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Abstract

Early detection of lung nodules in thoracic Computed Tomography (CT) scans is of great

importance for the successful diagnosis and treatment of lung cancer. Due to improvements

in screening technologies, and an increased demand for their use, radiologists are required

to analyze an ever increasing amount of image data, which can affect the quality of their

diagnoses. Computer-Aided Detection (CADe) systems are designed to assist radiologists in

this endeavor.

In this thesis, we present DeepCADe, a novel CADe system for the detection of lung

nodules in thoracic CT scans which produces improved results compared to the state-of-the-

art in this field of research. CT scans are grayscale images, so the terms scans and images

are used interchangeably in this work. DeepCADe was trained with the publicly available

Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI)

database, which contains 1018 thoracic CT scans with nodules of different shape and size,

and is built on a Deep Convolutional Neural Network (DCNN), which is trained using the

backpropagation algorithm to extract volumetric features from the input data and detect

lung nodules in sub-volumes of CT images.

Considering only lung nodules that have been annotated by at least three radiologists,

DeepCADe achieves a 2.1% improvement in sensitivity (true positive rate) over the best result

in the current published scientific literature, assuming an equal number of false positives

(FPs) per scan. More specifically, it achieves a sensitivity of 89.6% with 4 FPs per scan, or a

sensitivity of 92.8% with 10 FPs per scan. Furthermore, DeepCADe is validated on a larger

number of lung nodules compared to other studies (Table 5.2). This increases the variation

in the appearance of nodules and therefore makes their detection by a CADe system more

challenging.
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We study the application of Deep Convolutional Neural Networks (DCNNs) for the de-

tection of lung nodules in thoracic CT scans. We explore some of the meta parameters that

affect the performance of such models, which include:

1. the network architecture, i.e. its structure in terms of convolution layers,

fully-connected layers, pooling layers, and activation functions,

2. the receptive field of the network, which defines the dimensions of its input,

i.e. how much of the CT scan is processed by the network in a single forward

pass,

3. a threshold value, which affects the sliding window algorithm with which the

network is used to detect nodules in complete CT scans, and

4. the agreement level, which is used to interpret the independent nodule anno-

tations of four experienced radiologists.

Finally, we visualize the shape and location of annotated lung nodules and compare them

to the output of DeepCADe. This demonstrates the compactness and flexibility in shape of

the nodule predictions made by our proposed CADe system. In addition to the 5-fold cross

validation results presented in this thesis, these visual results support the applicability of

our proposed CADe system in real-world medical practice.
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Chapter 1

Introduction

One of the hallmarks of human cognition is our ability to recognize patterns within the

constant stream of signals flowing into our nervous system through its various sensory organs.

For example, light waves which come from the sun, fire, and other light sources around us

hit our retina after bouncing back from the environment around us, and are being converted

into electrical signals. These electrical signals are transmitted to the so called visual cortex

of our brains with the help of numerous neurotransmitter molecules and through a cascade

of neurons firing action potentials along this path. All this is happening in a fraction of a

second and in an immediate response to visual stimuli which appear within our receptive

fields.

In 1950, Allan Turing developed a test, known as the Turing test, which would determine

whether a machine can exhibit intelligent behavior equivalent to, or indistinguishable from,

that of a human [Tur50]. In its simplest form, there are three participants: a human eval-

uator, a human, and a machine which is designed to generate human-like responses as part

of a text based natural language conversation. The goal of the test is to examine whether

the human evaluator can distinguish between the human and the machine based on their

conversations. While this test is about testing a machine’s ability to conduct a natural lan-

guage conversation, the underlining question is the same as to whether a machine can “see”,

or in other words, whether it can recognize the objects that are found in its receptive field

the same way a human can.

Making computers “see” is the holy grail of the field of Computer Vision which is one

of the cornerstones of Artificial Intelligence. When a picture of a cat is input to a machine,

the machine does not actually “know” there is a cat in the picture. All it has is a matrix
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of pixel values. So for example, if the input image is in grayscale, there is a single matrix

with intensity values in the range 0 to 255, or if it is a RGB image, it is represented as three

matrices (3 channels), each containing the intensity values for a specific color, namely red,

green, and blue. One of the goals of Computer Vision is to process this raw image data in

order to detect, segment, manipulate, and recognize the objects it contains.

Traditionally, image processing systems would rely on hand-engineered features to rec-

ognize objects in an image. There is no exact definition of what constitutes a feature, since

different kinds of images contain different kinds of objects, but in general a feature can be

defined as an ”interesting” part of an image. Examples for this vary and include edges of

various shapes, corners, blobs, and regions of interest. Since feature extraction is, in most

cases, used as a starting point for computer vision algorithms, and since the performance of

these algorithms heavily depends on the quality of features extracted, finding the best set

of features for solving a specific vision task is of utmost importance. Consequently, much

research has been done in that area, and a very large number of feature detectors have been

developed throughout the years [TM+08].

Developing hand-engineered feature detectors has shown to be successful in many object

recognition tasks, but it does have three major drawbacks: (1) its dependence on human

experts, which is time consuming and expensive, (2) the challenge of choosing the ideal

features that are needed to solve a specific recognition task, and (3) the challenge of coming

up with higher-level features that would be extracted on top of lower-level ones. Machine

Learning (ML) and Deep Learning are active research fields which offer some remedies to

these drawbacks. For example, in both fields of research, the recognition of patterns and

regularities in data is performed by means of iteratively “learning from examples”. Also, in

the field of Deep Learning, high-level abstractions in data are captured by using multiple

processing layers composed of multiple linear and non-linear transformations.
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Many deep learning systems have been developed in recent years and have indeed shown

tremendous results in many computer vision tasks [KSH12; Sze+14; CMS12; NHH15; Che+14a;

LSD15]. This recent trend did not come about from the development of better computational

models, even though there have been considerable advancements in this area of research.

Rather, it came about from two other major contributing factors, namely (1) the sharp in-

crease in computational power capabilities such as CPU and GPU technologies, and (2) the

explosion of labeled data, which have come with the rise of the Internet and the massive

adoption of smartphone and other digital devices by the majority of the world’s population.

While some deep learning systems have indeed eliminated the need for experts to develop

hand-engineered feature detectors, they still rely on large-scale labeled data and therefore,

still rely on human knowledge to annotate this data. However, this has not been an ob-

stacle in many vision and other cognition tasks since it is easier to, for example, determine

whether a particular image contains a cat, compared to determining what are the features,

in all abstraction levels, that are needed to decide whether the image contains a cat. This

is particularly true when you have billions of people constantly commenting and sharing

images and other forms of media throughout the internet, essentially providing the research

community with a reservoir of knowledge that need to be incorporated into decision making

systems. This, in essence, has been the major contribution that deep learning has made

in recent years, namely the utilization of massive amounts of data that are out there and

incorporating them into machine learning systems.

While labeled image data is abundant in databases such as ImageNet [Den+09; Rus+14],

which currently contains more than 14 million labeled natural images with more than 21

thousand sets of synonym objects, labeled data in other disciplines is scarce. Annotated

chest Computed Tomography (CT) scans, for example, are hard to come by. Even though

thousands of radiologists are waking up every morning to do their job, examining many

thoracic CT scans, and segmenting, at least in their minds, various abnormal masses, this

3



enormous body of knowledge is not becoming accessible to the academic research community

and the public. The reasons are numerous, but it starts with the very important requirement

to protect patient private information, and continues with the conservative nature of the

medical establishment to share data and adopt new technologies.

Nevertheless, there are a number of initiatives to change this state of affairs. One of them

is the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-

IDRI) database, which is a publicly available reference for the medical imaging research

community [AI+11; Cla+13; Tea15]. Its aim is to support the development of computer-

aided diagnostic methods for lung nodule detection and classification, and is the result of a

collaboration between seven academic centers and eight medical imaging companies. While

much effort has been put to this initiative, it only contains 1018 thoracic CT images that

originated from a total of 1010 patients. We utilize this database in our work in order to

examine whether this amount of well-annotated data is enough to bring about the fruits of

deep learning to the task of detecting lung nodules in thoracic CT scans.

1.1 Thesis Overview

This thesis is organized as follows. Chapter 1 provides an introduction to the detection

of lung nodules in CT scans and describes in detail the LIDC-IDRI database which our

machine learning system is based on. Chapter 2 discusses a number of machine learning

architectures and algorithms which are necessary for the understanding of later chapters.

Chapter 3 provides a survey and critical assessment of related work done by other research

groups, and examines how it is related to this work. Chapter 4 describes the deep learning

architectures we examined to detect lung nodules in CT scans, and how they are used to

compute a three dimensional voting grid, with which the location and boundary of lung

nodules are predicted. Chapter 5 describes the experimental results of our work. It includes

a systematic study on the use of DCNNs for the lung nodule detection task. A Free-response
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Receiver Operating Characteristic (FROC) analysis is used for performance evaluation in

relation to previous work where the LIDC-IDRI dataset has also been used for validation.

Finally, Chapter 6 concludes our work and discusses some future extensions of it.

1.2 The Detection of Lung Nodules in CT Scans

According to the American Cancer Society, lung cancer is the leading cause of cancer related

deaths in the United States [SMJ15]. It was estimated that lung and bronchus cancers alone

will cause 158,040 deaths in the United States in the year 2015, which is slightly more than

the total number of deaths caused by brain/nervous system, breast, prostate, colon/rectum,

and liver cancers combined. In addition, the 5-year survival rate of lung cancer is one of

the lowest compared to other types of cancer, and is estimated to be 18% for years 2004

to 2010. Individual prognosis heavily depends on the extent of the disease at the time of

diagnosis. So for example, if the tumor is detected while it is still small and localized, then

the 5-year survival rate is 54%; but if it is detected at a later stage, when metastases have

already developed and the tumor becomes either regional or distant, then the survival rate

drops to 27% and 4%, respectively.

Unfortunately, most diagnoses occur at later stages of the disease, mainly due to lack of

symptoms in its early stages. This has raised the idea of instituting widespread lung cancer

screening as a matter of public health policy, which has been examined by a number of

research institutions. One of these institutions is the U.S. National Cancer Institute (NCI),

which sponsored the National Lung Screening Trial (NLST) and concluded that there is

a statistically significant 20.3% relative reduction in lung cancer mortality when using low-

dose helical computed tomography (LDCT) scans as a screening modality compared to using

chest x-ray [Kra+11]. Therefore, it has been suggested to make LDCT, and CT in general,

the preferred screening modality for early detection and diagnosis of lung cancer.
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However, because of concerns about the radiation harms associated with CT scans and

other medical imaging tests [Gon+09; Faz+09; SSB10; SB+10; SB+09], lower doses of

radiation are often used in the screening setting despite higher resolution achievable with

increased doses. In most cases, cancer takes many years to grow, and requires an environment

that is supportive of its development [CCI16]. Factors such as diet, exposure to toxins and

radiation, exercise, and mental health have all shown to have an effect on the progression or

regression of cancer. Consequently, isolating and studying the effects of a single factor such

as radiation exposure from medical imaging is challenging, and arguments about the risks

associated with any potential carcinogen should be examined carefully.

A thoracic CT scan combines a series of X-ray images taken from different angles, and

uses computer processing to create cross-sectional images, or slices, of the bones, blood

vessels and soft tissues inside the chest. This results in a 3 dimensional image of the chest,

where each volumetric pixel (voxel) has an attenuation value that is indicative to the type

of material (tissue) present in its location.

As the resolution of CT screening technologies increases, and their demand, especially

in the developing world, is on the rise, radiologists are overwhelmed with the amount of

data they are required to analyze [McD+15]. This has the potential to cause fatigue among

radiologists, and therefore affect the quality of their diagnoses. Computer-Aided Detection

(CADe) systems have been developed in recent years to assist radiologists with this challenge

[GJD16; Ric+11; Gol+09; MHR10; Tan+11; Ani+16]. Their goal is to provide radiologists

with a second opinion, and support them in their interpretation of medical images. For

example, a successful CADe system might detect lung nodules which would otherwise be

overlooked by the radiologist, and bring these to the attention of the radiologist for further

examination. However, if a CADe system produces too many false positives1 (FPs), the

radiologist’s trust in the system can be undermined.

1The false positives of a detection system are the nodule predictions it makes, which do not overlap with
any nodule annotation.
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In a comprehensive survey conducted by Suzuki et al. [Suz13], three classes of classifi-

cation techniques, into which the various CADe systems can be categorized, were identified.

These are (1) Feature-based Machine Learning (FML), (2) Pixel/voxel-based Machine Learn-

ing (PML), and (3) Non-ML-based methods. Our CADe system [GJD16] belongs to the PML

class of classification techniques since its volumetric features are trained in a supervised man-

ner from the input data (i.e. voxel values of CT images). This is different from other CADe

systems [Ric+11; Gol+09; MHR10; Tan+11], which belong to the FML class of classification

techniques since their features are predetermined and are set manually by the designers of

the system. Non-ML-based methods are defined as methods that do not use ML techniques.

This includes all methods that do not have a “learning from examples” component in them.

The detection of lung nodules in CT scans is no easy task. One has to overcome the

significant variability in the input data when approaching this task. First, since CT scanners

are manufactured by different companies and are deployed with a wide range of radiation

doses, they can vary in the way image reconstruction is performed and in the amount of

image noise being generated [Mai+15]. Furthermore, CT scanners can be deployed with

different configurations, so the images they produce can have values, such as slice thickness,

pixel spacing, and image orientation, that are different from one another. Second, the size

and shape of normal anatomical structures in the scans varies among different patients, and

the CT images might contain artificial artifacts such as pace makers and artificial valves.

Finally, lung nodules can vary in their appearance, from round solid objects to flat and

liquid-like objects.

Lung nodules are small masses of tissue in the lung. They are usually about 5 millimeters

to 30 millimeters in size. A larger lung nodule, such as one that is 30 millimeters or larger,

is more likely to be cancerous than is a smaller lung nodule. Figure 1.1 shows an example

of a CT image in which two lung nodules are present. The nodule boundaries are marked in

red.
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Figure 1.1: An example of a CT image which contains two lung nodules. The nodule
boundaries are marked in red.

Modeling objects in CT images, such as lesions and organs, based on a simple model

with a relatively small number of parameters, is unlikely to be sufficient to represent their

complex structures. This means that Non-ML-based classifiers are probably not the right

approach when tackling this task. However, FML and PML techniques have the potential

of producing more complex models based on training examples, and therefore have a better

chance of overcoming this challenge of variability.

In this thesis, we present a novel CADe system, DeepCADe, for the detection of lung

nodules in thoracic CT scans which shows improved results over the state-of-the-art in this

application domain. Our system is trained with images from the publicly available Lung

Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) database,
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Figure 1.2: A high-level diagram of our CADe system. The red and green sub-volumes
represent two overlapping receptive fields of the network.

which contains 1018 thoracic CT scans of individuals at different stages of their disease.

We use a Deep Convolutional Neural Network (DCNN), which is trained, using the

backpropagation algorithm [RHW88], to detect lung nodules in sub-volumes of CT images.

The DCNN is composed of two modules, namely feature extraction and classification. The

first module is designed to extract valuable volumetric features from the input data, and the

second one is the classifier which is expected to perform the high-level reasoning of the neural

network. Once training is done, a sliding window algorithm is used to perform the detection

on a complete CT scan. Figure 1.2 illustrates a high-level diagram of our CADe system. It

illustrates how a single network is applied to two overlapping receptive fields (sub-volumes

of a CT scan), and how the output of the network is aggregated into a single voting grid

which describes the predicted probability of a nodule in each location in the original scan.

If we consider only those test nodules that have been annotated by at least three radi-

ologists 2, our CADe system achieves a 2.1% improvement in sensitivity (true positive rate)

over the best result in the current published scientific literature, assuming an equal number

of false positives (FPs) per scan. More specifically, our CADe system achieves a sensitivity

of 89.6% with 4 FPs per scan, or a sensitivity of 92.8% with 10 FPs per scan.

Furthermore, our CADe system is validated on a larger number of lung nodules compared

to other studies. This increases the variation in the appearance of nodules and therefore

2The LIDC-IDRI dataset contains independent nodule annotations of four experienced radiologists. Sec-
tion 1.3 gives a more detailed description of the dataset.
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makes their detection by a CADe system more challenging. More specifically, our CADe

system is validated on 279 annotated lung nodules, while other studies are validated on

between 38 and 143 annotated lung nodules.

Finally, we perform a systematic study on the application of Deep Convolutional Neural

Networks (DCNNs) for the detection of lung nodules in thoracic CT scans. We explore some

of the meta parameters that affect the performance of such models, which include:

1. The depth of the classifier module of the DCNN, i.e. the number of fully-

connected layers the classifier is composed of.

