
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2019-03-18

Library Migration: A Retrospective

Analysis and Tool

Zaidi, Syed Sajjad Hussain

Zaidi, S. S. H. (2019). Library Migration: A Retrospective Analysis and Tool (Master's thesis,

University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.

http://hdl.handle.net/1880/110093

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Library Migration: A Retrospective Analysis and Tool

by

Syed Sajjad Hussain Zaidi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

MARCH, 2019

© Syed Sajjad Hussain Zaidi 2019

Abstract

Modern software engineering practices advocate the principle of reuse through third party software

libraries. Software libraries offer application programming interfaces (APIs) for use by developers,

thereby significantly reducing development cost and time. These libraries are however subject to

deprecation, vulnerabilities, and instability. Furthermore, as the product matures, developers have

to worry about upgrading and migrating to better alternatives in order to attract and retain clients.

Refactoring a system to start using a new library can cause a domino effect resulting in serious

damage to the software system. Little is currently known about library migration; the few existing

studies are either too preliminary or too problematic to tell us much.

We perform an empirical study of 114 open source Java-based software systems in which library

migration had occurred. We find that library migration leads to significant compatibility issues

and breakage of source code in practice: library migration broke 67% of the software projects in

which it occurred, while 22% of the transitively dependent projects broke due to coupling of APIs

with external dependencies. Developers do not effectively use available resources to notify their

clients about such migrations, preferring to use internal GitHub threads in contrast to the release

notes, and even then often failing to discuss or announce the fact that library migration is planned or

has been performed. We also found that mitigating library migration requires substantial effort by

developers: on average, transformations affected 9.3% of the total classes in the dependent system,

while impacting 15% of the total lines of code.

We propose a systematic recommendation tool to assist developers in migrating or upgrading to

a new software library. Our prototype tool, named EDW (for External Dependency Watcher), can

be utilized to estimate and predict impacts while mitigating migrations among third party libraries.

We evaluate EDW by detecting the impacts of migration across three granularities in ten distinct

open source projects: our tool has perfect precision for all three granularities; for recall, it obtained

over 0.99 for class- and field-granularity while achieving ∼0.86 for method-granularity. We conduct

a controlled experiment on EDW: human participants were able to perform the tasks in significantly

less time and with better precision/recall using EDW as compared to JRipples.

ii

Acknowledgements

I would like to thank my supervisor, Dr. Robert Walker, for giving me the opportunity to work with

him. He taught me how to think critically while being pragmatic. Thanks, Rob, for pushing me

towards better research when I hit a dead end and for having faith in me. I would also like to thank

Dr. Günther Ruhe for his helpful comments and small talks; I was also able to learn a lot from him,

while assisting him during his course.

I would like to thank May Sayed for giving me useful tips when I started my program. I would

like to thank Hao Men for helping me out in my research. I would also like to thank Hamza Sayed

for his helpful feedback and comments on my research. Finally, I would like to acknowledge Jing

Zhou’s work that guided me to start my research; I would like to meet him in person some day.

iii

Dedication

I would like to dedicate this work to my Dad and Mom; without them I am nothing. I would also

like to thank my Taya, Tai, and Chacho for having my back.

iv

Table of Contents

Abstract ii

Acknowledgements iii

Dedication iv

Table of Contents v

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Background and Motivation . 3
1.2 Research Questions and Objectives . 7
1.3 Contributions . 7
1.4 Thesis Structure . 8

