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Abstract

In this thesis, we studied a two-component nonparametric mixture model with a stochastic

dominance constraint, which is a model that arises naturally from genetic studies. For this

model, we proposed and studied nonparametric estimation based on cumulative distribution

functions (c.d.f.s) and maximum likelihood estimation (MLE) through multinomial approxi-

mation. In order to incorporate the stochastic dominance constraint, we introduced a semi-

parametric model structure for which we proposed and investigated both MLE and minimum

Hellinger distance estimation (MHDE). We also proposed a hypothesis testing to test the valid-

ity of the semiparametric model. For the proposed methods, we investigated their asymptotic

properties such as consistency and asymptotic normality theoretically and through simulation

studies. Our numerical studies demonstrated that (1) all the proposed estimation methods

work well; (2) the semiparametric model structure incorporates nicely the stochastic domi-

nance constraint and thus the MLE and MHDE based on it are superior in terms of efficiency

than the two estimation techniques that do not use this model structure; (3) the MHDE is

much more robust than the MLE. To demonstrate the use of these methods, we applied them

to several real data including publicly available grain data (Smith et al., 1986) and malaria

data (Vonatsou et al., 1998).
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Chapter 1

Introduction

In this chapter, we give an introduction to the model under our consideration and the research

presented in this thesis. In Section 1.1, we present a literature review of varying mixture mod-

els. In Section 1.2, we introduce the two-component mixture model under our consideration

and present some motivating examples. Finally in Section 1.3 we lay out the structure of the

thesis.

1.1 Review of mixture models

Statistical modeling is a very important and critical tool to understand many biological prob-

lems and human diseases. Particularly, mixture models arise frequently in this area due to

the nature of the problems. A mixture model is a probabilistic model which represents the

presence of subpopulations and which subpopulation each individual observation belongs to

is not identified. In this thesis, I will focus on a two-component mixture model with stochastic

dominance constraint on the two mixing components.

The m-component mixture model has the probability distribution function (p.d.f.)
m

∑
j=1

π j f j(x), x ∈ Rk, (1.1)

where f j is the j-th component p.d.f., π j is the mixing proportion associated with f j, and

the mixing proportion vector π = (π1, . . . ,πm)
> satisfies ∑

m
j=1 π j = 1. When m is unknown,

there are various articles that discuss the selection of m; see, for example, Roeder (1994),

McLachlan and Peel (2000), Chen et al. (2001 & 2004) and Chen and Li (2009). We assume

throughout this proposal that m is fixed and known to be two. Note that model (1.1) is generally

unidentifiable if no restrictions are placed on f j, simply due to the fact that f j alone could be

another mixture of several distributions.
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When all components f j’s belong to a parametric family, which means that the space of

unknown parameters is reduced to a Euclidean set, then (1.1) becomes parametric mixture

model for which an extensive literature is available. The monographs of parametric mixture

models include Everitt and Hand (1981), Lindsay (1995), Titterington et al. (1985), McLach-

lan and Basford (1988), Böhning (1999), McLachlan and Peel (2000) and Frühwirth-Schnatter

(2006) among others. When a parametric model is assumed for the components distributions,

likelihood theory applies and the EM algorithm typically supplies the computations. Some of

the well-known methods that have been proposed include maximum likelihood (Cohen, 1967;

Lindsay, 1983a&b; Redner and Walker, 1984), minimum chi-square (Day, 1969), method of

moments (Lindsay and Basak, 1993), Bayesian approaches (Diebolt and Robert, 1994; Es-

cobar and West, 1995) and techniques based on moment generating function (Quandt and

Ramsey, 1978).

In practice, however, the choice of parametric family is difficult when little is known

about sub-populations. Many researchers have been trying to relax parametric assumptions

on mixing components, and as a result, several important semiparametric mixture models

were proposed and investigated in the last decade. Cruz-Medina and Hettmansperger (2004),

Bordes et al. (2006b), Bordes et al. (2007) and Hunter et al. (2007) considered a semi-

parametric location-shifted mixture model for univariate case. Song et al. (2010) studied

a two-component mixture model with one component specified as normal up to a scale pa-

rameter. Robin et al. (2007) considered a two-component mixture model of which the first

component is known and the second is completely unknown, while Bordes et al. (2006a) and

Bordes and Vandekerkhove (2010) considered a similar model where the second component

is known to be symmetric. Leung and Qin (2006) adopted the ‘exponential tilt’ model for

two-component bivariate case with the assumption of within-individual independent and iden-

tically distributed (i.i.d.) structure (i.e. conditionally independent repeated measurements),

while Hammel (2010) extended their results to m-component mixture and conditionally in-

2



dependent but different marginal distributions for coordinates. Zou et al. (2002) employed

the exponential tilt model for multi independent samples. Qin (1999), Zhang (2002, 2006)

and Zhang (2005) considered the exponential tilt in two-component mixture model in a differ-

ent direction when training samples are available. Deng et al. (2009) proposed an improved

goodness of fit test for the model discussed in Zhang (1999). Qin and Liang (2011) consid-

ered testing the mixing proportion of a two-sample mixture model where a sample is available

from the first component and another sample is available from the mixture, and Di et al. (2017)

discussed testing the homogeneity of a similar model. Chen and Wu (2013) considered a two-

sample semiparametric model with exponential tilt for classifying leukemia patients based on

gene expression levels. Li, Liu and Qin (2017) discussed a different semiparametric mixture

model with the same exponential tilt but known mixing proportion.

Comparatively, nonparametric mixture models have been given less attention due to the

fact that they are reputed nonparametrically nonidentifiable. For nonparametric mixture with-

out training data, methods for estimating mixing proportions have been developed specifically

for each particular form of model. Assuming within-individual i.i.d. structure, Hettmansperger

and Thomas (2000), Cruz-Medina (2001), Thomas and Hettmansperger (2001), Cruz-Medina

et al. (2004), and Elmore et al. (2004) reduced the nonparametric multivariate mixture model

to binomial or multinomial mixture model by discretization. However, some information is

lost in the discretization step and for this reason it becomes difficult to obtain density distri-

bution estimates of components. By assuming the vectors of observations are conditionally

independent but, unlike repeated measurements, may have different marginal distributions,

Hall and Zhou (2003) proposed a minimum distance estimator based on weighted-bootstrap

estimation, Hall et al. (2005) investigated the inversion of mixture models in order to recover

component distributions, while Benaglia et al. (2009) proposed an EM-like algorithm ex-

tended from Bordes et al. (2007). Recently, Hohmann and Holzmann (2013) considered the

framework of conditional mixtures for the model discussed by Hall and Zhou (2003). Jochman
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et al. (2016) considered a two-sample mixture model with tail restrictions. Chauveau and

Hoang (2016) discussed a nonparametric mixture model with conditionally independent mul-

tivariate densities. Other approaches to nonparametric estimation for mixture models rely on

training samples. Training samples are supplementary data observed directly from the compo-

nents. Estimation of nonparametric finite mixture models with training data had been studied

mainly back in the seventies and eighties. Hosmer (1973) was the first to consider the use of

training samples; however, he restricted attention to normal mixtures. Murray and Tittering-

ton (1978) considered nonparametric estimation using density estimates for Hosmer’s model

M2. Hall (1981,1983) described minimum distance estimators based on empirical distribu-

tion function, while Titterington (1983) considered minimum quadratic distance estimators

based on density estimations. Hall and Titterington (1984) constructed a sequence of multino-

mial approximations and related maximum likelihood estimators (MLEs) for Hosmer’s mod-

els M2. Cruz-Medina (2001) applied the discretization approach to Hosmer’s models M1 and

M2. Karunamuni and Wu (2009) proposed minimum Hellinger distance estimator (MHDE)

for Hosmer’s model M1. All these literatures assume that data from each of the components

are available. However, training samples may be available for some but not all components.

1.2 Two-component mixture model with stochastic dominance

The research problem under my consideration is described as follows. Suppose there is a ran-

dom sample from a two-component mixture population h = (1−λ ) f +λg and independently

another sample from the first component f , i.e.

X1, . . . ,Xm
i.i.d.∼ f (x),

Y1, . . . ,Yn
i.i.d.∼ h(x) = (1−λ ) f (x)+λg(x), x ∈ R,

(1.2)

where the unknown mixing proportion λ ∈ (0,1), and f and g are two unknown p.d.f. satisfy-

ing the stochastic dominance constraint F ≥G. Here we denote F , G and H the corresponding

cumulative distribution functions (c.d.f.) of f , g and h, and thus H = (1−λ )F +λG. In many

4



situations, λ is a value close to zero and a sample from the abundant population F is readily

available. The problem of our interest is to make inferences for the mixing proportion λ and

estimate the likelihood of an observation being from the second component.

The introduction of this model is motivated by the problem of identifying differentially

expressed genes under two or more conditions (e.g. healthy tissue vs. diseased tissue) in

microarray data. For this purpose the same test is used for each gene. Under the null hy-

pothesis, corresponding to a lack of difference in expression level, the test statistics usually

has a specified distribution F (e.g. normal or Student’s t). However under the alternative hy-

pothesis, corresponding to the presence of difference in expression level, the distribution G of

the test statistic is unknown. For each of thousands of genes, either differentially expressed

or not, the test statistic value is calculated. Treating each test statistic value as a response

from the corresponding gene, the thousands of responses of all genes come from a mixture of

two distributions, the known distribution F (under the null for the not differentially expressed

genes) and another unknown G (under the alternative for the differentially expressed genes),

with some unknown mixing proportion λ . Once mixing proportion λ and G have been esti-

mated, one can estimate the probability that a gene is not differentially expressed, i.e. belongs

to F . Thus, using a classification criterion we can classify each gene as either differentially

expressed or not differentially expressed with estimated misclassification rate. Based on all

the identified differentially expressed genes together, i.e. marker genes, one could build a

classification rule, say based on weighted average, to classify each subject (e.g. healthy vs.

diseased). More generally, F might be also unknown in practice but a training sample from F

is immediately available. In the above setup of microarray test of genes, this means that par-

ticular genes have been confidently identified by pathologists or experts as not differentially

expressed, i.e. from F , the distribution that is generally unknown or not exactly the same

for small sample size as the postulated distribution for large sample size but otherwise for

which the information is contained in the identified non differentially expressed genes. This
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generalization makes the model more robust than when F is assumed known. The stochastic

dominance between F and G arise naturally in many situations where one believes that the

test statistics for marker genes tend to be larger or smaller than those for non-marker genes.

For example, the most often used Student’s t (strictly |t|) and ANOVA F statistics satisfy the

stochastic ordering F ≥ G.

Besides the motivating example, model (1.2) could be used to model many other real

data structure such as the following. Clinical malaria can be diagnosed by the presence of

parasites and fever. However in endemic areas children can tolerate malaria parasite without

the development of any sign of disease, and they may have fever due to some other reason. We

can consider a mixture model where the mixture consists of parasite densities in children with

fever due to malaria or due to other causes. One component of the mixture corresponds to

children without malaria and the other corresponds to children with malaria. Parasite levels in

children from a community could be available and used as a training sample, i.e. a sample that

comes from the component of the mixture corresponding to children without clinical malaria

but have parasites in their body and hence fever. Here the mixing proportion is the proportion

of children whose fever is attributable to malaria. Irion et al. (2002) and Smith et al. (1994)

discussed such example of disease conditions.

Many biomedical assays involve classifying individuals into two groups according to

whether some output (e.g. optical density, titer, parasite density, amount of radioactive la-

bel) exceeds a given cutoff. Many such assays do not classify all samples correctly because

there is an overlap between the distributions of the output from the two groups. Optimally cut-

offs are evaluated by determining the misclassification probabilities of samples with known

diagnoses (the ‘Gold Standard’). Often, however, a sample from the distribution of true nega-

tives (F) is available but there is no Gold Standard for the true positives (G), which can only

be identified by using the assay itself, and then with uncertainty.

Let Z1, . . . ,Zn
i.i.d.∼ Bernoulli(λ ) with Zi = 1 if Yi comes from G and Zi = 0 if Yi comes
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from F . Then model (1.2) gives Yi|Zi ∼ (1− Zi)F + ZiG, i = 1, . . . ,n. Note that Zi’s are

unobservable, i.e. missing data. By Bayes’ rule, given an observation Y = y the probability of

it being from G is

p(y) := P(Z = 1|Y = y) =
λg(y)

(1−λ ) f (y)+λg(y)
. (1.3)

In the motivating example, λ and p(y) correspond to the proportion of marker genes and the

chance of being a marker gene given a test statistic value y respectively. In biomedical assay

case, they correspond to the proportion of patients with particular disease and the chance of

having this disease given an assay index value y.

To our best knowledge, there is not even a single work on model (1.2) in the literature. The

closest work that has been done related to this model is given in Smith and Vounatsou (1997).

However their model did not take the stochastic dominance constraint but instead assumed

that the probability function in (1.3) is monotonically increasing. For this model, Smith and

Vounatsou (1997) proposed several estimators of the mixing proportion λ in diagnostic assays

based on a logistic power model, a nonparametric monotone regression model and latent class

model, while Vounatsou et al. (1998) proposed a Bayesian method for discretized samples.

Other literatures for the same model are in medicine, e.g. Smith et al. (1994), Irion et al.

(2002) and Nagelkerke et al. (2003), which used above methods for analyzing different dis-

eases such as malaria and legionella pneumonia. The monotone assumption on function p in

these works is stronger than the stochastic dominance constraint in our model (1.2). To see

this, note that function p being monotonic increasing generally implies that F ≥ G. But the

implication of the other direction is not true. A counter-example is f (x) = 0.5I[0,2](x) and

g(x) = (1− 0.25x)I[1,3](x) with I the indicator function, for which simple calculation shows

that F ≥ G but p is not a monotonic function. Therefore, our model (1.2) is a generalization

of their model.
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1.3 Organization of thesis

Since model (1.2) is the focus of this thesis, each chapter of this thesis is devoted to an in-

ference method for this model. Specifically, Chapters 2 and 3 propose two nonparametric

estimation methods and Chapters 4 and 5 propose two semiparametric estimation methods

with an exponential tilt imposed on the two components. Chapter 6 tests the exponential

tilt structure assumed in Chapters 4 and 5, while Chapter 7 illustrate applications of all the

methods in previous chapters to real data sets and presents concluding remarks.

In Chapter 2, we propose a nonparametric estimator of λ in model (1.2) based on c.d.f.s

and an estimator of the lower bound of p(y) defined in (1.3). We provide sufficient conditions

for model (1.2) being identifiable, under which we demonstrate that the proposed estimator of

λ is consistent. To assess its finite-sample performance, we carry out Monte Carlo simulation

studies for different mixtures and compare our estimator with two existing estimators proposed

by Smith and Vonastsou (1997).

In Chapter 3, we propose and investigate another nonparametric MLE through multinomial

approximation. We prove that the proposed estimator is consistent when both the number of

partitions and sample sizes go to infinity. Simulation studies are conducted to assess its finite-

sample performance and to compare it with the estimator proposed in Chapter 2.

In order to accommodate the stochastic dominance constraint on the two components in

model (1.2), in Chapter 4 we introduce the exponential tilt link between the two components.

More specifically, the log ratio of the two component density functions is assumed of regres-

sion form which results in a two-sample semiparametric mixture model. With well defined pa-

rameter space, the stochastic dominance condition is automatically satisfied. For this model,

we construct the MLE and prove that it is asymptotically normally distributed. Through sim-

ulation studies, we demonstrate that the proposed estimator works efficiently.

In Chapter 5, for the same model as in Chapter 4, we propose and investigate a robust

MHDE of the unknown parameters. Asymptotic properties such as consistency and asymptotic
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normality of the proposed MHDE are presented. Through simulation studies, we compare the

performance of the MHDE with that of MLE in Chapter 4 and observe that both are very

competitive in efficiency but the MHDE is much more robust than MLE.

Since in Chapters 4 and 5 we assume the exponential tilt link, in Chapter 6 we propose

a Kolmogorov-Smirnov type hypothesis testing to test the validity of the link. We develop

two test statistic, based on the MLE and MHDE in Chapters 4 and 5 respectively, and discuss

through simulation studies the estimated level of significance and power of the proposed test

statistics.

In Chapter 7, we analyze two real data sets, a grain data set and a malaria data set, using the

methods and procedures proposed in previous chapters to demonstrate their implementations.

The remarks and discussion of future work are presented at the end.
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Chapter 2

Nonparametric Estimation I based on C.D.F.

In this chapter, we propose a nonparametric estimator of λ in model (1.2). The estimator

utilizes the dominance condition applied on nonparametric estimations of the c.d.f.s of the two

components. In Section 2.1, we derive a sufficient condition for model (1.2) being identifiable.

In Section 2.2, we present the construction of the nonparametric estimator. Its asymptotic

properties are discussed in Section 2.3, while its finite-sample performance is presented in

Section 2.4 through a simulation study.

2.1 Model identifiability

A nonparametric mixture model is generally unidentifiable. Robin et al. (2007) considered

a two-component mixture model where the first component is known and the second is com-

pletely unknown. However, they didn’t discuss the identifiability of the model. In fact, that

model is not identifiable if no assumptions are put on the components. Bordes et al. (2006a)

and Bordes and Vandekerkhove (2010) considered a similar model where the second com-

ponent is known to be symmetric. Bordes et al. (2006a) showed that under moment and

symmetry conditions the model is identifiable. In univariate cases, all discussions on iden-

tifiability are for mixture models with symmetric components; see, for example, Bordes et

al. (2006b) and Hunter et al. (2007). In our model (1.2), both of the two components f and

g could be arbitrarily of any form (not necessarily symmetric); however we have a training

sample from the first component f . Thus f could be estimated consistently and at a certain

convergence rate (e.g. m−2/5 for kernel density estimator), i.e. f can be ‘identified’ by the

training sample. As a result, when investigating the identifiability of model (1.2), we can sim-

ply, and equivalently, assume that f is known and we have a single sample from the mixture.

10



The thus reduced mixture model,

h(x) = (1−λ ) f (x)+λg(x), x ∈ R

with f known, λ and g unknown and F ≥ G (i.e. the model in Robin et al., 2007 with domi-

nance), nevertheless is still generally unidentifiable. To see this, note that for any λ
′ ∈ (λ ,1),

(1−λ ) f +λg = (1−λ
′
) f +λ

′
[(

1− λ

λ
′

)
f +

λ

λ
′ g
]

and F ≥ (1− λ

λ
′ )F + λ

λ
′G if F ≥ G. To make any estimation of the mixture model in (1.2)

meaningful, we need it to be identifiable. The following theorem gives a sufficient condition

for model (1.2) being identifiable. Let D f and Dg denote the lower limit of the support of

function f and g respectively. Note that D f and Dg could possibly be −∞. Since F ≥ G, we

have D f ≤ Dg and thus g(x)/ f (x) is well defined and g(x)/ f (x)≤ 1 as x→ D+
f .

Theorem 2.1. Assume that p(x)→ 0 or equivalently g(x)/ f (x)→ 0 as x→ D+
f and m is

sufficiently large. Then the mixture model (1.2) is identifiable.

Proof. As explained above, we can equivalently assume f is known. Suppose h = (1−λ ) f +

λg could also be represented as h = (1−λ1) f +λ1g1 with 0 < λ1 < 1 and g1 a p.d.f. such that

g1(x)/ f (x)→ 0 as x→ D+
f . Then we have

g1(x)
f (x)

=
λ1−λ

λ1
+

λ

λ1

g(x)
f (x)

→ λ1−λ

λ1
= 0,

and thus λ1 = λ and g1 = g.

Remark 2.1. The sufficient condition in Theorem 2.1 is quite weak and also easy to check.

For example, if D f 6= Dg, then the condition holds. When D f = Dg (either −∞ or finite), the

condition needs to be checked case by case.

2.2 Construction of nonparametric estimation I

Note that for any α ∈ (0,1),

1−H(F−1(α))/α = 1− (1−λ )α +λG(F−1(α))

α
= λ

[
1− G(F−1(α))

α

]
.
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Since F ≥ G, we have G(F−1(α))
α

≤ 1 and then

1−H(F−1(α))/α ≤ λ .

