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Abstract

The present work summarizes information about Interest Rate Market and Energy Market.

A mathematical framework is the main aspect considered here.

Different kinds of stochastic models are described for both markets. In addition, an

introduction is given to a very interesting approach developed by Hinz et al. in 2005. The idea

is in an application of interest rate market techniques to the energy market. Comparing this

approach to the standard stochastic model we obtain the connection between two different

sets of parameters. This significantly extends the possibilities of estimating the crucial

parameters of the model.

In the final chapter we explore two different ways of using Heath-Jarrow-Morton frame-

work. Firstly, we estimate parameters of the model using a specific form of volatility function

and sweet crude oil forward prices. Finally, we examine the general form of volatility func-

tion of natural gas forward prices. Then using Principal Component Analysis we obtain the

main principal components which allow us to reproduce prices of forward contracts.
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Chapter 1

Interest Rate Market Models

Interest rate market is an influential component of a general financial market.

By most people a term ’interest rate’ could be associated with savings account in bank

only. In reality, however, this concept is much wider. Besides money market rates, it can

refer to U.S.Treasury yields, zero-coupon yields, forward rates, swap rates. [25]

Let us see what this market consists of:

• Money Market

Money market is a place for short-term (no more than 13 months) borrowing

and landing. Financial instruments which are traded are called ’papers’. They

have a very high liquidity and could be easily transformed into cash.

Money market could be also associated with a savings account for institution.

We need to mention however that in USA a term ’money market account’ refers

to a kind of savings account for individuals but with some special conditions.

The difference is in compounding, which for individuals is not continuous. So

under ’money market’ in fixed-income modelling we assume a savings account

for institution with continuous compounding [25].

Here is a list of common instruments of money market:

– Certificate of deposit - deposit for a fixed time period at a corre-

sponding (to a term of deposit) rate of interest, which is called

’a term rate’.

– Treasury bills (also called T-bills) - Short-term debt obligations

with specific maturities (four weeks, three months, or six months),
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issued by the government of United States . They have no inter-

est rate, but are sold on a discounted basis, which for a holder

of T-bill means to pay less and get more at the maturity.

– Repurchase agreements (repos) - A contract between an owner

of securities and another company to sell this securities and buy

them back later at a higher price [15].

– Commercial paper - Short-term corporate debt with maturity

varying from 30 days to 270 days [22].

– Interbank loans - loans from one bank to another even across

international boarders. The most popular rates for this type of

loans are (See e.g. [17]):

∗ London Interbank Offered Rate (LIBOR) - an av-

erage rate at which leading banks in UK lend

money to each other for overnight;

∗ Federal funds rate - a rate at which banks in United

States with excess reserves lend to banks with

temporarily insufficient reserves;

∗ EURIBOR - a rate at which important European

banks give to each other money denominated in

Euros.

– Eurodollar deposits - Deposits in U.S. dollars placed at a bank

outside of the United States (or in U.S. International Banking

Facilities). Interest rate for this kind of money market instru-

ment is LIBOR.

– Federal agency short-term securities - Short-term securities pro-

vided by eight major agencies, sponsored by U.S. government.

2



• Bond Market

A bond is the main instrument of a bond market. One of the meanings of

the word bond is a guarantee, which fully describes a principle by which this

instrument works. A bond is a financial contract which guarantees to its buyer

to receive a predefined amount of money at an expiry of this contract. The

amount of money is called a principal. In some contracts besides a principal

buyer periodically receives some interest payments, which are called coupons.

In cases when there are no coupons paid we deal with zero-coupon bonds.

There are several different types of bonds, but in this work we deal mainly

with the latter type.

There are five individual bond markets, defined by SIFMA (the Securities

Industry and Financial Markets Association):

– Corporate

– Government and agency

– Municipal

– Mortgage backed, asset backed, and collateralized debt

obligation

– Funding

Bond market’s players are:

– Institutional investors

– Governments

– Traders

– Individuals

3



• Stock Market

Stock market (or equity market) is a public network of financial transactions

for the trading of company stocks (shares) and derivatives at an agreed price;

these are securities listed on a stock exchange as well as those only traded pri-

vately. Participants of this market are individual retail investors, institutional

investors (for example: mutual funds, banks, insurance companies and hedge

funds) and also publicly traded corporations trading in their own shares.

• Currency Market (Foreign currency exchange, forex, FX)

Currency market is a global market for currency exchange. Market partic-

ipants are: commercial companies, central banks, foreign exchange fixing,

hedge funds, investment management firms, retail foreign exchange traders,

non-bank foreign exchange companies and money transfer/remittance compa-

nies.

• Retail Financial Institutions and banks

All of the above mentioned markets and their instruments are based on a key concept of

’interest rate’. This implies that knowledge about the behavior of interest rates can give

a lot to a person who wants to borrow/lend money.

Interest rate models are used to predict future interest rate dynamics. Interest rate models

are mathematical models, which were defined in [26] as an analogy to physical models (for

example, plane or train models):

Mathematical models perform much the same function. They

represent, in mathematical equation form, some activity or ob-

ject. We use them because we can apply some general theory to

learn more about the activity or object described by the equa-

tions, or to predict the behaviour of the activity or object.
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We will consider particular types of Interest Rate Models later on. Every model is charac-

terized by specific parameters, which are needed to be found. Here, historical data can be

used to calibrate model’s parameters. Historical data can be obtained from many sources.

There are some regulations and definiteness in financial market. For example, LIBOR

rates are calculated only by an official LIBOR rates provider - ”Thomson Reuters Corpora-

tion” - on behalf of the British Banker’s Association (that is why rates are called bbalibor).

The following information was taken from BBA’s website bbalibor.com:

“BBA LIBOR is a benchmark giving an indication of the average rate at which a leading

bank can obtain unsecured funding in the London interbank market for a given period, in a

given currency”.

There are 10 currencies with 15 maturities for each. The following diagram represents

graphs of historical BBA LIBOR rates. Rates were taken monthly for a period of time

starting from September 1989 and ending in January 2012 for Canadian dollars. Each

curve corresponds to different terms of borrowing/landing (1 month, 2 months, 3 months, 6

months,12 months).

Figure 1.1: Historical LIBOR rates for different maturities

It appears that in a long term LIBOR rates follow a stochastic process.

LIBOR rates are affected by macroeconomic factors. We can observe that through a
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prism of Bank of England rates, since these latter rates reflect a state of global economics.

We see on Figure 1.2 that LIBOR rates are co-vibrating with official Bank of England rates.

Figure 1.2: Historical Bank of England rates and LIBOR rates for different maturities

As was said in [17] national banks can manage a state of the economy by selling or

purchasing government debt. It has been happened until recently. And nowadays central

banks of many economically developed countries operate by the use of repurchase agreements

in such cases. Another way to help banking system is a direct lending to financial institutions

by national banks. Rates are predetermined and as was seen from 1.2 they have 2 interesting

peculiarities: national bank’s rates change not so frequently and are less attractive than rates

available in money market.

The following demonstration will expose another interesting property of interest rate

process. Let’s see how BBA LIBOR rates behave during some short term.
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Figure 1.3: Historical LIBOR rates for July 2011

On Figure 1.3 there are graphs of BBA LIBOR rates for every day of July of 2011 for

different maturities.

Here we see that on such a short term of observation BBA LIBOR remain almost constant.

It has a very small variation around some certain value, which demonstrates that the process

of LIBOR rates is a mean-reverting stochastic process.1. At first glance it seems that interest

rate dynamics behaves chaotically. Indeed, it could be modeled better or worse by a variety

of stochastic models. Another problem is how to choose (or to create) the best model. To

determine that we have to take into account features and a habitat of the rate.

1.1 Short Rate Models

In this section we will consider types of models which describe short rate dynamics. As was

said in [25]:

Short-rate models hold a special place in fixed-income mod-

elling: they are the first generation of interest-rate models, and

some of them still play active roles in today’s applications.

The short rate, usually written rt, is the (annualized) interest rate at which an entity

can borrow money for an infinitesimally short period of time from time t. So the process of

1rates are low at this time of observation, so volatility is low too. It would be interesting to see Year 2007
for example, but BBA LIBOR daily rates are given only for the last 6 months
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interest rates can be considered as a continuous-time stochastic process.

Let us define a filtered probability space:

(Ω,F , (Fn)n≥0,P), (1.1)

where Ω - a space of possible outcomes (applying to financial market it is some market

condition), F - σ-algebra of subsets of Ω (group of events, observed on the market), P -

probability measure on F , F = (Fn)n≥0 - filtration (a stream of σ-algebras such that:

F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn ⊂ ... ⊂ F , (1.2)

Fn - all possible outcomes, observable until the moment n inclusively, in other words Fn is

an available information on the market until the moment n).

Consider a Brownian motion Wt defined on the probability space (Ω,F , (Ft)t≥0,P) such

that:

• W0 = 0, Wt is a continuous function of time t,

• increments (Wt−Ws) are independent and normally distributed random vari-

ables with mean 0 and variance (t− s),

• Wt is a stochastic driver for the process of interest rates.

Many types of models driving short rates are defined using the process of Brownian

motion. They could be divided into two groups :

1. Short rate is described by diffusion equations:

drt = a(t, rt)dt+ b(t, rt)dWt. (1.3)

2. Short rate is described by diffusion equations with jumps:

drt = a(t, rt)dt+ b(t, rt)dWt +

∫
c(t, rt−, x)(µ(dt, dx)− ν(dt, dx)). (1.4)
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Where the following functions are used:

• a(t, rt) and b(t, rt) are both measurable functions of t and rt,

• µ(dt, dx) - a Poisson random measure,

• ν(dt, dx) - a compensator of µ(dt, dx).

1.1.1 Single factor models

Even though most players in the interest rate market will agree that the model ought to

have at least two drivers (a short-term rate and a long-term mean rate), they are still

implementing one-factor models assuming that the long-term mean rate remains fixed over

time. The reason is that such models take much less time to get a result, so the cost of

implementation dominates benefits [19]. That is why we will consider some single factor

models first.

Diffusion models

This type of models corresponds to the short rate dynamics, described by diffusion equation

(1.3). The short rate rt here is modelled under the risk-neutral probability measure, and a

Brownian motion Wt is the risk-neutral Brownian motion. The dimension of Wt is one since

we are talking about single-factor short-rate models, i.e. the models with only one source of

risk.

Vasicek (1977)[23] The first representative of a class of diffusion models is a Vasicek model,

which was introduced by Oldrich Vasicek in 1977. This model is a classical case of one-factor

models for interest rate dynamics. It is described by stochastic differential equation:

drt = α(β − rt)dt+ σdWt (1.5)

One can see that (1.5) is a special case of diffusion equation (1.3) with a(t, rt) = α(β − rt)

and b(t, rt) = σ, where α, β, σ are positive constants. These constants denote the following:
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• β - the level which interest rates revert to. It is called level of mean reversion.

• α - the velocity at which paths of interest rate dynamics regroup around the

level of mean reversion.

• σ - instantaneous volatility. It reflects an amount of randomness.

The solution of the equation (1.5) is:

rt = e−αtr0 + (1− e−αt)β +

∫ t

0

e−α(t−s)σdWs (1.6)

One of the shortcomings of the above model is that the interest rates can become negative.

This can not happen under regular market conditions (but in some situations it is allowed for

rates to go below zero, for instance, when inflation takes place).That is why Vasicek model

had to be improved. This improvement was made by John C. Cox, Jonothan E. Ingersoll,

Stephen A. Ross in 1985.

Cox-Ingersoll-Ross(1985)[10] In 1985 John C. Cox, Jonathan E. Ingersoll and Stephen A.

Ross extended the previous model. The Cox-Ingersoll-Ross (CIR) model claims that instan-

taneous interest rate dynamics is described by CIR process, CIR namely, a stochastic process

defined by the following differential equation:

drt = α(β − rt)dt+ σ
√
rtdWt. (1.7)

The drift factor, α(β − rt), is exactly the same as in the Vasicek model, but the standard

deviation factor now takes the form σ
√
rt, excludes the possibility of negative interest rates.

If the interest rate rt becomes 0, then diffusion factor σ
√
rt is 0, the drift α(β − rt)

becomes equal to αβ (which is positive constant), so the process rt can only increase. Since

the process defined by (1.7) is not Gaussian, an explicit solution is not available.