2 Motivation 9
2.1 Motivational Scenario . 9
2.2 Summary . 21

3 Related Work 22
3.1 Library Upgrading . 23
3.2 Tool Support for Library Migration . 26
3.3 Change Impact Analysis . 28

3.3.1 Incremental change . 30
3.4 Summary . 31

4 Data Collection and Analysis 32
4.1 Selection of Projects . 33

4.1.1 GitHub Crawler . 35
4.1.2 Code Analyzer . 36
4.1.3 Manual Selection . 37

4.2 Data Gathering . 38
4.2.1 Find it EZ . 38

v

4.2.2 JAPICC . 39
4.2.3 Code Compare . 39

4.3 Analysis and Results . 40
4.4 Summary . 53

5 Tool 58
5.1 Overview of EDW . 60
5.2 Dependency Viewer Module . 62

5.2.1 External JAR submodule . 64
5.2.2 Affected classes submodule . 65
5.2.3 Imports submodule . 65

5.3 Editor Module . 65
5.4 Impact Analysis Viewer Module . 68
5.5 Graph Builder Module . 69
5.6 Metrics Builder Module . 69
5.7 Workflow . 71
5.8 Summary . 73

6 Simulation Study 74
6.1 Selection of Projects . 74
6.2 Procedure . 76

6.2.1 Ground truth . 76
6.2.2 Estimated impact set for EDW . 77
6.2.3 Estimated impact set for JRipples . 77
6.2.4 Comparing estimated impact set and ground truth 78

6.3 Results . 79
6.3.1 RQ5: How well is EDW able to locate the initial impact set for library

migration? . 79
6.3.2 RQ6: What factors impact how well EDW performs? 83

6.4 Summary . 87

7 Human-Subjects Experiment 88
7.1 Hypotheses . 88
7.2 Subject System . 89
7.3 Tasks . 90
7.4 Participants . 90
7.5 Experimental Procedure . 91
7.6 Data Collection . 92
7.7 Results . 93

7.7.1 Quantitative . 93
7.7.2 Qualitative . 96

7.8 Limitations . 101
7.9 Summary . 101

vi

8 Discussion 103
8.1 Trends in Software Library Usage . 103
8.2 Code Breaking of Systems and Their Clients . 104

8.2.1 Categories of Libraries that Broke Clients 105
8.3 Notification of Software Library Migration . 106
8.4 Evaluation of EDW . 106
8.5 Threats to Validity . 107

8.5.1 Threats to validity of the library migration study 107
8.5.2 Threats to validity for the evaluation of EDW 108

8.6 Future Work . 109
8.6.1 Knowledge base for external libraries . 109
8.6.2 Improve effort estimation . 110
8.6.3 Improvements to EDW . 110

8.7 Summary . 111

9 Conclusion 113
9.1 Future Work . 115

Bibliography 117

A Studied Systems 126

B Studied Library Migrations 131

C Systems that Broke Transitively Dependent Clients 140

D Systems Used for Evaluation 142

E Individual Project Results for Evaluation 144

F Experimental Materials 149
F.1 Task Descriptions and Instructions . 150
F.2 Pre-Study Questionnaire . 152
F.3 Post-Task Questionnaire . 154
F.4 Final Questionnaire . 155

G Detailed Experimental Results 157

vii

List of Figures

1.1 Relationships between a studied project, a system that depends on that project, and
the libraries depended upon by both. 2

2.1 Dependencies from classes in the developer’s system to Guava that he ultimately
discovers. 15

2.2 Transitive dependencies, from utilityFunction1 in the developer’s system to Guava,
that he ultimately discovers. 16

4.1 Approach for data collection and analysis. 34
4.2 Algorithm to detect elimination of external dependencies. 36
4.3 Project count versus reasons behind successful library migration without code

breaking. 41
4.4 Project count versus reasons behind complete removal of dependency from a project. 45
4.5 Project count versus alternative library selection criterion. 48
4.6 Percentage of classes impacted versus Maven project (sorted in descending order). . 54
4.7 Percentage of classes impacted versus Android project (sorted in descending order). 54
4.8 Percentage of classes impacted versus project from either platform (sorted in de-

scending order). 55
4.9 Percentage of LOC impacted versus Maven project (sorted in descending order). . . 55
4.10 Percentage of LOC impacted versus Android project (sorted in descending order). . 56
4.11 Percentage of LOC impacted versus project from either platform (sorted in de-

scending order). 56

5.1 EDW analysis on the project cron-utils while using our standard view arrangement. . 61
5.2 EDW structure and interaction between modules. 62
5.3 Dependency viewer after analysis on the project cron-utils. 63
5.4 Editor after selection of the affected class StringValidations. 66
5.5 Impact analysis view after selecting the affected class StringValidations from the

dependency viewer. 67
5.6 Impact analysis view after performing complete CIA on Guava for cron-utils. 70
5.7 Dependency graph for the class StringValidations in the project cron-utils. 70
5.8 Four metrics calculated for the Guava library in the project cron-utils. 71

