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Abstract 

The capacity to generate, reinstate, and mentally simulate mnemonic representations is a 

fundamental aspect of the human mind. It allows us to internally experience other places and 

moments of time, abstracting away from the present moment into past experiences or 

hypothetical future states of the world. Theoretical models posit that this capacity is afforded by 

a neural network distributed across the brain that codes features from our environment and 

experiences into neural representations that can be reinstated or flexibly combined in a goal 

oriented manner. Central to this network is the hippocampus, a region of the medial temporal 

lobes that putatively indexes both the spatial composition of a mental scene and the pattern of 

hippocampal-cortical interactions that represent feature details. Despite decades of research on 

hippocampal function during memory processes, our understanding of how this neural network 

operates dynamically remains limited. This thesis aim to assist in resolving this by investigating 

patterns of network reconfiguration that occur as a mnemonic representation of a virtual city is 

generated and reinstated to guide mental simulations of movement through the city. Chapter 2 

provides evidence for a general encoding mechanism where the brain transitions from a state of 

information integration to localized processing based on encoding demands. These results are 

extended by showing that the hippocampus demonstrates flexibility in how it interacts with other 

brain regions to actively reinstate and bind features into a holistic representation that is used for 

mentally simulating movement. Chapter 3 investigates regional effects associated with the task 

as a validity check. Chapter 4 uses network reconfiguration processes to show that the default 

mode network, a putative task-negative system, also demonstrates flexibility by altering the 

functional interactions between its components and regions of the mental simulation network to 

facilitate feature integration during mnemonic reinstatement. Collectively, these results provide a 
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schematic for extending existing theoretical models on memory function into a dynamic 

perspective based on the adaptability of neural networks and the flexibility of network 

components to alter patterns of functional interactions across the brain to process information in 

a contextual, goal oriented manner. 

 

Keywords: memory, hippocampus, navigation, prospection, mental simulation, graph 

theory 
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Chapter 1 

1.1 The self in time and space 

The world is composed of a myriad of colours, shapes, and geometries that weave 

themselves into the tapestry of sensory information from which we derive our experience of the 

external environment. Through millennia of evolutionary pressures, the human brain has 

developed elaborate systems for parsing this sensory information into meaningful constituents 

that can be encoded, combined, and manipulated in a manner that optimizes the recall of past 

experiences and predictions about the future (Friston, 2010; Friston & Price, 2001; Schacter, 

Addis, & Buckner, 2007). The generation of mental models of the world motivating humans 

towards action is a central tenant of cognitive psychology (Markman & Dietrich, 2000), 

delineating the stages of one’s mental development in childhood (Marshall & Meltzoff, 2015; 

Piaget & Cook, 1952; Zelazo, 2004), and shaping how we reason about conflicting sources of 

information as an adult (Byrne, 2002). Moreover, the capacity to imagine a world within one’s 

own mind has led to the proliferation of our cultural and social world (Damasio, 2010), where 

learned and newly synthesized mental representations find expression in the urban architectures 

we inhabit, the forms of art we appreciate, and the choices we make to organize our lives in a 

personally meaningful manner. 

 Mental representations can be implicit in nature (Squire & Zola-Morgan, 1991), such as 

motor efferent copies allowing predictions of intended movement sequences, that are not 

immediately accessible to introspection of the conscious mind. However, the term will be used 

here to refer to mnemonic representations of a more specific form, in which environmental 

information and intended action sequences can be combined and rehearsed to both relive past 

experiences and make predictions about how we might interact with the world at some point in 
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the future. Therefore, a mnemonic representation will be defined as a mental model that is (1) 

accessible to conscious introspection, (2) declarable, and (3) situated in a spatiotemporal context. 

Although implicit and consciously accessible mnemonic representations may share overlapping 

cognitive and neural mechanisms (Pfeifer, Iida, & Lungarella, 2014), such that more basic 

sensory-motor interactions between a person and their environment provide a computational 

basis for higher-order cognitive processes, more research on the neural and computational basis 

of mental representations at each level is still needed before a comprehensive account of such 

embodied processing can be developed. One of the aims of this thesis is to assist in this process 

by integrating insights from both cognitive and neuroscientific perspectives on memory function 

into a theoretical perspective of how general mechanisms of brain function allow for the 

complex, multi-featural representations that pervade most of our conscious thought. 

Akin to the revolution in physics at the beginning of the 20th century, the division of 

space and time in human cognition has recently been challenged (Eichenbaum, 2013), with 

important implications to understanding how humans generate and use mnemonic 

representations of the world. Early research attempting to resolve how mnemonic representations 

are coded by neural mechanisms focused on understanding the cellular basis of spatial memory. 

The cognitive map theory of hippocampus (HC) function was based largely on the discovery of 

place cells (O'Keefe & Dostrovsky, 1971; O'Keefe & Nadel, 1978), a type of pyramidal neuron 

located primarily in the HC that codes for one’s location relative to spatial locations in an 

environment. This theory proposed that place cells handled the spatial computations necessary to 

generate map-like mental representations of an environment by encoding and reinstating spatial 

information about the layout and organization of environmental features. Expanding upon this 

view, behavioural and cognitive neuroscientists began to articulate a perspective on memory 
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function in which discrete aspects of the external world are encoded and represented in the mind 

(Kosslyn, Ball, & Reiser, 1978), putatively by dynamical activity of populations of neurons 

(Squire, 2004).  

Early work on temporal memory was conducted primarily by neuropsychologists 

working to extend the discovery by Milner and colleagues (Penfield & Milner, 1958; Scoville & 

Milner, 1957) that damage or resection of the HC could lead to impairments of memory function 

and an inability to access information from past experiences or form new mnemonic 

representations of the world. Termed retrograde and anterograde amnesia, respectively, this 

finding led to an enormous body of research on understanding human memory function and its 

neural correlates (Squire, 2009). However, an equally important implication from Milner and 

colleagues later work (Milner, 1962) was the hypothesis that multiple memory systems operate 

in the brain, allowing for the preservation of certain forms of learning (e.g. motor) when there 

was selective damage to only one system. The multiple memory systems hypothesis provided the 

foundation for researchers to delineate taxonomies of memory systems that were distinguished 

by the classes of information they operated on and how brain lesions affected memory 

performance. 

Over the following decades, the multiple memory systems hypothesis led to critical new 

insights on the organization of memory and how it relates to the brain. An influential perspective 

first articulated by Endel Tulving (1972; 1983) proposed that human memory can be divided into 

a semantic system, which allows encoding and retrieval of factual and abstract information about 

the world, and an episodic system that encodes and retrieves events in relation to oneself. 

Episodic memory is posited to rely on regions of the medial temporal lobe, primarily the HC, 

which has a unique anatomical structure consisting of dense recurrent connections (Yassa & 
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Stark, 2011) and interregional connectivity (Mišić, Goñi, Betzel, Sporns, & McIntosh, 2014) that 

allow it to reinstate patterns of neural activity representing environmental and episodic details 

from past experiences. Importantly, episodic memory theory provided a central framework to 

study how humans mentally move through time and access experiences from the past.  

Although there has been extensive research to understand the neural basis of episodic 

memory, until recently neurocognitive models on temporal aspects of memory had yet to provide 

a computational mechanism akin to the place cell hypothesis of spatial memory. Place cells 

provide a specific and measurable cellular mechanism to understand how difference 

environmental features are coded and combined in the HC to generate the spatial context of a 

mnemonic representations. The representational format of temporal information remained 

unknown, however, despite being widely associated with HC function. The sequential ordering 

of events, a fundamental aspect of episodic memory (Tulving, 1983), had been shown to involve 

the HC through processes such as sequence disambiguation (Kumaran & Maguire, 2006), which 

allowed overlapping sequences of information to be categorized into different event streams. 

This suggested that neural codes in the HC represent the timelines of experience, and use pattern 

separation mechanisms to represent discrete events that shared common features, similar to how 

overlapping representations of space are disambiguated by neural codes in the HC (Brown, Ross, 

Keller, Hasselmo, & Stern, 2010; Kyle, Stokes, Lieberman, Hassan, & Ekstrom, 2015). The first 

cellular mechanism for understanding the temporal aspect of episodic memory was provided by 

the discovery of time cells in the HC, ensembles of neurons that temporally organize event 

sequences and disambiguate overlapping event features over delay periods (Eichenbaum, 2013; 

MacDonald, Lepage, Eden, & Eichenbaum, 2011). This finding showed that the HC encodes 

both the spatial and temporal features of a mnemonic representation through activity of neural 
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ensembles and can apply processes such as pattern separation to generate unique spatiotemporal 

contexts. 

Importantly, however, the activity of HC neurons showing properties of time cells was 

found to be most strongly modulated by a combination of both temporal ordering and spatial 

location, indicating that these neural ensembles allow for conjunctive representations of both 

time and space (Eichenbaum, 2013). Although more research is needed to clarify the 

convergence and divergence of temporal and spatial processing in HC neurons, the identification 

of time cells and their modulation by spatial factors indicates that the fundamental 

neurocognitive function of the HC may be to allow one to abstract away from the present 

moment and situate oneself in a different time and place by generating mental representations of 

the world that are both consciously accessible and able to be manipulated in a goal-directed 

manner. To understand how this might occur requires a more comprehensive account of the 

taxonomy memory systems in the human brain and how interregional interactions between brain 

regions providing specialized processing allows for the generation and utilization of holistic 

mnemonic representations of the world.   

1.2 Models of memory function 

While a review of the complete taxonomy of memory systems is beyond the scope of this 

chapter, I will provide a more detailed overview of theoretical models on episodic memory and 

how it relates to other forms of memory. One of the most influential theories on episodic 

memory systems in the 20th century, termed the standard model, was proposed by Squire and 

Zola-Morgan (Squire & Zola-Morgan, 1991). Under this model, human memory is delineated 

into two broad categories of declarative and non-declarative memory. Declarative (explicit) 

memory is defined by memories that can be spoken about, encompassing both memories for 
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facts and memories for events. Non-declarative (implicit) memory encompasses all forms of 

memory systems that are not communicable via speech, such as motor learning, priming, and 

basic forms of classical conditioning. The declarative memory system at a cognitive level largely 

resembles Tulving’s proposed distinction between episodic (events) and semantic (facts) 

memory. In Squire and Zola-Morgan’s theory, regions in the medial temporal lobe are critical in 

forming neural representations underlying episodic memory by binding together different 

elements of an experience using associative learning mechanisms such as long-term potentiation. 

More specifically, the HC is theorized to be central to the medial temporal lobe memory system, 

creating ‘summary sketches’ of neocortical patterns of activity that can then be reinstated via 

activation of HC neurons. This reinstatement process allows a person to re-experience an event 

through the coordinated reactivation of cortical areas specialized to process the types of 

environmental and episodic features that were originally experienced, essentially creating a 

mental movie (i.e. a memory) of a past event that can be introspected upon. In its original 

proposal, this model viewed the inclusion of the HC in generating neural representations of 

events as transitory, only being involved in the encoding of a representation and its reactivation 

over limited timeframe of a few weeks while the memory becomes consolidated. Long-term, 

more stable memories, did not require HC activity for reinstatement, instead relying on changes 

to synaptic weights between areas of the neocortex coding for the episodic features of a memory. 

The advent functional magnetic resonance imaging (fMRI) in the mid 1990s provided 

cognitive neuroscientists with a powerful methodology to study the hypotheses put forward in 

Squire and Zola-Morgan’s theory (1991). Together with neuropsychological research on 

retrograde amnesia, evidence refuting claims of the standard model began to increase, suggesting 

that the two forms of declarative memory were subject to different effects of retrograde amnesia, 
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and therefore putatively relied on different components of the medial temporal lobe system 

(Nadel & Moscovitch, 1997; Nadel, Samsonovich, Ryan, & Moscovitch, 2000). Critically, the 

view of the standard model that the HC was only involved in retrieval of recently encoded 

memories was not supported by research on the temporal gradient of retrograde amnesia on 

autobiographical memories, where damage to the HC could impact retrieval of memories that 

occurred 10-30 years previously (Nadel & Moscovitch, 1997). Additionally, initial fMRI 

evidence began to accumulate showing that level of activity in the HC or areas of the neocortex 

did not differ when retrieving memories recently acquired compared with those acquired decades 

ago (Ryan et al., 2001). 

Building on the general perspective from the standard model of neocortical activity being 

sparsely indexed by neural representations in the HC, Nadel and Moscovitch (Nadel et al., 2000; 

Nadel & Moscovitch, 1997) proposed the multiple trace theory (MTT) of memory function. This 

theory attempted to accommodate the emerging evidence that the HC was critical for retrieval of 

remote memories by proposing that reinstatement of neocortical activity patterns associated with 

an event always necessitates activity of the HC. Similar to the standard model, MTT posited that 

environmental and episodic features processed across the brain are bound through associative 

learning mechanisms to a spatial context generated by the HC. Critically, MTT posits that the 

spatial context of a memory is always generated by the HC, and therefore even memories of 

events in the remote past require HC-neocortical interactions to be properly recalled. This view 

borrows partially from the cognitive map theory of spatial memory outlined previously (O'Keefe 

& Nadel, 1978), where place cells in the HC provide a neural computational mechanism to 

understand the spatial relationships between objects in an environment. Importantly, MTT 

suggests that spatial contexts are uniquely coded by the HC and that these spatial contexts 
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provide the scaffold upon which other features from memory (e.g. landmarks, objects, people, 

inter-personal interactions) are bound into a coherent representation. This proposal makes several 

predictions about hippocampal function, indicating that cognitive processes involving the 

generation of spatial contexts, and not the retrieval of previously experienced spatial contexts per 

se, requires the HC to provide a spatial context upon which neocortical information can be 

integrated into a holistic representation. 

Aside from MTT, other prominent theories on the function of HC for memory retrieval 

have been developed in the wake of the standard model. Using results primarily from research 

using animal models, Eichenbaum (Eichenbaum, 2000a) proposed the relational network theory 

that posits the HC is able to disambiguate overlapping memories that share a common event or 

spatial location through a pattern separation mechanisms, while also being capable of binding 

together sequences of places or events into specific episodes. In this view, the HC acts as the 

crux of a memory system that facilitates associative representations, organizes them sequentially, 

and embeds them in relational networks so that episodes appear as a holistic representation, and 

elements from one memory can prime the retrieval of another (Eichenbaum, 2004). An important 

distinction here relative to MTT is that the HC provides neural mechanisms to bind and 

disambiguate environmental and episodic features that are encoded into memory, providing a 

more generalized mechanism for episodic memory formation and retrieval than the spatial 

context hypothesis of MTT. Additionally, this model predicted that both temporal and spatial 

information of a mnemonic representation is generated through relational processing in the HC, a 

prediction confirmed by the discovery of time cells (MacDonald et al., 2011). 
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1.3 Mental time travel 

One of the most pervasive features of the human mind is our ability to re-experience the 

past in vivid detail. However, we are equally able to project ourselves forward into future, 

anticipating different hypothetical states of the world. We spend upwards of 30% of our day 

thinking about past experiences and anticipating future scenarios (Fox, Nijeboer, Solomonova, 

Domhoff, & Christoff, 2013; Killingsworth & Gilbert, 2010). For much of the 20th century, 

thinking about the past and the future were treated separately, with the majority of empirical 

work attempting to delineate the cognitive and neural processes involved in remembering past 

experiences (Moscovitch, Cabeza, Winocur, & Nadel, 2016). By the end of the century, 

scientists began to speculate that episodic projections into the past or future may share a similar 

neurocognitive basis, in which overlapping cognitive and neural systems allow for the 

experiencing of non-present timeframes (Schacter et al., 2012).  

One early theory suggested that mentally traveling through time represented a unique 

form of awareness, termed autonoetic consciousness, that allow for conscious experiences 

outside of the present moment (Wheeler, Stuss, & Tulving, 1997). This theory formulated the 

shared systems hypothesis, predicting that the episodic memory system was also utilized to think 

about the future. The initial proposal by Wheeler and colleagues (1997) centralized the neural 

mechanisms of future thinking on areas of the prefrontal cortex, positing that autonoetic 

consciousness required elaborate and complex control of other systems in the brain, such as 

those supporting episodic memory, to generate, maintain, and simulate interaction using mental 

representations. However, more recent theoretical proposals (Atance & O'Neill, 2001) and 

empirical work (Addis, Wong, & Schacter, 2007; Szpunar, Watson, & McDermott, 2007) 

suggested that PFC was only one region in a wider network distributed across the brain that 
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allows for the generation and simulation of mental episodes based outside of the present 

moment. 

 The shared systems hypothesis represented a pivotal moment in the study of episodic 

memory, opening our understanding of the future to the theoretical and methodological advances 

that had been made in the decades before on memory research. Under this perspective, Hassabis 

and colleagues (Hassabis, Kumaran, Vann, & Maguire, 2007b) reported that patients with 

bilateral HC damage were impaired in both recalling past events and envisioning new scenarios 

that had never been experienced. Notably, the researchers observed that the primary deficit when 

making these mental projections outside the present moment was a reduced ability to generate a 

coherent spatial context in which to simulate experiences. This finding had two important 

implications. First, it shifted the potential loci of episodic future thinking to the HC, while giving 

credence to the overlap in neural mechanisms between episodic recall and future thinking. 

Second, it suggested that the primary function of the HC in recalling past events or anticipating 

new ones was to provide and organize spatial information into a task-oriented context that could 

be used to mentally simulate events, akin to the proposal of MTT.  

The neural overlap between experiencing events in the past and future was further 

investigated by two brain imaging studies. A study by Szpunar and colleagues (Szpunar et al., 

2007) used event-related functional magnetic resonance imaging (fMRI) to investigate the neural 

mechanisms associated with thinking about past or future episodic events. Comparing 

differences in neural activity between the past and future, the researchers noted that future 

thinking involved increased functional activity in premotor and posterior parietal cortices, 

putatively through the simulation of novel action sequences rather than remembered ones. 

Additionally, they observed that thinking in both timeframes showed similar levels of 
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engagement in the medial PFC, bilateral parahippocampal gyrus, posterior cingulate cortex 

(PCC), occipital cortex, and the cerebellum. The researchers interpreted this pattern of results by 

drawing comparisons between autobiographical memory tasks and mental navigation of familiar 

routes, suggesting that each cognitive task involved the reactivation of a visuo-spatial context. 

Similarly, a study by Addis and colleagues (Addis et al., 2007) had participants generate and 

elaborate on episodic events at different time points in the past or the future. Using a conjunction 

analysis, the researchers observed similar increases in functional activity within the left HC, as 

well as within visual and associative regions of occipital and posterior parietal cortices when 

participants generated mnemonic representations in either temporal direction. However, the 

researchers also found differences in neural activity between the past and future, with the right 

HC and areas within PFC and the medial temporal gyrus showing increased levels of functional 

activity during the generation of mnemonic representations in a future timeframe.  

Notably, the study by Addis and colleagues (2007) provided a critical insight in relation 

to the default mode network (DMN), a network of hub regions in the brain that display increased 

functional activity and inter-regional connectivity when a person is not overtly engaged in a task 

(Raichle et al., 2001). The DMN network is composed of medial PFC, PCC, and both the left and 

right lateral parietal cortex. Importantly, the DMN is theorized to comprise a task-negative 

network that displays attenuations in neural activity when a person is engaged in a cognitive task 

(Fox et al., 2005) and failure to suppress regions of the DMN has been shown to adversely 

impact behavioural performance (Fox, Snyder, Vincent, & Raichle, 2007; Weissman, Roberts, 

Visscher, & Woldorff, 2006). However, during the elaboration phase of the study in which 

participants attempted to increase the amount of detail of a generated mental representation, 

Addis and colleagues (2007) observed that both past and future elaborations robustly engaged 
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medial PFC and PCC (see Figure 2 in Addis et al., 2007), both primary components of the DMN. 

Although the authors did not discuss this finding in the context of DMN research, it suggested 

that the shared system supporting the elaboration of episodic events in the past and the future 

showed marked overlap brain regions posited to underlie the spontaneous, self-referential 

thought that characterizes the resting-state periods typically used to study the DMN (Andrews-

Hanna, Smallwood, & Spreng, 2014). 

Considering the overlap in neural activity associated with episodic projections, mental 

navigation, the DMN, and tasks involving theory of mind, Buckner and Carroll (Buckner & 

Carroll, 2007) proposed a theoretical model in which a core neurocognitive system allowed 

people to mentally project themselves outside of their present moment, egocentric awareness. 

Similar to shared systems hypothesis (Wheeler et al., 1997), the model by Buckner and Carroll 

drew parallels between cognitive tasks eliciting similar patterns of neural activity by attempting 

to find a common psychological function. The network topology they proposed consisted of 

regions of the medial PFC, PCC and surrounding areas (retrosplenial cortex, precuneus), and 

regions of the medial temporal lobe, including the HC. They posited that this network afforded a 

core ability of projecting a first-person perspective into different places, perspectives, and points 

of time. This function was also characterized as adaptive, in that the core network could flexibly 

alter its topology and output function to accommodate different task demands. Moreover, the 

authors suggested that the existence of such a network in the brain supported the idea of 

prospective coding (Schacter et al., 2007) in which the function of episodic memory is not only 

to recall the past, but also to supply the mental resources needed to make mental simulations of 

potential future states of the world.  
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Closely after the publication of Buckner and Carroll’s model (2007), Hassabis and 

Maguire proposed a revised perspective entitled the scene construction hypothesis (Hassabis & 

Maguire, 2007). Borrowing the insight of a shared system between episodic projections and 

mental navigation, the authors developed a theoretical model in which the core function of the 

network was not self-projection, but the generation and elaboration of a spatial context, similar to 

the proposals by Szpunar and colleagues (Szpunar et al., 2007), and Addis and colleagues (Addis 

et al., 2007). In their model, Hassabis and Maguire additionally included the capacity to mentally 

simulate self-referential imagined events, not strictly future scenarios that a person believes may 

occur. Using the finding on spatial context from their earlier work on patients with HC damage 

(Hassabis, Kumaran, Vann, & Maguire, 2007b), the authors articulated a perspective in which 

neural ensembles in the HC generate and organize spatial information into a framework upon 

which additional episodic details can be bound, allowing for mental simulations of past, future, 

and hypothetical episodic events. The key distinction here compared to the model by Buckner 

and Carroll (2007) is that the amount of spatial information and its degree of organization in a 

mental simulation is posited to associate with HC function, as the processes of constructing 

mental scenes, not the amount of self-projection, necessitates HC activity in a cognitive task. 