Ho-Lee (1986) This model was discovered in 1986 by Thomas Ho and Sang Bin Lee and is

described by the following equation:

drt = αtdt+ σdWt. (1.8)
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An explicit solution of (1.8) can be represented in the following form:

rt =

∫ t

0

αsds+ σWt. (1.9)

Black-Derman-Toy (1980-1990) This model was introduced by Fischer Black, Emanuel Der-

man, and Bill Toy in 1990. However, such kind of models were earlier developed for internal

use by “Goldman Sachs” in the 1980s.

drt = αtrtdt+ σtrtdWt. (1.10)

An explicit solution of (1.10) is:

rt = r0e
∫ t
0 (−αs+

σ2s
2

)ds+
∫ t
0 σsdWs . (1.11)

Hull-White (1990) John C. Hull and Alan White developed this model in 1990.

drt = (βt − αrt)dt+ σtdWt. (1.12)

An explicit solution of (1.12) could be represented in the following form:

rt = e−
∫ t
0 αsdsr0 +

∫ t

0

e−
∫ t
s αsdsβsds+

∫ t

0

e−
∫ t
s αsdsσsdWs. (1.13)

Jump-diffusion models

Jump-diffusion models are models, where interest rates follow a jump-diffusion process.

Robert C. Merton was the first who introduced this type of models.

Jump-diffusion processes are nicely described in a book of Rama Cont and Peter Tankov

’Financial Modelling with Jump processes’ [9]. The following definitions are taken from

there.

A stochastic process of the form:

Xt = γt+ σWt +
Nt∑
i=1

Yi (1.14)

is called a jump-diffusion process. Here
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• (Nt)t≥0 is a Poisson process counting the jumps of Xt,

• Yi - the size of the jump, variables Yi are independent and identically dis-

tributed.

As we see this process consists of a diffusion process and jumps, which occur at random

intervals. Depending on distribution of jumps there is a choice of models to use.

Merton model Jumps in the process (1.14) have a Gaussian distribution: Yi ∼ N(µ, δ2).

Then probability density function of Xt is:

pt(x) = e−λt
∞∑
k=0

(λt)k exp− (x−γt−kµ)2

2(σ2t+kσ2)

k!
√

2π(σ2t+ kσ2)
. (1.15)

Kou model Jump sizes in this model are distributed with a density:

ν0(dx) = [pλ+e
−λ+xIx>0 + (1− p)λ−e−λ−|x|Ix<0]dx, (1.16)

where

• λ+ and λ− corresponds to the decay of the tails for the distribution of positive

and negative jump sizes accordingly.

• p ∈ [0, 1] - probability of an upward jump.

1.1.2 Multi factor models

As was mentioned at the beginning of the previous section - ideally it is not enough for the

model to have just one factor. There was a necessity to develop a model with more than one

factor.

Some of one-factor models and multifactor models were developed in parallel. Since the

presence of multifactor models does not cancel disadvantages of using models with just one

factor.
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Brennan and Schwartz(1982)

A model of Brennan and Schwartz has two factors. The model describes evolution of

’short’, r, and ’long’, l, interest rates. Stochastic differential equations of this evolution are

the following:

dr = (αr + βr(l − r))dt+ rσrdW
r
t , (1.17)

dl = l(αl + βlr + γll)dt+ lσldW
l
t , (1.18)

where W r
t and W l

t are two standard Brownian motions with a correlation coefficient ρ (i.e.

E[dW r
t dW

l
t ] = ρdt).

Longstaff and Schwartz (1992)

This model is also a two factor model. Factors are a short term interest rate, r, and a

volatility of interest rates, σ, defined by the equations:

r = ax+ by, (1.19)

σ = a2x+ b2y, (1.20)

where the processes x and y, in-turn, are defined by stochastic differential equations:

dx = (αx − βxx)dt+
√
xdW x

t , (1.21)

dy = (αy − βyy)dt+
√
ydW y

t . (1.22)

Chen (1996)

Chen model is a representative of three-factors models. The following stochastic dif-

ferential equations define evolution of short interest rate r, its mean µ, and its volatility

σ:

drt = (αt − µt)dt+
√
rtσtdWt, (1.23)

dµt = (βt − µt)dt+
√
µtσdWt, (1.24)

dσt = (γt − σt)dt+
√
σtθtdWt. (1.25)
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Cox Ingersoll Ross

This model has N factors. Interest rate r is represented as a sum of those factors xi.

r =
N∑
i=0

xi. (1.26)

Each factor is described by a stochastic differential equation of regular ’CIR’ form (1.7):

dxi = αi(βi − xi)dt+ σi
√
xidW

i
t , (1.27)

for i = 1, ..., N

Interest rate models, which were described in this section are called equilibrium models,

since they are based on macro economical factors.

Their disadvantage is that they can not automatically price bonds(unless calibration

procedure was done [25]). There is a direct association of a short rate rt with a savings

account in a bank. It is the most popular investment into the money market among general

public [25]. Savings account Bt represents a time t value of a unit of cash, invested at time

0. A term ’money market account’ was developed to separate notions of savings account

for individuals and savings account for institutions. From this moment on we will use the

term money market account only in the latter sense, since we not deal with individuals in a

present work (but keeping in mind that in the US this term is used for individuals accounts

as well but with some restrictions [25]).

With a help of short interest rate rt, money market account Bt can be represented as

Bt = exp

(∫ t

0

r(s)ds)

)
, (1.28)

The rate rt corresponds to a borrowing for an infinitesimal short period of time. The interest

rate depends, however, on the borrowing period, therefore, the necessity of using a new

characteristic arises.
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1.2 Forward Rate Models

A forward rate f(t;T,∆T ) is an interest rate, predetermined at time t for a future lend-

ing/borrowing at time T for a short period of time ∆T . Such future ’lending/borrowing’

contract is called a forward rate agreement. No initial investments participate in such agree-

ment. That is why the lender applies the following strategy ([25]):

• To short P (t,T )
P (t,T+∆T )

units of zero-coupon bond with maturity (T + ∆T ).

The earning therefore is P (t,T )
P (t,T+∆T )

P (t, T + ∆T ) = P (t, T ), which will be used

at the next step.

• To long 1 unit of zero-coupon bond with maturity T (its price at the current

moment t is P (t, T )).

At time T the lender gets 1 unit of cash from having a zero-coupon bond, maturing at time

T , then immediately lends it out for a time-period ∆T under an interest rate f(t;T,∆T ).

At the time T + ∆T gets this loan back, receiving (1 + f(t;T,∆T )∆T ).

To avoid arbitrage on the market a very important condition must be satisfied : a net

cash-flow is equal to 0.

The net cash flow of this strategy is:

1 + f(t;T,∆T )∆T − P (t, T )

P (t, T + ∆T )
. (1.29)

Since it is zero, an expression for f(t;T,∆T ) is:

f(t;T,∆T ) =
1

∆T

(
P (t, T )

P (t, T + ∆T )
− 1

)
. (1.30)

After transition to a limiting case ∆T → 0 we get:

f(t, T ) = −∂ lnP (t, T )

∂T
. (1.31)

f(t, T ) is an instantaneous forward rate.
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Then the price of a zero-coupon bond with the maturity T can be represented in the

following form:

P (t, T ) = e−
∫ T
t f(t,s)ds. (1.32)

Therefore, a pricing model for any zero-coupon bond is completely defined by the model for

an instantaneous forward rate.

At maturity price of zero-coupon bond by definition and as it also follows from (1.32) is

equal to 1, P (T, T ) = 1.

Also it is easy to see the relation between r(t) and f(t, T ):

r(t) = lim
T→t

f(t, T ) = f(t, t). (1.33)

This equation is also known as a condition of consistency of short rates and forward

rates.

1.2.1 Heath-Jarrow-Morton framework

A new generation of financial models was developed by Heath, Jarrow and Morton in 1992,

and were named in honor of them. The models describe evolution of forward rates.

It is more general approach. Short rate models can now be seen as special cases of models

of HJM type. We will consider some cases later in this chapter.

HJM models are also called arbitrage-free models.

From now on a chain of concepts, which were taken from [25] will be used here.

Prices of zero-coupon bond are assumed to be log-normally distributed under some sta-

tistical probability measure P. Then a process of those prices P (t, T ) can be defined by a

stochastic differential equation of the following form:

dP (t, T )

P (t, T )
= µ(t, T )dt+ ΣT (t, T )dWt, (1.34)

where

• µ(t, T ) is a scalar function of two variables t and T ,
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• Σ(t, T ) = (Σ1(t, T ),Σ2(t, T ), ...,Σn(t, T ))T is an (n × 1) matrix of some func-

tions Σi of t and T (i = 1, ..., n),

• Wt is an n-dimensional Brownian motion process under the measure P.

The parameters µ(t, T ) and Σ(t, T ) of (1.34) can be estimated from market data. However,

those parameters may imply arbitrage opportunities on the market. To avoid arbitrage there

is a need to find a measure Q, equivalent to P, such that discounted zero-coupon bond prices

will be martingales with respect measure Q. The market model defined by (Ω,F ,Ft,Q) will

be arbitrage-free according to the Fundamental Theorem of Asset Pricing .

This measure Q can be described by the following equation [25]:

dQ
dP
|Ft = exp

(∫ t

0

(−γTs dWs −
1

2
‖γs‖2 ds)

)
, (1.35)

where γt is a Ft-adaptive process and satisfies an equation:

ΣT (t, T )γt = µ(t, T )− rtI. (1.36)

According to the Cameron-Martin-Girsanov theorem a Brownian motion, corresponding to a

new measure Q, is given by the formula: W̃t = Wt+
∫ t

0
γds. Then substituting corresponding

expressions for µ(t, T ) and W̃t into the original equation (1.34) we get:

dP (t, T )

P (t, T )
= rtdt+ ΣT (t, T )dW̃t. (1.37)

Thus we obtained a model for zero-coupon bond prices under risk-neutral measure Q.

Now the goal is to make a transition to forward rates. By differentiating both sides of

(1.31) df(t, T ) can be expressed through d lnP (t, T ):

df(t, T ) = −d
(
∂ lnP (t, T )

∂T

)
= −∂(d lnP (t, T ))

∂T
. (1.38)

Next, by applying Itô’s lemma d lnP (t, T ) and using (1.37) we obtain the following expression

for d lnP (t, T ):

d lnP (t, T ) = (rt −
1

2
ΣT (t, T )Σ(t, T ))dt+ ΣT (t, T )dW̃t. (1.39)
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As a result, from (1.37) and (1.39) we obtain:

∂(d lnP (t, T ))

∂T
=
∂rt
∂T
−1

2
[
∂ΣT (t, T )

∂T
Σ(t, T )+ΣT (t, T )

∂ΣT (t, T )

∂T
]dt+

∂ΣT (t, T )

∂T
dW̃t = −∂ΣT (t, T )

∂T
Σ(t, T )dt+

∂ΣT (t, T )

∂T
dW̃t.

(1.40)

To summarize all calculations fix an equation:

df(t, T ) =
∂ΣT (t, T )

∂T
Σ(t, T )dt− ∂ΣT (t, T )

∂T
dW̃t. (1.41)

A volatility function of forward rates σ(t, T ) has the following form:

σ(t, T ) = −∂ΣT (t, T )

∂T
. (1.42)

After integrating (1.42) and using a fact that Σ(t, t) = 0 we get a representation for Σ(t, T ):

Σ(t, T ) = −
∫ T

t

σ(t, s)ds. (1.43)

Equation (1.43) interconnects volatilities of zero-coupon bonds and forward rates.

Now (1.41) can be rewritten as:

df(t, T ) = σT (t, T )

∫ T

t

σ(t, s)ds+ σT (t, T )dW̃t. (1.44)

This is a famous HJM equation, describing dynamics of forward rates.

The equation (1.44) perfectly shows that a drift term µ(t, T ) of the forward rate process

f(t, T ) is expressed in terms of forward rate volatility σ(t, T ). This equation for the drift

term of forward rates is called a drift condition:

µ(t, T ) = σT (t, T )

∫ T

t

σ(t, s)ds. (1.45)

There is another condition for a model to be of HJM type: distribution of forward

rates is Gaussian. From this statement it follows that f(t, T ) can take negative values.

It brings some difficulties in drawing analogy with some short-rate models, guarantying

positive interest rates. In general, however, models, describing evolution of short rates,

could be considered as a special cases of HJM models.
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According to an equation (1.33) the short rate could be defined by a forward rate. It

follows from (1.44) that by putting T = t, r(t) can be expressed as:

rt = f(t, t) = f(0, t) +

∫ t

0

1

2

∂ ‖Σ(s, t)‖2

∂t
ds− ΣT (s, t)

∂t
dW̃s. (1.46)

Zero-coupon bond prices in HJM framework can be calculated by the formula:

P (t, T ) = P (0, T )e
∫ t
0 (rs− 1

2
ΣT (s,T )Σ(s,T ))ds+ΣT (s,T )dW̃t . (1.47)

A disadvantage of equilibrium models is that they not reproduce market prices of basic

instruments, for example, prices of zero-coupon bonds. This lack of ability is compensated

by arbitrage-free models. They treat the prices of basic instruments as inputs, while the

equilibrium models reproduce those prices as outputs.

Since arbitrage-free models, by their nature, do not create arbitrage opportunities on the

market, basic market instruments and their derivatives can be priced consistently.

