 (1.395) -.146 (1.143) -.046 (.861) .094(.925)
µ2 = 3 .310 (1.593) .404 (1.463) .022 (.351) .170 (.905) -.038(.581)
π = 0.3 .020 (.170) .055 (.208) .015 (.119) .034 (.187) .026(.206)
µ1 = 0 -.063 (2.248) -.273 (1.853) -.034 (.791) .060 (.992) .275(1.064)
µ2 = 3 .030 (1.412) .282 (1.127) .050 (.533) .290 (1.077) -.207(.994)
π = 0.45 -.024 (.182) .032 (.229) .022 (.163) .066 (.229) .019(.280)

Uniform

µ1 = 0 .173 (.275) .132 (.256) .242 (.266) .108 (.267) .104(.282)
µ2 = 1 .201 (.207) .252 (.193) .276 (.172) .193 (.193) .069(.164)
π = 0.15 .192 (.164) .223 (.177) .284 (.173) .183 (.181) .093(.171)
µ1 = 0 .000 (.241) -.029 (.221) .081 (.260) .001 (.247) .041(.237)
µ2 = 1 -.001 (.208) .150 (.177) .142 (.176) .114 (.184) -.053(.197)
π = 0.3 .009 (.146) .102 (.154) .152 (.152) .102 (.161) -.011(.199)
µ1 = 0 .037 (.201) -.097 (.185) -.006 (.239) -.047 (.230) .092(.219)
µ2 = 1 -.114 (.211) .109 (.168) .057 (.199) .066 (.189) -.167(.217)
π = 0.45 -.047 (.154) .026 (.139) .047 (.137) .033 (.154) -.049(.233)
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Table 3.2: B̂ias ( ̂RMS E) of estimations of θ = (π1, µ1, µ2) with n = 100.

Component
density

Parameters M1 M2 M3 M4 M1’

Normal

µ1 = −1 .126 (.395) .079 (.386) .242 (.659) .095 (.412) .138(.431)
µ2 = 2 .010 (.154) .012 (.155) .076 (.329) .024 (.155) .013(.156)
π = 0.15 .011 (.051) .012 (.055) .049 (.123) .017 (.056) .016(.072)
µ1 = −1 .040 (.265) -.001 (.266) .007 (.289) .000 (.265) .056(.318)
µ2 = 2 -.006 (.184) .008 (.171) .005 (.175) .006 (.174) .001(.210)
π = 0.3 .007 (.056) .010 (.058) .011 (.060) .010 (.056) .012(.086)
µ1 = −1 .018 (.243) -.005 (.259) .016 (.299) .014 (.298) .270(.570)
µ2 = 2 -.063 (.263) -.026 (.273) -.047 (.282) -.032 (.281) -.211(.455)
π = 0.45 -.007 (.068) .001 (.083) .001 (.077) .003 (.084) .026(.184)

t5

µ1 = 0 .129 (1.888) -.017 (1.589) .009 (1.491) .079 (.695) .209(.729)
µ2 = 3 .459 (1.664) .490 (1.654) .144 (.697) .159 (.800) .015(.194)
π = 0.15 .047 (.181) .082 (.236) .059 (.164) .039 (.148) .030(.120)
µ1 = 0 -.169 (2.486) -.464 (1.792) -.508 (1.454) -.247 (.782) -.013(.696)
µ2 = 3 .226 (1.627) .227 (1.448) -.081 (.322) -.021 (.550) -.080(.306)
π = 0.3 -.030 (.148) .009 (.190) -.024 (.101) -.013 (.100) -.010(.115)
µ1 = 0 -.131 (1.599) -.229 (1.359) -.142 (.689) -.080 (.899) .162(.919)
µ2 = 3 .181 (1.523) .244 (1.371) -.060 (.385) .065 (.998) -.310(.805)
π = 0.45 -.034 (.177) .004 (.200) -.016 (.116) -.004 (.211) -.012(.271)