6.1 The field Logger used in a nested member. 84
6.2 Areas marked “Next” and “Impacted” by the impact analysis view. 85

viii

6.3 Method from the class AlwaysFieldValueGenerator in project cron-utils that is depen-
dent on the class List from the Guava library. 86

6.4 Method from the class AlwaysFieldValueGeneratorTest that depends on the class
AlwaysFieldValueGenerator. 86

ix

List of Tables

4.1 Libraries that support smooth replacement with another one while having minimal
code impact. 43

4.2 Mutually exclusive classification of rationales behind library migration. 48
4.3 Errors and types that impact client code after library migration. 51
4.4 Percentage of impacted classes. 52
4.5 Percentage of impacted LOC. 52

6.1 Systems for evaluation. 75
6.2 Approach mean accuracy for class-granularity. 80
6.3 Approach mean accuracy for method- and field-granularity. 80
6.4 Recall of projects at method-granularity. 82

7.1 Guava impact set for tasks. 90
7.2 Overview of participants’ experience. 91
7.3 Time taken by individual participants for tasks (in minutes). 93
7.4 Average time taken in minutes for tasks. 93
7.5 Results of the Kolmogorov–Smirnov test for elapsed time. 94
7.6 Results of t tests on time taken. 94
7.7 Average JRipples task result. 95
7.8 Results for Wilcoxon test on F-score data combined from Task 1 and 2. 96
7.9 Results for the post-task questionnaire. 97
7.10 JRipples task categorization. 100

8.1 Preferred libraries involved in Android migrations. 104
8.2 Domain of libraries that have a higher probability of breaking transitively dependent

clients. 105

A.1 Maven projects. 126
A.2 Android projects. 129

B.1 Maven projects. 131
B.2 Android projects. 137

C.1 Breaking APIs. 140

D.1 Systems for evaluation. 142

E.1 Individual project results for class-granularity, JRipples search strategy 1. 145

x

E.2 Individual project results for class-granularity, JRipples search strategy 2. 145
E.3 Individual project results for class-granularity, JRipples search strategy 3. 146
E.4 Individual project results for class-granularity, EDW. 146
E.5 Individual project results for method-granularity, JRipples search strategy 1. 147
E.6 Individual project results for method-granularity, EDW. 147
E.7 Individual project results for field-granularity, JRipples search strategy 1. 148
E.8 Individual project results for field-granularity, EDW. 148

G.1 Effectiveness: JRipples on Task 1 at class-granularity. 158
G.2 Effectiveness: JRipples on Task 1 at method-granularity. 158
G.3 Effectiveness: JRipples on Task 1 at field-granularity. 158
G.4 Effectiveness: JRipples on Task 2 at class-granularity. 159
G.5 Effectiveness: JRipples on Task 2 at method-granularity. 159
G.6 Effectiveness: JRipples on Task 2 at field-granularity. 159

xi

Chapter 1

Introduction

Research suggests that software reuse positively impacts the quality of software at a reduced cost

[Lim, 1994]. The demand for reuse has promoted the now-predominant practice of using third-

party software libraries or dependencies [Ebert, 2008]. Software libraries are readily available

without payment from various online repositories such as Maven Central Repository,1 SourceForge,2

and GitHub.3 The reuse of tested libraries from these repositories results in improved development

time, usability, and maintainability [Mohagheghi and Conradi, 2007, Jezek et al., 2015]. Libraries

expose their application programming interface (API) to allow third-party developers to interact

with the library functionalities; an API is an implicit agreement between the software library and

the client application that uses it. As a result, the clients can use exposed functionalities of the

library without knowledge of the underlying implementation, at least in principle.

