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Abstract

Measurement error usually occurs in practice whenever we can not exactly observe the vari-

ables in a model. It has been long recognized that measurement error will bias the estimates

if we do not correct it. Thus, it is significant for us to take into account measurement error

in our analysis in order to obtain valuable results.

The Bayesian method is one of approaches for correcting measurement error in covariates

in both linear models and linear mixed effects models. Bayesian approach became feasible

and straightforward for many problems due to the availability of modern computers and

computational tools such as the Markov chain Monte Carlo (MCMC) methods and WinBUGS.

In this paper, the first goal is to assess the effects of measurement error on naive analysis

which ignore it in both linear models and linear mixed effects models. Then we focus on

correcting measurement error through utilizing regression calibration methods and Bayesian

methods, and comparing their performance in different situations. Estimating the regression

coefficients using regression calibration methods and Bayesian methods in a linear mixed

effects model with measurement error in time-varying covariates is mainly considered. We

illustrate with real data analysis investigating the relationship between true dietary intake of

beta-carotene and serum beta-carotene, and analyze the estimation results of naive methods,

regression calibration methods and Bayesian methods.
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Chapter 1

Introduction

Mixed effects models were developed to solve the problems of clustered data and have been

a popular area in Statistics for the past years. We define the clustered data as the data in

which the observations can be grouped into some disjoint classes, called clusters, according to

some classification criterion. There are some examples of clustered data including repeated

measures data and longitudinal data in which some observations can be made about the same

individual. In a repeated measures study, multiple measurements of one or more variables

are made on each individual. Longitudinal studies are vary similar with repeated measures

study but the difference is the multiple measures on each individual are made over time.

Data within the same cluster may be correlated, but data between different clusters are

usually assumed to be independent in clustered data. This allows many statistical methods

to analyze these correlated data.

Measurement error occurs frequently in practice whenever we can not exactly observe

the variables in a model. It has been long recognized that measurement error will bias the

estimates if we do not correct it. Further effects are unreliable coverage level of confidence

intervals, then reduce the power of tests. So it is significant for us to consider measurement

error in our analysis in order to obtain valuable results. Wang and Davidian (1996) are among

the first researchers to research on the effect of measurement error on variance estimators.

A detailed review of measurement error is Carroll et al. (2006).

In my thesis we will concentrate on the beta-carotene data which is from a “longitu-

dinal validation study” conducted as part of a randomized clinical trial of beta-carotene

dietary supplementation in prevention of recurrence of skin cancer (Tosteson, Buonaccorsi

and Demidenko, 1998). The data contains serum beta-carotene measurements and measures
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of beta-carotene intake which is based on a food frequency questionnaire. Both measures of

serum beta-carotene and measures of beta-carotene intake were measured on 6 repeated days

for 158 individuals, that we are able to treat as longitudinal data. Our target is to investi-

gate the relationship between true dietary intakes of beta-carotene and serum beta-carotene.

A main problem in statistical inference of the beta-carotene data is that the measures of

beta-carotene intake are conducted based on a food frequency questionnaire, which leads to

the measurement error problem. Some restrictions should be made in order to account for

measurement error in the absence of validation data. We attempt to utilize a longitudinal

model for the true dietary intakes of beta-carotene. The primary objective of my research is

to explore the impact of measurement error by assessing the bias in naive estimators and to

study approaches for correcting measurement error through implementing two approaches:

regression calibration methods and Bayesian methods.

Simple linear models with measurement error and linear mixed effects models with mea-

surement error will be the main subjects in this thesis. The thesis is organized as follows: In

Chapter 2, some literature review about the topics in my thesis will be provided; In Chapter

3, some technical result concerning simple linear models with measurement error are con-

sidered. According to the simulation study, three different estimates (the naive estimate,

the regression calibration estimate and the Bayesian estimate) are examined; The further

research on the case of linear mixed effects models with measurement error will be done in

Chapter 4. Simulation studies are conducted to assess the performance of the three different

estimates. I make use of some existing R package for regression calibration methods and

WinBUGS for Bayesian methods. WinBUGS is a programming language based software that

is used to generate a random sample from the posterior distribution of the parameters of a

Bayesian model; In the beta-carotene study that is designed to investigate the relationship

between true dietary intakes of beta-carotene and serum beta-carotene, the true dietary in-

takes of beta-carotene are known to be measured with errors. The methods are applied to
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beta-carotene data from an open web-site in Chapter 5; Chapter 6 draws the conclusion and

discusses future study.
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Chapter 2

Literature Review

In this chapter, the detailed background on the topics in my thesis will be considered. In

section 2.1, the basic concept of measurement error is described. We will focus on the content

of linear mixed effects models with measurement error in section 2.2. The details of Bayesian

linear mixed effects models with measurement error are demonstrated in section 2.3.

2.1 Measurement error

The effect of measurement error on the independent variables in a regression model is a

common problem in many scientific areas. There are substantial instances testifying that

the implication of ignoring measurement error in inferential procedures may turn out in

unreliable consequences. Refer to many reasons for the erroneous measurements, the most

obvious ones being the inaccuracy of instruments and sampling error (Buonaccorsi, 2010).

Some researchers do not consider measurement error since they are not aware of the mea-

surement error, lack of softwares, or the information for correcting measurement error is not

available for them. The high cost of exact measures, the subjective nature of some variable

such as self-reported information and intrinsic biological variability are other reasons of the

occurrence of measurement error. For instance, in epidemiologic studies, or during clinical

trials, different measurements would be taken through different means and methods, some

of which may be consistent with time, or vary with time. Some other times, researchers had

run into deliberate measurement of wrong quantities due to substitution of a cheaper and

more convenient method of measurement for the direct measurement.

There exist three typically components in the model with measurement error: the model

for the true value called outcome model which can be any statistical model, the measurement
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error model which specifies the relationship between the true values and observed values,

and extra information which is utilized to carry out corrections for measurement error such

as replicates, validation data in which both the true and mis-measured values are observed,

and the instrumental variables. The simplest measurement error model is the classical mea-

surement error model, which is an unbiased and additive measurement error model. An

alternative model is the Berkson error model, which typically arises in laboratory studies

and experimental situations in which the observed variable is controlled for. Usually, ad-

ditional information is needed in order to guarantee the identifiability of the parameters.

Additional data can be available in different forms such as the internal validation data set

and replication data. Higgins, Davidian and Giltinan (1997) and Tosteson, Buonaccorsi,

and Demidenko (1998) discovered that if a mis-measured covariate is observed longitudi-

nally, then a structural model for the covariate with dimension less than the number of

observations per subject allows all parameters to be identified (Carroll et al. 2006).

Different types of measurement error can arise in practice. An important distinction is

made between differential and non-differential measurement errors. The error in the observed

value W is non-differential if no additional information on Y is contained in W with respect

to X. In this case, W is said to be a surrogate for X and the equivalent concept is conditional

independence that is Y and W are independent given X = x. Otherwise, the error is said to

be differential. Many different error sources can be encountered in applications, which implies

that both non-differential and differential errors, with classical or Berkson components, can

be defined. An accurate specification of the measurement error model is crucial due to the

different impacts of the errors on the inferential results and the different available correction

techniques. We can classify the correction techniques into two groups according to their

interpretation of the unobserved variables. If the method makes no assumptions on the

unobserved variables, that is, unknown non-random constants, then it is functional. On the

contrary, the method is defined to be structural if it assumes the unobserved variables to be
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random variables.

Methods for correcting measurement error

Many different measurement error correction techniques have been suggested in many liter-

atures. They differ according to the assumptions about the distribution of the unobserved

variable, the availability of additional data about the unobserved variable and the theoretical

background of the approach, which may be parametric or nonparametric. We distinguish

among different models relating the variable. Comprehensive reviews of covariate measure-

ment error methods are provided in Fuller (1987), Gustafson (2004), and Carroll et al. (2006).

Commonly used methods for covariate measurement errors in regression includes regression

calibration methods, simulation extrapolation (SIMEX) methods, likelihood methods, ap-

proximation methods and Bayesian methods. Regression calibration methods and SIMEX

methods make minimal assumptions on the distribution of the unobserved covariates. In

contrast, likelihood methods and Bayesian methods make strong distribution assumptions

on the unobserved covariates, so they are more efficient if the covariate distributions are

correctly specified. In this thesis, we emphasize regression calibration methods and Bayesian

methods for correcting measurement error.

Regression calibration method

The regression calibration method is a conceptually straightforward method to correct mea-

surement error and has been successfully applicable to almost any regression models with

measurement error on covariates. Compared with naive estimation, rather than using the

observed mis-measured values W as the covariates in the regression model, regression cali-

bration method attempts to model the distribution of the unobserved true values given the

observed mis-measured values, and then substitute the unobserved true covariates by an

estimated value of the conditional expectation X̂ = E(X|W ) in the regression model. After

6



the true covariate is approximated by an estimate, one perform a standard analysis as if

there were no measurement error in covariates. Due to the simplicity of its application with

existing softwares, the regression calibration method becomes a commonly adopted method

to correct the measurement error on covariates in the regression models. However, it requires

some prerequisite such as X and W must have a linear homoscedastic relationship between

each other. This method will not be accurate if the requirement does not hold.