Uniform

µ1 = 0 .156 (.220) .139 (.228) .245 (.225) .060 (.180) .070(.176)
µ2 = 1 .196 (.207) .211 (.191) .258 (.176) .108 (.156) .022(.092)
π = 0.15 .165 (.160) .195 (.178) .267 (.181) .101 (.144) .024(.081)
µ1 = 0 -.007 (.175) -.001 (.160) .149 (.221) -.002 (.147) .029(.147)
µ2 = 1 .038 (.162) .116 (.149) .098 (.156) .053 (.134) -.021(.144)
π = 0.3 .016 (.105) .080 (.131) .158 (.149) .043 (.115) -.009(.124)
µ1 = 0 -.027 (.212) -.079 (.142) .057 (.221) .026 (.201) .099(.204)
µ2 = 1 -.023 (.190) .088 (.131) -.023 (.184) .000 (.176) -.134(.220)
π = 0.45 -.028 (.122) .020 (.109) .035 (.116) .031 (.122) -.045(.200)
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Table 3.3: B̂ias ( ̂RMS E) of estimations of θ = (π1, µ1, µ2) with n = 200.

Component
density

Parameters M1 M2 M3 M4 M1’

Normal

µ1 = −1 .110 (.281) .063 (.285) .176 (.535) .067 (.285) .108(.285)
µ2 = 2 .024 (.090) .017 (.092) .056 (.219) .024 (.094) .026(.093)
π = 0.15 .012 (.036) .010 (.037) .033 (.101) .013 (.037) .013(.036)
µ1 = −1 .054 (.170) .020 (.173) .018 (.173) .018 (.174) .054(.172)
µ2 = 2 .022 (.101) .019 (.099) .020 (.102) .021 (.101) .026(.104)
π = 0.3 .012 (.041) .012 (.041) .012 (.041) .012 (.041) .013(.041)
µ1 = −1 .010 (.135) -.002 (.170) -.019 (.279) .000 (.225) .175(.484)
µ2 = 2 .004 (.126) .017 (.231) .026 (.276) -.006 (.216) -.182(.450)
π = 0.45 .002 (.042) .000 (.057) .004 (.053) -.000 (.066) .001(.173)

t5

µ1 = 0 .429 (2.581) .053 (1.482) -.266 (1.545) .002 (.519) .051(.502)
µ2 = 3 .815 (2.565) .753 (2.357) .114 (.786) .062 (.444) .010(.128)
π = 0.15 .043 (.190) .084 (.244) .025 (.134) .018 (.092) .010(.074)
µ1 = 0 -.029 (3.310) -.403 (2.209) -.388 (1.466) -.059 (.437) .035(.356)
µ2 = 3 .487 (2.397) .501 (2.333) -.046 (.284) .025 (.277) -.012(.240)
π = 0.3 -.015 (.145) .035 (.195) -.011 (.085) .010 (.085) .005(.093)
µ1 = 0 -.267 (2.751) -.429 (1.801) -.246 (1.201) -.186 (.992) .201(.903)
µ2 = 3 .320 (2.141) .373 (2.035) -.074 (.564) -.057 (.847) -.366(.717)
π = 0.45 -.054 (.182) -.006 (.200) -.021 (.143) -.024 (.175) -.022(.256)

Uniform

µ1 = 0 .152 (.219) .095 (.203) .279 (.224) .007 (.113) .031(.112)
µ2 = 1 .170 (.191) .148 (.188) .253 (.186) .030 (.080) .003(.035)
π = 0.15 .144 (.163) .136 (.183) .274 (.192) .027 (.077) .000(.040)
µ1 = 0 -.008 (.099) -.021 (.129) .193 (.220) -.006 (.124) -.004(.078)
µ2 = 1 .046 (.101) .086 (.128) .041 (.157) .015 (.081) .009(.062)
π = 0.3 .020 (.071) .050 (.106) .147 (.144) .020 (.071) .000(.053)
µ1 = 0 -.057 (.100) -.075 (.067) .111 (.203) .067 (.203) .061(.197)
µ2 = 1 .041 (.093) .081 (.067) -.084 (.160) -.063 (.166) -.078(.201)
π = 0.45 -.006 (.064) .011 (.058) .026 (.094) .012 (.093) -.020(.174)
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From the comparison between M2 and M3 we can conclude that the initial estimates

θ̂(0) and θ̃(0) are very competitive.

