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ABSTRACT 
We examine how viewers in virtual reality (VR) environments 
interact with simple data visualizations at scales ranging from 
hand-sized to room-sized. We also explore how the addition of 
virtual annotation and filtering tools affects how viewers solve 
basic data analysis tasks. We report on two studies, inspired by 
previous examinations of data physicalizations. The first study 
investigated how three visualization sizes, including hand-, table-, 
and room-scale versions, impact viewers’ problem-solving 
behavior. A second study examined how interactive annotation 
and filtering tools might support new modes of use that transcend 
the limitations of physical representations. Our results highlight 
challenges associated with extreme scales, especially those that 
require navigation techniques other than physical locomotion, 
and hint at the potential of interactive annotation and filtering 
tools in VR visualization environments. 
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1 INTRODUCTION 
New hardware and fabrication technologies are increasingly 
making it possible for data visualizations to transcend the limits 
of page and screen. Immersive visualization tools [6] promise to 
use virtual reality (VR), augmented reality (AR), and other 
technologies to embed representations of data in rich 
environments or in the context of everyday tasks. Meanwhile 
work on data physicalization has highlighted the potential of 
instantiating representations of data as real objects in physical 
spaces [20]. Yet the tradeoffs associated with representing data 
using these kinds of highly immersive virtual and physical 
representations remain poorly understood.  

Early explorations of data physicalizations suggest that their 
tangible nature allows viewers to inspect, mark, and manipulate 
them more effectively than on-screen versions [18] and that 
viewers may find them more memorable than visualizations on 
paper [26]. VR and AR tools, meanwhile, lack the potential for 
tactile manipulation, but offer the potential for visualizations that 
transcend the limits of physical reality. Because they are not 
constrained by manufacturing complexity or even the limitations 
of real-world physics, visualizations on these platforms can easily 
be created in scales and configurations that would be impossible 
with physical objects. Moreover, they can support new kinds of 
physical interaction and manipulation, allowing viewers to reach 
through visualizations or dynamically change their form and 
behavior, while still appearing to retain many of the advantages 
of physicalizations.  

We present an initial examination of the potential of simple 
immersive virtual visualizations by extending Jansen et al.’s 
studies of physicalizations [18] to VR environments. We first 
replicate Jansen et al.’s original experiment using virtual versions 

 

Figure 1: (From left to right) A room-scale visualization (~6.4m tall with 1.8m human for context), table-scale 
visualization (64cm), hand-scale visualization (12cm), and visualization with annotation and filtering tools. 

 



  
 

 

 

of their hand-sized physicalizations and compare these against 
versions at larger table- and room-sized scales. We then explore 
the addition of new tools enabled by the move to VR, including 
interactive annotation and filtering instruments. We find a clear 
preference for visualizations at hand- and table- scales as well as 
enthusiasm for both kinds of interactive tools. We also highlight 
the potential for VR systems to support new kinds of analysis via 
simple immersive interactions. 

2 RELATED WORK 
Our research builds directly on past work in virtual reality 
visualization, as well as recent work in data physicalization. 

Virtual Reality for Infovis 
Virtual reality (VR) is by no means a new field of research, with 
the first system created by Sutherland [27] in 1968. However, the 
debut of the Oculus Rift SDK in 2013, and the subsequent release 
of consumer headsets such as the HTC Vive and Windows Mixed 
Reality devices has renewed interest in the field. While the 
scientific visualization community has long embraced VR for 
showing 3D data with clear spatial embeddings, information 
visualization researchers are now increasingly looking for novel 
ways to display data using immersive VR [11,25].  

Early investigations of abstract data visualizations in VR 
typically used either “fishtank” VR or CAVE systems which rely 
on head-tracking and static displays [2,10]. As early as 1993, 
Arthur et al. examined participants’ ability to trace tree structures 
using a fish tank VR setup and found considerable speed and 
accuracy benefits [2]. Later work by Demiralp et al. further 
explored the impact of visualizations of different scales using both 
fishtank VR and the CAVE VR system [10]. Their findings 
highlighted the potential of VR visualization generally, while 
noting that fishtank VR was a better fit for most contexts, 
especially when visualizations were smaller than viewers’ bodies.  

In the last few years, however, the increasing availability of VR 
and AR head-mounted displays (HMDs) has resulted in a 
groundswell of new immersive information visualization tools. 
These include systems like Donalek et al.’s iViz [11] which adapt 
traditional abstract visualizations like scatterplots to shared 3D 
spaces, as well as more complex tools like Cordeil et al.’s 
ImAxes [8] which leverage the flexibility and openness of VR 
environments to create new abstract visualization types.  