This perspective was substantiated by reference to their previous study on amnesic patients 

(Hassabis, Kumaran, Vann, & Maguire, 2007b) where they found deficits in constructing the 

spatial context of hypothetical scenarios. 

A following study on K.C., a patient with severe retrograde and anterograde amnesia, 

provided a critical test for the core function of HC-based neural networks (Rosenbaum, Gilboa, 

Levine, Winocur, & Moscovitch, 2009). To test whether HC function was associated deficits in 

recalling details from autobiographical memory, or constructive/reconstructive processes during 



14 

 

the generation of a mental scene in a non-present timeframe, the authors devised a clever task 

design that had K.C. construct fictional events and recall details of well-known fairy tales and 

bible stories. The authors found that K.C. displayed impairments in both recalling events from 

his past, as well as generating imaged scenarios that were never personally experienced. 

Although K.C. could generate the gist and some information about both the personal and non-

personal narratives, the narratives displayed a lack of detail generation and coherent narrative 

structure. Intriguingly, K.C. had a persevered capacity for theory of mind (Rosenbaum, Stuss, 

Levine, & Tulving, 2007), suggesting that the forms of amnesia observed in K.C. were not 

related to his capacity to reason about the state of another’s mind, providing further evidence the 

function of the core episodic network was not specific to self-projection. The researchers also 

observed that the impairment of detail generation in K.C. extended beyond the spatial domain, 

suggesting that the basic tenants of the scene construction hypothesis were viable, but non-spatial 

aspects of mental representations also need to be generated and organized through HC-based 

processes. This process of detail generation and organization could occur through mechanisms of 

relational binding (Eichenbaum, 2004) and suggested that the HC is necessary for the integration 

of environmental and episodic features occurring during the generation and elaboration of mental 

representations. 

1.4 The mind’s chimera: multi-featural models of the world 

As noted by the both the scene construction (Hassabis & Maguire, 2007) and detail 

generation and binding (Rosenbaum et al., 2009) hypotheses, the mental representations of the 

world we generate and introspect upon are composed of a multitude of environmental (i.e. 

places, landmarks, paths) and episodic (i.e. action sequences, inter-personal interactions) 

features. These features are posited to be dynamically reinstated, combined, and organized in a 
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constructive manner, where elements of past experiences can be flexibly integrated into a task-

oriented mental representation used to simulate or relive experiences in a spatiotemporal context 

(Arnold, Iaria, & Ekstrom, 2016; Schacter et al., 2007). While much more research is needed to 

develop a taxonomy of the classes of information that can be mentally represented and 

holistically combined, brain imaging studies using intracranial electrodes, as well as recent 

advances in multivariate statistical techniques and algorithms borrowed from machine learning, 

have begun to identify different categories of information contained in a mental representation 

can be decoded based on patterns of brain activity.  

 The cognitive map theory of HC function posited that spatial representations of 

environmental information, such as landmark location and distance estimates between 

landmarks, are coded and represented by activity of view-point invariant place cell ensembles 

(O'Keefe & Nadel, 1978). Research in rodents widely supported this perspective, showing that 

the location of a rodent at any point in time can be decoded based on the patterns of activity in 

place cell ensembles (Wilson & McNaughton, 1993). Place responsive cells have also been 

demonstrated in the human HC (Ekstrom et al., 2003), suggesting that the neural code for spatial 

locations is similarly represented by HC place cell dynamics in humans. However, conjunctive 

coding of current and goal locations has also been found, indicating that task contexts are able to 

modify neural codes for a spatial layout, putatively through remapping processes that allow for 

alterations to the location sensitivity of place cell neurons that anticipate trajectories through an 

environment (Brown et al., 2010). The study be Ekstrom and colleagues (Ekstrom et al., 2003) 

additionally found evidence for place cells in both parahippocampal region and frontal lobes, 

albeit to a lower degree than in the HC, providing one of the first indications that the neural code 
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for spatial environments is not specific to the HC in humans and that a more distributed network 

of brain regions may be coding spatial information. 

 If place cells provide the neural code of the spatial layout of an environment, it is 

reasonable to speculate that the spatial context of a mental representation is also coded by the 

coordinated activity of place sensitive HC neurons, similar to the proposal of HC function in 

MTT. This type of decoding within a mental representation of an environment was first shown 

by Brown and colleagues (Brown et al., 2016). The researchers asked participants to mentally 

simulate navigating to a target location from a starting point in a recently learned environment. 

Using a classifier, they showed that both current location (i.e. each trial starting point) and the 

goal location were represented in distributed patterns of HC activity. Further, they also showed 

that intervening landmarks along the simulated route could be decoded, indicating that HC neural 

activity was associated with representing and organizing spatial locations within a mental 

representation of the environment. Above chance future goal decoding was also found in the 

parahippocampal, perirhinal, and retrosplenial cortex, showing that imagined spatial locations 

were also represented in these regions. Importantly, the strength of goal representation in the HC 

was also correlated with activity in the parahippocampal, retrosplenial, and occipital frontal 

cortex, indicating that these regions participated in a functional network that together enabled the 

multi-featural representation of a spatial environment that was used to mentally simulate 

behavior. 

 The sensitivity of place cells is posited to vary based on the allocentric (i.e. landmark-

based) information of environmental features independent of heading direction and distance 

estimates between a navigator and environmental features (Burgess, 2008). However, a second 

spatial coding system is hypothesized to exist in humans, which represents egocentric (i.e. body-



17 

 

centric) heading and allows for a sense of direction when a person is situated in an environment 

(Ekstrom et al., 2003; Vass & Epstein, 2013). In a recent study, Marchette and colleagues 

(Marchette, Vass, Ryan, & Epstein, 2014) showed that patterns of neural activity in the 

retrosplenial cortex can decode both location and direction information when participants 

imagined mentally navigating a recently learned environment. Critically, the researchers showed 

that decoded location and direction in retrosplenial cortex was always relative to environmental 

features, thereby providing a neural basis for the complementary, egocentric system 

hypothesized to interact with place cell allocentric representations during navigation. 

 The outlined studies demonstrate that mental representations include spatial information 

about environmental features and egocentric perspectives that are coded by neural activity in a 

distributed set of regions across the brain. Similarly, temporal information derived from previous 

experiences is also coded in mental representations. Comparing the amount of time to navigate 

paths through a virtual city with mental simulations of navigating such routes, Arnold and 

colleagues (Arnold et al., 2016) showed that both virtual and mental navigation had correlated 

durations, although the duration of mental navigation was temporally compressed such that it 

was experienced at ~2.4x the rate at which it took to physically navigate the same route in the 

virtual city. Intriguingly, the duration of a mentally simulating a route was also inversely related 

to both the vividness of visual imagery and the spatial coherence of environmental features 

during mental simulations. This finding provided support for the constructive nature of memory 

(Schacter et al., 2007), and indicates that phenomenological qualities of mental simulations can 

serve as proxies for neurocognitive processes underlying the reinstatement and integration of 

multi-featural mental representations (Arnold et al., 2016). 
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 The process of feature reinstatement and integration is not specific to spatial tasks, but 

appears to be a general mechanism subserved by the core network of regions outlined in the 

previous section. Paradigms engaging episodic memory process have shown that reinstatement 

of neural activity while recalling an episodic event is mediated through HC pattern completion 

mechanisms that coordinate the selective reactivation of neocortical areas representing features 

from the recalled event (Horner, Bisby, Bush, Lin, & Burgess, 2015; Leiker & Johnson, 2015). A 

study by Horner and colleagues (Horner et al., 2015) using a novel associative memory paradigm 

provided compelling evidence for this process. Investigating differences in HC activity when 

encoding overlapping pairs of stimuli (i.e. people, places, objects) in either an open-loop (A-B, 

B-C, C-D pairs) or closed-loop (A-B, B-C, A-C pairs) conditions, the researchers observed 

increased HC activity during the third encoding trial in the closed-loop condition (and therefore 

completed the three-way association) that was predictive of subsequent memory. This was 

interpreted as evidence for pattern completion by the HC, where the HC putatively bound each 

stimuli type into a holistic representation based on associative memory processes. The 

researchers also showed that neocortical areas displaying increased functional activity during 

encoding of each stimuli type (parahippocampal cortex for places, medial parietal for people, and 

lateral occipital cortex for objects) were reactivated during the retrieval task, which cued a 

specific stimulus and asked if it was previously associated with another stimulus. Critically, they 

showed increased neocortical reinstatement for the closed-loop condition in each of the three 

stimuli-specific areas, even though only two stimuli types were presented during the retrieval 

trial (e.g. a landmark cued with a person target still reactivated lateral occipital cortex 

representing the associated object). These findings support central tenants of MTT and scene 

construction, where the HC provides the contextual framework for the reinstatement and 
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integration of different feature types, and suggests that HC-cortical interactions code for the 

associative structure of a holistic, multi-featural representation (Buchel, Coull, & Friston, 1999). 

Collectively, the studies outlined in this section indicate that the encoding, generation, and 

manipulation of mental representations operates through the functional interactions of multiple 

brain regions, centered on the HC, and suggest that variability in both the topology and dynamics 

of this network are critical for effectively utilizing such representations. 

1.5 Network interactions underlying mental representations 

Each of the aforementioned models of memory function theorize that hippocampal-

cortical functional interactions are necessary to bind multi-featural information into a mental 

representation about a past or, in the case of the scene construction and detail generation and 

binding hypotheses, a future experience. Empirical work investigating memory function in the 

context of these models has generally relied on bivariate statistical techniques that allow for 

evaluation of region-to-region changes in functional interactions (e.g. Brown et al., 2016; Horner 

et al., 2015). While bivariate techniques provide a wealth of information in regards to cognitive 

processes that are generated and modified by dynamical interactions between two sets of regions, 

they fail to capture more complex forms of regional information processing and network 

participation in topological structures consisting of a large set of connected components (Bassett, 

Nelson, Mueller, Camchong, & Lim, 2012). In the context of memory function, such a 

perspective is critical given that the reinstatement of vivid, multi-featural representations requires 

reinstatement of cortical activity across a multitude of brain regions (Brown et al., 2016; Horner 

et al., 2015), including associative regions which may perform certain types of information 

integration prior to feeding information forward to the HC. Multivariate techniques such as graph 

theoretical analysis allow for quantification of various measures of network function and 
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regional participation that are inclusive of numerous sets of functional interactions, and are 

therefore more adept at characterizing contextual changes in network states and regional roles in 

information processing and integration (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). 

 The network interactions underlying the retrieval of mental representations has recently 

been investigated in a set of studies using graph theoretical measures. Watrous and colleagues 

(Watrous, Tandon, Conner, Pieters, & Ekstrom, 2013) used phase synchrony between 

intracranial electrodes in lateral PFC, parietal cortex, and the parahippocampal gyrus to test the 

hypothesis that global connectivity, rather than regional processes, contributed to accurate 

retrieval of spatial and temporal information from a past experience. The researchers showed that 

correct retrieval of each type of information was associated with increases in the number of pair-

wise connections between electrodes showing inter-regional functional coupling, and that this 

measure of global connectivity was a better predictor of correct retrieval than changes in regional 

activity. This finding was also replicated using fMRI data (Schedlbauer, Copara, Watrous, & 

Ekstrom, 2014). The researchers also investigated the frequency range of functional interactions 

within the global network during correct recall of spatial versus temporal information, finding 

that accurate retrieval of spatial information was best characterized by network interactions in 

the 1-4 Hz band. Conversely, retrieval of temporal information displayed a preferred frequency 

range of 7-10 Hz. Considered together, these results provided some of the first evidence that 

global state changes in functional interactions across the brain are associated with correctly 

recalling information from past experiences, and that multiple classes of information bound in a 

mnemonic representation of a past experience are able to be processed by the same network 

using different spectral fingerprints. 
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 The finding that accurate memory retrieval is associated with increases in global 

functional connectivity across the brain suggest that the capacity of a network to distribute and 

integrate information may explain individual differences in memory function. To test this, 

Arnold and colleagues (Arnold, Protzner, Bray, Levy, & Iaria, 2014b) identified a core network 

of regions, including areas in PFC, the parahippocampal gyrus, parietal cortex, and posterior 

cingulate cortex, engaged by all participants in a study when retrieving spatial representations of 

a virtual city and making orientation decisions based on those representations. The topology of 

this network was then used to assess its global efficiency using resting-state fMRI data that had 

been collected previously to performing the orientation task used to identify regions in the 

retrieval network. Functional interactions in resting-state data provide a putative measure of the 

functional architecture of the brain (Biswal et al., 2010), allowing for an assessment of the 

information processing capacity of neural networks. The researchers found that the global 

efficiency of the identified network was strongly predictive of which participants made a high 

number of correct orientation decisions. This suggests that memory networks vary in how 

efficiently they integrate and distribute information, and that an increased capacity to do so 

allows for more accurate generation of the spatial context of a mnemonic representation.  

 Considered together, these studies provide initial support for dynamical network 

interactions underlying the reinstatement spatial and temporal features of a mnemonic 

representation. In light of this, a recent theoretical model was proposed that posited the 

spatiotemporal context of a mental representation is generated through a non-aggregate 

processing stream, where partially shared computations between network regions affords the 

capacity to mentally represent an episodic event (Ekstrom, Arnold, & Iaria, 2014). Under this 

view, the generation of spatiotemporal contexts does not occur through the additive summation 
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of specialized processes in each network region (i.e. each region contributes one specific 

component of a mental representation, which is sequentially added together into a 

representation), as some theoretical models have proposed (Burgess, 2008). Rather, mental 

representations are generated through complex and dynamical patterns of functional interactions 

that provide context specific changes to regional computations and allow for the preservation of 

specific cognitive processes in the presence of lesions affecting putatively specialized brain 

regions. Versions of a non-aggregate model of brain function have been proposed elsewhere 

(Bassett & Gazzaniga, 2011), such as the neural context hypothesis put forward by McIntosh 

(McIntosh, 2000), positing that the brain expresses functional plasticity in which the output 

function of a particular region is contingent upon the set of other regions it is functionally 

coupled with, and the process-specific alliance model by Cabeza and Moscovitch (Cabeza & 

Moscovitch, 2013), where brain regions that are functionally coupled provide a specific 

computation, but the output of the alliance is a complex phenomenon that cannot be explained by 

summating each specialized process. 

The model proposed by Ekstrom and colleagues (Ekstrom et al., 2014) makes several 

predictions about putative dynamical network interactions involved specifically in generating 

and reinstating mnemonic representations based on a spatiotemporal context. First, it shifts the 

explanatory emphasis from how a region produces a cognitive function to how a region 

participates in a broader network from which a complex cognitive function emerges. In the case 

of generating the spatial context of mental representation, it suggests that the HC is involved in 

facilitating the exchange of information between regions of a network supporting memory 

reinstatement, rather than solely providing the spatial computations necessary for it. This leads to 

the prediction that the HC involvement in a task-oriented network is dynamic, changing based on 
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current task demands, rather than fixed, which would be predicted from models such as cognitive 

map theory, where the HC is posited to provide all allocentric based spatial computations 

(O'Keefe & Nadel, 1978). If it were the case that the HC provided critical spatial computations to 

generate mental representations, its contribution (and therefore neural activity) should be 

relatively fixed across tasks requiring those computations. Similarly, the model predicts that the 

topological structure of memory networks involves dynamic reconfigurations that are used to 

optimize performance, as components of the task-oriented network adapt to information 

processing demands by altering their functional interactions with other components. In additive 

models of mental representations, the topological structure is predicted to be fixed, as each 

component of the network contributes a specialized function that is required to generate a 

specific output behavior. As such, this model departs from both MTT and the scene construction 

hypothesis insofar as it suggests that the spatial context of a mnemonic representation can be 

instantiated (at least partially) by spatial computations occurring outside the HC. Rather, the HC 

is posited to play a principle role in coordinating information exchange and integration of 

reinstatement episodic features distributed throughout the cortex, akin to the detail generation 

and binding hypothesis (Rosenbaum et al., 2009) and the relational network theory 

(Eichenbaum, 2004) of HC function. 

1.6 Predictions 

The primary aim of this thesis is to investigate the neural mechanisms that allow 

environmental features to be encoded, reinstated, and manipulated to subserve prospection. It 

uses the perspective articulated by Ekstrom and colleagues (Ekstrom et al., 2014) as a guiding 

framework to organize the hypotheses and associated analytical approaches. It attempts to 

resolve and inform discrepancies between MTT (Nadel & Moscovitch, 1997), scene construction 
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(Hassabis & Maguire, 2009), detail generation and binding (Rosenbaum et al., 2009), and the 

network model of allocentric representations (Ekstrom et al., 2014). Moreover, in doing so it 

attempts to provide empirical insights into dynamical network processes that are often posited by 

theoretical models of memory function, but have yet to be quantified based on multivariate 

techniques suitable for describing complex network computations. 

The secondary aim is to evaluate various hypotheses about HC function and the neural 

basis of mnemonic representations using an ecologically valid paradigm. Traditional approaches 

to studying the generation and reinstatement of mnemonic representations typically involve 

experimental tasks using basic forms of stimuli, such as pictures or words/labels, that are used as 

proxies for their real world counterparts (Cabeza & Moscovitch, 2013). Although informative in 

understanding the basis of associative memory processes related to mental mnemonic 

representations, they fail to capture the richness, detail, and complexity of information 

processing that occurs in the brain when we interact with the world. As such, they may 

underestimate dynamical network processes allowing humans to encode and reinstate multi-

featural mnemonic representations (Ekstrom et al., 2014). Here, a large-scale virtual city was 

constructed, and experimental tasks developed, to mimic stimuli and naturalistic behavior 

experienced in daily life. While still a proxy to behavior in the real world, spatial navigation 

paradigms such as those utilized here are posited to be a model system for cognitive 

neuroscience, due to the complex and multi-component cognitive processing that reflects 

experiences outside the laboratory (Chersi & Burgess, 2015). 

 Chapter 2 addresses the issue of dynamical network processes during spatial encoding. 

The spatiotemporal context of a mental representation requires the encoding and organization of 

spatial and temporal information derived from experience (Arnold et al., 2016; Schacter et al., 
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2012). Here, participants explore and encode the spatial layout of a virtual city using a simple 

spatial navigation task. Dynamical network processes are assessed at the topological level, as 

well as the changing role of the HC within local community and global networks while a 

mnemonic representation of the virtual city is being encoded. 

 Chapter 3 extends the findings of the previous chapter and evaluates detail generation 

during the reinstatement and manipulation of a mnemonic representation using a novel mental 

simulation paradigm. After encoding the city layout, participants first mentally simulate a route 

between landmarks and then subsequently navigate it through the virtual city. Global and local 

network states are compared, and measures of vividness and spatial coherence of environmental 

features during mental simulations are used to operationalize feature integration to test 

hypotheses pertaining to how the HC contributes to scene construction. 

 Chapter 4 departs somewhat from traditional models of memory function to explore 

hypotheses about the DMN and its role as a task-negative network. The topology of the DMN is 

compared at different levels of detail generation during mental simulations to rest, attempting to 

resolve how components of the DMN are associated with task-active networks supporting the 

reinstatement of mnemonic representations. The results are discussed in the context of both 

DMN theory and theoretical models that assume a shared system between memory processes and 

DMN activity (e.g. scene construction). 

 Chapter 5 attempts to integrate the findings across the three previous chapters into a 

cohesive theoretical perspective. The aim here is not to develop a unique, self-contained model 

of memory function, but to inform and build upon existing models through providing 

observations on complex network functions that have been sparsely investigated using suitable 

statistical techniques. The results are considered through the framework of MTT (Nadel & 
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Moscovitch, 1997), scene construction (Hassabis & Maguire, 2009), detail generation and 

binding (Rosenbaum et al., 2009), and the network basis of allocentric representations (Ekstrom 

et al., 2014). The chapter concludes with proposals for future research for experimental and 

clinical research areas.  
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Chapter 2 

2.1 Abstract 

Mnemonic representations based in a spatiotemporal context allow humans to re-experience the 

past or mentally simulate anticipated future scenarios by integrating environmental and episodic 

features in a constructive manner. Theoretical models post that this occurs through the dynamic 

interplay between the hippocampus, a region providing a putative neural index of environmental 

features, and areas of the cortex providing specialized information processing. While past work 

has generally supported these models during memory reinstatement, how environmental features 

are encoded and used to generate mnemonic representations is less well understood. Here, using 

spatial navigation as a model cognitive process, we investigate the dynamic nature of memory 

networks while a mnemonic representation of a virtual city is generated. We find that the brain 

reconfigures from a state of information integration, quantified by high global efficiency and low 

modularity values, when encoding demands are highest, to a state of localized processing once 

representations are formed. This reconfiguration is associated with changes in hippocampal 

centrality at the intra- and inter-module level, decreasing its role as a connector hub between 

modules and within a hippocampal neighborhood as integrative demands lessen. Together, the 

results provide a novel view of how mnemonic representations are generated through dynamical 

network processes.  
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2.2 Introduction 

One of the most striking features of the human mind is our ability to re-experience the 

past in vivid detail. Memories pervade daily life, allowing us to develop a sense of self, find new 

and familiar locations, and identify more effective strategies for interacting with the world. The 

ability to encode and retrieve complex mnemonic representations by binding features from 

previous experiences is thought to be the primary function of an episodic memory system in 

humans (Tulving, 2002). These representations are hypothesized to be conjunctive in nature, 

integrating a myriad of sensory features from the environment – such as people, places, and 

objects – into holistic representations that can be used to guide behavior into the future (P. 