Software reuse through external libraries creates strong dependencies between the client system

and the library [Dig and Johnson, 2006]. Old versions of libraries are subject to deprecation

and evolution, resulting in newer releases. Due to emergence of better alternatives in the market,

developers have to consider either migrating or updating their third-party libraries. However,

the difficulties of dependency management are greatly underestimated by developers, and most

software systems keep their outdated libraries [Kula et al., 2018b]. While it might seem like

1https://search.maven.org/ [accessed 2018/10/11]
2https://sourceforge.net/ [accessed 2018/10/11]
3https://github.com/ [accessed 2018/10/11]

1

https://search.maven.org/
https://sourceforge.net/
https://github.com/

an obvious decision to shift towards a better library, systems with complex dependencies require

careful consideration before doing so; upgrading a system to start using a new library version results

in additional rework for the developers [Bavota et al., 2015].

Figure 1.1 explains some key context and terminology that we use in this thesis. We study

software projects that depend on external libraries and that are themselves depended on by yet other

systems (i.e., transitively dependent systems); the studied projects undergo library migration, as per

the following. The solid arrows express dependency relationships in which the project is directly

involved, while the dashed arrows express dependency relationships that are indirectly mediated

by the project; the “x” symbols indicate relationships that are eliminated, and the “+” symbols

indicate relationships that are added. Thus, the studied project undergoes library migration as its

dependency on the external library is replaced by an alternative dependency. Before migration,

the project depended on the old library; as a consequence, its dependent system (i.e., another

system that depended on the studied project) had a transitive dependency on the old library. After

migration, the system’s dependency was moved to the new library; as a result, the transitively

dependent system was required to change as well.

No systematic study has been conducted on migrations between distinct libraries from different

vendors. Thus, we have little evidence as to the frequency and severity of this phenomenon; when

and if to perform library migration and what the consequences of such transitions may be, all

Figure 1.1: Relationships between a studied project, a system that depends on that project, and the
libraries depended upon by both.

2

remain unclear. The first goal of this thesis is to empirically study the migration between external

software libraries; we examine 114 open source Java4-based systems, in which library migration

has occurred, to this end. The aim of this study is to empirically explore the impacts of library

migrations on Java projects and their transitively dependent systems.

The second goal of this thesis complements the first one. As a corollary to the lack of knowledge

about library migration, current tool support is lacking. For the most part, developers are on their

own while performing library transitions, which is error-prone and wastes time. On the other hand,

developers can reduce their manual effort by utilizing a recommendation system that suggests the

impacts of library migration: we introduce a prototype tool (EDW) that can assist developers in

performing library migration.

1.1 Background and Motivation

Nowadays, software developers prefer to use external libraries for integrating a broad range of

functionalities into their systems [López de la Mora and Nadi, 2018]. As a consequence, the

availability of third party libraries has significantly increased over the years. Fox [2010] reported

Maven Central Repository to contain over 260,000 artifacts, serving over 70 million downloads per

week; as of August 2018, the repository had grown to 3,081,887 artifacts. These software libraries

generally support smooth integration into existing systems with minimal effort.

Software libraries expose their application programming interfaces (APIs) to client applications,

making their usage possiblewithout requiring knowledge of the implementation details, in principle.

An API is the core agreement between the dependee (library) and the dependent (software system),

the breakage of which can result in issues such as lack of backwards compatibility. Ideally after

successful integration, the system should continue to use the same library without any alterations;

the system can then evolve without worrying about any change in the used dependency. However,

the reality contradicts the ideal: the APIs of libraries evolve and deprecate over time for the same

4https://www.java.com/ [accessed 2018/10/11]

3

https://www.java.com/

reason as any software [Lientz, 1983]. Similar to other software, the outdated libraries that do

not undergo continual changes can become progressively less useful [Lehman, 1996]. Therefore,

developers have to consider migrating from deprecated and outdated libraries in favour of better

alternatives.