However, the potential benefits and trade-offs associated with 
various VR design choices for abstract data visualization remain 
poorly understood. Initial studies have highlighted the 
effectiveness of immersive VR environments with stereoscopic 
and motion-based depth cues for particular kinds of visualization 
tasks including graph analysis [23]. Experiments have also shown 
that HMDs compare favorably against much more costly CAVE 
systems [9]. Work on immersive unit visualization [17] has also 
showcased the potential for VR to support transitions between 
multiple scales, supporting both high-level analysis and detailed 
examination of individual data points within the same continuous 
environment. So far, however, this research gives little guidance as 
to which scales are the most effective for various tasks and datasets.  

Physical Visualizations 
Meanwhile, work on data physicalization has identified a variety 
of benefits for highly immersive, physical instantiations of 
data [20]. Interestingly, this growing body of research attributes 
many of the positive characteristics of these physical 
representations to their ease of manipulation and exploration, as 
well as their strong physical presence – traits which VR and AR 
tools are increasingly able to approximate. As such, our paper is 
heavily inspired by Jansen et al.’s fundamental work in which 
they compared the performance of physicalizations against on-
screen equivalents and investigated multiple factors (including 
stereoscopic depth cues and tangible manipulation) that 
contribute to the performance differences between them  [18].  

Studies by Berard et al. have also begun to explore the 
interstitial space between physical and virtual systems, examining 
novel “handheld perspective-corrected displays” which can 
project complex interactive puzzles and other objects onto simple 
volumetric props [3]. Interestingly, participants were able to solve 
complex 3D puzzles faster and more accurately when using 
projected virtual objects than with physically printed ones – likely 
because the virtual objects did not suffer from the poor contrast, 
occlusions, and other shortcomings of the physical materials.    

3 GOING BEYOND THE PHYSICAL 
Data physicalizations allow viewers to leverage their real-world 
perceptual and physical abilities to inspect and interpret data, 
using interactions that build on familiar metaphors and 
expectations from the physical world. Initial work in this space 
highlights how physicalizations can provide a variety of benefits, 
including support for physical manipulation and locomotion [20] 
and may encourage greater memorability [26] and 
engagement [16]. However, physicalizations can be complicated, 
difficult, and impractical to construct – especially as their scale 
and degree of interactivity increases. Tabletop systems like 
EMERGE [28] and inFORM [12], for example, required long-term, 
concentrated engineering efforts to develop and maintain. 
Meanwhile the few examples at even larger room- and building-
scales are mostly art installations, whose goals are aesthetic or 
communication-oriented, rather than analysis-focused. 

VR systems, meanwhile, offer many of the advantages of 
physicalizations, providing increasingly vivid immersion and 
presence facilitated by binocular and motion-based depth cues, 
realistic interactions, and increasing levels of visual realism – 
without the prohibitive costs. As a result, VR tools offer the 
opportunity to create VR visualizations that would be difficult or 
impossible in the physical world. For example, virtual 
environments can accommodate visualizations at extreme scales 
and levels of detail without material costs or space constraints. 
Similarly, virtual visualizations can support interactive 
manipulations that would be limited by the physics of real-world 
objects, including dynamically changing visualizations' materials, 
sizes, or transparency. Virtual environments may also make it 
easier to design and implement tools and interactions to support 
common tasks like filtering, selection, and annotation. 
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As an initial exploration, we explore the potential for VR 
interfaces that build on the kinds of simple chart designs and 
interactions that show clear benefits in the physical world. 
Specifically, we use virtual reality prototypes to replicate and 
extend foundational studies of simple data physicalizations. This 
allows us to examine the impact of larger visualization scales and 
test new kinds of interactive tools, while still preserving many of 
the norms associated with simple, physical charts. 

4 EXPERIMENT SETUP 
We based both our visualization and experiment designs off of 
those developed by Jansen et al. [19]. In their studies, participants 
used small 3D physical bar charts as well as 2D and 3D on-screen 
versions (Figure 2) to complete a series of simple data analysis 
tasks. The studies also compared the same physicalizations 
against on-screen versions that used stereo depth cues and 
supported rotation using physical props. Based on these 
explorations, Jansen et al. concluded that the advantages of the 
physical visualizations likely related to participants’ ability to 
simultaneously manipulate and inspect the object while using 
their fingers to mark and compare items of interest. This direct 
interaction, combined with the high visual fidelity of the physical 
object, helped participants compensate for problems like 
occlusion that routinely plague 3D visualizations on screens.  