Byrne, Becker, & Burgess, 2007; Chersi & Burgess, 2015; Davachi, 2006). Theoretical and 

computational models suggest that these mnemonic representations are formed by integrating 

information processed throughout the neocortex in convergence zones (Burgess, 2008; Damasio, 

1989; Marr, 1971; Meyer & Damasio, 2009; Nadel & Moscovitch, 1997), most notably the 

hippocampus (HC), where processes such as pattern completion allow representations to then be 

reinstated using a partial set of input features (Marr, 1971; Norman & O'Reilly, 2003; Rugg & 

Vilberg, 2013). Recent research has provided support for these models, showing that the 

architecture of the brain is structured to concentrate information flow to the HC (Mišić et al., 

2014), and that the HC acts as a convergence zone during associative memory tasks (Backus, 

Bosch, Ekman, Grabovetsky, & Doeller, 2016; A. M. Gordon, Rissman, Kiani, & Wagner, 

2014a), allowing different types of information processed in the neocortex to be reinstated and 

integrated into a holistic representation (Horner et al., 2015; Staresina, Cooper, & Henson, 

2013). 
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  Although there is preliminary empirical evidence for hippocampal-based information 

integration during memory retrieval (Backus et al., 2016; A. M. Gordon et al., 2014a; Horner et 

al., 2015; Iaria et al., 2014; Robin et al., 2014; Schedlbauer et al., 2014), key questions remain 

about how mnemonic representations are encoded in the real world. A critical but untested 

component of theoretical models is that when encoding occurs, there is a heightened demand to 

integrate information processed in sensory and first-order association cortices into neural 

patterns within memory structures that form the basis of a mnemonic representation (Damasio, 

1989; Marr, 1971; McClelland, McNaughton, & O'Reilly, 1995; Meyer & Damasio, 2009; Nadel 

& Moscovitch, 1997; Squire & Zola-Morgan, 1991). Recent work using functional Magnetic 

Resonance Imaging (fMRI) analyses has shown that encoding associations between sensory 

features (i.e. people, places, and objects) depends on neural activity in areas of the cortex 

specialized to the specific feature (Horner et al., 2015), and that hippocampal-cortical functional 

interactions increase when stimuli features need to be combined into a single associative 

representation (Gordon et al., 2014a; Staresina et al., 2013; Zeithamova, Dominick, & Preston, 

2012). Surprisingly though, how regions distributed throughout the brain interact dynamically as 

a network during encoding and whether the forms of interaction change as representations are 

encoded and subsequently utilized remains unknown despite its critical importance to 

understanding memory function in humans (Chrastil, 2012; Ekstrom et al., 2014).  

 An important characteristic of brain network topology is modularity (Bertolero, Yeo, & 

D'Esposito, 2015). Modular systems are sub-networks or communities defined by dense 

interconnections between intra-module components, with sparse or weak inter-module 

connections (Newman, 2006). Of importance here, the dynamic formation and interaction of 

modules and their components defined using functional interactions between brain regions has 



30 

 

been proposed to provide a mechanism for adaptability in the brain (Ghosh, Rho, McIntosh, 

Kotter, & Jirsa, 2008; Meunier, Lambiotte, & Bullmore, 2010; Werner, 2010), putatively through 

a reduced cost to rapidly change network configurations in response to environmental demands 

(Kashtan & Alon, 2005; Kirschner & Gerhart, 1998). Dynamic shifts in modularity have been 

associated with motor learning tasks (Bassett et al., 2011) and working memory paradigms such 

as the n-back task (Cohen & D'Esposito, 2016; Stanley, Dagenbach, Lyday, Burdette, & 

Laurienti, 2014). In the present study, we use spatial navigation as a behavioural model to extend 

the line of research on network modularity to more complex cognitive processes, suggesting that 

the dynamic reconfiguration of module systems across the brain provides a general mechanism 

for encoding and reinstating mnemonic representations based on the degree to which 

environmental features needs to be integrated and associated over time. 

 Drawing from theoretical models and empirical work, it is possible to formulate three key 

predictions about the basis of network reconfiguration as mnemonic representations are encoded. 

First, when encoding demands are highest, the topology of brain networks should be organized in 

a manner that increases the capacity to integrate information processed across distributed 

systems in the brain. Second, once representations are formed, there should be a reconfiguration 

of network topology from a state of global network integration to one of localized processing, as 

the need to integrate stimuli features lessens and the demand to reinstate and maintain neural 

representations within memory systems increases. Third, critical convergence zones such as the 

HC should display flexibility in how they interact with global and local brain networks, such that 

when encoding demands are the highest, they act to integrate information across different 

systems in the brain, but change to localized processing as environmental feature integration 

demands decrease. 
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 To test these three predictions, we constructed a large-scale virtual city and calculated 

graph theoretical measures using fMRI data acquired while people encoded the spatial layout of 

landmarks in the city using a simple navigation task. Spatial navigation is a model system for 

understanding how mnemonic representations are encoded and reinstated to guide behavior and 

inform decision making processes (Arnold et al., 2016; Chersi & Burgess, 2015), with past 

research demonstrating that the topology of resting-state (Arnold et al., 2014b) and task-active 

networks facilitate the accurate reinstatement of spatial representations (Arnold, Burles, Bray, 

Levy, & Iaria, 2014a; Schedlbauer et al., 2014; Watrous et al., 2013). Here, for the first time, we 

used navigation to study dynamic network reconfiguration while encoding mnemonic 

representations and the role of putative memory structures underlying changes in network 

topology.  For the global integration hypothesis, we calculated the modularity index Q, global 

efficiency, and global flow of distributed networks, and compared trials where participants were 

unsure about landmark locations to trials in which they were highly confident of knowing the 

landmark location. Next, we calculated the betweenness centrality, participation, and flow 

coefficient for the HC, graph theoretical metrics that assess the centrality of the HC at the global, 

inter-module, and local network level, respectively. Third, we calculated the local efficiency of 

the hippocampal networks to identify whether localized network processing increased as the 

need to integrate environmental information decreased. 

2.3 Methods 

2.3.1 Participants 

Fourteen right handed undergraduates (9 female; mean age = 21.64, SD = 2.56) recruited 

through the University of Calgary research participation pool participated in the study. 

Prospective participants were pre-screened to exclude anyone who reported previously 
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experiencing nausea while playing a videogame. All participants provided informed consent 

prior to scanning, received $50 reimbursement whether they completed the experiment or not, 

and were debriefed after the experiment.  

2.3.2 Environment design 

The virtual city was designed using Unity3D (version 4.6; https://unity3d.com). The city 

was composed of an interconnecting series of roads lined with buildings (see Figure 7.1a). The 

configuration of the roads was constructed to be nearly symmetric across the city to minimize the 

potential to derive location information based on global geometrical cues. The city buildings 

consisted of target landmarks and non-target buildings. The non-target buildings were variations 

of three architectural styles that were repeated throughout the city and selected to be visually 

similar in order to reduce their use as spatial cues during navigation trials. Five target landmarks 

were selected to be visually unique relative to the rest of the city (Figure 7.11b). The location of 

the target landmarks was selected by applying a 10x10 grid over the city layout and randomly 

selecting grid locations to place the landmarks. Numerous shortcuts were created by placing 

walkable paths between the buildings and a series of back alleyways. We also included two 

blockades on the main roads to ensure that the shortest path between any two target landmarks 

was only available by taking shortcuts. Movement speed was capped at 6 virtual m/s, which 

approximates to a 4.47x increase over an average real world walking speed of 1.34 m/s given the 

relative scale of the virtual city. Post-experiment interviews suggested that participants primarily 

used relative orientation of target landmarks to one another to guide navigation. Aside from the 

exposure phase (see section 2.3.3), participants viewed the city by projecting it on a mirror in the 

scanner and moved using four buttons coded to forward and backward movement, and left and 

right rotation. 

https://unity3d.com)/
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2.3.3 Task design 

The task was divided into three phases: an exposure, encoding, and simulation phase. 

Prior to entering the scanner, participants were given an overview of the task and completed the 

exposure phase. The overview consisted of giving participants instructions on the mechanics of 

the task in each phase and provided time for them to ask the experimenter any questions. The 

exposure phase consisted of watching a video of first person movement along the perimeter of 

the city (see Figure 7.1a). The video stopped for 5 seconds at each of the target landmarks and 

the experimenter pointed to the landmark on the screen and verbally confirmed that the 

participant had seen it before proceeding. The video started at the same point it had started, 

which was a randomly selected point along the perimeter and was consistent across participants. 

The exposure phase was designed to give the participants a sense of scale of the city and a 

baseline knowledge of the target landmark identities and locations. 

 Once inside the scanner, participants completed the encoding phase. This phase consisted 

of a sequence of fixation, reinstatement, and navigation blocks (see Figure 7.1c). It began by 

placing participants at a random starting point in the city (randomized once and held consistent 

across participants), showing them an image of one of the target landmarks, and asking them to 

rate on a scale of 1-4 their confidence in knowing the location of the landmark (1: not at all, 4: 

very well). Afterward, the participants were instructed to find the cued landmark as quick as 

possible. Once located, the participants walked into the front of the building which prompted the 

next rest/reinstatement/navigation block sequence. We also included a helper arrow that was 

initiated once participants had taken more than 90 seconds to locate the landmark. The helper 

arrow always pointed in the cardinal direction of the cued landmark, requiring the participants to 

still make decisions on how best to navigate to it. The helper arrow was included based on results 
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from an initial pilot study that showed trials where participants took longer than 90 seconds 

frequently resulted in getting lost. Optimal path time between each landmark pair was calculated 

by taking the quickest possible path between landmarks using available shortcuts (mean path 

time for optimal routes = 24.85 seconds, SD = 7.15; mean number of turns = 5.9, SD = 2.33). As 

with the starting point, the order of starting-goal landmark pairs was randomized once and held 

consistent across participants. The encoding phase lasted for 23 minutes and had an upper limit 

of 21 possible trials consisting of all pairwise combinations of landmarks in both directions, as 

well as the initial starting trial. At the end of the 23 minutes, scanning stopped irrespective if 

they had completed all the trials or not. 

2.3.4 Functional MRI data acquisition 

All MRI data were collected using a 3T GE Discovery MR750w scanner with a 32-channel head 

coil. A single shot EPI sequence was used during the encoding phase, consisting of 38 

interleaved T2*-weighted slices per volume (total volumes: 685, flip angle: 77, TR: 2000 ms, 

TE: 30 ms, 3.6 isotropic voxel size, 64x64 matrix size). The first five volumes were discarded to 

allow for T1 equilibrium. Additionally, a T1-weighted three dimensional FSPGR anatomical 

image using 1mm isotropic voxels was collected to assist with normalization of the EPI data. 

2.3.5 Functional MRI preprocessing 

All fMRI data from the encoding phase were preprocessed through Nipype (Gorgolewski 

et al., 2011) using FSL (version 5.0.9; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and Advanced 

Normalization Tools (ANTs; https://github.com/stnava/ANTs). Data were first realigned with 

MCFLIRT, smoothed using a 7mm FWHM Gaussian filter, intensity normalized, and temporally 

filtered using a 90 second high-pass filter. Next, data were denoised using MELODIC to remove 

non-hemodynamic components based on inspection of the time course and power spectrum for 

https://github.com/stnava/ANTs)
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each component. Anatomical and EPI data were then normalized into MNI152 space and resliced 

into 2mm voxel space using ANTs by first computing a transformation matrix for registering 

each participant’s anatomical image to the MNI152 2mm template, and then applying a linear 

transform of each EPI volume using the computed matrix.  

2.3.6 Node definition 

Three hundred and thirty three regions of interest (ROIs) spanning across the entire 

cortex were obtained from resting-state functional connectivity boundary mapping conducted by 

Gordon and colleagues (Gordon et al., 2014b). We also included subject-specific ROIs for the 

left and right HC. These ROIs were obtained through segmenting subcortical regions in native 

space for each participant’s anatomical scan using FIRST (Patenaude, Smith, Kennedy, & 

Jenkinson, 2011), and then applying the transformation matrix calculated from ANTs to 

resample and register each ROI to MNI152 2mm space. 

2.3.7 Graph construction 

Correlation matrices for all network analyses were calculated using the conn toolbox 

inside SPM12. To further minimize non-BOLD signal from the data, anatomical images were 

segmented into grey matter, white matter, and cerebral spinal fluid (CSF) estimates. These tissue 

classes were then used to apply the CompCor noise correction method (Behzadi, Restom, Liau, 

& Liu, 2007) by regressing out principle components obtained from each participant’s white 

matter and CSF estimates from signal located in grey matter. Next, a series of general linear 

models (GLM) were constructed by binning reinstatement and navigation periods at the trial 

level based on the confidence rating for each trial. That is, for each participant we binned their 

reinstatement and navigation blocks into four levels by how confident the participant was in 

knowing the target landmark location (1: not at all, 4: very well). Each GLM was then convolved 
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with the canonical hemodynamic response function in SPM12 and used to calculate 335x335 

correlation matrices using Fisher transformed r-values. 

2.3.8 Graph analysis 

Calculation of all graph metrics was done using the brain connectivity toolbox for Python 

(version 0.4; https://github.com/aestrivex/bctpy). Briefly, a graph G(N,E) is characterized as a set 

of N nodes (here, 335 ROIs) and E edges (here, Fisher transformed r-values) representing the 

relationship between time varying data in any pairwise combination of nodes. Graphs are 

represented as a correlation matrix Cij where i, j is defined by the number of nodes being 

analyzed. 

Each graph metric was calculated across a range of density levels by thresholding each 

correlation matrix Cij based on a series of cost values (k). Cost thresholds are applied to isolate a 

fixed percentage of edges (i.e. connections) between nodes in a graph. For the present study, we 

investigated each graph metric across a k value range of 0.1-0.25 at .05 increments representing 

the top 5% to 25% edges in each graph, a similar range used to identify developmental 

(Khundrakpam et al., 2013) and clinical (Bassett et al., 2008) changes in network topology. Each 

thresholded correlation matrix was then binarized by setting all supra-threshold edges to 1 and all 

sub-threshold edges to 0 to produce an adjacency matrix used for calculating different graph 

metrics. 

2.3.9 Global network metrics 

 We calculated three metrics to investigate reorganization of global network topology: 

modularity, global efficiency, and global flow. Modularity was calculated using a spectral 

community detection algorithm developed by Newman (2006). Modules are defined as a subset 

of nodes in a graph G(N,E) such that nodes within a module are more densely connected than 

https://github.com/aestrivex/bctpy)
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between modules. Partitioning of a graph into modules is done by maximizing the modularity 

index Q by iterating over possible sub-divisions of a network. Q is obtained by first calculating a 

modularity matrix Bij using the formula: 

Bij = Aij – 
𝑘𝑖𝑘𝑗

2𝑚
 

where Aij is the observed number of edges between node i and j, and  
𝑘𝑖𝑘𝑗

2𝑚
 is the expected number 

of edges in a random graph where ki and kj are the degrees of each node and m = 
1

2
Σ𝑖𝑘𝑖  is the 

total number of edges in the graph. The modularity matrix is then used to find the most positive 

eigenvalue and corresponding eigenvector. Next, the graph is subdivided into two parts based on 

the signs of the elements in the vector and repeated for each of the parts using a general 

modularity matrix defined as: 

𝐵𝑖𝑗
(𝑔)

=  𝐵𝑖𝑗 −  𝛿𝑖𝑗 ∑ 𝐵𝑖𝑘∙

𝑘∈𝑔

 

where 𝐵𝑖𝑗
(𝑔)

 is the matrix indexed by i,j within group g. See Newman (Newman, 2006) for a 

complete overview of the algorithm and a full description of the parameters used to optimize Q.  

 Global efficiency is the inverse characteristic path length in a graph (i.e. the average 

shortest path length between any two pairs of nodes; (Watts & Strogatz, 1998)). In functional 

brain networks, it represents the minimum number of statistical associations required to link any 

two brain regions and is indicative of the integrative and communicative capacity of a network to 

share information (E. Bullmore & Sporns, 2009; Sporns, Honey, & Kötter, 2007; van den Heuvel 

& Pol, 2010). Its inclusion in the present analysis is to provide a metric of global integration 

across all nodes in the network. Global flow is the average flow coefficient (Honey, Kötter, 

Breakspear, & Sporns, 2007) across all nodes in a graph and represents the degree to which, on 
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average, nodes act as hubs within local neighborhoods. Its inclusion here is quantify integration 

at a local scale. 

2.3.10 Node centrality metrics for left and right HC 

To investigate the role of the left and right hippocampal nodes within global and local 

networks during encoding, we calculated four commonly used metrics: betweenness centrality, 

flow coefficient, the participation coefficient, and local efficiency. Betweenness centrality is the 

number of shortest paths in a network that pass through a specific node and indicates the 

importance of a node to global processing in a network. It is calculated with the formula 

𝑏𝑖 =
1

(𝑛 − 1)(𝑛 − 2)
  ∑

𝜌ℎ,𝑗
(𝑖)

𝜌ℎ,𝑗ℎ,𝑗∈𝑁
ℎ≠𝑖,ℎ≠𝑗,𝑖≠𝑗

 

where 𝜌ℎ,𝑗 is the number of shortest paths in a graph that pass between h and j, and 𝜌ℎ,𝑗
(𝑖) 

represents the number of shortest paths between h and j that pass through node i.  

The flow coefficient is a measure of local efficiency (Honey et al., 2007) that quantifies 

the fraction of all paths with a length of two divided by the total possible number of paths with 

length two that traverse a node. It is calculated as  

𝐹𝐶 =  
𝑝𝑜

𝑝𝑝
 

where 𝑝𝑜 is the number of actual paths with a length of two and 𝑝𝑝 is the number of possible 

paths with a length of two. 

The participation coefficient quantifies the amount of inter-module connections for a 

node such that nodes with a high participation coefficient act as connector hubs in a modular 

network by integrating processing across different communities. The participation coefficient is 

calculated as  
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𝑦𝑖 = 1 − ∑ (
𝑘𝑖(𝑚)

𝑘𝑖
)

2

𝑚∈𝑀

 

where M is the set of modules identified using a community detection algorithm, and 𝑘𝑖(𝑚) is 

the number of edges between node i and all nodes in module m. 

 Local efficiency is defined by Latora and Marchiori (Latora & Marchiori, 2001) as the 

efficiency of a subgraph Gi composed centered on the ith node, where the subgraph is composed 

solely of nodes that are immediate neighbors of i. It is calculated using the formula 

𝐸𝑙𝑜𝑐(i) =  
1

𝑁𝐺𝑖
(𝑁𝐺𝑖

− 1)
∑

1

𝑙𝑗ℎ
𝑗,ℎ∈𝐺𝑖

 

where 𝑙𝑗ℎ is the shortest path length between nodes j and h, and 𝑁𝐺𝑖
 is the number of nodes in the 

subgraph Gi. 

2.4 Results 

2.4.1 Behavioral performance 

The experiment began with an exposure phase in which participants viewed a video of 

passive first person movement along the perimeter of the city (Figure 7.1a). Following that, 

participants completed the encoding phase in the scanner (Figure 7.1b). Each trial began by 

cueing a target landmark and asking participants to rate their confidence in knowing its location 

within the city (termed the reinstatement block), after which they were asked to navigate to the 

cued landmark as quickly as possible (Figure 7.1c). Participants completed on average 13.14 

trials (SD = 4.91) of 21 possible trials during the encoding phase. Mean path time was 82.7 

seconds (SD = 69.24) and the average length of time during the reinstatement period was 2.85 

seconds (SD = 2.09). Confidence ratings were negatively correlated with observed path time (r = 
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-0.32, p < 0.001) and path efficiency (r = -0.31, p < 0.001), indicating that higher confidence in 

knowing landmark locations was associated with more efficient navigation. 

2.4.2 Global network reorganization during encoding 

To test the hypothesis that functional networks across the brain demonstrate dynamic 

reorganization as mnemonic representations are encoded, we calculated and compared three 

network-level graph metrics by binning trial-level navigation and reinstatement blocks based on 

the confidence rating for knowing the target landmark location and compared them across a 

range of density thresholds. Confidence ratings of memory retrieval has been shown to engage a 

population of memory-selective in the HC posited to underlie the retrieval of mnemonic features 

within declarative memory systems (Rutishauser et al., 2015). 

 The first graph metric analyzed was the modularity index Q (Newman, 2006), a measure 

of the amount of modularity observed in a network. We calculated Q for both navigation and 

reinstatement blocks separately. In both cases, we found support for our prediction that higher 

encoding demands relates to lower modularity. For the navigation blocks, there was a 

statistically significant difference using paired-samples t-tests at different density thresholds of k 

= 0.15 (t(13) = -2.57, p = 0.023), k =  0.2 (t(13) = -2.63, p = 0.021), and k =  0.25 (t(13) = -2.5, p 

= 0.026). We also computed a summary metric by collapsing across all density thresholds and 

comparing differences of Q. There were also statistically significant differences in Q using this 

summary metric, (t(55) = -4.87, p < 0.001). For the reinstatement blocks, we additionally found 

support for our prediction with increased modularity in high confidence trials across all density 

thresholds, k = 0.1 (t(13) = -2.57, p = 0.047), k =  0.15 (t(13) = -2.44, p = 0.03), k =  0.2 (t(13) = -

2.6,  p = 0.022), k =  0.25 (t(13) = -2.57, p = 0.023), and as well as the summary metric, (t(55) = -

5.01, p < 0.001). Figure 7.2a summarizes these results. 
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 Next, to complement our modularity analysis, we computed the global efficiency values 

for each graph across the different density thresholds. Global efficiency represents the integrative 

and communication capacity of a network by indicating, on average, how interconnected nodes 

in a network are (Bullmore & Sporns, 2009; Sporns et al., 2007; van den Heuvel & Pol, 2010). 

As with modularity, our prediction here was that higher encoding demands would require more 

integration of information processed across the brain and therefore be related to higher levels of 

global efficiency. We found support for this prediction in both the navigation and reinstatement 

blocks across all density thresholds. For the navigation blocks, there were statistically significant 

differences at k = 0.1 (t(13) = 2.5, p = 0.027), k = 0.15 (t(13) = 2.64, p = 0.02), k = 0.2 (t(13) = 

2.66, p = 0.02), k = 0.25 (t(13) = 2.65, p = 0.02), and for the summary metric (t(55) = 5.23, p < 

0.001). This pattern of results was consistent for the reinstatement blocks at k = 0.1 (t(13) = 3.07, 

p = 0.009), k = 0.15 (t(13) = 3.02, p = 0.01), k = 0.2 (t(13) = 2.94, p = 0.01), k = 0.25 (t(13) = 

2.89, p = 0.01), and for the summary metric (t(55) = 5.97, p < 0.001). 