2. The size of the classifier module of the DCNN, i.e. the number of learnable

parameters the classifier is composed of.

3. The depth and size of the feature extraction module of the DCNN, i.e. the

effect convolutional layers have on the performance of the CADe system.

4. The benefit of using a rectified linear unit (ReLU) activation function com-

pared to a sigmoid and hyperbolic tangent (tanh) functions.

5. The receptive field of the network, which defines the dimensions of its input,

i.e. how much of the CT scan is processed by the network in a single forward

pass.

6. Two ways to control the nodule prediction size, i.e. by using a dedicated

threshold value or ignoring nodule predictions that are larger than a predefined

size.

7. The four agreement levels, which define four sets of nodule annotations ac-

cording to the level of agreement among four experienced radiologists.
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1.3 The LIDC-IDRI Dataset

The Lung Image Database Consortium and Image Database Resource Initiative (LIDC-

IDRI) database is a publicly available reference for the medical imaging research community

[AI+11; Cla+13; Tea15]. Its aim is to support the development of computer-aided diagnostic

methods for lung nodule detection and classification, and is the result of a collaboration

between seven academic centers and eight medical imaging companies.

The LIDC-IDRI dataset contains 1018 thoracic CT images that originated from a total of

1010 patients. The images comply with the Digital Imaging and Communications in Medicine

(DICOM) standard. Images have a resolution of [65, 764]×512×512 voxels per scan, where

[65, 764] is the range of values for the number of slices in the 3D images. 512×512 is the

in-plane pixel resolution of each of the 2D slices. The average number of slices per scan in

the dataset is 240. The range of values for the slice thickness parameter is [0.45, 5] mm with

an average slice thickness of 1.73 mm. The range of values for the pixel spacing in each of the

2D slices is [0.46, 0.97] mm with an average of 0.68 mm. These values help us understand

the relationship between the image space (measured in voxels) and the real-world space

(measured in mm). Figure 1.3 illustrates a 240×512×512 CT scan which, assuming a slice

thickness of 1.73 mm and pixel spacing of 0.68 mm, corresponds to a real-world sub-volume

of size 41.5×34.8×34.8 cm.

Each scan has been examined by four experienced thoracic radiologists in a two-phase

image annotation process. In the initial blinded-read phase, each radiologist was asked

to independently review the images in the dataset, and mark lesions they identified as (1)

nodules≥ 3 mm, (2) nodules< 3 mm, and (3) non-nodules≥ 3 mm. In the second subsequent

unblinded-read phase, each radiologist was asked to review their own marks, along with the

anonymized marks of the three other radiologists, and make a final decision. The annotation

files that are published as part of the LIDC-IDRI dataset contain only those annotations

from the second phase of the annotation process.
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Figure 1.3: A 240×512×512 CT scan which, assuming a slice thickness of 1.73 mm and pixel
spacing of 0.68 mm, corresponds to a real-world sub-volume of size 41.5×34.8×34.8 cm.

We chose to only use the annotations for the first category of nodules, namely nodules ≥

3 mm. This set of nodules includes all those nodules in the LIDC-IDRI dataset with greatest

in-plane dimension in the range [3, 30] mm regardless of presumed histology. We decided to

focus on this set of nodules since (1) all the papers we compare our results to have also focused

on nodules ≥ 3 mm, (2) nodules that are greater or equal to 3 mm have a higher chance

of being cancerous which makes them more clinically relevant, and (3) these nodules have

their complete contour annotated, which we use to achieve a tighter detection box around

the nodules. The other two sets of nodules, namely nodules < 3 mm and non-nodules ≥ 3

mm, have only their center point annotated.

The goal of this two-phase annotation process was to identify as many lung nodules in

each CT scan without forcing a consensus, i.e. without requiring the four radiologists to

agree with each other and reach a unanimous decision about their annotations. But since no

consensus was forced and the annotations are anonymized, one has to implement a grouping

procedure, which determines which nodule annotations represent the same lung nodule and

which are not. Our grouping procedure is described in Chapter 4.1. Once the grouping of

nodule annotations is complete, we can associate each nodule with one of four agreement
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Figure 1.4: Two scenarios of grouping the independent annotations of two radiologists. The
gray area which is bounded by a black contour represents the real nodule, and the blue
and red contours represent annotations of two radiologists. The correct grouping leads to a
single nodule at agreement level 2, while the wrong grouping leads to two separate nodules
at agreement level 1. The two separate nodules overlap with each other spatially but are
depicted as non-overlapping to emphasis the wrong interpretation of them as separate nodules
at agreement level 1.

levels. Agreement level j, where 1≤j≤4, includes all those nodules which were annotated by

at least j radiologists.

Figure 1.4 illustrates the need for grouping the independent nodule annotations and the

concept of agreement levels. It shows two scenarios of grouping the independent annotations

of two radiologists, which we assume were aiming to mark the boundaries of the same nodule.

This is not specified in the dataset, so one has to determine whether these independent

annotations represent the same nodule or not using a grouping procedure. In one scenario,

a correct grouping procedure considers both annotations to represent the same nodule. In

the other scenario, a wrong grouping procedure considers both annotations to represent two

separate nodules. Consequently, the correct grouping procedure will consider the union of the

two annotations to be a single merged nodule annotation at agreement level 2. In contrast,

the wrong grouping procedure will consider each annotation to be independent, which leads

to two separate annotations, each of which is at agreement level 1.

A wrong grouping procedure will lead to an incorrect validation of any CADe system. For

example, the wrong grouping procedure mentioned above leads to two nodule annotations
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at agreement level 1. Therefore, if a CADe system makes a correct nodule prediction which

“hit” both annotations, then the number of true positives will falsely increase by 2 instead

of 1. If no nodule prediction is made to “hit” these two annotations, then the number of

false negatives will falsely increase by 2 instead of 1.
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Chapter 2

Background

Machine learning algorithms have been used to perform a variety of tasks such as supervised

and unsupervised learning tasks [Ben09; BCV13]. In supervised learning, the goal is to learn

a function from labeled training data. This means that each example in the training data

is a pair consisting of an input object and a desired output value. In contrast, the goal in

unsupervised learning tasks is to learn a function which provides a good internal represen-

tation of the input. Hence, the training data consists of input objects only without any

desired output values. In this thesis, we examine the supervised learning task of classifying

sub-volumes of CT scans into two classes, either containing a nodule or not. Then we use

the resulting function to detect lung nodules in complete CT scans as illustrated in Figure

1.2.

In this chapter, we give a general definition of what a classification task is, and then con-

tinue by exploring a number of ways for approaching it. We describe two machine learning

algorithms, namely logistic regression and convolutional neural networks (CNNs). Then, we

describe the backpropagation algorithm [RHW88], which is a supervised learning algorithm,

and see how it is used to learn (train) the weights (parameters) of deep neural networks

(DNNs). DCNNs are one class of DNNs, and are considered “deep” since they are composed

of multiple layers of non-linear transformations. Finally, we discuss the weaknesses of back-

propagation and examine how recent developments in software and hardware technologies,

and a significant increase in the size of available datasets, have allowed the machine learning

community to overcome such weaknesses.

The notation used here is based on the online course in machine learning [Ng14] given by

Andrew Ng. Throughout this chapter we use the words unit, node, and neurons interchange-
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ably. Similarly, we use the terms weights and parameters of the network interchangeably.

These are the building blocks of neural networks.

2.1 Classification

Classification is the problem of identifying to which of a set of classes a new input object

belongs, based on a training set of data containing pairs of input objects and their respective

class membership. More formally, given m training examples

(x1 = (x1
1, . . . , x

1
n), c

1)

...

(xm = (xm
1 , . . . , x

m
n ), c

m)

where

(xj
i ∈ Xi) and (cj ∈ C)

can we “learn” a hypothesis function

h : X1 × ...×Xn → C

which approximates the unknown relationship between the input objects and their respective

class membership.

Ideally, the resulting hypothesis function h will generalize to examples that are outside of

the training set. This means that given an input object x = (x1, . . . , xn) which is not in the

training set, and given the class c it belongs to, h will return the correct mapping h(x) = c

2.2 Logistic Regression

We are givenm training examples and their correct labels, denoted asD = {(x1, c1), ..., (xm, cm)},

where xi is an n+ 1 dimensional vector representing n features and a bias unit xi
0 = 1, and

ci is the output value of the i’th training example.
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Figure 2.1: The logistic function sig(z) = 1
1+e−z

Logistic regression is one of the most basic supervised classification algorithms. Algorithm

1 describes the pseudo code of the gradient descent algorithm, which can be used to train

a logistic regression model by defining the following three functions: a hypothesis function

hθ(x), a loss function loss(θ,D), and the derivative of the loss function δ
δθj

loss(θ,D), where

θ = (θ0, θ1, ..., θn) is the parameter vector of the model. Assuming a binary classification

task, we would like the hypothesis to be in the range 0 ≤ hθ(x) ≤ 1. To do so, we use

the logistic function sig(z) = 1
1+e−z , which returns values in the range [0, 1], to define the

following hypothesis:

hθ(x) = sig(θTx). (2.1)

Figure 2.1 plots the logistic function sig(z). Next, we define a loss function, the sigmoid

cross entropy loss function, as follows:

loss(θ,D =
{
(x1, c1), ..., (xm, cm)

}
) = − 1

m

m∑
i=1

(ci log hθ(x
i) + (1− ci) log(1− hθ(x

i))). (2.2)

Figure 2.2 plots the loss function for a single example (m = 1, D = {(x, c)}) when (a)

c = 0 and (b) c = 1. It shows that the loss function converges to zero as the hypothesis
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Figure 2.2: The loss function loss(θ,D = {(x, c)}) = −(c log hθ(x) + (1− c) log(1− hθ(x)))
for a single example (x,c) when (a) c = 0 and (b) c = 1.

function hθ(x) approaches the correct label c.

Finally, the derivative of the loss function is defined as follows:

δ

δθj
loss(θ,D =

{
(x1, c1), ..., (xm, cm)

}
) =

1

m

m∑
i=1

(hθ(x
i)− ci)2xi

j. (2.3)

It is important to note that:

1. Given θ, the hypothesis function hθ(x) = sig(θTx) can be used to predict the

label of new examples.

2. The bias unit allows for the shifting of the activation function, which may be

critical for successful learning. Consequently, the activation function does not

depend solely on its feature vector. The use of bias units is related to the batch

normalization algorithm [IS15] which allows for both the shifting and scaling

of the activation functions in neural networks. Similarly to the bias unit, the

shift and scale parameters are learned as part of the learning algorithm.

3. As shown in Algorithm 1, α is the learning rate. If it is too small, loss(θ) will

converge slowly, and if it is too high, loss(θ) might not converge at all.

4. If loss(θ) is a convex function, and assuming a reasonable α, the algorithm

will always find an optimal solution with respect to loss(θ).
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5. It is possible to get non-linear decision boundaries by adding higher order

polynomials as new features.

6. It is possible to add a regularization component λ
2m

∑n
j=1 θ

2
j to the loss func-

tion, where λ is the regularization parameter. High values of λ correspond to

models with higher bias, i.e. error from incorrect assumptions in the learning

algorithm, and low values of λ correspond to models with higher variation, i.e.

error from sensitivity to small fluctuations in the training set.

Algorithm 1 Gradient Descent

1: Randomly initialize θ = (θ0, θ1, ..., θn)
2: Compute the hypothesis hθ(x

i) for every i = 1, ...,m
3: Compute the loss function loss(θ,D = {(x1, c1), ..., (xm, cm)})
4: while loss(θ,D) is decreasing do
5: Simultaneously update θj := θj − α δ

δθj
loss(θ,D) for every j = 0, 1, 2, ..., n

6: Compute the hypothesis hθ(x
i) for every i = 1, ...,m

7: Compute the loss function loss(θ,D)
8: end while

2.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of feed-forward neural network where the

individual neurons are tiled in such a way that they respond to overlapping regions in its

receptive field. It is inspired by models of the biological visual system, proposed by [HW62],

and continues to be consistent with the modern understanding of the physiology of the

visual system [Ser+07]. The first computational models based on these local connectivities

between neurons are found in Fukushima’s Neocognitron [Fuk80]. Fukushima found that

when neurons with the same parameters are applied on overlapping regions of the previous

layer, at different locations, a form of translational invariance is obtained. This allows

CNNs to detect objects in their receptive field in a way that is invariant to their size,

location, orientation, and other visual properties. In addition, this limited connectivity
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of CNNs reduces the computational requirements necessary for their training compared to

fully-connected neural networks.

On the other hand, the limited connectivity of CNNs implies that their input must be

structured in such a way that weight sharing is appropriate. More specifically, the input

values must not be independent of each other but rather they must be structured according

to some temporal, spatial, or other kind of relationship. Examples of this include the spatial

relationship of pixels in images, the temporal relationship of musical notes in audio tracks,

or the spatial and temporal relationships of pixels in video tracks.

Figure 2.3 illustrates this limited connectivity of CNNs and how it differs from the con-

nectivity in fully-connected neural networks. The fully-connected neural network that is to

the left of the receptive field is composed of 36 learnable parameters and outputs 4 values. In

contrast, the CNN to the right of the receptive field also outputs 4 values, but is composed

of 4 learnable parameters having the shape of a 2x2 convolution kernel, which is applied on

four overlapping regions of the receptive field.

CNNs were first trained using the backpropagation algorithm in [LeC+89], and ever

since they have obtained state-of-the-art performance on several pattern recognition tasks.

For example, large-scale CNNs were used to recognize objects in natural images as part of

the ImageNet challenge [KSH12; Sze+14; Rus+14], for which they have shown significant

improvement in performance compared to other approaches. Another notable work is by

Ciresan et al. [CMS12], who demonstrated improved records on MNIST [Den12; LeC+98],

Latin letters [Gro95], Chinese characters [Liu+10], traffic signs [Sta+11], NORB [LHB04]

and CIFAR10 [KH09] benchmarks using deep CNNs. A key question to our work is whether

the success deep CNNs have had in other computer vision tasks also applies to the detection

of lung nodules in CT scans and, in general, to the analysis of medical images.

Figure 2.4 illustrates an example of a CNN architecture which has the goal of predicting

whether the input image contains a robot or not. It can be divided into two phases, namely

20



1 2

3 4

1

2

3

4

Convolution Network

(2D view)

Convolution Network

(1D view)

Receptive Field

Fully-Connected

Network (1D view)

1

2

3

4

5

6

7

8

9

a b c

d e f

g h i

a b c

d e f

g h i

a b c

d e f

g h i

a b c

d e f

g h i

a b c

d e f

g h i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

10-18

19-27

28-36

1-4

b,c,e,f

1-4

d,e,g,h

1-4

e,f,h,i

Four overlapping regions

Convolution kernel

(size 2x2)

Output

Output

Output

Figure 2.3: An illustration of the limited connectivity in Convolutional Neural Network
and how it differs from the connectivity in fully-connected neural networks. The letters
a-i represent the input pixels of the receptive field, and the numbers represent the weights
(learnable parameters) of each of the networks. To the left of the receptive field, we see a
fully-connected neural network which has 4 output units and a total of 36 weights (9 weights
per output unit); to the right of the receptive field, we see a CNN with 4 output units and a
total of 4 weights which are applied to 4 overlapping regions of the receptive field. The 2D
and 1D views of the CNN are equivalent.

feature extraction and classification. The feature extraction phase is composed of two convo-

lution layers each of which is followed by a subsampling layer, and the classification phase is

composed of a flattening of the feature extraction output phase, followed by fully connected

hidden and output layers. The convolution layers, as well as the fully-connected hidden and

output layers, are followed by a non-linearity operation (an activation function) such as a

Sigmoid, a Hyperbolic Tangent (tanh), or a Rectified Linear Unit (ReLU) function. Also,

Figure 2.4 assumes a sliding kernel step size (a stride value) of 1 for the convolution layers,

and 2 for the subsampling layers.

Let us examine each of these operations in more detail.

As shown in Figure 2.3, a convolution layer is composed of at least one convolution kernel

which is applied on overlapping regions of the receptive field. The distance between each of

the overlapping regions is called the kernel step size or stride value. This distance determines
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Figure 2.4: An example of a CNN architecture.

the shape of the result of the convolution operation which is called the feature map. Since

convolution layers are composed of 2 dimensional (or higher dimensional) convolution kernels,

the part of the network which contains these layers is considered the feature extraction phase.

More formally, performing a convolutional operation for an image that has n channels

x = {xc|c ∈ [0, n − 1]} each of which is of size s × s, with a kernel that has n matrices

k = {kc|c ∈ [0, n − 1]} each of which is of size r × r (r ≤ s), and assuming that the stride

value is 1 in both axes, results in a matrix of size (s− r + 1)× (s− r + 1) where each entry

i, j is defined as follows:

(x⊗ k)i,j =
∑
c

∑
p,q

xc
i+p,j+qk

c
r+p,r+q (2.4)

where c ∈ [0, n− 1], p ∈ [0, r − 1], and q ∈ [0, r − 1].