Short-rate models as sub cases of HJM framework

The following two short-rate models were considered in [25] as special cases of HJM model

by specification of forward-rate volatility function:

1. Ho-Lee Model

2. Hull-White Model

Depending on the form of volatility function σ(t, T ) the model of HJM type transforms

into one of the mentioned above models.

1. σ(t, T ) = σ, where σ is a constant.

If volatility of forward rates is equal to some constant σ, a general HJM

stochastic differential equation (1.44) transforms into:

df(t, T ) = σ2(T − t)dt+ σdW̃t. (1.48)

19



Integrating (1.48) over an interval from 0 to t and plugging t instead of T we

get an equation for f(t, t), which is rt.

Thus in HJM framework with σ(t, T ) = σ a short-rate dynamics is described

by the equation:

rt = f(0, t) +
1

2
σ2t2 + σW̃t. (1.49)

Denoting (∂f(0,t)
∂t

+ σ2t) by αt, we get an absolute equivalence between (1.49)

and (1.9).

The corresponding zero-coupon bond price is:

P (t, T ) =
P (0, T )

P (0, t)
exp

(
−(σW̃t(T − t) +

σ2

2
tT (T − t))

)
. (1.50)

2. σ(t, T ) = σ exp(−κ(T − t)), where κ > 0.

The choice of such volatility function was motivated by the empirical fact, which verifies that

volatility of forward rates fades out as time gets closer to maturity time T . Substituting such

volatility function σ(t, T ) into the equation (1.44), author [25] obtains specific equations for

forward rates under HJM framework:

df(t, T ) = σ exp(−κ(T − t))dW̃t +
σ2

κ
(exp(−κ(T − t))− exp(−2κ(T − t)))dt. (1.51)

Integration of 1.51 over the interval [0, t] provides the formula for forward rates f(t, T ):

f(t, T ) = f(0, T ) + σ

∫ t

0

exp(−κ(T − t)))dW̃s +
σ2

2κ2

[
(1− exp(−κ(T − t)))2

]
. (1.52)

And by making T = t the formula for short interest rates is obtained:

rt = f(0, t) + σ

∫ t

0

exp(−κ(t− s))dW̃s +
σ2

2κ2
(1− exp(−κt))2. (1.53)

For convenience the author denotes the integral in 1.53 by Xt:

Xt = σ

∫ t

0

exp(−κ(t− s))dW̃s. (1.54)
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Such process Xt satisfies the following SDE:

dXt = σdW̃t − κXtdt. (1.55)

From the equation 1.53 it follows that the process Xt could be represented with help of

short rate process rt:

Xt = rt − f(0, t)− σ2

2κ2
(1− exp(−κt))2. (1.56)

Differentiating rt 1.53 and using representation of dXt 1.55 the following expression for drt

is obtained:

drt = fT (0, t)dt+ σdW̃t − κXtdt+
σ2

κ
exp−κt(1− exp−κt)dt. (1.57)

Denoting f(0, t) + 1
κ
fT (0, t) + σ2

2κ2
(1− exp−2κt) by θt author gets SDE for short rates in the

following form:

drt = κ(θt − rt)dt+ σdW̃t. (1.58)

Which is exactly Hull White model 1.12.

Applications of HJM models

According to [16] HJM modelling technique is better applied to two kind of markets:

• A market of government debts, issued by governments of countries, which

have a minimal chance of default (for example: USA, Great Britain, Germany,

Japan).

• Eurodollar market, consisting of U.S. dollar accounts in European banks,

which don’t belong to U.S. banking system.

The frames of Heath-Jarrow-Morton modelling approach were also extended to involve other

financial instruments, for example :

• risk-management instrument of mortgages,
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• foreign currencies,

• pricing of equities and non interest rate commodities,

• treasury bonds, protected from inflation.

More information on that can be found in [6], [16] and references therein.

It’s needed to say about the main disadvantage of this framework. There have not been

yet discovered such specification of HJM model that it does not produce negative interest

rates.
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Chapter 2

Energy Market Models

Energy market is the main component of commodity market. Derivatives on crude oil,

natural gas and electricity are traded on energy market.

This market consists of sub markets, for example, Electricity market, Oil market, Gas

market etc. The markets, listed above, have their own peculiarities and characteristics. Let

us look closely at the description of some markets and their properties.

2.1 Gas Market

Generally the natural gas market has a similar nature to other commodity markets. For

example, natural gas prices are sensitive to a balance between supply and demand. When

demand for natural gas is rising, producers must increase supply. They need to increase

an exploration of natural gas resources and production potential. However, this task is not

straightforward in case where mother Nature plays a central role. Putting more resources

and efforts into the production does not guarantee the result. In case of natural gas it could

take several years to achieve a desired goal.

Characteristics of natural gas market The main features of gas market include:

• Supply and demand

This characteristic of natural gas market was described above. Supply and

demand is the strongest characteristic, since it affects all the other properties.

• Production and exploration

The level of production and exploration has a direct influence on supply. Con-

sequently it takes part in a price formation.
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• Storage

Natural gas can be stored. There are different types of gas storage.

• Seasonality

Demand of gas varies throughout a year, since gas is used for heating.

2.2 Electricity market

Electricity is a unique commodity in a sense that unlike others it can not be stored1. There-

fore, it is very important to have a balance between supply and demand. Even though some

advanced methods of electricity production were developed (such as hydro and nuclear gen-

eration), the main source of electricity is still thermal conversion of fossil fuels such as coal,

gas and oil[5]. This implies that prices on a fuel have a big impact on electricity prices.

There are many other factors, however, which affect the behavior of electricity prices. Here

we want to illustrate a comparison between electricity and gas prices in Alberta. Figure 2.1

represents the graph of historical prices of electricity (residential rates). Figure 2.2 shows

the behavior of gas prices (for Northern customers). The gas prices were converted form $

per GJ into $ per kWh taking into account a relation: 1 GJ = 278 kWh and assuming that

plant’s efficiency is 50%. The data was taken form the Direct Energy Regulated Ser-

vices website (http://www.directenergyregulatedservices.com). From 2.1 and 2.2 we see

that jumps in electricity and gas prices appear synchronously, but the magnitude of changes

in electricity prices is larger than magnitude of changes in gas prices. This means that

besides the influence of gas prices there are other factors, which affect prices in electricity

market.

The stochastic process of electricity prices tends to have a mean reversion. Moreover,

due to seasonality the price process has sudden jumps.

1Actually it can be stored, but the cost of storage is very high.
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Figure 2.1: Historical electricity prices in Alberta for residential purposes
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Figure 2.2: Historical gas rates for northern customers
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The volatility of electricity prices is much higher than that of other commodity and

financial markets.

Moreover, according to [5]: electricity markets are ’generally inefficient, high in regulatory

risk and prone to persistent political interventions’.

Characteristics of electricity market The electricity market has the following prop-

erties:

• Non-storability

Some researchers suggest to model production processes first. To deal with the

fact that electricity cannot be stored they suggest to use marginal fuel (gas,

oil, etc.) prices to describe forward power prices, considering the fact that fuel

is easily transformed into electrical power, provided an electricity production

unit is rented for the delivery period.[14]

• Seasonality

This property is well described by the following quote: “Whether determin-

istic or not, this seasonality does not create arbitrage opportunities, namely

positions built at zero initial cost and leading to positive or strictly positive

liquidation values at maturity. In this respect the example of the hedge fund

Amaranth is quite instructive: this fund lost 6 billion in summer 2006, after

gaining 1.5 billion in summer 2005, through the same type of calendar spread

positions in natural gas futures.”[2]

2.3 Spot Price Models

Just as a short rate is the main driver in the interest rate market, a spot price is a basic

concept in energy market. Spot price, usually denoted as S(t), is a price of commodity for

an immediate delivery at time t. A current price (at time t) of the forward contract for
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delivery at some time T in the future is denoted as F (t, T ). And F (t, T1, T2) represents the

price of forward contract for delivery of commodity during time interval from T1 to T2. Also

there is a connection between spot price S(t) and forward/futures price F (t, T ):

F (t, T ) = E[S(T )]. (2.1)

Main features of energy prices were listed in [21]:

• Volatility of spot prices on energy market is greater rater than volatility of

interest rates and other instruments of money market.

• Energy prices are characterized by mean reversion, seasonality, spikes.

So, ideally, tools for modelling spot energy prices must be more perfect than those which are

used to describe the behavior of short rates.

2.3.1 Single factor models

In single factor models we observe stochastic differential equation for description of spot

price dynamics only.

Diffusion models

Geometrical Brownian Motion At first pricing of energy commodities was based on repre-

sentation of spot price process as a Geometrical Brownian Motion process:

dSt = µStdt+ σStdWt, (2.2)

where µ is a drift term, σ is a volatility of spot prices.

The solution of this SDE could be represented in the following form:

St = S0exp((µ−
σ2

2
)t+ σWt) (2.3)
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Schwartz model This model was developed in 1997. Spot price process St satisfies the

following equation:

dSt = α(µ− lnSt)Stdt+ σStdWt. (2.4)

A new parameter α appears here. α characterizes a rate of reversion of the process St to it’s

long-term level S̄ = expµ. α is strictly positive.

Replacing lnSt by Xt and applying Itô’s Lemma we will get SDE for process Xt:

dXt = (Xt)
′
StdSt+

1

2
(Xt)

′′
StS

2
t σ

2dt =
1

St
(α(µ−lnSt)Stdt+σStdWt)−

1

2

1

S2
t

S2
t σ

2dt = α(κ−Xt)dt+σdWt,

(2.5)

where κ = µ− σ2

2α
.

It is clear that the process Xt is the OrnsteinUhlenbeck process. Xt is normally dis-

tributed. And its characteristics have the following form:

E(XT | F0) = X0e
−αT + (µ− σ2

2α
)(1− e−αT ), (2.6)

V ar(X(T ) |F0 ) =
σ2

2α
(1− e−2αT ). (2.7)

Now let’s calculate a price of the forward (or futures) maturing at time T .

Since F (0, T ) = E[ST |F0] it follows that

F (0, T ) = exp(E[XT |F0 ] +
1

2
V ar(XT |F0 ))

. And using 2.6 the forward price F (0, T ) could be represented by the expression:

F (0, T ) = exp[e−αT lnS0 + (1− eαT )(µ− σ2

2α
)]. (2.8)

With the appropriate boundary conditions, forward(or futures) prices with maturity T given

by:

F (t, T ) = exp[e−α(T−t) lnS + (1− e−α(T−t))(µ− λ− σ2

2α
) +

σ2

4α
(1− e−2α(T−t))] (2.9)

By applying Itô’s lemma to 2.9 we get:

dF (t, T )

F (t, T )
= σF (t, T )dWt, (2.10)
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where σF (t, T ) is the volatility function of forward prices and has the following representation:

σF (t, T ) = σe−α(T−t). (2.11)

The volatility structure under Schwartz single factor model is more realistic than the Black

model but still has quite a simple shape.In particular the volatilities tend to zero for longer

maturities and this happens for maturities less than one year for mean reversion rates larger

than about 7. Although the market volatilities of forward prices decline with maturity they

never get close to zero and so the Schwartz model has a problem for pricing options on long

maturity forward contracts [8]. This model can be used for short maturity options on short

maturity forwards.

Jump-Diffusion models

We had some discussion on that matter in previous chapter. Let’s just introduced jump-

diffusion type of models related to spot price process instead of interest rate process.

Merton Merton presented this model in 1976. Under Merton’s model spot price process St

satisfies the following SDE:

dSt = µStdt+ σStdWt + κStdq, (2.12)

where

• κ represents the jump’s size and it is normally distributed;

• dq is a jump process, such that jumps appear not continuously, but at some

certain points in time. dq is a Poisson process with intensity l.

2.3.2 Multi factor models of spot prices

Two factor model

In [13] authors say that it’s not correct to consider a constant convenience yield. According

to the theory of storage there is a direct correspondence between level of inventories and
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the convenience yield. So besides the spot price, convenience yield must be stochastically

defined. That’s how one more factor arises.

Gibson and Schwartz model This model was developed by Rajna Gibson and Eduardo

Schwartz in 1990 to price oil contingent claims. According to [13] the model is described by

two stochastic differential equations:

dSt = (µ− δt)Stdt+ σ1StdW
1
t , (2.13)

dδt = k(α− δt)Stdt+ σ2dW
2
t . (2.14)

Two Brownian motion processes W 1
t and W 2

t have a correlation ρ: dW 1
t dW

2
t = ρdt. The

process 2.14 is the OrnsteinUhlenbeck process.