VR visualizations, unlike their 3D on-screen counterparts, have 
the potential to offer many of these same kinds of interactions, 
allowing viewers to manipulate and inspect virtual objects much 
as they would physical ones. Recent VR systems also offer levels 
of immersion and visual fidelity that are increasingly able to 
approximate the appearance and behavior of real-world settings. 
To examine the viability of VR visualizations for these same kinds 
of tasks, we replicated and extended Jansen’s original design. This 
allowed us to benchmark against their results while also exploring 
some of the new affordances of VR by examining the impact of 
visualizations at three dramatically different scales.  

Visualization Design 
We used a 3D bar chart design which emulates the physical charts 
created by Jansen et al. with only a few differences. Like the 

                                                             
1 https://www.gapminder.org/ 

originals, our charts (Figure 1) feature a 10 × 10 array of bars with 
a white base and black labels. We also retained the same bar 
widths, spacing, aspect ratio, and color palette. The back sides of 
our versions are entirely transparent, with floating axis lines and 
values. To increase legibility, we added higher-contrast tick marks 
on the bars themselves. We also increased the size of the category 
labels and aligned them more closely with their respective bars.  
As in Jansen et al.’s study we used this chart template to generate 
a variety of different charts each using 10 years worth of 
development statistics from Gapminder1  organized by country. 
We opted to use percentages, rather than raw counts or intervals, 
for all axes to reduce the potential for participant confusion 
related to units and magnitudes.  

Virtual Environment 
We conducted our experiments using a test environment that we 
implemented using Unity and which supports a range of different 
VR headsets including the HTC Vive and Windows Mixed Reality 
devices. For our studies, we used an HTC Vive installed in a 
2.5m × 2.5m tracked area in an open-plan research space. Related 
studies have explored the use of alternative control schemes for 
VR interaction, including gestural hand-tracking [30]. However, 
we chose to use a pair of Vive controllers, based on recent studies 
that suggest they have a lower learning curve and more stable 
tracking than gesture-recognition systems like the Leap Motion 
controller [14]. Participants held a pair of controllers at all times 
during the studies. In the virtual environment, these controllers 
appeared either as a small visualization or as 30cm virtual ruler, 
depending on the study condition. We added the virtual ruler 
based on feedback from pilot studies in which participants 
repeatedly attempted to use the virtual controller as a level or 
measuring implement.  

The virtual environment for the studies was larger (up to 
100m × 100m) than the tracked area and included only minimal 
ornamentation. We used a simple floor plane in a neutral color 
and a default skybox. Because the virtual space was much bigger 
than the physical lab environment, we allowed participants to 
augment their physical locomotion with virtual flight. 
Participants could control flight by pointing either controller in 
the desired direction, then clicking and holding forward on the 
controller’s touchpad. Participants could also fly backwards by 
clicking and holding back on the touchpad. This allowed 
participants to fly in any direction without having to change the 
orientation of their body. The movement did not use any form of 
acceleration and moved the user at a constant rate of 1.8m/s. 

Tasks 
We used the same three types of basic chart-reading tasks 
introduced by Jansen et al. in their original study: 
 
Range Task. Indicate the range of values for a country. 
Order Task. Sort the values for a year in ascending order. 
Compare Task. Locate three specific country-year pairs and 
determine which one has the lowest value. 

 

Figure 2: 3D on-screen visualization and 
physicalization from Jansen et al. [16].  

(Image permissions pending.) 

 



  
 

 

 

Jansen et al. used a tablet on which participants could see the 
study prompts and record their responses. Because we were 
concerned about participants’ ability to enter responses on a 
virtual version of this same interface, we instead displayed task 
prompts on a question board (Figure 3) attached to one of the 
controllers. Participants could summon or dismiss the question 
board as needed using the trigger on the controller. When using 
larger visualizations, the question board appeared to the right of 
one of the rulers, while for the smaller hand-scale visualizations it 
appeared behind the chart itself. Participants were free to choose 
either hand to hold the question board.  

Upon completing each task, participants reported their 
answers verbally to an experimenter who was seated 1-2m away. 
This experimenter manually recorded participant timing data and 
advanced participants from one task to the next. Throughout the 

studies we also captured audio and video streams from the headset 
for follow-up analyses.  