In terms of computing time, M3 takes slightly longer time than M2 with average

ratio 1.2. In another word, the proposed initial θ̂(0) is about 1.2 times slower than

θ̃(0).

M3 vs M4: When sample size is small (n = 50), the MHDE θ̂(0) with initial estimate θ̂(0) has

similar bias no matter the modification is implemented or not, but the modification

tends to generate larger RMSE. When sample size is large (n = 100, 200), the mod-

ification reduces significantly both the bias and RMSE for most cases. Especially

when n = 200, the modification almost always gives much smaller bias and RMSE

than when modification is not used.

In terms of computing time, M4 takes much longer time than M3 with average ratio

12.5. This is expected due to multiple initial estimates.

M4 vs M1’: Our final proposed MHDE M4 is slightly better than the final proposed MPHDE in

Wu et al. (2017) when sample size is n = 100, while the two estimations are very

competitive for sample sizes n = 50 and 200.

In terms of computing time, M4 is about 7 times faster than M1’.

3.2 Robustness study

In this section, we study the robustness properties of the proposed estimation. The robustness could

be against model distribution misspecification or against outliers. This section studies the robust-

ness in the latter sense. So we deliberately contaminate the data with some outlying observations.

Particularly we generate i.i.d. data from the following distribution:

Case 4: X ∼ 98% · [πN(−1, 1) + (1 − π)N(2, 1)] + 2% · U(10, 20).
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In another word, the population πN(−1, 1) + (1 − π)N(2, 1) is contaminated with 2% outlying

observations from U(10, 20), the uniform distribution over interval [10, 20]. We apply estimation

methods M1-M4 to Case 4 with varying sample size n = 50, 100, 200 and present the estimated

bias and RMSE for each method in Table 3.4. Again we make pairwise comparisons of M1 vs M2,

M2 vs M3, M3 vs M4, and M4 vs M1’.

M1 vs M2: When the data is contaminated, both M1 and M2 give very large bias for estimating

any parameter especially µ2 and µ1 as both of them treat the second component

N(2, 1) as the first component and U(10, 20) as the second component.

M2 vs M3: No matter for which sample size, the bias of M3 is always much smaller (at different

magnitude) than M2. M3 obtains this superiority over M2 at the price of larger

RMSE most time even though improved a bit when n = 200. From this comparison

we see that the choice of initial estimate plays an important role in the MHDE

for contaminated data. The proposed initial estimate θ̂(0) reduces bias dramatically

compared with θ̃(0). Even though θ̂(0) produces a larger RMSE than θ̃(0), the loss in

terms of RMSE is much smaller than the gain in terms of bias.

Here we observe something very different from the case of no data contamination

(Case 1). For Case 1, M2 and M3 perform competitively when n = 50 but M3

performs worse than M2 for n = 100 and 200, even though not significantly, in

terms of both bias and RMSE. Therefore, the initial estimator θ̂(0) may not be as

efficient as θ̃(0), but it seems to be more robust to outliers and thus more likely to

lead to global minimizer, instead of local minimizer, of corresponding Hellinger

distance than θ̃(0). The large bias in M2 is due to the fact that the non-robust initial

θ̃(0) is likely to lead to a local minimizer.

M3 vs M4: No matter for which sample size, M4 significantly reduces the bias and RMSE for

over half of the cases (9 cases at each sample size). Even though M3 gives smaller
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Table 3.4: B̂ias ( ̂RMS E) of estimations of θ = (π1, µ1, µ2) for Case 4.