Three factor model

Schwartz model In 1997 Eduardo Schwartz extended a two-factor model 2.3.2 by adding

one more stochastic factor - interest rate process rt. The process rt follows mean reversion

as it does in Vasicek model 1.1.1. The factors of this model are represented by the follofing

stochastic differential equations:

dSt = (r − δt)Stdt+ σ1StdW
1
t , (2.15)

dδt = κ(α̂− δt)dt+ σ2dW
2
t , (2.16)

drt = a(m− rt)Stdt+ σ3dW
3
t . (2.17)

And

dW 1
t dW

2
t = ρ1dt, dW

2
t dW

3
t = ρ2dt, dW

1
t dW

3
t = ρ3dt. (2.18)

As was noted by [8] it is usually not necessary to use three factor model as stochastic interest

rates will typically have a relatively minor impact on energy derivatives prices.
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2.4 Heath-Jarrow-Morton type models

2.4.1 Clewlow and Strickland approach

There are two approaches for modelling energy market. The first one is based on a stochastic

representation of spot prices and other basic variables of the market. We have described some

of the models in the previous section. One of the main shortcomings is that some variables

are not easily observed on the market. Even the spot price is unavailable sometimes . That

is why a necessity of the second approach arose.

The second approach consists in a modeling of the forward/future curves. Clewlow and

Strickland follow the second approach in their paper[7] where they assume deterministic

interest rates, so that forward prices coincide with futures prices. They [7] consider an

energy forward price process F (t, T ), defined by the following equation:

dF (t, T )

F (t, T )
= σe−α(T−t)dWt (2.19)

where

• σ - the level of volatility of a spot and a forward price returns

• α > 0 characterizes the speed of attenuation of the forward curve volatility

when maturity is increasing.

As we see there is no drift term in (2.19), because forward and futures contracts do not

require initial investments [8], and therefore their expected return in a risk-neutral world is

zero. In case of ’real’ world it would be necessary to add a drift to the model. The volatility

function in this case has the following form:

σ(t, T ) = σe−α(T−t). (2.20)

Such choice of σ(t, T ) accounts for the fact that volatility should have negative exponential

form, since short dated returns are more volatile than long dated returns. It is also possible
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to calibrate volatility function from observable market data. The solution of (2.19) can be

represented in the following way:

F (t, T ) = F (0, T )exp

−1

2

t∫
0

σ(u, T )2du+

t∫
0

σ(u, T )dWu

 . (2.21)

We know that at maturity time the spot price is equal to the forward price, so we must have

S(t) = F (t, t) It follows that

S(t) = F (0, t)exp

−1

2

t∫
0

σ(u, t)2du+

t∫
0

σ(u, t)dWu

 . (2.22)

Differentiating the logarithm of the spot price defined in (2.22) we obtain the following SDE

for the spot price:

dS(t)

S(t)
=

∂ lnF (0, t)

∂t
−

t∫
0

σ(u, t)
∂σ(u, t)

∂t
du+

t∫
0

∂σ(u, t)

∂t
dWu

 dt+ σ(t, t)dWt. (2.23)

Now let us go back and use the particular volatility function from (2.19)

σ(t, T ) = σe−α(T−t). (2.24)

Its partial derivative is

∂σ(t, T )

∂T
= −ασe−α(T−t). (2.25)

Denoting the drift term in (2.23) by y(t) and using (2.25) we get:

y(t) =
∂ lnF (0, t)

∂t
+ ασ2

t∫
0

e−2α(t−u)du− α
t∫

0

(σe−α(t−u))dWu. (2.26)

The last term in representation for y(t) could be found from the equation for the logarithm

of the spot price (2.22) (using the volatility function (2.24)):

lnS(t) = lnF (0, t)− 1

2

t∫
0

σ2e−2α(t−u)du+

t∫
0

σe−α(t−u)dWu. (2.27)

Rearranging terms in (2.27) and multiplying by α we get an unknown quantity :

α

t∫
0

σe−α(t−u)dWu = α

lnS(t)− lnF (0, t) +
1

2

t∫
0

σ2e−2α(t−u)du

 . (2.28)

33



Finally, the last term in the right hand side of (2.28) is:

t∫
0

e−2α(t−u)du =
1

2α
(1− e−2αt), (2.29)

and substituting (2.28) in (2.26) we get the SDE for the spot price process:

dS(t)

S(t)
=

[
∂F (0, t)

∂t
+ α(F (0, t)− lnS(t)) +

σ2

4
(1− e−2αt)

]
dt+ σdWt. (2.30)

So the result is that if we have a specification of the forward price dynamics we can build

a process for the spot price.

In [20] the author goes in the reverse direction: having a spot price process (2.4) we

get the process for forward prices. Let’s have a look at this way more closely. First of all,

comparing (2.4) and (2.30), we can see that for the spot price to be consistent with the

initial forward curve we need drift µ be a function of time of the following form:

µ(t) =
∂F (0, t)

α∂t
+ lnF (0, t) +

σ2

4α
(1− e−2αt). (2.31)

Now let’s rewrite the solution of (2.30):

F (t, T ) = F (0, T )exp

−1

2

t∫
0

σ2e−2α(T−u)du+

t∫
0

σe−α(T−u)dWu

 . (2.32)

It’s easy to calculate the first integral here:

t∫
0

σ2e−2α(T−u)du =
σ2

2α
e−2αT

[
e−2αt − 1

]
. (2.33)

Again, using the fact that S(t) = F (t, t) we obtain

S(t) = F (0, t)exp

−1

2

t∫
0

σ2e−2α(t−u)du+

t∫
0

σe−α(t−u)dWu

 . (2.34)

Here the first integral
t∫

0

σ2e−2α(t−u)du =
σ2

2α

[
1− e−2αt

]
. (2.35)
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So we can get a representation for

t∫
0

σe−α(t−u)dWu = ln

(
S(t)

F (0, t)

)
+
σ2

4α

[
1− e−2αt

]
. (2.36)

Now let’s mention that
t∫

0

σe−α(T−u)dWu =

t∫
0

σe−αT eαudWu = e−αT
t∫

0

σeαudWu =
e−αT

e−αt

t∫
0

σe−αteαudWu =
e−αT

e−αt

t∫
0

σe−α(t−u)dWu.

(2.37)

Finally using last conclusions and substituting everything into (2.32) we can get the forward

price as a function of initial forward price and spot price at present moment t:

F (t, T ) = F (0, T )

(
S(t)

F (0, t)

)exp[−α(T−t)]

exp

[
σ2

4α
(1− e−2αt)(e−α(T−t) − 1)

]
. (2.38)

It follows that the forward price at any time t can be calculated on conditions that initial

forward curve (F (0, T )), spot price S(t) and parameters α and σ are known. Fair question

appears - how we can get those parameters? According to [7] these parameters can be

obtained from the prices of options on the energy spot price or on forward contracts.

Also C&S suggest another way of getting σ and α. It consist in the best fitting to

historical volatilities of forward prices.

For the first method of getting parameters of the model (2.19) we need to know what the

prices of options are.

C&S are giving formulas for European options on the spot asset, options on forward con-

tracts along with formulas for caps, floors, collars, options on swaps. Price of any contingent

claim is expected value of discounted payoff under risk-neutral measure [11]. So the price of

European call option is:

c(t, S(t), K, T ) = Et[exp(−
T∫
t

r(u)du) max(0, S(t)−K)]. (2.39)

Also (2.22) shows us that the spot price is log normally distributed and its distribution has

the following view (here an equality (2.29) was used)

lnS(T ) � N [ln(F (0, T )− σ2

4α
(1− e−2αT ),

σ2

2α
(1− e−2αT )]. (2.40)

35



So from the fact above and an assumption that interest rates are deterministic it follows

that Black-Scholes formula can be used:

c(t, S(t), K, T ) = exp(−
T∫
t

r(u)du)(F (t, T )N(h)−KN(h−
√
w)], (2.41)

where

h =
ln F (t,T )

K
+ w

2√
w

, (2.42)

w =
σ2

2α
(1− e−2α(T−t)). (2.43)

Note that in a special case of (2.19), when σ(t, T ) = σ, w is putted to be equal σ2(T − t).

By call-put parity it is easy to get a formula for European put option.

As we will see next this is just a special case of European style option pricing on forwards

(futures) (in this case maturity time of an option and maturity of a forward coincide). Since

a price of European call option on a forward could be represented in the following way:

c(t, F (t, s), K, T, s) = Et[exp(−
T∫
t

r(u)du) max(0, F (T, s)−K)], (2.44)

and using previous conclusions we can rewrite this price:

c(t, F (t, s), K, T, s) = exp(−
T∫
t

r(u)du)(F (t, s)N(h)−KN(h−
√
w)], (2.45)

where

h =
ln F (t,s)

K
+ w

2√
w

(2.46)

and w is given by the integral:

w2(t, T, s) =

T∫
t

σ2e−2α(s−u)du =
σ2

2α
(e−2α(s−T ) − e−2α(s−t)). (2.47)

Also [C&S] give formula for energy price caps in their paper. Since an energy price cap is

just a set of a European call options, its price is represented as follows:

Cap(t,K, T,N,∆T ) =
N∑
i=1

c(t, F (t, T + i∆T ), K, T + i∆T, T + i∆T . (2.48)
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In the same manner floors and collars could be priced: an energy price floor is a set of a

European put options, and a collar is a combination of a long position in a cap and a short

position in a floor. Since the price of an option on swap is by definition:

Swpn(t,K, T, s,N,∆T ) = exp(−
T∫
t

r(u)du)Et[max(0,

〈
1

N

N∑
i=1

F (T, T + i∆T )

〉
−K)].

(2.49)

authors showed that it could be represented through European call option price:

Swpn(t,K, T, s,N,∆T ) =
1

N

N∑
i=1

c(t, F (t, T + i∆T ), Ki, T, T + i∆T , (2.50)

where Ki = F (S∗, T, T + i∆T ) F (S∗, T, s) is the forward price at time T for maturity s when

the spot price at time T is S∗ . S∗ is can be extracted from equation:

1

N

N∑
i=1

F (S∗, T, T + i∆T ) = K. (2.51)
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Chapter 3

Comparison of two markets: Energy market vs.

Interest rate market

The nature of these two markets is so different. They have something in common though.

We start with similarities because the list of them is shorter rather then the list of

differences.

3.1 Similarities

• Model base

The base of mathematical models in interest rate market is short interest

rate. In energy market spot price plays this key role.

And the principle of these two notions is the same. Indeed, the short rate is an

interest rate for immediate borrowing or landing of money for infinitely short

time interval. The spot price is a price of a commodity for immediate delivery

over infinitely short period of time. In Chapter 1 and Chapter 2 we considered

different models, which describe dynamics of short interest rates on interest

rate market and spot prices on energy market.

In transition to forward rate models the short rate could be seen as a limiting

value of forward rate for maturity of a contract approaching to a current time:

r(t) = lim
T→t

f(t, T ) = f(t, t). (3.1)

There is a similar connection between forward prices and spot prices. In

general: F (t, T ) = E[St]. And the limiting case when maturity T = t gives us
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very helpful equation:

S(t) = F (t, t) (3.2)

Despite similarity of process rt and St the have some very important differ-

ences: the volatility of the second one is usually greater than the volatility of

the first one.

• Coincidence of models

Some energy market models coincide with interest rate models. For example,

Schwartz model for spot prices (2.4) transforms into Vasicek model for interest

rates (1.5).

Consider (1.5):

dSt = α(µ− lnSt)Stdt+ σStdWt. (3.3)

We have stochastic differential equation for the process St. Let us obtain SDE

for the process lnSt. By Itô’s lemma we get:

d lnSt =
1

St
dSt +

1

2
(−1)

1

S2
t

S2
t σ

2dt = α(µ− lnSt)dt+ σdWt −
1

2
σ2dt =

α(µ− 1

2
σ2 − lnSt)dt+ σdWt. (3.4)

If we denote lnSt by Xt the last equation transforms into the following:

dXt = α(µ− 1

2
σ2 −Xt)dt+ σdWt. (3.5)

SDE (3.5) has exactly the same form as equation in Vasicek model for short

rates.

• There are unique representatives for each market. Energy market is repre-

sented by power forward, which will be described in the following chapter.

Interest rate market is represented by zero-coupon bond.
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Power forward is analogue of zero-coupon bond. Both of these instruments

guarantee to receive 1 unit of specific quantity in the future. Power forward

guarantees to receive 1 MhW at maturity. Zero-coupon bond assures to get 1

$ at expiry date.

3.2 Differences

• Stability/instability of a price process as time approaches to maturity

Forward prices on energy market fluctuate even near maturity. As was said

in [18] the Samuelson effect takes place in the dynamics of oil futures prices.

Oil futures contracts are rarely traded at the beginning, which provokes low

volatility. Liquidity of such contracts highly increases as the time approaches

maturity. Consequently volatility increases as well.

This fluctuation near maturity is impossible for bonds, since the price of a

bond converges to 1 near maturity.

Te following list of differences was formed with the help of the book [19]:

• Lifetime

Interest rate market is much older than energy market.

• Fundamental drivers

Energy market has much more complex fundamental drivers rather than in-

terest rate market. For example, energy contracts depend on production and

storage. Of course, there are no such drivers on interest market.

• Correlation between short-term and long-term contracts on interest market is

very high, whereas energy markets have it to be very low.