Thus a lower bound estimate of λ is given by

λ̂α = 1− Hn(F−1
m (α))

α
,

where Fm and Hn are some appropriate nonparametric estimators of F and H respectively

based on the samples Xi’s and Yi’s. If the discrepancy between F and G is large enough,

then G(F−1(α))
α

may be near zero at some α value and as a result 1−H(F−1(α))/α will be

close to λ . Especially when the sufficient condition for identifiability in Theorem 2.1, i.e.

limx→D+
f

g(x)/ f (x) = 0, holds, G(F−1(α))
α

will be very close to zero for small α values. Thus,

intuitively, we propose an estimator of λ given by

λ̂ = sup
α∈(0,1)

λ̂α = 1− inf
α∈(0,1)

Hn(F−1
m (α))

α
. (2.1)

The function p(y) in (1.3) now can be estimated by

p̂(y) = 1− (1− λ̂ )
fm(y)
hn(y)

, (2.2)

where fm and hn are the corresponding p.d.f.s of Fm and Hn respectively. In this thesis, we use

kernel density estimators

fm(x) =
1

mbm

m

∑
i=1

K0

(
x−Xi

bm

)
, (2.3)

hn(x) =
1

nbn

n

∑
j=1

K1

(
x−Yj

bn

)
, (2.4)

where K0 and K1 are kernel p.d.f.s and bandwidths bn and bm are positive sequences such that

bm→ 0 as m→ ∞ and bn→ 0 as n→ ∞.

2.3 Asymptotic properties

The following theorem gives the asymptotic properties of the proposed estimator λ̂ in (2.1).
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Theorem 2.2. Suppose that both f and g are uniformly continuous and the bandwidths bm

and bn make ∑
∞
m=1 exp(−rmb2

m) and ∑
∞
n=1 exp(−rnb2

n) converge for every r > 0. Then as

m,n→ ∞,

λ̂α

a.e.−→ λ −λ
G(F−1(α))

α
(2.5)

for any α ∈ (0,1), and as a result

λ̂
a.e.−→ λ −λ inf

α∈(0,1)

G(F−1(α))

α
. (2.6)

Proof. Since both f and g are uniformly continuous, h is also uniformly continuous. By Rao

(1983), we have sup
x
| fm(x)− f (x)| a.e.−→ 0 as m→ ∞ and sup

x
|hn(x)− h(x)| a.e.−→ 0 as n→ ∞.

Since
∫

f (t)dt−
∫

fm(t)dt = 1− 1 = 0, we have
∫
[ f (t)− fm(t)]+dt =

∫
[ f (t)− fm(t)]−dt

and thus
∫
| f (t)− fm(t)|dt =

∫
[ f (t)− fm(t)]+dt+

∫
[ f (t)− fm(t)]−dt =

∫
2[ f (t)− fm(t)]+dt.

By the Dominated Convergence Theorem (DCT),
∫
| f (t)− fm(t)|dt a.e.−→ 0 as m→∞, and thus

sup
x
|Fm(x)−F(x)| = sup

x
|
∫ x

−∞

[ fm(t)− f (t)]dt|

≤ sup
x

∫ x

−∞

| fm(t)− f (t)|dt

≤
∫

∞

−∞

| fm(t)− f (t)|dt

a.e.−→ 0.

Similarly sup
x
|Hn(x)−H(x)| a.e.−→ 0 as n→ ∞. As a result, sup

x
|F(F−1

m (x))−F(F−1(x))| =

sup
x
|x−F(F−1

m (x))| = sup
x
|Fm(F−1

m (x))−F(F−1
m (x))| a.e.−→ 0 as m→ ∞. Since f is uniformly

continuous, we have sup
x
|F−1

m (x)−F−1(x)| a.e.−→ 0 as m→ ∞. Therefore, as m,n→ ∞,

λ̂α = 1− H(F−1
m (α))

α
− Hn(F−1

m (α))−H(F−1
m (α))

α

a.e.−→ 1− H(F−1(α))

α

= 1− (1−λ )F(F−1(α))+λG(F−1(α))

α

= λ −λ
G(F−1(α))

α
,
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i.e. (2.5) holds.

Since sup
x
|Fm(x)−F(x)| a.e.−→ 0 as m→∞ and sup

x
|Hn(x)−H(x)| a.e.−→ 0 as n→∞, Fm(x)−

Hn(x)
a.e.−→ F(x)−H(x) ≥ 0 as F ≥ G, and thus Fm(x)

a.e.
≥ Hn(x) as m,n→ ∞ for any x. As

a result, 0
a.e.
≤ λ̂ ≤ 1 as m,n→ ∞ and thus 0

a.e.
≤ lim

m,n→∞

λ̂ ≤ lim
m,n→∞

λ̂ ≤ 1. By (2.5) we have

λ̂ ≥ λ̂α

a.e.−→ λ −λ
G(F−1(α))

α
for any α ∈ (0,1), and then

lim
m,n→∞

λ̂
a.e.
≥ λ −λ inf

α∈(0,1)

G(F−1(α))

α
.

On the other hand, we will show in the following that lim
m,n→∞

λ̂
a.e.
≤ λ −λ inf

α∈(0,1)
G(F−1(α))

α
and

therefore λ̂
a.e.−→ λ − λ inf

α∈(0,1)

G(F−1(α))

α
as m,n→ ∞, i.e. (2.6) holds. Let αm,n denote a

subsequence such that lim
m,n→∞

λ̂αm,n
a.e.
= limm,n→∞λ̂ . Since the interval (0,1) is finite, {αm,n}

must has a convergent subsequence, and we will still use αm,n to denote this convergent subse-

quence without confusion. If αm,n→ a0 6= 0, then by the fact that sup
x
|F−1

m (x)−F−1(x)| a.e.−→ 0

we have
H(F−1(αm,n))

αm,n

a.e.−→ H(F−1(a0))

a0
= 1−λ +λ

G(F−1(a0))

a0
,

Hn(F−1
m (αm,n))−H(F−1

m (αm,n))

αm,n

a.e.−→ 0,

and thus

λ̂αm,n = 1−
H(F−1

m (αm,n))

αm,n
−

Hn(F−1
m (αm,n))−H(F−1

m (αm,n))

αm,n

a.e.−→ λ −λ
G(F−1(a0))

a0
.

If a0 = 0, then since Hn(F−1
m (αm,n))

a.e.
≤ αm,n, L’Hospital’s rule gives

lim
m,n→∞

Hn(F−1
m (αm,n))

αm,n

a.e.
= lim

m,n→∞

hn(F−1
m (αm,n))

fm(F−1
m (αm,n))

a.e.
= lim

x→D+
f

h(x)
f (x)

= 1−λ +λ lim
x→D+

f

g(x)
f (x)

.

Since G(F−1(x))≤ x by F ≥ G, L’Hospital’s rule gives

lim
x→0

G(F−1(x))
x

= lim
x→0

g(F−1(x))
f (F−1(x))

= lim
x→D+

f

g(x)
f (x)

(2.7)
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and thus λ̂αm,n
a.e.−→ λ −λ lim

x→D+
f

g(x)
f (x)

= λ −λ lim
x→0

G(F−1(x))
x

. For whichever the case of a0,

we always have lim
m,n→∞

λ̂
a.e.
≤ λ −λ inf

α∈(0,1)
G(F−1(α))

α
.

Corollary 2.1. Suppose the conditions in Theorem 2.2 are satisfied and in addition g(y)/ f (y)→

0 as y→ D+
f . Then λ̂

a.e.−→ λ as m,n→ ∞.

Proof. The equations (2.6) and (2.7) give the result.

Remark 2.2. By Theorem 2.2, the estimator λ̂ defined in (2.1) is generally biased. However

when the sufficient condition for identifiability given in Theorem 2.1 is satisfied, then model

(1.2) is identifiable and at the same time the estimator λ̂ is consistent by Corollary 2.1.

2.4 Simulation studies

We assess the efficiency of the proposed estimator λ̂ using the following Monte Carlo sim-

ulation study and compare its finite-sample performance with the only few other methods

available in literature. In our simulation study, we consider the five two-component mixture

models given in Table 2.1. We can easily check that all the five models satisfy the stochastic

dominance condition. Even though the focus of this thesis is on continuous mixture models,

we also want to check the performance of the proposed methods for discrete mixture models

such as M3 and M4.

Table 2.1: Mixture models considered in simulation study.

M1 (1−λ )N(0,1)+λN(1,1) mixture of normals that are close
M2 (1−λ )N(0,1)+λN(5,1) mixture of normals that are apart
M3 (1−λ )Po(2)+λPo(4) mixture of Poissons that are close
M4 (1−λ )Po(2)+λPo(6) mixture of Poissons that are apart
M5 (1−λ )U(0,4)+λU(2,6) mixture of uniforms

For each of the five mixture models, we consider varying values of λ = 0.05,0.20,0.50,0.80,0.95.

We use two different sets of sample sizes (m,n) = (30,30) and (100,100). We take replication
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number N = 1000 as the number of random samplings. In the kernel density estimators fm

and hn given in (2.3) and (2.4) respectively, we use Gaussian kernel function 1√
2π

e−x2/2 for

both K0 and K1. The bandwidths bm and bn in (2.3) and (2.4) respectively are chosen the same

as in Silverman’s (1986), i.e.

bm = 0.9m−1/5 min
[
SDX ,

IQRX
1.34

]
,

bn = 0.9n−1/5 min
[
SDY ,

IQRY
1.34

]
,

(2.8)

where SDX , SDY , IQRX and IQRY are the sample standard deviation and interquartile range of

samples Xi’s and Yi’s respectively. To evaluate the finite-sample performance of the estimator

λ̂ , we estimate the bias and mean squared error (MSE) by

Bias(λ̂ ) =
1
N

N

∑
i=1

(
λ̂i−λ

)
(2.9)

and

MSE(λ̂ ) =
1
N

N

∑
i=1

(
λ̂i−λ

)2
(2.10)

respectively, where N is the number of replications and N = 1000 in our simulation.

To examine the performance of the estimator p̂(y) given in (2.2) of the function p(y), the

probability of an observation y being from G, we check the classification results of a simple

classification rule based on p̂. Here the hard threshhold of 0.5 is used as the classification rule,

i.e. an individual with observation y is classified as from G if p̂(y) > 0.5 and F if otherwise.

Then we use the misclassification rate (MR), the fraction of misclassified observations, as a

measure of the performance of p̂. However, we can expect that the MR will be high for some

models, such as M1, when the two components have a large part that is in common and thus

a high chance of misclassification exists. Considering this fact, we use the optimal misclassi-

fication rate (OMR) as the baseline to compare with. The OMR is the misclassification rate

calculated when the function p(y) is assumed completely specified and the same threshhold

of 0.5 is used as the classification rule, which is the best scenario for this classification rule.

16



More specifically,

OMR = (1−λ )
∫

{y:λg(y)>(1−λ ) f (y)}

f (y)dy+λ

∫
{y:λg(y)<(1−λ ) f (y)}

g(y)dy. (2.11)

Note that for uniform mixture model M5, λg(y) = (1−λ ) f (y) for any y ∈ [2,4]. In this case

we classify y as from f if y∈ [2,3] and g if y∈ (3,4], i.e. classify it to whichever the population

of which it is closer to the centre. These OMRs and simulation results are presented in Table

2.2.

Table 2.2: Bias and MSE of λ̂ and MR (%) of a classification rule based on p̂.

m = n = 30 m = n = 100
Model λ Bias(λ̂ )(MSE(λ̂ )) MR Bias(λ̂ )(MSE(λ̂ )) MR OMR

0.05 0.052 (0.031) 8.03 0.049 (0.019) 7.37 4.99
0.20 0.093 (0.074) 26.30 0.085 (0.052) 26.09 18.61

M1 0.50 0.067 (0.078) 36.63 0.067 (0.052) 37.05 30.85
0.80 -0.009 (0.047) 22.83 0.008 (0.026) 21.29 18.61
0.95 -0.052 (0.029) 9.07 -0.027 (0.012) 6.80 4.99
0.05 0.053 (0.022) 2.20 0.048 (0.015) 2.28 0.24
0.20 0.095 (0.032) 3.97 0.065 (0.018) 3.02 0.48

M2 0.50 0.082 (0.015) 2.73 0.049 (0.005) 2.12 0.62
0.80 0.061 (0.014) 6.93 0.057 (0.009) 6.21 0.48
0.95 0.034 (0.002) 7.40 0.036 (0.002) 4.16 0.24
0.05 0.203 (0.089) 28.40 0.035 (0.005) 5.04 4.76
0.20 0.133 (0.064) 32.27 0.034 (0.013) 16.69 13.90

M3 0.50 0.019 (0.039) 34.13 -0.015 (0.001) 15.54 19.05
0.80 -0.096 (0.034) 24.17 -0.084 (0.190) 25.20 13.35
0.95 -0.152 (0.042) 14.40 -0.119 (0.023) 14.24 6.06
0.05 0.211 (0.092) 26.30 0.044 (0.006) 3.03 3.14
0.20 0.178 (0.071) 25.27 0.071 (0.012) 9.61 7.03

M4 0.50 0.117 (0.034) 21.60 0.048 (0.009) 15.54 10.19
0.80 0.019 (0.010) 13.77 0.009 (0.006) 13.34 7.82
0.95 -0.026 (0.004) 5.73 -0.006 (0.002) 5.81 3.21
0.05 0.249 (0.136) 30.83 0.018 (0.002) 3.09 2.50
0.20 0.151 (0.078) 29.90 0.017 (0.005) 10.99 10.00

M5 0.50 0.067 (0.048) 30.43 0.016 (0.008) 24.24 25.00
0.80 0.031 (0.022) 16.20 0.012 (0.006) 12.76 10.00
0.95 0.009 (0.006) 4.33 0.012 (0.002) 3.87 2.50

From Table 2.2 we can see that for all the five models, when sample sizes increase, the
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performance of both λ̂ in terms of bias and MSE and p̂ in terms of MR improves. Especially

for models M3-M5, the performance of λ̂ and p̂ is not very good for m = n = 30 but improves

dramatically when m = n = 100. When m = n = 100, λ̂ has good efficiency in terms of small

Bias and small MSE and the MRs are quite close to the OMRs. Considering the fact that the

calculation of OMR assumes that the function p is completely specified, we can conclude that

for relatively large sample sizes we are able to classify individuals equivalently well when p̂

is used as when p is used.

The relatively worse performance for models M3-M5 when m = n = 30 could be possibly

explained by the fact that these models don’t satisfy the conditions listed in Corollary 2.1 for

λ̂ being consistent. For M3 and M4, they are not continuous mixture models and the condition

lim
x→D f

g(x)
f (x) = 0 doesn’t hold. Actually M3 and M4 are not identifiable. Even though model M5

satisfies the sufficient condition to be identifiable, the two components f and g are piecewise

continuous but not globally continuous. Fortunately when sample sizes become large, the

proposed estimator works well for models M3-M5. Comparatively, normal mixtures M1 and

M2 satisfy all the conditions in Corollary 2.1 for being identifiable and for the estimator being

consistent.

The proposed estimator λ̂ in (2.1) is compared with two other estimators proposed by

Smith and Vounatsou (1997). The first one assumes that both f and g are categorical popula-

tions with a baseline category x = 0 (i.e. the smallest possible value that the random variable

can take). The estimator is based on the observed odds ratio and is defined as

λ+ = [1− h̃(0)](Ψ̃+−1)/Ψ̃+, (2.12)

where h̃(0) is the proportion of observations in the mixture sample that belong to the baseline

category x = 0 and Ψ̃+ is the odds ratio defined as

Ψ̃+ =
[1− h̃(0)] f̃ (0)
[1− f̃ (0)]h̃(0)

.

The λ+ is equivalent to population attributable fraction from case-control data. The second

method proposed by Smith and Vounatsou (1997) is based on logistic power model and is
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defined as

λel = (1/n)∑
i
[exp(β1Xτ

i )−1]/exp(β1Xτ
i ), (2.13)

where β1 and τ are the MLEs of a non-linear logistic regression. Smith and Vonatsou (1997)

considered two-component mixture of Poisson populations, mixture of log-normal popula-

tions and mixture of uniform populations. A total of repetition N = 100 data sets were simu-

lated with m = 100 observations from f and n = 100 observations from h for varying λ values.

Since their methods were developed particularly for categorical data, for comparison purpose,

we will use their data generating scheme. Thus as what Smith and Vonatsou (1997) did, we

discretize mixture of log-normal and mixture of uniform distributions. Specifically, for each

repetition we pool Xi’s and Y j’s together and the observed range of the pooled data is divided

into 10 intervals with equal number of observations (20 in our case) falling into each interval.

Then k is used as the observed data if the original value falls in the kth interval, along with the

indication whether an observed data is from population f or h. The category k = 0 corresponds

to the baseline category used in the estimator λ+. The simulation results of our estimator (2.1)

in comparison with these two methods are given in Table 2.3.

From Table 2.3 we can see that for each model under consideration, our proposed estimator

λ̂ is very competitive with λ+ and λel . Both λ+ and λel tend to perform worse for larger λ

values than smaller values, while λ̂ tends to perform worse for smaller λ values. The Ψ̃+ in

the definition of λ+ is sometimes less than one and as a result λ+ is frequently negative. Smith

and Vonatsou (1997) used 0 as the estimate whenever λ+ is negative. Our estimator λ̂ seldom

give negative estimate of λ and thus no need of this trimming. This may explains the smaller

bias and MSE of λ+ relative to λ̂ in some cases. Even though λ+ is easy to calculate, it is

often hard to define the baseline category and it does not exist if h(0) = 0. The λel has the

advantage of model fitting using logistic regression, but the simulation studies in Smith and

Vonatsou (1997) showed that it tends to underestimate λ , which is also demonstrated in Table

2.3 by those negative biases.
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Our proposed estimator λ̂ defined in (2.1) provides an easy way to estimate λ without

imposing the monotonicity of p or the stochastic dominance constraint F ≥ G (already in-

corporated in the definition of our estimator). Our simulation studies show that it performs

well for both mixtures of continuous populations and mixtures of discrete populations. On the

other hand, λ̂ is a crude estimator of λ and we only have the consistency under some condi-

tions but no results on asymptotic distributions. For small λ and sample sizes and mixture of

discrete populations, our simulation shows that λ̂ is biased. To improve the performance, we

introduce in next chapter another nonparametric estimator of λ .
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Chapter 3

Nonparametric Estimation II based on Multinomial

Approximation

In this chapter, we introduce a second nonparametric estimator of the mixing proportion. This

estimator is a MLE of a multinomial approximation to the mixture model. In Section 3.1 we

present the idea of using a multinomial distribution to approximate the mixture model (1.2),

and then construct the MLE of the approximated multinomial distribution. In Section 3.2 we

study its consistency while the simulation study is given in Section 3.3.

3.1 Construction of MLE

Hall and Titterington (1984) constructed a sequence of multinomial approximations and stud-

ied related MLE for a model similar to (1.2). The model under their consideration is Hosmer’s

(1973) model M2 where the sample consists of both mixed (a sample from mixture) and known

data (a sample from each of the two components), and the known data contains information

about the mixing proportion. They derived a Cramér-Rao lower bound for the nonparametric

estimator of the mixing proportion and thereby characterized asymptotically optimal estima-

tors. Karunamuni and Wu (2009) exploited the same method for Hosmer’s (1973) model M1

where the sample consists of both mixed and known data, but no information about mixing

proportion is contained in the known data. Elmore et al. (2004) utilized the same idea for

multivariate mixture models. We propose to apply the same idea to our model (1.2). Model

(1.2) is more complex in the sense that no sample is available from the second component,

and due to the unidentifiability, it is not possible to find the MLE of the mixing proportion λ

based on multinomial approximation. However, we will give an MLE of the lower bound of
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λ .

Following Hall and Titterington (1984), we first partition the support of h in model (1.2)

into L regions R1, . . . ,RL so that each observation will fall uniquely into one region. Define,

for l = 1, . . . ,L,

p1l =
∫

Rl

f (x)dx,

p2l =
∫

Rl

g(x)dx,

p3l =
∫

Rl

h(x)dx = (1−λ )p1l +λ p2l.

(3.1)

Obviously ∑
L
l=1 pil = 1, i = 1,2,3. Let ml and nl denote the number of observations out of

m and n respectively that fall into region Rl . Then when L is large, model (1.2) could be ap-

proximated closely by the multinomial populations given in (3.1). Based on this multinomial

approximation, the likelihood is given by

L

∏
l=1

(p1l)
ml [(1−λ )p1l +λ p2l]

nl . (3.2)

To obtain the MLE of the parameter θ = (λ , p1l, . . . , p1L, p2l, . . . , p2L)
>, we take the partial

derivatives of the log-likelihood function and make them equal to zero. This yields the fol-

lowing system of estimating equations:

ml

p1l
− mL

p1L
+

nl(1− λ̂ )

(1− λ̂ )p1l + λ̂ p2l
− nL(1− λ̂ )

(1− λ̂ )p1L + λ̂ p2L
= 0, l = 1, . . . ,L−1 and p1l 6= 0,

(3.3)
nlλ̂

(1− λ̂ )p1l + λ̂ p2l
− nLλ̂

(1− λ̂ )p1L + λ̂ p2L
= 0, l = 1, . . . ,L−1, (3.4)

L

∑
l=1

nl(p2l− p1l)

(1− λ̂ )p1l + λ̂ p2l
= 0, (3.5)

L

∑
l=1

p1l = 1, (3.6)

L

∑
l=1

p2l = 1, (3.7)
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subject to constraints pil ≥ 0, i= 1,2 and l = 1, . . . ,L. Let θ̂ = (λ̂L, p̂11, . . . , p̂1L, p̂21, . . . , p̂2L)
>

denote the solution to the system (3.3)-(3.7). From (3.3) and (3.4) we get ml
p1l

= mL
p1L

, i.e.

p̂1l =
ml

mL
p1L, l = 1, . . . ,L−1.