These notations are illustrated in Figure 2.5. It shows a convolution layer with a single

convolution kernel of size r× r× n, which is applied on overlapping regions of the receptive

field using a stride value of 1. Assuming a receptive field of size s× s× n, the result of the

convolution layer is a single feature map of size s − r + 1 × s − r + 1. More feature maps

can be obtained through the addition of additional convolution kernels. Notice that just as

the convolution layer following the input layer considers all the channels of the input, so do

subsequent convolution layers consider all the feature maps of their previous layer.
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Figure 2.5: A convolution operation which converts a s× s× n receptive field into a s− r+
1× s− r + 1 feature map using a single r × r × n convolution kernel. The kernel is applied
on overlapping regions of the receptive field using a stride value of 1.

A subsampling layer is usually composed of either an average pooling or a maximum

pooling operation. Similar to convolution operations, pooling operations are also applied

on overlapping regions of the receptive field. Consequently, pooling operations also have a

stride value associated with them. The purpose of the subsampling layer is to progressively

reduce the spatial size of the receptive field and therefore reduce the amount of features and

the computational complexity of the network.

Performing a maximum pooling operation on a single image channel x of size s× s, with

a pooling kernel of size r × r (r ≤ s), and assuming that the stride value is 1 in both axes,

results in a matrix P of size (s−r+1)× (s−r+1) where each entry i, j is defined as follows:

Pi,j = maxp,q{xi+p,j+q} (2.5)

where p ∈ [0, r − 1] and q ∈ [0, r − 1]

Finally, an activation layer is composed of an activation function which is applied on each

of the values in the previous layer independently. In other words, the activation function is an

element-wise operation. Here, we define the three activation functions we examined in this

thesis, namely the logistic sigmoid, rectified linear, and hyperbolic tangent functions. These
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Figure 2.6: The rectified linear unit function ReLU(z) = max(0, z)

non-linearity operations are commonly performed after the convolution and fully-connected

layers of CNNs. Figure 2.1, Figure 2.6, and Figure 2.7 illustrate the logistic sigmoid, rectified

linear, and hyperbolic tangent functions, respectively.

sig(z) =
1

1 + e−z
(2.6)

ReLU(z) = max(0, z) (2.7)

tanh(z) =
1− e−2z

1 + e−2z
(2.8)

To see how these three operations can be applied sequentially, Figure 2.8 shows a se-

quence of a convolution, ReLU, and max pooling operations. It assumes a stride value of

1 for both the convolution and max pooling operations and for both axes. Notice that the

convolution operation is essentially an element wise multiplication (a discrete correlation) of

the convolution kernel with the corresponding image region.

Looking at Figure 2.4 once again, we now have a better understanding of its connectivity

and components, and we understand how the dimensions of the different components are
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Figure 2.8: A sequence of 2D convolution, ReLU, and max pooling operations. The stride
value of both the convolution and max pooling operations, along the two axes, is 1.

determined. Also, as shown in Figure 2.3, we understand how the structure of a convolutional

neural network can be viewed as a neural network with limited connectivity. Once the

structure of the network is determined, training can begin. In the next section, we examine

the Backpropagation algorithm for learning the weights (learnable parameters) of a neural

network. Once that is done, the network can be applied to perform the classification task it

has been set up to do.
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2.4 Learning Neural Networks with Backpropagation

Neural networks are commonly used as supervised learning algorithms for performing clas-

sification. The backpropagation algorithm [RHW88] is one of the most common learning

algorithms for training neural networks. It has been suggested that using backpropagation

with a relatively small batch size is preferable when it comes to training deep neural networks

since it has been shown that many second order methods are impractical for large neural net-

works and that stochastic learning is usually much faster and often results in better solutions

than batch learning [LeC+12].

To describe the backpropagation algorithm, let us first consider the following notation.

As before, we assume that we have m training examples and their correct output, denoted as

{(x1, c1), (x2, c2), ..., (xm, cm)}. Unlike before, there are K classification labels, so while xi is

still an n+ 1 dimensional vector, ci is a K dimensional vector instead of a scalar, which has

the value 1 at the index of the correct label and 0s at all other indices. We also denote L as

the number of layers in the feed-forward network, and sl as the number of units (excluding

the bias unit) in layer l. θl denotes the matrix of all weights between layer l and layer

l + 1, and al denotes the activation of all the units in layer l. Finally, the symbol ∗ denotes

the element wise multiplication operator, and λ is again the regularization parameter which

determines how much the network is penalized for having high value weights.

Figure 2.9 shows a diagram of a feed-forward network which is using these notations.

The nodes in the diagram represent the units of the network. The nodes in the first layer,

denoted as a1, represent the input of the network, and the nodes in the last layer, denoted

as a5, represent the output layer for a two class classification problem. All other layers

represent the intermediate activations of the network. More specifically, node ali which has

incoming edges from nodes
{
al−1
j |0 ≤ j ≤ sl−1

}
represents the result of the logistic function

after being applied on the linear combination of all incoming nodes and their respective edges

(representing the weights of the network).
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Figure 2.9: A diagram of a feed-forward network, which includes the notations that we use
to describe the backpropagation algorithm. Some of the edges between layers 3 and 4, and
between layers 4 and 5, have been omitted to make the diagram clearer.

More formally,

ali =
1

1 + e−z
(2.9)

where

z =
sl−1∑
j=0

al−1
j θl−1

ij (2.10)

Using these notations, we can now describe the loss function that the backpropagation

algorithm, described in Algorithm 2, tries to minimize. The loss function is a summation of

two components: a sigmoid cross entropy component and a regularization component.

loss(θ) = − 1

m

[
m∑
i=1

K∑
k=1

cik log(hθ(x
i)k) + (1− cik) log(1− hθ(x

i)k)

]
+

λ

2m

L+1∑
l=1

sl∑
i=1

sl+1∑
j=1

(θlji)
2

(2.11)

where θlji is the weight between the i’th unit in layer l and the j’th unit in layer l + 1

(Figure 2.9), and hθ(x
i) is equal to the activation of the last layer of the network (aL) after
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Algorithm 2 Backpropagation

1: Randomly initialize θlij for every l, i, j
2: while not reaching some stopping criterion do
3: Set ∆l

ij = 0 for every l, i, j
4: for i = 1 to m do
5: Set a1 = xi

6: Compute a2, a3, ..., aL by applying the forward propagation rule:
al = sig(θl−1al−1) where sig(z) = 1

1+e−z

7: Compute δL = aL − yi

8: Compute δL−1, δL−2, ..., δ2 by applying the backpropagation rule:
δl = (θl)T δl+1 ∗ al ∗ (1− al)

9: Update ∆l
ij = ∆l

ij + aljδ
l+1
i for every l, i, j

10: end for
11: Compute Dl

ij =
1
m
∆l

ij for every l, i, j and add λθlij if j ̸= 0
12: Update θlij = θlij − αDl

ij for every l, i, j (gradient descent step)
13: end while

performing the forward propagation of xi. This means that hθ(x
i) is a K dimensional vector,

and we denote its k’th value as hθ(x
i)k.

Note that in computing hθ(x
i), we assume that all the nodes in the network have the

logistic function as their activation function. The logistic function is illustrated in Figure 2.1.

When this assumption is made, the neural network can be regarded as an extension to the

logistic regression algorithm we discussed in Section 2.2. There are various other activation

functions that can be used in neural networks, and these functions can vary across the

different nodes of the network. Here, we ignore such specialization in order to make our

notation simpler.

The backpropagation algorithm is essentially an iterative algorithm for computing δ
δθlij

loss(θ) =

Dl
ij for every i, j, l, using these derivatives to update the weights of the network, and repeat-

ing this process until some stopping criterion is reached, such as correctly classifying all

the training examples. A new data example can then be classified by performing forward

propagation and selecting the label for which its vector is the closest to the activation of the

last layer of the network.
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When backpropagation was first applied to neural networks by Rumelhart et al. in 1988

[RHW88], it was expected that it will enable the training of networks with a large number of

hidden layers, and that the units in these hidden layers will model high-level features of the

raw data. It turned out not to be the case, and most of the neural networks that were trained

ever since were fairly limited in the number of hidden layers they had. This trend continued

to the 1990’s, when neural networks were rarely used, and other learning algorithms, such

as support vector machines, were favored by the scientific community. This had happened

for two main reasons: (1) the computational power needed to perform the training of deep

neural networks was overwhelming to the computing resources that were available at that

time, and (2) the size of available datasets at that time was too small.

Nowadays, advancements in GPU technology allows artificial intelligence researchers to

train deep architectures significantly faster compared to using CPU alone. The extent by

which speed up is achieved depends on the hardware that is used and the type of experiment

being examined. In general, utilizing the GPU is more beneficial when applied on larger

network and larger batch sizes. This is done by the utilization of massively parallel graphics

processors which accelerate operations that are also parallel in nature. One such operation

is matrix multiplication. Computing a single layer of a neural network from its previous

one in the case of forward propagation, and from its subsequent one in the case of backward

propagation, can be formulated as a matrix multiplication operation. Consequently, speeding

up this operation which is fundamental to the training and execution of neural networks has

a significant impact on the overall computation time of the entire process. As a result, much

of the state-of-the-art research that is being done in the field of deep learning is executed

over GPUs.

DNNs tend to overfit small datasets due to their strong representational power. As a

result, large-scale datasets with labeled data are essential for the successful training of such

deep architectures in a supervised manner. Fortunately, large-scale datasets from various
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domains have become increasingly available in recent years. The clearest example we see

comes from the adoption of the internet by the masses and the easy access people have to

digital cameras, which led to huge amounts of video and image data being shared every day

by millions of people through platforms such as YouTube [You] and Facebook [Fac].

These advancements in technology, which led to an increase in computational power and

allowed the generation of large-scale datasets, have led to the outstanding success that deep

neural networks have shown in recent years across numerous application domains. These

include computer vision [KSH12; Sze+14; CMS12; NHH15; Che+14a; LSD15; Le13], speech

recognition [Lee+09; Hin+12a], natural language processing [CW08], recommender systems

[ODS13], and dimensionality reduction [HS06].

2.5 Combining Multiple Classifiers

It is sometimes useful to combine multiple classifiers instead of using just one. But this

raises an interesting question: how can we combine different classifiers to perform a single

prediction at test time. Probably the most intuitive and simple approach is to perform the

classification according to the majority vote of the different classifiers, which is known as

the bootstrap aggregating (bagging) algorithm [Bre96]. The CADe system proposed in this

thesis can easily be extended to a kind of bagging algorithm in which a number of DCNNs are

used to compute the voting grid with which the location and boundary of nodule predictions

are predicted.

Another approach for combining multiple classifiers is using a boosting algorithm [FSA99].

A boosting algorithm generates a linear combination of classifiers, which is then used to per-

form the classification of new examples at test time. They do so by assigning weights to the

examples in the training set, and adjusting them in an iterative manner according to how

well they were classified by the various classifiers.
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At the beginning of the algorithm, the first classifier is trained with all the weights

having the same value. Then, the coefficient of this classifier is determined, and the weights

are modified according to how well the classifier performed on each of the examples. More

specifically, if an example is correctly classified, its weight decreases, and if it is misclassified,

its weight increases. This process is repeated for every additional classifier that is added to

the system until some stopping criterion is reached. The linear combination of the various

classifiers, defined by their coefficients, can then be used to perform classification on new

examples for which their labels are unknown.

Applying a boosting algorithm to our proposed CADe system is more challenging since

the input for the CNN (its receptive field) is a sub-volume of a CT scan and not the entire

scan. The number of sub-volumes a scan contains depends on the size of the scan and the

sub-volume dimensions, but is generally very large. In addition, one might want to build

an ensemble of classifiers which have varying receptive field sizes. This would make the

definition of an example, in the context of the boosting algorithm, more blurry. To solve

this issue, an example, in the context of the boosting algorithm, can be defined as a single

CT scan. Consequently, the linear combination of the various classifiers can be determined

based on their performance for each of the CT scans.

In the context of neural networks, it appears to be hard to combine multiple large neural

networks because it takes a long time to train each network, and because it is inefficient to

run a lot of large neural networks at test time. However, there is an effective technique called

Dropout [Hin+12b; Sri+14], which is used to both combine multiple neural networks, and

perform regularization. The DCNN at the heart of our proposed CADe system can easily

be trained and deployed with this technique.

The dropout algorithm can be summarized as follows. Let us assume that we have a

neural network with H hidden units, spanned across multiple layers. Each time we present

the network with a training example, we randomly omit each hidden unit with a probability
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of 0.5. As a result, we are essentially sampling from 2H different model architectures, which

all share the same weights. This means that only a few of the 2H architectures get trained,

and that when they do, it happens with a small number of training examples, depending on

the size of H. Also, since they share the same weights, each model is strongly regularized

towards what other models want. In other words, instead of pulling the weights (parameters)

of the network towards zero, which happens in the other form of regularization we mentioned

above, the weights are pulled to what other models want.

Finally, we can perform forward propagation on the resulting network by halving the

outgoing weights of all the hidden units, which estimates the geometric mean of the predic-

tions of all 2H models. It has been shown [Hin+12b; Sri+14] that if a deep neural network

is strongly overfitting, Dropout has the capacity to significantly reduce its error rate.
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Chapter 3

Related Work

Convolutional Neural Networks (CNNs) have shown to produce some promising results in

many application domains such as speech recognition [Lee+09; Hin+12a], recommender

systems [ODS13], and natural language processing [CW08], but they are most notable for

their state-of-the-art results in computer vision tasks [KSH12; Sze+14; CMS12; NHH15;

Che+14a; LSD15].

In this chapter we first examine how deep CNNs have been successfully applied to two

well-known computer vision tasks, namely the recognition of hand-written digits from the

MNIST dataset [Den12; LeC+98], and the recognition of various objects in natural images

as part of the ImageNet challenge [Den+09; Rus+14]. Then, we examine a third vision task,

namely the detection of lung nodules in thoracic CT scans, and explore some of the work

that has been done to tackle it. While doing so, we examine the various differences and

similarities between our work and the work of others, and give the reader some context for

the following chapters where we dive deeper into the specifics of our work.

3.1 Natural Image Classification

The main goal of natural image classification algorithms is to allow computers to determine

the content of images that humans are exposed to in their daily lives. They do so by a

form of signal processing, i.e. applying mathematical operations on the pixel values of the

input image. While natural image classification is somewhat different from the analysis of

CT scans, we still explore it here because of the tremendous results that Deep Convolutional

Neural Networks have demonstrated in this area in recent years.
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3.1.1 MNIST

The MNIST (Mixed National Institute of Standards and Technology) database is a large

database of handwritten digits, which consists of 60,000 training images and 10,000 test

images [Den12; LeC+98]. Ciresan et al. [CMS12] were able to produce the state-of-the-art

results for this task using a committee of 35 deep CNNs, where each network is trained on

inputs that are preprocessed in different ways, and their outputs are averaged. During train-

ing, the input images of each CNN are continually translated, scaled, elastically distorted,

and rotated, whereas only the original images are used for validation. Using a single deep

CNN by itself already yields better results than the state-of-the-art for this task, but using

a committee of CNNs further decreases the error rate by 30-40%.

One interesting property of this CNN is that its convolution kernels have shown to be

most beneficial when they are small and even minimal. This means that even though the

feature detectors (convolution kernels) throughout the entire network are small, together

they still have the capacity to capture global features very well. One explanation for this is

as follows. As the computation of the network moves from the input layer to the output,

downsampling operations such as pooling layers decrease the size of the receptive field and

therefore allow for convolution kernels that are further away in the computation to capture

more global features of the input.

Another interesting observation is that the network architecture applied by Ciresan et

al. for the MNIST task has also demonstrated improved records on a number of other com-

puter vision benchmarks such as the recognition of Latin letters [Gro95], Chinese characters

[Liu+10], traffic signs [Sta+11], NORB [LHB04], and CIFAR10 [KH09]. This is particularly

interesting since there were no carefully pre-wired units (artificial neurons) in those CNNs,

which means that no expert knowledge was incorporated in any of these different application

domains. It is true that all these tasks are from the computer vision domain, and therefore

are assumed to be of similar nature, but each also has its own unique properties. Indeed,
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it is exciting that a single network architecture is able to show high performance on various

computer vision tasks. However, one needs to be careful when concluding that this will also

be true across more distant application domains.