• Centralization of the the market
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Interest market is centralized unlike energy market. Most of financial institu-

tions (for example, banks) stick to Wall Street. For energy market we can

not claim that.

• Seasonality

Seasonality is not peculiar to interest rate market. For energy market season-

ality plays a huge role in price formations.

• Storage and delivery

An influence of storage and delivery does not exist on interest rate market (’a

piece of paper’ or electronic delivery is not the same as storage and delivery

by pipes of gas, for example).

• Derivatives

Derivative contracts on energy market are much more complex than those one

on interest rate market. Contracts were pretty standardized on interest rate

market. Plus, they usually easier to model. We can not say the same about

derivatives on energy market. Most of derivatives on interest rate market

are popular and widely known. Whereas there are different kind of “exotic”

derivatives on energy market.

• Volatility

The volatility of energy contracts is much higher than the volatility of interest

rate contracts.Indeed, since energy market is more complex and price process

of an energy contract is governed by many factors it more unpredictable that

the price of an interest rate contract.
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Chapter 4

Application of interest rate theory to energy markets

This chapter is based on a very interesting paper of Juri Hinz, Lutz von Grafenstein, Michel

Verschuere and Martina Wilhelm “Pricing electricity risk by interest rate methods”[14]. The

authors consider an approach, consisting in application of interest rate pricing techniques to

electricity market with its peculiarities.

The authors created the notional financial instrument for the electricity market. It is a

power forward. Purpose of creating such instrument is the following: power forward plays a

role of numeraire. It is artificial financial instrument and it is not actually traded.

The power forward is an agreement, which is made at time t by two counter parties.

The agreement guarantees a delivery of predetermined amount of an electricity during some

time period (T1, T2). The price of the power forward, denoted by p(t), is set at time t.

The price p(t) is not a price in our regular perception. The difference is that unlike regular

forward prices it is measured in megawatt hours (MWh). The advantage of such measure is

that it protects a pricing process from errors caused by MWh-EURO (or MWh-dollar)

fluctuations.

Also derivatives on power forward were developed to hedge electricity price risk. Pricing

methods of European call and put options were discussed in the mentioned above paper.

The interpretation of power forwards as an electricity market instrument in terms of

interest market instruments can be as follows. Power forward guarantees to get a flow of 1

MhW of electricity over some small time interval at its maturity. And a famous representa-

tive of interest rate market, a bond, guarantees to receive 1 dollar at bond’s maturity. So

similarity is very direct and transparent. Power forward appears in a role of a zero-coupon

bond.
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Taking into account the electricity production process the author shows that one justifies

the applicability of efficient martingale methods to pricing arbitrary electricity contracts.

It turns out that equilibrium asset prices are given by their future payoff, expected with

respect to some equivalent measure. In paper [14] first of all authors build an equilibrium

model for pricing energy contracts. This model is based on a finite set of tradable assets

E = Epca ∪ Efin. They denoted physical assets (production capacity agreements) by Epca,

and financial assets by Efin. Accordingly, St = (St(ε) stands for vector of prices of all assets

(ε ∈ E). (Rt)
T
t=1 is a RE -valued adapted process representing revenues (Rt(ε) - the revenue

from holding the asset ε ∈ E within [t− 1, t]). Also there are I agents on the market who

can share the assets. Each agent is characterized by pair (xi, Ui), where positive xi is initial

endowment of i-th agent and Ui its utility function such that

Ui ∈ {U ∈ C1(0,∞) : U ′ > 0 is strictly decreasing function, lim
z→∞

U ′i(z) = 0}

If we have observed market data, therefore probability space is defined:

(Ω,F, (Ft)
T
t=0, P )

(Nt)
T
t=0, (R)Tt=1, (Ui, xi)

I
i=1

4.0.1 Notations used in this chapter:

The domestic currency: currency unit at time t is 1 MW h constantly delivered within

[t, t+ ∆].

The saving security (Nt)
T
t=0:a bank account in EURO paying a constant interest rate

r > 0 (⇔ e−rtNt is reciprocal EURO-price at time t for electricity delivered within [t, t+ ∆]

).

E = Ephys ∪ Efin is a finite set of tradeable assets, where Epca denotes physical assets

(production capacity agreements), Efin - financial assets.

(Rt)
T
t=1 is an REvalued process describing revenues, where Rt(e) is the revenue from

holding the asset e ∈ E within [t− 1, t] .
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St = (St(e))e∈E - the price vector of all physical and financial assets e ∈ E at time t.

A trading strategy ((θt, ϑt))
T
t=0 determines the number θt of savings security units and

the part ϑt(e) of each asset e ∈ E held by the agent within (t, t+ 1].

The strategy ((θt, ϑt))
T
t=0 is called self-financed, if Xt+1 = Xt+θt(Nt+1−Nt)+ϑt◦(St+1−

St +Rt+1)for all t = 0, ..., T − 1,

where (Xt = θtNt + ϑt ◦ St)Tt=0 denotes the wealth of this strategy.

4.0.2 Assumptions:

Suppose that I ∈ N agents may share the assets. An agent i = 1, ..., I is determined by

(xi, Ui), where xi ∈ (0,∞) denotes its initial endowment and Ui is its utility function.

∆ > 0 is fixed pre-specified delivery duration of forward contracts.

Electricity market with contract valuation by formula:

Ŝ∗t (e) = EQ(
T∑

u=t+1

R̂u(e)|Ft).

All agents are sufficiently wealthy.

Following conditions for the existence of the equilibrium are satisfied:

Assumption 1: The one period revenue is integrable and bounded from below: E(|R̂t(e)|) <

∞, essinf R̂t(e) > −∞ for all e ∈ Epca, t = 1, ..., T.

Assumption 2: All contracts lose their values at the final date:

ST (e) = 0 for all e ∈ E.

Assumption 3: All agents (xi, Ui)
I
i=1 are equal: There exists a utility function U and

an initial endowment x ∈ (0,∞) such that Ui = U, xi = x for all i = 1, ..., I .

In the symmetric equilibrium, there exists a measure Q such that the market price pt(τ) at

time t for power forward maturing at τ is given by pt(τ) = NtEQ( 1
Nτ
|Ft)t = 0, ...τ, τ = 0, ..., T ,

(since pt(t) = 1).

Hence to describe the dynamics of PF prices using interest rate theory they apply HJM

formulation for spot martingale measure, which assumes that the wealth of the self financing
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strategy investing entirely in just maturing bonds is the standard numeraire security and

supposes that all asset prices, expressed in units of this numeraire follow martingales with

respect to the spot martingale measure. we have to choose the wealth of the self financing

strategy investing entirely in just maturing power forwards as the new numeraire.

The sliding MWh (Bt)
T
t=0: Bt =

∏t
u=1 pu−1(u)−1, t = 0, ..., T which mimics the wealth

of the strategy.

Choosing (Bt)
T
t=0 as a numeraire we have to change from Q to the spot martingale

measureQ̂ such that

dQ̂ := N0BT
NTB0

dQ in order to ensure the martingalizing property:

for each process (Ft)
T
t=0 such that ( Ft

Nt
)Tt=0 is a Q-martingale and ( Ft

Bt
)Tt=0 is a Q̂-martingale.

⇒ discounted PF prices (p̂t(τ) = pt(τ)
Bt

)Tt=0 are Q̂-martingales for all τ = 0, ..., T moreover

a discounted savings security (N̂t = Nt
Bt

)Tt=0 is a Q̂-martingale.

Let us describe notations in details. Suppose that our energy market is described by two

types of instruments: power forward contracts and savings bank account.[3] Since authors

have associated pricing process with production process it would be convenient to use power

units as a currency. In other words the domestic currency unit at time t is 1 MW h, constantly

delivered within the interval [t, t+ ∆].

(Nt)
T
t=0:a bank account in EURO paying a constant interest rate r > 0 (⇔ e−rtNt is

reciprocal EURO-price at time t for electricity delivered within [t, t+ ∆]).

In other words we can describe this account as following: Nt is a number of units of

currency (power) you can buy at time t with one EURO invested at time 0.

Let us bring pricing methods from two papers [7],[14]. For better understanding first we

should state that F (t, T ) = Pt(T ), where (according to [7]) F (t, T ) is a price of a forward

contract maturing at T . And Pt(T ) is a forward price in Euro according to [14]. Conse-

quently:

F (t, T ) = Pt(T ). (4.1)
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Pt(τ) =
pt(τ)

e−rtNt

. (4.2)

where pt(τ) is a forward price in currency units. pt(τ) is analogous to the zero-coupon bond

on the financial market[4]. Initial forward curve:

F (0, T ) = P0(T ) =
p̂0(T )

N̂0

=
p0(T )

N0

= p0(T ).

By definition F (t, T ) = Pt(T ) that’s why

F (t, T ) =
pt(τ)

e−rtNt

=
p̂t(τ)

e−rtN̂t

. (4.3)

But

pt(τ)

e−rtNt

=
p̂t(τ)

e−rtN̂t

. (4.4)

Then it follows that:

F (t, T ) =
p̂t(τ)

e−rtN̂t

. (4.5)

In [14] p̂t and N̂t are defined by DEs:

dp̂t = p̂tsdWt (4.6)

and

dN̂t = N̂tνdWt. (4.7)

Let us differentiate (ert p̂
N̂

). Applying Itô’s formula we get:

dF (t, T ) = rert
p̂

N̂
dt+ ert

1

N̂
dp̂+ ert(− p̂

N̂2
dN̂)+

1

2
(r2ert

p̂

N̂
(dt)2 + rert

dp̂

N̂
dt+ rert(− p̂dN̂

N̂2
dt))+

1

2
(rert

1

N̂
dp̂dt+ 0 ∗ (dp̂)2 + ert(− 1

N̂2
dp̂dN̂))+

1

2
(−rert p̂

N̂2
dN̂dt− ert 1

N̂2
dp̂dN̂ − ert(−2

p̂

N̂3
(dN̂)2)

= rert
p̂

N̂
dt+ ert

1

N̂
dp̂− ert p̂

N̂2
dN̂ − ert 1

N̂2
dp̂dN̂ + ert

p̂

N̂3
(dN̂)2 (4.8)
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(here we used the fact that terms with dtdp̂, dtdN̂ , (dt)2 are vanishing, because dN̂ and

dp̂ are multiples of dW and dtdW = 0)

Finally, using (4.6) and (4.7) and replacing ert p̂t(τ)

N̂t
by F (t, T ) we get:

dF (t, T ) = F (t, T )(r − sν + ν2)dt+ F (s− ν)dWt (4.9)

If we write (r−sν+ν2) = (s−ν)λ for some λ,then dF (t, T ) = F (t, T )(s−ν)(dWt+λdt).

In this case we can denote (dWt + λdt) by dŴt

From Girsanov’s Theorem it follows that dŴt is again a Brownian motion under measure

Q̂.

So we have that dF (t,T )
F (t,T )

= (s− ν)dŴt.

But in [7] dF (t,T )
F (t,T )

= σe−α(T−t)dWt

It follows that under the measure Q̂: (s− ν) = σe−α(T−t)

We can see that, if we identify Ŵt with Wt in [7], then the model in [7] can be seen to be

a special case of the model in [14] by setting s− ν = σe−α(T−t). This means that parameters

s and ν of the model (4.6) and (4.7), which describe the dynamics of production process and

bank account correspondingly, define parameters of the model of forward prices.

In the next chapter we performed the estimation of parameters σ and α of such model

for forward prices.

Consider the following ratio: p̂

N̂
.

From (4.5) follows that:

p̂

N̂
= F (t, T )e−rt. (4.10)

Let us differentiate p̂

N̂
by using Itô’s formula:

d(
p̂

N̂
) = d(F (t, T )e−rt) = e−rtF (t, T )(−ν(s− ν)dt+ (s− ν)dWt) =

(s− ν)e−rtF (t, T )(−νdt+ dWt). (4.11)

Consider the case when (s− ν) = 0.
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From (4.6) and (4.7) it follows that the volatility of production process equals the volatil-

ity of money market account. Recalling that (s− ν) = σe−α(T−t), it follows that volatility of

forward price process F (t, T ) equals to zero and parameters of the model, defined in [7] are

the following: σ = 0 and α could be any number.

In the case when s − ν = 0 from the representation for d( p̂
N̂

) given above follows that

p̂

N̂
= c, where c - some constant. Since F (t, T ) = ert p̂

N̂
we can use p̂0

N̂0
for c for example.

Recalling that p̂0
N̂0

= F (0, T ) we obtain the following equation for forward rates:

F (t, T ) = ert
p0

N0

= ertp0. (4.12)

Which means that we can get prices of forward contracts at any point in time just using

initial values of power forward.