5  STUDY ONE – SCALE 
In our first experiment, we examined how the scale of a virtual 
visualization affected participants’ ability to perform basic 
analysis tasks, and explored how the scale of the visualization 
changed their overall experience.  

Visualization Scales  
We explored three different visualization scales: hand scale 
(Figure 3c), table-scale (Figure 3b), and room-scale (Figure 3a).  

We modelled the hand-scale visualization directly after the 
visualizations Jansen et al. used in their original study. This 
version of the visualization was roughly 12cm across. We 
increased the size of labels specifically to maintain their legibility 
on the 2160´1200 pixel Vive display, but otherwise attempted to 
replicate the size and level of detail of Jansen’s physical 
prototypes. We attached the hand-scale visualization directly to 
the top of one of the two Vive controllers, allowing participants 
to reorient and inspect it by moving that hand.  

For the table-scale, we increased the visualization’s size to 
64cm across, similar to the size of tabletop bar-chart displays like 
EMERGE [28] (Figure 5) and shape-changing displays like 
Relief [24] , Tangible Cityscape [29]  and  inFORM [12]. We placed 
the visualization atop a virtual plinth with a default height of 1m. 
At the start of each study we interactively adjusted the height of 
the plinth based on feedback from the participant to ensure that 
the visualization was easy for them to see and reach. 

The room-scale visualizations were considerably larger, 
measuring 6.4m to a side. This scale was inspired by large-scale 
installations like Richard Burdett’s population-density models of 
major cities [5], the walkable age pyramid created by Atelier 
Brükner [4] , and the eCLOUD [21] and airFIELD [13]   sculptures 

   

Figure 4: Question board design and location relative to 
the ruler tool (left) and hand-scale visualization (right). 

 

Figure 3: (A) Room-scale, (B) table-scale, and (C) hand-scale visualizations with 1.8m tall human figure for reference. 
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by Dan Goods, Nik Hafermaas, and Aaron Koblin – all of which 
allow viewers to explore data by physically walking through, 
under, and around it. The overall design was similar to the other 
scales. However, in order to increase the legibility of the country 
and year labels on the axes, we reoriented them to lie horizontally 
on the floor next to the visualization rather than underneath it.  
Procedure 
The experiment consisted of 3 blocks with 3 tasks per block. Each 
block used a visualization at a different scale. All participants saw 
the visualizations in order, starting with the hand scale then 
advancing to the table and room scales. We gave participants a 
few minutes before each block to become accustomed to the 
current scale.  

At hand scale, we allowed participants to experiment before 
deciding which hand they wished to use to hold the visualization. 
To reduce the risk of simulator sickness, we gave participants the 
option to sit while using the hand- and room-scale visualizations 
since neither required full body locomotion. We also allowed 
participants to take off the HMD between each block to rest. We 
used 3 different datasets and rotated the order for each 
participant. The experiment lasted 45 minutes on average, with 
the time spent in VR being roughly 20 minutes. 

We recruited a total of 9 participants. Seven were familiar with 
VR and 7 participants were familiar with data visualizations. All 
participants were also familiar with video games. All participants 
had normal or corrected-to-normal vision and were able to clearly 
read all the chart and axis labels within the VR environment. 

Measures 
We recorded two measures of performance for each task: error 
rate and time-on-task. Both of these measures match Jansen et al. 
and our error calculations also mirror theirs. Time-on-task 
measured the interval between the time when the question 
appeared on the question board and the time at which the 
participant verbally stated their final answer (as recorded by the 
experimenter). We computed the error for range tasks using the 
absolute difference between the participant’s answer and the 
correct minimum or maximum, divided by the total axis range. For 
order tasks we computed the normalized Kendall Tau distance 
between the participant’s answer and the correct order. Finally, 
for compare tasks we tallied the total number of incorrect answers. 
We normalized each of the final error scores to give a value 

between 1-0. For all quantitative measures we report averages and 
95% confidence intervals (CIs). 

For more qualitative feedback, we administered two surveys 
after participants finished their trials. These included a digital 
questionnaire to assess participant likes and dislikes as well as a 
paper questionnaire containing a copy of Plutchik’s Wheel of 
Emotion to gauge participants’ emotional response. Plutchik’s 
wheel consists of radial layout containing 24 adjectives describing 
a range of different emotions. We asked participants to circle any 
emotions that described how they felt when interacting with each 
scale and provide qualitative explanations for their choices. 