Since ∑
L
l=1 p1l = 1, summing up the above equation over l gives p̂1L = mL

m , and thus we have

p̂1l =
ml

m
, l = 1, . . . ,L. (3.8)

Now plug (3.8) into (3.4) and use the constraint ∑
L
l=1 p2l = 1, we obtain

p̂2L =
1
λ
· nL

n
− 1−λ

λ
· mL

m

and further

p̂2l =
1
λ
· nl

n
− 1−λ

λ
· ml

m
, l = 1, . . . ,L. (3.9)

If we plug the MLEs p̂1l and p̂2l , in (3.8) and (3.9) respectively, into (3.3)-(3.7), all give iden-

tities that do not involve λ . Thus the MLE of the estimating system does not exist. However,

since p̂2l ≥ 0, we have from (3.9) that λ ≥ 1− nl
n ·

m
ml

for each l such that ml 6= 0. Then the

lower bound of MLE of λ is given by

λ̂L = 1− min
l=1,...,L

ml 6=0

{
nl/n
ml/m

}
. (3.10)

The MLE of p(y) in (1.3) is given by

p̂L(y) =
λ̂L p̂2i

(1− λ̂L)p̂1i + λ̂L p̂2i

if y falls in the ith region Rl .

3.2 Asymptotic properties

In this section we discuss the asymptotic properties of the proposed MLE λ̂L in (3.10) of the

lower bound of λ . We will prove that under certain conditions, λ̂L is the MLE of λ and thus

is consistent. We need the following two lemmas for the consistency of λ̂L.
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Lemma 3.1. If P(Ai)> 1− pi for all i = 1, . . . ,L, then P
(

L
∩

i=1
Ai

)
> 1−

L
∑

i=1
pi.

Proof. Since P(Ac
i )< pi, P

(
(

L
∩

i=1
Ai)

c
)
= P

(
L
∪

i=1
Ac

i

)
≤

L
∑

i=1
P(Ac

i )<
L
∑

i=1
pi and thus the result.

Lemma 3.2. If Xni
P−→ ci as n→ ∞, i = 1, . . . ,L, then min

i=1,...,L
{Xni}

P−→ min
i=1,...,L

{ci} as n→ ∞.

Proof. For any ε > 0, we will show P
(

min
i
{Xni}−min

i
{ci}<−ε

)
→ 0 and

P
(

min
i
{Xni}−min

i
{ci}> ε

)
→ 0. As a result P

(∣∣∣∣min
i
{Xni}−min

i
{ci}

∣∣∣∣≤ ε

)
→ 1, i.e.

min
i=1,...,L

{Xni}
P−→ min

i=1,...,L
{ci}.

Since min
i
{Xni− ci}+min

i
{ci} ≤min

i
{Xni}, we have

min
i
{Xni− ci}+ ε ≤ min

i
{Xni}−min

i
{ci}+ ε. (3.11)

Since Xni
P→ ci, we have P(|Xni− ci| ≤ ε)→ 1. Note that

P(|Xni− ci| ≤ ε) = P(−ε ≤ Xni− ci ≤ ε) ≤ P(Xni− ci ≥−ε) ,

thus we have P(Xni− ci + ε ≥ 0)→ 1. By definition this means that, for any δ > 0 there exists

a n0 ∈ N such that for any n > n0,

P(Xni− ci + ε ≥ 0) > 1− δ

L
, i = 1, . . . ,L.

Thus by Lemma 3.1 we have

P
(

L
∩

i=1
{Xni− ci + ε ≥ 0}

)
> 1−δ

or equivalently

P
(

min
i
{Xni− ci}+ ε ≥ 0

)
> 1−δ ,

which implies P
(

min
i
{Xni− ci}+ ε ≥ 0

)
→ 1. This together with (3.11) gives

P
(

min
i
{Xni}−min

i
{ci} ≥ −ε

)
→ 1, i.e. P

(
min

i
{Xni}−min

i
{ci}<−ε

)
→ 0.
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Let ci0 = min
i
{ci}. Then by definition P(|Xni0 − ci0| ≤ ε)→ 1, and further P(Xni0 − ci0 ≤

ε)→ 1. Note that P(Xni0−ci0 ≤ ε)≤P(min
i
{Xni}−ci0 ≤ ε). Thus we have P(min

i
{Xni}−ci0 ≤

ε)→ 1, i.e. P
(

min
i
{Xni}−min

i
{ci}> ε

)
→ 0.

Theorem 3.1. λ̂L
P−→ λ −λ min

l=1,...,L
p1l 6=0

{
p2l

p1l

}
as m,n→ ∞.

Proof. By WLLN, we have ml/m P−→ p1l and nl/n P−→ (1−λ )p1l +λ p2l as m,n→∞. Then

for any p1l 6= 0, we have
nl/n
ml/m

P−→ (1−λ )+λ
p2l

p1l
.

By Lemma 3.2 we have

min
l=1,...,L

ml 6=0

{
nl/n
ml/m

}
P−→ 1−λ +λ min

l=1,...,L
p1l 6=0

{
p2l

p1l

}
,

and hence the result.

From Theorem 3.1 we obtain immediately a sufficient condition for λ̂L being consistent.

Corollary 3.1. If p2l = 0 for some l such that p1l 6= 0, then λ̂L
P−→ λ as m,n→ ∞.

Proof. The result follows directly from Theorem 3.1.

For fixed L, the sufficient condition of consistency in Corollary 3.1 holds only when f and

g have different support. When f and g have common finite support, obviously the condition is

not satisfied. But when the lower limit of the common support D f =−∞ and we allow L→∞,

then the estimator λ̂L is consistent under the condition of identifiability given in Theorem 2.1.

This result is given in the following corollary.

Corollary 3.2. Let the maximum length of the intervals R1, . . . ,RL go to zero when L→ ∞. If

g(x)/ f (x)→ 0 as x→ D+
f , then λ̂L→ λ as m,n,L→ ∞.
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Proof. From Theorem 3.1 we have, as m,n→ ∞ and then L→ ∞, that

λ̂L
P−→ λ −λ inf

{x: f (x)6=0}

{
g(x)
f (x)

}
= λ .

Remark 3.1. The stochastic dominance constraint F ≥ G in the multinomial approximation

is reduced to
k

∑
i=1

p1i ≥
k

∑
i=1

p2i, k = 1, . . . ,L. (3.12)

We don’t impose this dominance constraint on the estimating equations (3.3)-(3.7) when the

asymptotic properties of MLE are discussed, simply to avoid technical difficulties. The study

of the asymptotic properties of MLE under the constraint (3.12) is planned for future research.

On the other hand, the MLE under (3.12) is examined in the simulation studies in the next

section.

3.3 Simulation studies

To evaluate the finite-sample performance of our proposed estimator λ̂L given in (3.10), we

consider the same mixture models listed in Table 2.1 of Section 2.4, with the same varying

mixing proportion values. We also use the same sample sizes m = n = 30 and m = n = 100

and the same number of replications N = 1000. Since the mixture of normals, i.e. models M1

and M2, satisfy the conditions in Corollary 3.2, we will let the number of partitioned intervals

L increases when sample sizes increases from m = n = 30 to m = n = 100. Specifically, we

tried L = 3 and L = 5 for m = n = 30 and L = 10, L = 15 and L = 20 for m = n = 100. Note

that, large L results in small bins with mostly zero observations and small L results in very

large bins with most of the observations clumped in one bin. We chose L = 3 and L = 10 for

our simulation study as they perform better than the rest of the choice for L.

As discussed in Remark 3.1, we examine the MLE of λ under the stochastic dominance

constraint (3.12). We still use λ̂L to denote the MLE under (3.12) without confusion. Even
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though the MLE of λ without this constraint does not exist theoretically, our simulation results

below show that the MLE with this constraint does exist. The MLE under the dominance con-

straint is calculated by optimizing the likelihood function (3.2) subject to (3.6), (3.7), (3.12)

and all pil ≥ 0, i = 1,2 and l = 1, . . . ,L. We use function “optim” in R statistical software for

this optimization. For simplicity, we use λ+ given in (2.12) as the initial estimate of λ . We

use the relative frequency ml/m as the initial estimate of p1l . To give an initial estimate of

p2l , we use the relationship g(x) = h(x)
λ
− 1−λ

λ
f (x) from (1.2) with λ replaced with its initial

estimate and f and h replaced with the relative frequency ml/m and nl/n respectively.

As in Section 2.4, for each model we calculated the bias and MSE of λ̂L and the misclas-

sification rate MR when the same classification rule as in Section 2.4 is used. The simulation

results are presented in Table 3.1. From Table 3.1, we can see that λ̂L performs very well in

terms of bias and MSE in most cases. Not surprisingly, the estimation accuracy is higher when

the two components are well separated (M2 & M4) than when they are not (M1 & M3). These

observations indicate that even though we group the data and thus lose some information, we

can still estimate the mixing proportion quite well. However, the MRs are much higher than

the OMRs in most cases. This is expected since with use of discretization, all the observations

falling into the same interval will be classified as from the same component. When the interval

is relatively wide, for example L = 3 or even L = 10, the discretization will generate a higher

misclassification rate.

When the estimator λ̂L we proposed in this chapter is compared with λ̂ in (2.1) we pro-

posed in Chapter 2, we observe that both perform competitively in terms of bias and MSE

while λ̂ has better performance in terms of MR than λ̂L. Therefore, if our interest is in λ only,

then either method should work well. But if we are interested in classification, then method in

Chapter 2 works much better.
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Table 3.1: Bias and MSE of λ̂L and MR (%) of a classification rule based on p̂L.

m = n = 30 m = n = 100
Model λ Bias(λ̂L)(MSE(λ̂L)) MR Bias(λ̂L)(MSE(λ̂L)) MR OMR

0.05 0.020 (0.031) 5.60 0.022 (0.009) 5.00 4.99
0.20 0.032 (0.068) 22.13 0.011 (0.016) 20.16 18.61

M1 0.50 -0.039 (0.078) 46.77 -0.048 (0.026) 44.37 30.85
0.80 -0.144 (0.089) 41.57 -0.121 (0.033) 27.39 18.61
0.95 -0.181 (0.090) 25.17 -0.149 (0.035) 11.73 4.99
0.05 0.022 (0.031) 4.97 0.026 (0.009) 5.00 0.24
0.20 0.055 (0.071) 20.57 0.033 (0.016) 19.90 0.48

M2 0.50 0.029 (0.066) 39.13 0.017 (0.019) 25.61 0.62
0.80 -0.009 (0.036) 19.97 0.000 (0.010) 4.56 0.48
0.95 -0.011 (0.009) 4.53 -0.002 (0.003) 2.21 0.24
0.05 0.002 (0.015) 5.40 -0.000 (0.004) 5.01 4.76
0.20 -0.017 (0.046) 22.03 -0.022 (0.013) 20.09 13.90

M3 0.50 -0.076 (0.010) 43.67 -0.073 (0.029) 44.03 19.05
0.80 -0.128 (0.101) 35.53 -0.121 (0.038) 29.74 13.35
0.95 -0.163 (0.102) 22.57 -0.143 (0.034) 14.27 6.06
0.05 0.003 (0.016) 5.43 0.000 (0.004) 5.01 3.14
0.20 -0.007 (0.047) 21.60 -0.000 (0.012) 20.08 7.03

M4 0.50 -0.028 (0.084) 37.97 -0.009 (0.021) 35.49 10.19
0.80 -0.033 (0.059) 24.20 -0.018 (0.013) 14.68 7.82
0.95 -0.048 (0.037) 10.03 -0.023 (0.005) 5.41 3.21
0.05 0.026 (0.032) 22.07 0.033 (0.009) 5.01 2.50
0.20 0.049 (0.069) 20.80 0.035 (0.014) 20.13 10.00

M5 0.50 0.025 (0.065) 45.10 0.011 (0.019) 37.34 25.00
0.80 -0.001 (0.029) 23.07 -0.001 (0.008) 13.38 10.00
0.95 -0.012 (0.010) 5.70 -0.005 (0.002) 3.62 2.50
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Chapter 4

Semiparametric Estimation I: MLE

Due to the unidentifiability in general of the nonparametric mixture model (1.2), it is difficult

to obtain an estimator with good asymptotic properties such as asymptotic normality. In this

chapter, we impose a semiparametric structure on (1.2) and construct the MLE of the resulting

semiparametric mixture model. In Section 4.1 we introduce this structure and explain why it

successfully accommodates the stochastic dominance condition. In Section 4.2, we construct

the MLE for the resulting semiparametric mixture model. Asymptotic properties of the pro-

posed MLE are discussed in Section 4.3 while the simulation studies are presented in Section

4.4.

4.1 A semiparametric mixture model

Let Z denote a binary response variable and Y the associated covariate. Then the logistic

regression model is given by

P(Z = 1|Y = y) =
exp[α∗+β>r(y)]

1+ exp[α∗+β>r(y)]
, (4.1)

where r(y) = (r1(y), . . . ,rp(y))> is a given p× 1 vector of functions of y, α∗ is the intercept

parameter and β = (β1, . . . ,βp)
> is the p× 1 coefficient parameter vector. In case-control

studies data are collected retrospectively. For example, a random sample of subjects with dis-

ease Z = 1 (‘case’) and a separate random sample of subjects without disease Z = 0 (‘control’)

are selected with Y observed for each subject. Let π = P(Z = 1) = 1−P(Z = 0). Let f (y)

and g(y) denote the conditional p.d.f.s of Y given Z = 0 and Z = 1 respectively, then it follows

from (4.1) and Bayes’ rule that

g(y) = exp[α +β
>r(y)] f (y), (4.2)
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where α = α∗+ log[(1−π)/π]. Now model (1.2) is reduced to the semiparametric mixture

model

X1, . . . ,Xm
i.i.d.∼ f (x),

Y1, . . . ,Yn
i.i.d.∼ hθ (x) := h(x) =

{
(1−λ )+λ exp

[
α +β

>r(x)
]}

f (x)
(4.3)

where θ = (λ ,α,β>)> is the parameter vector of interest.

The relationship (4.2) between two p.d.f.s was first proposed by Anderson (1972). It es-

sentially assumes that the log-likelihood ratio of the two p.d.f.s is linear in the observations.

With r(x) = x or r(x) = (x,x2)>, it has wide applications in logistic discriminant analysis (An-

derson, 1972 & 1979) and case-control studies (Prentice and Pyke, 1979; Breslow and Day,

1980). For r(x) = x, (4.2) encompasses many common distributions, including two exponen-

tial distributions with different means and two normal distributions with common variance but

different means. Model (4.2) with r(x) = (x,x2)> also coincides with the exponential family

of densities considered in Efron and Tibshirani (1996). Moreover, model (4.2) can be viewed

as a biased sampling model with the ‘tilt’ weight function exp[α +β>r(x)] depending on the

unknown parameters α and β . Note that the test of equality of f and g can be regarded as a

special case of model (4.3) with β = 0.

Qin and Zhang (1997) discussed a goodness-of-fit test for logistic regression based on

case-control data where the first sample comes from the control group f and independently

the second sample comes from the case group g. They proposed a Kolmogorov-Smirnov type

statistic to test the validity of (4.2) with r(y) = y. When data from both the mixture and the

two individual components satisfying (4.2) are available, Qin (1999) developed an empirical

likelihood ratio based statistic for constructing confidence intervals of the mixing proportion.

For the same model and data structure, Zhang (2002) proposed an EM algorithm to calculate

the MLE while Zhang (2006) proposed a score statistic to test the mixing proportion. Chen

and Wu (2013) employed (4.2) to model differentially expressed genes of acute lymphoblastic

leukemia patients and acute myeloid leukemia patients.

For model (4.3) with r(y) = y, if β > 0 then we can easily check that p(y) in (1.3), the
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probability of y being from g, is a monotonic increasing function. Further we can prove below

that if β > 0, then the stochastic dominance constraint F ≥ G is implied by (4.2).

Theorem 4.1. Model (4.3) with r(y) = y is identifiable. If further β > 0 and m is sufficiently

large, then F ≥ G.

Proof. Since we have a sample from f , so when look at identifiability we can equivalently

assume f is known. Then if hθ1 = hθ2 , i.e.

{
1−λ1 +λ1 exp

[
α1 +β

>
1 r(x)

]}
f (x) =

{
1−λ2 +λ2 exp

[
α2 +β

>
2 r(x)

]}
f (x) for all x,

then we must have λ1 = λ2, α1 = α2 and β1 = β2. Thus hθ is identifiable.

Let s(x) = f (x)−g(x) = f (x) [1− exp(α +βx)] and S(x) =
∫ x
−∞

s(t)dt = F(x)−G(x). Let

x0 denote the solution to 1− exp(α +βx) = 0. Then s(x)> 0 when x < x0 and s(x)≤ 0 when

x≥ x0, and hence S(x) increases for x < x0 and decreases for x≥ x0. If F(x′)< G(x′) for some

x′, i.e. S(x′)< 0, then x′ ≥ x0 since S(x)> 0 for all x < x0. Since S(x) decreases when x≥ x0,

we have S(x)≤ S(x′)< 0 for all x > x′ and thus S(∞)< 0. However S(∞) = F(∞)−G(∞) =

1−1 = 0, a contradiction. Therefore F ≥ G.

Even though Theorem 4.1 tells us that the condition (4.2) is stronger than the original

stochastic dominance constraint, the thus resulted semiparametric mixture model (4.3) is iden-

tifiable and has better interpretation than the nonparametric mixture model (1.2). In addition,

the estimation of (4.3) may possess better asymptotic properties, such as normality, than those

of (1.2). So from now on, we will focus on model (4.3) with r(y) = y and β > 0.

4.2 Construction of MLE

In this section, we construct the semiparametric empirical MLE of θ in (4.3). Let (T1, ...,Tm+n)=

(X1, ...,Xm,Y1, ...,Yn) be the pooled data and pi = dF(Ti). Then the empirical likelihood func-
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tion is

L(λ ,α,β ) =
m

∏
i=1

dF(Xi)
n

∏
j=1

dH(Yj) =
m+n

∏
i=1

pi

n

∏
j=1

[
(1−λ )+λeα+βY j

]
,

subject to constraints β ≥ 0, 0≤ λ ≤ 1, pi ≥ 0,
m+n

∑
i=1

pi = 1, and
m+n

∑
i=1

pieα+βTi = 1. To find the

MLE, we use the Lagrange multipliers and maximize

m+n

∑
i=1

log pi +
n

∑
j=1

log
[
(1−λ )+λeα+βY j

]
− t1

[
m+n

∑
i=1

pi−1

]
− t2

[
m+n

∑
i=1

pieα+βTi−1

]
.