Bayesian method

The Bayesian method is found to be fashionable in science in the beginning of the 21 centu-

ry. However, until the late 1980s, Bayesian statistics were considered only as an interesting

alternative to the “classical” theory (Ntzoufras, 2009). Over the last two decades there has

been an “MCMC revolution” in which the Bayesian method has become a highly popular

and effective tool for the applied statistician (Ntzoufras, 2009). The main difference be-

tween classical statistical methods and Bayesian methods is that Bayesian methods consider

parameters as random variables that are characterized by a prior distribution which is the

assumed distributions for the parameters. Due to the availability of modern computers and

computational tools such as the Markov chain Monte Carlo(MCMC) methods and WinBUGS,

Bayesian methods for many problems become feasible and straightforward. The Bayesian

inference is based on the posterior distribution, which is the conditional distribution of un-

observed quantities, such as the parameters or unobserved data, given the observed data.

The posterior distribution is our target and it summarizes all the information about the

parameters.

The Bayesian inference is based on the rationale which is called Bayes Theorem. Assume

two outcomes A and B, and A = A1∪· · ·∪An for which Ai
⋂
Aj = ∅ , i 6= j. Bayes Theorem
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states that the conditional probability of Ai given B can be expressed as (Ntzoufras, 2009)

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)
n∑
i=1

P (B|Ai)P (Ai)

(2.1)

In a general form, for any outcome A and B

P (A|B) =
P (B|A)P (A)

P (B)
∝ P (B|A)P (A) (2.2)

This equation is also called Bayes
′
rule, although it was originally found by Piere-Simon

de Laplace (Hoffmann-Jorgensen, 1994).

We assume the unknown parameters θ are random variables following a distribution with

probability density function f(θ) = f(θ|θh) which is called prior distribution that expresses

the information available to us before any data are involved in the statistical analysis. The

parameters θh in the prior distribution are called hyper-parameters and are often assumed

to be known, which can be selected based on similar studies, expert opinions or even non-

informative (Wu, 2010). Based on the Bayes
′
rule, we can obtain the posterior distribution

of parameters as

f(θ|y) =
f(y|θ)f(θ)

f(y)
=

f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

∝ f(y|θ)f(θ) (2.3)

The Bayesian inference will depend on this posterior distribution which is the multi-

plication of the likelihood f(y|θ) =
n∏
i=1

f(yi|θ) and the prior distribution f(θ). The prior

distribution f(θ) has a significant effect on the Bayesian inference and we can test the sensi-

tivity by selecting different prior distributions or different values of hyper-parameters. If we

do not have any prior information, the non-informative prior f(θ) ∝ 1 will be chosen, then

we can obtain f(θ|y) ∝ f(y|θ)f(θ) = L(θ|y). It means that the Bayesian inference is the

same with the likelihood inference when we use the non-informative prior distribution.

The Bayesian method is another popular approach to correct measurement error. The

Bayesian formulation of general measurement error problems has been developed (Clayton,

1992). Structural specifications entail the formulation of three sub-models: a response model
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relating X and Y, a measurement error model specifying the relationship between W and X

and a prior model for the prior distribution of the unobserved true covariates X. A graphical

model with suitable conditional independence assumptions is used to link these sub-models.

For a general linear model with the additive classical measurement error

f(Y|X,θ1) : response model with parameters θ1 (2.4)

f(W|X,θ2) : measurement error model with parameters θ2 (2.5)

f(X|θ3) : prior model with parameters θ3 (2.6)

An important assumption is that of non-differential measurement error

f(Y|X,W;θ1) = f(Y|X;θ1) (2.7)

Then the joint distribution can be written as

f(Y,X,W,θ1,θ2,θ3) = f(θ1)f(θ2)f(θ3)f(Y|X,θ1)f(W|X,θ2)f(X|θ3) (2.8)

In the Bayesian method, we attempt to make inference about unknown data X and

unknown parameters θ = (θ1,θ2,θ3) through deriving the posterior densities conditional

on the observed data (Y,W). The joint posterior densities of the unknown values can be

expressed as

f(X,θ|Y,W) ∝ f(θ1)f(θ2)f(θ3)f(Y|X,θ1)f(W|X,θ2)f(X|θ3)

= f(θ1)f(θ2)f(θ3)
n∏
i=1

f(Yi|Xi,θ1)
n∏
i=1

f(Wi|Xi,θ2)
n∏
i=1

f(Xi|θ3) (2.9)

It is very difficult for us to evaluate the joint or marginal densities based on either analytic

approximation or numerical integration since the joint density function has so many unknown

values. In order to avoid the intractable integrals, it is convenient for us to implement the

Gibbs sampler generating dependent samples from joint and marginal posterior densities and

make inference on the posterior distributions of unknowns.
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The Gibbs sampler which is one of Markov chain Monte Carlo (MCMC), was introduced

by Geman and Geman (1984). It has been widely used to compute approximate posterior

densities in many statistical areas. The Gibbs sampler generates a Markov chain whose

stationary distribution is the posterior distribution and its key feature is this chain can be

simulated using only the joint densities of the parameters, the unobserved data and the

observed data such as the product of the prior and the likelihood. One advantage of the

Gibbs sampler is that, in each step, random values must be generated from uni-dimensional

distribution for which a wide variety of computational tools can be implemented (Gilks,

1996). Suppose a set of k variables with joint distribution f(θ1, · · · , θk) which is uniquely

specified by the set of k full-conditional distributions

f(θi|θ\i) = f(θi|θ1, · · · , θi−1, θi+1, · · · , θk) (2.10)

where i = 1, · · · , k. First of all, we need to set the initial value θ(0). For each iteration of

the algorithm, we will repeat the following procedure: 1. set θ = θ(t−1); 2. update θi from

f(θi|θ(t)1 , · · · , θ
(t)
i−1, θ

(t−1)
i+1 , · · · , θ(t−1)k ), t = 1, · · · , T ; 3. set θ(t) = θ(current) and save it as the

general set of values at t+ 1 iteration of the algorithm. We can check the convergence of the

Gibbs sampler through inspecting the sample summary statistics and density estimates.

2.2 Linear mixed effects models with measurement error

Mixed effects models provide a stage to model cluster dependence in which the response

can be defined as a function of fixed effects, unobserved cluster specific random effects and

an error term. The data within the same cluster are statistically dependent as they share

common random effects. There are two types of parameters in a mixed effects model: fixed

effects which associate with the average effects of predictors on the response; random effects

which represent the effects of clusters on the repeated observations in corresponding clusters.

Variance-covariance component which relates to the covariance structure of the random

effects and the error term. In my thesis, I will restrict the random effects and the error term
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to be based on normal distribution. Maximum likelihood method and restricted maximum

likelihood method (Harville, 1974) have been generally adopted for analyzing linear mixed

effects models (Longford, 1993). For nonlinear mixed effects models, statisticians are still

debating on the estimation method although several methods proposed.

Linear mixed effects models are mixed effects models in which both the fixed effects

and the random effects have a linear contribution to the response. For longitudinal data or

clustered data, classical linear regression is inappropriate because the observations within

each cluster may be correlated, which makes the independence assumption for classical model

not work. To incorporate the correlation within clusters and the variation between clusters,

we can obtain linear mixed effects models from classical linear regression models by adding

random effects, and the magnitude of the random effects measures the variation between

clusters. Assume Yij is the response for individual i at time tij, i = 1, · · · , G, j = 1, · · · , ni.

Yi = (Yi1, · · · , Yini)′ is the ni repeated observations within individual i. Using the hierarchical

notation of Laird and Ware (1982),

Yi = Xiβ + Zibi + εi i = 1, · · · , G (2.11)

bi ∼ N(0,D) (2.12)

εi ∼ N(0, σ2I) (2.13)

where Yi is a ni × 1 response vector, Xi is a ni × (p + 1) design matrix for fixed effects

containing covariates of individual i, β are (p+ 1)× 1 regression coefficients for fixed effects,

Zi is a ni× q design matrix for random effects, bi is a q× 1 matrix for random effects and εi

is a ni× 1 matrix for random errors of within individual measurements, which demonstrates

the variability of the repeated measurements within each individual. σ2I is a ni×ni variance-

covariance matrix of within individual measurements. Wang and Heckman (2009) proved

that linear mixed effects models are always identifiable if variance-covariance matrix of with-

in individual measurements is σ2I. The matrix D is often unstructured but we can define it
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as a diagonal matrix (Jenrich and Schluchter, 1986). The variance of the random effects bi or

the diagonal elements of D are sometimes called variance components, which measures the

variability between individuals that are not explained by covariates. There are some special

cases of model (2.11) such as variance components models (Searle, Casella and McCulloch,

1992), mixed effects ANOVA models (Miller, 1977), and linear models for longitudinal data

(Laird and Ware, 1982). Maximum likelihood method (ML) and restricted maximum like-

lihood method (REML) are the typically estimation methods for the statistical inference of

a linear mixed effects model (Laird and Ware, 1982; Lindstrom and Bates, 1988). We can

only obtain the REML estimates by computer because the deriving procedure contains a

rather complicated nonlinear optimization issue, resulting in no closed form expressions for

the distribution of REML estimates. EM algorithm (Dempster, Laird and Rubin, 1977) and

Newton-Raphson methods (Thisted, 1988) are the most common methods to solve the op-

timization, but the latter seems to be more efficient than the former (Lindstrom and Bates,

1988). As the independence assumption does not hold, the classical asymptotic theory for

ML estimates (Lehmann, 1983) is not available for linear mixed effects models. Bayesian

method is developed by using a hierarchical model approach. It is flexible in manipulating

complicated situations like constrained parameters and non-Gaussian distributions for the

random effects or error terms, but it also has drawbacks such as the selection of prior dis-

tribution for all the population parameters and the requirement of intensive computational

effort.