 Thus far our data suggest that as encoding occurs, brain networks reorganize into a more 

modular structure with a reduced need of global information integration. Another important 

aspect of information flow in networks is based on the topological structure of local 

neighborhoods. In the context of encoding mnemonic representations, it is plausible to suggest 

that higher encoding demands are also associated with increased need for processing within local 

networks early on. That is, as features of an environment are encoded into a representation, there 

may be a higher demand placed on not only integrating between, but also processing within task-

relevant systems such as the visual, somatosensory, and attentional subnetworks. To quantify and 

compare this, we calculated the global flow coefficient (Honey et al., 2007). This metric is the 

average flow coefficient across all nodes within a network, which represents how efficiently 
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information flows between neighboring nodes and is therefore representative of integration at a 

local level. Here, our prediction was that higher values of global flow (and therefore more 

information integration) would be associated with lower confidence trials due to the increased 

need to process different types of sensory information within different subnetworks. As with 

modularity and global efficiency, we found support for our hypothesis. For the navigation 

blocks, we found statistically significant differences at k = 0.1 (t(13) = 2.32, p = 0.038), k = 0.15 

(t(13) = 2.54, p = 0.024), k = 0.2 (t(13) = 2.69, p = 0.019), k = 0.25 (t(13) = 2.72, p = 0.018), and 

for the summary metric (t(55) = 5.28, p < 0.001). This was consistent for the reinstatement 

blocks with statistically significant differences at k = 0.1 (t(13) = 3.04, p = 0.009), k = 0.15 (t(13) 

= 3.03, p = 0.01), k = 0.2 (t(13) = 2.92, p = 0.012), k = 0.25 (t(13) = 2.91, p = 0.012), and for the 

summary metric (t(55) = 6.12, p < 0.001). 

2.4.3 Hippocampal centrality during encoding 

 The HC plays a putative role in pattern completion and neocortical reinstatement during 

memory retrieval (Horner et al., 2015). Therefore, we sought to ask whether the HC would 

additionally act as a network hub during encoding of mnemonic representations and how its role 

relates to the reorganization of global brain networks while representations are formed. To 

address this, we calculated four node-based metrics that quantify different aspects of hubness in 

a network. The first metric was betweenness centrality, a common measure of global network 

centrality that quantifies the number of shortest paths between nodes that pass through a given 

node. Figure 7.3a summarizes these results. Here, we found no statistically significant 

differences during navigation blocks for the right (k = 0.1 (t(13) = 0.32, p = 0.75), k = 0.15 (t(13) 

= 0.5, p = 0.63), k = 0.2 (t(13) = 0.07, p = 0.95), k = 0.25 (t(13) = 0.25, p = 0.81), summary 

statistic (t(13) = -0.38, p = 0.7)) or left HC (k = 0.1 (t(13) = 0.07, p = 0.95), k = 0.15 (t(13) = 
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1.13, p = 0.28), k = 0.2 (t(13) = 0.66, p = 0.52), k = 0.25 (t(13) = 0.85, p = 0.41), summary 

statistic (t(13) = -1.12, p = 0.27)). Similarly, for the reinstatement blocks we found no 

statistically significant differences for the right HC (k = 0.1 (t(13) = 0.15, p = 0.89), k = 0.15 

(t(13) = 0.48, p = 0.64), k = 0.2 (t(13) = 0.05, p = 0.96), k = 0.25 (t(13) = 0.52, p = 0.61), 

summary statistic (t(13) = 0.31, p = 0.76)). For the left HC, there were no statistical differences 

across density thresholds, however there were increased values for the summary statistic during 

high confidence reinstatement (k = 0.1 (t(13) = 1.58, p = 0.14), k = 0.15 (t(13) = 1.28, p = 0.22), 

k = 0.2 (t(13) = 1.22, p = 0.25), k = 0.25 (t(13) = 1.13, p = 0.28), summary statistic (t(13) = 2.31, 

p = 0.025)). 

 Next, we calculated the flow coefficient (Honey et al., 2007). As outlined in the previous 

section, the flow coefficient indicates the centrality of a node within a local neighborhood. See 

figure 7.3b for the results. For the navigation blocks, we found statistically significant 

differences across all density thresholds for the right (k = 0.1 (t(13) = 3.08, p = 0.009), k = 0.15 

(t(13) = 3.15, p = 0.008), k = 0.2 (t(13) = 3.26, p = 0.006), k = 0.25 (t(13) = 3.07, p = 0.009), 

summary statistic (t(13) = 6.45, p < 0.001)) and left HC (k = 0.1 (t(13) = 2.44, p = 0.03), k = 0.15 

(t(13) = 3.05, p = 0.009), k = 0.2 (t(13) = 3.42, p = 0.005), k = 0.25 (t(13) = 3.09, p = 0.009), 

(t(13) = 6.45, p < 0.001)). However, for the reinstatement blocks we found no statistically 

significant differences at the individual density thresholds, although the summary statistic was 

significantly different for both the right (k = 0.1 (t(13) = 0.81, p = 0.43), k = 0.15 (t(13) = 1.26, p 

= 0.23), k = 0.2 (t(13) = 1.41, p = 0.18), k = 0.25 (t(13) = 1.63, p = 0.13), summary statistic (t(13) 

= 2.56, p = 0.013)) and left HC (k = 0.1 (t(13) = 0.78, p = 0.45), k = 0.15 (t(13) = 1.78, p = 0.1), k 

= 0.2 (t(13) = 1.74, p = 0.1), k = 0.25 (t(13) = 1.95, p = 0.07), summary statistic (t(13) = 2.98, p = 

0.004)). 
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 The two analyses so far suggest that the HC displays increased centrality within local, but 

not global, networks during navigation when encoding demands are high. However, given that 

we observed shifts in modularity associated with encoding demands, it is plausible that the HC is 

acting as a connector hub integrating information across these modules rather than as a hub 

across a singular whole brain network. To investigate this, we calculated the participation 

coefficient (Guimerà & Amaral, 2005). The participation coefficient quantifies the amount of 

inter-module connections of a node compared to the amount of intra-module connections, and is 

representative of the degree to which a node participates in and integrates across different 

subnetworks. These results are summarized in figure 7.3c. For the navigation blocks, we found 

increased participation coefficients when encoding demands were high across most of the density 

thresholds and the summary statistic for the right HC (k = 0.1 (t(13) = 1.97, p = 0.07), k = 0.15 

(t(13) = 2.79, p = 0.015), k = 0.2 (t(13) = 2.92, p = 0.01), k = 0.25 (t(13) = 1.45, p = 0.17), 

summary statistic (t(13) = 4.54, p < 0.001)) but only with the summary statistic for the left HC (k 

= 0.1 (t(13) = 0.77, p = 0.46), k = 0.15 (t(13) = 1.65, p = 0.12), k = 0.2 (t(13) = 1.9, p = 0.08), k = 

0.25 (t(13) = 1.31, p = 0.21), summary statistic (t(13) = 2.85, p = 0.006)). Similar to the flow 

coefficient, for the reinstatement periods we observed no statistical differences at the individual 

density thresholds, although there were statistical differences for the summary measure for the 

right (k = 0.1 (t(13) = 0.4, p = 0.7), k = 0.15 (t(13) = 0.83, p = 0.42), k = 0.2 (t(13) = 1.95, p = 

0.07), k = 0.25 (t(13) = 1.44, p = 0.17), summary statistic (t(13) = 2.4, p = 0.02)) but not the left 

HC (k = 0.1 (t(13) = 0.55, p = 0.59), k = 0.15 (t(13) = 0.64, p = 0.54), k = 0.2 (t(13) = 1.6, p = 

0.13), k = 0.25 (t(13) = 0.72, p = 0.48), summary statistic (t(13) = 1.74, p = 0.088)). 

 Lastly, we calculated the local efficiency for hippocampal subnetworks. As outlined 

previously, our prediction was that as encoding occurs and representations are formed, there 
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should be reconfiguration of network topology during navigation from a state supportive of 

global integration to one based on local processing. We found support for this prediction (see 

Figure 7.3d) with increased local efficiency in high confidence navigation blocks for the right (k 

= 0.1 (t(13) = -3.76, p = 0.002), k = 0.15 (t(13) = -3.15, p = 0.008), k = 0.2 (t(13) = -3.25, p = 

0.006), k = 0.25 (t(13) = -3.08, p = 0.009), summary statistic (t(13) = -6.76, p < 0.001)) and 

across the majority of density thresholds for the left HC (k = 0.1 (t(13) = -1.04, p = 0.32, k = 0.15 

(t(13) = -2.58, p = 0.022), k = 0.2 (t(13) = -3.36, p = 0.005), k = 0.25 (t(13) = -3.04, p = 0.01), 

summary statistic (t(13) = -4.21, p < 0.001)). For the reinstatement periods, we observed no 

statistical differences for the right (k = 0.1 (t(13) = 0.07, p = 0.94), k = 0.15 (t(13) = 1.12, p = 

0.28), k = 0.2 (t(13) = 1.32, p = 0.21), k = 0.25 (t(13) = 1.59, p = 0.14), summary statistic (t(13) = 

1.55, p = 0.126)) or left HC subnetworks (k = 0.1 (t(13) = 0.01, p = 0.99), k = 0.15 (t(13) = 1.73, 

p = 0.11), k = 0.2 (t(13) = 1.69, p = 0.11), k = 0.25 (t(13) = 1.94, p = 0.07), summary statistic 

(t(13) = 1.65, p = 0.105)). 

2.5 Discussion 

Theoretical and computational models of memory function posit that mnemonic representations 

are generated by integrating sensory features processed across the neocortex into neural patterns 

within memory structures, and the retrieval of these representations involves reinstatement of 

feature-specific activity in the neocortex via pattern completion mechanisms in the HC 

(Damasio, 1989; Marr, 1971; McClelland, McNaughton, & O'Reilly, 1995; Meyer & Damasio, 

2009; Nadel & Moscovitch, 1997; Norman & O'Reilly, 2003). While there is increasing evidence 

for these models during memory retrieval (Backus et al., 2016; Gordon et al., 2014a; Horner et 

al., 2015; Schedlbauer et al., 2014; Staresina et al., 2013; Watrous et al., 2013), empirical 

evidence for how brain networks interact dynamically during encoding has been lacking. Here, 
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using confidence ratings as an index of processing demands within memory networks 

(Rutishauser et al., 2015), we demonstrate for the first time that the topological structure of brain 

networks reconfigures from a state of global integration to localized processing based on the 

degree of environmental information that needs to be integrated into a representation, and that 

the HC flexibly changes its role as an inter- and intra-module connector hub in response to these 

integrative demands.  

 Adaptability of complex networks is thought to operate in part through the dynamic 

formation and interaction of different network communities (Bassett et al., 2011; Ghosh et al., 

2008; Meunier et al., 2010; Werner, 2010), allowing the network to optimize its output based on 

relevant environmental demands. Using 335 ROIs distributed across the brain, we found support 

for network adaptability during the encoding and retrieval of mnemonic representations. In 

navigation trials where participants had low confidence in knowing the target landmark location, 

we observed lower values of the modularity index Q compared with trials in which they had high 

confidence in knowing the landmark location. This suggests that the brain displays an 

increasingly stable modular topology as the need to integrate environmental features lessens and 

can dynamically reconfigure its community organization based on changing task demands. We 

extended this result at the global and local network level, finding that in low confidence 

navigation trials there was increased values of global efficiency and global flow across the brain. 

This pattern of results provides empirical support at the network level for the long held but 

sparsely tested hypothesis that encoding features into mnemonic representations increases the 

integration of information processed in a distributed set of systems across the brain (Damasio, 

1989; Marr, 1971; McClelland et al., 1995; Meyer & Damasio, 2009; Nadel & Moscovitch, 

1997; Squire & Zola-Morgan, 1991). Building on the perspective of Bassett and colleagues 
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(Bassett & Gazzaniga, 2011), we suggest that adaptability in network topology underlies changes 

in how domain-specific information is integrated into holistic representations in a manner that 

allows the contents of a specific representation to become more stable over time.  

 In the context of episodic theory, mnemonic representations are believed to be generated 

through learned associations between environmental features (Horner et al., 2015; Tulving, 

2002). Over time, as associations are encoded, neural responses in domain-specific brain regions 

decrease (Buchel et al., 1999; Epstein, Higgins, & Thompson-Schill, 2005), a phenomenon 

known as repetition suppression.  Importantly, changes in neural responses are coupled with 

increases in connectivity between brain regions (Buchel et al., 1999; Gordon et al., 2014a). This 

suggests that the associative structure of a mnemonic representation is coded in part by the 

functional interactions between different brain regions (Bassett & Gazzaniga, 2011; Eichenbaum, 

2000b). This view is in line with perspectives on spatial memory, where theoretical models 

suggest that generating spatial representations of an environment requires the interaction of 

multiple neural systems across the brain (Byrne et al., 2007; Ekstrom et al., 2014) allowing both 

incidental and associative learning mechanisms (Doeller & Burgess, 2008), and that neural 

responses in spatial processing areas change as representations are formed (Iaria, Petrides, 

Dagher, Pike, & Bohbot, 2003). Here, using principles of adaptability, we provide a putative 

mechanism for these processes, where the dynamic reconfiguration of network communities is 

posited to vary the degree of local and global interaction to accommodate changing in incidental 

and associative encoding demands. Our finding that global flow decreases as representations are 

encoded suggests that changes to the efficiency of different systems across the brain may impact 

on the degree of neural responses to specific environmental features. Further, decreases in global 

efficiency and increases in hippocampal community local efficiency indicate that as a 
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representation is formed, there is a decreased need to integrate across sensory and associative 

systems in the brain and an increased need to rapidly propagate information within the 

hippocampal sub-network. Although more research is needed, these findings provide a tentative 

experimental framework for understanding the neural basis of the dynamic formation of 

networked representations (Eichenbaum, 2000b). 

 The HC has long been thought to be a primary convergence zone (Backus et al., 2016; 

Eichenbaum, 2000b; Meyer & Damasio, 2009; Mišić et al., 2014), receiving multisynaptic inputs 

from both sensory cortices and associative systems in the perirhinal and parahippocampal cortex. 

This allows for conjunctive coding of high-level sensory and associative environmental features, 

such as spatial information to specific locations (Ekstrom et al., 2003; O'Keefe & Nadel, 1978) 

and the temporal sequence of places and events that form the basis of episodic memories 

(Davachi, 2006; Eichenbaum, 2004; 2013; MacDonald et al., 2011). Although the results of the 

current study are in line with the role of the HC as a convergence zone, our findings extend past 

results by showing that the HC demonstrates flexibility during representational encoding by 

changing the degree to which it acts as a connector hub within local networks, as well as between 

network modules. On low confidence trials where encoding demands are highest, we observed 

increased values of the flow coefficient, indicating that the centrality of the HC within its local 

network is associated with the need to integrate sensory and associative information. 

Importantly, we also observed increased values of the participation coefficient on low confidence 

trials in the right HC, supporting its role as an inter-module hub, combining information 

processed within different modules across the brain into a putative mnemonic representation. 

Conversely, on high confidence trials, we found evidence for increased levels of local efficiency 

within a hippocampal sub-network. Considered together, these results suggest that the 
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convergence of information into the HC is mediated in part by associative demands during the 

encoding of a representation, and operates dynamically by changing the functional interactions 

within and between network modules. As representations are formed, the centrality of the HC 

decreases while the efficiency of information flow within hippocampal sub-networks increases. 

This finding builds upon past work positing that the learned associations composing a mnemonic 

representation are coded in the functional interactions between brain regions (Buchel et al., 1999; 

Eichenbaum, 2000b), putatively through the reconfiguration of hippocampal interactions that 

initially allow sensory and associative information to be bound into a holistic representation that 

is subsequently coded by the functional interactions between components of a hippocampal 

based sub-network.  

 Although the primary focus of the current study was on encoding mnemonic 

representations, we included an analysis of graph theoretical measures during the period where 

participants reinstated their memories of target landmark locations. This was done to facilitate 

comparisons to the larger body of research on retrieval processes, and because navigation and 

reinstatement of spatial representations display different patterns of localized activity (Spiers & 

Maguire, 2006) and therefore may be subject to different patterns of network interactions. At the 

whole brain level, we found consistent results during reinstatement blocks, where decreased 

values of Q, and increased values of both global efficiency and global flow were associated with 

low confidence trials. However, for the hippocampal node metrics we found no statistical 

differences between high and low confidence reinstatement across the individual density 

thresholds. We did observe statistical differences in the summary statistic for the left 

hippocampal betweenness centrality values, the right HC participation coefficient, and the flow 

coefficient for both hippocampal ROIs. These effects were in line with the results of the 
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navigation blocks, where there were no observed statistical differences for betweenness 

centrality.  A potential explanation for these findings is that reinstatement of a representation 

operates via pattern completion processes centered primarily on the HC (Horner et al., 2015; 

Norman & O'Reilly, 2003), which requires similar levels of hippocampal centrality at the local 

and inter-module level, resulting in more subtle differences that only emerged statistically when 

collapsing across all density thresholds. Conversely, at the whole brain level, the weaker 

associative structure of a mnemonic representation may be compensated for by increases in 

global and local connectivity, such that environmental features that are reinstated are more 

actively combined at the polysensory level before being input to the HC (Bird, Keidel, Ing, 

Horner, & Burgess, 2015; Wagner et al., 2015). 

 In conclusion, the present study provides novel empirical support for critical predictions 

by theoretical models on how mnemonic representations are formed. We show that when 

encoding demands are highest, the topological structure of the brain is organized to facilitate 

global and local information flow. As representations are formed, the HC flexibly changes its 

functional interactions across the brain, decreasing its role as connector hub within its local sub-

network and across network modules, while the information flow within the hippocampal 

community increases in efficiency. This provides a tentative experimental framework to 

understand the dynamic nature of representational encoding and retrieval, through assessing 

changes in topological structure across global and hippocampal based brain networks. Future 

research will be able to use this framework to understand how the pathology of cognitive and 

neurodegenerative disorders impacts the topological structure of global and local brain networks 

during memory encoding and retrieval, and how neurostimulation methods enhance the ability to 

form accurate mnemonic representations. 
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Chapter 3 

3.1 Abstract 

Theoretical models on the constructive nature of memory posit that mnemonic representations 

based in a spatiotemporal context are reinstated by actively combining encoded features from 

past experiences. This process is thought to occur through neural indexes in the hippocampus 

that represent the spatial composition of features and hippocampal-cortical interactions that code 

feature details. However, the dynamic basis of information processing across the brain during the 

reinstatement and goal directed utilization of mnemonic representations remains obscure. To 

provide insight on this, we investigated network processes associated with feature integration 

while participants made mental simulations of movement through a virtual city. Our data show 

that the hippocampus increases functional interactions with portions of lateral occipital cortex 

and the angular gyrus to assist in organizing spatial information and increasing perceptual 

fidelity during mental simulations. Additionally, dynamic changes in the topology of a 

hippocampal network were observed in relation to perceptual fidelity, suggesting that 

information flow vis-à-vis the hippocampus is critical for high perceptual fidelity, but can be 

compensated for by increased functional interactions between other regions connected to the 

hippocampus that provide a more schematic like representation of environmental features. 
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3.2 Introduction 

The ability to use past experiences to predict and mentally simulate future events is a 

fundamental aspect of human cognition. It underlies flexible goal planning during navigation 

(Burgess, 2008) and is a central aspect to the constructive nature of episodic memory (Boyer, 

2008; Moulton & Kosslyn, 2009; Schacter et al., 2012; Suddendorf, Addis, & Corballis, 2009). 

Research over the past decade using mental simulation has revealed new aspects of mnemonic 

processing, including the ability to recapitulate details from past experiences into novel contexts 

(Hassabis, Kumaran, & Maguire, 2007a; Szpunar, Addis, McLelland, & Schacter, 2013) and 

how these anticipatory future simulations can motivate and guide behavior (Boyer, 2008; 

Suddendorf & Busby, 2005). Many of these studies have cumulated into a growing consensus 

(Buckner & Carroll, 2007; Hassabis & Maguire, 2009; Moulton & Kosslyn, 2009; Schacter et 

al., 2012; Schacter & Addis, 2007; Szpunar et al., 2013) that mental simulation involves a 

dynamic neurocognitive system dedicated to encoding experiences, extracting features (i.e. 

people, places, objects, and interactions) from those memories, and actively combining those 

features into representations, or mental ‘scenes’, that are used to optimize behavior. This has led 

to new perspectives on how aging influences memory, prospection, and mental imagery (Addis, 

Wong, & Schacter, 2008; Personnier, Kubicki, Laroche, & Papaxanthis, 2010; Schacter, Gaesser, 

& Addis, 2013), and how these processes are affected by cognitive and neurodegenerative 

disorders (Addis, Sacchetti, Ally, Budson, & Schacter, 2009; Hassabis, Kumaran, Vann, & 

Maguire, 2007b; Irish & Piolino, 2015; Kwan, Carson, Addis, & Rosenbaum, 2010).  

Prospection is theorized to rely on a set of brain regions that encompass the episodic 

memory system in humans (Buckner & Carroll, 2007; Hassabis & Maguire, 2009; Schacter et al., 

2012). The hippocampus (HC) is central to this system, using mechanisms of pattern separation  
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and completion (Stokes, Kyle, & Ekstrom, 2014; Yassa & Stark, 2011) to reinstate mnemonic 

representations through interactions with sensory and associative regions across the brain. Past 

work has demonstrated that HC activity codes for goal-directed spatial sequences in both rodents 

and humans, primarily through a set of location-sensitive neurons termed place cells (O'Keefe & 

Nadel, 1978), providing a putative neural mechanism for reinstatement of the spatial context 

underlying prospection. Rodents demonstrate prospective firing (i.e. pre-play) of HC place cell 

sequences in different maze types, allowing researchers to accurately predict subsequent 

behavior at critical spatial decision points (Pfeiffer & Foster, 2013). In humans, recent work has 

shown that goal-specific trajectories and intervening locations can be decoded during 

prospection using patterns of hippocampal activity (Brown et al., 2016), further supporting the 

role of the HC in coordinating the neural codes underlying the spatial context for mental 

simulations. 

Although there is increasing support for the role of the HC in prospection, fundamental 

questions remain about how the HC interacts with other regions across the brain, and whether 

these interactions vary based on how environmental features encoded in memory are integrated 

into a holistic representation subserving prospection. Central theories on the constructive basis of 

memory and prospection posit that simulating future experiences involves the active 

reinstatement and integration of features from past experiences into novel contexts (Buckner & 

Carroll, 2007; Hassabis & Maguire, 2009; Schacter et al., 2012). Feature reinstatement involves 

the reactivation of functionally specialized regions of the brain (Horner et al., 2015; Janzen & 

van Turennout, 2004), putatively controlled through pattern completion mechanisms in the HC. 