Taking partial derivatives gives the estimating equation system

1
pi
− t1− t2eα+βTi = 0, i = 1, ...,m+n, (4.4)

n

∑
j=1

eα+βY j −1
(1−λ )+λeα+βY j

= 0, (4.5)

n

∑
j=1

λeα+βY j

(1−λ )+λeα+βY j
− t2

m+n

∑
i=1

pieα+βTi = 0, (4.6)

n

∑
j=1

Yjλeα+βY j

(1−λ )+λeα+βY j
− t2

m+n

∑
i=1

piTieα+βTi = 0, (4.7)

m+n

∑
i=1

pi = 1, (4.8)

m+n

∑
i=1

pieα+βTi = 1. (4.9)

From (4.5) and
n

∑
j=1

(1−λ )+λeα+βY j

(1−λ )+λeα+βY j
= n, we have

n

∑
j=1

eα+βY j

(1−λ )+λeα+βY j
=

n

∑
j=1

1
(1−λ )+λeα+βY j

= n,

and plugging it into (4.6) gives

nλ − t2
m+n

∑
i=1

pieα+βTi = 0. (4.10)

From (4.4) we get

(m+n)− t1
m+n

∑
i=1

pi− t2
m+n

∑
i=1

pieα+βTi = 0.
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This together with (4.9) and (4.10) gives t2 = nλ and t1 = m+n−nλ . Then by (4.4) again we

have

pi =
1

(m+n)
[
1+ρNλ

(
eα+βTi−1

)] ,
where ρN = n/(m+ n) with N = m+ n. Therefore ignoring a constant, the log-likelihood

function is

l(λ ,α,β ) ∝

n

∑
j=1

log[(1−λ )+λeα+βY j ]−
m+n

∑
i=1

log[1+ρNλ (eα+βTi−1)]. (4.11)

Maximizing (4.11) over (λ ,α,β ) gives the system of score functions

∂ l(λ ,α,β )

∂λ
=

n

∑
j=1

eα+βY j −1
1−λ +λeα+βY j

−
m+n

∑
i=1

ρN(eα+βTi−1)
1+ρNλ (eα+βTi−1)

= 0, (4.12)

∂ l(λ ,α,β )

∂α
=

n

∑
j=1

λeα+βY j

1−λ +λeα+βY j
−

m+n

∑
i=1

ρNλeα+βTi

1+ρNλ (eα+βTi−1)
= 0, (4.13)

∂ l(λ ,α,β )

∂β
=

n

∑
j=1

λYjeα+βY j

1−λ +λeα+βY j
−

m+n

∑
i=1

ρNλTieα+βTi

1+ρNλ (eα+βTi−1)
= 0. (4.14)

Let θ̂MLE = (λ̂MLE , α̂MLE , β̂MLE)
> be the MLE of θ , i.e. the maximizer of the log-likelihood

function l in (4.11). Then the MLE of p(y) in (1.3) is

p̂MLE(y) =
λ̂MLE exp[α̂MLE + β̂MLEy]

(1− λ̂MLE)+ λ̂MLE exp[α̂MLE + β̂MLEy]
. (4.15)

Note that the system (4.12)-(4.14) does not yield an explicit solution for the semiparametric

MLE (λ̂ , α̂, β̂ ). Thus one has to compute iteratively by using the Newton-Raphson method or

some variant.

4.3 Asymptotic properties

In this section, we develop asymptotic properties of the proposed MLE θ̂MLE . The proofs of

results in this section are very similar to Qin and Zhang (1997) but for a different model. We
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first present a lemma used to prove the asymptotic normality of θ̂MLE . Let

SN = − 1
N



∂ 2l
∂λ 2

∂ 2l
∂λ∂α

∂ 2l
∂λ∂β

∂ 2l
∂α∂λ

∂ 2l
∂α2

∂ 2l
∂α∂β

∂ 2l
∂β∂λ

∂ 2l
∂α∂β

∂ 2l
∂β 2


(4.16)

with l defined in (4.11), and

S =
∫ (

∂w1(y)
∂θ

)(
∂w1(y)

∂θ

)> f
w1w2

(y)dy =


S11 S12 S13

S12 S22 S23

S13 S23 S33

 , (4.17)

where

S11 =
∫
(eα+βy−1)2 · f

w1w2
(y) dy,

S22 = λ
2
∫

e2α+2βy · f
w1w2

(y) dy,

S33 = λ
2
∫

y2e2α+2βy · f
w1w2

(y) dy,

S12 = λ

∫
eα+βy(eα+βy−1) · f

w1w2
(y) dy,

S13 = λ

∫
yeα+βy(eα+βy−1) · f

w1w2
(y) dy,

S23 = λ
2
∫

ye2α+2βy · f
w1w2

(y) dy

(4.18)

with

w1(y) = 1−λ +λeα+βy, (4.19)

w2(y) = 1−ρλ +ρλeα+βy. (4.20)

Lemma 4.1. Assume ρN → ρ as N→ ∞. Then SN
P−→ ρ(1−ρ)S as N→ ∞, where SN and

S are defined in (4.16) and (4.17) respectively.
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Proof. Define

w2N(y) = 1−ρNλ +ρNλeα+βy. (4.21)

The second-order partial derivatives of the log-likelihood function l in (4.11) are

∂ 2l
∂λ 2 = −

n

∑
j=1

(eα+βY j −1)2

w2
1(Y j)

+
m+n

∑
i=1

ρ2
N(e

α+βTi−1)2

w2
2N(Ti)

,

∂ 2l
∂α2 =

n

∑
j=1

λ (1−λ )eα+βY j

w2
1(Yj)

−
m+n

∑
i=1

ρNλ (1−ρNλ )eα+βTi

w2
2N(Ti)

,

∂ 2l
∂β 2 =

n

∑
j=1

λ (1−λ )Y 2
j eα+βY j

w2
1(Yj)

−
m+n

∑
i=1

ρNλ (1−ρNλ )T 2
i eα+βTi

w2
2N(Ti)

,

∂ 2l
∂λ∂α

=
n

∑
j=1

eα+βY j

w2
1(Yj)

−
m+n

∑
i=1

ρNeα+βTi

w2
2N(Ti)

,

∂ 2l
∂λ∂β

=
n

∑
j=1

Yjeα+βY j

w2
1(Yj)

−
m+n

∑
i=1

ρNTieα+βTi

w2
2N(Ti)

,

∂ 2l
∂α∂β

=
n

∑
j=1

λ (1−λ )Yjeα+βY j

w2
1(Y j)

−
m+n

∑
i=1

ρNλ (1−ρNλ )Tieα+βTi

w2
2N(Ti)

.

Straight calculation gives

E
[
− 1

N
· ∂ 2l

∂λ 2

]
= ρN(1−ρN)

∫
(eα+βy−1)2 f

w1w2N
(y) dy−→ ρ(1−ρ)S11.

By WLLN, − 1
N ·

∂ 2l
∂λ 2

P−→ ρ(1−ρ)S11. Similarly we have the convergence of other compo-

nents of the matrix SN .

The following theorem gives the asymptotic normality of the MLE θ̂MLE that maximizes l

in (4.11). Let

V =
∫ (

∂w1(y)
∂θ

)(
∂w1(y)

∂θ

)> f
w1w2

(y)dy−
∫

∂w1(y)
∂θ

f
w2

(y)dy
∫ (

∂w1(y)
∂θ

)> f
w2

(y)dy

= S−
∫

∂w1(y)
∂θ

f
w2

(y)dy
∫ (

∂w1(y)
∂θ

)> f
w2

(y)dy

=


V11 V12 V13

V12 V22 V23

V13 V23 V33

 ,

(4.22)
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where

V11 =
∫
(eα+βy−1)2 f

w1w2
(y) dy−

[∫
(eα+βy−1)

f
w2

(y) dy
]2

,

V22 = λ
2
∫

e2α+2βy f
w1w2

(y) dy−λ
2
[∫

eα+βy f
w2

(y) dy
]2

,

V33 = λ
2
∫

y2e2α+2βy f
w1w2

(y) dy−λ
2
[∫

yeα+βy f
w2

(y) dy
]2

,

V12 = λ

∫
eα+βy(eα+βy−1)

f
w1w2

(y) dy− λ

∫
(eα+βy−1)

f
w2

(y) dy
∫

eα+βy f
w2

(y) dy,

V13 = λ

∫
yeα+βy(eα+βy−1)

f
w1w2

(y) dy− λ

∫
(eα+βy−1)

f
w2

(y) dy
∫

yeα+βy f
w2

(y) dy,

V23 = λ
2
∫

ye2α+2βy f
w1w2

(y) dy− λ
2
∫

eα+βy f
w2

(y) dy
∫

yeα+βy f
w2

(y) dy

with w1 and w2 defied in (4.19) and (4.20) respectively.

Theorem 4.2. Assume ρN → ρ as N→ ∞. Then under some regularity conditions (for MLE

in general),

√
N


λ̂MLE −λ

α̂MLE −α

β̂MLE −β

 L−→ N (0,Σ) ,

where Σ = 1
ρ(1−ρ)S

−1V S−1 with S and V defined in (4.17) and (4.22) respectively.

Proof. Let QN = 1
N

(
∂ l
∂λ

, ∂ l
∂α

, ∂ l
∂β

)>
, where ∂ l

∂λ
, ∂ l

∂α
and ∂ l

∂β
are given in (4.12), (4.13) and
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(4.14) respectively. Then E[QN ] = 0. From (4.12) we have, as N→ ∞,

1
N

Var
[

∂ l
∂λ

]
=

1
N

Var

[
n

∑
j=1

(
eα+βY j −1

w1(Y j)
− ρN(eα+βY j −1)

w2N(Y j)

)
−

m

∑
i=1

ρN(eα+βXi−1)
w2N(Xi)

]

= ρNVar

[
(1−ρN)(eα+βY1−1)

w1(Y1)w2N(Y1)

]
+(1−ρN)Var

[
ρN(eα+βX1−1)

w2N(X1)

]

= ρN(1−ρN)
2


∫

(eα+βy−1)2

w2
1(y)w

2
2N(y)

w1(y) f (y)dy−

[∫ eα+βy−1
w1(y)w2N(y)

w1(y) f (y)dy

]2


+ ρ
2
N(1−ρN)


∫

(eα+βy−1)2

w2
2N(y)

f (y)dy−

[∫ eα+βy−1
w2N(y)

f (y)dy

]2


= ρN(1−ρN)

[∫
(eα+βy−1)2 f

w1w2N
(y)dy−

[∫
(eα+βy−1)

f
w2N

(y)dy
]2
]

→ ρ(1−ρ)V11.

Similarly we have
1
N

Var
[

∂ l
∂α

]
→ ρ(1−ρ)V22 and

1
N

Var
[

∂ l
∂β

]
→ ρ(1−ρ)V33 as N→∞.

From (4.12) and (4.13) we have

1
N

Cov
[

∂ l
∂λ

,
∂ l
∂α

]
=

1
N

E
[

∂ l
∂λ
· ∂ l

∂α

]
=

1
N

E

[{
n

∑
j=1

(
eα+βY j −1

w1(Yj)
− ρN(eα+βY j −1)

w2N(Yj)

)
−

m

∑
i=1

ρN(eα+βXi−1)
w2N(Xi)

}

·

{
n

∑
j=1

(
λeα+βY j

w1(Yj)
− ρNλeα+βY j

w2N(Yj)

)
−

m

∑
i=1

ρNλeα+βXi

w2N(Xi)

}]

=
1
N

E

[{
(1−ρN)

n

∑
j=1

eα+βY j −1
w1(Yj)w2N(Yj)

−ρN

m

∑
i=1

eα+βXi−1
w2N(Xi)

}

·

{
(1−ρN)λ

n

∑
j=1

eα+βY j

w1(Yj)w2N(Yj)
−ρNλ

m

∑
i=1

eα+βXi

w2N(Xi)

}]
=

1
N

E [(A−B)(C−D)] , say

=
1
N
{E[AC]+E[BD]−E[A]E[D]−E[B]E[C]} ,
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where

E [AC] = (1−ρN)
2
λ

{
nE

[
eα+βY1(eα+βY1−1)

w2
1(Y1)w2

2N(Y1)

]

+ n(n−1)E

[
eα+βY1−1

w1(Y1)w2N(Y1)

]
E

[
eα+βY1

w1(Y1)w2N(Y1)

]}
= n(1−ρN)

2
λ

{∫
eα+βy(eα+βy−1)

f
w1w2

2N
(y) dy

+ (n−1)
∫
(eα+βy−1)

f
w2N

(y) dy
∫

eα+βy f
w2N

(y) dy
}
,

E [BD] = mρ
2
Nλ

{∫
eα+βy(eα+βy−1)

f
w2

2N
(y) dy

+ (m−1)
∫
(eα+βy−1)

f
w2N

(y) dy
∫

eα+βy f
w2N

(y) dy
}
,

E[A]E[D] = E[B]E[C] = mnρN(1−ρN)λ
∫
(eα+βy−1)

f
w2N

(y) dy
∫

eα+βy f
w2N

(y) dy,

and thus as N→ ∞,

1
N

Cov
[

∂ l
∂λ

,
∂ l
∂α

]
= ρN(1−ρN)

2
λ

∫
eα+βy(eα+βy−1)

f
w1w2

2N
(y) dy

+ (n−1)ρN(1−ρN)
2
λ

∫
(eα+βy−1)

f
w2N

(y) dy
∫

eα+βy f
w2N

(y) dy

+ ρ
2
N(1−ρN)λ

∫
eα+βy(eα+βy−1)

f
w2

2N
(y) dy

+ (m−1)ρ2
N(1−ρN)λ

∫
(eα+βy−1)

f
w2N

(y) dy
∫

eα+βy f
w2N

(y) dy

− 2mρ
2
N(1−ρN)λ

∫
(eα+βy−1)

f
w2N

(y) dy
∫

eα+βy f
w2N

(y) dy

= ρN(1−ρN)λ

[∫
eα+βy(eα+βy−1)

f
w1w2

2N
(y) dy

−
∫
(eα+βy−1)

f
w2N

(y) dy
∫

eα+βy f
w2N

(y) dy
]

→ ρ(1−ρ)V12.

Similarly we have
1
N

Cov
[

∂ l
∂λ

,
∂ l
∂β

]
→ ρ(1−ρ)V13 and

1
N

Cov
[

∂ l
∂α

,
∂ l
∂β

]
→ ρ(1−ρ)V23

as N→ ∞. Thus by CLT
√

NQN
L−→ N(0,ρ(1−ρ)V ).

From Lemma 4.1 along with Slutsky’s theorem, hence the result.
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4.4 Simulation studies

In this section, we examine the finite-sample performance of our proposed MLE θ̂MLE through

a Monte Carlo simulation study. We consider the same mixture models listed in Table 2.1 of

Section 2.4. For each model, the true values of α and β are derived under (4.2). For example, if

we consider a mixture of two normals f ∼N(0,1) and g∼N(µ,σ), then α =−1
2(logσ2+ µ

σ2 )

and β = µ

σ2 . Similarly for mixture of two Poisson distributions f ∼ Po(µ1) and g ∼ Po(µ2),

the values of α and β are α = µ1−µ2 and β = log µ2
µ1

respectively. Note that model M5 does

not satisfy (4.3) since the two components have different support. The true values of α and β

for each model are given in Table 4.1. From Table 4.1 we can see that always β > 0 for each

of those four models, M1-M4, for which the two components have common support. This

demonstrate that β > 0 generally implies the stochastic dominance (Theorem 4.1), even for

discrete populations.

Table 4.1: Mixture models considered in simulation study.

Model Form α β

M1 (1−λ )N(0,1)+λN(1,1) −0.5 1
M2 (1−λ )N(0,1)+λN(5,1) −12.5 5
M3 (1−λ )Po(2)+λPo(4) −2 0.693
M4 (1−λ )Po(2)+λPo(6) −4 1.099
M5 (1−λ )U(0,4)+λU(2,6) NA NA

For each model we consider the same varying mixing proportion values as in Sections 2.4

and 3.3. We also use the same sample sizes m = n = 30 and m = n = 100 and the same number

of replications N = 1000. To find the MLE θ̂MLE that maximizes the log-likelihood function

l in (4.11), we use package“optim” in R statistical software. For simplicity, we use λ+ given

in (2.12) as the initial estimate of λ . Initial value for α and β are calculated by exploiting the

relationship in (4.3). Specifically, (4.3) indicates

log
h(x)/ f (x)− (1−λ )

λ
= α +βx.
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Thus for each Ti in the pooled sample, we generate the pair (Ti,Ri), where Ri = log hn(Ti)/ fm(Ti)−(1−λ+)
λ+

with fm, hn and λ+ defined in (2.3), (2.4) and (2.12) respectively. Finally we use (Ti,Ri),

i = 1, . . . ,N, to fit a least-squares regression line and the fitted coefficients will be used as the

initials of α and β . As in Sections 2.4 and 3.3, for each model we calculate the bias and MSE

of λ̂MLE and the misclassification rate MR when the same classification rule as in Sections

2.4 and 3.3 is used. We also calculate the coverage probability (CP) of the 95% confidence

interval constructed based on λ̂MLE using the asymptotic variance given in Theorem 4.2. We

plug in the MLE λ̂MLE , α̂MLE , β̂MLE and the kernel estimator fm into the expression to calcu-

late the matrix Σ. Since λ is our main interest we don’t give the CP for α̂MLE and β̂MLE . The

simulation results are presented in Table 4.2.

From Table 4.2 we can see that, as expected, θ̂MLE has smaller bias, MSE and MR for

larger sample sizes than for smaller sample sizes. The λ̂MLE always gives small bias and MSE,

especially for larger sample sizes, while α̂MLE and β̂MLE generally give relatively large bias

and MSE even for larger sample sizes. Nevertheless, the MR is reasonably close to OMR, the

optimal misclassification rate assuming the probability function p in (1.3) is known, regardless

of sample size. Even for M5 where the assumption (4.2) doesn’t hold, the MLE of λ based

on (4.2) performs surprisingly well and the MR doesn’t deviate from OMR too much for large

sample sizes. We also observe that when the two components are close to each other in terms

of location (M1 and M3), the estimated mixing proportion λ̂MLE has larger bias and MSE than

the cases when the two components are far apart (M2 and M4). However, the bias and MSE

of α̂MLE and β̂MLE for M2 are larger than those for M1. This could be explained by the larger

magnitude of the true α and β values for M2 than for M1. The CP of the confidence interval

based on λ̂MLE is close to the nominal level of 95% for most of the cases.

When the MLE λ̂MLE we proposed in this chapter based on the assumption (4.2) is com-

pared with the two nonparametric estimators, λ̂ in Chapter 2 and λ̂L in Chapter 3, without this

assumption, we observe that the three perform quite competitively while λ̂MLE and λ̂ have a
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little better MR than λ̂L.
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Chapter 5

Semiparametric Estimation II: MHDE

In this chapter we still assume (4.2) or equivalently the semiparametric mixture model (4.3)

with r(x)= x and β > 0. In last chapter we construct the MLE for (4.3) which is asymptotically

normally distributed and performs well for finite sample sizes. However, MLE is generally

not robust against outliers and model misspecification. To achieve robustness, we propose

in this chapter a minimum Hellinger distance estimation (MHDE). In Section 5.1 we review

the general definition of MHDE and construct the MHDE specifically for the two-sample

semiparametric mixture model (4.3). In Section 5.2 we present its asymptotic properties,

such as consistency and asymptotic normality. Through simulation studies, Section 5.3 gives

the efficiency study of the proposed MHDE while Section 5.4 is devoted to its robustness

study and comparison with other estimators. Finally Section 5.5 gives detailed proofs of the

asymptotic properties presented in Section 5.2.

5.1 Construction of MHDE

Due to its excellent robustness properties and simultaneous efficiency, MHDE has been popu-

lar in practice. The Hellinger distance between two functions f1 and f2 is defined as ‖ f 1/2
1 −

f 1/2
2 ‖, the L2-norm of root functions. For a fully parametric model {hθ : θ ∈ Θ} with Θ the

parameter space, the MHDE of θ is defined as the value θ̂MHDE that minimizes the Hellinger

distance between the parametric model and an appropriate nonparametric density estimator,

say, ĥ based on data, i.e.

θ̂MHDE = argmin
t∈Θ

∥∥∥h1/2
t − ĥ1/2

∥∥∥ . (5.1)

MHDE was first introduced by Beran (1977) for this fully parametric model of general form.

Beran (1977) showed that the MHDE for parametric model has both full efficiency and good
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robustness properties. Lindsay (1994) outlined the comparison between MHDE and MLE in

terms of robustness and efficiency and showed that MHDE and MLE are members of a larger

class of efficient estimators with various second-order efficiency properties. However, the lit-

erature on MHDE for mixture models is not redundant. Lu, Hui and Lee (2003) considered

the MHDE for mixture of Poisson regression models. MHDE of mixture complexity for fi-

nite mixture models was investigated by Woo and Sriram (2006 & 2007). Recently, MHDE

has been extended from parametric models to semiparametric models. Wu, Karunamuni and

Zhang (2010) proposed a MHDE for two-sample case-control data under model (4.2) and in-

vestigated the asymptotic properties and robustness of the proposed estimator. Xiang, Yao

and Wu (2014) proposed a minimum profile Hellinger distance estimation (MPHDE) for two-

component semiparamtric mixture models studied by Bordes, Delmas and Vandekerkhove

(2006a) where one component is known and the other is an unknown symmetric function

with unknown location parameter. Wu, Yao and Xiang (2017) proposed an algorithm for

the MPHDE in two-component semiparametric location-shifted mixture models. Inspired by

these works, we propose in this chapter to use the MHDE to estimate the parameters in (4.3).