The linear mixed models specially incorporate the variation within individuals and the

variation between individuals. Therefore, it can be interpreted as a hierarchical two-stage

model: the first stage specifies the within-individual variation and the second stage specifies

the between-individual variation (Wu, 2010).

An additive classical measurement error can be written as

Wi = Xi + ui i = 1, · · · , G. (2.14)
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where Wi is the error-prone measure of Xi, E(ui) = 0 and u1, · · · ,uG are assumed indepen-

dent with each other. To model the true covariates Xi, we need to consider a covariate mixed

effects model to incorporate between-individual variation and within-individual correlation.

For longitudinal data, a linear mixed effects model to address measuremtn error can be

written as

Wi = Xi + ui

= Miη + Niδi + ui (2.15)

where Wi is the observed measure of Xi, Mi and Ni are known design matrices, η con-

tains unknown fixed parameters, δi are random effects and ui are covariates measurement

errors. Assume δi are independent and identically distributed with N(0,Ωδ), Ωδ is an un-

known covariance matrix, ui are independent and identically distributed with N(0, σ2
uI). σ2

u

presents the magnitude of the measurement error. Furthermore, we assume δi, ui, bi, εi are

independent with each other. In the measurement error model (2.15), the unobserved true

covariates Xi can be written as

Xi = Miη + Niδi (2.16)

The measurement error model can be fitted using standard methods for linear mixed

effects models given Wi. The lack of additional residual error in (2.16) allows for estimation

of η, σ2
u, and Ωδ from the W data.

2.3 Bayesian linear mixed effects models with measurement error

The general Bayesian approach can be applied to mixed effects models with measurement

error. Bayesian estimation analytic expressions are often unavailable so Monte Carlo methods

are often used, which can be computationally intensive. For linear models, some analytical

expressions can be obtained. First, we consider Bayesian linear mixed model,

Yi = Xiβ + Zibi + εi, i = 1, · · · , G,
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bi ∼ N(0,D), εi ∼ N(0, σ2I)

β ∼ N(β0,Σ0); a prior distribution for the mean fixed parameter (2.17)

The hyper-parameter β0 and Σ0 are known. We assume a non-informative prior for β,

i.e., Σ−10 = 0 or β ∼ Uniform(−∞,∞). For the convenience of presentation, we write the

model in a more compact form as follow: Let N =
G∑
i=1

ni, and let Y = (Y1, · · · ,YG)′,b =

(b1, · · · ,bG)′, and X = (X1, · · · ,XG)′. Bayesian estimation of the mean parameter β can be

based on the following posterior distribution of β given the observed data:

f(β|Y) =
f(Y|β)f(β)

f(Y)

=

∫
f(Y|β,b)f(β)f(b)db∫ ∫
f(Y|β,b)f(β)f(b)dbdβ

(2.18)

Based on properties of multivariate normal distributions, it can be shown that the pos-

terior distribution of β can be found (Searle et al, 1992; Davidian and Giltinan, 1995).

Bayesian inference can be based on the Gibbs sampler along with rejection sampling method

(Zeger and Karim, 1991; Gelman et al. 2003). A Gibbs sampler method to generate samples

from the posterior distribution f(β,D,b|Y) is described as follow:

• generate β(t) from f(β|D(t−1),b(t−1),Y)

• generate D(t) from f(D|β(t),b(t−1),Y)

• generate b(t) from f(b|β(t),D(t),Y) t = 1, · · · , T.

Once we generate many such samples, the posterior mean and posterior covariance can be

approximated by the same mean and sample covariance based on the simulated data.

Now, with measurement error, Bayesian approach typically treats the unobserved true

covariate X as missing data and imputes them many times by sampling from the conditional

distribution of X given all other variables and observed data. Specifically by treating the

unobserved true covariate X as missing data, we can write the “complete” likelihood as
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follows:

f(θ)f(Y|X,b,θ)f(b|θ)f(W|X,θ)f(X|θ) (2.19)

where θ is all unknown parameters. Bayesian inference is based on the following posterior

distribution of θ given the observed data:

f(θ|Y,W) =

∫ ∫
f(Y,W,X,b|θ)f(θ)dxdb∫ ∫ ∫
f(Y,W,X,b|θ)f(θ)dxdbdθ

(2.20)

We again use the Gibbs sampler method, which generates many samples from the poste-

rior distribution by iterating sampling from lower dimensional conditional distribution. The

Gibbs sampler iterates between following steps in the ith cluster:

• generate samples of the unobserved covariate Xi from its posterior distribu-

tion given the observed data and the last generated random effects bi and

parameters θ:

Xi ∼ f(Xi|Yi,Wi,bi,θ) ∝ f(Yi|Xi,bi,θ)f(Wi|Xi,θ)f(Xi|θ)

• generate samples of the random effect bi from its posterior distribution given

the observed data and the last generated unobserved values Xi and parameters

θ:

bi ∼ f(bi|Yi,Wi,Xi,θ) ∝ f(Yi|Xi,bi,θ)f(bi|θ)

• generate samples of the parameters θ from its posterior distribution given the

observed data and the last generated unobserved values X and random effects

b:

θ ∼ f(θ|Y,X,W,b) ∝ f(θ)f(Y|X,W,b,θ)f(b|θ)f(W|X,θ)f(X|θ)

Iterating the above three steps, the resulting sequence is a Markov chain which will converges

to its stationary distribution, the target posterior distribution.
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Throughout this thesis, we assume the classical measurement error is modeled as a struc-

ture with a constant variance and the measurement error is additive and non-differential. For

simulation studies, the measurement error variance is assumed to be known. The repeated

measurements will be used to estimate measurement error variance for longitudinal data in

real data analysis.

16



Chapter 3

Simple Linear Models with Measurement Error

In this chapter, we focus on the estimation of the parameters in a simple linear model

with measurement error in covariates. Simulation studies will be conducted to compare the

performance of regression calibration methods and Bayesian methods. We assume the mea-

surement error variance is known for identifiability problem and the measurement error is

non-differential. In section 3.1, we construct a simple linear regression model with measure-

ment error and assess the bias of estimator in naive estimation. The correcting methods

consisting of moment-based corrections, regresson calibration methods and Bayesian meth-

ods are best described in section 3.2. Simulation results are demonstrated in section 3.3.

3.1 Simple linear models with measurement error

A classical simple linear model with parameters θ1 = (β0, β1, σ
2
ε) can be written as

Yi = β0 + β1Xi + εi i = 1, · · · , n (3.1)

where Yi is the response, Xi is the predictor and the error in the equation εis are assumed

uncorrelated with mean 0 and constant variance σ2
ε . The unobserved Xis are assumed to be

independent and identically distributed with mean µx and variance σ2
x. Let Wi denote the

error-prone measurement for the predictor Xi, a classical additive measurement error model

can be expressed as

Wi = Xi + ui i = 1, · · · , n (3.2)

where uis are assumed to be independent and identically distributed with mean 0 and vari-

ance σ2
u. Furthermore, We assume Xi, ui and εi are mutually independent.
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Assessing bias in naive estimators

The behavior of the naive estimation in a simple normal structural model with the normal

additive measurement error is considered. Assume

(Xi, εi, ui)
′ ∼ N3{(µx, 0, 0)′; diag(σ2

x, σ
2
ε , σ

2
u)}

Then  Wi

Yi

 ∼ N2


 µx

µy = β0 + β1µx

 ,
 σ2

w σwy

σyw σ2
y


 (3.3)

where  σ2
w σwy

σyw σ2
y

 =

 σ2
x + σ2

u β1σ
2
x

β1σ
2
x β2

1σ
2
x + σ2

ε

 (3.4)

If the observed (Y,W) are jointly normal, the distribution of (Yi,Wi) is characterized

by the elements of mean vector and covariance matrix, that is, (µx, µy, σ
2
w, σwy and σ2

y).

Because the model contains six parameters (β0, β1, σ
2
ε , µx, σ

2
x and σ2

u), there are many different

configurations that lead to the same distribution of the observations. Therefore, the model

is not identified. Therefore some additional information has to be provided, either a data

structure or a model assumptions. σu is known or can be estimated and σu
σε

is known are

the most common extra information. There are assumptions found in the literature, among

other, σu is known or λ = σ2
u

σ2
w

is known makes the model identifiable.