The successful use of continuous distortions of the original images during training is

essentially a way to increase the size and variability of the training set. This has shown to

be important for the training of deep CNNs because of their large number of parameters,

which result in their tendency to overfit small training sets that have little variability. Of

course, such generation of input examples is not necessarily possible in other application

domains, but at least in the case of MNIST, we can see that deep CNNs become advantageous

with increased size and variability of their training set. Such work is also suggestive that

unsupervised initialization/pretraining is not necessary when the training set is of sufficient

size and variability.

Another technique for overcoming overfitting, in addition to increasing the size and vari-

ability of the dataset, is using Dropout [Hin+12b; Sri+14]. The key idea of Dropout is to

randomly drop units (along with their connections) from the neural network during train-

ing, which essentially means that the training is performed on an exponential number of

“thinned” neural networks. During testing, the effect of all these networks is estimated by

using all neural units and halving their weights. This prevents units from co-adapting too

much, and therefore, reduces overfitting and improves upon other regularization methods.

We have discussed this topic more thoroughly in Chapter 2.5.

3.1.2 ImageNet

ImageNet [Den+09; Rus+14] is a publicly available database and an annual online contest

(started in 2009), where one of its associated challenges is to classify more than 1.4 million

high-resolution images into 1000 classes (representing the various objects contained in the

images). Similarly to MNIST, large-scale CNNs have shown to produce the state-of-the-art

results for this task [KSH12; Sze+14].
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The experiments in [KSH12] suggest that better results can be obtained by simply uti-

lizing faster GPUs and larger datasets. Alternatively, Szegedy et al. [Sze+14] have shown

that significantly more accurate results can be achieved by modifying the architecture of the

network even if it uses 12 times fewer parameters than the network proposed in [KSH12].

Having a smaller network improves the efficiency of the algorithm in terms of power and

memory usage, and allows it to be deployed in more devices such as mobile and embedded

computers.

In contrast to MNIST, NORB, and CIFAR10, which contain an order of tens of thou-

sands of labeled images, ImageNet has millions of labeled images. Pinto et al. [DPC08] have

recognized the shortcomings of small image datasets. Their work suggests that the perfor-

mance of any classifier significantly depends on the real-world image variation in the datasets

they are trained on. In other words, one has to be careful when evaluating the generality of

his proposed model, especially if the dataset used is small and has little variability. This is

because objects in realistic settings usually exhibit considerable variability.

Seeing the success that CNNs have shown in the above computer vision tasks, it is

interesting to examine whether CNNs can also be successfully applied to the detection of

lung nodules in thoracic CT scans. This is a key questions in this thesis, and in the next

sections we will explore some of the work in this area of research.

3.2 The detection of lung nodules in thoracic CT scans

In a comprehensive survey conducted by Suzuki et al. [Suz13], three classes of classification

techniques, into which the various CADe systems can be categorized, are identified. These

are (1) Feature-based Machine Learning (FML), (2) Pixel/voxel-based Machine Learning

(PML), and (3) Non-ML-based methods. While some non-ML methods are briefly discussed

in this chapter, we focus on the first and second classes of classification techniques since

these are more related to our work.
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3.2.1 Feature-based Machine Learning

The work described below [Ric+11; Gol+09; MHR10; Tan+11] belongs to the FML class of

classification techniques since it utilizes features that are hand-engineered by the designers of

the system. These CADe systems have used the LIDC-IDRI dataset for performance evalua-

tion, and therefore we can compare our results to theirs. Another commonality among these

approaches is that they are comprised of three steps: (1) lung segmentation, (2) preliminary

detection of candidate lung nodules, and (3) a false positive reduction step.

In the following paragraphs, we focus on the false positive reduction step since it is most

related to our work. There is a range of techniques which have been used to perform the

first and second steps [TM+08; AB94; LZ03]. These include various filtering techniques,

image transforms, and region growing techniques, but in general, they usually rely on some

geometric assumption about the objects they aim at detecting and segmenting, whether

it is a lung, a blood vessel, or a lung nodule. For example, in order to detect a nodule

candidate, there is usually the assumption that the nodule has a radial symmetry, and

therefore techniques such as 3D fast radial filtering are performed [LZ03]. Alternatively, in

order to segment the lung’s boundary, it is assumed that these boundaries are well defined

in CT scans, and therefore, a combination of histogram thresholding, seeded region growing,

and mathematical morphology are applied [TM+08; AB94].

3.2.1.1 Computer-aided detection of lung nodules via 3D fast radial transform, scale space

representation, and Zernike MIP classification [Ric+11]

After a set of CT regions which contain candidate lung nodules is obtained, and a simple

heuristic false positive reduction step is performed, which discards CT regions that are

not in the appropriate diameter range of 3mm to 30mm, Riccardi et al. [Ric+11] use a

supervised false positive reduction step based on Maximum Intensity Projection (MIP) filters

[Gru+02] and Zernike moments [KH88] to return the final nodule predictions. This step can

be summarized in four processing steps: (1) volume of interest (VOI) cropping and resizing,
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(2) MIP processing in three directions, (3) feature extraction, and (4) SVM classification.

In step 1, the CT regions are resized to a cube by means of linear interpolation. In

step 2, three MIP filtered images are obtained for each of the CT regions by ray projection

techniques, where the value assigned for each ray is the maximum value encountered by the

ray along its path. The logic behind using MIP filtering is that blood vessels and nodules

have very similar 2D cross sections in thin slice CT scans, but can still be distinguished since

nodules remain circular in shape, while vessels are seen as elongated strips when examining

the three MIP images. This property raises a concern about the applicability of this filtering

technique when facing elongated lung nodules or when a low-dose CT scan is being analyzed

where the CT slice thickness is large. For example, analyzing CT scans with a high slice

thickness might lead to a decrease in the true positive rate, since nodules extracted from

such images might appear as elongated stripes and therefore be wrongly predicted as vessels.

Final features are obtained by computing the rotation invariant Zernike moments [KH88]

from the MIP images (step 3). While these features are also insensitive to slight deviation

in the nodule structure, their main use is due to their rotation invariant properties. Riccardi

et al. argue that these sets of features are particularly appropriate to lung nodules since

these usually appear as “perturbed disks” in CT scans. However, this assumption might not

always hold true since lung nodules can have other complex structures.

Finally, these features are used to train a support vector machine (SVM) classifier (step

4), which predicts whether each CT region contains a lung nodule. A SVM classifier can be

viewed as a shallow fully-connected neural network, where the weights between the input

layer and the hidden layer represent the kernel function. It would be interesting to examine

whether a “deeper” classifier, i.e. a classifier with multiple non-linear transformations such

as a NN with multiple hidden layers, can improve the performance of such a system.
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3.2.1.2 A novel multithreshold method for nodule detection in lung CT [Gol+09]

After segmenting the lungs and selecting ROIs based on a multi-threshold surface-triangulation

approach, Golosio et al. [Gol+09] extract features from these ROIs which are used as input

to a NN classifier. The features include measures of volume, roundness, maximum density,

mass, and principal moments of inertia, which are computed based on the triangulated model

of the ROI. Many of the ROIs are generated due to noise in the image, so these features are

expected to enable the discernment between nodules, noise, and other objects such as blood

vessels.

The logic behind using these features is that, again, nodules are considered to be spherical

by nature, so their roundness measurement is expected to be close to 1 and their three

principal moments of inertia are expected to be similar. More specifically, the volume and

density of ROIs that originate from noise is much lower than that of nodules. In regards to

blood vessels, their volume can be very large, but their roundness is generally lower than

that of nodules, and the principal moment of inertia corresponding to the axis parallel to

the vessel is generally much smaller than the other two.

Golosio et al. have defined these features as a function of the threshold used to obtain

the triangulated model of the ROIs, so it is argued that, for example, the behavior of the

volume and roundness functions is different for isolated nodules compared to nodules that

are connected to blood vessels. More specifically, while the roundness value is high in all

thresholds for isolated nodules, it shows a peculiar behavior for nodules that are connected

to blood vessels. For low thresholds, the roundness value is quite low, presumably since the

nodule is connected to the vessels and therefore is part of a big ROI which include the long

vessels; but as the threshold increases, the nodule separates from the vessels and the ROI

volume rapidly decreases and at the same time the roundness will rapidly increase.

Once the lung segmentation, ROI selection, and feature extraction steps are done, the

features are used as input to a relatively small neural network with a single hidden layer,
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where the input layer size is 43 (seven features evaluated for six threshold values, plus the

maximum density inside the ROI), the hidden layer size is 11, and the output layer size is

2, corresponding to a positive and negative response.

It is worth mentioning that the multi-threshold surface-triangulation approach used by

Golosio et al. was not very selective, meaning that the number of ROIs obtained is very large,

producing a much greater number of negative examples than positive ones. Consequently,

they used a Self Organizing Map (SOM) to downsample the negative examples with the hope

of not altering their distribution in the feature space. More specifically, they trained a SOM

with an output layer size of 10x10 using an unsupervised algorithm, used it to associate each

of the ROIs with one of the output nodes, and then downsampled the negative examples

by taking about 2% of the cases from each output node of the SOM. Downsampling can

also be performed by other unsupervised learning algorithms such as the k-means clustering

algorithm or the Persistent Contrastive Divergence (PCD) algorithm [Tie08] for learning a

stack of restricted Boltzmann machines.

3.2.1.3 A new computationally efficient CAD system for pulmonary nodule detection in CT

imagery [MHR10]

The CADe system of Messay et al. [MHR10] is also an interesting one. They first prepro-

cessed the data, which included orienting and down-sampling the data in order to generate

CT slices with a comparable orientation and slice spacing, and performed local contrast

enhancement in order to improve the details and local context of lung nodule candidates.

Then, they performed lung segmentation followed by 3D nodule candidate detection and

segmentation based on multiple gray level thresholding and a simple size and compactness

based expert filter.

Once this is done, a set of 245 2D and 3D features is extracted from each segmented nodule

candidate. This set includes geometric, intensity and gradient features. An extensive list of

all 245 features can be found in [MHR10]. The 2D geometric features represent the shape
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and position of the candidate nodules in relation to the center of the lung, and are evaluated

based on the largest area slice of the nodule candidate segmentation. These include size,

circularity, and distance to the center of the segmented nodule candidate. The 3D geometric

features include measurements such as elongation, cube compactness, and fraction touching

the lung. Furthermore, 2D and 3D intensity features include minimum and maximum values

inside and outside of the segmented nodule candidate, standard deviation inside and outside

of the segmented nodule candidate, and contrast. Finally, 2D and 3D gradient features

include radial-deviation and radial-gradient statistics inside and outside of the segmented

nodule candidate. 3D features also include features above and under the segmented nodule

candidates in order to represent the tissue that surrounds the candidate nodule.

A feature selection algorithm is then applied to determine two subsets of the 245 candidate

features to be used for two distinct classifiers with the objective of maximizing the area

under the FROC curve. Messay et al. used two simple classifiers, namely a Fisher Linear

Discriminant classifier [Fis36] and a quadratic classifier. The quadratic classifier, being a

generalization of the linear one, is expected to be able to represent more complex separating

surfaces between positive and negative candidate nodules, but has shown to be inferior to

the linear classifier. This can be due to an overfitting effect, caused by the relatively small

number of training samples (90 thoracic CT scans), and of true positive samples in particular.

3.2.1.4 A novel computer-aided lung nodule detection system for CT images [Tan+11]

Finally, Tan et al. [Tan+11] have demonstrated a CADe system with somewhat superior

results to the above systems. It can be described as follows. First, re-sampling of the DICOM

images to a fixed slice thickness using Tri-linear interpolation is performed, followed by a lung

segmentation procedure. Then, the system applies a nodule candidate detection algorithm

which considers three different kinds of nodules, namely isolated, juxtavascular (or vessel-

connected), and juxtapleural (or pleura-connected) nodules, and is based on a set of selective

nodule and vessel enhancement filters. The main problem of using these filters is the high
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amount of FP detections they produce, especially in the locations of vessel branches and

junctions. In response, Tan et al. employ a nodule center estimation procedure, a grey-level

thresholding procedure, and a region growing algorithm to reduce the number of FPs. Then,

they cluster overlapping nodule segmentations, which further reduces the number of FPs.

Once a set of segmented candidate nodules is obtained, feature extraction is performed.

Tan et al. uses two kinds of invariant features, namely features that are based on the

isophotes of candidate nodules, and other classical shape and grey-value descriptors. Isophotes

are lines drawn through areas of constant brightness, and are similar to contour maps which

show lines through areas of constant elevation. Isophotes are invariant to the orthogonal

group of spatial transformations and the group of general intensity transformations, which

makes them appropriate to the analysis of CT scans.

Consequently, Tan et al. used isophote-based features such as a ridge detector, isophote

curvature, a measure for isophote density, a measure of deviation from flatness, a checker-

board detector, and a Y-junction detector. The logic behind using such features is to discrim-

inate between the presence of spherical lung nodules and the presence of tubular structures

like blood vessels. In addition, the set of classical geometric and grey-value descriptors Tan

et al. have used includes features such as volume, compactness, elongation factor, and dis-

tance of nodule candidate centroid to lung wall. A complete list of these features can be

found in [Tan+11].

Once feature extraction is done, Tan et al. employ three different classifiers and com-

pare their results. These include (1) a feature-selective classifier based on NNs and genetic

algorithms (FD-NEAT) [Tan+09], (2) SVMs, and (3) fixed-topology NNs. FD-NEAT is a

machine learning algorithm to automatically discover the topology and weights of neural

networks by means of a genetic algorithm. More specifically, evolution starts with a minimal

network topology, where all the input units are connected to the output units, and struc-

ture is added incrementally through the mutation operators. FD-NEAT is very similar to
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the original NEAT system [SM02], except that it has some extra mutation operators that

allows for the pruning of input features, thus making it a feature selection algorithm as well.

The performance of the three classifiers varies depending on their configuration at different

agreement levels, but in general the overall performance of the NN-based classifiers slightly

exceeds that of SVM.

3.2.2 Pixel/voxel-based Machine Learning

Similarly to our CADe system, the works mentioned below [Ani+16; Shi+16; Bus05; GG16]

belong to the PML class of classification techniques. This means that the spacial/volumetric

feature detectors they contain are trained in a supervised manner from the input data,

i.e. from the pixel/voxel values of chest radiographs/CT images. We are one of the first

research groups to utilize Deep Convolutional Neural Networks (DCNNs) for the detection

of lung nodules in CT scans [GJD16]. When we first approached this task, which was at the

beginning of the year 2015, we were not able to find any publication which applied DCNNs

for this task. However, throughout the year 2016, there have been a number of publications

[Ani+16; Shi+16; Bus05; GG16] which applied DCNNs to tackle other similar tasks; and

in 2017, a number of survey papers [Lit+17; SWS17] have reviewed the application of deep

learning in medical image analysis.

3.2.2.1 Lung nodule detection using 3D convolutional neural networks trained on weakly

labeled data [Ani+16]

Anirudh et al. [Ani+16] have used a DCNN which has a very similar architecture to the

one we used in [GJD16]. Instead of using a fully annotated dataset such as the LIDC-IDRI

dataset, which includes a complete segmentation of all the nodules it contains, they used

a single point and a largest expected size to represent each nodule. They implemented an

unsupervised segmentation algorithm to grow out each 3D region, which is used during both

the training and testing of their CNN. While this approach indeed makes the annotation
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process easier, it still requires a radiologist to annotate the data. Having intuitive software

tools for radiologists, which allow them to easily segment nodules on a PC or tablet, would

still achieve the same goal while not compromising the quality of the annotations. Lung

nodules do not always appear to be continuous objects in CT scans, and as a result, an

algorithm that grows out a 3D region on such nodules can fail to capture the entire nodule.

In order to assess the performance of this unsupervised grow out algorithm, one should

only use it to segment the nodules in the training set while using fully annotated nodules

in the test set. Anirudh et al. have not done so, and instead, they used the unsupervised

algorithm to segment lung nodules in both the training and test sets. Consequently, we con-

sider their results to be somewhat misleading and biased. Also, they only used 67 CT scans

from the SPIE-AAPM-LUNGx dataset in their work, which we consider to be insufficient

for producing results without any model validation technique such as k-fold cross-validation,

even though they used a training set of size 20 and a test set of size 47.

Finally, similarly to our approach, Anirudh et al. have not used any lung segmentation

tool, but they do acknowledge that it is indeed not a trivial thing to do and that doing so

properly should help in reducing the false positives of any model. In our work, we tried

to avoid using a lung segmentation procedure for a similar reason, namely the challenge of

segmenting the lungs and the effect a wrong segmentation might have on the detection of

lung nodules. Anirudh et al. [Ani+16] did not use the LIDC-IDRI dataset to evaluate the

performance of their models, and therefore we cannot compare our results to theirs.