In model (4.3), even though α and β can possibly take any value on real line, we can

essentially use intervals that are large enough to cover their true values. So for practical

purpose, without loss of generality we can assume that θ ∈ Θ with Θ a compact subset of

R3. To give the MHDE for model (4.3), note that the MHDE defined in (5.1) is not available

in practice since the f in ht(x) = (1− t1 + t1et2+t3x) f (x), with t = (t1, t2, t3)>, is unknown.

Intuitively, we can use the kernel density estimator fm given in (2.3) to replace f and apply

the plug-in rule to give an estimated parametric model

ĥt(x) = (1− t1 + t1et2+t3x) fm(x), (5.2)

We can use the kernel density estimator hn given in (2.4) as the nonparametric estimator of h.

Now we define the MHDE of θ = (λ ,α,β )> as

θ̂MHDE = T ( fm,hn) = argmin
t∈Θ

∥∥∥ĥ1/2
t −h1/2

n

∥∥∥ . (5.3)
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That is, θ̂MHDE is the minimizer t of the Hellinger distance between the estimated parametric

model ĥt and the nonparametric density estimator hn. Then the MHDE of p(y) in (1.3) is given

by

p̂MHDE(y) =
λ̂MHDE exp[α̂MHDE + β̂MHDEy]

(1− λ̂MHDE)+ λ̂MHDE exp[α̂MHDE + β̂MHDEy]
.

This MHDE defined in (5.3) is similar to Beran’s (1977) original mechanism of obtaining

MHDE for fully parametric models. Thus, we would expect θ̂MHDE to have good robustness

and asymptotic efficiency properties. Note that in (5.3) we do not impose any restriction on

ĥt to make it a density function, i.e.
∫

ĥt(x)dx = 1. The reason behind that is, even though for

a particular t ∈ Θ such that ĥt is not a density, it could make ht a density. The true parameter

value θ may not make ĥθ a density, but it is not reasonable to exclude θ as the estimate θ̂MHDE

of itself. As the explicit expression of θ̂MHDE does not exist, one needs to use iterative methods

such as Newton-Raphson to numerically calculate it. Karunamuni and Wu (2011) has shown

that with appropriate initial value, even a one-step iteration will work well and give a quite

accurate approximation of MHDE.

5.2 Asymptotic properties

In this section we investigate the asymptotic properties of our proposed θ̂MHDE given in (5.3).

The results and their proofs in this section are very similar to Wu, Karunamuni and Zhang

(2010) but for a different model. For completeness we still present them here even though we

follow exactly the same lines as in Wu, Karunamuni and Zhang (2010).

Let H be the set of all c.d.f.s with respect to Lebesgue measure on the real line. We

decompose the parameter vector θ into two parts

θ = (λ ,θ>r )>,

where θr =(α,β )> represents the regression coefficient parameters in (4.3). Note that gθr(x)=

eα+βx f (x) is essentially the g in (4.2). Parallelly for each t ∈ Θ we write t = (t1, t>r )> with
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tr = (t2, t3)> and gtr(x) = et2+t3x f (x). We first list some conditions that will be used for later

proof of asymptotics.

(D1) There exists an ε-neighbourhood B(θr,ε) of θr for some ε ≥ 0 such that gtr −

gθr is bounded by an integrable function for any tr ∈ B(θr,ε).

(D2) f and K0 in (4.3) and (2.3) respectively have compact supports.

(D3) f in (4.3) has infinite support, K0 in (2.3) is a bounded symmetric density

with support [−a0,a0] for some 0 < a0 < ∞, and there exists a sequence αm of

positive numbers such that as m→ ∞, αm→ ∞ and

sup
θ∈Θ

∫
I{|x|>αm}hθ (x)dx −→ 0, (5.4)

b2
m sup

θ∈Θ

∫
I{|x|>αm}hθ (x) sup

|t|≤a0

| f (2)(x)+ tbm|
f (x)

dx → 0, (5.5)

m−1b−1
m sup

θ∈Θ

∫
I{|x|≤αm}hθ (x) sup

|t|≤a0

f (x+ tbm)

f 2(x)
dx → 0, (5.6)

b4
m sup

θ∈Θ

∫
I{|x|≤αm}hθ (x) sup

|t|≤a0

[
f (2)(x+ tbm)

f (x)

]2

dx → 0, (5.7)

where f (k) denotes that kth derivative of f .

Lemma 5.1. If (D1) holds for θ ∈ Θ, then d(t) = ‖h1/2
t −ϕ1/2‖ is continuous at point t = θ ,

for any ϕ ∈H .

Proof. Suppose θk→ θ as k→ ∞. From Minkowski’s inequality,

|d(θk)−d(θ)| ≤
∥∥∥h1/2

θk
−h1/2

θ

∥∥∥ ≤ [∫ ∣∣hθk(x)−hθ (x)
∣∣dx
]1/2

. (5.8)

Note that∣∣hθk(x)−hθ (x)
∣∣ =

∣∣∣−(λk−λ ) f (x)+λk f (x)(eαk+βkx− eα+βx)+(λk−λ )eα+βx f (x)
∣∣∣

≤ f (x)+
∣∣∣ f (x)(eαk+βkx− eα+βx)

∣∣∣+ eα+βx f (x).
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By (D1), f (x)(eαk+βkx−eα+βx) is bounded by an integrable function, say B(x), and as a result∣∣hθk(x)−hθ (x)
∣∣ is bounded by integrable function f (x)+B(x)+g(x). Therefore by the DCT

we have
∫
|hθk(x)−hθ (x)|dx→ 0 as k→∞, i.e., d(θk)→ d(θ) as k→∞ and d(t) is continuous

at point t = θ .

Theorem 5.1. Suppose (D1) holds for all t ∈Θ. Then

(i) For every ϕ ∈H , there exist T ( f ,ϕ) and T ( fm,ϕ) in Θ satisfying (5.3), where fm is

defined in (2.3) with the kernel K0 compactly supported.

(ii) Suppose that m,n→∞ as N→∞ and θ = T ( f ,ϕ) is unique. Then θN = T ( fm,ϕn)→ θ

as N→∞ for any density sequences fm and ϕn such that ‖ϕ1/2
n −ϕ1/2‖→ 0 and supt∈Θ ‖ĥ

1/2
t −

h1/2
t ‖→ 0 as N→ ∞ with ĥt given in (5.2).

(iii) T ( f ,hθ ) = θ uniquely for any θ ∈Θ.

Proof. (i) Let dm(t) = ‖ĥ1/2
t −ϕ1/2‖. Suppose sequence {tk} ⊂ Θ such that tk→ t as k→ ∞.

Since Θ is compact, t ∈Θ. Similar to (5.8), we have

|dm(tk)−dm(t)| ≤
[∫ ∣∣∣λk−λ −λkeαk+βkx +λeα+βx

∣∣∣ fm(x)dx
]1/2

.

Since fm is compactly supported, we have by the DCT that dm(tk)→ dm(t) as k→∞, i.e. dm(t)

is continuous and achieves a minimum over t ∈ Θ. Let d(t) = ‖h1/2
t −ϕ1/2‖. By Lemma 5.1,

d(t) is continuous in t and therefore achieves a minimum over t ∈Θ.

(ii) Suppose ‖ϕ1/2
n −ϕ1/2‖ → 0 and supt∈Θ ‖ĥ

1/2
t − h1/2

t ‖ → 0 as N → ∞. Let dN(t) =

‖ĥ1/2
t −ϕ

1/2
n ‖ and d(t) = ‖h1/2

t −ϕ1/2(x)‖. By Minkowski’s inequality

|dN(t)−d(t)| ≤
{∫ [

ĥ1/2
t (x)−ϕ

1/2
n (x)−h1/2

t (x)+ϕ
1/2(x)

]2
dx
}1/2

≤
{

2
∫ [

ĥ1/2
t (x)−h1/2

t

]2
dx+2

∫ [
ϕ

1/2
n −ϕ

1/2(x)
]2

dx
}1/2

and consequently supt∈Θ |dN(t)− d(t)| → 0 as N → ∞. Thus as N → ∞, dN(θ)→ d(θ) and

dN(θN)− d(θN)→ 0. If θN 9 θ , then there exists a subsequence {θNi} ⊆ {θN} such that,

θNi → θ
′ 6= θ . Since Θ is compact, θ

′ ∈ Θ. Lemma 5.1 yields that d(θNi)→ d(θ
′
). From the
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above results we have dNi(θNi)−dNi(θ)→ d(θ
′
)−d(θ). By the definition of θNi , dNi(θNi)−

dNi(θ)≤ 0. Hence, d(θ
′
)−d(θ)≤ 0. But by the definition and uniqueness of θ , d(θ

′
)> d(θ).

This is a contradiction. Therefore θN → θ .

(iii) Since by Theorem 4.1 {ht}t∈Θ
is identifiable, we have T ( f ,hθ ) = θ uniquely for any

θ ∈Θ.

In order to prove the consistency of our proposed θ̂MHDE given in (5.3), we need the

following lemma.

Lemma 5.2. Suppose (D3) holds. Then as m→ ∞,

sup
θ∈Θ

∫
w1(x)

[
f 1/2
m (x)− f 1/2(x)

]2
dx P−→ 0.

Proof. By the continuity of the function w1 in θ and the compactness of Θ, there exists a θm ∈

Θ which maximizes
∫

w1(x)[ f
1/2
m (x)− f 1/2(x)]2dx. By (5.4), (5.5) and a Taylor expansion,

one has

E
∣∣∣∣∫ I{|x|>αm}w1(x) fm(x)dx

∣∣∣∣
=

∫ ∫
I{|x|>αm}w1(x)

1
bm

K0

(
y− x
bm

)
f (y)dy dx

=
∫

I{|x|>αm}w1(x)
∫

K0(t) f (x+ tbm)dt dx

=
∫

I{|x|>αm}w1(x)
∫

K0(t)
[

f (x)+ f (1)(x)tbm +
1
2

f (2)(ξ )t2b2
m

]
dt dx

≤
∫

I{|x|>αm}hθ (x)dx+
1
2

b2
m

∫
I{|x|>αm}hθ (x) sup

|t|≤a0

f (2)(x+ tbm)

f (x)
dx
∫

t2K0(t)dt

≤ sup
θ∈Θ

∫
I{|x|>αm}hθ (x)dx+

1
2

b2
m

∫
t2K0(t)dt sup

θ∈Θ

∫
I{|x|>αm}hθ (x) sup

|t|≤a0

f (2)(x+ tbm)

f (x)
dx

→ 0.

Thus as m→ ∞, ∫
I{|x|>αm}w1(x) fm(x)dx P−→ 0
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and ∫
I{|x|>αm}w1(x)

[
f 1/2
m (x)− f 1/2(x)

]2
dx

≤ 2
∫

I{|x|>αm}w1(x) [ fm(x)+ f (x)]dx

≤ 2
∫

I{|x|>αm}w1(x) fm(x)dx+2
∫

I{|x|>αm}hθ (x)dx

P→ 0.

(5.9)

On the other hand,∣∣∣∣∫ I{|x|≤αm}w1(x)
[

f 1/2
m (x)− f 1/2(x)

]2
dx
∣∣∣∣ =

∫
I{|x|≤αm}w1(x)

[ fm(x)− f (x)]2[
f 1/2
m (x)+ f 1/2(x)

]2 dx

≤
∫

I{|x|≤αm}w1(x) f−1(x)[ fm(x)− f (x)]2dx

≤ 2
∫

I{|x|≤αm}w1(x) f−1(x)[ fm(x)−E[ fm(x)]]2dx

+2
∫

I{|x|≤αm}w1(x) f−1(x) [E[ fm(x)]− f (x)]2 dx

= 2(A1m +A2m), say.

Now by (5.6) as m→ ∞

E[A1m] =
∫

I{|x|≤αm}w1(x) f−1(x)E[ fm(x)−E[ fm(x)]]2dx

≤
∫

I{|x|≤αm}w1(x) f−1(x)
1

mb2
m

∫
K2

0

(
y− x
bm

)
f (y)dydx

= m−1b−1
m

∫
I{|x|≤αm}w1(x)

∫ a0

−a0

K2
0 (t) f (x+ tbm) f−1(x)dtdx

≤ m−1b−1
m

∫ a0

−a0

K2
0 (t)dt sup

θ∈Θ

∫
I{|x|≤αm}hθ (x) sup

|t|≤a0

f (x+ tbm)

f 2(x)
dx

→ 0,

i.e, A1m
P→ 0 as m→ ∞. By a Taylor expansion and (5.7),

|A2m| =
∫

I{|x|≤αm}w1(x) f−1(x)
[∫ a0

−a0

K0(t)( f (x+ tbm)− f (x))dt
]2

dx

≤ 1
4

b4
m

∫
I{|x|≤αm}w1(x) f−1(x)

[
sup
|t|≤a0

| f (2)(x+ tbm)|
∫ a0

−a0

t2K0(t)

]2

dx

≤ 1
4

b4
m

[∫ a0

−a0

K0(t)t2dt
]2

sup
θ∈Θ

∫
I{|x|≤αm}hθ (x) sup

|t|≤a0

[
f (2)(x+ tbm)

f (x)

]2

dx

→ 0
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Therefore,
∫

I{|x|≤αm}w1(x)[ f
1/2
m (x)− f 1/2(x)]2dx P→ 0 as m→ ∞. This combined with (5.9)

gives
∫

w1(x)[ f
1/2
m (x)− f 1/2(x)]2dx P→ 0 for any θ ∈ Θ. By the continuity of the function in

θ and the compactness of Θ, hence the result.

Following the results above, the theorem below presents the consistency of θ̂MHDE defined

in (5.3).

Theorem 5.2. Let m,n→ ∞ as N → ∞. Suppose that (D1) holds for any θ ∈ Θ and the

bandwidths bm and bn in (2.3) and (2.4) respectively satisfy bm,bn→ 0 and mbm,nbn→ ∞ as

N → ∞. Further suppose that either (D2) or (D3) holds. Then ‖ f 1/2
m − f 1/2‖ P→ 0, ‖h1/2

n −

h1/2
θ
‖ P→ 0 and supt∈Θ ‖ĥ

1/2
t − h1/2

t ‖
P→ 0 as N → ∞. Furthermore, θ̂MHDE

P→ θ as N → ∞,

where θ̂MHDE is defined in (5.3) with fm, hn and ĥt given by (2.3), (2.4) and (5.2) respectively.

Proof. If we can prove that ‖h1/2
n −h1/2

θ
‖ P→ 0 and supt∈Θ ‖ĥ

1/2
t −h1/2

t ‖
P→ 0 as N→ ∞, then

by Theorem 5.1 (iii) and then (ii) we have θ̂MHDE
P→ θ as N→ ∞.

It is known that fm
P→ f and hn

P→ h as N → ∞ (see Rao, 1983). Since
∫

hθ (x)dx =∫
hn(x)dx = 1,

∫
[hθ (x)− hn(x)]+dx =

∫
[hθ (x)− hn(x)]−dx and ‖h1/2

n − h1/2
θ
‖2 ≤

∫
|hθ (x)−

hn(x)|dx = 2
∫
[hθ (x)−hn(x)]+dx. Since, [hθ (x)−hn(x)]+ < hθ (x), by the DCT it follows that

‖h1/2
n −h1/2

θ
‖ P→ 0 as n→ ∞. Similarly ‖ f 1/2

m − f 1/2‖ P→ 0 as m→ ∞.

Note that
∫
[ĥ1/2

θ
(x)−h1/2

θ
(x)]2dx=

∫
w1(x)[ f

1/2
m (x)− f 1/2(x)]2dx≤

∫
w1(x)| fm(x)− f (x)|dx.

If (D2) holds then fm− f will have a compact support on which w1(x) is bounded. Therefore,∫
[ĥ1/2

θ
(x)− h1/2

θ
(x)]2dx ≤C1

∫
| fm(x)− f (x)|dx = 2C1

∫
[ f (x)− fm(x)]+dx for some positive

number C1. Since fm
P→ f , by the DCT we have supθ∈Θ ‖ĥ

1/2
θ
−h1/2

θ
‖ P→ 0. If (D3) holds then

Lemma 5.2 gives supθ∈Θ ‖ĥ
1/2
θ
−h1/2

θ
‖ P→ 0.

Next we prove the asymptotic normality of θ̂MHDE . Under condition (D2) we derive in

the next theorem an expression of the bias term θ̂MHDE − θ . Note that the first-order partial

derivatives of w1 given in (4.19) are

∂w1(x)
∂λ

= eα+βx−1,
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∂w1(x)
∂α

= λeα+βx,

∂w1(x)
∂β

= λxeα+βx.

Define symmetric matrix

∆(θ) =
∫ (

∂w1(x)
∂θ

)(
∂w1(x)

∂θ

)> f
w1

(x)dx =


∆11(θ) ∆12(θ) ∆13(θ)

∆12(θ) ∆22(θ) ∆23(θ)

∆13(θ) ∆23(θ) ∆33(θ)

 , (5.10)

where

∆11(θ) =
∫ (

∂w1(x)
∂λ

)2 f
w1

(x)dx =
∫
(eα+βx−1)2 f

w1
(x)dx,

∆22(θ) =
∫ (

∂w1(x)
∂α

)2 f
w1

(x)dx = λ
2
∫

e2α+2βx f
w1

(x)dx,

∆33(θ) =
∫ (

∂w1(x)
∂β

)2 f
w1

(x)dx = λ
2
∫

x2e2α+2βx f
w1

(x)dx,

∆12(θ) =
∫

∂w1(x)
∂λ

∂w1(x)
∂α

f
w1

(x)dx = λ

∫
eα+βx(eα+βx−1)

f
w1

(x)dx,

∆13(θ) =
∫

∂w1(x)
∂λ

∂w1(x)
∂β

f
w1

(x)dx = λ

∫
xeα+βx(eα+βx−1)

f
w1

(x)dx,

∆23(θ) =
∫

∂w1(x)
∂α

∂w1(x)
∂β

f
w1

(x)dx = λ
2
∫

xe2α+2βx f
w1

(x)dx.

Let

AN(θ) =
∫

∂w1

∂θ
(x)

[
f 1/2
m h1/2

n

w1/2
1

(x)− fm(x)

]
dx =


AN1(θ)

AN2(θ)

AN3(θ)

 , (5.11)

where

AN1(θ) =
∫
(eα+βx−1)

[
f 1/2
m h1/2

n

w1/2
1

(x)− fm(x)

]
dx,

AN2(θ) =
∫

λeα+βx

[
f 1/2
m h1/2

n

w1/2
1

(x)− fm(x)

]
dx,

AN3(θ) =
∫

λxeα+βx

[
f 1/2
m h1/2

n

w1/2
1

(x)− fm(x)

]
dx.
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Theorem 5.3. Suppose that θ ∈ int(Θ), K0 in (2.3) has compact support, and assumptions in

Theorem 5.2 hold. Further suppose (D2) holds. Then it follows that

θ̂MHDE −θ = 2
[
∆
−1(θ)+RN

]
AN(θ), (5.12)

where θ̂MHDE is defined by (5.3) and RN is a 3× 3 matrix with elements tending to zero in

probability as N→ ∞.

Proof. From Theorem 5.2 we have θ̂MHDE
P→ θ as N→ ∞. Since t = θ̂MHDE ∈ Θ minimizes

the Hellinger distance between ĥt and hn, θ̂MHDE maximizes 2
∫

ĥ1/2
t (x)h1/2

n (x)dx−
∫

ĥt(x)dx.

Also since K0 has compact support, we have∫
∂

∂ t

[
2ĥ1/2

t (x)h1/2
n (x)dx− ĥt(x)

]∣∣∣∣
t=θ̂MHDE

dx = 0.

For notation simplicity we use θ̂ to denote θ̂MHDE and use ŵ1 to denote w1 in (4.19) with θ

replaced by θ̂MHDE . Let

Mθ (x) = 2ĥ1/2
θ

(x)h1/2
n (x)dx− ĥθ (x),

then by a Taylor expansion of θ̂ at θ it follows that

∫
∂Mθ (x)

∂θ
dx+

[∫
∂ 2Mθ (x)
∂θ∂θ>

dx+RN

]
·
(

λ̂ −λ , α̂−α, β̂ −β

)>
= 0, (5.13)

where, by (D2), RN is a 3×3 matrix with elements tending to zero in probability as N→ ∞.