At the end of this chapter we’d like to clarify some questions on that matter - why

this method is , may be, not so widely used. The best way is to refer to the authors of

our source of ideas, described above : “However, the valuation of these contracts is still

under discussion owing to the lack of convincing economical pricing concepts. The point

here is that the electrical energy is not economically storable. Thus, power forwards with

non- overlapping delivery intervals seem to have different underlying commodities (electrical

energy, delivered in different periods) without any opportunity to transfer one commodity

into the other which makes hedging by commodity storage impossible.” [14]
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Chapter 5

Case study

In this chapter we examine the model(2.19) on page 32. To calibrate the model we have

to adjust its parameters σ and α to real market data. Then it would be possible to use

obtained values of those parameters to price forwards/futures of any maturity and at any

point in time.

5.1 Model’s setup

Recall the model (2.19) of forward price behavior:

dF (t, T )

F (t, T )
= σe−α(T−t)dWt.

To calibrate the model (2.19) we need, first of all, some observed data. Suppose for some

fixed maturity time T we have forward prices F (t, T ) identically distributed over the time

interval [0, T ] with the time step ∆t. Now let’s introduce a new function r(t, T ) which has

the following form:

r(t, T ) =
F (t+ ∆t, T )

F (t, T )
− 1. (5.1)

From the definition above it follows that we have observed data r(ti, T ) for each moment of

time ti, except the last one tN = T . Here N is a number of observations and N = T
∆t

+ 1. It

is obvious that ti = i∆t and ti+1 = ti + ∆t. Consequently we get another representation of

r(ti, T ). For simplification let’s denote r(ti, T ) = ri and F (ti, T ) = Fi:

ri =
Fi+1

Fi
− 1. (5.2)

Starting calibration of real market data we make a very important assumption that our

returns ri are normally distributed. Such assumption is commonly used in financial pricing
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models. But dealing with ’real world’ data we need, of course, to check the normality first of

all. There are some kinds of statistical tests. In the present work we used MatLab function

”jbtest” which is (according to its name) based on Jarque-Bera (JB) test of Normality.

Jarque-Bera test probes the null hypothesis that ri-s have the normal distribution. In the

Table 5.1 we see values of skewness, kurtosis and results of Jarque-Bera test of normality.

We see negative skewness here, it turns out that returns are tend to be positive more often.

skewness kurtosis acceptance of the null hypothesis significance level

-0.100499 3.321838 accepted 0.3

Table 5.1: Characteristics of distribution of observed data ri

The latter means that observed forward prices frequently increase from day to day.

We can conclude (using (2.19), (5.2) and the assumption about normality of r(t, T )) that

ri = σ
√

∆t exp (−α(T − ti))Zi, (5.3)

where Zi ∼ N(0, 1).

Thus we have a vector of observations r = (r1, ..., rN) and we know that the observations

are independent identically distributed random variables (ri ∼ N(0, σ2∆t exp (−2α(T − ti)))).

The graph 5.1 shows us - how the distribution of our observed data is closed to the

normal.

From the representation 5.3 we see dependence of r′is on parameters σ and α. Since we

don’t know the values of these parameters yet our goal will be to find them using observations

ri (i = 1, ..., N − 1).

There are 3 main statistical methods for estimating model parameters:

• Method of moments

• Least squares

• Maximum likelihood estimation
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Figure 5.1: Normal plot of returns of NYMEX sweet crude oil forward prices
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Because the type of a distribution is known we will use the maximum likelihood method.

First of all we need to determine likelihood function of ri. Likelihood function has the same

form as probability distribution function. And probability density function of ri is

f(ri) =
exp (− (ri−0)2

2σ2 )
√

2πσ2
=

exp (− r2i
2σ2 )

√
2πσ2

. (5.4)

Then the joint density function of all ri’s is just a product of f(ri)’s and equal to:

exp (−
∑N
i=1 r

2
i

2σ2 )√
(2πσ2)N

. (5.5)

As we said before likelihood function of ri looks totally the same as (5.5). But we will use

its natural logarithm for simplification. It will be our log-likelihood function and it has

the following form:

l(θ|ri) = −N
2

ln(σ2∆t)− N

2
ln(2π) +

N∑
i=1

α(T − ti) +

∑N
i=1 r

2
i exp (2α(T − ti))

2σ2∆t
. (5.6)

Derivatives of log-likelihood function l(θ|ri) by α and σ are represented by following

formulas:

∂l

∂α
=

N∑
i=1

(T − ti)−
∑N

i=1 r
2
i (T − ti)
σ2∆t

exp (2α(T − ti)), (5.7)

∂l

∂σ
=
N

σ
−
∑N

i=1 r
2
i exp (2α(T − ti))
σ3∆t

. (5.8)

Solving ∂l
∂α

= 0 and ∂l
∂σ

= 0 we get numerical solutions α̂ and σ̂. These solutions compose

a maximum likelihood estimator θ̂ = (α̂, σ̂).

Once we have α̂ and σ̂ we can go backward and create a sequence of simulated returns

(rsim1 , rsim2 , ..., rsimN−1) using (5.3). With the help of simulated rsimi ’s we can get (solving (5.7) =

0 and (5.8) = 0) new parameters of MLE. Here is a comparison table of parameters α̂ and σ̂

recovered form observed data (NYMEX sweet crude oil prices for a period of time: February

2004- July 2005), denoted as α̂obs and σ̂obs, and simulated data, denoted as α̂sim and σ̂sim:

type of data α̂ σ̂

observations 0.001001 0.152177

simulations 0.001023 0.157803
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Figure 5.2: Histogram of distribution of Zi, which are defined by formula (5.9)

It was shown that on the assumption that data are normally distributed we found pa-

rameters of our model using method of maximum likelihood estimation. Than a new set of

data rsim was created using such parameters α̂obs and σ̂obs and Brownian motion. After that

parameters α̂sim and σ̂sim were received using MLE. And the fact is that these two pairs of

parameters are very similar.

To verify that parameters α̂ and σ̂ are the right ones we can check normality of random

variables Zi:

Zi =
ri

σ̂ ∗ exp(−(α̂(T − t))))
√
dt
. (5.9)

The normality is demonstrated on the histogram 5.2.

Also we have received the following results for kurtosis and skewness 5.2 of Zi.
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kurtosis skewness
3.34995 -0.15532

Table 5.2: Characteristics of distribution of random variables Zi

5.2 Real data analysis

As was said in [24] Heath-Jarrow-Merton model can be used in two main directions. The

first one defines the volatility structure “to be sufficiently ’nice’ to make a tractable Markov

model”. Another one is to figure out - what kind of form should a volatility structure take to

fit observed market data. Here Principal Component Analysis could be really helpful.

It will help to get volatility functions empirically from historical observations.

PCA is based on one of techniques of matrix decomposition. This type of matrix decom-

position is called Singular value decomposition of matrix. The concept is the following:

Suppose we have a matrix X of returns. M is covariance matrix of these returns. Let U

be the orthogonal matrix of eigenvectors of M . Now we can consider matrix C in the form:

C = XU.

The columns of matrix C are principal components of M . So, as [1] describes Principal

Components, ”the linear transformation defined by U transforms our original data X on n

correlated random variables into a set of orthogonal random variables: That is, the columns

of the matrix C = XU are uncorrelated”.

Given natural gas daily forward prices from January 6, 2000 to February 7, 2011 for 12

maturities.The graphs of later are illustrated on Figure 5.3.

A market date was denoted by t. Hence t varies from 06/01/2000 to 07/02/2011. Ma-

turity date of a contract is T . And for more convenient compounding of data it’s useful to

denote τ = T − t which means ’time-to-maturity’. Therefore we have just twelve values of τ

(τ varies from 1 month to 12 month). According to above notations we can construct a ma-

trix P , consisting of forward prices for each value of t and corresponding ’time-to-maturity’

τ . The size of matrix P is n× 12, where n - a number of different market dates.
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Figure 5.3: Natural Gas forward prices for different maturities

Figure 5.4 represents plots of the Henry Hub natural gas prices of forward contracts in

two shapes. The difference is in one of the axis, assigned for maturity. The first plot was

built using actual time of maturity (T ). The second one - using relative maturity (τ).τ varies

form 1 to 12 months.

The same procedure was implemented by authors in [12]. They described one interesting

fact, which we can easily observe from our pictures 5.4 as well. The fact is that area of

the surface, corresponding to higher prices, moves toward the axis, assigned for market

dates t, after transition to a τ -parameterization of maturity. It turns out that relatively

higher prices (or the highest prices) appear near t − axis on the second plot of Figure 5.4.

This is natural situation, since forward contracts on energy market become more expensive

as the time approaches to its maturity. It would be interesting to analyze the behavior of

separate forward curves. We pick 4 different dates such that they belong to different seasons:

October 14,2006, January 14,2007, April 14,2007, July 14,2007. The resulting forward curves

are represented on Figure 5.5. We see that November forward curve looks like a graph of

increasing function. Such event is called contango. It means that prices on natural gas

are expected to be higher in the future. The opposite process is called backwardation.
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Figure 5.4: Prices of forward contracts on natural gas at different market dates for different
maturities (two types of maturity parameterization)
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Figure 5.5: Forward curves for different market dates
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But we don’t observe it in this particular case. We can explain that in November natural

gas prices are supposed to increase, because the cold season starts and the demand will

increase. The maximum of prices of November’s contract corresponds to the maximum time

to maturity (12 months). The interesting point is that the picks of prices for January’s and

April’s contracts fall on the following November as well.

Now it is necessary to make a transition to a matrix of log-returns rij = ln(P(i+1)j/Pij)

(this is an i-th element of j-th column).

Using approach of receiving volatility from historical data suggested in [12], we calculate

volatility function σ(t) in a sliding window of length 30. Here let us to have a look at the

theoretical basis described in the work mentioned above.

Recall multifactor (with n factors) model of forward prices:

dF (t, T )

F (t, T )
= µ(t, T )dt+

n∑
i=1

σk(t, T )dWk(t).. (5.10)

There was an assumption about risk-adjustment. Under the risk-neutral probability the

term µ(t, T ) = 0. Formula (5.10) transforms into the following:

dF (t, T )

F (t, T )
=

n∑
i=1

σk(t, T )dWk(t). (5.11)

Authors [12] represent the volatility function σk(t, T ) (5.11) of forward price model in

the following way:

σk(t, T ) = σ(t)σk(T − t) = σ(t)σk(τ). (5.12)

Since the instantaneous spot price volatility σS(t, t) could be represented in the following

way:

σS(t)2 =

√√√√ n∑
i=1

σ2
k(t, t), (5.13)

authors get a representation of a spot price volatility using a new parameterization of ma-

turity.

σS(t) = σ̃(0)σ(t), (5.14)
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where σ̃(τ) =
√∑n

k=1 σk(τ)2.

So the conclusion is that ”the function t ↪→ σ(t) is, up to a constant multiplicative factor,

necessarily equal to the instantaneous volatility of the spot price”( [12]). And this result

makes a great contribution to a calculation of σ(t) using market data.

In our case we use the first column of our matrix P as a spot price, since a prompt-month

forward price is placed for a spot price. And applying a method of volatility calculation to

given observations in a sliding window we get a vector of volatilities [σS]. Now we try to find

a general form of a volatility function σ(t) for any time t. Suppose the volatility function

could be represented in the following way:

σ(t) = exp(α + βt+
M∑
m=1

(γmsin(2πmt) + δmcos(2πmt))), (5.15)

Now it’s possible to find a coefficients α, β, γm, δm having values of spot price volatility

(σS(ti)) of historical data for some period of time. We need to minimize a sum:∑n
i=1 (σS(ti)− σ(ti))

2

To implement this we used least-square data fitting function lsqcurvefit in Matlab.

Figures below represent the results, produced by plotting spot price volatility of the

historical data versus theoretical volatility. Specific function “getvols”(see the code) was

used to obtain volatility of spot prices. The length of a sliding window is equal to 30. The

choice of the length of sliding window was dictated by the fact that for smaller windows we

would have higher volatilities, whereas for larger windows volatilities are lower.

Graphs of the theoretical volatility function are different on these two pictures only

because of a choice of number M in the formula 5.15.
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Figure 5.6: Graphs of Historical spot price volatility vs Theoretical volatility(σ(t)) for M=1
and M=4 (5.15) 60



We chose the number M to be equal to 4. Values of the parameters of function σ(t) are

represented in the following table:

α β γ1 δ1 γ2 δ2 γ3 δ3 γ4 δ4

-6.42 -0.06 0.37 0.103 -0.11 -0.03 0.03 -0.02 -0.06 0.001

Using volatility function σ(t) and its parameters shown in the table, we can construct

a matrix of normalized returns dividing rij by σ(ti). Note that here rij are sorted out in a

correspondence with its [σ(t)]. And after that we create a matrix M of covariances of(rij/σ).

Now we have necessary inputs for Principal Component Analysis.

M = UΛV we find matrices U , Λ and V (V = U ′). Matrix Λ is a diagonal matrix of

eigenvalues λ1, λ2, ..., λ12 in such an order that λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λ12 .

Matrix U is called the matrix of factor loadings. It is an orthogonal matrix where ith

column [ui] represents the eigenvector corresponding to λi.