Results 
As in Jansen et al.’s original study, error rates were similarly low 
across all scale conditions and participants. As a result, our 
quantitative results focus predominantly on timing. We follow 
with notable observations from the survey responses. 

Error Rate. The mean error rate for the range tasks 
(0.03, CI = [0.01, 0.05]) was very low. However, we saw higher 
rates for the compare tasks (0.16, CI = 0.04, 0.30) and order tasks 
(0.24, CI = [0.046, 0.436]). The rate for order was skewed higher by 
multiple instances in which participants forgot to report one of 
the ten values. However, we saw no clear relationship between 
this mistake and any particular scale. 

Time on Task. We computed average time-on-task by 
participant for each task and condition (Figure 4). We observed no 
clear differences in performance between hand and table scale for 
any of the tasks.  For the range and order tasks, however, the room 
scale condition was considerably slower than the other two. 
Participants took an average of 13.9s longer to perform range tasks 
with the room-scale visualization (47.2s, CI = [36.7s, 57.7s]) than 
with the table-scale version (33.3s, CI = [25.3s, 41.4s]). This 
difference was even more dramatic for order tasks, where 
participants took an average of 46.9s longer for room-scale (116.7s, 
CI = [86.5s, 146.8s]) than table-scale (69.8s, CI = [50.0s, 89.5s]).   

Comparison to Physicalizations. For all scales and task types, 
participants in our study performed considerably more slowly 
than participants in Jansen et al.’s original experiment [18]. As 
Figure 4 shows, our conditions were routinely 10-30s slower on 
average than Jansen et al.’s physical condition, and closer to the 

 

Figure 5: (A) EMERGE tabletop display [24]. 
(B) Walkable age pyramid by Atelier Brükner [3]. 

(Image permissions pending.) 

 

 

Figure 6: Study 1. Time-on-task for each scale (hand, 
table, room) × task (compare, order, range) combination. 
Results from Jansen et al.’s physical condition [18] are 

shown for context (top). Error bars show 95% CIs. 

 



  
 

 

 

times observed for their on-screen 3D bar charts. We suspect this 
slowdown may be due, at least in part, to our timing and reporting 
procedure, in which participants gave their answers verbally 
rather than entering them on a tablet. These exchanges with the 
experimenter likely introduced some delay in each trial, and the 
presence of the experimenter may have encouraged participants 
to more carefully consider each response before reporting it aloud. 

Feedback and Observations 
We found that all participants chose to hold the hand scale 
visualization in their dominant hand. Similarly, for the table and 
room scales all participants held the question board in their 
dominant hand. Across all scales, participants seldom used rulers 
for measuring, and instead used them as a pointing device to help 
track and recall specific bars. All participants repeatedly clipped 
through the visualization using the rulers, but none tried to clip 
through the visualization using their face or body in the hand or 
table scale. In general, participants treated the table-scale 
visualization as if it were occupying real space and did not attempt 
to move into it. However, at room scale, participants had no 
problem clipping through the bars with their body for short 
instances while flying – though most were quick to physically 
move out of bars if they accidentally stopped inside of one. 

Much of the feedback we received from participants reflected 
a desire for better tools. Four participants specifically asked for 
the ability to mark or select bars in order to keep track of them. 
One participant also suggested filtering tools to hide rows or 
columns that obscured their view.  

Table-scale. Overall, participants voiced a strong preference for 
the table-scale visualizations (Figure 7), with several noting that 
they felt the most natural to interact with. In contrast, only one 
participant thought the table-scale was the hardest to use, with 
their critique emphasizing the additional physical movement 
required to navigate around the chart. Participants’ emotional 
responses to this scale on the Plutchik wheel (Figure 8) were 
largely positive. However, 3 participants expressed annoyance, 
with 2 of them unhappy about the lack of additional tools, and one 
who disliked how taller bars obscured smaller ones. 

Hand-scale. Only a few participants reported a preference for 
the hand scale visualizations. A single participant out of the 9 
indicated that hand-scale was the easiest to use, explaining that 

they found it simpler to manipulate and examine than the other 
scales. The same participant also believed that they had performed 
the fastest with the hand scale, but added that they might have 
been more accurate (albeit slower) with the larger table-scale. 
Two participants identified hand-scale as the most difficult to use, 
noting that they found it hard to accurately see obscured bars on 
such a small chart and that it was difficult to level the chart to 
compare values. Participants’ responses on the Plutchik wheel 
showed a mix of interest (based on the visual appeal of the small 
model) and annoyance (mostly related to controller shake).  