3.2.2.2 Other related work [Shi+16; GG16; Bus05]

Other work worth mentioning, where DCNNs have been used but on slightly different tasks,

include [Shi+16; GG16; Bus05]. Such work can not be compared to our work since it does

not utilize the LIDC-IDRI dataset or it does not describe a CADe system for the detection

of lung nodules in complete CT scans.
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Shin et al. [Shi+16] studied two specific CADe problems, namely thoraco-abdominal

lymph node detection and interstitial lung disease classification. While they did not look at

the detection of lung nodules, detecting other abnormal structures in the lung is very much

related, and is supportive to the idea of using DCNNs to detect lung nodules in thoracic CT

scans.

Gruetzemacher et al. [GG16] used DCNNs for the binary classification of lung nodules

rather than the detection of lung nodules in complete CT scans. More specifically, they do

not present a CADe system which has the capacity to detect lung nodules in complete CT

scans. Instead, their system only predicts whether a given volume contains a lung nodule or

not. To do so, they rely on sets of candidate nodules generated using existing CADe systems,

which can lead to evaluation problems since errors from these existing CADe systems will

propagate to the evaluation of the binary classification algorithm.

Finally, Bush [Bus05] has used DCNNs to detect malignant lung nodules in chest radio-

graphs, which is interesting since chest radiographs lead to much less radiation exposure for

the patient, and therefore are preferable. Being able to accurately detect lung nodules based

on radiographs should lead to a reduction in cancer incidences caused by medical imaging

radiation exposure. However, as mentioned in 1.2, there is a statistically significant 20.3%

relative reduction in lung cancer mortality when using low-dose helical computed tomogra-

phy scans as a screening modality compared to using chest x-ray [Kra+11], which emphasizes

the limitations of chest radiographs.
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Chapter 4

DeepCADe: A Novel Computer-Aided Detection

System for Lung Nodules in Thoracic CT Scans

In this chapter, we describe the overall architecture of DeepCADe, a novel CADe system

for the detection of lung nodules in thoracic CT scans. We discuss the preprocessing steps

that are required to construct this system, and examine the various meta-parameters that

are part of its configuration. DeepCADe is based on a Deep Convolutional Neural Network

(DCNN) which has been trained to detect lung nodules in sub-volumes of CT scans. The

DCNN is used to compute a 3D voting grid, which has the same size as the examined CT

scan, and with which the location and boundary of lung nodules are predicted. Finally, we

discuss the use of a Free-Response Receiver Operating Characteristic (FROC) curve as a

method for evaluating the performance of CADe systems.

Figure 1.2 illustrates a high-level diagram of DeepCADe. It shows how a single network is

applied to two overlapping receptive fields (sub-volumes of a CT scan), and how the output of

the network is aggregated into a single voting grid, which describes the predicted probability

of a nodule in each location in the original scan.

4.1 Preprocessing

As mentioned in Section 1.3, the scans in the LIDC-IDRI dataset have been examined by

four experienced thoracic radiologists. Their annotations are independent of each other so

one has to implement a grouping procedure, which will determine which nodule annotations

represent the same lung nodule and which are not. This is illustrated in Figure 1.4. A wrong

grouping procedure will lead to an incorrect validation of any CADe system.
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Here, we propose a simple and effective grouping procedure, which leads to a one-to-one

correspondence with the nodule-count-by-patient file that was recently released by the LIDC-

IDRI team [Tea15]. This file contains “ground-truth” information regarding the number of

nodules ≥ 3 mm that are found in each of the 1018 CT images, and is based on a subsequent

shared analysis of a group of radiologists. Algorithm 3 describes our grouping procedure.

Algorithm 3 Annotation grouping procedure

1: Let GP [s] be the number of nodules in scan s as described in the nodule-count-by-patient
file [Tea15]

2: Let A [s] be the centers of all nodule annotations made by four experienced radiologists
on scan s

3: Let AN [s] be the number of nodule annotations in scan s
4: for s = 1 to number of scans do
5: while AN [s] > GP [s] do
6: Identify all nodule annotation pairs in A [s] in which the annotations are from two

different radiologists
7: For each pair, compute the distance between the center of its constituting annota-

tions
8: Pick the pair with the smallest distance and group its constituting annotations into

a single annotation
9: Set the center of the new annotation to be the center of the union between the two

original annotations
10: Subtract AN [s] by 1
11: end while
12: end for

The authors in [Ric+11; Gol+09; MHR10; Tan+11] did not have this file available to

them at the time their work was conducted, and therefore they had no ground-truth informa-

tion with which they can validate the quality of their grouping procedures. Their grouping

procedures are based on either the distance between centers of nodules or the overlap be-

tween nodules, but in any case, they had to incorporate a distance or overlap threshold to

determine which nodule markings are grouped together and which are not. This variabil-

ity in grouping procedures poses a challenge when trying to compare the performance of

various CADe system. In order to mitigate this variability, the nodule-count-by-patient file

[Tea15] can serve as a ground truth for the number of nodules that are present in each CT
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Table 4.1: Properties of the LIDC-IDRI dataset at four agreement levels.

Agreement level totalNod maxNodPerScan avgNodPerScan

1 2670 23 2.62

2 1886 13 1.85

3 1395 12 1.37

4 908 8 0.89

scan. Consequently, we use the nodule-count-by-patient file in our work to allow for a more

accurate performance comparison in future research.

Once the grouping of nodule markings is complete, we can associate each nodule with

one of four agreement levels. Agreement level j, where 1≤j≤4, includes all those nodules

which were marked by at least j radiologists. This is illustrated in Figure 1.4. We expect

nodules at a higher agreement level to be more easily detectable by a CADe system since

they were identified by more radiologists. Table 4.1 describes, for each agreement level,

the total number of nodules in the dataset (totalNod), maximum number of nodules per

scan (maxNodPerScan), and average number of nodules per scan (avgNodPerScan). The

minimum number of nodules per scan for all agreement levels is zero.

4.2 Training a DCNN

The DCNN which is at the core of DeepCADe is trained using the backpropagation algo-

rithm [RHW88] to detect lung nodules in CT image sub-volumes of various sizes. We chose

backpropagation with a relatively small batch size, since it has been shown that many sec-

ond order methods are impractical for large neural networks and that stochastic learning is

usually much faster and often results in better solutions than batch learning [LeC+12].

The input of our proposed DCNN is composed of:

1. a sub-volume of a CT image which is of a pre-determined size, i.e. the receptive

field of the network,
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2. three values representing positional information of the sub-volume in relation

to the entire CT image and for each of the three axes, and

3. four values representing information regarding the DICOM image, namely slice

thickness (in mm), pixel spacing in each of the two in-plane axes (in mm), and

the image orientation.

The output of the DCNN is a value in the range [0, 1], representing its estimate to whether

the sub-volume contains a lung nodule or not.

The DCNN is composed of two modules. The first module is designed to extract valuable

volumetric features from the input data, and is composed of multiple volumetric convolution,

rectified linear units (ReLU), and max pooling layers. The second module of the DCNN is the

classifier. It is composed of multiple fully connected layers and non-linearity operations, and

is expected to perform the high-level reasoning of the neural network. Figure 4.1 illustrates a

simple CNN which has similar layers to those used in our experiments. Each color represents

the use of a different 3D feature kernel, and the equivalence symbol which appears after the

max pooling layer represents a flattening (reshaping) of all the values in the previous layer

into a one dimensional vector. A detailed description of these operations can be found in

Section 2.3, which includes an illustration of the limited connectivity in Convolutional Neural

Network and how it differs from the connectivity in fully-connected neural networks (Figure

2.3).

The architecture of a DCNN can be described by listing its layers in sequence from input

to output. For example, here is one DCNN architecture we explored in this thesis (denoted

as e3): 5×20×20−128C3×9×9−MP1×2×2−256C2×4×4−MP2×2×2−512C1×3×

3−512C1×3×3−MP1×2×2−2709FC−2709FC−2709FC−1FC, where, for example,

5×20×20 is the input layer (the receptive field of the DCNN), 128C3×9×9 represents a

volumetric convolution layer with 128 feature kernels of size 3×9×9, MP1×2×2 represents

a max pooling layer with a kernel of size 1×2×2, and 2709FC represents a fully-connected
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Input (sub-volume of CT image) Volumetric convolution layer (3D feature maps)

Volumetric convolution + ReLU Max pooling Linear transformation

+ ReLU

Linear transformation

+ Sigmoid

Max pooling layer Reshape of previous layer Fully-connected layer Output layer

Feature extraction Classifier

Figure 4.1: A simple CNN which has similar layers to those used in our experiments. Each
color represents the use of a different 3D feature kernel, and the equivalence symbol represents
a flattening of all the values in the previous layer into a one dimensional vector.

layer with 2709 units. Appendix A describes all the DCNN architectures we examined in

our work using this notation.

Other meta-parameters that are not included in this description are: (1) the stride value

of both the volumetric convolution and max-pooling layers, (2) the stride value used for com-

puting the voting grid, (3) the activation functions that are applied after every convolution

and fully connected layer, and (4) the zero padding size. We omitted these meta-parameters

from the string representation of a DCNN architecture in order to make the representation

more concise, and since these meta-parameters are constant across many of the experiments

we conducted in our work. Instead, Appendix A contains a paragraph which summarizes

these values for all the architectures we examined in our work, and Chapter 5 contains a

complete description for each of our experiments.

In addition to the activations of its previous layer, the first fully-connected layer of the

CNN receives 7 additional values. The first 3 values represent positional information of the

input in relation to the entire CT image and for each of the three axes; the last 4 values

represent information regarding the DICOM image, namely slice thickness (in mm), pixel
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spacing in each of the two in-plane axes (in mm), and the image orientation. The motivation

behind adding these values to the input of the first fully-connected layer was to provide the

classifier with values which might help it achieve its classification goal and make it more

robust to changes in the way CT images are acquired and to the relative location of its

input.

These additional values have not shown to benefit the overall performance of our ex-

amined DCNN architectures, but we still include them in our examined architectures to

demonstrate the capacity of DCNNs to process non-spatial input. This lack of benefit to

performance can be due to a number of reasons. First, it is possible that the number of

additional values, namely 7 additional values, is too small compared to the total number of

units in the first fully-connected layer. Second, it is possible that the scale of these 7 values

is significantly smaller compared to the scale of the other activation values of that layer.

Third, it is possible that these sources of variability are not significant in the data we used

for training and validation.

In Chapter 5, we explore how various DCNN architectures affect the performance of

DeepCADe. We examine how the depth and size of the classifier module of the DCNN affect

performance, and how multiple convolution layers can benefit the performance of DeepCADe.

We examine three kinds of activation functions which are applied after every convolution

and fully connected layer. These include the rectified linear unit (ReLU), hyperbolic tangent

(tanh), and sigmoid functions, which are illustrated in Figures 2.6, 2.7, and 2.1, respectively.

Also, we experiment with varying sizes of receptive fields, i.e. the size of the CT sub-

volume which the DCNN receives as input. By doing so, we are essentially performing an

empirical evaluation for the optimal receptive field size. Alternatively, one can determine

the receptive field size manually based on the relationship between the receptive field of the

CNN and the size of the various nodules in the dataset.
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Figure 4.2: The spatial relationship between a receptive field and a nodule bounding box.
The receptive field is marked by a green rectangle and the nodule bounding box is marked by
a red rectangle. (A) a receptive field of size 5× 20× 20 contains an entire nodule bounding
box of size 2× 15× 15. (B) a receptive field of size 5× 20× 20 is contained inside a nodule
bounding box of size 10× 30× 30.

The following statistics allow the designer to perform just that. The maximum/minimum/

average in-plane diameter of a nodule in the dataset is 76/1/15 voxels, respectively, and the

maximum/minimum/average depth (i.e. number of slices) of a nodule in the dataset is

56/1/6 voxels, respectively. This means that a receptive field of size 5×20×20, for example,

can either be contained inside a nodule or it can contain an entire nodule. Figure 4.2 illus-

trates this spatial relationship. It shows two scenarios, where a 5 × 20 × 20 receptive field

is either contained inside a nodule (Figure 4.2(A)) or is containing an entire nodule (Figure

4.2(B)). The receptive field is marked by a green rectangle and the nodule bounding box is

marked by a red rectangle.

Consequently, a DCNN that is based on such a receptive field of size 5 × 20 × 20 is

expected to learn volumetric features that are present both inside lung nodules and in their

surroundings. It is important to note that in order to preserve the original values of the

DICOM images as much as possible, no scaling was applied to the CT images of the dataset.
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The DCNN architectures that are examined in this thesis are trained using the back-

propagation algorithm, where the LIDC-IDRI dataset is used to generate the training and

validation sets. We generate these sets by using a 90/10 ratio to randomly split the CT

images of the LIDC-IDRI dataset. This leads to a training set of size 916, and a validation

set of size 102, out of the 1018 images of the dataset. Having an independent validation set

ensures that the validation results of our CADe system are good indicators for its generality

and robustness. We chose a 90/10 ratio to split the data since it allowed us to evaluate the

performance of all the examined DCNN architectures in a reasonable amount of time.

Once we identified the most promising CADe system using the 90/10 split, we perform

a 5-fold cross-validation to increase the statistical significance of our results using a 80/20

ratio to randomly split the data. This leads to a training set of size 815, and a validation

set of size 203, out of the 1018 images of the dataset.

During training, the sub-volumes are randomly extracted from the CT images of the

training set, and are normalized according to an estimate of the normal distribution of the

voxel values in the dataset. A sub-volume is considered to be a nodule instance only if at

least one of its slices contains, or is fully contained in, a complete 2D region of interest of a

nodule. Alternatively, a sub-volume is considered to be a non-nodule instance only if none

of its voxels is part of a nodule. The sampling from both the training and validation sets

is done in a balanced fashion. This means that, on average, there is a similar number of

non-nodule and nodule instances being extracted from these sets, and consequently, that our

DCNN processes a similar number of non-nodule and nodule instances during training.

The goal of the backpropagation algorithm is to find a mapping between sub-volumes

of CT images and the probability of them containing lung nodules. In other words, the

backpropagation algorithm is expected to adjust the parameters of the DCNN so that given

a previously unprocessed sub-volume of a CT scan, the network will output the value 1 if

the sub-volume is considered to be a nodule instance, and the value 0 if the sub-volume is
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considered to be a non-nodule instance. Similarly, given a batch of multiple sub-volumes of

CT scans, the network is expected to output a list of probabilities indicating whether each

of the sub-volumes is considered a nodule instance or not.

Training ends after 40 epochs of 5000 batches each, where the size of each batch is 128.

The batch size represents the number of input instances that are being processed by the

DCNN in each iteration of the backpropagation algorithm. Having a batch size of 1 leads to

a pure stochastic gradient descent algorithm since the weights of the neural network will be

updated after each processing of a single training instance. Alternatively, a batch size that

is greater than 1, but is less than the number of all possible sub-volumes in the training set,

leads to a mini-batch gradient descent algorithm.

The word epoch is commonly defined as the time it takes to process all the examples in

the training set, which in our case equals to the number of all possible sub-volumes of CT

scans in the training set. This number is very large, so we define an epoch as simply the time

it takes to process 5000 batches, where each batch contains 128 sub-volumes of CT scans.

As mentioned above, these sub-volumes are randomly extracted from the CT images of the

training set during training.

Finally, we use a fixed learning rate of 0.001. Higher learning rates were examined but

these led to significant fluctuations in the loss function. This is expected since using a higher

learning rate means that the weights of the network are adjusted more rapidly at each

iteration of the backpropagation algorithm (Chapter 2.4). As the learning rate increases,

traversing the search space, i.e. traversing the space of all possible network weights, is

becoming more similar to a random search algorithm. Lower learning rates have also been

examined, and while these resulted in a steady decrease of the loss function, the pace by

which the decrease occurred was lower.

There are two issues that commonly arise when training Deep Neural Networks (DNNs).

These are overfitting and computation time. Overfitting occurs when a statistical model
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captures patterns and regularities that are present in the training set but are not found

outside of it. As a result, once such a model is applied to a previously unprocessed instance

of the problem, it would not perform as well as it would on an instance from the training

set. It generally happens when a model is excessively complex, such as having too many

parameters relative to the number of instances in the training set.

Training DNNs is computationally expensive, and one has to take this into consideration

when deciding which size of network to use and which hardware to run it on. We executed

our experiments on the Graphics Processing Unit (GPU), either an Nvidia Tesla K80 or

a GeForce GTX 960 GPU, which significantly improved the running-time of our system

compared to only utilizing the CPU. To make this possible, we used Torch [CBM02], a

scientific computing framework with wide support for machine learning algorithms, and

Nvidia’s cuDNN [Che+14b], a GPU-accelerated library of primitives for DNNs.