The strength of location coding in the HC during prospection has also been shown to correlate 

with spatial coding in the prefrontal, medial temporal, and medial parietal cortex (Brown et al., 
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2016), suggesting that hippocampal-cortical interactions are critically important for feature 

integration and maintenance of goal-directed representations. However, there has yet to be a 

direct empirical investigation of how HC network interactions operate during prospection. 

Further, although mental simulations preserve spatial and temporal information (Arnold et al., 

2016; Bonasia, Blommesteyn, & Moscovitch, 2015; Kosslyn et al., 1978) from past experiences, 

the fidelity of simulations varies based on visual qualities and how orderly spatial information is 

during the simulation (Arnold et al., 2016). Variability in simulation fidelity has been proposed 

as a measure of feature integration (Arnold et al., 2016), providing a quantifiable metric of how 

task-oriented mnemonic representations are generated through multi-feature reinstatement. Of 

relevance to the present study, this suggests that variance in simulation fidelity may be 

associated with the degree of functional interactions within the hippocampal-cortical networks 

supporting prospection. 

In the present study, we sought to provide the first empirical evaluation of network 

topology during mental simulation, looking at global network state shifts between simulating and 

experiencing an event, how the HC interacts with other brain regions during mental simulations, 

and whether differences in network topology are associated with variability in simulation 

fidelity. To this end, we formulated three research questions based on current theoretical models 

and previous empirical work. First, we asked whether there were any differences in global 

network topology between simulating a route through a virtual environment and subsequently 

navigating the same route. Theoretical models suggest a large degree of overlap between 

networks supporting prospection, navigation, and episodic memory (Buckner & Carroll, 2007; 

Hassabis & Maguire, 2009; Schacter et al., 2012). However, there has yet to be an empirical 

investigation of whether simulating and experiencing an event share similar network states. Due 
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to this shared systems hypothesis, we predicted a broad overlap in the topological structure 

between the two task conditions. Second, we asked which regions of the brain coordinated 

information processing during mental simulations with the HC. Due to the putative role of the 

HC in coordinating the reinstatement of information processing in sensory and associative 

regions (Backus et al., 2016; Horner et al., 2015; Nadel et al., 2000), we hypothesized that 

simulations with high visual and spatial fidelity would be associated with increased functional 

connectivity between the HC and areas of the visual cortex, allowing for reinstatement of 

patterns of activity coding visual and spatial features of the route being simulated. Third, we 

asked whether variance in the vividness and spatial coherence of mental simulations were 

associated with differences in hippocampal network topology. The capacity for both whole brain 

networks and the HC to efficiently coordinate information flow has been shown to facilitate the 

reinstatement of spatial contexts during retrieval tasks (Arnold et al., 2014b; Schedlbauer et al., 

2014). This suggests that feature reinstatement and integration during prospection may also 

benefit from network topologies with increased communication efficiency, as features and their 

associative structure are recapitulated across the brain and integrated into a task-oriented 

mnemonic representation used to simulate behavior. Based on this perspective, we hypothesized 

that high simulation fidelity would require more widespread interactions between the HC and 

neocortex, and therefore demonstrate increases in graph theoretical measures quantifying the 

communication capacity of hippocampal networks. 

3.3 Methods 

3.3.1 Participants 

As in chapter 2, 14 right handed undergraduates (9 female; mean age = 21.64, SD = 2.56) 

recruited through the University of Calgary research participation pool participated in the study. 
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Participants were prescreened to exclude persons previously experiencing nausea while playing a 

video game. All participants were provided $50 reimbursement regardless if they completed the 

study or not, and were debriefed following scanning. 

3.3.2 Task design 

The task environment, exposure phase, and encoding phase are described in detail in 

chapter 2 section 2.3.3 (pg. 33-34). Briefly, the task environment consisted of a large scale 

virtual city with five visually salient landmarks that acted as target locations. During the 

exposure phase, which occurred outside the scanner, participants viewed a video of passive first-

person movement along the perimeter of the city. The video stopped for 5 seconds at each 

landmark location, during which the experimenter pointed to the landmark on the screen and 

verbally confirmed that the participant had seen it. After the video, participants entered the 

scanner and completed the encoding phase. The encoding phase lasted for 23 minutes and had 

participants try to locate a target landmark using the quickest route possible. Each trial began by 

cueing a target landmark and asking participants to rate their confidence in knowing where the 

landmark was within the city. Participants then tried to find the landmark as fast as possible. 

There was an upper limit of 21 trials consisting of all pairwise combinations of target landmarks. 

 After the encoding phase, participants completed the simulation phase (Figure 7.4c). All 

participants conducted two practice trials prior to entering the scanner to ensure they properly 

understood the task instructions and provide them with the opportunity to ask the experimenter 

questions. Participants were instructed that the simulation portion would begin with the word 

‘Simulation’ on the center of the computer screen. Afterwards, they would be shown two images 

of the five target landmarks – one on the left and one on the right. Once the landmarks 

disappeared from the screen, they were instructed to mentally simulate in as much detail as 
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possible moving through the city from the landmark on the left to the one on the right. The 

experimenter emphasized that it was important to mentally immerse themselves in the city and to 

take as much time as they needed to properly navigate the route. Participants were instructed to 

mentally navigate the quickest route between landmarks rather than trying to specifically recall 

the route they had previously taken.  

Of critical importance here, participants were not instructed to simply try and remember 

their initial route between landmarks in the encoding phase. The reason for this is twofold. First, 

routes between landmarks in the encoding phase occurred with different levels of environmental 

familiarity due to their place in the trial order. As such, simple replay of past experiences during 

simulations are not in all cases representative of the fastest possible routes between two 

landmarks. Second, we are interested here in predictive simulations rather than memory replay. 

Simulations allow participants to incorporate spatial information they’ve learned throughout the 

experiment rather than trying to recall specific instances of an episode.  

Inside the scanner, each trial of the simulation phase began with a fixation period for 12 

seconds in which a white fixation cross was placed on top of a black background. Next, the word 

‘Simulation’ displayed on the screen for two seconds. Following that, images of the starting and 

target landmark appeared for three seconds. Immediately afterwards, the screen turned to black 

and the participants began to mentally simulate the route. The simulation period lasted for 15 

seconds. After the simulation, participants complete a 14 item post-simulation questionnaire 

(PostSQ). Table 6.1 outlines the wording for each question/response and how they were grouped 

into different factors for analysis. The PostSQ included items modified from the Memory 

Characteristics Questionnaire (Johnson, Foley, Suengas, & Raye, 1988), as well as novel items, 

and was intended to probe qualitative aspects of the simulation experience. This included 
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questions about spatial and temporal coherence, vividness, fractionation, confidence in knowing 

the starting/target locations, and perceived accuracy of their memory for the route. Each item 

was rated on a scale of 1-4. Immediately following the questionnaire, participants were placed 

within the virtual city facing the starting landmark and navigated to the target landmark as quick 

as possible. Once there, a post navigation questionnaire (PostNQ) was displayed where they 

rated two items on a scale of 1-4 assessing how well they simulated the route and how well the 

simulation matched their navigation experience. In total, 10 routes were included in the 

simulation phase. The starting-destination landmark pairs were pseudo-randomly selected such 

that each of the five landmarks were included as a starting point and destination only once. 

3.3.3 fMRI data analysis 

Details of the fMRI data acquisition and preprocessing are described in chapter 2 section 

2.3.4 and 2.3.5, respectively (pg. 34-35). Briefly, fMRI data from the simulation phase were 

realigned using MCFLIRT, smoothed using a 7mm FWHM Gaussian filter, intensity normalized, 

and run through a 60 second high-pass filter. Data were then denoised using MELODIC. 

Anatomical and EPI scans were normalized to MNI152 space using ANTs. Data were then 

further denoised by segmenting anatomical images based on tissue classes and applying the 

CompCor noise correction method (Behzadi et al., 2007) inside conn and SPM12. 

 To address the outlined hypotheses, fMRI data were analyzed at the bivariate level using 

generalized psychophysical interaction (gPPI) models and at the multivariate level using graph 

theoretical measures. Generalized PPI models allow for the assessment of context-specific 

changes in functional connectivity between a seed region and sets of voxels across the brain 

(McLaren, Ries, Xu, & Johnson, 2012). Models are constructed by taking the interaction 

between the time course of the seed region and a general linear model describing a task context, 
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and searching for sets of voxels with a time course that correlates to the interaction model. Here, 

we use right and left hippocampal seeds defined using subject-specific segmentations generated 

using the FIRST algorithm in FSL to investigate context-specific changes in functional 

connectivity between simulation and navigation periods, as well as between simulation periods 

with different levels of reported vividness and spatial coherence. All gPPI analyses use the 

standard corrections for multiple comparisons with a voxel height threshold of p < 0.001 and a 

cluster threshold of pFWE < 0.05.  

Correlation matrices for the graph analyses were calculated using the same procedure 

described in chapter 2 section 2.3.7 (pg. 35). Hippocampal ROIs segmented with FIRST and the 

set of 333 ROIs from Gordon and colleagues (Gordon et al., 2014b) were used to define nodes 

and Fisher transformed r-values to define edges in each graph. Calculation of graph theoretical 

measures used the same set of equations described in chapter 2 section 2.3.9 and 2.3.10. At the 

network level, differences in the modularity index Q and global efficiency between conditions of 

interest were assessed, and at the node level the betweenness centrality, participation coefficient, 

and flow coefficient of hippocampal nodes were compared. 

3.4 Results 

3.4.1 Behavioural performance 

All 14 participants completed the simulation phase. Participants completed an average of 

7.79 trials (SD = 2.26) out of 10 possible trials and spent an average of 1112.37 seconds 

(approximately 18 minutes and 30 seconds; SD = 84.2 seconds) completing the simulation phase. 

Simulation vividness and spatial coherence were significantly correlated (r = 0.52, p < 0.001), 

suggesting that highly vivid mental simulations are also spatially ordered. 
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3.4.2 Network topology during navigation and mental simulation 

Navigation, prospection, and episodic memory are theorized to rely on similar neural 

systems (Brown et al., 2016; Buckner & Carroll, 2007; Hassabis & Maguire, 2009), with limited 

differences in regional activity when simulating spatial experiences in the past, present, or future 

(Nyberg, Kim, Habib, Levine, & Tulving, 2010). To test whether simulation and experiencing a 

spatial event also share similar network states, we calculated and compared graph theoretical 

measures previously shown to have behavioural relevance to encoding and retrieving spatial 

contexts from memory (Arnold et al., 2014b; chapter 2). First, we tested for differences in the 

modularity index Q (Newman, 2006), a measure of robustness of the modular structure in a 

network. Across a range of density thresholds, there were no statistically significant differences 

between the simulation and navigation blocks (Figure 7.5a), k = 0.1 (t(13) = -0.7, p = 0.45), k =  

0.15 (t(13) = -0.58, p = 0.57), k =  0.2 (t(13) = -1.9,  p = 0.85), k =  0.25 (t(13) = -0.35, p = 0.73). 

Next, we compared the global efficiency of whole brain networks between the two block types. 

Here, we only observed statistically significant differences using at the highest density threshold 

(Figure 7.5b), k =  0.1 (t(13) = -0.7, p = 0.48), k =  0.15 (t(13) = -1.7, p = 0.11), k =  0.2 (t(13) = -

2.13,  p = 0.053), k =  0.25 (t(13) = -2.3, p = 0.038). However, further investigation of this effect 

showed only a minor difference in global efficiency values between the simulation (M = 0.612, 

SD = 0.005) and navigation (M = 0.615, SD = 0.004) blocks.  

3.4.3 Hippocampal-cortical interactions during mental simulation 

Retrieval and integration of environmental features from memory into the spatiotemporal 

context of a mental simulation is believed to operate through the reinstatement of regional 

activity in sensory and associative areas of the cortex, coordinated primarily through pattern 

completion and separation mechanisms in the HC (Horner et al., 2015; Norman & O'Reilly, 
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2003; Stokes et al., 2014). Based on this perspective, we hypothesized increased functional 

coupling between the HC and areas of visual cortex during simulations with high visual and 

spatial fidelity. To test this, we binned simulation blocks based on how participants rated the 

simulation vividness and spatial coherence in the post-simulation questionnaire (PS-Q). We then 

used the binned simulation blocks to construct generalized psychophysiological (gPPI) models 

(McLaren et al., 2012) by multiplying the time course of BOLD signal in the left and right HC 

with general linear models denoting trials with low (PS-Q rating value of 1) and high (PS-Q 

rating value of 4) vividness and spatial coherence.  

During highly vivid simulation blocks, we found evidence for increased functional 

connectivity between the right HC and the superior portion of the left lateral occipital cortex 

(t(13) = 4.81, p < 0.001; 128 voxels; peak MNI coordinates: -46, -64, 46) (Figure 7.6a; Table 

6.2). For spatial coherence, high ratings for spatial coherence during simulations were associated 

with increased functional connectivity between the left HC and areas within the left angular 

gyrus and the superior division of the left lateral occipital cortex (t(13) = 4.34, p < 0.001; 118 

voxels; peak MNI coordinates: -40, -56, 42) (Figure 7.6b; Table 6.2). There were no statistically 

significant increases in functional connectivity with the right or left HC in low vividness or 

spatial coherence simulation blocks. Considered together, these results support our hypothesis 

that increased hippocampal-cortical functional coupling is associated with a high degree of 

simulation fidelity, putatively through more effective feature integration coordinated by the HC 

through selective functional coupling with areas of the brain associated with visual processing.  

3.4.4 Network topology and simulation fidelity 

In the next analysis, we sought to extend our findings of changes in hippocampal-cortical 

functional coupling based on simulation fidelity by testing our hypothesis that high simulation 
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fidelity would be associated with hippocampal-based network states conducive to information 

integration. While bivariate techniques such as gPPI can elucidate the functional coupling 

between a seed region and a cluster of voxels sharing similar BOLD response patterns, 

multivariate techniques such as graph theory allow for the assessment of more complex patterns 

of information communication and integration by considering the functional interactions between 

more than two sets of regions in the brain (Bassett et al., 2012; Rubinov & Sporns, 2010; Sporns 

et al., 2007). Of importance here, graph theoretical measures allow for assessment of network 

dynamics in local neighborhoods (i.e. sub-networks characterized by shared patterns of 

functional interactions), and how a particular region (e.g. the HC) coordinates the information 

flow between multiple sets of regions. To assess how hippocampal network topology relates to 

simulation fidelity, we calculated node-based graph theoretical measures of betweenness 

centrality, flow coefficient, and local efficiency for the right and left hippocampal nodes. These 

measures quantify the centrality of the HC at the global and local network level, and assess the 

communication efficiency of local HC networks, respectively.  

The first measure we calculated was the betweenness centrality of the right and left HC. 

Betweenness centrality quantifies the degree to which the shortest paths between any two nodes 

in a graph pass through a specific node and is considered a measure of centrality at the global 

network level irrespective of the modular composition of a network (Rubinov & Sporns, 2010). 

Comparing high and low vividness simulations (Figure 7.7a), we observed no statistically 

significant differences between betweenness centrality values in the right, k =  0.1 (t(13) = 1.91, 

p = 0.08), k =  0.15 (t(13) = 0.43, p = 0.67), k =  0.2 (t(13) = 0.34,  p = 0.74), k =  0.25 (t(13) = -

0.32, p = 0.76), or left HC, k =  0.1 (t(13) = 1.7, p = 0.11), k =  0.15 (t(13) = 1.02, p = 0.33), k =  

0.2 (t(13) = 1.23,  p = 0.24), k =  0.25 (t(13) = -0.17, p = 0.87). Similarly, comparing high and 
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low spatial coherence simulations, there were no statistically significant differences in the right, 

k =  0.1 (t(13) = 0.7, p = 0.5), k =  0.15 (t(13) = 0.37, p = 0.71), k =  0.2 (t(13) = 1.58,  p = 0.14), 

k =  0.25 (t(13) = 0.11, p = 0.91), or left HC, k =  0.1 (t(13) = -0.1, p = 0.92), k =  0.15 (t(13) = 

0.39, p = 0.71), k =  0.2 (t(13) = 0.22,  p = 0.83), k =  0.25 (t(13) = 1.02, p = 0.33). 

Next, we calculated the flow coefficient for the left and right hippocampal nodes (Figure 

7.7b). The flow coefficient quantifies the degree to which a node conducts information flow 

between neighboring nodes and is representative of centrality within local neighborhoods 

(Honey et al., 2007). Here, there were statistically significant increases in flow coefficients 

during high vividness simulations at the higher density thresholds for the right, k =  0.1 (t(13) = -

1.31, p = 0.21), k =  0.15 (t(13) = -3.21, p = 0.007), k =  0.2 (t(13) = -3.45,  p = 0.004), k =  0.25 

(t(13) = -3.34, p = 0.005), and left HC, k =  0.1 (t(13) = -1.51, p = 0.16), k =  0.15 (t(13) = -2.73, 

p = 0.017), k =  0.2 (t(13) = -3.12,  p = 0.008), k =  0.25 (t(13) = -3.22, p = 0.007). Comparing 

high and low spatial coherence trials, we found no statistical differences for the right, k =  0.1 

(t(13) = -0.77, p = 0.46), k =  0.15 (t(13) = -0.99, p = 0.34), k =  0.2 (t(13) = -0.74,  p = 0.47), k =  

0.25 (t(13) = -0.88, p = 0.4), or left HC, k =  0.1 (t(13) = -0.5, p = 0.62), k =  0.15 (t(13) = -1.06, 

p = 0.31), k =  0.2 (t(13) = -1.54,  p = 0.15), k =  0.25 (t(13) = -1.88, p = 0.08). 

Thus far our data show that there are no differences between the centrality of the HC at 

the global network level in mental simulations with high vs low vividness and spatial coherence. 

However, we did find evidence for increased hippocampal centrality within its local 

neighborhood during mental simulations with high vividness. Next, we sought to evaluate 

information flow within hippocampal neighborhoods. As previously outlined, the HC is 

theorized to coordinate the selective reactivation of sensory and associative areas of the cortex 

through pattern completion mechanisms to reinstate environmental features from memory and 
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integrate them into a representation used during mental simulation. A plausible prediction from 

this is that in trials with low hippocampal centrality (i.e. low vividness simulations), the 

coordination of feature reinstatement and integration is compensated by increases in functional 

interactions between other regions of the memory system supporting mental simulations 

(Fornito, Harrison, Zalesky, & Simons, 2012). To evaluate this, we calculated the local 

efficiency of hippocampal networks. Local efficiency represents the efficiency of information 

flow in a subnetwork composed only of immediate neighbors of a specific node. Comparing 

simulations of high and low vividness (Figure 7.7c), we found statistically significant decreases 

in local efficiency values for high vividness simulations in the right hippocampal neighborhood, 

k =  0.1 (t(13) = 2.19, p = 0.047), k =  0.15 (t(13) = 3.76, p = 0.002), k =  0.2 (t(13) = 3.69,  p = 

0.003), k =  0.25 (t(13) = 3.42, p = 0.005), and across higher density thresholds in the left 

hippocampal neighborhood, k =  0.1 (t(13) = 1.42, p = 0.18), k =  0.15 (t(13) = 2.66, p = 0.02), k 

=  0.2 (t(13) = 3.07,  p = 0.009), k =  0.25 (t(13) = 3.21, p = 0.007). We also investigated 

differences in local efficiency values of hippocampal networks between simulations with high 

and low spatial coherence. Here, we found no statistically significant differences for the right, k 

=  0.1 (t(13) = 0.73, p = 0.48), k =  0.15 (t(13) = 0.86, p = 0.41), k =  0.2 (t(13) = 0.69,  p = 0.5), k 

=  0.25 (t(13) = 0.87, p = 0.4) or left hippocampal neighborhoods, k =  0.1 (t(13) = 0.74, p = 

0.47), k =  0.15 (t(13) = 1.12, p = 0.28), k =  0.2 (t(13) = 1.48,  p = 0.16), k =  0.25 (t(13) = 1.86, 

p = 0.09). 

3.5 Discussion 

Prospection allows humans to mentally simulate future events based on past experiences 

and is central to the generation and implementation of goal-directed behavior. Current theoretical 

models on prospection posit that it operates using a neural system shared with episodic memory, 
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allowing features encoded from previous experiences to be flexibly combined into a novel 

spatiotemporal context (Buckner & Carroll, 2007; Hassabis & Maguire, 2009; Nadel et al., 2000; 

Schacter et al., 2012). Past research has demonstrated the role of the HC in representing spatial 

information pertaining to target destinations and intermediate locations along a route, and has 

suggested that the HC coordinates mnemonic representations with other brain areas during 

prospection, including regions within the prefrontal cortex, medial temporal lobes, and medial 

parietal lobes (Brown et al., 2016).  

Here, for the first time, we investigate fundamental questions on the topological structure 

and dynamics of whole brain and hippocampal networks during prospection. Our data show that 

simulating and experiencing an event share a similar network state defined using measure of 

communication efficiency, extending previous findings on patterns of regional activity between 

simulating and experiencing events (Brown et al., 2016; Nyberg et al., 2010). Critically, our 

results also show that mental simulations display variability in representational fidelity, varying 

in both the vividness and coherence of spatial information, putatively through differences in 

feature integration (Arnold et al., 2016). During highly vivid and spatially coherent simulations, 

the HC was shown to increase functional interactions with areas of the brain associated with 

object recognition, manipulation of mental imagery, and awareness of intended action sequences. 

Highly vivid simulations were also shown to increase hippocampal centrality in local memory 

networks, indicating that the HC is vital for supporting multi-regional integration of visual 

information during prospection. 

 Theoretical models on prospection commonly employ a shared systems hypothesis in 

which simulating future experiences is posited to rely on similar neural mechanisms as episodic 

memory (Schacter et al., 2012). Conjunctive analyses comparing regional activity between the 
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recall and simulation of experiences show the common engagement of a neural system involving 

regions of the medial temporal lobes, medial prefrontal cortex, and posterior parietal cortices 

(Hassabis, Kumaran, & Maguire, 2007a; Nyberg et al., 2010). This system is theorized to 

coordinate the selective reactivation and integration of information processed in sensory and 

associative areas into a unified mnemonic representation (Horner et al., 2015). Our data extend 

these findings by showing that simulating and experiencing events share a similar network state. 