Room-scale. Participants responded the least positively to room 
scale, with none of the participants indicating that it was the 
easiest to use and six calling it the most difficult. Most cited the 
flight mechanism as the main shortcoming, with 3 reporting that 

 

Figure 7: Study 1. Post-study survey results by scale. 

 

 

Figure 8: Study 1. Participant responses on Plutchik’s 
wheel of emotions for each visualization scale. 
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flying made them mildly motion sick. However, 2 participants 
thought they performed best with the room scale since the large 
bars allowed them to spot differences in height more easily. 
Overall, participants were more vocal about their emotional 
reaction to the room-scale than to other sizes, with participants 
highlighting an average of 4 reactions on the Plutchik wheel 
(compared to an average of 3.2 reactions for table-scale and 2.2 for 
hand-scale). The valence of the responses was divided, with 8 
participants showing interest, but 6 participants also expressing 
annoyance. Three participants indicated disgust, specifically in 
response to the minor motion sickness they experienced. 

6  STUDY TWO — ANNOTATION & FILTERING 
Following our initial examination, we conducted a second 
experiment to explore how virtual annotation and measuring 
tools might alter the experience of using VR visualizations. 
Current VR tools lack the haptic feedback mechanism necessary 
to enable the kinds of manual exploration, comparison, and 
marking with the fingers that are possible with physical 
models [18]. In contrast, however, virtual environments make it 
much easier to implement simple interactions which might 
support many of the same strategies. In response to feedback from 
participants in our first experiment, we chose to examine two 
simple mechanisms for annotating charts that might serve as 
alternatives to touch-based comparison and marking. We also 
explored the potential for simple implicit filtering tools to combat 
the issues with occlusion that impede the legibility with 3D charts 
in both physical and virtual settings. 

VR Tools 
Tools for Annotation. We designed two annotation tools — a 
drawing stylus and highlighting wand — which differ primarily in 
terms of their expressiveness and complexity. 

The drawing stylus (Figure 9-top) is a simple 3D paintbrush, 
similar to those in VR drawing applications like Google’s Tilt 
Brush [31]. The stylus allows viewers to draw strokes in midair, 
creating flexible free-form annotations. These strokes are not 
affected by gravity or collisions and remain anchored in space 
relative to the chart. Viewers can create new strokes by holding 
the trigger and then drawing in space and around objects. The 
stylus produces yellow strokes about 1.5cm across for the table 
scale and smaller 1cm strokes for the hand scale. The strokes have 
no shading, ensuring high contrast against the more muted colors 
in the visualizations. However, we allow strokes to cast shadows 
on the chart itself, further reinforcing the spatial relationship 
between them. Viewers can also erase strokes using a second tip, 
summoned by pressing the touchpad on the controller.  

The highlighting wand (Figure 9-middle) is a much more 
minimalist implement which supports highlighting but not more 
flexible annotation. Viewers can highlight bars one at a time by 
touching them with the wand and pressing the trigger. 
Highlighted bars receive a bright green outline visible from all 
directions but retain their original base color.  Viewers can toggle 
highlights off by touching the wand to a bar and pressing the 
trigger a second time.  

 

Figure 9: The drawing stylus (top), highlighting 
wand (middle), and filtering volume (bottom). 

 



  
 

 

 

Tools for Filtering. We implemented support for filtering via 
filtering volumes (Figure 9-bottom) – transparent cylindrical 
regions 20cm in diameter and 75cm long attached to each virtual 
controller so that they envelop the area around the viewers’ hand 
and arm. When a viewer reaches into the visualization, any bars 
that collide with the cylinder become semi-transparent, making it 
possible to examine objects behind them. For virtual rulers, we 
align the volume with the tool’s left edge. This allows viewers to 
use the ruler to prune the visualization, selectively hiding small 
sets of bars or deploying the volume as a cutting plane to slice 
through the entire chart. We also include a filtering volume 
around each of the annotation tools, allowing viewers to annotate 
and highlight near the center of the visualization without 
occlusion from chart elements in the foreground. Based on 
feedback from pilot studies, we chose to make the volume slightly 
opaque rather than completely transparent. This slight opacity 
helps viewers to more precisely understand the extent of the 
volume and predict how it will behave. 