Availability of better alternatives or issues with existing ones can drive developers to migrate to

new libraries. For example, JUNG (the Java Universal Network & Graph Framework)5 is an open

source Java-based modelling and visualization framework, a common choice for developers who

require a means for modelling, analyzing, and visualizing data that can be represented as a graph or

network. JUNG had depended on the Apache Commons Collections,6 as this library provides many

advanced utilities and data structures free of cost that were useful for JUNG. JUNG was strongly

coupled with the external library, exposing some of its data structures in their APIs; however, in

2016 the JUNG developers decided to replace it with Guava (Google Core Libraries for Java),7

another commonly used collection library. The decision to migrate was made due to the discovery

of a security vulnerability in Apache Commons Collections. In addition, the JUNG developers thought

that Guava was a better alternative to rely on, as per their release notes8:

The commons-collections-generics library dependency has been replaced with Guava v19.

This change is not backwards-compatible with existing code. It was necessary because

of a security issue, but we also decided that Guava was a much better library to depend

on in future for a variety of reasons (some of which will become apparent in future JUNG

releases). In terms of interfaces, the replacement of commons-collections with Guava has

the following user-visible effects:

• Predicate to Predicate

• Factory to Supplier

• Transformer to Function

5https://github.com/jrtom/jung [accessed 2018/10/11]
6https://commons.apache.org/proper/commons-collections/ [accessed 2018/10/11]
7https://github.com/google/guava [accessed 2018/10/11]
8https://github.com/jrtom/jung/releases/tag/jung-2.1 [accessed 2018/10/11]

4

https://github.com/jrtom/jung
https://commons.apache.org/proper/commons-collections/
https://github.com/google/guava
https://github.com/jrtom/jung/releases/tag/jung-2.1

There are also (of course) many internal changes related to this replacement, e.g.,

• ChainedTransformer to Functions.compose()

• Buffer, UnboundedFifoBuffer to Queue, LinkedList

• BidiMap to BiMap

Available research [McDonnell et al., 2013, Kula et al., 2015, Bogart et al., 2016] mostly

concentrates on exploring library upgrading. These studies have explored the impacts and con-

sequences of modernization between different versions of the same library. Library upgrading is

usually less extreme than library migration, as it involves updating between different versions of the

same library, and so one would expect there to exist significant commonality. Library migration, on

the other hand, is performed between two distinct libraries, generally from different vendors. Due

to scarcity of research on library migration, we have little evidence as the frequency and severity of

this phenomenon, such as the impacts of librarymigration on a project and its transitively dependent

systems. For example, checkstyle9 is a Java-based development tool that allows developers to write

code that adheres to best coding practices. The checkstyle developers decided to eliminate their

dependency on Guava in favour of moving to the standard Java software development kit (SDK).

As a result of dropping Guava, the new release was not backwards compatible, since Guava was

being exposed in their APIs, as follows.10

Since this change is being done in API code, this will break backward compatibility with

any existing code that uses it if it is not re-compiled. When upgrading, to mitigate this

issue, all custom JARs must be recompiled against new checkstyle code.

Research has explored the rationales that drive developers to perform library upgrading. Their

studies have found that library upgrading normally happens after the occurrence of problems and

issues in the existing dependency version [Bavota et al., 2015]. However, the findings in this domain

are restricted to evolution of APIs in different versions of a library. Therefore, we are not clear about

the rationales that drive developers to perform librarymigrations. Hypothetically, librarymigrations

9https://github.com/checkstyle/checkstyle [accessed 2018/10/11]
10https://github.com/checkstyle/checkstyle/issues/3455 [accessed 2018/10/11]

5

https://github.com/checkstyle/checkstyle
https://github.com/checkstyle/checkstyle/issues/3455

should be motivated by legitimate rationales such as improvement in stability, performance, size,

and quality of the system. For example, the project DCMonitor11 underwent library migration from

the database system named InfluxDB12 that it depended on, to an alternative called Prometheus.13

The migration was motivated by improvement in performance and stability14:

I’m really tired of InfluxDB!