Our analysis of network topology showed no statistical differences in the modular structure or 

the global efficiency of the whole brain network between the two task conditions. Crucially, this 

shows that the two processes broadly share levels of communication capacity based on patterns 

of functional interactions between regions, which are posited to code the associative structure of 

features composing the spatiotemporal context of a mnemonic representation (Buchel et al., 

1999; Ekstrom et al., 2014). 

 Mental simulations are not a singular construct, however, varying in how orderly and 

vivid spatial information appears subjectively. Variability in simulation fidelity is theorized to be 

associated with how effectively environmental features from previous experiences can be 

recapitulated into a mnemonic representation underlying prospection (Arnold et al., 2016). Based 

on this and other outlined theoretical perspectives (Hassabis & Maguire, 2009; Schacter et al., 

2012), we hypothesized that the representational fidelity of a mental simulation would require 

increased coordination between the HC and visual areas of the brain, as the neural codes of the 

spatial context in the HC putatively coordinates the recapitulation of environmental features 

needing to be integrated in a task oriented manner. Our data provide support for this hypothesis 

by showing that highly vivid and spatially coherent simulations involve increased functional 

coupling between the HC and cortical areas associated with object representation and the 
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manipulation of mental simulations. Comparing simulations with high and low vividness ratings 

using gPPI models, we observed increased functional connectivity during highly vivid 

simulations between the right HC and the superior division of the left lateral occipital cortex and 

the left angular gyrus. Similarly, we found increased functional connectivity during simulations 

with high ratings of spatial coherence between the left HC and the left angular gyrus and the 

superior division of the left lateral occipital cortex, similar to the area identified in the vividness 

analysis. Lateral occipital cortex has previously been implicated in representing high-level visual 

features of objects and how they are localized in spatial contexts (Kourtzi & Kanwisher, 2001; 

Silk, Bellgrove, Wrafter, Mattingley, & Cunnington, 2010; Y. Xu & Chun, 2006). Additionally, 

this area has been found to uniquely increase activity during mental simulations that involve self-

referential processes in non-present timeframes (i.e. past, future, and imagined) (Nyberg et al., 

2010). Angular gyrus has more widespread functional roles, acting as a multi-modal hub 

integrating multisensory information to allow for the manipulation of mental representations 

(Seghier, 2013) and subjective awareness of intended action sequences and their consequences in 

spatial contexts (Arnold et al., 2014b; Farrer et al., 2008). Considered together, these functional 

interactions suggest that the neural codes in the HC representing the spatial context of a location 

interact with visual and associative areas of the cortex to reinstate and organize environmental 

features from memory into a non-present timeframe, and generate prospective action sequences. 

Critically, the degree of these functional interactions relate to how effectively environmental 

features can be reinstated, integrated, and manipulated during simulation of movement within a 

spatial context. 

 Prospection is theorized to rely on functional interactions between a multi-regional 

network across the brain (Brown et al., 2016; Hassabis, Kumaran, & Maguire, 2007a; Schacter et 
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al., 2012). To characterize the topological structure of these networks and how the HC is 

involved in coordinating information flow between network components, we sought to 

complement the gPPI analysis by investigating changes in hippocampal network topology 

associated with representational fidelity. Here, we hypothesized that feature reinstatement and 

integration would require network states allowing more efficient communication (Arnold et al., 

2014b), particularly with increased hippocampal involvement in coordinating information flow. 

We did not support our hypothesis at the global network level, with no statistical differences in 

betweenness centrality values for the HC when comparing mental simulations with high or low 

vividness or spatial coherence ratings. However, within hippocampal neighborhoods, the HC had 

increased centrality as measured by the flow coefficient during mental simulations with high 

vividness ratings. Additionally, we observed decreased local efficiency, a measure of 

information flow between any two nodes in a neighborhood, in simulations with high vividness 

ratings. The presence of increased hippocampal centrality and decreased local efficiency within 

hippocampal neighborhoods suggests that coordination of information flow vis-à-vis the HC 

within memory networks during prospection is critical, facilitating the recapitulation and 

integration of spatial features from memory into a goal-oriented mnemonic representation. 

Conversely, in simulations with low visual fidelity, the decreased role of the HC in coordinating 

information flow appears to be compensated for by increased functional interactions between 

other regions in the memory network. This compensatory mechanism may allow for partial 

recapitulation of environmental features from memory, albeit at a lower visual resolution than 

simulations with increased hippocampal coordination (Rosenbaum et al., 2009; Yonelinas, 

2013). 
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  A comparison of the neural patterns associated with variability in the vividness and 

spatial coherence of a mental simulation reveals important differences. In both cases, there was 

increased functional connectivity between the HC and left lateral occipital cortex and angular 

gyrus, providing evidence that neural codes in the HC requires interaction with associative areas 

in order to mentally simulate movement through a spatial context. However, differences in 

network topology were specific to variability in simulation vividness. This suggests that the HC 

plays a more principled role in organizing the spatial context of a mnemonic representation and 

the locations composing that context, while the visual fidelity of a representation requires more 

widespread interactions across the brain. Although we did not formulate specific hypotheses on 

this, it provides support for theoretical models positing the organizational, but not purely 

representational, nature of spatial features in the HC (Eichenbaum, 2000a; Milivojevic & 

Doeller, 2013). 

 In summary, the current study builds on the role of the HC in prospection by addressing 

fundamental questions on network topology. Simulating and experiencing an event were found 

to share similar global network states based on measures of communication efficiency, providing 

support for a central tenants of theoretical models on prospective coding and memory function 

(Buckner & Carroll, 2007; Hassabis & Maguire, 2009; Schacter et al., 2012). However, mental 

simulations were found to vary in the vividness and coherence of spatial information. As 

predicted, both aspects of representational fidelity were related to increased functional coupling 

between the HC and visual and associative areas of the brain, putatively allowing for more 

effective feature integration during mental simulation. Highly vivid simulations were also found 

to be associated with both increased hippocampal centrality and decreased local efficiency within 

a hippocampal sub-network, suggesting that the visual basis of a mental simulation requires 
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coordination of information processing via the HC into high-resolution mnemonic 

representations (Rosenbaum et al., 2009; Yonelinas, 2013). Critically, this provides the first 

direct empirical evidence that the neural representations underlying prospection are generated 

and manipulated through hippocampal-cortical functional interactions rather than neural codes in 

the HC alone. 
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Chapter 4 

4.1 Abstract 

The default mode network is a putative neural system characterized by task related attenuations 

in functional activity when a person is engaged in a cognitively demanding task. Theoretical 

models on the constructive nature of memory posit that the default mode network shares a 

similar network composition with a putative construction network that allows for the 

reinstatement of mnemonic representations to re-experience the past or simulate potential future 

events. Here, we investigate the commonalities in network topology between the default mode 

network and the construction network by comparing measures of functional associations between 

network components and communication efficiency during resting periods and mental 

simulations of movement through a virtual city. Our data show that while there is a degree of 

overlap, mental simulations are characterized by increased functional coupling between regions 

of the default mode network and the hippocampus. Differences in interactions between network 

components were also tentatively associated with the spatial coherence of environmental features 

during mental simulations, with posterior cingulate cortex demonstrating an increased amount of 

functional coupling with the hippocampus during highly coherent simulations relative to rest. 

These results provide empirical support for theoretical models on the constructive nature of 

memory, and suggest revisions to the models based on dynamic network processes.  
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4.2 Introduction 

The brain is composed of numerous neural networks characterized by a high degree of 

intra-network connectivity with limited inter-network connectivity (Sporns, 2011; van den 

Heuvel, Kahn, Goñi, & Sporns, 2012). In the early 2000s, Raichel and colleagues (Raichle et al., 

2001) observed the operation of a neural network composed of critical convergence zones that 

displayed robust correlations of functional activity during rest. Termed the default mode network 

(DMN), this network has since been researched in extensive detail and is posited to provide the 

neural basis of spontaneous and unconstrained thought that occurs when people are not overtly 

engaged in a mental task. Although a complete taxonomy of the types of thought and their 

underlying cognitive processes has yet to be articulated, past research has provided evidence for 

the association between DMN integrity and multiple interacting types of thought, including self-

referential processing, prospection, and retrospection, often characterized by their emotional and 

personal significance (see Andrews-Hanna et al., 2014 for a review of self-generated thought and 

DMN activity). 

 In their original proposal, Raichle and colleagues (Raichle et al., 2001) defined a DMN 

composed of medial prefrontal cortex (mPFC), posterior cingulate cortex/precuneus (PCC), and 

lateral parietal cortex (LP), based on cortical areas showing task-related attenuations of neural 

activity in a meta-analysis of brain imaging data. This topological distribution has generally been 

supported by more recent studies using larger samples and more robust parcellation strategies 

(Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; Yeo et al., 2011). A pivotal study 

on understanding the dynamics of the DMN was published Fox and colleagues (Fox et al., 2005), 

suggesting that the brain is organized into anti-correlated networks that are associated with either 

task and resting states. Under this view, the DMN was theorized as a task-negative network, 
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showing decreased functional activity with a high degree of intra-network connectivity when a 

person is engaged in a specific cognitive task. Conversely, a task-positive network composed 

primarily of areas associated with a dorsal attentional system displays a large degree of anti-

correlations with activity in regional components of the DMN. This perspective of competition 

between the DMN and task-active networks was empirically supported by studies showing that 

attentional lapses interfering with task performance are associated with failure to suppress 

activity in the DMN (Weissman et al., 2006) and that variability in motor performance is 

associated with the degree of anti-correlations between the task-positive and task-negative 

networks (Fox et al., 2007). 

 Although the division of the brain into competitive task-positive and task-negative 

networks provided an intuitive heuristic to understand how the brain switches between an 

exogenous and endogenous locus of attention, research in certain areas of cognitive neuroscience 

has shown the reliable activation of DMN regions during tasks (Spreng, Mar, & Kim, 2009). The 

PCC, for example, had previously been implicated in supporting spatial navigation (Grön, 

Wunderlich, Spitzer, Tomczak, & Riepe, 2000) and in recalling and imagining episodic details in 

the past and future (Szpunar et al., 2007). Additionally, research on episodic memory has shown 

that activity in PCC reliably couples with the hippocampus (HC) during rest and recall tasks, 

indicating that reinstatement of self-referential memories involves the coordination of memory 

processes in the HC and information processing in PCC (Vincent et al., 2006). Furthermore, 

systems neuroscience models of spatial navigation posit a central role for PCC and surrounding 

areas, including precuneus and retrosplenial cortex (RSC), in integrating location and direction 

information from allocentric and egocentric representations of space into a task-oriented 

representation of where one is within an environment (Burgess, Maguire, Spiers, & O'Keefe, 
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2001; Byrne et al., 2007; Marchette et al., 2014). These findings suggest that regions in the DMN 

are not exclusively task-negative, but rather are critical components of networks supporting 

fundamental aspects of human cognition. 

Using these and similar studies as a framework, two important theories were formulated 

to explain the overlap between the topological distributions of the DMN and networks 

underlying spatial navigation and episodic memory to resolve why information processing in 

DMN regions are necessary for certain cognitive processes. The first, termed the self-projection 

hypothesis, was proposed by Buckner and Carroll (Buckner & Carroll, 2007) and suggests that 

the large degree of overlap in neural networks supporting episodic recall, prospection, theory of 

mind, and the spontaneous self-referential thought observed during resting periods, is due to a 

shared cognitive process of displacing one’s perspective from a present moment, egocentric 

point of view to one centered on either other people, places, or moments of time . Building from 

this perspective, Hassabis and Maguire (Hassabis & Maguire, 2007) formulated the scene 

construction hypothesis, theorizing that the function of the shared network is to generate mental 

scenes with environmental and episodic detail that provide the basis for mental simulations about 

the past, future, or an alternative reality. One notable difference in the network composition 

identified by Hassabis and Maguire is the inclusion of the HC in the scene construction network, 

a region the authors suggest is functionally specialized to generate the spatiotemporal context of 

a mental representation. Critically, the scene construction hypothesis provides an important 

explanation of why activity in the DMN is observed during spontaneous thought, and how 

activity in related regions is essential for tasks requiring one to make a mental representation of a 

spatiotemporal context, such as in navigation and episodic recall. However, both its original 

formulation (Hassabis & Maguire, 2007) and its extension (Hassabis & Maguire, 2009) provide 
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limited discussion on similarities and difference between the DMN and the scene construction 

network, focusing rather on neural and cognitive similarities between remembering, future 

thinking, and imagining. Despite this, the scene construction hypothesis makes two important 

predictions pertaining to DMN composition and function. First, the DMN is not a task-negative 

network, as information processing in PCC and mPFC is posited to be vital to self-referential 

processing during scene construction. Second, the DMN is itself not a static system, but rather 

has a dynamic topology that allows for context driven changes in the functional interactions 

between regions.  

Research published since the scene construction proposal supports the dynamic nature of 

the DMN. Forming a flexible modulation hypothesis, studies have shown that regions from the 

DMN – notably mPFC and PCC – are functionally coupled with regions in a frontal-parietal 

control network during autobiographical planning tasks (Spreng, Stevens, Chamberlain, Gilmore, 

& Schacter, 2010) and mental simulations of conducting autobiographical plans (Gerlach, 

Spreng, Gilmore, & Schacter, 2011). Fornito and colleagues (Fornito et al., 2012) have also 

shown that the functional coupling of regions in the DMN and the fronto-parietal component of 

an external attentional system is associated with more efficient memory recall, suggesting that 

the DMN is able to reorganize into different sub-networks depending on task contexts. The 

fractionation of the DMN is hypothesized to occur through the sub-division of the DMN into 

three components – a dorsal medial subsystem composed of dorsal mPFC, the temporo-parietal 

junction, and lateral temporal cortex; a medial temporal subsystem of the HC, parahippocampal 

cortex, inferior parietal lobe, and ventral mPFC; and a core sub-system of anterior mPFC and 

PCC (Andrews-Hanna et al., 2010). Each sub-system is theorized to contribute different 

component processes to self-generated thought, with the dorsal medial system performing social 
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and conceptual processing, the medial temporal system supporting autobiographical thought and 

contextual recall, and the core system bridging the two other subsystems through self-referential 

processing (Andrews-Hanna et al., 2014). In the context of scene construction, the flexible 

modulation hypothesis predicts that regions in the medial temporal subsystem – notably the HC – 

should dynamically change the degree of functional interactions with areas of the core subsystem 

depending on the amount of environmental and episodic detail used during scene construction. A 

similar prediction was made by Hassabis and Maguire (Hassabis & Maguire, 2009), and a recent 

analysis of similarities and difference in network topology between rest, recall, and future 

thinking shows that the HC is able to increase functional interactions with PCC and surrounding 

areas, as well as regions in LP and occipital cortex during recall and future thinking compared to 

rest (Bellana, Liu, Diamond, Grady, & Moscovitch, 2017). However, the experimental design by 

Bellana and colleagues (Bellana et al., 2017) did not measure the detail generation during recall 

and future thinking, and was therefore unable to directly test whether the degree of 

environmental and episodic details in a mental simulation is related to differences in HC 

connectivity with DMN regions. 

To resolve this, we developed an experimental task requiring participants to make mental 

simulations of routes through a previously learned virtual city. This task allowed us to ask two 

important questions pertaining to DMN-HC functional connectivity and its relation to scene 

construction. First, we asked whether there were topological differences between resting state 

networks and those involved in mentally simulating the route. Our prediction here, based on 

indirect observations from Hassabis and Maguire (Hassabis & Maguire, 2009), is that there is a 

broad similarity in network topology between the two cognitive states. Second, by measuring the 

vividness and spatial coherence of environmental information during a mental simulation, we 
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asked whether differences in DMN-HC are related to the degree of detail generation in the 

mental scene used during the simulation. Our prediction here, based on the scene construction 

hypothesis and the component process model formulated by Andrews-Hanna and colleagues 

(Andrews-Hanna et al., 2014), was that more detail generation (i.e. higher vividness and spatial 

coherence) would be related to increased functional connectivity between the HC and 

PCC/mPFC as modules of the core subsystem interaction with HC and other regions to 

dynamically reorganize network topology during scene construction. 

4.3 Methods 

4.3.1 Participants 

Data collected from the same sample of 14 undergraduates described in chapter 2 section 

2.3.1 (pg. 31) was used for the following analyses. 

4.3.2 Task design 

All data analyzed were collected during the simulation phase described in chapter 3 

section 3.3.2 (pg. 56-58) and presented in figure 7.4. Briefly, each trial began with a 12 second 

rest period in which participants attended to a white fixation cross overlaid on a black 

background, after which two landmarks were cued for 2 seconds. Following that, the screen 

when black and participants were instructed to mentally simulate navigating from the starting 

landmark to the destination landmark in as much detail as possible over a 15 second block. Once 

the simulation block ended, participants answered 14 questions from the post-simulation 

questionnaire (PSQ) that was designed to assess various qualitative aspects of the simulation (see 

Table 6.1 for list of questionnaire items and how they were grouped). Next, participants were 

placed in front of the starting landmark and navigated through the virtual city to the target 

landmark in the fastest route possible. Once there, they answered two additional questions from 
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the PSQ assessing how effectively they simulated the route and how close the navigation 

experience matched what they had mentally simulated. After, a new trial began using the target 

landmark from the previous trial as the starting point for the new trial. 

4.3.3 Functional MRI data analysis 

Data preprocessing followed the same pipeline described in chapter 2 section 2.3.5-2.3.10 

(pg. 34-39). Correlation matrices from the 12 second fixation block and the 15 second mental 

simulation block were calculated in conn (Whitfield-Gabrieli & Nieto-Castanon, 2012) using the 

four DMN ROIs identified by Fox and colleagues (Fox et al., 2005) and the subject specific left 

and right hippocampal ROIs estimated using FIRST. Changes in DMN topology were assessed 

by computing Fisher transformed r-values for each pairwise connection in the network and 

comparing values between rest blocks to simulation blocks. Simulation blocks were initially 

binned together, then sorted and compared based on different levels of vividness and spatial 

coherence measured using the PSQ. A statistical threshold of pFDR < 0.05 was used to assess 

significance of changes in DMN connectivity.  

4.4 Results 

4.4.1 Similarities between resting and mental simulation networks 

To evaluate our first hypothesis, we investigated the network topologies of regions in the 

DMN and the HC during resting and mental simulation blocks using an ROI-to-ROI analysis. 

We observed no statistically significant differences in a direct comparison of network topology 

associated with each cognitive state. However, investigating the degree of functional 

connectivity between network nodes independently for each cognitive state showed that during 

rest (Figure 7.8a) the HC was functionally coupled bilaterally (t(13) = 7.81, pFDR < 0.001) but did 

not have statistically non-zero correlations with all other nodes in the DMN, whereas seeding the 
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PCC, a common method to obtain DMN connectivity values (Andrews-Hanna et al., 2014), 

showed that the PCC had statistically non-zero correlations with left (t(13) = 10.65, pFDR < 

0.001) and right (t(13) = 4.84, pFDR < 0.001) LP cortex, but not mPFC (t(13) = 1.35, pFDR = 

0.12). During mental simulation (Figure 7.8b), the contralateral HC ROI and all regions of the 

DMN showed positive, non-zero correlations with the left (right HC: t(13) = 10.66, pFDR < 0.001; 

PCC:  t(13) = 5.44, pFDR < 0.001; mPFC: t(13) = 2.08, pFDR = 0.036; left LP: t(13) = 3.24, pFDR = 

0.003; right LP: t(13) = 1.87, pFDR = 0.042) and right HC (left HC: t(13) = 10.66, pFDR < 0.001; 

PCC:  t(13) = 4.45, pFDR < 0.001; mPFC: t(13) = 3.5, pFDR = 0.003; left LP: t(13) = 2.37, pFDR = 

0.017; right LP: t(13) = 3.12, pFDR = 0.004). Using the PCC again as a seed region, we 

additionally observed closer functional coupling between all nodes of the DMN and both the left 

and right HC (left HC: t(13) = 5.44, pFDR < 0.001; right HC: t(13) = 4.45, pFDR < 0.001; mPFC: 

t(13) = 2.38, pFDR = 0.017; left LP: t(13) = 10.5, pFDR < 0.001; right LP: t(13) = 4.94, pFDR < 

0.001). 

4.4.2 Network reconfiguration associated with detail generation 

Next, we compared DMN and HC functional connectivity at different levels of vividness 

and spatial coherence reported during mental simulations. To do this, we used left and right HC 

seeds, as well as PCC, and calculated differences in ROI-to-ROI functional connectivity between 

all nodes in the network by comparing Fisher z-scores obtained from low and high vividness and 

spatial coherence simulations against rest. The results are presented in figure 7.9. For low 

vividness simulations relative to rest blocks, we observed increased functional connectivity 

between the right HC and the left (Figure 7.9a; t(13) = 3.25, pFDR = 0.003) and right (Figure 7.9b; 

t(13) = 2.41, pFDR = 0.039) LP. There were no statistically significant differences seeding the left 

HC or PCC. For high vividness simulations relative to rest blocks, we found increased functional 
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connectivity between the right HC and left LP (Figure 7.9a; t(13) = 2.94, pFDR = 0.029), but not 

between left HC or PCC and the other network nodes. Similar to low vividness, for low spatial 

coherence we found statistical differences in connectivity between the right HC and the left 

(Figure 7.9c; t(13) = 2.53, pFDR = 0.037) and right (Figure 7.9d; t(13) = 2.44, pFDR = 0.037) LP, 

but not using the left HC or PCC as a seed region. For high spatial coherence simulations, we 

found no statistical differences using our seed regions, but found near significant differences 

between the right HC and left LP (Figure 7.9c; t(13) = 2.61, pFDR = 0.053), and between PCC and 

the left (Figure 7.9e; t(13) = 2.46, pFDR = 0.065) and right (Figure 7.9f; t(13) = 1.91, pFDR = 

0.065) HC, as well as the right LP (Figure 7.9g; t(13) = 2.03, pFDR = 0.065). 