Procedure 
Our second study used the same overall tasks and procedure as 
the first. While the general design of the visualizations did not 
change from the first experiment, we generated a fresh set of 
charts – again using data from Gapminder. Based on feedback 
from the first study, we also doubled the size of the hand-scale 
chart and rotated it along the y-axis by 45 degrees. These changes 
provided more space to use the tools and also helped reduce wrist 
strain. The table-scale visualization design remained the same. We 
omitted the room-scale, based on the negative feedback from the 

first study and the practical challenges associated with using the 
annotation tools on such a large visualization.  

We included six conditions (3 tools × 2 scales) each with three 
tasks. We used 6 different datasets and permuted both condition 
and dataset order using a Latin square design.  We used the same 
task types and measurements as the first study. The virtual 
environment and question board remained the same. 

We recruited 12 participants for the second experiment. Seven 
participants had experience with creating or viewing data 
visualizations. Six of the participants had no experience with VR 
before this study, but 11 participants had experience with video 
games in various genres. We refer to these participants below 
using the codes P1-P12. As in the first study, participants had the 
opportunity to take a break in between task blocks, each of which 
took less than 5 minutes. The experiment lasted 50 minutes on 
average, with the time spent in VR being roughly 30 minutes. 

Results 
Error Rate. As in the first study, participants’ error rates were 

low (MRange= 0.0184, MOrder=0.1037 MCompare= 0.1111) and we saw 
no clear relationship between error rate and either scale or tool. 

Time on Task. Participants’ task times (Figure 10) were more 
consistent than in the previous study. Range tasks were markedly 
faster than the order or compare tasks and results for all three task 
types were somewhat faster than in the first study. We saw very 
little discernable difference between the six conditions, and 
average times for all six aligned much more closely with those 
reported by Jansen et al. for their physical charts.  

Survey Results. Responses from the post-study survey showed 
that, as in study 1, a majority of participants (9 of 12) preferred the 
table-scale visualization over the hand-scale (Figure 11). 
Advocates for the table scale argued that it was more stable and 
more comfortable to work around, with P11 calling it “easier to 
comprehend” and P8 noting that “because you can move around 
it's more comfortable to view the charts”. Others stressed that the 
table reminded them more strongly of a physical object, with P1 
writing that the table-scale made it “easier to spatially keep track 
of things in my mind. [It] felt more hands-on, like I was 
interacting with something physical/tangible.”  

When annotating, the majority of participants (7) preferred the 
highlighting wand over the drawing stylus, while 2 participants 
indicated a mixed preference. P12 responded that both tools were 
equally helpful while P9 responded that they used the tools 
infrequently and only on the compare tasks. Overall, participants 
most strongly preferred the combination of table-scale 
visualization and highlighting wand, and most disliked the hand-
scale with filtering only. Several participants (P4, P10, and P12) 
specifically noted that they had a hard time remembering bars of 
interest when they did not have access to either annotation tool. 

Feedback and Observations 
In their feedback, all 12 participants expressed a preference for 
some combination of filtering and annotation tools, rather than a 
static visualization. Moreover, we observed that all participants 

 

Figure 10: Study 2. Time-on-task for each scale (hand, 
table) × tool (filter, draw, highlight) × task (compare, 

order, range) combination. Results from Jansen et al.’s 
physical condition [18] are shown for context (top). 

Error bars show 95% CIs. 
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actively used some or all of the tools to inspect the visualization 
and to help externalize their thinking processes. 

During the compare task all 12 participants used the annotation 
tools as a way to remember important bars, either by highlighting 
them or indicating them with a simple visual mark like a line or 
dot. One participant initially attempted to write numerical values 
on bars but gave up after finding that writing with the Vive 
controller was difficult. Generally, participants used marking and 
highlighting tools in much the same way that participants in 
Jansen et al.’s original study used their fingers – marking 
important elements as a form of external memory that allowed 
them to identify and then revisit those data values. 

A smaller subset of participants annotated during the range 
tasks, with 8 participants using the highlighting wand and only 5 
participants using the drawing stylus. Those who used the stylus 
adopted a similar set of strategies to the compare task, with 4 
drawing dots and lines to mark important values and 1 writing 
numerical values on the chart. 

 In the ordering task, we saw the reverse, with 9 participants 
annotated with the drawing stylus, while only 4 highlighted with 
the wand. Here, participants used the stylus in several different 
ways: drawing a lines through or on top of the row of interest, 
drawing a mark on the label for that row, and marking bars as 
they answered aloud to ensure they did not miss any. Those who 
used the highlighting wand generally marked bars in the relevant 
row, then used the filtering volume to single that row out. Only 
one participant used this highlighting method for the hand scale. 