Normal
+

outliers
Parameters M1 M2 M3 M4 M1’

n = 50

µ1 = −1 3.776 (2.357) 2.597 (.238) .514 (1.141) .062 (.670) .126(.774)
µ2 = 2 13.221 (2.881) 13.238 (2.883) 2.179 (4.948) .005 (.236) -.031(.240)
π = 0.15 .672 (.283) .800 (.000) .146 (.303) .011 (.101) .010(.135)
µ1 = −1 4.391 (3.316) 2.003 (.295) -.029 (.488) .154 (.710) .149(.699)
µ2 = 2 13.204 (2.908) 13.228 (2.898) .080 (1.297) -.185 (.376) -.298(.476)
π = 0.3 .338 (.398) .650 (.000) -.001 (.113) .007 (.176) .037(.175)
µ1 = −1 3.804 (3.622) 1.600 (.235) .177 (.647) .726 (.730) .707(.740)
µ2 = 2 13.087 (3.081) 13.184 (2.968) 1.661 (4.549) -.415 (1.389) -.778(.636)
π = 0.45 -.082 (.407) .500 (.000) .044 (.207) .035 (.277) -.028(.313)

n = 100

µ1 = −1 4.283 (3.976) 2.598 (.177) .197 (.821) .008 (.479) .022(.522)
µ2 = 2 13.470 (2.733) 13.053 (2.265) .996 (3.552) .079 (1.144) -.027(.163)
π = 0.15 .492 (.416) .800 (.000) .065 (.223) .005 (.078) -.002(.076)
µ1 = −1 4.879 (4.462) 1.983 (.192) -.018 (.317) .039 (.444) .137(.604)
µ2 = 2 13.270 (2.540) 13.072 (2.337) .035 (1.061) -.100 (.288) -.187(.376)
π = 0.3 .142 (.435) .650 (.000) -.006 (.077) -.013 (.092) .009(.175)
µ1 = −1 4.897 (5.006) 1.594 (.156) .086 (.549) .589 (.697) .785(.622)
µ2 = 2 13.027 (2.357) 12.909 (2.282) .707 (3.179) -.068 (2.396) -.879(.511)
π = 0.45 -.221 (.351) .500 (.000) .022 (.159) .039 (.249) -.051(.279)

n = 200

µ1 = −1 3.357 (2.888) 2.606 (.132) .279 (.842) .010 (.291) .017(.297)
µ2 = 2 13.710 (1.959) 13.260 (1.960) 1.294 (4.033) .016 (.100) .002(.107)
π = 0.15 0.487 (.426) .800 (.000) .085 (.241) .005 (.037) .001(.038)
µ1 = −1 3.998 (3.980) 1.963 (.142) .024 (.279) .016 (.316) .105(.423)
µ2 = 2 13.332 (1.766) 13.288 (1.987) .105 (1.061) -.015 (.148) -.084(.265)
π = 0.3 .166 (.443) .650 (.000) .009 (.076) .007 (.072) .011(.124)
µ1 = −1 3.474 (3.942) 1.593 (.101) -.004 (.375) .428 (.676) .932(.660)
µ2 = 2 13.271 (1.569) 13.169 (1.875) .066 (.982) -.145 (1.897) -1.025(.491)
π = 0.45 -.301 (.279) .500 (.000) .000 (.091) .006 (.223) -.053(.315)
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bias and RMSE for about half of the cases, the magnitude of bias and RMSE from

the two estimations for those cases are still at the same level. Comparatively, in

those cases when M4 performs better, the magnitude of bias and RMSE from M4

is much smaller than those from M3.

M4 vs M1’: The final proposed MHDE M4 performs better than the final proposed MPHDE

M1’ in Wu et al. (2017), especially in terms of bias.

3.3 Real data analysis

In this section, we use the Old Faithful Geyser data to demonstrate the use of the proposed estima-

tion methods. The Old Faithful Geyser data is publicly available in R. It consists of 272 observa-

tions and 2 variables, Waiting Time between eruptions and Duration of eruptions in minutes, for

the Old Faithful Geysar in the Yellowstone National Park and is of continuous measurement from

August 1 to August 15, 1985.For this real data we will analyze the variable Waiting Time which

was also used by Wu et al. (2017) to illustrate their MPHDE.