4.5 Discussion 

The DMN is a neural network reliably observed when a person is in a resting state, 

composed primarily of the mPFC, PCC, and left and right LP. Initially, the DMN was 

conceptualized as a cohesive network characterized by high intra-network functional 

connectivity that showed task-related attenuations in activity (Raichle et al., 2001), and anti-

correlations in functional activity to task-activated brain regions (Fox et al., 2005). However, 

theories based on observations that components of the DMN are commonly engaged during 

cognitive tasks such as episodic recall, spatial navigation, and prospection, argue that those tasks 

share cognitive processes with the types of spontaneous thought that characterize conscious 

experience when not overtly engaged in a task. The scene construction hypothesis (Hassabis & 

Maguire, 2007) theorizes that each cognitive state (i.e. recalling the past, imaging the future, 

navigating, and mind wandering) involved the construction of mental scenes which were used to 

simulate past, anticipated future, or imagined experiences. It makes the explicit prediction that 

scene construction requires functional coupling of the HC with areas of the DMN, particularly 
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the mPFC and PCC (Hassabis & Maguire, 2009). Although research has begun to demonstrate 

that the DMN is not a static network that is reliably suppressed during cognitive tasks (Andrews-

Hanna et al., 2014), also a prediction from the original scene construction hypothesis, there has 

yet to be an investigation of whether differences in HC and DMN functional connectivity relate 

to generating details of the spatiotemporal context used for mentally simulating an experience. 

Here, using a conventional spatial navigation paradigm that included a novel use of mental 

simulations, we show that the functional interactions between the HC and regions of the DMN, 

specifically PCC and the left and right LP, are increased relative to the patterns of functional 

connectivity at rest. This provides the first network-based evidence of a central prediction in the 

scene construction hypothesis and shows that the amount of detail generation relates, in part, to 

reconfiguration of functional connections between the HC and DMN regions. 

 Our initial analysis on similarities in network topology between rest and mental 

simulations revealed no differences using a direct statistical comparison. However, investigating 

the network topologies independently by testing whether each network edge was statistically 

non-zero, revealed that at rest, the left and right HC were strongly connected with each other, but 

did not have statistically above or below zero correlations with regions in the DMN. Conversely, 

during mental simulations, the functional interactions between the left and right HC with all 

regions of the DMN were statistically above zero. This finding is in line with the proposed scene 

construction network topology outlined by Hassabis and Maguire (Hassabis & Maguire, 2009), 

in which the HC functionally couples with DMN regions while generating the spatiotemporal 

context of a mental representation. However, this finding also shows that the HC is more 

transiently connected to DMN regions at rest, supporting conclusions by Bellana and colleagues 
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(2017) and others (e.g. Chen et al., 2016) that HC and DMN interactions are only required when 

episodic information needs to be retrieved and maintained over a period of time.  

 The fidelity of a mental simulation is theorized to relate to how well environmental and 

episodic features from memory can be flexibly combined into a task-oriented mnemonic 

representation (Arnold et al., 2016; Schacter et al., 2012; Schacter & Addis, 2007). Here, we use 

simulation vividness and the spatial coherence of environmental features as proxies for the 

fidelity of a mental simulation. These measures were used to test the prediction that greater detail 

generation while constructing mental scenes would require increased functional connectivity 

between the HC and the core subsystem of the DMN as proposed by Andrews-Hanna and 

colleagues (Andrews-Hanna et al., 2014). Although our hypothesis was not directly supported, 

the overall pattern of results has important implications and suggests that the general proposal in 

the scene construction hypothesis is correct, albeit with some differences in the specific patterns 

of network reconfiguration.  

In the present study, we found that both mental simulations with both low and high 

vividness relative to rest showed increased functional connectivity between the right HC and left 

LP, as well as with the right LP in low vividness simulations. This pattern was similar for mental 

simulations with low spatial coherence, where we observed increased functional connectivity 

between the right HC and left and right LP. However, for high spatial coherence, we found no 

statistical differences using a false discovery rate threshold to control for multiple comparisons, 

but did observe near significant increases in functional connectivity between the right HC and 

left LP, as well as between PCC and the left and right HC, and right LP. Lateral parietal cortex is 

involved in numerous episodic recall and simulation paradigms (Benoit & Schacter, 2015), 

putatively through its role as a hub region allowing manipulation of multi-sensory mental 
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representations (Seghier, 2013; chapter 3) and participation in sequencing episodic details 

(Demblon, Bahri, & D’Argembeau, 2016) that involve transformations in subjective time 

(Nyberg et al., 2010). The observed increase of functional connectivity between LP and the right 

HC in mental simulations with different degrees of vividness suggests that it provides a general 

mechanism to assist in a task-oriented manipulation of the spatiotemporal context coded by the 

HC, rather than a dynamic role related to the level of detail generation. The PCC, however, had 

near significant increases in functional connectivity related to only simulations with a high 

degree of spatial coherence. Tentatively, as this interpretation is based on near statistically 

significant effects, this supports its role as a critical hub region during mental simulations, 

allowing the integration of direction and location information into a task-oriented representation 

(Burgess et al., 2001; Byrne et al., 2007; Marchette et al., 2014) through interactions with the 

HC, and the manipulation of these representations through interactions with LP [chapter 3]. 

Furthermore, it suggests that changes in the functional interactions of the core subsystem of the 

DMN are related to correctly ordering reinstated environmental and episodic features in relation 

to oneself, rather than in generating specific visual details about the features from memory being 

reinstated. In the context of the scene construction hypothesis, these findings collectively 

indicate that generating more visual detail in a mental scene is not related to the degree of 

functional interactions between the HC and components of the DMN per se, but that the dynamic 

reorganization of DMN regions into task-oriented networks underlies the reinstatement, 

integration, and ordering of environmental and episodic information during the construction and 

manipulation of a mental scene. 

 There are two main limitations to the present study. First, the topology of the DMN is 

still being researched, and has been suggested to include more regions subdivided into different 
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components than the ROIs utilized here (Andrews-Hanna et al., 2010). However, the shared 

topological overlap between the DMN and functional networks supporting episodic memory has 

only recently been investigated (Bellana et al., 2017), and there has yet to be a direct 

investigation of mental simulations that are primarily spatial in nature, a critical aspect of the 

hypothesis that episodic recall, prospection, and spontaneous thought at rest share the common 

cognitive process of generating mental scenes (Hassabis & Maguire, 2009). As such, we selected 

standard DMN ROIs for our initial assessment and suggest that future studies look at more 

extensive parcellation strategies. Second, our sample size is smaller than is typical of studies 

using resting blocks to characterize the DMN (e.g. Andrews-Hanna et al., 2010). This is reflected 

in the near statistically significant results of the PCC in the high spatial coherence analysis. A 

larger sample size may be able to more precisely estimate effect sizes and support the 

speculations we make here. 

 In conclusion, the present study provides the first empirical investigation of the 

similarities between DMN topologies during rest and mental simulations that are primarily 

spatial in nature. Our results offer empirical support for speculations from a recent study on 

episodic recall and future thinking (Bellana et al., 2017) that HC-DMN interactions are necessary 

for the integration of episodic details into mental simulations. We add to a growing body of 

literature showing that the DMN is indeed a network with a dynamic topology, with inter-

regional functional connections that are amenable based on cognitive demands. Our data support 

critical components of the scene construction hypothesis, and suggest that the functional 

coupling between the PCC, HC, and other areas allow for the accurate ordering of spatial 

information in relation to oneself during mental simulations. 
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Chapter 5 

5.1 Summary of findings 

The ability to generate and manipulate mental representations of the world is a 

fundamental aspect of the human mind, affording the capacity to abstract away from the present 

into different places and moments of time. It is a central tenant of episodic (Tulving, 2002) and 

prospective (Schacter et al., 2007) theories of memory function, where features (i.e. people, 

places, events) from past experiences are coded by neural patterns in the brain that can be 

reinstated through dynamically coordinated interactions between the HC and areas across the 

neocortex (Brown et al., 2016; Horner et al., 2015). Although theoretical models on memory 

function posit functional interactions between memory and sensory/associative regions in 

generating the spatial context of a mental representation and binding episodic/environmental 

features to it, empirical evidence for how this occurs dynamically across a multitude of regions 

has been sparse. The primary aim of this thesis is to evaluate the network basis of memory by 

investigating putative dynamical network processes underlying the generation, reinstatement, 

and simulation of mental representations that are (1) accessible to conscious introspection, (2) 

declarable, and (3) situated in a spatiotemporal context. 

 Chapter 2 provides an investigation of changes in network topology and the role of the 

HC in facilitating information exchange while mnemonic representations of a large-scale virtual 

city are encoded and periodically reinstated. Using confidence judgements, which serve as 

proxies for the engagement of memory-selective neuron ensembles (Rutishauser et al., 2015), we 

found evidence for a general encoding mechanism where functional networks across the brain 

reconfigure from a state of global information integration to localized processing as mnemonic 

representations are formed. This reconfiguration was accompanied by changes to the role of the 
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HC as a connector hub. In low confidence trials, the HC displayed increased centrality at the 

inter and intra-module level, as quantified by changes in the participation coefficient and flow 

coefficient values, respectively. Conversely, high confidence trials were characterized by 

decreased HC centrality and increased local efficiency within a HC-based neighborhood of 

regions. Collectively, this pattern of results suggests that when encoding demands are highest in 

low confidence trials, the HC increases its role as a convergence zone for information processing 

across the brain, putatively to assist in generating neural codes indexing both the spatiotemporal 

context of mnemonic representations and the pattern of HC-cortical interactions used for feature 

reinstatement and integration during memory retrieval. 

 Chapter 3 extends the findings on representation encoding by investigating the network 

dynamics associated with reinstating and manipulating a mnemonic representation during mental 

simulation of navigation between city landmarks. Measures of simulation vividness and spatial 

coherence were used as indexes of feature integration (Arnold et al., 2016), allowing for an 

assessment of putative topological reconfiguration based on how effectively environmental 

features are reinstated and integrated into a holistic representation.  During simulations with high 

vividness and spatial coherence, the HC (right hemisphere for vividness; left hemisphere for 

spatial coherence) displayed increased functional coupling with a cluster of voxels extending 

through left lateral occipital cortex and angular gyrus. This finding suggests that the neural codes 

for the spatiotemporal context represented in the HC (Brown et al., 2016; Ekstrom et al., 2003) 

dynamically interacted with an area of the cortex previously associated with spatially localizing 

visual objects (Y. Xu & Chun, 2006), manipulation of mental representations (Seghier, 2013), 

and putatively providing unique computations underlying self-referential awareness in non-

present timeframes (Nyberg et al., 2010). Increased levels of functional coupling between these 
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regions leads to better simulation fidelity, suggesting that reinstatement and binding of 

environmental features during simulated action sequences within a mnemonic representation is 

facilitated through this specific HC-cortical interaction. Further, at a theoretical level it suggests 

that the HC does not solely provide the spatial computations necessary to generate and elaborate 

on a spatial context during memory reinstatement, instead requiring functional interactions with 

cortical regions to effectively reinstate and organize environmental features. 

The role of the HC in global and local networks during mental simulations of different 

representational fidelity was also assessed. Here, no differences in HC centrality or HC 

neighborhood communication efficiency were related to variance in spatial coherence. However, 

a high degree of representational vividness was associated with increased HC centrality and 

decreased local efficiency within a HC neighborhood. Considered together, these results suggest 

that the HC plays a more principled role in organizing environmental features within a mental 

representation (Eichenbaum, 2004), insofar as the information flow vis-à-vis the HC does not 

relate to the reinstatement of mnemonic representations with high or low ordering of spatial 

information. It is possible to interpret this null finding as the HC not being necessary for the 

ordering of spatial information in a mnemonic representation; however, given the extensive 

empirical data supporting the role of the HC in providing the spatial context of a representation 

(Ekstrom et al., 2003; Hassabis, Kumaran, Vann, & Maguire, 2007b; Rosenbaum et al., 2009; 

Wilson & McNaughton, 1993), this interpretation seems unlikely. Conversely, increased 

information exchange via the HC appears to assist in the reinstatement of the visual aspects of 

environmental features, as the HC had higher flow coefficients during simulations with high 

vividness. Decreased HC neighborhood centrality was associated with increases in information 

exchange between other components of the HC neighborhood during simulations with low 
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vividness, suggesting a putative compensatory mechanism that allows reinstatement of 

environmental features with lower visual fidelity. 

Chapter 4 explores a more speculative issue tying components of the DMN, a putative 

task-negative network (Fox et al., 2005), with the HC, a brain region posited to be a central 

component of the network involved in mentally displacing oneself into different places or 

moments in time. In the first analysis, no differences were observed in a statistical comparison of 

the topological configuration of a network composed of four DMN components (mPFC, PCC, 

left and right LP) and the left and right HC during rest and mental simulation blocks. However, a 

follow up analysis revealed that during rest, the left and right HC displayed statistical non-zero 

correlations with each other, but no regions of the DMN. Conversely, during mental simulations, 

both the left and right HC had statistical non-zero correlations with the contralateral hemisphere, 

as well as with the PCC and the left and right LP. This suggests that during rest the HC displays 

stronger functional coupling bilaterally, and that reconfiguration of functional connections with 

regions of the DMN occurs to facilitate mental simulations, putatively due to retrieval and 

maintenance of episodic features from memory (Bellana et al., 2017). The lack of non-zero 

functional coupling between PCC and the HC during rest blocks may be due to the more varied 

content of thoughts occurring at rest (Andrews-Hanna et al., 2014) that place a lower demand in 

generating mental representations with a spatiotemporal context. 

Potential DMN reconfigurations were also investigated in relation to simulation fidelity. 

In the case of simulations with low and high vividness ratings, increased functional interactions 

were observed between the right HC and the left LP (and right LP, in the case of simulations 

with low vividness) relative to rest. This suggests that DMN reconfiguration occurs during 

mental simulations, and that the recapitulation of environmental features from memory and the 
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subsequent manipulation of them during simulated navigation requires interactions between 

information processing in the HC and that occurring in LP. For spatial coherence, a similar effect 

was observed during simulations with low spatial coherence, with increased functional 

connectivity between the right HC and the left and right LP relative to rest. However, for 

simulations with high spatial coherence, a similar effect was found to be nearly statistically 

significant, with increased functional connectivity between the right HC and left LP. 

Additionally, near significant effects were observed when using the PCC as a seed ROI, showing 

increases in functional connectivity with the left and right HC, as well as right LP. The increases 

in PCC-based functional interactions during mental simulations with a high degree of spatial 

coherence is suggestive of an increased demand to integrate allocentric and egocentric spatial 

information into a holistic representation that can be used to mentally simulate movement (P. 

Byrne et al., 2007; Marchette et al., 2014). Together, these results add to a growing body of 

literature on the dynamic nature of the DMN (Andrews-Hanna et al., 2010; Bellana et al., 2017; 

Fornito et al., 2012), indicating that changes in the functional connections, particularly involving 

PCC, or either left or right LP, are necessitated by the cognitive processing demands of mentally 

simulating movement through a spatiotemporal context. 

Comparing the functional interactions between the HC and regions of LP observed in 

chapter 3 and 4, it is plausible that the effects identified in chapter 3 better approximates the 

changes in network interactions during mental simulations of different visual fidelity. The gPPI 

analysis in chapter 3 was not constrained to a prior ROIs, instead identifying clusters of voxels 

across any region of the brain that were represented by the gPPI model. In chapter 4, the analysis 

was constrained to a priori LP ROIs, which bordered with the LP/angular gyrus cluster identified 

in chapter 3. As such, the observed increases of functional connectivity between the HC and LP 
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relative to rest periods, but not between mental simulations with high vs low vividness or spatial 

coherence, suggests that the functional coupling of HC and LP is necessitated by generating 

mental simulations, but that the specific neural mechanism associated with generating a higher 

representational fidelity was not properly captured by the LP seed in chapter 4.  

5.2 Bridging results with models of memory function 

The results from each chapter support the general perspective of the HC in generating and 

reinstating the spatiotemporal context of a mnemonic representation, and that HC-cortical 

interactions underlie feature reinstatement (Ekstrom et al., 2014; Hassabis & Maguire, 2007; 

Nadel & Moscovitch, 1997; Rosenbaum et al., 2009; Squire & Zola-Morgan, 1991). However, 

these findings also suggest an important extension to existing theoretical models by showing that 

the role of the HC in encoding and reinstating spatiotemporal information is flexible, varying in 

relation to encoding demands and how efficiently environmental and episodic features can be 

reinstated and organized into a mnemonic representation. This flexibility can provide critical 

insights into the functional role of the HC in relation to mnemonic representations, and more 

broadly suggests that the brain is able to adapt to task demands by reconfiguring patterns of 

functional interactions within and between neural networks. 

 The standard model (Squire & Zola-Morgan, 1991) and multiple trace theory (MTT) 

(Nadel & Moscovitch, 1997) of memory function both theorize that the HC is unique in its 

capacity to encode and represent the spatial context of a memory through patterns of neural 

activity. The two models differ in their prediction of HC involvement in remote memories, 

however. The standard model proposes that consolidation of cortical-cortical interactions over a 

long period of time leads to long term potentiation, resulting in a diminishing role of the HC in 

retrieving remote memories. Conversely, MTT predicts that the HC is always required to provide 
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the spatial context of a memory trace, regardless of memory age. Research on memory 

performance in both amnesic patients and healthy people has widely supported the proposal of 

MTT (Moscovitch et al., 2016). As such, the results of the analyses here will only be discussed 

in the context of MTT. 

 Although MTT posits the unique role of the HC in encoding and representing the spatial 

context of an episode, it also theorizes that gist, or schematic-like, spatial representations do not 

necessitate HC involvement. Schematic representations lack perceptual details but in some cases 

can provide sufficient spatial information for navigation (Kolarik et al., 2016; Winocur & 

Moscovitch, 2011). The data from chapter 2 provides a novel perspective on this dual-

representation framework in MTT, suggesting that initial schematic representations of spatial 

features are formed through increased levels of functional interactions between regions across 

the brain. These distributed interactions are associated with an increased role of the HC as a 

connector hub at the inter- and intra-module level, where it putatively works to encode a neural 

pattern that indexes cortical processing relating to environmental features, as well as the spatial 

organization of such features. As encoding occurs, and these features are integrated into a 

mnemonic representation, the brain reconfigures into a more robust modular state, characterized 

in part by decreasing levels of global connectivity. This topological reconfiguration may be due 

to a decreased demand to integrate environmental information into existing 

features/representations, or, speculatively, may underlie a change in component processing 

(Cabeza & Moscovitch, 2013), where rather than attempting to integrate environmental 

information, the detail and organization of features encoded in a representation are monitored 

and contrasted against environmental information being experienced as a person navigates a 

route (Spiers & Maguire, 2008). In the context of MTT, these findings suggest that the role of the 
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HC in memory encoding and retrieval is not singular, as would be predicted from its original 

formulation (Nadel & Moscovitch, 1997), but varies based on integrative demands and is 

putatively associated with a more general mechanism across the brain that facilitates state shifts 

in network topology to encode and represent environmental and episodic features. 

 The results from chapter 3 are also informative to tenants of MTT. Here, it was observed 

in the gPPI analyses that HC-cortical interactions were associated with differences in 

representational fidelity. As such, it suggests that HC-cortical interactions, rather than HC 

functioning alone, are necessary for the reinstatement of highly visual and spatially coherent 

mnemonic representations. If it were the case that spatial computations in the HC alone indexed 

the organization of environmental features, there would be no predicted differences in the 

patterns of functional connectivity with the HC as those spatial computations would be required 

in all cases. While this finding emerged through an analysis of mental simulations, rather than 

mental representations per se, and therefore requires a higher degree of goal-oriented 

manipulation than the simple reinstatement of a representation, the degree of manipulation was 

consistent across trials as both high and low vividness/spatial coherence trials had the same task 

demands. As such, differences in neural processes between trials should be interpreted as 

differences in representational fidelity. To this extent, the findings indicate that HC-based 

functional interactions facilitate the reinstatement and organization of environmental features. 

However, at a broader network level, changes in HC centrality and neighborhood efficiency were 

only observed in the case of differences in vividness. This finding has two important 

implications: first, organizing spatial features into a coherent representation does not appear to 

require more widespread functional interactions outside of those identified in the gPPI analysis; 

second, the reinstatement of perceptual aspects of environmental features does require more 
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widespread functional interactions with the HC, supporting the proposal in MTT that a HC-based 

index facilitates reinstatement of environmental features processed outside of the HC, and that 

schematic (or low detail) representations can be reinstated through increased functional 

interactions between non-HC regions of the memory network. 

 Although the dual-representational framework of MTT accommodates variation in 

representational fidelity, both the scene construction (Hassabis & Maguire, 2009) and detail 

generation and binding (Rosenbaum et al., 2009) hypotheses provide a more comprehensive 

theoretical perspective to contextualize the results from chapter 3. Scene construction theorizes 

that the common cognitive function of the HC-cortical network observed in navigation and 

episodic memory tasks involves the construction of a mental scene. The constructive process of 

generating a mental scene is not the output of a single brain region such as the HC, but the result 

of network interactions occurring in PFC, PCC, HC, and parietal cortices (Hassabis & Maguire, 

2009). However, research since its proposal has focused primarily on understanding component 

processes within regions of the network (e.g. Brown et al., 2016; Marchette et al., 2014) rather 

than how dynamical network processes associate with variability in the scene construction. The 

results from this thesis address this limitation and show that the reinstatement of perceptual 

details and the ordering of environmental features is accomplished through changes in network 

interactions. Specifically, increased levels of functional coupling between HC and LP/angular 

gyrus is associated with higher fidelity scene construction, putatively through better coordination 

between neural codes in the HC indexing representational information and processes in 

LP/angular gyrus allowing the elaboration, transformation, and manipulation of representational 

information. Further, increases in HC centrality and decreases in non-HC functional interactions 

within a HC-based neighborhood were related to more vivid mental scenes, indicating that HC-
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mediated functional interactions are associated with constructing mental scenes with a high 

degree of perceptual detail. Intriguingly, and similar to the interpretation of schematic 

representations in MTT, it appears that low detail spatial representations can be generated, at 

least partially, through increased levels of non-HC interactions within a memory network. More 

specifically, if the HC singularly provides the computations needed to construct a mental scene 

with highly detailed environmental features, the prediction would be that high vividness 

representations are associated with increased levels of HC centrality within a memory network, 

as was found in chapter 3, but that the topological organization of non-HC interactions within the 

same network should remain stable between conditions. However, lower values of HC centrality 

in simulations with low levels of vividness were associated with increased local efficiency 

values, suggesting that the other regions of the memory network compensate for decreased HC 

involvement in coordinating information flow by increasing the degree to which they interact 

with other components of the network. In the context of scene construction, this confirms the 

prediction that cooperative dynamics in the memory network facilitate the generation of a mental 

scene, but extends it by showing that information flow within the memory network vis-à-vis the 

HC facilitates the construction of highly detailed mental scenes. 