PU forms the matrix of principal components.

From our matrix definitions follows that it is necessary to have at least m (in our case

m = 12) principal components to describe all variations in the original data matrix P . At

the same time we want to minimize the number of factors. So if we use only first q < m

eigenvalues from matrix Λ and put the rest λq+1, ..., λm equal to zero we can calculate a

proportion of total variance given by the first q factors. It is :

l =

∑q
i=1 λi∑m
i=1 λi

.

In practice it’s usually enough to have such number of factors so that l is around 95%.

The following graphs support theoretical conclusions about the meaning of first factors

in PCA. For example:

• The 1st factor is assigned for a shift. By changing this factor we’ll move all

contracts in the same direction.

• The 2d factor is assigned for a tilt. A change in this factor will move a half of

our contracts in one direction and another half - in opposite direction.
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Figure 5.7: The first 4 eigenvectors of the NG daily forward prices covariance matrix

• The 3d factor is not so determined as the first two factors, but it could be

reasonable to define it as a bend.

Also to see the influence of number of factors involved in our estimation we can construct

a matrix Mi where i is a number of factors in the following way: Mi = U ∗ Λi ∗ U ′, where

Λi is a diagonal matrix, consisting of i elements (the first i eigenvalues of Λ). And then to

assess a ratio: (M −Mi)/M . The elements of later will approach 0 with a growth of number

i.

Natural gas forward prices have seasonal behavior. So it would be reasonable to extract

seasonal component in forward prices. This could be represented as:

F (t, T ) = Λ(T )X(t, T ), (5.16)

where Λ(T ) is a seasonal factor in natural gas forward prices representation.
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Now we need simulate volatility function in the following form:

σ(t) = exp(α + βt+
M∑
m=1

(γmsin2πmt+ δmcos2πmt)) (5.17)

We reconstructed forward prices using Monte Carlo simulations, function σ(t) and the first

3 principal components . The Figure 5.8 represents 3D plots of original data and simulated.
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Figure 5.8: Graphs of Historical forward prices vs Simulated forward prices
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Chapter 6

Conclusions

In the present work we compared the two most valuable components of financial market:

Interest Rate Market and Energy Market. Structures and peculiarities of these two mar-

kets were considered in the first two chapters. We concentrated mostly on a mathematical

framework fitted to each market.

There is a description of different kinds of models defining dynamics of short rates on

Interest Rate Market. However these models do not solve the problem of pricing some of the

basic market instruments such as zero-coupon bonds. Hence there was a need to introduce

a new generation of financial models - Heath-Jarrow-Morton (HJM) framework. This model

describes the dynamics of forward rates. This allows to represent each model described

earlier as a sub-case of HJM model.

Correspondingly in Chapter 2 there were considered Spot Price Models and HJM models

for Energy Market. The technique of pricing of European options as well as energy price

caps and swaps was demonstrated.

Interest Rate market and Energy market have a lot of differences as well as similarities,

which we describe in Chapter 3. Nevertheless there was a very interesting approach, devel-

oped in [14]. The approach applies interest rate market techniques to energy market. We

combined two approaches from [7] and [14] to show how the pricing model from one approach

transforms into another by change of measure.

The HJM model can be used in two different ways. We explored both of them in the last

two chapters. In Chapter 4 we calibrated the model, described in Chapter 2, using prices of

forward contracts on sweet crude oil and obtained parameters σ and α of the model. Finally,

in Chapter 5 we examine the form of volatility function of forward prices using Principal
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Component Analysis on real market data.
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Appendix A

Appendix. MatLab codes

1 clear a l l ; close a l l ; clc ;

2 load e x c e l

3 %%

4 %b u i l d i n g nx12 matrix P

5 for i n d t = 1 : length ( t )

6 x = F( ind t , 1 : end) ;

7 ind = find (˜ isnan ( x ) ) ;

8 x = x ( ind ) ;

9 i f isempty ( x ) , x=nan (1 ,12 ) ; ind = 1 : 1 2 ;end

10 i f length ( x )==11, x (12)=NaN; ind = [ ind ind (end) +1] ; end

11 i f sum(abs ( d i f f ( x ) ) )==0, x ( : )=NaN; end

12 F( ind t , ind ) = x ;

13 S( i n d t ) = x (1) ; %v e c t o r o f spo t p r i c e s ( prompt month )

14 for j = 1 :12

15 P( ind t , j ) = x ( j ) ;

16 end

17 end

18 % p l o t (S)

19 % d a t e t i c k ( ’ x ’ , ’ 1 2 ’ , ’ k e e p t i c k s ’ )

20 %%

21 LR = d i f f ( log (P) ) ;% matrix o f log−r e t u r n s on P

22 ind = find ( isnan (sum(LR, 2 ) ) ) ; % f i n d rows wi th NaNs in
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23 ho l i days = find ( d i f f ( t )>1) ;

24 % Also we want to f i n d rows where the prompt month s h i f t s .

25 [ tmp , ia , ib ]= i n t e r s e c t ( t ,T) ;

26 missout=union ( union ( ind , ho l i day s ) , i a ) ;

27 keep = s e t d i f f ( 1 : length ( t )−1, missout ) ;

28 tkeep = t ( keep ) ;

29 P = P( keep , : ) ;

30 LR = LR( keep , : ) ;

31 win = 30 ; %window l e n g t h cou ld be changed

32 [ vo l s , indv ]= g e t v o l s (LR( : , 1 ) , win ) ;% v o l a t i l i t y ”sigma”

33 t v o l = tkeep ( indv ) /365−2000;

34 %

35 %matr ices P nad LR wi thout unnecessary data were c o n s t r u c t e d

36 %% making X, d e s e a s o n a l i z i n g o f F

37 for i =1:12

38 tmp = log (F ( : , i : 1 2 : end) ) ;

39 lambda m ( i ) = mean(tmp(˜ isnan (tmp) ) ) ;%c a l c u l a t i n g a s e a s o n a l

component o f log−p r i c e s

40 % lambda m ( i ) = mean( tmp (˜ isnan ( tmp ) ) − mean( l o g (F( 1 , 1 : 1 2 ) ) ,2) ) ;

41 for j =0:16

42 X( : , 1 2∗ j+i ) = exp( log (F( : , 1 2∗ j+i ) )−lambda m ( i ) ) ;

43 end

44 end

45

46 %% make matrix XP − analogue o f P from X:

47 for i nd tx = 1 : length ( t )
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48 xX = X( ind tx , 1 : end) ;

49 xX = xX(˜ isnan (xX) ) ;

50 i f isempty (xX) ,xX=nan (1 ,12 ) ; ind = 1 : 1 2 ;end

51 i f length (xX)==11, xX(12)=NaN; end

52 % i f sum( abs ( d i f f (xX) ) )==0, xX ( : )=NaN; end %%%t h e r e was some rows

o f the same numbers , e x c l u d e them

53 for j = 1 :12

54 XP( ind tx , j ) = xX( j ) ;

55 end

56 end

57 LRX = d i f f ( log (XP) ) ; %deseas . l o g r e t u r n s

58 %% e x c l u d i n g some data . The same procedure as was in F.

59 ind = find ( isnan (sum(LRX, 2 ) ) ) ;

60 ho l i days = find ( d i f f ( t )>1) ;

61 [ tmp , ia , ib ]= i n t e r s e c t ( t ,T) ;

62 missout=union ( union ( ind , ho l i day s ) , i a ) ;

63 keep = s e t d i f f ( 1 : length ( t )−1, missout ) ;

64 tkeep = t ( keep ) ;

65 XP = XP( keep , : ) ;

66 LRX = LRX( keep , : ) ;

67 %% h i s t o r i c a l v o l a t i l i t y o f d e s e a s o n a l i z e d log−r e t u r n s

68 win = 30 ;

69 [ volsX , indX]= g e t v o l s (LRX( : , 1 ) , win ) ;

70 tvolX = tkeep ( indX ) /365−2000;

71 %% f i t t i n g v o l a t i l i t i e s

72 x0 = [ 1 1 1 1 1 1 1 1 1 1 ] ;
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73 x f i t = l s q c u r v e f i t ( @sigmaFunction11 , x0 , tvolX , volsX ) ;

74 s i gma f = ( sigmaFunction11 ( x f i t , tvolX ) ) ; %d a i l y v o l a t i l i t y

75 s igma fd = sqrt (252) ∗ s i gma f ; %y e a r l y v o l a t i l i t y

76 %%

77 % f i g u r e (1) , c l f

78 % hold on

79 % p l o t ( tvolX , volsX , ’ r ’ )

80 % p l o t ( tvolX , s igma f , ’ g ’ )

81 % x l a b e l ( ’ t ime ( in years ) ’ ) ;

82 % y l a b e l ( ’ v o l a t i l i t y ’ )

83 % legend ( ’ h i s t o r i c a l v o l a t i l i t y ’ , ’ t h e o r e t i c a l ’ )

84

85

86 %% r e p l a c i n g v o l s by s i gm a f

87 for j = 1 :12

88 %normol ized deseas . r e t u r n s

89 LRX norm ( : , j ) = LRX( ( win+1) : ( end−win ) , j ) . / s i gma f ;

90 end

91 MX = cov (LRX norm) ; %covar inace matrix o f log norm−s

92 [UX,LX,VX] = svd (MX) ;% SVD of covar iance matrix

93 % tvo lX = t k e e p ( win+1:end−win ) ; %times accord ing to v o l s

94 %% r e b u i l d X us ing f i r s t 3 components

95 SDX = sqrt (LX( 1 : 3 , 1 : 3 ) ) ;

96 VDX = LRX norm∗UX( : , 1 : 3 ) ∗ inv (SDX( 1 : 3 , 1 : 3 ) ) ;%FIXED

97 MDX = VDX∗SDX∗UX( : , 1 : 3 ) ’ ;

98 %% f i r s t , r e b u i l d l o g r e t u r n e s
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99 LRX norm reb = MDX;%%% deseas

100 %%%%

101 %

102

103 %%

104 t t = 1 : 0 . 0 1 : 1 2 ;

105 x = lambda m ( [ 1 0 , 1 1 , 1 2 , 1 : 1 2 , 1 , 2 ] ) ;

106 y = csape ( [ 1 0 , 1 1 , 1 2 , 1 : 1 2 , 1 , 2 ] , x , ’ p e r i o d i c ’ ) ; %d e f i n i n g a p e r i o d i c

f u n c t i o n ” lambda” by c u b i c s p l i n e i n t e r p o l a t i o n

107 %%%c a l c u l−n o f trend ’ s po lynomia l

108 t rend h = volsX − detrend ( volsX ) ; %h i s t o r i c a l

109 t r en d t = spline ( tvolX , trend h , t t ) ;% trend f o r any time ’ t t ’

110 % l t t = l a m b d a t t + t r e n d t ;

111 %%

112 %%%%%%%%%%%%%%OPTION PRICING%%%%%%%%%%%%%%%%

113 OEDate = 0 . 2 5 ;

114 today = 0 ;

115 N = 100 ; % No of MC s i m u l a t i o n s

116 tX = 0 :1/252 : OEDate ;

117 % tX = tvo lX ( 1 : 5 0 ) ;

118 dt = 1/252 ;

119 f=@(tX) ppval (y ,12∗mod(tX , 1 ) ) ;

120 lambda ttX = @(tX) f ( tX) ;

121 trend tX = spline ( tvolX , trend h , tX) ;%

122 s igma fd = @(tX) sqrt ( sigmaFunction11 ( x f i t , tX) ∗252) ; %the v a l u e s

o f v o l a t i l i t y f u n c t i o n ( y e a r l y )
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123 sim VX = randn( length ( tX) ,3 ,N) /sqrt ( length ( tvolX ) ) ; % MONTE

CARLOOOOOO s i m u l a t i o n o f matrix VX(Nx3) ˜ N(0 ,1)

124 for k=1:N

125 LRX sim ( : , : , k ) = sim VX ( : , : , k )∗SDX∗UX( : , 1 : 3 ) ’ ;

126 for j = 1 :12

127 LRX norm sim ( : , j , k ) = LRX sim ( : , j , k ) . / s igma fd ( tX) ’ ; %normol ized

r e t u r n s

128 end

129 LRX norm reb sim ( : , : , k ) = LRX norm sim ( : , : , k ) ;

130 for i =2: length ( LRX norm reb sim ( : , 1 , k ) )

131 XP reb sim ( 1 , : , k ) = XP( 1 , : ) ;

132 XP reb sim ( i , : , k ) = XP reb sim ( i −1 , : , k ) .∗exp(−( s igma fd ( i −1)

ˆ2/2) ∗( tX( i −1)∗dt ) + s igma fd ( i −1)∗ LRX norm sim ( i −1 , : , k ) ) ;

133 end

134 for j =1:12

135 for i =1: length ( tX)