Direct calculation gives

∂Mθ (x)
∂λ

= (eα+βx−1)

[
f 1/2
m h1/2

n

w1/2
1

(x)− fm(x)

]
, (5.14)

∂Mθ (x)
∂α

= λeα+βx

[
f 1/2
m h1/2

n

w1/2
1

(x)− fm(x)

]
, (5.15)

∂Mθ (x)
∂β

= λxeα+βx

[
f 1/2
m h1/2

n

w1/2
1

(x)− fm(x)

]
, (5.16)

∂ 2Mθ (x)
∂λ 2 = −(eα+βx−1)2

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x), (5.17)
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∂ 2Mθ (x)
∂λ∂α

=
eα+βx(w1(x)+1)

2w3/2
1

f 1/2
m (x)h1/2

n (x)− eα+βx fm(x), (5.18)

∂ 2Mθ (x)
∂λ∂β

=
xeα+βx(w1(x)+1)

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)− xeα+βx fm(x), (5.19)

∂ 2Mθ (x)
∂α2 =

λeα+βx(w1(x)+1−λ )

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)−λeα+βx fm(x), (5.20)

∂ 2Mθ (x)
∂α∂β

=
λxeα+βx(w1(x)+1−λ )

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)−λxeα+βx fm(x), (5.21)

∂ 2Mθ (x)
∂β 2 =

λx2eα+βx(w1(x)+1−λ )

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)−λx2eα+βx fm(x). (5.22)

Since (D2) holds, for (5.17) we have by Theorem 5.2∣∣∣∣∣
∫

(eα+βx−1)2

2w3/2
1 (x)

[
f 1/2
m (x)h1/2

n (x)− f 1/2(x)h1/2
θ

(x)
]

dx

∣∣∣∣∣
≤ C

[∫
f 1/2
m (x)

∣∣∣h1/2
n (x)−h1/2

θ
(x)
∣∣∣dx+

∫
h1/2

θ
(x)
∣∣∣ f 1/2

m (x)− f 1/2(x)
∣∣∣dx
]

≤ C
[∥∥∥h1/2

n −h1/2
θ

∥∥∥+∥∥∥ f 1/2
m − f 1/2

∥∥∥]
P→ 0.

Thus for (5.17),

−
∫

(eα+βx−1)2

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x) P−→ −
∫

(eα+βx−1)2

2w3/2
1 (x)

f 1/2(x)h1/2
θ

(x)dx

= −1
2

∫
(eα+βx−1)2 f

w1
(x)dx

= −1
2

∆11(θ).

(5.23)

For (5.18), similarly we have∫ eα+βx(w1(x)+1)

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)dx P−→
∫ eα+βx(w1(x)+1)

2w3/2
1 (x)

f 1/2(x)h1/2
θ

(x)dx

=
∫ g(x)(w1(x)+1)

2w1(x)
dx

=
1
2
+

1
2

∫ eα+βx

w1(x)
f (x)dx
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and ∣∣∣∣∫ eα+βx [ fm(x)− f (x)]dx
∣∣∣∣ ≤ C

∫ ∣∣∣[ f 1/2
m (x)− f 1/2(x)

][
f 1/2
m (x)+ f 1/2(x)

]∣∣∣dx

≤ C
∥∥∥ f 1/2

m − f 1/2
∥∥∥ ·∥∥∥ f 1/2

m + f 1/2
∥∥∥

≤ 2C
∥∥∥ f 1/2

m − f 1/2
∥∥∥

P→ 0,

i.e.
∫

eα+βx fm(x)dx P→
∫

eα+βx f (x)dx. Thus for (5.18),

∫ eα+βx(w1(x)+1)

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)− eα+βx fm(x)dx

P−→ −1
2

λ

∫
eα+βx(eα+βx−1)

f
w1

(x)dx = −1
2

∆12(θ).

(5.24)

Similarly for (5.19)-(5.22),∫ xeα+βx(w1(x)+1)

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)− xeα+βx fm(x)dx

P−→ −1
2

λ

∫
xeα+βx(eα+βx−1)

f
w1

(x)dx = −1
2

∆13(θ),

(5.25)

∫
λeα+βx(w1(x)+1−λ )

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)−λeα+βx fm(x)dx

P−→ −1
2

λ
2
∫

e2α+2βx f
w1

(x)dx = −1
2

∆22(θ),

(5.26)

∫
λxeα+βx(w1(x)+1−λ )

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)−λxeα+βx fm(x)dx

P−→ −1
2

λ
2
∫

xe2α+2βx f
w1

(x)dx = −1
2

∆23(θ),

(5.27)

∫
λx2eα+βx(w1(x)+1−λ )

2w3/2
1 (x)

f 1/2
m (x)h1/2

n (x)−λx2eα+βx fm(x)dx

P−→ −1
2

λ
2
∫

x2e2α+2βx f
w1

(x)dx = −1
2

∆33(θ).

(5.28)

Now together with (5.17)-(5.28), (5.13) is reduced to

AN(θ)+

[
−1

2
∆(θ)+RN

](
θ̂ −θ

)
= 0,

where, ∆(θ) and AN(θ) are given in (5.10) and (5.11) respectively. Hence the result.
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We now state the asymptotic distribution of the proposed MHDE θ̂MHDE . The following

conditions are made in the next theorem.

Let {αN} be a sequence of positive numbers such as αN → α as N→ ∞ and

(C0) f has infinite support (−∞,∞).

(C1) The second derivative of f exists.

(C2) n
N → ρ ∈ (0,1) as N→ ∞.

(C3) K0 and K1 in (2.3) and (2.4) respectively are bounded symmetric densities with

support [−a0,a0] and [−a1,a1] respectively, where 0 < a0,a1 < ∞.

(C4) All the elements in both ∆(θ) and ∆̄(θ) are finite, where ∆(θ) is defined in

(5.10) and ∆̄(θ) =
∫ (∂w1(x)

∂θ

)(
∂w1(x)

∂θ

)>
f (x)dx.

(C5) The second derivative of f exists and satisfies for i = 1,2,3 that as N→ ∞,

b2
m

∫
ε

2
Ni(x)

f
w1

(x) sup
|t|≤a0

f (2)(x+ tbm)

f (x)
dx = O(1),

where εN(x) =
∂w1(x)

∂θ
I{|x|>αN}.

(C6)

N ·P(|X1|> αN−a0bm)→ 0 as N→ ∞,

N ·P(|Y1|> αN−a1bn)→ 0 as N→ ∞.

(C7) The second derivatives of f exists and satisfies

N−1/2b−1
n

∫
|δN(x)|w−1

1 (x) sup
|t|≤a1

hθ (x+ tbn)

hθ (x)
dx→ 0 as N→ ∞,

N1/2b4
n

∫
|δN(x)| f (x) sup

|t|≤a1

[
h(2)

θ
(x+ tbn)

hθ (x)

]2

dx→ 0 as N→ ∞,

N−1/2b−1
m

∫
|δN(x)| sup

|t|≤a0

f (x+ tbm)

f (x)
dx→ 0 as N→ ∞,
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N1/2b4
m

∫
|δN(x)| f (x) sup

|t|≤a0

[
f (2)(x+ tbm)

f (x)

]2

dx→ 0 as N→ ∞,

where δN(x) =
∂w1(x)

∂θ
I{|x|≤αN}.

(C8) The second derivatives of f exists and satisfies

N1/2b2
n

∫
|δN(x)| f (x) sup

|t|≤a1

|h(2)
θ
(x+ tbn)|
hθ (x)

dx→ 0 as N→ ∞,

N1/2b2
m

∫
|δN(x)| f (x) sup

|t|≤a0

| f (2)(x+ tbm)|
f (x)

dx→ 0 as N→ ∞.

(C9)

sup
|x|≤αN

sup
|t|≤a1

hθ (x+ tbn)

hθ (x)
= O(1) as N→ ∞,

sup
|x|≤αN

sup
|t|≤a0

f (x+ tbm)

f (x)
= O(1) as N→ ∞.

(C10)

b2
n

∫
I{|x|≤αN}hθ (x) sup

|t|≤a1

[
∂ 2 logw1(y)

∂θ∂y
|y=x+tbn

]2

dx→ 0 as N→ ∞,

b2
m

∫
I{|X |≤αN} f (x) sup

|t|≤a0

[
∂ 2w1(y)

∂θ∂y
|y=x+tbm

]2

dx→ 0 as N→ ∞.

(C11) The second derivative of f exists and satisfies

N1/2b2
m

∫
|εN(x)| f (x) sup

|t|≤a0

| f (2)(x+ tbm)|
f (x)

dx = o(1) as N→ ∞.

Theorem 5.4. Suppose that θ̂MHDE defined in (5.3) satisfies (5.12). Further suppose that

conditions (C0)− (C9) hold. Then the asymptotic distribution of
√

N(θ̂MHDE−θ) is N(0,Σ),

where Σ is defined by

Σ = ∆
−1(θ)

[
1

1−ρ
∆̄(θ)+

1
ρ

∆(θ)

]
∆
−1(θ)

=
1

ρ(1−ρ)
∆
−1(θ)

[
∆(θ)−ρ

(
∆(θ)− ∆̄(θ)

)]
∆
−1(θ)
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with

∆̄(θ) =
∫

∂w1

∂θ
(x)
[

∂w1

∂θ
(x)
]>

f (x)dx, (5.29)

∆(θ) =
∫

∂w1

∂θ
(x)
[

∂w1

∂θ
(x)
]> f

w1
(x)dx. (5.30)

Proof. We give the sketch of the proof here. In order to find the asymptotic distribution of

θ̂MHDE − θ , by (5.12) we only need to find the asymptotic distribution of
√

NAN(θ). Note

that by (5.11),

AN(θ) =
∫

∂w1

∂θ
(x)

[
f 1/2
m h1/2

n

w1/2
1

(x)− fm(x)

]
dx

=
∫

∂w1

∂θ
(x)

f 1/2
m

w1/2
1

(x)
[
h1/2

n (x)−h1/2
θ

(x)
]

dx−
∫

∂w1

∂θ
(x) f 1/2

m (x)
[

f 1/2
m (x)− f 1/2(x)

]
dx

=
∫

∂w1

∂θ
(x)

f 1/2

w1/2
1

(x)
[
h1/2

n (x)−h1/2
θ

(x)
]

dx

+
∫

∂w1

∂θ
(x)

1

w1/2
1 (x)

[
f 1/2
m (x)− f 1/2(x)

][
h1/2

n (x)−h1/2
θ

(x)
]

dx

−
∫

∂w1

∂θ
(x) f 1/2(x)

[
f 1/2
m (x)− f 1/2(x)

]
dx

−
∫

∂w1

∂θ
(x)
[

f 1/2
m (x)− f 1/2(x)

][
f 1/2
m (x)− f 1/2(x)

]
dx.

We can prove that as N→ ∞,

√
N
∫

∂w1

∂θ
(x)

1

w1/2
1 (x)

[
f 1/2
m (x)− f 1/2(x)

][
h1/2

n (x)−h1/2
θ

(x)
]

dx P−→ 0

and
√

N
∫

∂w1

∂θ
(x)
[

f 1/2
m (x)− f 1/2(x)

][
f 1/2
m (x)− f 1/2(x)

]
dx P−→ 0.

Thus we only need to give the asymptotic distribution of

∫
∂w1

∂θ
(x)

f 1/2

w1/2
1

(x)
[
h1/2

n (x)−h1/2
θ

(x)
]

dx

and ∫
∂w1

∂θ
(x) f 1/2(x)

[
f 1/2
m (x)− f 1/2(x)

]
dx

separately as they are independent. Details of the proof is given in Section 5.5.
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5.3 Simulation studies

In this section we carry out a simulation study to examine the finite-sample performance of the

proposed MHDE θ̂MHDE . We consider the same mixture models as in Table 4.1 with the true

parameter values listed there. For each model we consider the same varying mixing proportion

values λ = 0.05,0.2,0.5,0.8,0.95 as in previous chapters. We also use the same sample sizes

m = n = 30 and m = n = 100 and the same number of replications N = 1000.

In the two kernel density estimators fm of f and hn of h in (2.3) and (2.4) respectively, we

use the truncated standard normal function for both K0 and K1. Specifically, we truncate the

standard normal curve at ±2 and rescale it to have total area 1 under the curve, i.e. we use

K(u) =
1

2Φ(2)−1
· 1√

2π
e−

u2
2 I{|u|≤2}

for both K0 and K1. The bandwidths bm and bn defined in (2.8) are used here as in Chapter 2.

In order to find the θ̂MHDE defined in (5.3), we use function “optim” in R statistical software.

We use the same initial estimates of λ , α and β as in Section 4.4. In other words, we use

λ+ as the initial estimate of λ and use the least-squares regression estimate based on model

assumption (4.2) as initial values for α and β . As in previous chapters, for each model we

calculate the bias and MSE of λ̂MHDE , coverage probability of the 95% confidence interval

constructed based on λ̂MHDE using the asymptotic variance defined in Theorem 5.4 and the

misclassification rate MR when the same classification rule as in Section 4.4 is used. The

simulation results are presented in Table 5.1.

From Table 5.1 we can see that, as expected, θ̂MHDE has smaller bias, MSE and MR for

larger sample sizes than for smaller sample sizes. The λ̂MHDE always gives small bias and

MSE, especially for larger sample sizes, while α̂MHDE and β̂MHDE generally give relatively

large bias and MSE even for larger sample sizes. Nevertheless, the MR is reasonably close to

OMR, the optimal misclassification rate assuming the probability function p in (1.3) is known,

regardless of sample size. Even for M5 where the assumption (4.2) doesn’t hold, the MHDE

of λ based on (4.2) performs surprisingly well and the MR doesn’t deviate from OMR too
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much for large sample sizes. We also observe that when the two components are close to

each other in terms of location (M1 and M3), the estimated mixing proportion λ̂MHDE has

larger bias and MSE than the cases when the two components are far apart (M2 and M4).

However, the bias and MSE of α̂MHDE and β̂MHDE for M2 are larger than those for M1. This

could be explained by the larger magnitude of the true α and β values for M2 than for M1.

The coverage probability of the 95% confidence interval based on λ̂MHDE is higher than the

nominal level 95% for most of the cases.

When the MHDE θ̂MHDE we proposed in this chapter is compared with the MLE θ̂MLE

proposed in Chapter 4 based on the same assumption (4.2), they have similar performance for

estimating λ , MHDE has a bit better performance than MLE for estimating α while MHDE

has much better performance than MLE for estimating β . The MHDE and MLE give com-

parable misclassification rate MR. Even though MHDE and MLE have similar efficiency in

terms of bias, MSE and MR, MLE generally suffers from lack of robustness in the presence

of outliers. We investigate the robustness properties of the MHDE in the next section.
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5.4 Robustness study and comparison

An estimator being robust implies that the estimator is resistant to outlying observations and

model misspecification. Estimators with good robustness properties are not heavily affected by

small departures from model assumptions (presence of outliers is one type) while estimators

with poor robustness are badly affected. For example, the sample median is considered to

be more robust than the sample mean because outliers have much less impact on the sample

median than on the sample mean. In statistics, many classical estimation methods, such as

MLE and least-squares estimation, depend heavily on model assumption. However in real

life sometimes these model assumptions are not met, especially in the presence of outliers.

Therefore, it is important to provide robust statistics which can tolerate outliers and deviations

from model assumption.

In this section, we investigate the robustness properties of MHDE. We also compare the

robustness of λ̂MHDE with that of all other estimators we proposed in previous chapters, i.e.

λ̂ in Chapter 2, λ̂L in Chapter 3 and λ̂MLE in Chapter 4. We can only look at the estimation

of λ but not α and β in model (4.3), since this model is not assumed for the two estimations

in Chapters 2 and 3. Specifically, we examine the behaviour of all the proposed estimators

when data are contaminated by a single outlying observation. Presence of several outliers will

be similar and thus omitted here. Note that the outlying observation can be in either the first

sample from f (x) or in the second sample from the mixture h(x). Here we only consider the

case when the outlier comes from h(x) , similar results apply to the other case as well. We

look at the change in estimate before and after data contamination. A small change in estimate

indicates that the estimator is not influenced much by outliers and thus is considered robust.

For this purpose, the α-influence function (α-IF) given in Beran (1997) is an appropriate

measure of the change in estimate. However its application in mixture context is very difficult,

as discussed in Karlis and Xekalaki (1998). Therefore, we use an adaptive version of α-IF as

in Lu et al. (2003) which uses the change in estimate, before and after outlying observations
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are included, divided by contamination rate (proportion of outlying observations).

In our simulation we consider the same mixture models listed in Table 2.1 or Table 4.1. For

each mixture model, we consider varying λ values and two sets of sample sizes m = n = 30

and m = n = 100 as in previous chapters. Take model M1 for example, after drawing two

independent samples with one from N(0,1) and the other from the mixture (1−λ )N(0,1)+

λN(1,1), we replace the last observation generated from the mixture with a single outlier, an

integer with range [−30,20]. Thus the contamination rate is 1/60 for m = n = 30 and 1/200

for m = n = 100. Then the α-IF is calculated by

IF(x) =
W ((Xi)

m
i=1,(x,Yi)

n−1
i=1 )−W ((Xi)

m
i=1,(Yi)

n
i=1)

1/N

over 100 replications, where N = 60 or 200 and W is any estimator of λ based on the samples.

In our study, W is either λ̂ , λ̂L, λ̂MLE or λ̂MHDE . Similar procedure is used for mixture of

Poisson components with outliers varying over the range [0,20]. The simulation results are

presented in Figures 5.1-5.3 for both m = n = 30 and m = n = 100. Figure 5.1 is for model

M1 with λ = 0.15 and 0.55, Figure 5.2 is for M2 with λ = 0.25 and 0.75, and Figure 5.3 is

for M3 λ = 0.25 and 0.75. The results for other models and λ values are very similar and thus

omitted.

From Figures 5.1-5.3 we can see that no matter for which model and what sample size,

λ̂MLE always performs the worst, λ̂MHDE performs the best and the behavior of λ̂ , λ̂L and

λ̂MHDE are quite similar. The α-IF of λ̂MLE is generally unbounded while that of λ̂ , λ̂L and

λ̂MHDE seems bounded when the outlying observation increases in both directions for mixture

of normals and in the right direction for mixture of Poissons. This indicates that λ̂MLE is

generally not resistant to outliers while λ̂ , λ̂L and λ̂MHDE are. The bad performance of λ̂MLE

is mostly for when the outlying observation is bigger than 10. When the outlying observation

is less than 10, the performance of λ̂MLE is generally ok and is similar to that of other three

estimators. The α-IFs of λ̂ , λ̂L and λ̂MHDE are almost constants for outliers beyond the range

[−10,5] for mixture of normals and [0,5] for mixture of Poissons, though the constants are
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of different magnitude, and they fluctuate within the ranges. When λ̂ , λ̂L and λ̂MHDE are

compared, λ̂L behaves the worst in terms of having largest α-IF for mixture of normals and λ̂

behaves the worst for mixture of Poissons. The performance of λ̂ follows closely with λ̂MHDE

except for possible large spikes at around −2 for mixture of normals and possible large α-IF

for mixture of Poissons. In summary, λ̂MHDE has the best robustness, followed by λ̂ and then

λ̂L, and λ̂MLE doesn’t have robustness against outliers.

5.5 Proof of asymptotic normality

To prove the asymptotic normality of θ̂MHDE stated in Theorem 5.4, we need a series of

lemmas presented below.