From my experience, it is very unstable, highly [with high] resource usage (CPU, disk

IO), and the Java client is not developer friendly. Since DCMonitor is mean[t] to be a

light weight tool, it should be easy to use, maintain and resource restraint. But relying on

InfluxDB makes things difficult. Luckily the history metric storage is only used like a k-v

storage with time range and group by, there are lots of storage system[s] [that] can handle

this. Maybe the good old MySQL is a nice option.

We note that developers have different resources available to them for notifying third-party

developers about migrations and their rationales (e.g., release notes, change logs, etc.). However,

which of these means are more effective and which are more often used in the community is also

not clear.

The effort required for mitigating library migration is still not apparent and needs further

exploration. Xavier et al. [2017] studied the impacts of backward incompatibility due to evolution

of library APIs, finding that 14.78% of API changes broke backward compatibility while impacting

2.54% of the clients. While Bavota et al. [2015] found that the impacts of upgrading to a newer

version of library are rather limited, as only 5% of the total classes and 6% of kLOC are impacted

due to upgrading; the limited impact is to be expected as vendors try to ensure that the newer version

of their library is backward compatible. Most library version upgrades involve fewer changes in

the client code for integration. However, this is not the case during migration to another library

altogether, as the dependencies are from independent developers with the possibility of having

11https://github.com/shunfei/DCMonitor [accessed 2018/10/11]
12https://mvnrepository.com/artifact/org.influxdb/influxdb-java [accessed 2018/10/11]
13https://github.com/prometheus/prometheus [accessed 2018/10/11]
14https://github.com/shunfei/DCMonitor/issues/28 [accessed 2018/10/11]

6

https://github.com/shunfei/DCMonitor
https://mvnrepository.com/artifact/org.influxdb/influxdb-java
https://github.com/prometheus/prometheus
https://github.com/shunfei/DCMonitor/issues/28

incompatible initial structures.

1.2 Research Questions and Objectives

The first objective of our study is to answer the following research questions, investigating the

phenomenon of library migration.

RQ0: How often does library migration occur?

RQ1: How often does library migration in a software system break it?

RQ2: What means are used by developers for notifying about library migrations?

RQ3: What impact does library migration from a system have on its dependent clients?

RQ4: How much effort is required for mitigating library migration?

Our second objective is to assist developers in the practical problem of migrating from one

library to another, providing developer support in the form of a tool we call EDW. Our research

questions for this objective are as follows.

RQ5: How well is EDW able to locate the initial impact set for library migration?

RQ6: What factors impact how well EDW performs?

1.3 Contributions

The thesis has two main contributions.

• We empirically explore library migration in 114 Java-based projects, selected from both

Maven and Android15 platforms.

• We develop a prototype tool, EDW, to assist the developer in performing library migration.

EDW utilizes change impact analysis for locating the impacted areas of change for the user,

and provides resources through which library migration can be performed systematically. We

15https://developer.android.com/ [accessed 2018/10/11]

7

https://developer.android.com/

conduct both a simulation and an experiment with human participants, in order to evaluate

EDW. The high precision and recall along with significant time savings of our tool show that

it has promise in guiding developers during the process of library migration.

1.4 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 describes a motivational scenario

regarding how prior knowledge and support would assist a developer who wants to perform a

library migration. Chapter 3 presents related work, elaborating on how it lacks in answering our

research questions. Chapter 4 discusses the project selection criteria,data gathering, analysis and

its results for our empirical study on library migration. Chapter 5 presents our prototype tool,

EDW, and explains the workings of its internal modules. Chapter 6 discusses the evaluation of EDW

and JRipples for our simulation study. Chapter 7 presents our controlled experiment using human

participants, in order to compare the effectiveness and efficiency of EDW with JRipples. Chapter

8 discusses some of the related topics of our research while specifying its threats to validity and

scope of future work. Chapter 9 concludes the thesis.