 Although the detail generation and binding hypothesis shares many of the tenants of 

scene construction, it makes two important predictions that differ. First, it suggests that 

schematic representations are able to be generated without HC involvement. As previously 

outlined, this is supported by the data presented in chapter 3, where mnemonic representations 

with lower amounts of perceptual details were associated with lower levels of HC centrality. 

While the HC was still functionally coupled with other regions during low vividness simulations, 

and is therefore not a direct assessment of the schematic representation hypothesis, it does 
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support the general proposal that the HC contributes to a high resolution reinstatement of 

perceptual details in a mnemonic representation through increased levels of information 

coordination. Second, the detail generation and binding hypothesis predicts that the sequential 

binding of event components, rather than specifically the spatial context per se, is provided by 

HC computations. Given the spatial nature of the task, it would be improper to formulate 

conclusions in a spatial vs. non-spatial manner. However, the results in chapter 3 on spatial 

coherence provide some insight into how this process may occur. The findings that there were no 

differences in HC centrality or the local efficiency of a HC-network when comparing simulations 

with low and high spatial coherence suggests that the ordering of environmental features in the 

mnemonic representation is not accomplished through HC computations per se. If that were the 

case, the prediction would be higher levels of information flow vis-à-vis the HC should 

associated with increased levels of spatial coherence. Rather, the data suggest that the ordering of 

environmental features is accomplished though HC-cortical interactions focused primarily on 

LP/angular gyrus. In this view, the neural codes in the HC indexing spatial information of 

environmental features are more effectively organized through information exchange with 

LP/angular gyrus. Deficits in generating coherent narratives (Rosenbaum et al., 2009) or mental 

scenes (Hassabis, Kumaran, Vann, & Maguire, 2007b) observed in amnesic patients may 

therefore be due to a loss of neural codes that are typically manipulated and organized through 

HC-LP/angular gyrus interactions, rather than a loss of putative HC computations correctly 

ordering feature information in a representation. 

 The dynamic nature of neural systems supporting memory function identified in this 

thesis provide some of the first empirical support for the proposals by Ekstrom and colleagues 

(Ekstrom et al., 2014). As predicted, the information processing role of the HC adapted based on 



96 

 

encoding demands, changing from a more central component of intra- and inter-network 

modules when encoding demands were highest to a less central role as inter-regional information 

flow between components of the memory network increase. This suggests that the computations 

for the spatial context of a mnemonic representation are not isolated to the HC, but are at least 

partially distributed, such that encoding demands are associated with non-HC changes in 

functional interactions within the memory network. Additionally, in line with predictions from 

Ekstrom and colleagues (Ekstrom et al., 2014) and counter to the scene construction hypothesis, 

the composition of the neural networks supporting the generation of a mnemonic representation 

that is highly spatial appear to be dynamic, where the degree of functional interactions between 

network components adapts in a contextual manner based on current task demands. Although 

preliminary, these results suggest that mnemonic representations are indeed associated with 

dynamical systems in the brain, and that more complex forms of information integration occur 

rather additive forms of component processing. 

 Chapter 4 investigates that topological overlap between the putative scene construction 

network and the DMN. Here, the data suggest that the DMN is not a static network as had been 

previously proposed (Fox et al., 2005; Raichle et al., 2001), but one that also displays context 

dependent adaptability in terms of functional interactions between network components. During 

mental simulations which required the construction of elaborate mental scenes, the HC displayed 

statistically non-zero correlations with all regions of the DMN, whereas there were only 

statistically non-zero correlations between each HC ROI during rest. Moreover, HC-LP 

interactions were related to representational fidelity, increasing the degree of functional 

connectivity relative to rest during simulations with low and high vividness and spatial 

coherence, albeit the correlation in high spatial coherence simulations only approached the 
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statistical threshold. Together, these results suggest that the putative overlap between the DMN 

and the core network supporting the generation of mnemonic representations is limited and that 

contextual changes in DMN functional connectivity are associated with constructing mnemonic 

representations. In line with the scene construction hypothesis, this suggests that functional 

interactions between HC, PCC, and LP are necessary for generating the spatiotemporal context 

of a mnemonic representation. 

5.3 A dynamical view of memory function 

Collectively, the results presented in this thesis argue for a dynamical view of the neural 

systems supporting memory function, where adaptability in the configuration of functional 

interactions within and between neural networks allows for contextual changes underlying how 

environmental and episodic information is encoded and integrated into a holistic mnemonic 

representation, and then subsequently utilized in a goal-directed manner. While various tenants 

of the outlined theoretical models were supported, they provide limited hypotheses to explain 

how the configuration of neural systems adapts to provide contextual shifts in information 

processing. A plausible explanation for this is the theoretical models were formulated prior to a 

recent surge in theoretical and methodological advances to understand dynamical network 

processes in the brain. As such, each model applies a more ridged framework to understand 

component processes and output functions of the brain regions and networks subserving memory 

function. However, using the data presented in this thesis and recent empirical findings, it is 

possible to articulate a theoretical perspective that is more inclusive of the complex and dynamic 

basis of neural processes supporting the capacity to generate and manipulate mnemonic 

representations. 
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 It is important to highlight the spatial nature of the tasks used in this thesis prior to 

developing theoretical insights. While spatial navigation has been proposed as a model system to 

study memory function (Chersi & Burgess, 2015), it is important going forward to investigate the 

following hypotheses using tasks that are inclusive of other categories of feature information 

composing episodic events. Given the overlap in neural systems identified during spatial 

navigation tasks and episodic memory/future thinking tasks (Buckner & Carroll, 2007; Hassabis 

& Maguire, 2009; Schacter et al., 2012), it appears reasonable that similar network dynamics 

would occur. However, this is speculative and must be evaluated empirically. In order to 

facilitate this process, the analytical pipeline and code for analyzing and visualizing datasets has 

been made freely available online (https://github.com/A2ed/network_reconfig).  

When environmental and episodic features of an event need to be encoded, the 

topological structure of networks distributed across the brain reconfigure to a state allowing for a 

higher level of information integration. This is accomplished through increases in 

communication efficiency at the global and local neighborhood level, and increases in the intra- 

and inter-module centrality of critical hub regions such as the HC. This state shift allows for 

experienced environmental and episodic features represented in neural patterns across sensory 

and associative brain regions to be indexed by the HC. As the neural codes for mnemonic 

representation is formed and the spatiotemporal context generated, brain networks reconfigure to 

become more modular and decrease in global connectivity. This fractionation is coupled with 

decreases in HC centrality at the intra- and inter-module level, and increases in communication 

efficiency between components of a HC-based memory network, as a putative neural index of 

event features is stabilized. Similar to MTT and proposals elsewhere (e.g. Buchel et al., 1999), 

the featural basis of a mnemonic representation is proposed to be based on the interactions 
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between the HC and areas of the cortex, rather than the neural code in the HC alone. The state 

shift to modular, local mnemonic processing provides a putative protective mechanism against 

interference of competing memory traces, where pattern differentiation processes in the HC 

allow for a multitude of partially orthogonal neural codes using shared environmental features to 

be generated (Favila, Chanales, & Kuhl, 2016; Kyle et al., 2015).  

In the context of the spatial task used here, it is plausible that unique route information 

(e.g. which way to turn) is encoded relative to shared environmental features such as landmarks 

or geometric cues (Brown et al., 2010), allowing for a composite mnemonic representation of the 

city layout to be assembled through integration of multiple, partially overlapping neural codes 

representing different aspects of the city layout (Derdikman & Moser, 2010). This process is 

proposed to occur largely within a modular HC-cortical memory network, where the information 

processing emphasis dynamically reconfigures from a state of global and inter-module 

information integration during the initial encoding of neural representations (here, low 

confidence trials), to one where the neural codes of overlapping multi-featural representations 

are differentiated based on patterns of information flow within a local HC neighborhood (here, 

high confidence trials). The local patterns of functional interactions between non-HC 

components of the memory network are posited to provide a schematic like representation of 

environmental features, whereas HC-mediated information processing allows for high fidelity 

neural representations (Rosenbaum et al., 2009; Yonelinas, 2013) that are modifiable based on 

task context. 

 The reinstatement and simulation of multi-featural mental representations is posited to be 

constructive, as proposed elsewhere (Addis et al., 2007; Arnold et al., 2016; Hassabis & 

Maguire, 2007; Rosenbaum et al., 2009). This process requires that feature information is 
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contextually reinstated based on task demands, allowing for holistic, goal-oriented mnemonic 

representations to be generated by binding together multiple, partially overlapping neural codes 

using shared feature information. This assembly process provides flexibility in the content and 

organization of feature information, allowing one to reconstruct past experiences, anticipate 

future scenarios in a familiar spatiotemporal context, or envision hypothetical world states due to 

novel assemblies of feature details. Critically, this process is not theorized to be additive, such 

that two neural codes are co-activated and their associated feature information added together 

(Ekstrom et al., 2014). Rather, the process is posited to be complex, allowing for a novel 

synthesis and binding of feature information that produces output behavior that is more than the 

sum of its parts. For example, novel routes between landmarks are theorized to occur by 

integrating route specific environmental features into a composite representation that allows for 

an inference on a possible new trajectory. The generation of a task-oriented representation 

derived from multiple, partially overlapping neural codes suggests that there will be variability in 

the degree to which feature information can be actively bound together. This variability has been 

previously demonstrated, where the degree of representational fidelity is predictive of how 

quickly a person can simulate an event such that high fidelity, and therefore more integrated 

representations, allow for quicker mental simulations (Arnold et al., 2016). 

 The reinstatement and organization of feature information occurs through functional 

interactions between the HC and LP/angular gyrus, as well as within a local HC neighborhood. 

LP/angular gyrus is theorized to allow for contextual organization of multiple neural codes in the 

HC that are bound into a holistic representation. That is, LP/angular gyrus provides a putative 

representational buffer to input and manipulate neural indexes in the HC. The sequential 

reinstatement of neural indexes in the HC simultaneously elicits reactivation in 
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sensory/associative regions of the brain that code for feature information bound within the 

mnemonic representation. While it is theorized to still be possible to generate task-oriented 

representations with limited HC coordination by increasing the functional interactions between 

other regions of the memory network, information flow vis-à-vis the HC allows for higher 

resolution reinstatement of perceptual details of feature information. This is because the HC is 

posited to uniquely index the neural pattern of activity in regions throughout the brain used for 

feature reinstatement, whereas with lower HC communication coordination, co-activation and 

feed forward/backward mechanisms for information flow between non-HC regions rely on less 

differentiated neural codes in other brain areas and are therefore subject to more interference, 

slower reaction times during reinstatement, and less perceptual detail. Critically, the removal of 

the HC interferes with both the organization and reinstatement of feature information, due to a 

loss of pattern differentiation (Kyle et al., 2015) and completion (Horner et al., 2015) processes 

allowing for multiple neural indexes to be organized through HC-LP/angular gyrus interactions, 

instead relying on feature reinstatement using more schematic and less differentiated neural 

indexes in other regions of the memory network.  

5.4 Future research 

While it is possible to articulate a theoretical perspective of memory function based in 

part on the findings from this thesis, it should be emphasized that much more research is needed 

to understand dynamical processes occurring during the generation and reinstatement of 

mnemonic representations. Given the breadth of past memory research, as well as its central role 

in human cognition, there are various additional research areas where modeling dynamical 

processes will be highly informative. Below are some of the more pertinent areas given the 

current findings. 
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 Although the HC is putatively the primary brain region supporting information flow 

during memory functioning (Hassabis, Kumaran, Vann, & Maguire, 2007b; Mišić et al., 2014; 

Rosenbaum et al., 2009), other regions appear to act as additional convergence zones with 

important implications for dynamical network processes. In the context of spatial 

representations, another region of likely importance is the retrosplenial cortex (RSC). This region 

is part of the purported rich club of brain regions that are characterized by a high degree of inter-

regional connectivity at the structural and functional level (Grayson et al., 2014). Past research 

has shown that RSC is involved in maintaining object locations relative to oneself during 

movement (i.e. spatial updating) (Burles, Slone, & Iaria, 2016), putatively through a capacity to 

anchor internal representations of an environment to local environmental features (Marchette et 

al., 2014). As such, RSC appears to be an important brain region, similar to the HC in hubness 

and spatial processing, that may provide critical insights into the integrative processes occurring 

during the generation and reinstatement of mnemonic representations based in a spatiotemporal 

context. 

 In terms of memory processes, perhaps the most important to investigate is the effect of 

consolidation on network dynamics. Consolidation is posited to alter the neural basis of 

mnemonic representations through an initial change in synaptic connections within the first few 

hours of memory formation, as well as more gradual, long term system changes to how 

memories are represented across different regions of the brain (Frankland & Bontempi, 2005). 

As such, it seems plausible that consolidation would alter how information is communicated and 

integrated both within and between network modules in relation to representation processing. 

Intriguingly, the angular gyrus has previously been implicated in converging multiple 

representations into a holistic one during short term consolidation (Wagner et al., 2015), 
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suggesting that the multitude of neural indexes, presumed to be dynamically operating in the 

spatial task used here, may consolidate over time into a more singular representation via HC-

angular gyrus interactions. Additionally, the incorporation of new information such as 

environmental features into existing mnemonic representations has been shown to influence 

consolidation processes (Tse et al., 2007). Future research using a similar spatial navigation task 

will be able to evaluate the influence of both consolidation and prior environmental knowledge 

on network dynamics. 

 The theoretical perspective and analytical techniques developed in this thesis also have 

potential utility in applied and clinical frameworks. Neuro-stimulation studies using methods 

such as transcranial direct current stimulation have shown benefits on memory performance 

when cognitive training paradigms are coupled with cortical stimulation (Jones, Stephens, Alam, 

Bikson, & Berryhill, 2015). This suggests that the neural mechanisms are in some way enhanced 

through stimulation. An interesting area of future research is to evaluate the effects of neuro-

stimulation on network dynamics by comparing pre- and post-stimulation communication 

efficiency measures to assess whether stimulation enhances the integrative capacity of global and 

local networks, as well as convergence zone regions such as the HC and RSC, and how 

stimulation induced topological changes relate to memory performance (Kim, Ekstrom, & 

Tandon, 2016).  

Additionally, measures of communication efficiency and integration during the 

generation and reinstatement of mnemonic representations may be informative for understanding 

functional reorganization of memory networks after brain injury, in the presence of lesions to 

memory related regions of the brain, or in neuro-degenerative diseases such as Alzheimer’s 

Disease (Addis et al., 2009). Past work has shown that functional reorganization of semantic 
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memory networks is associated with the preservation of language skills in patients with medial 

temporal lobe epilepsy (Protzner & McAndrews, 2011), suggesting that there may be some 

degree of network reorganization associated with other memory impairments. Quantifying graph 

theoretical measures associated with putative long term changes in network dynamics may 

illuminate how functional reorganization of different neural systems allows for the partial 

preservation of memory function in some clinical cases. 

Healthy aging has also been associated with functional changes in HC-based networks. 

Putatively, these network changes underlie age-related decreases on various memory tasks 

involving the reinstatement of spatiotemporal information (Addis et al., 2008). By evaluating the 

changing role of the HC within global and local networks, as well as the topology of HC-based 

neighborhoods, it may be able to precisely delineate how changes in network dynamics occur in 

relation to memory performance. One possible candidate for this is the adaptability of both 

global networks and the HC, where more ridged network and node topologies may underlie age-

related changes in flexibly shifting to networks states (Mcintosh, Kovacevic, & Itier, 2008) that 

allow for optimization of encoding, reinstating, and manipulating feature information into goal-

oriented mnemonic representations used to guide behavior into the future. 
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Chapter 6: Tables 

Table 1. Post simulation questionnaire (PSQ) items listed by category 
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Table 2. List of brain regions showing increased functional connectivity related to 

simulation fidelity 
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Chapter 7: Figures 

 

 

7.1 Task design for encoding study.  

(a) Top-down view of the city. During the exposure phase, participants viewed a video of passive 

first-person movement along the city perimeter outlined in blue. Also displayed are the locations 

of the five target landmarks. (b) During the encoding phase, participants navigated between the 

five target landmarks. The city was composed of buildings using variations of three architectural 

styles, while the target landmarks were selected to be visually salient. (c) Block sequence order 

during scanning. Each trial began with a fixation cross, followed by a reinstatement block in 

which one of the target landmarks was displayed and participants rated on a scale of 1-4 their 

confidence in knowing its location. After, participants were instructed to navigate to the 

landmark as quick as possible.  
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7.2 Global network reconfiguration during representation encoding.  

(a) Increases in the modularity index Q were observed across the whole 335 ROI network in both 

the navigation and reinstatement blocks across all the density thresholds (upper 10%-25% of 

connections in the network). (b) Similarly, there were increased global efficiency values during 



109 

 

the low confidence trials during navigation and reinstatement blocks. (c) This effect was also 

found for the global flow values in both the navigation and reinstatement blocks. Error bars 

represent 95% confidence intervals. 
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7.3 Centrality measures for hippocampal nodes during representation encoding.  

(a) No differences were observed across the density thresholds for the betweenness centrality of 

the left and right hippocampus (HC) in either the navigation or reinstatement blocks. The 

summary statistic (betweenness centrality values averaged across density thresholds) was 

significantly increased during high confidence trials for the left HC during memory 

reinstatement. (b) Increased values of the flow coefficient were observed for both the left and 

right HC in low confidence trials during navigation blocks. Only the summary statistic for the 

left and right HC were significantly increased in low confidence trials during the reinstatement 

period. (c) Across the majority of density thresholds (0.15-0.25) there were increased 

participation coefficient values during low confidence trials for the right HC during navigation 

blocks, but only for the summary statistic in the left HC. The summary statistic was significantly 

increased in a similar manner for the right but not left HC. (d) Across all density thresholds in 

the right HC and for the majority (0.15-0.25) for the left HC, there were increased local 

efficiency values for the hippocampal sub-network during high confidence navigation blocks. 

There were no statistical differences during memory reinstatement. Error bars in all graphs 

represent 95% confidence intervals.  
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7.4 Overview of mental simulation task design.  

(a) The exposure phase was conducted outside of the scanner. Blue line indicates the path 

passive movement the participants viewed. Target landmark location denoted by circular icons. 

(b) Encoding phase occurred inside the scanner and lasted 23 minutes. Each trial cued a target 

landmark and participants navigated to it. Storefronts of five target landmarks shows their visual 

salience compared to the repeating architecture of the city. (c) Timing information for the 

simulation phase. After the initial 12s fixation period, participants were cued with a starting 

landmark (left) and a target landmark (right). They were given 15s to simulate movement 

between the two landmarks in as much detail as possible. Completion of the PSQ was open 

ended as was the subsequent navigation period between the two cued landmarks and the two 

remaining questions of the PSQ. 
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7.5 Results from global network analysis during mental simulation.  

(a) No statistical differences were found between the simulation and navigation blocks in the 

modularity index Q across a range of density thresholds. (b) Similarly, no statistical differences 
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were found except at k = 0.25. However, comparison of the mean values for each block type 

revealed minor differences. Error bars represent 95% confidence intervals. 
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7.6 Results from general psychophysiological interaction analyses on mental simulations.  

(a) Simulations with high visual vividness were found to have increased functional connectivity 

between the right hippocampus (HC) and a cluster located in the superior division of the left 

lateral occipital cortex. Graph on right shows Fisher transformed z-scores for the low vividness 

and high vividness simulation periods. (b) Similarly, increased functional connectivity was 

observed between the left HC and a cluster within both left angular gyrus and the superior 

division of the lateral occipital cortex. Fisher transformed r-values for high and low spatial 

coherence simulations are on the right. Table 6.2 lists regions and number of voxels per region 
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for each cluster. Statistically significant clusters were identified using a voxel height threshold of 

p < 0.001 and a cluster threshold of pFWE < 0.05. Error bars represent standard error of the mean. 
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7.7 Results from hippocampal network analyses on mental simulations.  

(a) No statistically significant differences were found in the betweenness centrality of the left or 

right hippocampus (HC) comparing either low and high vivid or spatially coherent mental 

simulations. (b) Increased flow coefficient values were found during highly vivid simulations in 

the right and left HC across higher density thresholds. (c) Decreased local efficiency values were 

found during highly vivid mental simulations in the right and across the higher density thresholds 

in the left HC. No statistical differences were observed between high and low spatial coherence 
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mental simulations. Density thresholds represent the percentage of strongest connections in each 

network. Error bars represent 95% confidence intervals. 
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7.8 Topological overlap of default mode network during mental simulations and resting 

blocks.  

ROI-to-ROI functional connectivity rings for the left (left side) and right (middle) hippocampus 

(HC), and the posterior cingulate cortex (right side; PCC). (a) t-statistics showing statistically 

significant non-zero correlations between regions during rest blocks. (b) t-statistics showing 

statistically significant non-zero correlations between regions during mental simulation blocks. 

All visualized connections are based on Fisher transformed r-values and tested using a threshold 

of pFDR < 0.05. 
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7.9 Comparison of effect sizes for ROI-to-ROI functional connections based on mental 

simulation fidelity.  

Top row displays increased effect sizes for correlations in low vividness and high vividness 

simulation blocks relative to rest between (a) the right hippocampus (HC) and the left lateral 

parietal (LP) cortex and (b) the right LP (b). For simulations with low and high spatial coherence 

ratings relative to rest, there were increased effect sizes between (c) the right HC and the left LP, 

as well as between (d) the right HC and right LP for low spatial coherence simulations. 

Additionally, for simulations with high spatial coherence relative to rest, there were increased 

effect sizes for correlations between the posterior cingulate cortex (PCC) and (e) the left HC, (f) 

the right HC, and (g) the right LP. * p < 0.05 and ** pFDR < 0.05.  
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