4.3 Predicting the location and boundary of lung nodules

Once the training of a CNN is complete, and given a previously unprocessed three di-

mensional CT image of size D×512×512 (D∈[65, 764]), we apply the CNN multiple times

throughout the CT image using a fixed size sliding window, and compute a three dimensional

voting grid of size D×512×512 by averaging the outputs of the CNN in the various sliding

window positions. More specifically, the receptive field of the CNN is moved throughout

the CT image in an ordered fashion so that it is applied to all the voxels in the image. For

example, when the receptive field size is set to 5×20×20, the receptive field is moved 10

voxels at a time for the in-plane axes, and 1 voxel at a time for the depth axis. Whenever a

CNN is applied, its output value is added to all the entries in the voting grid that correspond

to its receptive field. Then, each entry in the voting grid is divided by the number of times

a CNN was applied to its corresponding voxel.
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This procedure is illustrated in Figure 1.2 which shows a high-level diagram of DeepCADe.

It illustrates how a single network is applied to two overlapping receptive fields (sub-volumes

of a CT scan), and how the output of the network is aggregated into a single voting grid,

which describes the predicted probability of a nodule in each location in the original scan.

Each entry in the resulting voting grid provides us with an estimate, in the range [0, 1],

to whether its corresponding voxel is part of a lung nodule. We use this voting grid, together

with two thresholds (Threshold A and Threshold B), to predict the location and boundary

of lung nodules. We do so by considering each adjacent set of entries, which have values

greater than Threshold B, and have at least one value greater than Threshold A, to represent

a predicted lung nodule.

Having a voting grid contributes to our system’s ability to detect nodules with complex

shapes. More specifically, decreasing the stride value in the voting phase of our algorithm

will lead to an increase in the number of times the network, with its respective receptive

fields, is applied for each of the entries in the voting grid. Consequently, it is expected that

there would be more variation among the values of the voting grid, and therefore the nodule

predictions, which are determined with Threshold A and Threshold B, are more likely to be

complex in shape.

This capacity might be diminished in other related work [Ric+11; Gol+09; MHR10;

Tan+11], where a spherical shape of lung nodules is usually assumed. This can cause the

system to ignore nodules of peculiar shapes such as nodules that contain a non-nodule region

within them or nodules that have a flat looking shape.

Also, this design of having a voting grid allows us to average the outputs of multiple

classifiers in a fairly straightforward way. More specifically, the same way we compute a

three dimensional voting grid of size D×512×512 by averaging the outputs of a single CNN

in the various sliding window positions, we can also use a number of different CNNs, with

possibly different receptive field sizes, to compute the same three dimensional grid. Then,
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each entry in the voting grid would be divided by the number of times any of the CNNs were

applied to its corresponding voxel. This can be viewed as a bootstrap aggregating (bagging)

algorithm which, in addition to a few other ensemble methods, is discussed in Chapter 2.5.

4.3.1 Threshold B

As mentioned above, each entry in the resulting voting grid provides us with an estimate,

in the range [0, 1], to whether its corresponding voxel is part of a lung nodule. We use

this voting grid, together with two thresholds (Threshold A and Threshold B), to predict

the location and boundary of lung nodules. We do so by considering each adjacent set of

entries, which have values greater than Threshold B, and have at least one value greater

than Threshold A, to represent a predicted lung nodule.

In Section 5.6, we explore two ways to control the size of nodule predictions our system

makes, i.e. by examining different values of Threshold B or ignoring nodule predictions that

are larger than a predefined size. Decreasing the value of Threshold B leads to an increased

size of nodule predictions made by our CADe system. This needs to be carefully controlled

and limited so that our CADe system does not produce nodule predictions that are too big.

Such nodule predictions will not be of much help to radiologists since one of the primary

goals of any CADe system is to provide its users with a compact approximation to where

lung nodules might be present. Failure to do so can undermine the radiologists’ trust in the

system.

Consequently, we assume that the value of Threshold B needs to be chosen so that

it results in an average size of nodule predictions that is similar to the average size of lung

nodules in the dataset. In Section 5.6 we discuss the dynamics between the value of Threshold

B and the nodule prediction size, and examine whether using Threshold B alone is sufficient

to control the size of the nodule predictions.

The optimal value for Threshold B is not known and is likely to vary across CT scans due

to a number of reasons. These include the scanner and scanner configuration used to generate
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the scan, and the physiology and clinical state of the person being scanned. To overcome this

uncertainty, DeepCADe can be deployed in a semi-automated fashion by allowing the user

of the system to adjust the value of Threshold B in real time and see the results for himself.

The discussion in Section 5.6 explores how the predictions of the system are affected by such

adjustments, and consequently, gives us a better understanding of how the user experience

of such a semi-automated CADe system might be.

4.3.2 Threshold A

Threshold A is the value that is used to control the sensitivity of our CADe system, and

therefore is used to compute the FROC curve of the system. This is elaborated in Section

4.4. The FROC curve allows us to better understand the performance of the CADe system,

and the FROC of the 5-fold cross validation experiment provides us a good estimate to how

well the system will perform in real time.

When deploying the CADe system, e.g. during a radiologist’s interpretation of a previ-

ously unprocessed CT image, Threshold A needs to be determined. There are two ways by

which this can be achieved, each having its pros and cons:

(1) Threshold A can be fixed to a pre-defined value based on the tradeoff between the

average sensitivity and false positive per scan values of the FROC curve. The disadvantage

of this approach is that the system is expected to produce a varying number of nodule

predictions, potentially false positives, for different unprocessed CT scans, which has the

potential to undermine the radiologist’s trust in the system. This is expected to happen

since the voting values of different CT images tend to vary, and having a fixed Threshold

A value for all images holds the risk of predicting too many nodules for one scan, and not

predicting enough for another. The advantage of this approach is that it is easy and fast to

compute.

(2) Threshold A can be computed dynamically for each CT scan to achieve a pre-defined

number of predictions. More specifically, before anything is presented to the user, the system
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will examine a range of values for Threshold A until finding one that results in a pre-

defined number of nodule predictions. As the value of Threshold A decreases, more nodule

predictions might be added to the output of the system. This approach ensures that the

user will always be presented with the same number of predictions at the start of his/her

interpretation process, and then, depending on whether the predictions turned out to be

actual nodules or not, the user can ask the system to present him/her with more nodule

predictions. This can be done by manually lowering the value of Threshold A. A disadvantage

of this approach is that it is more computationally expensive.

4.3.3 Using both Threshold A and Threshold B

Figure 4.3 illustrates how Threshold A and Threshold B are applied to a one dimensional

sequence of voting grid values to detect regions which contain lung nodules. As mentioned

above, each entry in the voting grid is an estimate, in the range [0, 1], to whether its corre-

sponding voxel in the CT scan is part of a lung nodule. We consider each adjacent set of

voting grid entries, which have values greater than Threshold B, and have at least one value

greater than Threshold A, to represent a predicted lung nodule.

In Figure 4.3, we examine a hypothetical one dimensional sequence of voting grid values

and see how changes in Threshold A and Threshold B affect the nodule predictions that

are computed from it. As expected, Figures 4.3(A-B) show that a decrease in the value of

Threshold B can lead to an increase in the size of nodule predictions, and Figures 4.3(B-C)

show that a decrease in Threshold A can lead to an increase in the number of nodules being

detected.

4.4 Performance Evaluation using a FROC Curve

A Receiver Operating Characteristic (ROC) curve is a graphical plot that illustrates the

diagnostic ability of a binary classifier system as its discrimination threshold is varied. The
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ROC curve is created by plotting the true positive rate (TPR) against the false positive

rate (FPR) at various threshold settings. The true positive rate is also known as sensitivity,

recall or probability of detection, and the false positive rate is also known as the fall-out or

probability of false alarm. More formally, given the true positive (TP), true negative (TN),

false positive (FP), and false negative (FN) values of the binary classifier, the true positive

rate (TPR) is defined as follows:

TPR =
TP

TP + FN
(4.1)

and the false positive rate (FPR) is defined as follows:

FPR =
FP

FP + TN
(4.2)

ROC analysis allows the user to select possibly optimal classifiers, i.e. classifiers which

have a TPR of 1 and a FPR of 0, and to discard suboptimal ones independently from the class

distribution. ROC analysis is related in a direct and natural way to cost/benefit analysis

of diagnostic decision making, and therefore it has been commonly used in areas such as

medicine and radiology, and is increasingly used in machine learning research.

Similarly, a Free-response Receiver Operating Characteristic (FROC) curve is a tool for

characterizing the performance of a free-response system at all decision thresholds simulta-

neously [Cha13]. A CADe system is considered to be a free-response system since its aim is

not just to predict whether a medical image contains an abnormality or not (i.e. it is not a

binary classifier), but to predict the exact location and boundary of an undefined number of

abnormalities in the image. If the former was true, a conventional ROC curve would suffice

to characterize the performance of the system. The FROC curve was first introduced in

[Mil69], where it was used to visualize the performance of a free-response task from the au-

ditory domain. Its importance for radiology applications was first recognized by [Bun+77],

and ever since it has been widely used to characterize the performance of CADe systems and

other localization tasks.
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Given Threshold A (the discrimination threshold in DeepCADe), we define the FP value

to be the number of nodule predictions, made by DeepCADe, that do not contain any voxel

of an annotated lung nodule. Also, we define the TP value to be the number of annotated

lung nodules that have been successfully detected by DeepCADe, and the FN value to be the

number of annotated lung nodules that have not been detected by DeepCADe. Given the

TP and FN values, the sensitivity (TPR) of DeepCADe can be computed using Equation

5.1.

A single FROC curve is plotted by computing, for a range of Threshold A values, the

sensitivity and FPs per scan values, and using linear interpolation to connect between the

computed points. More specifically, for each CT scan, we initialize the value of Threshold

A with the maximal value in the corresponding voting grid. Then, after computing the

sensitivity and FP values for this specific value of Threshold A, we decrease Threshold A by

0.01 which usually leads to more FPs being produced by the system. This process continues

until the number of FPs that the system produces is greater than 20. Finally, for each FP

per scan value, the sensitivity values are averaged among all the CT images in the validation

set.

The total number of CT images in the validation set assuming a 90/10 split of the LIDC-

IDRI dataset is 102, all of which are used to validate the performance of a single CNN

during its training on sub-volumes of CT scans. However, some of these images are ignored

when computing the FROC curve of the entire CADe system. This is because we can only

consider CT images that contain at least one lung nodule when performing a FROC analysis.

CT images that contain no nodules are ignored since they will always have a sensitivity of

zero, regardless of the number of FPs the system produces on them. Table 4.2 describes,

for agreement level 1 to 4, the effective number of CT images in the validation set and the

number of nodules they contain.
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Table 4.2: The effective number of CT scans in the validation set, i.e. the number of scans
which contain at least one lung nodule, and the total number of lung nodules in the validation
set, for agreement level 1 to 4.

Agreement level Effective size of validation set Number of lung nodules in the validation set

1 88 251

2 84 190

3 73 134

4 57 86

Alternatively, the average number of CT images in the validation set assuming a 80/20

split of the LIDC-IDRI dataset is 203, and the average number of CT images which con-

tain at least one nodule at agreement level 3 is 140. These values are averaged over five

complementary splits of the LIDC-IDRI dataset as part of the final 5-fold cross validation

analysis.
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Figure 4.3: An illustration of how Threshold A and Threshold B are applied to a one
dimensional sequence of voting grid values to detect regions which contain lung nodules.
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Chapter 5

Experimental Results

In this chapter, we perform a systematic study on the application of Deep Convolutional

Neural Networks (DCNNs) for the detection of lung nodules in thoracic CT scans. We

explore some of the meta-parameters that affect the performance of such models, which

include:

1. the depth of the classifier module of the DCNN, i.e. the number of fully-

connected layers the classifier is composed of,

2. the size of the classifier module of the DCNN, i.e. the number of learnable

parameters the classifier is composed of,

3. the depth and size of the feature extraction module of the DCNN, i.e. the

effect convolutional layers have on the performance of the CADe system,

4. the benefit of using a ReLU activation function compared to a sigmoid and

tanh functions,

5. the receptive field of the network, which defines the dimensions of its input,

i.e. how much of the CT scan is processed by the network in a single forward

pass,

6. two ways to control the nodule prediction size, i.e. by using a dedicated

threshold value or ignoring nodule predictions that are larger than a predefined

size, and

7. the four agreement levels, which define four sets of nodule annotations accord-

ing to the level of agreement among four experienced radiologists.
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The goal of each of the above experiments is to examine the effect of a single meta-

parameter on performance, after which that meta-parameter remains fixed for all consecu-

tive experiments. This way of exploring the meta-parameter space of the system significantly

reduces the number of experiments that needs to be conducted compared to exploring all

possible combinations of the examined meta-parameter values. Consequently, since train-

ing and evaluating the performance of a single network is computationally expensive, this

approach makes it practical to examine the wide range of meta-parameter values that are

discussed here. However, this approach carries the risk of missing out a successful combina-

tion of meta-parameter values. For example, since we are exploring the size and depth of

the network first, and the receptive field of the network second, it is possible that smaller

networks would yield better results after an increase in the size of the receptive field.

We use a Free-response Receiver Operating Characteristic (FROC) curve, as discussed in

Chapter 4.4, to evaluate the various configurations of our CADe system codenamed Deep-

CADe, and compare our most promising configuration to some previous work where the

LIDC-IDRI dataset has also been used for validation. The FROC curve illustrates the per-

formance of a free-response system at all decision thresholds simultaneously by plotting its

sensitivity (true positive rate) and FPs per scan values for a range of decision thresholds.

The sensitivity of a free-response system is defined as follows:

sensitivity =
TP

TP + FN
(5.1)

Furthermore, we examine a number of CT slice images to illustrate the overlap between

the nodule predictions made by DeepCADe and the actual annotated lung nodules. Finally,

we perform a 5-fold cross-validation on the most promising configuration of DeepCADe to

increase its statistical significance.

Appendix A contains a complete description of all the networks discussed in this chapter.
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Table 5.1: The number of fully-connected hidden layers the classifier module is composed
of, the number of units per layer, the sensitivity at 10 FPs per scan, and the average nodule
prediction size, for experiments e1, e2, e3, and e4. The total number of learnable parameters
in all four experiments is the same.

Experiment Number of hidden layers Number of units per layer Sensitivity at 10 FPs per scan Average nodule prediction size (in voxels)

e1 1 9850 63.72% 19,349

e2 2 3588 63.62% 8,497

e3 3 2709 80.59% 62,702

e4 4 2274 68.08% 17,396

5.1 Classifier Depth

As described in Chapter 4.2, our DCNN is composed of two modules, i.e. feature extraction

and classification. The first module of the DCNN is composed of multiple volumetric convo-

lution, rectified linear units (ReLU), and max pooling layers, and the second module is the

classifier which is composed of multiple fully connected layers and non-linearity operations.

Here, we examine the effect that the depth of the classifier, i.e. the number of fully-connected

layers the classifier is composed of, has on the performance of DeepCADe. To examine this,

we conducted 4 experiments (e1, e2, e3, e4) in which the classifier module is composed of 1,

2, 3, and 4 fully-connected hidden layers, respectively. We adjusted the number of units in

each hidden layer so that the total number of learnable parameters in all experiments is the

same. Table 5.1 describes the number of hidden layers the classifier module is composed of,

the number of units per layer, the sensitivity at 10 FPs per scan, and the average nodule

prediction size, for each of these four experiments.

Figure 5.1 suggests that the ideal number of fully-connected layers in the classifier is 3,

since the area under the curve for the classifier with 3 hidden layers is the largest. Adding

more layers to the classifier does not necessarily correlate with better performance. In

addition to looking at the area under the curve for the entire range of FP per scan values

(0 to 20), we can also examine smaller ranges of FP per scan values, each of which has a

specific meaning and implications.
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For example, it is reasonable to say that an end user of the system can tolerate about 4

to 6 false positives per scan and examine them manually. This is why it is common to report

the sensitivity values around this range [Ric+11; Gol+09; MHR10; Tan+11]. Having more

FPs per scan might undermine the user’s trust in the system, while having too little FPs

per scan can lead to a significant drop in sensitivity. Therefore, the area under the curve for

this range of values (between 4 to 6 FPs per scan) provides us with an estimate of how well

the system can perform in “reasonable” settings.

Alternatively, examining the range of 10 to 20 FPs per scan values shows us how well

the system can perform if the number of FPs per scan is not a major concern. This can be

the case in certain user interfaces where the user can easily increase/decrease the number of

FPs per scan and see the effect it has on the nodule predictions of the system in real-time

throughout the entire scan.