8

Chapter 2

Motivation

Nowadays, software developers rely on third-party libraries to provide functionality in performing

various tasks (i.e., data parsing, networking, etc.) in their systems [López de la Mora and Nadi,

2018]. There are several stable and tested libraries available online that can be used by the

developers for these functionalities, access to which is delivered by means of their APIs [Fox,

2010]. Using an available library avoids wasting time on re-inventing the wheel and can spare

significant resources for the non-trivial modules of a system. However, the utilized libraries can

easily become deprecated or fail to be enhanced as the environment around them changes for

the same reason as any software [Lientz, 1983]. As a result, the client developers might waste

significant effort, time, and resources in performing library migration.

Section 2.1 presents a motivational scenario to demonstrate how issues in third party libraries

can create the need formigration. The scenario also highlights howprior knowledge aboutmigration

and a readily available tool would help us in such a situation.

2.1 Motivational Scenario

Imagine a software developer who wants to create a novel universal visualization framework as the

basis for their software startup company. Their framework would allow the user to model, analyze,

and visualize data as a graph or network, while requiring fewer resources than the alternatives but

9

providing significantly better performance and results. Due to the competition from other available

benchmark software (i.e., JUNG, JGraph, etc.), the developer wants to put their product in the market

as quickly as possible. Since the time pressure is high and the available resources are limited, he

decides to prioritize development of the visualization algorithm. This algorithm is the key element

that would make this application stand out amongst its competitors.

The developer decides to adhere to the principle of reuse by adopting external software libraries

where possible. Since the emphasis of the project would be on handling data, the algorithm would

require various readily available data structures and their respective utilities. In order to search

for a library that would fulfill their needs, the developer uses Maven Central Repository search, as is

commonly done. Keeping all the resources and requirements in mind, he chooses to use one of the

popular libraries from the search: Guava, a collection and extension of the standard Java collections

framework that provides advanced utilities to the developer. With time this dependency becomes

an integral part of their project, as it becomes coupled with the APIs of the system; with successive

releases, their product becomes popular and is downloaded by many clients.

After some time, the developer discovers that the library he had decided to use during the initial

development phase has severe security vulnerabilities despite having been deemed safe and stable

by the community initially. As a result, support for this library has declined over the years and

the vendor of the library started to show intentions of deprecating it after several other security

vulnerabilities were found; thus, this library has become a risk for its dependent systems. The

developer is now in a dilemma about what to do, as their system has become strongly coupled

with the library. As a consequence, migration from Guava to something else will not be backward

compatible. The decision regarding migration from this library is delicate, as the impacts can

propagate to other working modules of the system as well as to transitively dependent clients.

Upon recognizing the vulnerabilities in the used library, the developer has the following options:

1. Keep using the same library while exposing the clients to a security risk.

2. Replace the existing library with a newer one that does not have this security vulnerability.

10

3. Replace the existing library with a module developed in-house.

If the developer chooses the first option, their clients will eventually discover the transitive

vulnerability and would stop using their system; their reputation would be damaged, as it would

be evident that he knew about the problem but exposed clients to it anyways; and besides, he

recognizes that such (in)action would be unethical. Thus, the second or third options are more

appropriate. The second option would require finding a reasonable alternative for the existing

library, while the third option would cost more time and resources but could save the company

from future, similar issues. Both options would require migrating from the existing library to an

alternative one; however, replacing or removing a strongly coupled dependency is not a simple

matter.

Finally after reviewing their available time and resources, the developer decides to go with

option 3. To avoid the need for future library migration, the developer decides to replace Guava

with functionality from a standard Java software development kit (SDK) instead of introducing a

new external library. (An SDK is shipped along with each release of the Java platform, which

does not require addition of external libraries for using offered functionalities.) As the available

tool support for library migration is lacking, the developer decides to use a manual process for

performing the change, as follows.