Naive methods are conducted to utilize the observed mis-measured Wi as the true unob-

served Xi in model (3.1)

E(Yi|Wi) = β0naive + β1naiveWi (3.5)

Taking the expectations conditional on Wi for (3.1)

E(Yi|Wi) = E[E(Yi|Xi,Wi)|Wi]
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= E[E(Yi|Xi)|Wi] (non-differential measurement error assumption)

= E(β0 + β1Xi|Wi)

= β0 + β1E(Xi|Wi)

= β0 +
(
1− σ2

x

σ2
w

)
β1µx +

σ2
x

σ2
w

β1Wi (3.6)

This means that

E(β̂1naive) =
σ2
x

σ2
w

β1 =

(
σ2
x

σ2
x + σ2

u

)
β1 = λβ1

E(β̂0naive) = β0 +
(
1− σ2

x

σ2
w

)
β1µx (3.7)

The slope is attenuated by λ = σ2
x

σ2
w

= σ2
x

σ2
x+σ

2
u

and the intercept is shifted by (1 − λ)β1µx.

Where β̂1naive =
n∑
i=1

[(Wi − W )2]−1
n∑
i=1

(Wi − W )(Yi − Y ) and β̂0naive = Y − β̂1naiveW . If

β1 6= 0 and σ2
u > 0, then |λβ1| < |β1| leads to what is known as attenuation with the

attenuation factor λ = σ2
x

σ2
w

= σ2
x

σ2
x+σ

2
u
< 1. As a result, the analysis will be involved in the

attenuation problem as λ < 1 and β̂1naive will be biased towards 0 as σu is large enough. The

existence of measurement error in X gives rise to the estimation bias can not be reduced

though increasing the sample size. With increase sample size, the impact of the attenuation

is aggravated such that the estimates are tending towards becoming more precisely wrong.

3.2 Correcting Methods

3.2.1 Moment-based Correcting Method

Moment-based correcting method is one of the simplest methods that takes a linear trans-

formation of the naive estimates of the coefficients in the models. The basic idea of this

method is to correct for the bias in σ̂2
w = 1

n−1

n∑
i=1

(Wi−W )2 as estimator of σ2
x. The corrected
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estimates can be expressed as

β̂1 = λ̂−1β̂1naive =
σ̂2
w

σ̂2
x

β̂1naive

β̂0 = Y − β̂1W (3.8)

where λ̂ = σ̂2
x

σ̂2
w

= σ̂2
w−σ2

u

σ̂2
w

and σ2
u is known. (Fuller 1987; Rosner et al 1989; Thurston et al.

2003)

3.2.2 Regression Calibration Methods

Two primary steps for the regression calibration methods are performed in order to address

the measurement errors in covariates: First, model and estimate the regression of Xi on

Wi depending on parameters; Second, replace the unobserved Xi by its estimate and run

a standard analysis to obtain parameter estimates. When (X,W) is approximately jointly

normal, the regression of Xi on Wi is linear:

x̂i = Ê(Xi|Wi) = µ̂x +
σ̂2
x

σ̂2
w

(Wi − µ̂x)

= W +
σ̂2
w − σ2

u

σ̂2
w

(Wi −W )

=
(
1− σ̂2

w − σ2
u

σ̂2
w

)
W +

σ̂2
w − σ2

u

σ̂2
w

Wi

= (1− λ̂)W + λ̂Wi (3.9)

where σ2
u is assumed to be known or can be estimated and σ̂2

w = 1
n−1

n∑
i=1

(Wi −W )2. It is

important for us to realize that the regression calibration model is an approximate model

for the observed data. Therefore it is not necessarily the same as the actual mean for the

observed data while is only moderately different in many cases.
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3.2.3 Bayesian Methods

For a simple linear model with the additive classical measurement error, the three sub-models

can be expressed as

f(Y|X,θ1) : response model with parameters θ1 = (β0, β1, σ
2
ε ) (3.10)

f(W|X,θ2) : measurement error model with parameters θ2 = (σ2
u) (3.11)

f(X|θ3) : exposure model with parameters θ3 = (µx, σ
2
x) (3.12)

An important assumption is that the measurement error is non-differential, then

f(Y|X,W;θ1) = f(Y|X;θ1) (3.13)

The joint distribution will be

f(Y,X,W,θ1,θ2,θ3) = f(θ1)f(θ2)f(θ3)
n∏
i=1

f(Yi|Xi,θ1)
n∏
i=1

f(Wi|Xi,θ2)
n∏
i=1

f(Xi|θ3)(3.14)

The joint posterior densities of the unknown values can be written as

f(X,θ|Y,W) ∝ f(θ1)f(θ2)f(θ3)
n∏
i=1

f(Yi|Xi,θ1)
n∏
i=1

f(Wi|Xi,θ2)
n∏
i=1

f(Xi|θ3) (3.15)

We first need to derive the full conditional posterior distributions for all the unknown

values in order to utilize the Gibbs sampler. The full conditional posterior distributions of

unknown data X can be written as

f(Xi|Yi,Wi,θ) ∝ f(Yi|Xi,θ1)f(Wi|Xi,θ2)f(Xi|θ3)

= f(Yi|Xi, β0, β1, σ
2
ε )f(Wi|Xi, σ

2
u)f(Xi|µx, σ2

x) (3.16)

With normal assumption

f(Xi|Yi,Wi,θ) ∝ exp

(
− 1

2σ2
ε

(Yi − β0 − β1Xi)
2

)

× exp

(
− 1

2σ2
u

(Wi −Xi)
2

)
exp

(
− 1

2σ2
x

(Xi − µx)2
)

(3.17)
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The full conditional posterior distributions of unknown parameters θ is

f(βj|β\j, σ2
ε ,Y,X) ∝ f(Y|X,θ1)f(βj|X, σ2

ε )

=
n∏
i=1

f(Yi|Xi, β0, β1, σ
2
ε )f(βj) (3.18)

f(σ2
ε |X,Y,θ) ∝ f(Y|X,θ1)f(σ2

ε |θ1,X)

=
n∏
i=1

f(Yi|Xi, β0, β1, σ
2
ε )f(σ2

ε ) (3.19)

where we usually assume the unknown parameters are apriori independent. Based on the

Gibbs sampler, given the initial values θ(0) and X(0), we first draw the samples of the

unobserved X from its full conditional posterior distribution (3.16). Then the samples of

the unknown parameters θ can be generated from (3.18) and (3.19). After repeating the

above procedures many times for a burn-in period, finally we are able to obtain the desired

samples from the posterior distribution (3.15).

3.3 Simulation Studies

A simulation study is conducted to evaluate and compare the performance of naive methods,

regression calibration methods and Bayesian methods. Simulated data were generated: the

sample size n = 20 and 100, the intercept of the regression β0 = 1, the slope of the regression

β1 = 0.5, µx = 1, σx = 1, σε = 0.3. We look at numerical summaries for parameters θ

with different measurement error variance (σ2
u = 0.25, 0.49, 1). In Bayesian analysis, the

choice of prior distribution is important since it may affect the final results. We specify the

parameters β0, β1 and µx have independent normal priors with mean 0 and precision 10−6.

It is quite common in Bayesian analysis to specify the normal distribution in terms of its

precision instead of its variation. Thus, we specify τε, τx, τu have independent gamma priors

with parameters 3 and 1. σ = τ−
1
2 , λ = σ2

x

σ2
x+σ

2
u

= τu
τu+τx

. The number of iterations is 10, 000

with 1, 000 burn-in, 20 thin in each of the 3 chains. We simulated 500 sets of data for naive
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methods, regression calibration methods and Bayesian methods, and present frequentist

criteria, bias B(θ̂) = E(θ̂) − θ and mean square error (MSE) MSE(θ̂) = E[(θ̂ − θ)2] =

V ar(θ̂) + (B(θ̂))2, to measure the performance of estimator accuracy and precision in the

model.