Lemma 5.3. Suppose that (C3)-(C6) hold. Then as N→ ∞,

N1/2
∫

εN(x)w
−1/2
1 (x) f 1/2

m (x)h1/2
n (x)dx P−→ 0, (5.31)

N1/2
∫

εN(x) f 1/2(x) f 1/2
m (x)dx P−→ 0. (5.32)

Proof. By the Cauchy-Schwarz Inequality,

N ·E
[∫

εNi(x)w
−1/2
1 f 1/2

m (x)h1/2
n (x)dx

]2

≤ N ·E
[∫

ε
2
Ni(x)w

−1
1 (x) fm(x)dx

]
·E
[∫

I{|x|>αN}hn(x)dx
]

= N ·∆1 ·∆2, say.
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Figure 5.1: The α-IFs of λ̂ (dotted), λ̂L (dot-dashed), λ̂MLE (dashed) and λ̂MHDE (solid) for
mixture model M1 (1−λ )N(0,1)+λN(1,1): (a) λ = 0.15 and m = n = 30; (b) λ = 0.15 and
m = n = 100; (c) λ = 0.55 and m = n = 30; (d) λ = 0.55 and m = n = 100.
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Figure 5.2: The α-IFs of λ̂ (dotted), λ̂L (dot-dashed), λ̂MLE (dashed) and λ̂MHDE (solid) for
mixture model M2 (1−λ )N(0,1)+λN(5,1): (a) λ = 0.25 and m = n = 30; (b) λ = 0.25 and
m = n = 100; (c) λ = 0.75 and m = n = 30; (d) λ = 0.75 and m = n = 100.
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Figure 5.3: The α-IFs of λ̂ (dotted), λ̂L (dot-dashed), λ̂MLE (dashed) and λ̂MHDE (solid) for
mixture model M3 (1−λ )Po(2)+λPo(4): (a) λ = 0.25 and m = n = 30; (b) λ = 0.25 and
m = n = 100; (c) λ = 0.75 and m = n = 30; (d) λ = 0.75 and m = n = 100.
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By a Taylor expansion and assumptions (C4) and (C5), it follows that

|∆1| =
∫ ∫

ε
2
Ni(x)w

−1
1 (x)

1
bm

K0(
y− x
bm

) f (y)dydx

=
∫

ε
2
Ni(x)w

−1
1 (x)

∫ a0

−a0

K0(t) f (x+ tbm)dtdx

=
∫

ε
2
Ni(x)w

−1
1 (x)

∫ a0

−a0

K0(t)

[
f (x)+ f (1)(x)tbm +

f (2)

2
(ξ )t2b2

m

]
dtdx

≤
∫ [

∂w1(x)
∂θ

]2

i

f
w1

(x)dx+
1
2

b2
m

∫
ε

2
Ni(x)w

−1
1 (x)| f (2)(x+ tbm)|dx

∫ a0

−a0

t2K0(t)dt

≤ ∆ii(θ)+
1
2

b2
m

∫
ε

2
Ni(x)

f
w1

(x) sup
|t|≤a0

| f (2)(x+ tbm)|
f (x)

dx
∫ a0

−a0

t2K0(t)dt

= O(1),

i.e., ∆1 is bounded. On the other hand,

|∆2| =
∫ ∫

I{|x|>αN}
1
bn

K1(
y− x

bn
)hθ (y)dydx

=
∫ ∫

I{|x|>αN}K1(t)hθ (x+ tbn)dtdx

=
∫ a1

−a1

K1(t)
∫
|y−tbn|>αN

hθ (y)dydt

≤
∫ a1

−a1

K1(t)dt
∫
|y|>αN−a1bn

hθ (y)dy

= P(|Y1|> αN−a1bn).

From (C6) we have N ·E[
∫

εNi(x)w
−1/2
1 (x) f 1/2

m (x)h1/2
n (x)dx]2→ 0 i.e., (5.31) holds.

By the Cauchy-Schwarz Inequality and a similar argument we have

N ·E
[∫

εNi(x) f 1/2(x) f 1/2
m (x)

]2

≤ N ·
∫ [

∂w1(x)
∂θ

]2

f (x)dx ·E
[∫

I{|x|>αN} fm(x)dx
]

= N ·
∫ [

∂w1(x)
∂θ

]2

f (x)dx
∫ ∫

I{|x|>αN}
1

bm
K0(

y− x
bm

) f (y)dydx

≤ N ·
∫ [

∂w1(x)
∂θ

]2

f (x)dx ·P(|X1|> αN−a0bm) ,

and (5.32) follows by assumptions (C4) and (C6).

Lemma 5.4. Suppose (C0)-(C3) and (C7) hold. Then as N→ ∞,

N1/2
∫
|δN(x)|w−1

1 (x)
[
h1/2

n (x)−h1/2
θ

(x)
]2

dx P−→ 0, (5.33)
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N1/2
∫
|δN(x)|

[
f 1/2
m (x)− f 1/2(x)

]2
dx P−→ 0. (5.34)

Proof. Note that

N1/2
∫
|δN(x)|w−1

1 (x)
[
h1/2

n (x)−h1/2
θ

(x)
]2

dx

≤ N1/2
∫
|δN(x)|w−1

1 (x)h−1
θ
(x) [hn(x)−hθ (x)]

2

≤ 2
{

N1/2
∫
|δN(x)|w−1

1 (x)h−1
θ
(x) [hn(x)−E(hn(x))]

2 dx

+N1/2
∫
|δN(x)|w−1

1 (x)h−1
θ
(x) [E(hn(x))−hθ (x)]

2 dx
}

= 2(B1N +B2N), say.

By conditions (C0), (C2), (C3) and (C7), we have, as N→ ∞,

E[B1N ] = N1/2
∫
|δN(x)|w−1

1 (x)h−1
θ
(x)Var[hn(x)]dx

≤ N1/2
∫
|δN(x)|w−1

1 (x)h−1
θ
(x)

1
nb2

n

∫
K2

1 (
y− x

bn
)hθ (y)dydx

= N1/2n−1b−1
n

∫
|δN(x)|w−1

1 (x)
∫ a1

−a1

K2
1 (t)hθ (x+ tbn)h−1

θ
(x)dtdx

= N1/2n−1b−1
n

∫
|δN(x)|w−1

1 (x) sup
|t|≤a1

hθ (x+ tbn)

hθ (x)
dx
∫ a1

−a1

K2
1 (t)dt

→ 0

i.e., B1N
P−→ 0 as N → ∞. Using a Taylor expansion and conditions (C1) and (C7) we have,

as N→ ∞,

|B2N | = N1/2
∫
|δN(x)|w−1

1 (x)h−1
θ
(x)
[∫ a1

−a1

K1(t) [hθ (x+ tbn)−hθ (x)]dt
]2

dx

≤ 1
4

N1/2b4
n

∫
|δN(x)|w−1

1 (x)h−1
θ
(x)

[
sup
|t|≤a1

|h(2)
θ
(x+ tbn)|

∫ a1

−a1

t2K1(t)dt

]2

dx

≤ 1
4

N1/2b4
n

∫
|δN(x)| f (x) sup

|t|≤a1

[
h(2)

θ
(x+ tbn)

hθ (x)

]2

dx
(∫ a1

−a1

t2K1(t)dt
)2

→ 0

Hence (5.33) holds. Using similar idea one can prove (5.34).

Lemma 5.5. Suppose (C0)-(C8) hold. Then the asymptotic distribution of

N1/2
∫

∂w1(x)
∂θ

f 1/2
m (x)

w1/2
1 (x)

[
h1/2

n (x)−h1/2
θ

(x)
]

dx (5.35)
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is the same as that of

N1/2
∫

δN(x)
f 1/2(x)

w1/2
1 (x)

[
h1/2

n (x)−h1/2
θ

(x)
]

dx.

Proof. Lemma 5.4 gives

N1/2
∫

εN(x)w
−1/2
1 (x) f 1/2

m (x)
[
h1/2

n (x)−h1/2
θ

(x)
]

dx→ 0,

thus the asymptotic distribution of (5.35) is the same as that of

N1/2
∫

δN(x)w
−1/2
1 (x) f 1/2

m (x)
[
h1/2

n (x)−h1/2
θ

(x)
]

dx→ 0.

If we can prove N1/2 ∫ δN(x)w
−1/2
1 (x)

[
f 1/2
m (x)− f 1/2(x)

][
h1/2

n (x)−h1/2
θ

(x)
]

dx P→ 0, then

the result. By Cauchy-Schwarz inequality and Lemma 5.4,{
N1/2

∫
δN(x)w

−1/2
1 (x)

[
f 1/2
m (x)− f 1/2(x)

][
h1/2

n (x)−h1/2
θ

(x)
]

dx
}2

≤ N1/2
∫
|δN(x)|

[
f 1/2
m (x)− f 1/2(x)

]2
dx ·N1/2

∫
|δN(x)|w−1

1 (x)
[
h1/2

n (x)−h1/2
θ

(x)
]2

dx

P→ 0.

Lemma 5.6. Suppose (C4) and (C6) hold. Then as N→ ∞,

N1/2
∫
|εN(x)| f (x)dx −→ 0,

N1/2 1
n

n

∑
i=1

εN(Yi)w−1
1 (Yi)

P−→ 0,

N1/2 1
m

m

∑
i=1

εN(Xi)
P−→ 0.

Proof. By the Cauchy-Schwarz inequality and conditions (C4) and (C6),

N1/2
∫
|εN(x)| f (x)dx ≤

[
N
∫

I{|x|>αN}hθ (x)dx
]1/2

[∫ (
∂w1(x)

∂θ

)2 f
w1

(x)dx

]1/2

= [N ·P(|Y1|> αN)]
1/2

[∫ (
∂w1(x)

∂θ

)2 f
w1

(x)dx

]1/2

→ 0.
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It follows that

E

∣∣∣∣∣N1/2 1
n

n

∑
i=1

εN(Yi)w−1
1 (Yi)

∣∣∣∣∣ ≤ E

[
N1/2 1

n

n

∑
i=1
|εN(Yi)|w−1

1 (Yi)

]
= N1/2

∫
|εN(x)| f (x)dx

→ 0,

i.e. N1/2 1
n ∑

n
i=1 εN(Yi)w−1

1 (Yi)
P−→ 0. Similarly,

E

∣∣∣∣∣N1/2 1
m

m

∑
i=1

εN(Xi)

∣∣∣∣∣ ≤ E

[
N1/2 1

m

m

∑
i=1
|εN(Xi)|

]
= N1/2

∫
|εN(x)| f (x)dx

→ 0,

i.e. N1/2 1
m ∑

m
i=1 εN(Xi)

P−→ 0.

Lemma 5.7. Suppose (C0)-(C4) and (C8)-(C10) hold. Then as N→ ∞,

N1/2

[∫
δN(x)w−1

1 (x)hn(x)dx− 1
n

n

∑
i=1

δN(Yi)w−1
1 (Yi)

]
P−→ 0,

N1/2

[∫
δN(x) fm(x)dx− 1

m

m

∑
i=1

δN(Xi)

]
P−→ 0.

Proof. We will only give the proof of the second convergence and the proof of the first con-

vergence is similar. Let

DNi = N1/2

[∫
δNi(x) fm(x)dx− 1

m

m

∑
i=1

δNi(Xi)

]
,

then by (C8),

|E(DNi)| = N1/2
∣∣∣∣∫ δNi(x)E[ fm(x)]dx−

∫
δNi(x) f (x)dx

∣∣∣∣
= N1/2

∣∣∣∣∫ δNi(x)
∫ a0

−a0

K0(t)[ f (x+ tbm)− f (x)]dtdx
∣∣∣∣

≤ N1/2b2
m

∫
|δNi(x)| f (x) sup

|t|≤a0

| f (2)(x+ tbm)|
f (x)

dx
∫ a0

−a0

t2K0(t)dt

→ 0.
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On the other hand,

Var(DNi) =
N
m

Var
[∫

δNi(x)
1

bm
K0(

x−X1

bm
)dx−δNi(X1)

]
≤ N

m
E
[∫

δNi(x)
1

bm
K0(

x−X1

bm
)dx−δNi(X1)

]2

=
N
m

E
[∫ a0

−a0

K0(t)(δNi(X1 + tbm)−δNi(X1))dt
]2

=
N
m

E
[∫ a0

−a0

K0(t)
(

∂w1(X1 + tbm)

∂θ

)
i

(
I{|X1+tbm|≤αN}− I{|X1|≤αN}

)
dt

+
∫ a0

−a0

K0(t)I{|X1|≤αN}

(
∂w1(X1 + tbm)

∂θ
− ∂w1(X1)

∂θ

)
i

]2

dt

≤ 2N
m

{
E
[∫ a0

−a0

K0(t)
(

∂w1(X1 + tbm)

∂θ

)
i

(
I{|X1+tbm|≤αN}− I{|X1|≤αN}

)
dt
]2

+E
[∫ a0

−a0

K0(t)I{|X1|≤αN}

(
∂w1(X1 + tbm)

∂θ
− ∂w1(X1)

∂θ

)
i

]2

dt

}
=

2N
m

(BNi +CNi), say.

By the Cauchy-Schwarz inequality,

BNi ≤ E

[∫ a0

−a0

K0(t)
(

∂w1(X1 + tbm)

∂θ

)2

i

(
I{|X1+tbm|≤αN}− I{|X1|≤αN}

)2 dt

]
=

∫ a0

−a0

K0(t)
∫ (

∂w1(x+ tbm)

∂θ

)2

i

(
I{|x+tbm|≤αN}− I{|x|≤αN}

)2 f (x)dxdt

=
∫ a0

0
K0(t)

{∫ −αN

−αN−tbm

(
∂w1(x+ tbm)

∂θ

)2

i
f (x)dx+

∫
αN

αN−tbm

(
∂w1(x+ tbm)

∂θ

)2

i
f (x)dx

}
dt

+
∫ 0

−a0

K0(t)

{∫ −αN−tbm

−αN

(
∂w1(x+ tbm)

∂θ

)2

i
f (x)dx+

∫
αN−tbm

αN

(
∂w1(x+ tbm)

∂θ

)2

i
f (x)dx

}
dt.

(5.36)

Note that
(

∂w1(x)
∂θ

)2

i
f (x) is bounded by (C0) and (C4), and therefore by (C9)

∫ a0

0
K0(t)

∫ −αN

−αN−tbm

(
∂w1(x+ tbm)

∂θ

)2

i
f (x)dxdt

=
∫ a0

0
K0(t)

∫ −αN+tbm

−αN

(
∂w1(x)

∂θ

)2

i
f (x− tbm)dxdt

≤ sup
|x|≤αN

sup
|t|≤a0

f (x+ tbm)

f (x)

∫ a0

0
K0(t)

∫ −αN+tbm

−αN

(
∂w1(x)

∂θ

)2

i
f (x)dxdt

= O
(

bm

∫ a0

0
tK0(t)dt

)
→ 0.
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The other three terms on the right hand side of equation (5.36) go to zero using similar argu-

ment. Therefore, BNi→ 0 as N→ ∞.

For CNi, using the Cauchy-Schwarz inequality and condition (C10) we have

CNi ≤ E

[∫ a0

−a0

K0(t)I{|X1|≤αN}

(
∂w1(X1 + tbm)

∂θ
− ∂w1(X1)

∂θ

)2

i

]
dt

=
∫ a0

−a0

K0(t)
∫

I{|x|≤αN}

(
∂w1(x+ tbm)

∂θ
− ∂w1(x)

∂θ

)2

i
f (x)dxdt

≤ b2
m

∫
I{|X |≤αN} f (x) sup

|t|≤a0

[
∂ 2w1(y)

∂θ∂y
|y=x+tbm

]2

i
dx
∫ a0

−a0

t2K0(t)dt

→ 0.

Thus Var(DNi)→ 0 as N→∞ and E(D2
Ni) =Var(DNi)+(E(DNi))

2→ 0. Therefore DNi
P−→

0 as N→ ∞.

Corollary 5.1. Suppose that (C0)-(C10) hold. Then the asymptotic distribution of (5.35) is

N(0, 1
4ρ

∆(θ)) with ∆(θ) defined in (5.30).

Proof. In view of Lemma 5.5, we only need to give the asymptotic distribution of

N1/2 ∫ δN(x)
f 1/2

w1/2
1

(x)
[
h1/2

n (x)−h1/2
θ

(x)
]

dx. By using the following algebraic expression, with

> 0, b≥ 0,

b1/2−a1/2 =
b−a
2a1/2 −

(b1/2−a1/2)2

2a1/2 , (5.37)
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we have that, as N→ ∞,

N1/2
∫

δN(x)
f 1/2

w1/2
1

(x)
[
h1/2

n (x)−h1/2
θ

(x)
]

dx

=
1
2

N1/2
∫

δN(x)w−1
1 (x) [hn(x)−hθ (x)]dx− 1

2
N1/2

∫
δN(x)w−1

1 (x)
[
h1/2

n (x)−h1/2
θ

(x)
]2

dx

=
1
2

N1/2
∫

δN(x)w−1
1 (x) [hn(x)−hθ (x)]dx+op(1) (by Lemma 5.4)

=
1
2

N1/2

[
1
n

n

∑
i=1

δN(Yi)w−1
1 (Yi)−

∫
δN(x) f (x)dx

]

+
1
2

N1/2

[∫
δN(x)w−1

1 (x)hn(x)dx− 1
n

n

∑
i=1

δN(Yi)w−1
1 (Yi)

]
+op(1)

=
1
2

N1/2

[
1
n

n

∑
i=1

δN(Yi)w−1
1 (Yi)−

∫
δN(x) f (x)dx

]
+op(1) (by Lemma 5.7)

=
1
2

N1/2

[
1
n

n

∑
i=1

∂w1(Yi)

∂θ
w−1

1 (Yi)−
∫

∂w1(x)
∂θ

f (x)dx

]
+op(1) (by Lemma 5.6).

Now by CLT the asymptotic distribution of n1/2[1
n ∑

n
i=1

∂w1(Yi)
∂θ

w−1
1 (Yi)−

∫ ∂w1(x)
∂θ

f (x)dx] is

N(0,∆(θ)).

Lemma 5.8. Suppose that (C0)-(C7) and (C11) hold. Then the asymptotic distribution of

N1/2
∫

∂w1(x)
∂θ

f 1/2
m (x)

[
f 1/2
m (x)− f 1/2(x)

]
dx (5.38)

is the same as that of

N1/2
∫

δN(x) f 1/2(x)
[

f 1/2
m (x)− f 1/2(x)

]
dx.

Proof. By a Taylor expansion, condition (C11) and Lemma 5.6, for i = 1,2,3,

E
∣∣∣∣N1/2

∫
εNi(x) fm(x)dx

∣∣∣∣
≤ N1/2

∫
|εNi(x)|

∫ a0

−a0

K0(t) f (x+ tbm)dtdx

≤ N1/2
∫
|εNi(x)|

∫ a0

−a0

K0(t)

[
f (x)+ f (1)(x)tbm +

1
2

t2b2
m sup
|t|≤a0

| f (2)(x+ tbm)|

]
dtdx

≤ N1/2
∫
|εNi(x)| f (x)dx+

1
2

N1/2b2
m

∫
|εNi(x)| f (x) sup

|t|≤a0

| f (2)(x+ tbm)|
f (x)

dx
∫ a0

−a0

t2K0(t)dt

→ 0.
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Thus N1/2 ∫ εN(x) fm(x)
P−→ 0. Combined with (5.32) from Lemma 5.3, we have

N1/2
∫

εN(x) f 1/2
m (x)

[
f 1/2
m (x)− f 1/2(x)

]
dx P−→ 0.

So the asymptotic distribution of (5.38) is same as that of

N1/2
∫

δN(x) f 1/2
m (x)

[
f 1/2
m (x)− f 1/2(x)

]
dx P−→ 0.

The result follows from (5.34) in Lemma 5.4.

Corollary 5.2. Suppose that (C0)-(C11) hold. Then the asymptotic distribution of (5.38) in

N(0, 1
4(1−ρ) ∆̄(θ)) with ∆̄(θ) defined in (5.29).

Proof. The proof is very similar to that of Corollary 5.1. In view of Lemma 5.8, we only need

to give the asymptotic distribution of N1/2 ∫ δN(x) f 1/2(x)[ f 1/2
m (x)− f 1/2(x)]dx. Applying the

same algebraic expression (5.37) we have that, as N→ ∞,

N1/2
∫

δN(x) f 1/2(x)
[

f 1/2
m (x)− f 1/2(x)

]
dx

=
1
2

N1/2
∫

δN(x) [ fm(x)− f (x)]dx+
1
2

N1/2
∫

δN(x)
[

f 1/2
m (x)− f 1/2(x)

]2
dx

=
1
2

N1/2
∫

δN(x)[ fm(x)− f (x)]dx+op(1) (By Lemma 5.4)

=
1
2

N1/2

[
1
m

m

∑
i=1

δN(Xi)−
∫

δN(x) f (x)dx

]
+

1
2

N1/2

[∫
δN(x) fm(x)dx− 1

m

m

∑
i=1

δN(Xi)

]
+op(1)

=
1
2

N1/2

[
1
m

m

∑
i=1

δN(Xi)−
∫

δN(x) f (x)dx

]
+op(1) (By Lemma 5.7)

=
1
2

N1/2

[
1
m

m

∑
i=1

∂w1(Xi)

∂θ
−
∫

∂w1(x)
∂θ

f (x)dx

]
+op(1) (By Lemma 5.6).

Note that by CLT the asymptotic distribution of m1/2[ 1
m ∑

m
i=1

∂w1(Xi)
∂θ
−
∫ ∂w1(x)

∂θ
f (x)dx] is N(0, ∆̄(θ)).

Hence the result.

Proof of Theorem 5.4. By (5.12), we only need to find the asymptotic distribution of AN(θ).