136 P reb sim ( i , j , k ) = XP reb sim ( i , j , k ) ∗exp( lambda ttX ( i /252+ j /12) )

;%+trend tX ( i ) ) ;

137 end

138 end

139 K = mean(P( 1 : 5 0 , 4 ) ) −0.5; % s t r i k e p r i c e f o r European C a l l

140 payo f f ( k ) = max(0 , P reb s im (end , 4 , k )− K) ;%%%we take the l a s t

e lement o f P reb sim because p r i c e s were s imu la ted t i l l op t ion

e x p i r y date

141

142
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143 C mc( k ) = exp(−0.05∗(OEDate − today ) )∗ payo f f ( k ) ;%%% European C a l l

by MC ( f o r each s i m u l a t i o n )

144 end

145

146 tmpC = cov ( squeeze ( P reb s im (end , 4 , : ) ) , payo f f ) ;

147 b hat = tmpC(2 , 1 ) /tmpC(1 , 1 ) ;

148

149 C mc mean = mean(C mc) ;%E−c a l l pr ice , r e c e i v e d by MC s i m u l a t i o n s

150 % P mc mean = mean( P reb sim ( : , 4 , : ) ,3) ;

151 value s igma = @(OEDate) s igma fd (OEDate) ;

152

153 cv e s t imato r = ( payo f f ( : ) − b hat ∗ ( squeeze ( P reb s im (end , 4 , : ) ) −

exp (0 . 05∗OEDate)∗ squeeze ( P reb s im ( 1 , 4 , : ) ) ) ) ;

154 C cv = C mc mean − mean( cv e s t imato r ) ;

155 f igure (2 ) , c l f

156 hold on

157 plot (UX( : , 1 ) , ’ r ’ )

158 plot (UX( : , 2 ) , ’ g ’ )

159 plot (UX( : , 3 ) , ’b ’ )

160 plot (UX( : , 4 ) , ’ y ’ )

161 legend ( ’The 1 s t e i g e n v e c t o r ’ , ’The 2nd e i g e n v e c t o r ’ , ’The 3d

e i g e n v e c t o r ’ , ’The 4 th e i g e n v e c t o r ’ )

162 % [ mean( C cv ) − 1.96∗ s t d ( C cv ) / s q r t (N) ,mean( C cv ) + 1.96∗ s t d ( C cv )

/ s q r t (N) ]

1 function f = sigmaFunction11 (x , t v o l )

2
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3 f = exp( x (1 ) + x (2) ∗ t v o l + . . .

4 x (3 ) ∗ sin (2∗pi∗ t v o l ) + x (4) ∗cos (2∗pi∗ t v o l ) + . . .

5 x (5 ) ∗ sin (4∗pi∗ t v o l ) + x (6) ∗cos (4∗pi∗ t v o l ) + . . .

6 x (7 ) ∗ sin (6∗pi∗ t v o l ) + x (8) ∗cos (6∗pi∗ t v o l ) + . . .

7 x (9 ) ∗ sin (8∗pi∗ t v o l ) + x (10) ∗cos (8∗pi∗ t v o l ) ) ;

1 data = x l s r e ad ( ’CLData . x l s ’ ) ;

2 % load data

3 T = data ( : , 5 ) ; %

4 t = data ( : , 1 0 ) ; %

5 F = data ( : , 9 ) ;

6 ud = unique (T) ; %

7 ind = find (T==ud (40) ) ;

8 T = ud (40) ;

9 t = t ( ind ) ;

10 F = F( ind ) ;

11 ind = find (T>t ) ;

12 t = t ( ind ) ;

13 F = F( ind ) ;

14 N = length (F) ;

15 r = zeros (1 ,N−1) ;

16 for i = 1 : 1 :N−1

17 r ( i )=(F( i +1)/F( i ) )−1;

18 end

19 t = t ( 1 : end−1) ’ ;

20 weekends =0;

21 % e l i m i n a t e zero r e t u r n s
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22 ind = find ( r ) ;

23 t = t ( ind ) ;

24 d w = weekday ( t ) ;

25 r = r ( ind ) ;

26 i f weekends==0

27 disp ( ’ E l iminat ing weekends ’ )

28 % e l i m i n a t e weekends

29 ind = find (1<d w & d w<7) ;

30 e l s e i f weekends==1

31 ind = find (1<d w &d w<8) ;

32 e l s e i f weekends==1

33 ind = find ( d w==1) ;

34 e l s e i f weekends==2

35 % only weekends

36 ind = find ( d w==1 & d w == 7) ;

37 end

38 N = length ( ind ) ;

39 r=r ( ind ) ;

40 t=t ( ind ) ;

41 dt =1;

42 a lpha obs = fzero (@( alpha ) mle ( alpha , T, N, t , r ) , 0 . 0 5 ) ;

43 s igma obs = std ( r .∗exp( a lpha obs ∗ (T−t ) ) ) ;

44

45 for i = 1 : 1 :N

46 Sigma ( i ) = sigma obs ∗exp(−( a lpha obs ∗(T−t ( i ) ) ) ) ;

47 end
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48 %Now we have parameters a lpha&sigma o f our model . They w i l l h e l p

us to

49 %s i m u l a t e r ’ s s i n c e r∗exp ( a lpha ∗(T−t )=sigma∗ s q r t ( d e l t a t )∗Z , where

Z˜N(0 ,1)

50 %or r ˜N(0 , ( sigma ˆ2)∗ d e l t a t ∗exp(−2∗a lpha (T−t ) )

51 % T = 12;

52 N = 1000 ;

53 dt = 1 ;

54 t i = linspace ( t (1 ) ,T,N+1) ;

55 r s = zeros (1 ,N) ;

56 r s = sigma obs ∗sqrt ( dt )∗randn (1 ,N) .∗exp(−a lpha obs ∗(T−t i ( 1 : end−1) )

) ;

57 %recover Fs :

58 Fs (1 ) = F(1) ; % we need i n i t i a l v a l u e o f s imu la ted F

59 Fs = cumprod( [ Fs (1 ) ; ( r s +1) ’ ] , 1 ) ;

60 %now l e t ’ s c a l c u l a t e v o l a t i l i t i e s us ing t h e s e s imu la ted rs ’ s

61 %%%%%%%FOR d i f f e r e n t window l e n g t h s :

62 win1=2; %window l e n g t h

63 [ vol1 , ind1 , avs ] = g e t v o l s ( rs , win1 ) ;

64 win2=20; %window l e n g t h

65 [ vol2 , ind2 , avs ] = g e t v o l s ( rs , win2 ) ;

66 win3 =200; %window l e n g t h

67 [ vol3 , ind3 , avs ] = g e t v o l s ( rs , win3 ) ;

68 f igure (1 )

69 plot ( t i ( ind1 ) , sqrt ( vo l1 ) /sqrt ( dt ) , ’−r ’ , . . .

70 t i ( ind2 ) , sqrt ( vo l2 ) /sqrt ( dt ) , ’−g ’ , . . .
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71 t i ( ind3 ) , sqrt ( vo l3 ) /sqrt ( dt ) , ’−b ’ )

72 legend ( ’ win1 ’ , ’ win2 ’ , ’ win3 ’ , ’ Locat ion ’ , ’ EastOutside ’ )

73

74 % we cou ld e s t i m a t e a lpha us ing a l e a s t−square f i t on t h i s curve

75 % or − use the MLE approach :

76 alpha new = fzero (@( alpha ) mle ( alpha , T, N, t i ( 1 : end−1) , r s ) ,

a lpha obs ) ;

77 sigma new = std ( r s .∗exp( alpha new ∗ (T−t i ( 1 :N) ) ) ) ;

78 % exp ( alpha new ∗ (T − t i ( 1 : end−1)) ) ) ;

79 for i = 1 : 1 :N

80 Sigma new ( i ) = sigma new∗exp(−( alpha new ∗(T−t i ( i ) ) ) ) ;

81 end

82 format long

83 disp ( [ a lpha obs , alpha new ; s igma obs sigma new ] )

84 r ove r s i gma = r . / Sigma ;

85 r s ove r s i gma = r s . / Sigma new ;

86 % r o v e r s i g m a = r .∗ sigma new∗ exp ( alpha new ∗(T−t ) ) /Sigma new ;

87 %%%and now l e t ’ s t e s t normal i ty o f r o v e r s i g m a

88 h i s t f i t ( r over s igma , 4 0 )

89 qqplot ( r ove r s i gma )

90 kurt = k u r t o s i s ( r ove r s i gma )

91 skew = skewness ( r ove r s i gma )

92 normplot ( r ove r s i gma )

93 [ h , p ] = j b t e s t ( r over s igma , 0 . 0 1 )

94 h i s t f i t ( r s ove r s i gma , 4 0 )

95 qqplot ( r s ove r s i gma )
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96 kurt = k u r t o s i s ( r s ove r s i gma )

97 skew = skewness ( r s ove r s i gma )

98 normplot ( r s ove r s i gma )

99 [ h , p ] = j b t e s t ( r s ove r s i gma , 0 . 0 1 )

100

101 % h i s t f i t ( r , 4 0 )

102 % q q p l o t ( r )

103 % k u r t = k u r t o s i s ( r )

104 % skew = skewness ( r )

105 % normplot ( r )

106 % [ h , p ] = j b t e s t ( r , 0 . 0 1 )

1 %This i s a d e r i v a t i v e by a l f a o f log− l i k e l i h o o d f u n c t i o n f o r r i (

i = 1 , . . .N−1) in the code

2 %” c a l c u l a t e R s ”

3 function f = mle ( alpha , T, N, t , r )

4

5

6 f = . . .

7 sum(T − t ) ∗ sum( r . ˆ2 .∗ exp(2 ∗ alpha ∗ (T − t ) ) ) . . .

8 − . . .

9 N ∗ sum( r . ˆ2 .∗ (T − t ) .∗ exp(2 ∗ alpha ∗ (T − t ) ) ) ;

1 clear a l l ; close a l l ; clc ;

2 load ngdata

3 % load e x c e l

4 t = ngdata . data . Curve ( 2 : end , 1 ) ;
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5 T = ngdata . data . Curve ( 1 , 2 :end) ;

6 % T = ngdata . data . Expiry ( : , 2 ) ;

7 cT = ngdata . data . Expiry ( : , 1 ) ;

8 F = ngdata . data . Curve ( 2 : end , 2 : end) ;

9 for i n d t = 1 : length ( t )

10 x = F( ind t , 1 : end) ;

11 ind = find (˜ isnan ( x ) ) ;

12 x = x ( ind ) ;

13 i f isempty ( x ) , x=nan (1 ,12 ) ; ind = 1 : 1 2 ;end

14 i f length ( x )==11, x (12)=NaN; ind = [ ind ind (end) +1] ; end

15 i f sum(abs ( d i f f ( x ) ) )==0, x ( : )=NaN; end

16 F( ind t , ind ) = x ;

17 S( i n d t ) = x (1) ; %v e c t o r o f spo t p r i c e s ( prompt month )

18 for j = 1 :12

19 P( ind t , j ) = x ( j ) ;

20 end

21 end

22 % s u b p l o t (2 ,1 ,2) ;

23 % mesh (P)

24 % % d a t e t i c k ( ’ x ’ , 1 2 )

25 % d a t e t i c k ( ’ y ’ , 1 2 )

26 % x l a b e l ( ’ t ime to maturity ’ , ’ f o n t s i z e ’ , 1 4 )

27 % y l a b e l ( ’ market date ’ , ’ f o n t s i z e ’ , 1 4 )

28 % z l a b e l ( ’ Forward pr ice ’ )

29 % t i t l e ( ’ Forward p r i c e s accord ing to TIME−TO−MATURITY’ )

30 % s u b p l o t (2 ,1 ,1)
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31 % mesh (T, t ,F)%a c t u a l matur i ty

32 % d a t e t i c k ( ’ x ’ , 1 2 )

33 % d a t e t i c k ( ’ y ’ , 1 2 )

34 % x l a b e l ( ’ maturity ’ , ’ f o n t s i z e ’ , 1 4 )

35 % y l a b e l ( ’ market date ’ , ’ f o n t s i z e ’ , 1 4 )

36 % z l a b e l ( ’ Forward pr ice ’ )

37 % t i t l e ( ’ Forward p r i c e s accord ing to TIME−OF−MATURITY’ )

38

39 x =1:12;%m a t u r i t i e s

40 plot (x ,P( 2 4 7 9 , : ) , x ,P( 2 5 7 1 , : ) , x ,P( 2 6 6 1 , : ) , x ,P( 2 7 5 2 , : ) )%forward

curves f o r October 14 ,2006 and March 29 ,2007

41 legend ( ’ November 14 ,2006 ’ , ’ January 14 ,2007 ’ , ’ Apr i l 14 ,2007 ’ , ’ July

14 ,2007 ’ )

42 xlabel ( ’ time to maturity ’ )

43 ylabel ( ’ forward p r i c e ’ )

44 t i t l e ( ’ Forward curves ’ )
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