Table 3.1: Bias and MSE (Simple linear models with measurement error)

Sample size of n = 20
parameter σ2

u Naive RC Bayesian
β0 = 1 0.25 0.0891(0.0235) 0.0386(0.0355) 0.0372(0.0196)

0.49 0.1628(0.0450) 0.0665(0.1016) 0.0537(0.0203)
1 0.2506(0.0801) 0.1341(0.4596) 0.0674(0.0298)

β1 = 0.5 0.25 -0.0969(0.0183) -0.0266(0.0231) -0.0284(0.0099)
0.49 -0.1608(0.0428) -0.0760(0.0816) -0.0393(0.0147)

1 -0.2497(0.0696) -0.1251(0.3570) -0.0549(0.0161)

Sample size of n = 100
parameter σ2

u Naive RC Bayesian
β0 = 1 0.25 0.0987(0.0125) 0.0028(0.0042) 0.0473(0.0049)

0.49 0.1674(0.0289) 0.0103(0.0061) 0.0792(0.0094)
1 0.2510(0.0656) 0.0204(0.0187) 0.1101(0.0163)

β1 = 0.5 0.25 -0.0984(0.0115) -0.0009(0.0024) -0.0493(0.0035)
0.49 -0.1661(0.0283) -0.0081(0.0040) -0.0747(0.0079)

1 -0.2515(0.0623) -0.0183(0.0162) -0.1012(0.0145)

From Table 3.1, we can realize that the naive estimates which do not account for mea-

surement error are typically biased. The naive estimator of β1 will be underestimated and

as σu increases the attenuation of the slope estimator will get larger. For RC methods, the

correction for measurement error is usually efficient based on the fact that estimates of β

work well. As the sample size increases, both the bias and MSE of RC estimators are getting

smaller, which indicates RC methods will accomplish a better adjustment for the bias when

the size of sample is large enough. As to Bayesian methods, it seems like it performs better

when the sample size is smaller. Compared with these three methods, both RC and Bayesian

methods are better than naive methods which are struggle into the attenuation of slope. RC
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methods achieve better estimates than Bayesian methods since RC estimators have relatively

smaller bias and MSE in most cases. For example, when n = 100 and σ2
u = 0.25, the bias

and MSE of β̂1 for RC methods (−0.0009, 0.0024) are smaller than that of Bayesian methods

(−0.0493, 0.0035). However, the exception is that when the size of sample is small and σu

is large, Bayesian methods may adjust the bias better than RC methods.

In general, naive estimates which do not account for measurement error are typically

biased. In order to correct measurement error, we explore regression calibration estimates

and Bayesian estimates. Although both methods achieve good performance on adjustment

of the bias in simple linear models, the regression calibration method is preferred to be used

due to its relatively small bias and MSE in most cases, and its simplicity. However, the

Bayesian estimate will be an available alternative when the size of sample is small and the

measurement error is large. Correcting for this bias entails what is usually referred to as a

bias versus variance tradeoff. It means that the resulting corrected estimator will be more

variable than the biased estimator. On the other hand, we need to adjust the standard error

of the parameter estimates in the response model to reflect the uncertainty in the estimation

of the covariate model using method such as the bootstrap methods or sandwich methods

(Carroll et al, 2006).
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Chapter 4

Linear Mixed Effects Models with Measurement Error

In this chapter, we are interested in the estimation of the parameters in a linear mixed model

with measurement error in covariates. The general description of linear mixed effects model

will be provided first. Both intercept-varying and intercept-slope varying models are consid-

ered. Simulation studies will be conducted to compare the performance of three approaches:

naive methods, regression calibration methods and Bayesian methods. Similar with linear

models with measurement error, the measurement error is non-differential and its variance

is assumed to be known for identifiability problem. In section 4.1, both linear mixed effects

(intercept-varying) model formation and linear mixed effects (intercept-slope varying) model

formation are provided and the bias of naive estimators will be monitored. The methods for

correcting measurement error including regression calibration methods and Bayesian meth-

ods are indicated in section 4.2. Simulation results and discoveries are presented in section

4.3.

4.1 Linear mixed effects models

A general linear mixed model implies that Yi has a multi-normal distribution

Yi ∼ N(Xiβ,ZiDZ′i + σ2I) i = 1, · · · , G (4.1)

which depends on the assumption that the random effects bi and random errors εi are linear

while they are independent and normally distributed. Let V (γ) = ZiDZ′i+σ2I and γ, called

variance-covariance component parameters, denote the vector of all distinct parameters in

the variance-covariance matrices D and σ2I. Let θ = (β,γ) denote all parameters in the

25



linear mixed effects models. Then the likelihood of the observed data Y is given by

L(θ|Y) =
G∏
i=1

f(Yi|θ) =
G∏
i=1

f(Yi|β,γ)

=
G∏
i=1

∫
f(Yi|bi,β, σ2)f(bi|D)dbi (4.2)

where f(Yi|bi,β, σ2I) = (2π)−
ni
2 |σ2I|− 1

2 exp[−(Yi−Xiβ−Zibi)
′(σ2I)−1(Yi−Xiβ−Zibi)]

and f(bi|D) = (2π)−
q
2 |D|− 1

2 exp(−b′iD
−1bi). Given the variance-covariance parameters γ,

the value of β and σ2 maximize (4.2) are

β̂ =

(
G∑
i=1

X′iV
−1
i Xi

)−1 G∑
i=1

X′iV
−1
i Yi (4.3)

σ̂2 =
1

G

G∑
i=1

(Yi −Xiβ̂)′V−1i (Yi −Xiβ̂) (4.4)

Many estimation methods have been proposed over the years (Searle et al, 1992). Max-

imum likelihood method (ML) and restricted maximum likelihood method (REML) (Long-

ford, 1993) are the most popular methods implemented to estimate the parameters. Com-

pared with ML estimates, REML estimates take into account the estimation of the fixed effect

while calculating the degrees of freedom associated with the variance-covariance component

estimates. Thus, we prefer to utilize REML to estimate the variance-covariance component

parameters. The estimation is usually achieved through maximizing the ML or REML based

on numerical optimization. We are able to utilize a Bayesian perspective to estimate the

random effects which reflect how much the subject-specific profiles deviate from the overall

average profile. The posterior distribution of bi given the data Yi can be expressed as

f(bi|Yi) =
f(Yi|bi)f(bi)∫
f(Yi|bi)f(bi)dbi

(4.5)

We can utilize the posterior mean to estimate bi as its posterior distribution is a multi-

variate normal distribution.

E(bi|Yi) =
∫

bif(bi|Yi)dbi = DZ′iV
−1
i (Yi −Xiβ) (4.6)
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After the unknown parameters θ are substituted by their ML or REML estimates, the

resulting estimates for the random effects bi can be written as

b̂i(θ̂) = D̂Z′iV̂
−1
i (Yi −Xiβ̂) (4.7)

4.1.1 Linear mixed effects (intercept-varying) models with measurement error

A linear mixed effects (intercept-varying) model with the additive classical measurement

error can be expressed as

Yij = β0 + β1Xij + ai + εij (4.8)

Wij = Xij + uij (4.9)

where i = 1, · · · , G, j = 1, · · · , ni, n =
G∑
i=1

ni.

In matrix form, Yi = X∗iβ
∗ + Z∗ib

∗
i + εi, where Yi is ni × 1 random vector of outcomes,

X∗i = (1,Xi), Xi is ni × 1 vector of covariates subject to measurement error, β∗ = (β0, β1)
′,

Z∗i = 1 is ni× 1 constant vector, b∗i = (ai), and εi is ni× 1 random vector with mean 0 and

covariance σ2
ε I.

Assume

(xij, εij, ai, uij)
′ ∼ N4{(µx, 0, 0, 0)′; diag(σ2

x, σ
2
ε , σ

2
a, σ

2
u)}

Then  Wij

Yij

 ∼ N2


 µx

µy = β0 + β1µx

 ,
 σ2

w σwy

σyw σ2
y


 (4.10)

where  σ2
w σwy

σyw σ2
y

 =

 σ2
x + σ2

u β1σ
2
x

β1σ
2
x β2

1σ
2
x + σ2

a + σ2
ε

 (4.11)

An induced model for Yij|Wij can be written as

Yij|Wij = β0 + β1E(Xij|Wij) + ε∗ij = β0 + (1− λ)β1µx + λβ1Wij + ε∗ij (4.12)
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where λ = σ2
x

σ2
x+σ

2
u
, E(Xij|Wij) = (1− λ)µx + λWij, ε

∗ has covariance σ2
ε + σ2

a + β2
1σ

2
x(1− λ).

It is obvious that the naive estimators of either β1 or the variance parameters are usually

biased. However, the bias can not be identified immediately since neither the fixed effects

or the covariance has the same structure with the original model. As the fixed effects have

the same form with the original model, β1E(Xij|Wij) needs to be written as β∗1Wi, which is

not always true. As the covariance structure is preserved, the bias in the naive estimators of

the variance-covariance parameters can be identified. In general, the asymptotic biases for

any of the naive estimators can also be examined through the estimating equations (Wang

et al).

4.1.2 Linear mixed effects (intercept-slope varying) models with measurement error

A linear mixed effects (intercept-slope varying) model can be written as

Yij = αi + βiZij + βxXij + εij

= α0 + ai + (β0 + bi)Zij + βxXij + εij

= α0 + β0Zij + βxXij + ai + biZij + εij (4.13)

where i = 1, · · · , G, j = 1, · · · , ni, εij ∼ N(0, σ2
ε ), Xij is a predictor for individual i, Xij ∼

N(µx, σ
2
x), which is measured with error. Zij is another predictor without measurement error.

α0 is the fixed effect intercept term, αi = α0 + ai is the intercept for the ith individual, β0 is

the fixed effect slope term, βi = β0 + bi is the slope for the ith individual, and βx is a fixed

slope for the error-prone predictor X. Consider the correlation between the varying-intercept

and varying-slope exists, then αi

βi

 ∼ N2


 α0

β0

 ,
 σ2

a ρσaσb

ρσaσb σ2
b




In matrix form, Yi = X∗iβ
∗ + Z∗ib

∗
i + εi, where Yi is ni × 1 random vector of outcomes,

X∗i = (1,Zi,Xi), Xi is ni × 1 vector of covariates subject to measurement error, β∗ =
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(α0, β0, βx)
′, Z∗i = (1,Zi), b∗i = (ai, bi)

′, and εi is ni × 1 random vector with mean 0 and

covariance σ2
ε I.