7  DISCUSSION 
Across both studies, hand- and table-scale visualizations exhibited 
very similar performance, but the table-scale was much more 
favorably received by participants. Both sizes were small enough 
that viewers could examine the entirety of the visualization using 
relatively small physical movements. However, the larger table-
scale visualizations allowed viewers to assess differences in bar 
heights more easily. Participants also seemed to prefer physical 
locomotion around the static table-scale visualization to the 
combination of physical movement and manipulation necessary 
with the hand-scale chart. Moreover, the relatively low-resolution 
displays and imperfect position tracking of current-generation VR 
headsets created a number of imperfections in the hand-scale 
visualizations that may have made them less convincing to 
viewers than the larger table-sized views. 

The poor performance and mixed responses for the bigger 
room-scale visualizations reflect the underlying challenges 
associated with exploring and manipulating visualizations at large 
scales and over physical distances [1]. We expect that other 
locomotion methods such as teleportation may help address some 
of the specific concerns about disorientation and motion sickness 
raised by our participants. However, the larger depth and height 
and diminished reachability of visualizations at this scale also 
limit the annotation, filtering, and data manipulation tools that 
can be used with them. Despite these shortcomings, nearly all of 
our participants still expressed considerable interest in the room-

         

 

Figure 11: Study 2. Post-study survey results by scale and tool. 



  
 

 

 

scale visualization, which highlights the potential for these kinds 
of larger virtual visualizations as communication and teaching 
tools. Moreover, VR and AR visualizations that support transitions 
between multiple scales [17] may have the potential to balance the 
trade-offs between both large- and small-scale approaches. 

VR vs. Physicalization 
In comparison to their physical counterparts in Jansen et al.’s 
original study, participants’ generally performed more slowly 
with our VR charts. While part of this difference may be due to 
differences in our procedures for recording times and responses, 
virtual reality versions of these virtual charts at any scale appear 
unlikely to substantially outperform basic physical versions for 
these simple tasks. Given the current state of VR and tools, visual 
realism and the lack of tactility represent the main divides still 
separating physicalizations from VR visualizations.  

The degree to which visual realism plays a role in the 
perception or interpretation of abstract visualizations remains 
open for debate. Based on their evaluations, Jansen et al. 
speculated that a lack of realism might hinder performance for on-
screen representations. However, Berard et al.’s work on 
handheld projection-mapped displays highlights how the lack of 
occlusion and higher contrast of a virtual object can actually 
improve performance over using a physical one [3]. Still, specific 
limitations of modern VR hardware like the vergence-
accommodation conflict — wherein the apparent focal depth of 
virtual objects diverges from the actual distance of the VR display 
from the eye — may indeed hinder viewers’ ability to comfortably 
use certain virtual visualizations [15]. Moreover, these effects are 
the most pronounced for nearby objects like our hand-scale 
visualizations, where incorrect focus cues are more likely to lead 
to divergence [22].  

Finally, Jansen et al.’s initial results suggest that support for 
direct touch and physical manipulation were likely the biggest 
advantage of their physical prototypes [18]. Haptic displays or 
shape-changing interfaces capable of replicating this degree of 
tactility for VR and AR visualizations remain a very distant 
prospect. However, our participants’ active use of annotation 
tools and virtual props (like the rulers in our studies) to perform 
many of the same kinds of marking and manipulation operations 
is promising. These findings raise the possibility that tools and 
interactions which enable viewers to inspect, manipulate, and 
externalize their though process visually on top of VR and AR 
visualizations could provide many of the same advantages as 
physicalizations. Hybrid techniques, which combine virtual and 
physical approaches by fusing tactile input and output devices 
with more elaborate VR and AR visuals [7], are also promising. 

8  CONCLUSION & FUTURE WORK 
We considered the use of simple virtual bar charts at three scales 
and using several annotation and filtering mechanisms. Our 
results find clear advantages for tabletop-scale VR visualizations, 
which strike a balance between readability and reachability that 
allows viewers to both examine and manipulate them easily. Our 
findings also showcase the value of virtual annotation tools, 

which can potentially provide many of the benefits typically 
associated with data physicalizations to their VR equivalents.  

However, research on both physicalization and immersive 
VR/AR visualization are still emerging fields. As a result, 
considerable additional work is needed to understand the 
advantages and disadvantages of these techniques for more 
complex and realistic visualization types, interaction techniques, 
tasks, and scales. In that space, VR visualization tools represent an 
opportunity to leverage many of the benefits of the physical 
world, while also transcending its limitations. 
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