As discussed in Chapter 4.4, the FROC curve illustrates the performance of a free-

response system at all decision thresholds simultaneously, but note that the number of de-

cision thresholds that are used to plot each FROC curve varies between one experiment to

another and depends on the system in examination and the scheme by which the decision

thresholds are updated.

In addition to sensitivity, having 3 hidden layers in the classifier module of our DCNN

results in an average nodule prediction size of 62,702 voxels, while the actual average nodule

size is 6056 voxels. This means that the average nodule prediction size for experiment e3 is

roughly 10 times larger than the actual average nodule size. The predicted versus real nodule

prediction size issue is discussed in more detail in Section 5.6 which examines a number of

remedies for this issue. Having a nodule prediction size that is too large can be an issue

since the user will then need to examine the predicted area and identify the area of interest

manually, while having a nodule prediction size that is too small can be an issue since the

user might overlook it. This again depends on the way by which the output of DeepCADe
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Figure 5.1: FROC curve of 4 experiments (e1, e2, e3, e4) in which the classifier is composed
of 1, 2, 3, and 4 fully-connected hidden layers, respectively.

is presented to the user, and the degree by which the user can interact with the system.

5.2 Classifier Size

Here, we examine how changing the number of units in each of the hidden layers of the clas-

sifier affects its performance. More specifically, we conduct 4 experiments (e3 500, e3 1000,

e3 1500, e3 2709 = e3) in which the number of units in each hidden layer is 500, 1000, 1500,

and 2709, respectively. Notice that here the number of hidden layers is the same for all

experiments, i.e. 3 hidden layers, but the size of each layer varies. This means that the total

number of learnable parameters is not fixed, and is increasing with the number of units in

each hidden layer.

Figure 5.2 shows that as the number of units in each fully-connected hidden layer in-

creases, so does the performance of the CADe system. Another interesting observation is

that a larger average nodule prediction size does not always translate into better perfor-

mance. In e3 1000, the average nodule prediction size is 100,622 voxels but the FROC is

worse than the one for e3 2709 where the average nodule prediction size is 62,702 voxels.

68



Figure 5.2: FROC curve of 4 experiments (e3 500, e3 1000, e3 1500, e3 2709 = e3) in which
the number of units in each hidden layer is 500, 1000, 1500, and 2709, respectively.

Also, Figure 5.2 shows that, in the range of 2 to 6 FPs per scan, the sensitivity values

for e3 1000 and e3 2709 are relatively close to each other. But for FP per scan values that

are greater than 6, e3 2709 shows better sensitivity compared to all other experiments. This

means that it is sometimes necessary to increase the number of false positives so that the

performance gain of one experiment becomes apparent compared to others.

In experiment e3 2709, the total number of learnable parameters that the network, or

more specifically the classifier module of the network, is composed of is the highest. As

the size of the network increases, its representational power increases as well. This increase

in representational power could be one of the reasons why e3 2709 is performing better

compared to the other experiments; it might allow the network to make better use of the

feature maps that were learned during the feature extraction module of the network. Note

that the feature extraction module in all of the above experiments (e3 500, e3 1000, e3 1500,

e3 2709 = e3) is the same, so any increase in performance can only be due to the changes

made in the classifier module of the network.
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5.3 Feature Extractor Depth and Size

Here, we examine how changing the depth and size of the feature extraction module of the

DCNN affects its performance. More specifically, we conduct 4 experiments (e3 0Conv,

e3 2Conv, e3 4Conv = e3, e3 6Conv), in which the number of convolution layers is 0, 2, 4,

and 6, respectively. Figure 5.3 shows the FROC of these experiments.

Similarly to the FROC curve of experiments e3 1000 and e3 2709 in Figure 5.2, Figure

5.3 also shows a point in the FROC curve of experiments e3 2Conv and e3 4Conv, where

the gap between the two becomes more significant. This branching occurs at around 2 false

positive per scan, after which the performance of e3 4Conv outperforms that of e3 2Conv.

The addition of convolution layers has been proposed to improve the performance of

DCNNs due to two main reasons [BCV13]. First, deep architectures promote the re-use

of features, which means that the number of paths from input to output, i.e. the number

of ways to re-use the features learned by the network, grows exponentially with its depth.

Second, deep architectures can potentially lead to progressively more abstract features at

higher layers of representations. It is possible that the addition of 2 convolution layers to

e3 2Conv is one of the reasons for the increase in performance of e3 4Conv compared to

e3 2Conv.

However, e3 6Conv, which is composed of 2 additional convolution layers, shows reduced

performance compared to e3 4Conv regardless of the number of FPs per scan. This means

that the addition of convolution layers to the feature extraction module of the DCNN does

not always correlate with better performance on the validation set. In other words, it

means that the increase in the number of learnable parameters, and therefore the increase

in representational power, does not necessarily leads to better performance on the validation

set. This can be a sign of overffiting, where the neural network has learned patterns and

regularities that are found in the training data but that are not related to the task at hand.
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Figure 5.3: FROC curve of 4 experiments (e3 0Conv, e3 2Conv, e3 4Conv = e3, e3 6Conv)
in which the number of convolution layers is 0, 2, 4, and 6, respectively.

In experiment e3 0Conv, the feature extraction module of the DCNN is removed, i.e. no

convolution layers are used. Consequently, the classifier is being fed with the raw CT image

values that are in its receptive field. e3 0Conv produces nodule predictions that are very

large, which causes the system to crash due to an out of memory error. More specifically,

since the nodule predictions it produces are so large, there is not enough memory to store

their voxel indices, which is required to determine whether it hits an actual nodule or not.

5.4 Activation Functions

Here, we examine how using different activation functions affects the performance of the

CADe system. More specifically, we conduct 3 experiments (e3 sig, e3 tanh, e3 relu = e3)

in which the activation function being used is Sigmoid, Hyperbolic Tangent, and ReLU, re-

spectively. These activation functions are applied after every convolution and fully-connected

layer on each of their constituting nodes. Figure 5.4 shows the results of these experiments.

While the FROC curve of e3 tanh is comparable to e3 relu, the average nodule prediction

size of e3 tanh is significantly larger compared to the one produced by e3 relu. This makes
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Figure 5.4: FROC curve of 3 experiments (e3 sig, e3 tanh, e3 relu = e3) in which the
activation function being used is Sigmoid, Hyperbolic Tangent, and ReLU, respectively.

the use of the rectified linear unit activation function preferable to the hyperbolic tangent

function. Also, similarly to e3 0Conv, the system has crashed due to an out of memory error

when applying the sigmoid function as an activation function (e3 sig). This again is due to

an average nodule prediction size that is too large.

The advantage of using non-saturated activation functions such as ReLU has been sug-

gested to be due to their capacity to solve the so called vanishing gradient problem and to

accelerate the convergence speed of the learning algorithm [Xu+15]. The vanishing gradi-

ent problem can occur when training certain neural networks with gradient based methods

such as backpropagation. As discussed in Chapter 2.4, gradient based methods learn a pa-

rameter’s value by understanding how a small change in the parameter’s value will affect

the network’s output. If a change in the parameter’s value causes very small change in the

network’s output, the network simply can not learn the parameter effectively, which is a

problem.

Saturated activation functions such as sigmoid or hyperbolic tangent map their input into

a very small output range in a very non-linear fashion. As a result, there are large regions of
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the input space which are mapped to an extremely small range. In these regions of the input

space, even a large change in the input will produce a small change in the output, hence the

gradient is small. This gets even worse as the number of layers in the architecture increases.

In contrast, non-saturated activation functions such as ReLU do not have this property and

therefore are better suited for training deep neural networks.

5.5 Receptive field

Implementing a neural network which processes an entire CT scan in a single forward pass

is impractical given the computational resources we have available at our disposal. Having a

significantly smaller receptive field and taking a sliding window approach is one way to over-

come this limitation. We examine how the size of the receptive field affects the performance

of the CADe system. The receptive field of the network defines the 3D region of the CT scan

which is being processed by the network. Larger receptive fields allow for more context to

be processed by the network, so for example proximity of nodule predictions to more distant

organs can be taken into consideration by networks which have larger receptive fields.

As it turns out, the receptive field has a significant effect on the performance of Deep-

CADe. Figure 5.5 shows 5 experiments (e3 r20 = e3, e3 r40, e3 r60, e3 r80, e3 r60.10) in

which the receptive field dimensions are 20×20×5, 40×40×5, 60×60×5, 80×80×5, and

60× 60× 10, respectively. It shows that using a receptive field of size 60× 60× 5 leads to an

outstanding improvement in sensitivity compared to using a receptive field of 20 × 20 × 5.

More specifically, assuming the system is configured to allow 5 false positives (FPs) per scan,

e3 r60 produces an absolute 25% improvement in sensitivity compared to e3 r20. Alterna-

tively, assuming 10 or 20 false positives per scan, e3 r60 produces an absolute 15.6% or 9%

improvement in sensitivity compared to e3 r20.

We hypothesize this positive effect on results to be due to the network’s capacity to

process a larger region of the CT scan at a time, and therefore, have a larger context to
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work with. For example, a larger receptive field may allow the network to consider relative

distances of the nodules it predicts to a larger number of region of interests such as the wall of

the lungs, blood vessels, or the heart. Additionally, a larger receptive field might compensate

for the fact that DeepCADe does not include any additional lung segmentation procedure,

and therefore, having a larger context allows it to explicitly determine the location of the

nodule predictions in relation to the lung walls.

While this hypothesis explains the improved performance of e3 r60 compared to e3 r20

and e3 r40, it does not explain why we see a decrease in performance with e3 r80 and

e3 r60.10 which have a larger receptive field compared to e3 r60. Having a larger receptive

field, i.e. increasing the dimensionality of the input, increases the likelihood of overfitting

and therefore can lead to this observed decrease in performance on the validation set. More

specifically, having a larger receptive field increases the capacity of the classifier to find

patterns and regularities that are found in the training set, but that are not useful for the

general case as represented by the validation set.

Additionally, Figure 5.5 shows that e3 r60 produces nodule predictions that are, on

average, significantly smaller than the ones produced by e3 r40 without any significant loss

in sensitivity. More specifically, e3 r60 produces an average nodule prediction size of 17,248

voxels which is about four times smaller than the average prediction size of e3 r40, and is

about three times larger than the average nodule size of 6,056 voxels. e3 r80 has even better

performance in this regard, and is able to produce an average nodule prediction of 3,365

voxels, which is nearly half of the average nodule size.

Having a CADe system that produces nodule predictions that are as compact as possible

is crucial for its applicability in real world scenarios. Having nodule predictions that are too

big will not be very helpful to radiologists since they will then have to examine the over-sized

predicted regions and look for abnormalities themselves. The issue of prediction compactness

is discussed in more detail in Section 5.6 where we examine two approaches by which nodule
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Figure 5.5: FROC curve of 5 experiments (e3 r20 = e3, e3 r40, e3 r60, e3 r80, e3 r60.10)
in which the receptive field dimensions is 20× 20× 5, 40× 40× 5, 60× 60× 5, 80× 80× 5,
and 60× 60× 10, respectively.

predictions can be controlled. In addition, Section 5.10 includes a number of CT slice images

to illustrate the overlap between annotated lung nodules and nodule predictions.

The maximum/minimum/average in-plane diameter of a lung nodule in the dataset is

76/1/15.5 pixels, respectively, and the maximum/minimum/average number of slices a nod-

ule is composed of is 56/1/6, respectively. So choosing the ideal receptive field is not clear,

especially since no image rescaling has been performed. The experiments in this section

make it more clear what the receptive field of the network should be, and support the idea

of using a three dimensional receptive field. We hypothesize that using a three dimensional

receptive field is successful due to the fact that lung nodules are three dimensional objects,

and having a receptive field that captures multiple image slices at a time allows the DCNN to

extract volumetric features that can be beneficial to the successful detection of lung nodules.
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5.6 Controlling the nodule prediction size

Here we examine two ways by which the nodule prediction size can be controlled, namely us-

ing Threshold B and ignoring nodule predictions that are larger than a predefined size. More

specifically, we conduct 4 experiments (e3 r60 t0.5, e3 r60 t0.4, e3 r60 t0.3, e3 r60 t0.3 limit)

in which the value of Threshold B is 0.5, 0.4, 0.3, and 0.3, respectively, and where the last

experiment is the only one that ignores nodule predictions that are larger than 234,436 voxels

(a size that is double the maximal annotated nodule size of 117,218 voxels).

Figure 5.6 shows the results of these experiments. It shows that as the value of Threshold

B increases, the average size of nodule predictions decreases and so does the sensitivity of

the system, especially in the range of 0 to 10 FPs per scan. This makes sense since as the

value of Threshold B increases, the nodule predictions become smaller and are less likely to

hit a voxel that belongs to an annotated lung nodule.

In addition, and somewhat surprisingly, having a limit on the nodule prediction size

actually increases the average prediction size. This can be explained as follows. Since there

is a limit on the number of voxels a nodule prediction can contain, an over-the-limit nodule

prediction that would otherwise be considered a single nodule will now be considered as

several smaller nodule predictions. Consequently, assuming this nodule prediction is a FP,

the number of FPs can potentially increase faster than it would have without the limit, and

as a result cause the FROC computation to stop earlier, missing nodule predictions that

would otherwise be added to the average. These nodule predictions can be of small size, and

therefore missing them would lead to an increase in the average nodule prediction size.

5.7 Agreement level

The agreement level of a lung nodule defines the number of radiologists who made a nodule

annotation which overlaps it. Nodules at agreement level j, where 1≤j≤4, include all those
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Figure 5.6: FROC curve of 4 experiments (e3 r60 t0.5, e3 r60 t0.4, e3 r60 t0.3,
e3 r60 t0.3 limit) in which the value of Threshold B is 0.5, 0.4, 0.3, and 0.3, respectively,
and where the last experiment is the only one that ignores nodule predictions that are larger
than 234,436 voxels.

nodules which were marked by at least j radiologists. We expect nodules at a higher agree-

ment level to be more easily detectable by an automated system since these nodules were

identified by more radiologists and therefore are assumed to have clearer boundaries.

Figure 5.7 illustrates the FROC curve of DeepCADe using e3 r60 t0.3 in four different

configurations, one for each of the four agreement levels. Examining agreement level 1 to

3, Figure 5.7 shows that our system performs better on lung nodules that are at higher

agreement levels, which is reasonable since these nodules are expected to be more easily

detectable.

However, Figure 5.7 shows a decline in performance when considering only those lung

nodules which have been annotated by all four radiologists. In this case, the classifier assumes

that all nodules at agreement level 1 to 3 are not nodules at all. In other words, the classifier

is required to distinguish between nodules at agreement level 4 and the rest of the nodules.

This can be very challenging, especially when discerning between nodules at agreement

level 4 and 3, since these might look very similar and can only be successfully classified by

77



Figure 5.7: FROC curves of DeepCADe using e3 r60 t0.3 for nodules in the validation set
at four agreement levels.

experienced radiologists. Consequently, there is a decline in performance when considering

nodules at agreement level 4.

5.8 Cross-Validation

Cross-Validation is a model validation technique for assessing how accurately a predictive

model will generalize to an independent data set [Koh+95]. One round of cross-validation

involves partitioning a sample of data into two complementary subsets, performing the anal-

ysis on one subset (called the training set), and validating the analysis on the other subset

(called the validation set). In k-fold cross-validation, k rounds of cross-validation are per-

formed using complementary partitions, and the validation results are averaged over the

rounds. This means that each observation is used for validation exactly once.

Figure 5.8 shows the 5-fold cross validation FROC curves of DeepCADe using e3 r80 with

Threshold B of 0.4 and for nodules at agreement level 3. It shows that, on average, e3 r80

achieves a sensitivity of 89.6% with 4 FPs per scan, or a sensitivity of 92.8% with 10 FPs

per scan. Moreover, while the average size of nodules at agreement level 3 is 6,427 voxels,

78



Figure 5.8: The 5-fold cross validation FROC curves of DeepCADe using e3 r80 with Thresh-
old B of 0.4 and for nodules at agreement level 3.

the average nodule prediction size, made by e3 r80, is 30,113 voxels. This means that, on

average, e3 r80 produces nodule predictions that are 4.7 times larger than the average size

of nodule annotations. This is not far from the ideal case where there is a perfect match

between predicted and annotated lung nodules, and where any false positive is of minimal

size.