4.2 Correcting Methods

4.2.1 Regression Calibration Methods

Three main steps for the regression calibration methods are conducted in the linear mixed

effects models, in order to address the measurement error in covariates: First, model and

estimate the regression of xi on wi; Second, replace xi in the response model by its estimate

E(Xi|Wi) and perform a standard analysis on the appropriate response model; Third, adjust

the resulting standard errors to account for the estimation of parameters in the first step

based on the bootstrap or sandwich method. With the additive classical measurement error

in covariatesWij = Xij+uij, uijs are measurement error in covariates and assumed identically

independently distributed with mean 0 and variance σ2
u, an estimate of the unobserved true

covariate can be derived as

x̂ij = Ê(Xij|Wij)

= W +
σ̂2
x

σ̂2
w

(Wij −W )

= (1− λ̂)W + λ̂Wij (4.14)

where λ̂ = σ̂2
x

σ̂2
w

= σ̂2
w−σ2

u

σ̂2
w

, σ2
u is assumed to be known or can be estimated, W = 1

n

G∑
i=1

ni∑
j=1

Wij.

Then we substitute xij by x̂ij in the linear mixed effects models and perform an analysis on

the approximate response model.
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4.2.2 Bayesian Methods

Intercept-varying model

For a linear mixed effects (intercept-varying) model with the additive classical measurement

error

f(Y|X, a,θ1) : response model with parameters θ1 = (β0, β1, σ
2
a, σ

2
ε ) (4.15)

f(W|X,θ2) : measurement error model with parameters θ2 = (σ2
u) (4.16)

f(X|θ3) : exposure model with parameters θ3 = (µx, σ
2
x) (4.17)

A key assumption is that the measurement error is non-differential

f(Y|X, a,W;θ1) = f(Y|X, a;θ1) (4.18)

The joint distribution can be written as

f(Y,X,W, a,θ) = f(θ1)f(θ2)f(θ3)

×
G∏
i=1

ni∏
j=1

f(Yij|Xij, ai,θ1)
G∏
i=1

ni∏
j=1

f(Wij|Xij,θ2)
G∏
i=1

ni∏
j=1

f(Xij|θ3)

(4.19)

We are interested in performing inference about unknown data X and unknown parame-

ters θ = (θ1,θ2,θ3) by the posterior densities conditional on the observed data (Y,W). The

joint posterior densities of the unknown values in the linear mixed models can be written as

f(X, a,θ|Y,W) ∝ f(θ1)f(θ2)f(θ3)

×
G∏
i=1

ni∏
j=1

f(Yij|Xij, ai,θ1)
G∏
i=1

ni∏
j=1

f(Wij|Xij,θ2)
G∏
i=1

ni∏
j=1

f(Xij|θ3)

(4.20)

The full conditional posterior distributions of unknown data X will be

f(Xij|Yij,Wij,θ, ai) ∝ f(Yij|Xij, ai,θ1)f(Wij|Xij,θ2)f(Xij|θ3)

= f(Yij|Xij, β0, β1, ai, σ
2
ε )f(Wij|Xij, σ

2
u)f(Xij|µx, σ2

x) (4.21)
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With normal assumption

f(Xij|Yij,Wij,θ, ai) ∝ exp

(
− 1

2σ2
ε

(Yij − β0 − β1Xij − ai)2
)

× exp

(
− 1

2σ2
u

(Wij −Xij)
2

)
exp

(
− 1

2σ2
x

(Xij − µx)2
)

(4.22)

The full conditional posterior distributions of random effects ai

f(ai|Yi,Wi,Xi,θ) ∝ f(Yi|Xi, ai,θ1)f(ai|σ2
a) (4.23)

With normal assumption

f(ai|Yi,Wi,Xi,θ) ∝
ni∏
j=1

exp

(
− 1

2σ2
ε

(Yij − β0 − β1Xij − ai)2
)

exp

(
− 1

2σ2
a

a2i

)
(4.24)

The full conditional posterior distribution of the unknown parameters θ

f(θ|Y,W,X, a) ∝ f(Y|X, a,θ1)f(W|X,θ2)f(X|θ3)f(θ) (4.25)

Similar with linear models with measurement error, we try to use the Gibbs sampler to

generate samples from the posterior distribution to escape high dimensional integration. Giv-

en the initial values θ(0),X(0),a(0), the samples of the unobserved X can be generated from its

full conditional posterior distribution given the observed data, θ(current), and a(current). Then

we draw the samples of the random effects a from its full conditional posterior distribution

given the observed data, X(current) generated from the last step, and θ(current). Finally, we

produce the samples of θ from its full conditional posterior distribution given the observed

data, X(current) and a(current). Repeating the above steps many times, the resulting sequence

converges to the target posterior distribution f(θ|Y,W).

Intercept-slope varying model

For a linear mixed effects model (intercept-slope varying) with the additive classical mea-

surement error

f(Y|X,Z, a,b,θ1) : response model with parameters θ1 = (α0, β0, βx, σ
2
ε , σ

2
a, σ

2
b , ρ)
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(4.26)

f(W|X,θ2) : measurement error model with parameters θ2 = (σ2
u) (4.27)

f(X|θ3) : exposure model with parameters θ3 = (µx, σ
2
x) (4.28)

The non-differential measurement error is also hold, which leads to

f(Y|X,Z, a,b,W;θ1) = f(Y|X,Z, a,b;θ1) (4.29)

Then the joint distribution can be written as

f(Y,X,Z,W, a,b,θ) = f(θ1)f(θ2)f(θ3)

× f(Y|X,Z, a,b,θ1)f(W|X,θ2)f(X|θ3) (4.30)

Similar with the materials in chapter 3, we focus on analyzing about unknown data X and

unknown parameters θ = (θ1,θ2,θ3) by the posterior densities conditional on the observed

data (Y,W). Then the joint posterior densities of the unknown values in the linear mixed

effects models can be expressed as

f(X, a,b,θ|Y,Z,W) ∝ f(θ1)f(θ2)f(θ3)

× f(Y|X,Z, a,b,θ1)f(W|X,θ2)f(X|θ3) (4.31)

The full conditional posterior distributions of unknown data X will be

f(Xij|Yij, Zij,Wij,θ, ai, bi) ∝ f(Yij|Xij, Zij, ai, bi,θ1)f(Wij|Xij,θ2)f(Xij|θ3)

= f(Yij|Xij, Zij, α0, β0, βx, ai, bi, σ
2
ε )f(Wij|Xij, σ

2
u)

× f(Xij|µx, σ2
x) (4.32)

With normal assumption

f(Xij|Yij,Wij, Zij,θ, ai, bi) ∝ exp

(
− 1

2σ2
ε

(Yij − α0 − β0Zij − βxXij − ai − biZij)2
)

× exp

(
− 1

2σ2
u

(Wij −Xij)
2

)
exp

(
− 1

2σ2
x

(Xij − µx)2
)

(4.33)
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The full conditional posterior distributions of random effects ai, bi will be

f(ai, bi|Yi,Wi,Xi,Zi,θ) ∝ f(Yi|Xi,Zi, ai, bi,θ1)f(ai, bi|σ2
a, σ

2
b , ρ)

=
ni∏
j=1

exp

(
− 1

2σ2
ε

(Yij − α0 − β0Zij − βxXij − ai − biZij)2
)

× exp

(
− 1

2(1− ρ2)

[
a2i
σ2
a

− 2ρ
(
ai
σa

)(
bi
σb

)
+
b2i
σ2
b

])
(4.34)

The full conditional posterior distributions of the unknown parameters θ can be written

as

f(θ|Y,W,X, a,b) ∝ f(Y|X, a,b,θ1)f(W|X,θ2)f(X|θ3)f(θ) (4.35)

Then we use the Gibbs samplers to draw samples from the posterior distributions to

avoid the intractable integrals. Given the initial values θ(0), X(0), a(0), b(0), we can generate

the samples of the unobserved X from its full conditional posterior distribution given the

observed data, θ(current), a(current), and b(current). Then the samples of the random effects a

and b can be produced from their full conditional posterior distribution given the observed

data, X(current) generated from the last step and θ(current). The last step is generating the

samples of θ from their full conditional posterior distributions given the observed data,

X(current), a(current), b(current). We obtain the resulting sequence after repeating the above

steps many times.

4.3 Simulation Studies

In this section, we conduct simulation studies for a linear mixed effects (intercept-varying)

model with measurement error and a linear mixed effects (intercept-slope varying) mod-

el with measurement error. The performance of naive estimations, regression calibration

estimations and Bayesian estimations are contrasted depending on the simulation results.
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4.3.1 Intercept-varying model

The total number of measurements is 42 and 84 in G = 7 and 14 individuals with 6 replicates.