From (5.11) we have,

N1/2
∫

∂w1(x)
∂θ

w−1/2
1 (x) f 1/2

m (x)h1/2
n (x)dx−N1/2

∫
∂w1(x)

∂θ
fm(x)dx

= N1/2
∫

∂w1(x)
∂θ

f 1/2
m (x)

w1/2
1 (x)

[
h1/2

n (x)−h1/2
θ

(x)
]

dx−N1/2
∫

∂w1(x)
∂θ

f 1/2
m (x)

[
f 1/2
m (x)− f 1/2(x)

]
dx.
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Because the two terms on the right hand side of the preceding expression are independent,

we only need to find their individual asymptotic distributions. Then by Corollaries 5.1 and

Corollary 5.2 and Slutsky’s theorem, we have the result.
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Chapter 6

Test of the Semiparametric Model

In this chapter we discuss the validity of the semiparametric mixture model (4.3), or equiva-

lently the model (4.2), with r(x) = x assumed for both Chapters 4 and 5. In Section 6.1, we

construct two Kolmogorov-Smirnov (K-S) type test statistics based on MLE and MHDE that

we proposed in Chapters 4 and 5 respectively. We also discuss how to use bootstrap method

to find the approximate distribution of the constructed test statistics. In Section 6.2 we use

simulation studies to demonstrate the performance of the two tests.

6.1 Kolmogorov-Smirnov tests based on MLE and MHDE

Several goodness-of-fit test statistics for testing the model (4.2) in case-control studies are

available in literature; see, for example, Qin and Zhang (1997), Zhang (1999, 2001 & 2006),

and Deng, Wan and Zhang (2009). Zhang (1999) considered a chi-squared statistic to test the

validity of (4.2) by adapting the goodness-of-fit test of Nikulin-Rao-Robson-Moore. Zhang

(2001) suggested a test based on information matrix which requires high-dimensional matrix

inversion. For a semiparametric finite mixture model where a sample is available from each

component as well as from the mixture, a test based on score statistics is discussed by Zhang

(2006). Deng, Wan and Zhang (2009) proposed an improved goodness-of-fit test introduced by

Zhang (1999) by randomly partitioning the case-control data. Qin and Zhang (1997) proposed

a K-S type statistic based on MLE to test the validity of (4.2) and used a bootstrap sampling

technique to find critical values of the test statistic. In this chapter, we propose similar K-S

type statistics but for our special model (4.3) and based on both MLE and MHDE.

The idea of K-S test statistic is to use the discrepancy between two c.d.f. estimates, one

with the model assumption and the other without, to assess the validity of a model. For our
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model (4.3) with r(x) = x, we can use the empirical c.d.f. based on the first sample Xi’s as the

first estimation and the MLE or MHDE based on both samples Xi’s and Yi’s exploiting (4.3)

as the second. We first look at the special case of model (4.3) when β = 0. Note that α is

only a standardization parameter and α = 0 whenever β = 0. In model (4.3), β = 0 implies

the equality of the two components F and G in the mixture, and thus the equality of F and H.

For testing the equality of two populations, a commonly used test statistic is the K-S statistic.

The two-sample K-S statistic for testing the equality of F and H is given by

sup
t
|F̂(t)− Ĥ(t)| = N

n
sup

t
|F̂(t)− F̃0(t)|, (6.1)

where N = m+n, (T1, . . . ,TN) = (X1, . . . ,Xm,Y1, . . . ,Yn) is the pooled sample, and

F̂(t) =
1
m

m

∑
i=1

I(Xi ≤ t), (6.2)

Ĥ(t) =
1
n

n

∑
i=1

I(Yi ≤ t),

F̃0(t) =
1
N

N

∑
i=1

I(Ti ≤ t).

Note that F̂ and Ĥ are, respectively, the nonparametric MLE of F and H without the assump-

tion of F = H, whereas F̃0 is the nonparametric MLE of F with the assumption of F = H.

Now consider the general case of β 6= 0. Motivated by the construction of K-S statistic 6.1, to

test the validity of model (4.3) with r(x) = x, we propose to use the test statistic

KS = N1/2 sup
t

∣∣F̂(t)− F̃(t)
∣∣ , (6.3)

where the empirical distribution F̂ is given in (6.2) and F̃ is either the MLE or an estimator of

F based on MHDE of θ = (λ ,α,β )> with model assumption (4.3). Recall in Chapter 4, with

pi = dF(Ti) and ρ = n/N, the likelihood function under (4.3) is given by

L(λ ,α,β ) =
m

∏
i=1

dF(xi)
n

∏
j=1

dH(y j) =
N

∏
i=1

pi

n

∏
j=1

[
(1−λ )+λeα+βy j

]
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and the MLE of pi is given by

p̂i =
1

N
[
1+ρλ̂ (eα̂+β̂Ti−1)

] , i =,1, . . . ,N. (6.4)

Now the estimator F̃ of F under model (4.3) is given by

F̃(t) =
N

∑
i=1

p̂iI(Ti ≤ t) =
1
N

N

∑
i=1

I(Ti ≤ t)

1−ρλ̂ +ρλ̂e(α̂ + β̂Ti)
. (6.5)

If the θ̂ = (λ̂ , α̂, β̂ )> in (6.4) and (6.5) is the MLE θ̂MLE we constructed in Chapter 4, then

the resulting F̃MLE is the actual MLE of F under (4.3) and we denote the corresponding test

statistic in (6.3) as KSMLE . This test statistic is essentially the same as that in Qin and Zhang

(1997), but they used it for case-control data instead of our more complicated mixture model

(4.3). Intuitively, we can also use the MHDE θ̂MHDE we proposed in (5.3) of Chapter 5 for θ̂ ,

then we denote the resulting F̃ in (6.5) and KS in (6.3) as F̃MHDE and KSMHDE respectively.

To use the two test statistics KSMLE and KSMHDE to test the validity of model (4.3), we

need to give the distribution of them or at least their approximated distributions. Following the

same idea as in Qin and Zhang (1997), we use bootstrap procedure to find the approximated

distributions and critical values for hypothesis testing. To generate bootstrapping data, we ran-

domly select independent samples X∗i ’s from dF̃(x) and Y ∗i ’s from (1− λ̂ + λ̂eα̂+β̂x)dF̃(x),

where θ̂ and F̃ are either the MLEs θ̂MLE and F̃MLE or the MHDEs θ̂MHDE and F̃MHDE respec-

tively. Note that both X∗i ’s and Y ∗i ’s are selected from the pooled data (T1, . . . ,TN) but with

different probability distribution function. This means that some of the selected X∗i ’s could

be values in the original second sample Yi’s and some of the selected Y ∗i ’s could be values in

the original first sample Xi’s. Let (T ∗1 , . . . ,T
∗

N ) denote the combined bootstrapping sample and

θ̂ ∗ = (λ̂ ∗, α̂∗, β̂ ∗)> be either the MLE or the MHDE based on the bootstrapping samples X∗i ’s

and Y ∗i ’s. Then we can calculate the function in (6.2) based on X∗i ’s, the quantities in (6.4) and

the function in (6.5) based on T ∗i ’s and θ̂ ∗, with results denoted by F̂∗, p̂∗i and F̃∗ respectively.

Then finally the bootstrapping KS test statistic is

KS∗ = N1/2 sup
t

∣∣F̂∗(t)− F̃∗(t)
∣∣ .
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We can generate 1000 bootstrapping samples to give 1000 bootstrapping KS statistic values

for both KSMLE and KSMHDE at the same time. Then the distributions, and thus the critical

values, of KSMLE and KSMHDE can be estimated by these respective 1000 statistic values.

6.2 Simulation study

In our simulation study, we consider model (4.3) with r(x) = (x,x2)> as the collection of

all possible models under consideration. Then we test whether the reduced model (4.3) with

r(x) = x is the actual true model or not. For demonstration purpose, we only consider mixture

of normals H(x) = (1−λ )F(x)+λG(x) with F ∼ N(0,1) and G∼ N(µ,σ2). Then f (x) and

h(x) are related by

hθ (x) =: h(x) =
(

1−λ +λeα+βx+γx2
)

f (x), (6.6)

where

α =−1
2

(
logσ

2 +
µ2

σ2

)
, β =

µ

σ2 , γ =
1
2

(
1− 1

σ2

)
. (6.7)

Note that (6.6) is a special case of (4.3) when r(x) = (x,x2)>. If σ = 1, then γ = 0 and

thus model (4.3) holds with r(x) = x. So testing the validity of model (4.3) with r(x) = x is

equivalent to testing the null hypothesis H0 : γ = 0 under model (6.6). In our simulation study,

we consider γ = 0, −0.9 and −1.5, λ = 0.35 and 0.65, and sample sizes m = n = 30 and

m= n= 100. For simplicity, we just fix µ = 1 and as a result σ = 1, 0.6 and 0.5 for γ = 0,−0.9

and −1.5 respectively. For each λ , γ and sample size considered, we use 500 total number

of replications for our calculation. Within each replication, we use totally 1000 bootstrapping

samples to estimate the distribution and critical value of the test statistics KSMLE and KSMHDE .

We choose different level of significance a = 0.10, 0.05 and 0.01. The simulation results are

presented in Table 6.1. Note that γ = 0 means model (4.3) with r(x) = x is correct and thus

the correspondingly calculated values in Table 6.1 are the estimated significance levels. When

γ 6= 0, model (4.3) with r(x) = x is not correct and thus the correspondingly calculated values
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in Table 6.1 are the estimated powers at that value of γ .

Table 6.1: Estimated significance level and power of KSMLE and KSMHDE .

m = n = 30 m = n = 100
λ γ Significance level KSMLE KSMHDE KSMLE KSMHDE

0.35

0.10 0.040 0.104 0.156 0.186
0 0.05 0.030 0.014 0.122 0.084

0.01 0.002 0.000 0.002 0.002
0.10 0.950 0.860 0.956 0.870

−0.9 0.05 0.904 0.802 0.910 0.710
0.01 0.734 0.410 0.578 0.184
0.10 0.948 0.966 0.958 0.998

−1.5 0.05 0.898 0.912 0.910 0.984
0.01 0.716 0.580 0.536 0.846

0.65

0.10 0.036 0.388 0.096 0.136
0 0.05 0.030 0.170 0.122 0.056

0.01 0.008 0.010 0.002 0.006
0.10 0.970 0.910 0.894 0.928

−0.9 0.05 0.888 0.818 0.708 0.758
0.01 0.464 0.282 0.158 0.120
0.10 0.956 0.876 0.990 0.990

−1.5 0.05 0.858 0.762 0.908 0.944
0.01 0.424 0.302 0.174 0.396

From Table 6.1 we can see that, the two test statistics KSMLE and KSMHDE are quite com-

petitive in terms of achieved significance level and power. The achieved levels of significance

are quite close to the true levels for most of the cases except for the case of KSMHDE with

λ = 0.65 and m = n = 30. The powers of KSMHDE become larger when γ is away from 0

except for the case with λ = 0.65 and m = n = 30. Surprisingly, the powers of KSMLE become

smaller when γ is away from 0 except for the case with λ = 0.65 and m = n = 100. As ex-

pected, when the significance level a decrease, both the observed significance level and power

decrease. For both KSMLE and KSMHDE , the powers are generally high for significance levels

a = 0.10 and 0.05.
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Chapter 7

Data Examples and Discussion

In Section 7.1 we consider two real life data examples and demonstrate the application of

our proposed estimators. In Section 7.2 we summarize the whole thesis and present some

discussion of future work.

7.1 Two real data examples

Example 1: Grain data.

Smith and Vounatsou (1997) analyzed a data where an autoradiography assay was used

to determine the intracellular transfer of small molecules in mouse cells in culture. The as-

say was used to determine the proportion of cells in the test population which were exposed

to radio active materials. The cells in control group were not exposed to radioactivity, but

otherwise were similar in nature. Autoradiograph of the cells can determine the amount of

radio active material in the cell by counting the number of grains, X . Now grains can appear

in autoradiograph due to the presence of radioactive material or due to background fogging.

Hence the proportion of cells with radio active material can only be revealed by comparing

the distribution of grain counts in test sample and that in control sample. This data set is given

in Table 7.1.

This data were originally analyzed by Smith, Smith and Hooper (1986) by fitting a para-

metric Poisson mixture model to density ratio. Later Smith and Vounatsou (1997) proposed

several estimation methods including odds ratio (using two-by-two table), logistic power

model, nonparametric monotone regression, and latent class model. We apply all the four

estimation methods we proposed in Chapters 2-5 for this data and compare them with the es-

timators in Smith and Vounatsou (1997) and Smith, Smith and Hooper (1986). To calculate
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Table 7.1: Frequency distribution for the test group and control group in the grain data.

Number of grains Frequency in recipients Frequency in controls
(X) (test sample from mixture h) (control sample from f )
0 2 3
1 2 6
2 2 12
3 3 16
4 4 8
5 3 11
6 1 9
7 2 5
8 4 9
9 2 5
10 4 5
11 3 1
12 4 3
14 3 0
15 1 0
16 2 0
17 1 1
18 2 0
>19 49 0
Total 94 94

a 95% confidence interval, we use the bootstrap method with 1000 bootstrapping samples to

estimate the standard deviation of an estimator. Both the point and interval estimation results,

for the proportion of cells in the test population which were exposed to radio active materi-

als, are given in Table 7.2. From Table 7.2 we observe that our proposed methods give very

similar point estimate of λ in comparison with the method by Smith et al. (1986) and the

several estimators presented in Smith and Vounatsou (1997). In addition, all of the four es-

timators we proposed give reasonable confidence intervals strictly within the range [0,1] and

with relatively smaller widths. Comparatively, the methods based on Poisson mixture, two-

by-two table and monotone logistic give very wide confidence intervals with bound either 0

or 1. Also in Table 7.2 the confidence interval in the parentheses for λ̂MLE and λ̂MHDE are cal-

culated using the asymptotic covariance matrices given in Theorems 4.2 and 5.4 respectively.
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From the results we see that bootstrap approximation is quite accurate.

Table 7.2: Point and interval estimation of the proportion for the grain data.

Method Estimate 95% confidence interval
Poisson mixture (Smith, Smith and Hooper, 1986) 0.77 0.00−0.91

Two-by-two table (Smith and Vounatsou, 1997) 0.20 0.00−1.00
Logistic power (Smith and Vounatsou, 1997) 0.61 0.58−0.64

Monotone logistic (Smith and Vounatsou, 1997) 0.74 0.61−1.00
Latent class (Smith and Vounatsou, 1997) 0.73 0.63−0.83

λ̂ based on c.d.f.s 0.78 0.68−0.87
λ̂L based on multinomial approximation 0.79 0.58−0.88

λ̂MLE based on semiparametric MLE 0.75 0.61−0.88(0.60−0.89)
λ̂MHDE based on semiparametric MHDE 0.76 0.64−0.92(0.65−0.88)

Example 2: Malaria data.

We also study a clinical malaria data set discussed in Vounatsou, Smith and Smith (1998).

Vounatsou, Smith and Smith (1998) considered a Bayesian approach to estimate the proba-

bilities of children with different level of parasitaemia having fever due to malaria. Clinical

malaria is diagnosed by measuring the parasite densities in a child’s body who has fever. They

formulated the parasite densities in children with fever using a two-component mixture model,

where one component represents the parasite densities in children without clinical malaria ( f )

and the other with clinical malaria (g). Parasite levels in children from the community are

available and are used as a training sample, i.e. a sample that comes from the component of

the mixture corresponding to children without clinical malaria ( f ) but who may have parasites.

The mixing proportion λ represents the proportion of children whose fever is attributable to

malaria.

This data were first described in Kitua et al. (1996). The data arose from repeated cross-

sectional surveys of parasitaemia and fever among 426 children up to one year old resided in

a village in Kilombero district in Tanzania. A subset of this data was analyzed by Vounatsou,

Smith and Smith (1998) where they considered children aged between 6 and 9 months and

two seasons: the wet season (January-June) during which the mosquito population, and hence
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exposure to malaria infection, is high, and the dry season (July-December) during which the

mosquito population is lower. The original data were grouped into 10 categories and the

parasite level refers to the midpoint of each category. The data is given in Table 7.3.

Table 7.3: Frequency distribution of parasite density for children aged between 6 and 9 months
in the malaria data.

Category Wet Season Frequency Dry Season Frequency
Parasite level f h Parasite level f h

1 0 43 60 0 43 42
2 3251 40 58 11370 68 116
3 9673 3 14 34029 8 30
4 16095 3 13 56689 2 16
5 22518 2 10 79348 0 7
6 28940 1 8 102008 0 7
7 35362 0 7 124668 0 6
8 41785 1 6 147327 0 2
9 48207 1 6 169987 0 3
10 225685 0 69 290634 0 16

Total 94 251 122 245

We apply our proposed methods, λ̂L based on multinomial approximation and the semi-

parametric MLE λ̂MLE based on model (4.3), to this data and compare them with the Bayesian

approach proposed by Vounatsou, Smith and Smith (1998). Note that this is a discretized data,

so kernel smoothing is not appropriate and as a result the λ̂ based on c.d.f.s and the semipara-

metric MHDE λ̂MHDE are not appropriate and thus not applied to this data as they use kernel

density estimations. The estimation results are given in Table 7.4. The numbers in parentheses

are the estimated standard errors of the corresponding estimates based on 500 bootstrapping

samples. From Table 7.4 we can see that both λ̂L and λ̂MLE give consistent estimates with that

of the Bayesian approach in Vounatsou, Smith and Smith (1998).
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Table 7.4: The estimates of λ̂L, λ̂MLE and the Bayesian method for the malaria data.

Method Wet Season Dry Season
λ̂L 0.435 (0.083) 0.349 (0.102)

λ̂MLE 0.461 (0.093) 0.330 (0.191)
Bayesian 0.444 (0.054) 0.305 (0.118)

7.2 Summary and discussion

In this thesis we studied a two-component mixture model (1.2) with a stochastic dominance

constraint. We first proposed two nonparametric estimators with one based on kernel c.d.f.

estimations (λ̂ ) and the other the MLE based on multinomial approximation (λ̂L). The λ̂ can

be easily calculated and gives relatively small bias and MSE for large sample sizes. However

for small sample sizes it doesn’t show good efficiency for mixtures of discrete distributions or

distributions with different support. We also computed the misclassification rate (MR) based

on a simple classification rule (0.5 threshhold) and compared it with the optimal misclassi-

fication rate (OMR) when the classification likelihood function p in (1.3) is assumed known

completely. It turns out that the MR of λ̂ is quite close to the OMR. We next proposed λ̂L,

the MLE based on multinomial approximation. This estimator gives slightly improved perfor-

mance in terms of smaller bias and MSE over λ̂ . We lose some information in multinomial

approximation as the original data is grouped. One disadvantage of this method is that the dis-

cretization is somewhat arbitrary and results in higher MR than λ̂ . Some theoretical results,

such as model identifiability and estimation consistency, are discussed for both estimators.

As nonparametric mixture model generally suffers from identifiability problem, we con-

sider a semiparametric structure (4.2) for the two components. For the resulting two-sample

semiparametric mixture model (4.3), we constructed the MLE λ̂MLE for which we derived the

asymptotic distribution. This estimator gives smaller bias, MSE and MR than the two nonpara-

metric estimators λ̂ and λ̂L. MLE is known to have good efficiency, but it lacks in robustness.

Thus we proposed a more robust MHDE λ̂MHDE under the same model (4.3). We proved that
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λ̂MHDE is consistent and asymptotically normally distributed. The MHDE performs competi-

tively with MLE in terms of bias, MSE and MR. In order to compare the robustness of the four

estimators we proposed, we used α-IF to show that the two estimators λ̂ and λ̂MHDE based on

kernel smoothing technique are more robust than the two MLEs λ̂L and λ̂MLE in the presence

of outlying observations. Since both λ̂MLE and λ̂MHDE are based on the assumption of the

semiparametric structure (4.2), we constructed two Kolmogorov-Smirnov type test statistics,

one based on λ̂MLE and the other based on λ̂MHDE , to test the validity of (4.2). Bootstrap

technique was used to approximate the distributions of the test statistics. Both test statistics

show promising results in our simulation study.

For future work, I may consider to use minimum profile Hellinger distance estimation

(MPHDE) for the semiparametric mixture model (4.3). Wu and Karunamuni (2015) first in-

troduced the profile Hellinger distance particularly for semiparametric models and investigated

the MPHDE for semiparametric model of general form. Wu and Karunamuni (2015) proved

that the MPHDE is as robust as MHDE and achieves full efficiency at the true model. Wu, Yao

and Xiang (2017) applied this MPHDE for a two-component semiparametric location-shifted

mixture model. Xiang, Yao and Wu (2014) proposed the MPHDE for different semiparamet-

ric mixture model where one component is known up to some unknown parameters while

the other component is unspecified with unknown location parameter. Another direction to

approach the estimation problem of the two-component mixture model could be Bayesian

method. Vounatsou, Smith and Smith (1998) applied Gibbs sampling approach to estimate the

unknown mixing proportion in a two-component mixture model with discretized data.
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