Figure 5.8 also shows that the performance of the system is affected by the selection of

the complementary training and validation sets. To better understand this variability in

performance, Figure 5.9 illustrates the average 5-fold cross validation FROC curve with 1

standard deviation error bars. The standard deviation varies depending on the number of

false positives per scan, but in general its value is roughly 3%. This provides us with an

estimate to how much the results we report in this work are attributed to the selection of

the complementary training and validation sets.
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Figure 5.9: The average 5-fold cross validation FROC curve of DeepCADe using e3 r80 with
Threshold B of 0.4 and for nodules at agreement level 3. Displays error bars with 1 standard
deviation

5.9 Performance Comparison with Other Work

We compare our results to those obtained in [Ric+11; Gol+09; MHR10; Tan+11] where

the LIDC-IDRI dataset has also been used for validation. Table 5.2 describes the number

of true positives in relation to the number of nodules in the validation set, sensitivity, and

FPs per scan values of our CADe system (e3 r80) compared to four other studies. The

CADe systems described in [Gol+09; Tan+11] were validated on an independent validation

set, while the CADe systems described in [Ric+11] and [MHR10] were validated using a

2-fold and a 7-fold cross-validation, respectively. As mentioned above, our CADe system is

validated using 5-fold cross-validation.

Our results show a 2.1% improvement in sensitivity compared to the leading result in

other studies, while leaving the average number of false positive per scan fixed to 4. Even

when considering the 3% standard deviation estimate, which is shown in Figure 5.9 and is

attributed to the selection of the complementary training and validation sets, DeepCADe
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Table 5.2: Summary of results for five CADe systems.

Study True positives Sensitivity FP per scan Agreement level

DeepCADe 250/279 89.6% 4 3

Tan et al. [Tan+11] 70/80 87.5% 4 4

Messay et al. [MHR10] 118/143 82.7% 3 1

Golosio et al. [Gol+09] 30/38 79% 4 4

Riccardi et al. [Ric+11] 83/117 71% 6.5 4

demonstrates higher sensitivity compared to the last three studies in Table 5.2, and is showing

comparable performance to Tan et al. [Tan+11]. It would have been more fair to compare

the results of these studies if they all used the same training and validation sets, or if at

least they all reported an estimate to how sensitive their systems are to the selection of the

training and validation sets.

In addition to the increase in sensitivity, DeepCADe is validated on a significantly larger

number of lung nodules compared to other studies. More specifically, it is validated on 279

lung nodules, while other studies are validated on between 38 and 143 lung nodules. This

increases the variation in the appearance of the various nodules in the validation set, and

therefore makes their detection by a CADe system more challenging.

The results of the 5-fold cross validation assume a 80/20 division of the 1018 images in the

LIDC-IDRI dataset in order to create the training and validation sets. In contrast, all other

experiments described in this chapter assume a 90/10 split of the dataset. As in the case of

exploring one meta-parameter value at a time, this is done due to the high computational

demands, which are required to train the weights and evaluate the performance of a single

network.
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5.10 Visualizing the annotated nodules and nodule predictions

Here, we visualize a number of CT slice images which illustrates the overlap between lung

nodules at agreement level 3 (i.e. nodules that were annotated by at least 3 radiologists)

and nodule predictions made by e3 r80. These images are extracted from the validation set,

which means they have not been processed by the network during its training.

Figures 5.10 and 5.11 illustrate a number of true positive predictions made by e3 r80.

The nodule predictions are marked by a red polygon which is composed of right angles only,

and the annotated nodules are marked by a green boundary. It shows that while some

nodule predictions are larger than their corresponding annotations, others are very close to

the boundary of the annotated nodules. As mentioned in Section 5.5, achieving compact

predictions is essential for incorporating CADe systems in the workflow of radiologists since

it would prevent them from having to manually scan the predicted areas made by the CADe

system, and therefore help gain their trust in the system.

The nodule annotations shown in Figures 5.10 and 5.11 have a wide range of sizes and

locations within the lungs, and while some are quite large and visually clear 5.10, others are

very small and hard to detect 5.11 which makes them prone to be overlooked by radiologists.

In contrast, Figure 5.12 illustrates two lung nodules, which were annotated by at least three

radiologists but were not detected by e3 r80. These nodules are indeed very small and hard

to detect.

Finally, Figure 5.13 illustrates a number of false positive predictions made by e3 r80.

These are nodule predictions that are made by DeepCADe but are false. Having a low

number of false positive predictions per scan is also crucial since otherwise the user of the

CADe system will have to manually examine many false predictions and therefore lose its

trust in the system.
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Figure 5.10: A number of true positive predictions made by e3 r80. The nodule predictions
are marked by a red polygon which is composed of right angles only, and the annotated
nodules are marked by a green boundary.
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Figure 5.11: A number of true positive predictions made by e3 r80. The nodule predictions
are marked by a red polygon which is composed of right angles only, and the annotated
nodules are marked by a green boundary.

84



Figure 5.12: Two lung nodules which were annotated by at least three radiologists but were
not detected by e3 r80. The annotated nodules are marked by a green boundary.
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Figure 5.13: A number of false positive predictions made by e3 r80. The nodule predictions
are marked by a red polygon which is composed of right angles only.
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Chapter 6

Conclusion and Future Work

Early detection of lung nodules in thoracic Computed Tomography (CT) scans is of great

importance for the successful diagnosis and treatment of lung cancer. Due to improvements

in screening technologies, and an increased demand for their use, radiologists are required

to analyze an ever increasing amount of image data, which can affect the quality of their

diagnoses. Computer-Aided Detection (CADe) systems are designed to assist radiologists in

this endeavor.

In this PhD thesis, we presented DeepCADe, a novel CADe system for the detection of

lung nodules in thoracic CT scans which produces improved results compared to the state-

of-the-art in this field of research. DeepCADe is based on (1) the publicly available Lung

Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) database,

which contains 1018 thoracic CT scans with nodules of different shape and size, and (2) a

Deep Convolutional Neural Network (DCNN), which is trained using the backpropagation

algorithm to extract valuable volumetric features from the input data and detect lung nodules

in sub-volumes of CT images.

Considering only lung nodules that have been annotated by at least three radiologists,

DeepCADe achieves a 2.1% improvement in sensitivity (true positive rate) over the best result

in the current published scientific literature, assuming an equal number of false positives

(FPs) per scan. More specifically, it achieves a sensitivity (true positive rate) of 89.6% with

4 FPs per scan, or a sensitivity of 92.8% with 10 FPs per scan. Furthermore, DeepCADe was

validated on a larger number of lung nodules compared to other studies. This increases the

variation in the appearance of lung nodules and therefore makes their detection by a CADe

system more challenging. More specifically, DeepCADe was validated on 279 annotated lung
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nodules, while other studies were validated on between 38 and 143 annotated lung nodules.

The practical meaning of this depends on the quality of data the system has been vali-

dated on, which can be measured in terms of the variability it encompasses. For example, if

the validation set contains images that were acquired by various manufacturers and covers

a range of pathologies, a 2.1% increase in performance might be significant and mean that

the system has gained the capacity to handle a new set of input examples; however, if no

such variability exists in the validation set, an increase of 2.1% might not be as significant.

Additional data is required to assess the variability in the validation set.

We explored some of the meta parameters that affect the performance of DeepCADe and

identified which ones have the most impact. The meta parameters we explored include (1) the

DCNN architecture, i.e. its structure in terms of convolution layers, fully-connected layers,

pooling layers, and activation functions, (2) the receptive field of the network, which defines

the dimensions of its input, i.e. how much of the CT scan is processed by the network in a

single forward pass, (3) a threshold value, which affects the sliding window algorithm with

which the network is used to detect nodules in complete CT scans, and (4) the agreement

level, which is used to interpret the independent nodule annotations of four experienced

radiologists.

The receptive field of the network turned out to have a significant effect on the perfor-

mance of DeepCADe. As shown in Figure 5.5, we learned that using a receptive field of size

60 × 60 × 5 (e3 r60) leads to a significant improvement in sensitivity compared to using a

receptive field of 20× 20× 5 (e3 r20). More specifically, assuming the system is configured

to allow 5 false positives (FPs) per scan, e3 r60 produces an absolute 25% improvement in

sensitivity compared to e3 r20. We hypothesize this positive effect on results to be due to

the network’s capacity to process a larger region of the CT scan at a time, and therefore,

have a larger context to work with.
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In summary, the key contributions of this work are:

1. DeepCADe, a novel CADe system for the detection of lung nodules in CT

scans, which is based on a deep learning architecture and a sliding window

algorithm.

2. state-of-the-art results on the largest publicly available dataset of annotated

lung nodules in thoracic CT scans, namely the LIDC-IDRI dataset.

3. demonstrating that DCNNs, which have shown tremendous results in other

computer vision tasks, can also be successfully applied to the detection of lung

nodules in CT scans.

4. evidence that volumetric features, which are trained through the backpropa-

gation algorithm, are more useful to a classifier compared to hand-engineered

ones.

5. an in-depth discussion on the meta-parameter space of DeepCADe, and of

DCNNs in general.

6. a single comprehensive text on the detection of lung nodules in thoracic CT

scans, which is accessible to both computer scientists and radiologists.

In order for DeepCADe and other CADe systems to become fully integrated into the daily

practice of radiologists further research is required. Here, we identify a number of challenges

and research avenues which are of great importance for making this transformation a reality.

First, while the LIDC-IDRI dataset has been very instrumental for us and other research

groups in designing and validating our CADe systems, it is still limited in terms of the

number of images it contains and the degree by which these images vary from one another.

Having positive results on the LIDC-IDRI dataset, even if such results have been produced

using cross-validation, still does not guarantee the system will perform the same in real world
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settings. The variability of CT images that radiologists encounter in their daily practice is

significant, and any CADe system, which aims at becoming fully integrated into radiology

practice, must take this into consideration. The sources for this variability range from the

use of different CT scanners to various clinical states of the lungs.

Having access to annotated datasets that are larger and that account for this variability

would indeed help in overcoming this issue. However, this would require the medical field to

be more open to share its resources while still performing its important duty of protecting

the privacy of patients. Alternatively, augmenting the data that is already publicly available

is also expected to be of great importance. Data augmentation has already shown to be

beneficial in other computer vision tasks [KSH12; CMS12; NHH15; Che+14a; LSD15], and

finding creative ways to augment annotated CT scans is expected to have a similar effect

towards making CADe systems more robust to variations in CT scans.

Second, while DeepCADe can detect the location of multiple lung nodules without pre-

dicting excessive amounts of false positives, and while it does provide the user with a rough

estimate to where the boundaries of these nodule predictions are, DeepCADe does not out-

put the exact boundaries of nodule predictions. Recent advances in the field of semantic

segmentation [NHH15; Che+14a; LSD15] can prove to be effective here. These include the

use of Fully Convolutional Networks (FCNs) to do the mapping between images and their

corresponding masks. However, FCNs are very demanding in terms of computation so apply-

ing them to complete CT scans is not feasible with modern computer hardware. DeepCADe

can assist here by accurately detecting the location of lung nodules, which can then be used

by a FCN to perform the segmentation. This way the input for the FCN is of a manageable

size, and the entire computation from image to exact segmentation of all detected nodules

can be done in a reasonable amount of time.

Finally, the meta-parameters of CADe systems have shown to have a significant impact

on the performance of such systems, and therefore finding the optimal set of meta-parameter
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values is of utmost importance. One approach of achieving that, which we embraced in this

work, is to do so manually. While this approach can be effective, it is very time-consuming

and has the danger of having a designer bias towards known architectures. Alternatively,

finding the optimal set of meta-parameters can be automated. Further research should

be focused on this. Evolutionary algorithms are one approach that comes to mind when

thinking about this problem [Rea+17], but one must remember that evaluating a single set

of meta-parameters can be very computationally expensive, and therefore might not be an

ideal choice for a fitness function which is executed many times as part of the evolutionary

process.

While Deep Convolutional Neural Networks have shown tremendous results in other

computer vision tasks, our work demonstrates that these powerful machine learning models

can also be successfully applied to the detection of lung nodules in thoracic CT scans. Given

a sufficient amount of high quality data, both in terms of quantity and variability, CADe

systems such as DeepCADe can help transform radiology into a more accurate and accessible

medical practice, and make use of the enormous amounts of annotated medical imaging data

that is being generated everyday by radiologists.
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Appendix A

Network Structures

The architecture of a DCNN can be described by listing its layers in sequence from input

to output. For example, here is a DCNN architecture we explored in this thesis (denoted as

e3): 5×20×20−128C3×9×9−MP1×2×2−256C2×4×4−MP2×2×2−512C1×3×

3−512C1×3×3−MP1×2×2−2709FC−2709FC−2709FC−1FC, where, for example,

5×20×20 is the input layer (the receptive field of the DCNN), 128C3×9×9 represents a

volumetric convolution layer with 128 feature kernels of size 3×9×9, MP1×2×2 represents

a max pooling layer with a kernel of size 1×2×2, and 2709FC represents a fully-connected

layer with 2709 units.

Other meta-parameters that are not included in this description are (1) the stride value

of both the volumetric convolution and max-pooling layers, which is set to either 1 or 2 in

all the experiments we conducted, (2) the stride value used for computing the voting grid,

which is set to 1 for the depth axis of a CT scan and 10 for the in-plane axes of a scan,

(3) the activation functions that are applied after every convolutional and fully connected

layer, and (4) the zero padding size. These meta-parameters are determined so to ensure

that the number of units at the beginning of the classifier module of the CNN is exactly

2,055. Ensuring an equal number of inputs to the classifier module of the CNN allows for a

more fair comparison between the various experiments we performed. Also, in addition to

the activations of its previous layer, the first fully-connected layer of every CNN receives 7

additional values which represent positional information of the receptive field in relation to

the entire CT image and information regarding the DICOM image.
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Here are all the network architectures examined in this thesis:

e1:

5× 20× 20− 128C3× 9×9−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1× 3×

3− 512C1× 3× 3−MP1× 2× 2− 9850FC − 1FC

e2:

5× 20× 20− 128C3× 9×9−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1× 3×

3− 512C1× 3× 3−MP1× 2× 2− 3588− 3588− 1FC

e3 = e3 2709 = e3 4Conv = e3 relu = e3 r20:

5× 20× 20− 128C3× 9×9−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1× 3×

3− 512C1× 3× 3−MP1× 2× 2− 2709FC − 2709FC − 2709FC − 1FC

e4:

5× 20× 20− 128C3× 9×9−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1× 3×

3− 512C1× 3× 3−MP1× 2× 2− 2274FC − 2274FC − 2274FC − 2274FC − 1FC

e3 500:

5× 20× 20− 128C3× 9×9−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1× 3×

3− 512C1× 3× 3−MP1× 2× 2− 500FC − 500FC − 500FC − 1FC
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e3 1000:

5× 20× 20− 128C3× 9×9−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1× 3×

3− 512C1× 3× 3−MP1× 2× 2− 1000FC − 1000FC − 1000FC − 1FC

e3 1500:

5× 20× 20− 128C3× 9×9−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1× 3×

3− 512C1× 3× 3−MP1× 2× 2− 1500FC − 1500FC − 1500FC − 1FC

e3 0Conv:

5× 20× 20− 2709FC − 2709FC − 2709FC − 1FC

e3 2Conv:

5× 20 × 20− 128C3× 9×9−MP1× 2× 2− 512C2× 4× 4−MP2× 2× 2− 2709FC −

2709FC − 2709FC − 1FC

e3 6Conv:

5× 20× 20− 128C3× 9×9−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1× 3×

3− 512C1× 3× 3−MP1× 2× 2− 512C1× 3× 3−MP1× 2× 2− 512C1× 3× 3−MP1×

2× 2− 2709FC − 2709FC − 2709FC − 1FC
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e3 sig:

Same as e3 except that all activation functions are set to a sigmoid function instead of a

ReLU function.

e3 tanh:

Same as e3 except that all activation functions are set a hyperbolic tangent function instead

of a ReLU function.

e3 r40:

5× 40× 40− 128C3× 12×12−MP1× 2× 2− 256C2× 7× 7−MP2× 2× 2− 512C1×

3× 3− 512C1× 3× 3−MP1× 2× 2− 2709FC − 2709FC − 2709FC − 1FC

e3 r60:

5× 60× 60− 128C3× 10×10−MP1× 2× 2− 256C2× 6× 6−MP2× 2× 2− 512C1×

3× 3− 512C1× 3× 3−MP1× 2× 2− 2709FC − 2709FC − 2709FC − 1FC

e3 r80:

5× 80× 80− 128C3× 10×10−MP1× 2× 2− 256C2× 4× 4−MP2× 2× 2− 512C1×

3× 3− 512C1× 3× 3−MP1× 2× 2− 2709FC − 2709FC − 2709FC − 1FC

95



e3 r60.10:

10× 60× 60− 128C4× 10×10−MP2× 2× 2− 256C2× 6× 6−MP2× 2× 2− 512C1×

3× 3− 512C1× 3× 3−MP1× 2× 2− 2709FC − 2709FC − 2709FC − 1FC
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