As mixed effects models typically have so many parameters and it is not feasible to examine

all estimates, we focus on numerical summaries for θ = (β0, β1) with different measurement

error variance (σ2
u = 0.25, 0.49, 0.81). The number of iterations is 20, 000 with 5, 000 burn-in,

5 thin in each of the 3 chains. We simulated 100 sets of data for naive methods, regression

calibration methods and Bayesian methods.

Table 4.1: Bias and MSE (Linear mixed effects (varying-intercept) models with measure-
ment error)

G = 7 and ni = 6
parameter σ2

u Naive RC Bayesian
β0 = 5 0.25 0.1996(0.1018) 0.0096(0.0547) 0.0184(0.0492)

0.49 0.3136(0.1629) 0.0219(0.1129) 0.0587(0.0608)
0.81 0.4327(0.2598) 0.0753(0.1755) 0.1139(0.0756)

β1 = 1 0.25 -0.1978(0.0517) -0.0127(0.0154) -0.0287(0.0094)
0.49 -0.3308(0.1262) -0.0242(0.0528) -0.0469(0.0136)
0.81 -0.4390(0.1986) -0.0695(0.1211) -0.0889(0.0243)

G = 14 and ni = 6
parameter σ2

u Naive RC Bayesian
β0 = 5 0.25 0.2108(0.0582) 0.0034(0.0203) 0.0431(0.0135)

0.49 0.3289(0.1395) 0.0131(0.0478) 0.0751(0.0293)
0.81 0.4472(0.2464) 0.0289(0.0760) 0.1408(0.0599)

β1 = 1 0.25 -0.1983(0.0467) -0.0043(0.0045) -0.0323(0.0034)
0.49 -0.3436(0.1138) -0.0107(0.0142) -0.0517(0.0081)
0.81 -0.4525(0.1904) -0.0323(0.0331) -0.1247(0.0222)

We present the bias and MSE in Table 4.1 for the linear mixed effects (intercept-varying)

models. Evidently, the results indicate that substantial bias is incurred if measurement errors

are not properly treated. Specially, the naive estimator of β1 is underestimated and as σu

increases the attenuation of the slope estimator will get larger. On the other hand, we can

find that the bias of the slope estimates will be larger as the size of group increases under
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the condition of the fixed σu. For regression calibration methods, the adjustment of bias is

usually available in most cases. Especially with the same number of observations in each

group, when the number of groups increases, both the bias and MSE of regression calibration

estimators change to smaller. Which indicates that regression calibration methods achieve

good performance on the correction of the measurement error when the group size is large

enough under the condition that the number of observations in each group is fixed. Bayesian

methods also present significant improvement on the estimation especially when the group

size is small (with the same number of observations in each group) and σu is large. Compare

with these three methods for a linear mixed effects (intercept varying) model, both regression

calibration methods and Bayesian methods work better than naive methods which ignores

the measurement error. Regression calibration methods work better than Bayesian methods.

4.3.2 Intercept-slope varying model

We conduct a simulation study to evaluate and compare the performance of naive methods,

regression calibration methods and Bayesian methods in linear mixed effects (intercept-slope

varying) models. In order to measure the performance of estimator accuracy and precision,

we will show the frequentist criteria, bias and MSE. The total number of observations is

42 and 84 in G = 7 and 14 individuals with 6 replicates. It is difficult for us to monitor

all estimate as a lot of parameters exist in a linear mixed effects model. We are interest-

ed in numerical summaries for some parameters θ = (α0, β0, βx) with different measure-

ment error variance (σ2
u = 0.25, 0.49, 0.81). In regression model, we choose a multivariate

normal distribution as a prior distribution for the mean parameters β, that is, typically

β ∼ N(β0,Σ0), where β0 and Σ0 are hyper-parameters. For the non-informative priors,

β ∼ Uniform(−∞,∞) or Σ−10 = 0 will be chosen. As to the variance-covariance matrix for

the intercepts and slopes, the scaled Wishart distribution is selected as prior distribution.

The number of iterations is 50, 000 with 10, 000 burn-in, 5 thin in each of the 3 chains. We

simulated 100 sets of data for naive methods, regression calibration methods and Bayesian
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methods.

Table 4.2: Bias and MSE (Linear mixed effects (intercept-slope varying) models with
measurement error)

G = 7 and ni = 6
parameter σ2

u Naive RC Bayesian
α0 = 5 0.25 0.1121(0.0676) 0.0091(0.0382) 0.0194(0.0319)

0.49 0.1573(0.0841) 0.0189(0.0522) 0.0321(0.0513)
0.81 0.2037(0.1031) 0.0401(0.0819) 0.0611(0.0627)

β0 = 1 0.25 -0.0143(0.0117) -0.0143(0.0117) -0.0132(0.0112)
0.49 -0.0199(0.0108) -0.0199(0.0108) -0.0196(0.0107)
0.81 -0.0373(0.0086) -0.0373(0.0086) -0.0359(0.0087)

βx = 0.5 0.25 -0.1038(0.0219) -0.0089(0.0107) -0.0167(0.0065)
0.49 -0.1807(0.0583) -0.0172(0.0263) -0.0294(0.0082)
0.81 -0.2081(0.0731) -0.0385(0.0516) -0.0450(0.0121)

G = 14 and ni = 6
parameter σ2

u Naive RC Bayesian
α0 = 5 0.25 0.0926(0.0381) 0.0045(0.0240) 0.0212(0.0093)

0.49 0.1660(0.0574) 0.0147(0.0271) 0.0423(0.0185)
0.81 0.2061(0.0719) 0.0374(0.0308) 0.0769(0.0243)

β0 = 1 0.25 -0.0099(0.0081) -0.0099(0.0081) -0.0106(0.0081)
0.49 -0.0101(0.0053) -0.0101(0.0053) -0.0109(0.0052)
0.81 -0.0120(0.0041) -0.0120(0.0041) -0.0127(0.0041)

βx = 0.5 0.25 -0.1015(0.0177) -0.0019(0.0014) -0.0181(0.0037)
0.49 -0.1797(0.0443) -0.0093(0.0032) -0.0376(0.0060)
0.81 -0.2126(0.0675) -0.0128(0.0042) -0.0631(0.0113)

We provides the bias and MSE in Table 4.2 for the linear mixed effects (intercept-slope

varying) models. Similar with the results in the linear mixed effects (intercept varying)

models, the ignorance of measurement error has a significant effect on the estimations. For

naive methods, the estimator of βx is underestimated and the bias of the estimates will get

larger as σu increases. Regression calibration methods still play well in the linear mixed

effects (intercept-slope varying) model especially when the size of group is large (with the

same number of observations in each group). Bayesian methods also have good performance

on the correction of measurement error especially when the group size is small (with the
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same number of observations in each group) and σu is large enough. Besides, we are able to

realize that these three methods obtain similar estimations on β0 which is the fixed coefficient

of the covariates without measurement error. Finally, both regression calibration methods

and Bayesian methods accomplish better adjustment for the bias in the linear mixed effects

models (intercept-slope varying) than naive methods. Usually regression calibration methods

are better than Bayesian methods except the case that the group size is small and σu is large,

in terms of both bias and MSE.

4.3.3 Conclusion

The model used in this chapter is different from what we have in Chapter 3. We added some

random effect into the model which accommodates the variation that existed between the

groups (individuals). In fact, what we observe in this chapter is almost the same with Chap-

ter 3 to the attributes demonstrated by both regression calibration methods and Bayesian

methods. When dealing with linear mixed effects models with measurement error in covari-

ates, we would recommend regression calibration methods over Bayesian methods and naive

methods. The regression calibration method has been described by many literatures as a

less complicated and more intuitive method for estimating the parameters in a linear mixed

effects model with measurement error, which we realized in this chapter.
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Chapter 5

Data Analysis

In this chapter, we first provide a brief background description of the beta-carotene data

which obtained from an open web-site:

http://www.math.umass.edu/~johnpb/

and a more detailed description of this data set can be found in Demidenko, Tosteson and

Buonaccorsi (2000). Our target is to investigate the relationship between true dietary intakes

of beta-carotene and serum beta-carotene. A major challenge in statistical analysis of the

beta-carotene data is that the measures of beta-carotene intake are conducted based on a

food frequency questionnaire (FFQ), which leads to the measurement error problems. We

attempt to fit the data allowing measurement error with a linear mixed effects model and

apply two correcting methods (regression calibration methods and Bayesian methods) we

discussed in chapter 4 as an example. More reliable and valid data analysis can be found

in other statistical articles (Demidenko, Tosteson and Buonaccorsi, 2000). In section 5.1, a

simple description of beta-carotene data is given. The construction of the model for beta-

carotene data will be discussed in section 5.2. We try to utilize both regression calibration

methods and Bayesian methods to correct measurement error in section 5.3. The results and

conclusion will be summarized in section 5.4.

5.1 Data

The beta-carotene data contains seven variables and we are interested in four of them:

individual id, days of measurements, serum beta-carotene measurements and measures of

beta-carotene intake based on a food frequency questionnaire. Both measures of serum

beta-carotene and measures of beta-carotene intake from a food frequency questionnaire

38



Figure 5.1: beta-carotene intake from FFQ

were included on days, 1, 2, 3, 4, 5, 6. There are 158 individuals, each having six serum

measures of beta-carotene and six measures of beta-carotene intake based on a food frequency

questionnaire (FFQ).