Figure 3.1 is the histogram of the variable Waiting Time. We can see from it that the data is

approximately a mixture of two normal distributions. Assuming two-component location-shifted

model with normal components, we can calculate the MLEs of the two location parameters and use

them as a benchmark for comparison with other methods. Without assumption of normal compo-

nents, we calculate both the proposed MHDE (the optimal M4) and the MPHD with modification

technique as in Wu et al. (2017). The results are presented in Table 3.5. From Table 3.5 we can

see that both the MHDE and MPHDE give close results to the parametric MLE even without the

assumption of normal components. Nevertheless, the MHDE is a little bit closer to the MLE than

the MPHDE.

To demonstrate the robustness property for this real data, we add five identical outliers ‘0’ to

the data set and the recalculated estimates are reported in Table 3.6. From Table 3.6 we can see

that both the proposed MHDE and the MPHDE are very resistant to outliers in the sense that they
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Figure 3.1: Histogram for the waiting time data of the Old Faithful Geyser.

Table 3.5: Estimation for the waiting time data of the Old Faithful Geyser.

Method π µ1 µ2

MHDE (M4) 0.358 54.70 80.05
MPHDE 0.359 54.90 80.30
MLE 0.361 54.61 80.09

don’t change much before and after the data is contaminated by outlying observations. The MHDE

and the MPHDE give very close estimates. However, the MLE is dramatically influenced by the

outliers and thus not robust. The MLE treats the outliers as one mixture component located around

0 and all other real data as another component located around 70.
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Table 3.6: Estimation for the contaminated waiting time data of the Old Faithful Geyser.

Method π µ1 µ2

MHDE (M4) 0.355 54.48 80.17
MPHDE 0.350 54.71 80.17
MLE 0.018 0.061 70.90
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Chapter 4

CONCLUDING REMARKS

Over the last two decades, semiparametric mixture model receives increasing attention. In this

thesis we consider a semiparametric two-component location-shifted mixture model (1.4). We

propose to use the MHDE θ̂ to estimate the parameter θ. However, in the construction of MHDE,

it is critical to give an appropriate estimation of the nuisance parameter f (an unknown function).

Thus, we propose to use the bounded linear operator introduced by Bordes et al. (2006) to estimate

the infinite-dimensional nuisance parameter. To facilitate the calculation of the MHDE, we develop

an iterative algorithm and propose a novel initial estimation of the parameters of our interest. To

improve performance, we adopt the modification technique used in Wu et al. (2017). Through the

simulation studies we observe that

1. The proposed MHDE θ̂ is very competitive in terms of efficiency and is on average

about 2.7 times computationally faster than the MPHDE θ̃ in Wu et al. (2017).

2. The proposed initial θ̂(0) is very competitive in terms of efficiency but on average

about 1.2 times computationally slower than the initial θ̃(0) in Wu et al. (2017). In

addition, θ̂(0) is a much more robust initial than θ̃(0) when data is contaminated.

3. When data has no outliers, the modification technique reduces bias but increases

RMSE for small sample size, while it reduces dramatically both the bias and RMSE

for large sample size. For contaminated data, the modification technique reduces

the magnitude of bias and RMSE.

4. Our proposed MHDE, proposed initial and the modification technique together

(M4) is very competitive with the method proposed in Wu et al. (2017) no mat-

ter data is contaminated with outliers or not.
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On the other hand, the proposed estimation has its potential limitations. First, Bordes et al.

(2006) found that there does not exist an inversion formula like (2.5) for some three-component

mixture models. That’s to say, it is not trivial to extend the methodology proposed in this thesis

for two-component mixture models to three-component ones. Second, even though the proposed

initial estimate is very simple and intuitive, it is essentially for the case of f being unimodal.

Though unimodal is commonly assumed and is often valid in practice, in case of multimodal f ,

the proposed initial may give unreliable estimate. Third, in the modification technique, we keep

choosing random initial estimates from the interval formed by the range of data until we obtain

one with corresponding Hellinger distance smaller than a predetermined small value or we reach

the maximum 49 random initials. As the range of data gets wider, it is possible that no one among

the 49 random initials satisfies the requirement that the corresponding Hellinger distance is smaller

than a predetermined small value. To solve this problem, one may increase the allowed maximum

number of random initials or, more efficiently, choose random initials within a smaller range around

the centre of the data rather than over the whole range of the data. All these three aspects could be

explored in the future work.
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