Figure 5.1 presents a histogram of measures of beta-carotene intake from FFQ which

shows that the data is right-skewed distributed. In order to satisfy the normal assumption,

we will do a log transformation for the measures of beta-carotene intake from FFQ. The

figure shows that the log of measures of beta-carotene intake from FFQ is fairly normally

distributed. Similar with the measures of beta-carotene intake from FFQ, the serum mea-

sures of beta-carotene is also right-skewed distributed in Figure 5.2. The figure demonstrates

that the log of serum measures of beta-carotene is normally distributed.

Figure 5.3 presents a simple linear regression plot of the log of the serum measures of

beta-carotene versus the log of measures of beta-carotene intake from FFQ for each individ-

ual and day. This plot is used to check the relationship between the two variables based on

individuals and shows that the data is approximately linearly related for most of the individ-

uals. We consider a linear mixed effects model to incorporate between-individual variation
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Figure 5.2: serum beta-carotene

and within-individual variation, assuming the covariate values change smoothly over time.

The individual plot is provided to display the relationship or the likely differences between

individuals and it is suspected that both individual intercept and slope are different, which

motivates us to consider a varying coefficient. We proceed to test which model is appropriate

out of intercept varying or intercept-slope varying and the test result shows that intercept-

slope varying model is the proper option resulting from the fact that it has a relatively small

AIC (1009.034 vs. 1016.910). Therefore, we decide to work with the linear mixed effects

(intercept-slope varying) model. Figure 5.4 is the plot of the standardized residual against

the fitted values and individual id, which indicates that the model fits the data reasonably

well.
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Figure 5.3: log of serum beta-carotene vs log of beta-carotene from FFQ
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Figure 5.4: plot of standardized residual
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5.2 Model

Consider a intercept-slope varying linear mixed effects model for the beta-carotene data

Yij = α0 + ai + (β0 + bi)Zij + βxXij + εij i = 1, · · · , 158, j = 1, · · · , 6. (5.1)

where Yij is the log of the serum measures of beta-carotene, Xij is the log of measures of

true diet intake of beta-carotene. Zij = j− 1 is a time variable (from 0 to 5), ai represents a

random subject effect while bi allows a random time trend in the serum level after condition-

ing on dietary intake. εijs are assumed to have mean 0 and variance σ2
ε . εi are assumed to

be independent with ai and bi, Cov(ai, bi) = Σ. The true intake X is unobserved and there

is no replication in a year. An additive classical measurement error model can be written as

Wi = Xi + ui, where Wi is the measured beta-carotene intakes based on a food frequency

questionnaire. We can treat the repeated measurements of beta-carotene intake from FFQ

over time as ”replicates” and fit an empirical covariates mixed effects model to observe mea-

sures of true beta-carotene intake in the longitudinal data model by setting Mi = Ni = R

in (2.16)

Xi = Rη + Rδi (5.2)

R′ =

 1 1 1 1 1 1

0 1 2 3 4 5

 (5.3)

which is constructed and proved by Tosterson et al. (1998) and Buonaccorsi et al. (2000).

Tosteson et al. (1998) present some justification for this being a reasonable approximation in

this example. Where η consisting of unknown fixed parameters, δi are random effects with

mean 0 and variance-covariance matrix Ωδ, ΣX = RΩδR
′. Rη presents the fixed part of the

model while Rδi captures the random effects part. Then the additive classical measurement

error can be written as

Wi = Rη + Rδi + ui (5.4)
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5.3 Correcting methods for measurement error

Estimation based on regression calibration methods

The regression calibration methods are conducted to fit Yij = α0 + β0Zij + βxx̂ij + ε∗ij as a

linear mixed effects model. First, we attempt to fit the covariates linear mixed effects models

to obtain an estimate of the unobserved true covariates x̂ij = Ê(Xij|η̂, Ω̂δ, σ̂
2
u). Second, we

replace the xij in the linear mixed effects models by x̂ij and perform a standard analysis on

the approximate response model. After fitting the covariates linear mixed effects models, we

obtain

η̂ =

 1.2589

0.0146

 Ω̂δ =

 0.2251 −0.0115

−0.0115 0.0041

 σ̂2
u = 0.1191 (5.5)

Figure 5.5 shows a simple linear regression plot of the log of serum measures of beta-

carotene versus the estimated true beta-carotene intake for each individual and day based

on regression calibration methods.

Estimation based on Bayesian methods

Based on the materials of linear mixed effects (intercept-slope varying) models with mea-

surement error using Bayesian methods in section 4.2.2, the three sub-models can be written

as

f(Y|X,Z, a,b,θ1) : response model with parameters θ1 = (α0, β0, βx, σ
2
ε , σ

2
a, σ

2
b , ρ)

(5.6)

f(W|X,θ2) : measurement error model with parameters θ2 = (σ2
u) (5.7)
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Figure 5.5: log of serum beta-carotene vs RC estimate of true beta-carotene intake
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f(X|θ3) : exposure model with parameters θ3 = (µx, σ
2
x) (5.8)

A multivariate non-informative normal distribution is chosen as a prior distribution for

the mean parameters and the scaled Wishart distribution is selected as the prior distribution

for the variance-covariance matrix of the intercepts and slopes. The number of iterations

is 50, 000 with 20, 000 burn-in, 5 thin in each of the 3 chains. σ̂2
u = 0.1191 obtained from

regression calibration methods is used in the program.

5.4 Results and Conclusion

In order to study the impact of measurement error in covariates on the relationship between

the measures of true beta-carotene intake and the serum measures of beta-carotene in the

beta-carotene trial, we attempt to compare the performance of regression calibration methods

(RC) and Bayesian methods in a linear mixed effects (intercept-slope varying) model. Table

5.1 shows the naive, RC and Bayesian estimates of α̂0, β̂0, and β̂x with standard errors.

We conclude that the most dramatic effect of the correction for the measurement error is

about the estimate of βx which changes from 0.1502 in the naive estimation to 0.4398 by

using regression calibration methods which correct the measurement error. Our simulation

study indicates that the estimation by the regression calibration methods is more reliable

if the data has a large number of groups (individuals). Therefore, we suggest to utilize

β̂x = 0.4398 as the best estimate of βx in this example. On the other hand, we realize that

the Bayesian method also accomplishes good performance on the correction for measurement

error although it is not as good as the regression calibration method.

Table 5.1: Estimates with standard error
Naive RC Bayesian

α̂0 5.1043(0.0611) 4.7398(0.1232) 4.8713(0.0803)

β̂0 0.0088(0.0071) 0.0045(0.0072) 0.0086(0.0071)

β̂x 0.1502(0.0297) 0.4398(0.0704) 0.3763(0.0415)
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Chapter 6

Conclusion and Future Research

Measurement errors in variables are common problems in practice, where it is usually dif-

ficult for us to measure variables accurately. If the observed data is measured with errors

but treated as true values, that is, the measurement errors are not taken into account, s-

tatistical inference will be biased and misleading. Therefore, it has significance for us to

address measurement errors in order to obtain valid statistical analysis. The primary goal of

this thesis is to utilize regression calibration methods and Bayesian methods to correct mea-

surement errors in covariates in both linear models and linear mixed effects models. Based

on our study, we can realize that regression calibration methods tend to be more powerful

for regression models in most cases and produce approximately unbiased estimates of the

main parameters in the response model. However, its major drawback is that it fails to

incorporate the uncertainty in the estimation of the true covariates in the first step, so that

the standard error of the main parameter estimates may be under-estimated (Wu, 2010).

The Bayesian methods also accomplish good adjustment for the bias, especially when the

sample size is small and the measurement error is relatively large, comparing with regression

calibration methods. So it can be chosen as an alternative method in some cases. But the

major challenge for us to use Bayesian methods is the computer programming problem and

we are not able to prove the results by mathematical derivations.

In general, we can conclude that: First, it will be very misleading if we ignore measure-

ment error and analyze the data as if the values were all correctly measured; Second, we

can not reduce biases caused by measurement error through increasing sample size; Third,

implementation of measurement error correcting methods requires computer programming;

Finally, the regression calibration method is more powerful and simpler than the Bayesian
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method for correcting measurement error in the covariates of linear models and linear mixed

effects models.

There are still a lot of work related with this thesis need to be done in the future. For

example, we attempt to test the effect of the between-group variability on the estimation

of main parameters in the linear mixed effects models, and explore the reason why the

estimation of variance components is biased in measurement error models. On the other

hand, the common feature of methods examined is applicable to problems where only a

single covariate is measured with error and the other covariates are considered as error-free

values. As the dimension of X increases, the extension of most of the procedures will not

be straightforward and their applications may be less attractive. The research for extension

of the existing methods to higher dimensions of unobserved covariates is required so as to

make them appropriate for more realistic issues.

In conclusion, the occurrence of measurement error has significant effects on the estima-

tion. Thus, it is important for us to be aware of the existence of measurement error and

their potential impacts in practice.
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