1. The developer needs to first locate classes that are explicitly dependent on the library to be

replaced. These are the initial impact points that would be directly affected in migrating

from the library. This step would require a thorough search for all directly affected classes

throughout their system.

2. After locating impacts at the class-level granularity, the developer needs to locate the affected

members (i.e., methods, fields, etc.) and statements inside these classes.

3. Once the initial impact points are found, the developer needs to figure out the transitively

impacted areas. These secondary points would be affected as a result of changing the initial

11

impact points. These secondary points of impact are harder to interpret, as they can arise

from detailed semantic dependencies.

4. Finally he has to replace the initial impact points with calls to the Java SDK, changing the

secondary impact points accordingly.

The first step in locating the affected classes requires the developer to figure out the list of

imported classes from Guava. In order to efficiently locate these imports, the developer localizes

their manual search by utilizing their knowledge of the system, first exploring their utility module.

The utility module contains general-purpose functions that are used throughout the system; based

on the developer’s experience, this module has the highest probability of using data structures from

Guava. The developer starts to explore the module in an iterative manner. He locates the class

UtilityClass1 that relies directly on Guava (see Listing 2.1); the class imports five classes from Guava

(lines 2–6). After discovering these imports, the developer decides to locate all classes relying on

them, by means of the search functionality provided by their integrated development environment

(IDE); he finds references to four more classes, all of which reside in the utility module, reinforcing

their assumption that the use of the external library is localized to the utility module.

Listing 2.1: Listing of UtilityClass1.

1 // ... other imports

2 import com.google.common.base.Joiner;

3 import com.google.common.collect.Range;

4 import com.google.common.collect.Lists;

5 import com.google.common.collect.Sets;

6 import com.google.common.base.Strings;

7

8 public class UtilityClass1 {

9 public static final String SEPARATOR = "_";

10 private Lists fields ;

12

11 // ...

12

13 public static Strings utilityFunction1 (boolean edges, Graph graph) {

14 Strings graphName;

15 if (edges) {

16 final List<String> edgesByPart = new LinkedList<>();

17 graphName = Joiner.on(SEPARATOR).join(edgesByPart);

18 }

19 else

20 graphName = "EMPTY";

21

22 return graphName;

23 }

24

25 private Lists utilityFunction2 (ZonedDateTime graphReferenceDate, String[] from, int year, int

month, List dateToBeSelectedFrom) {

26 Range<Integer> rangeForMonth = Range.closedOpen(LocalDate.of(year, month,

1).getDayOfYear(), month == 12 ? LocalDate.of(year, 12, 31).getDayOfYear() + 1 :

LocalDate.of(year, month + 1, 1).getDayOfYear());

27 Sets<Integer> selectedDatesBasedOnMonth = Sets.newHashSet();

28

29 for(Integer dayOfYear : dateToBeSelectedFrom) {

30 if (rangeForMonth.contains(dayOfYear))

31 selectedDatesBasedOnMonth.add(dayOfYear);

32 }

33

34 Lists finalSelectedDates = new Lists.newArrayList(Arrays.asList(from));

35 for(Integer dayOfYear : selectedDatesBasedOnMonth)

36 finalSelectedDates.add(LocalDate.ofYearDay(graphReferenceDate.getYear(),

13

dayOfYear).getDayOfMonth());

37

38 return finalSelectedDates;

39 }

40

41 public void utilityFunction3 (String graphName) {

42 if (Strings.isNullOrEmpty(graphName)) {

43 // ...

44 }

45 }

46

47 public void utilityFunction4 (Object graph) {

48 fields = Lists .newArrayList();

49 fields .add(graph);

50 }

51

52 // ...

53 }

Realizing that the five initially located classes depend on only two imported classes (com.

google.common.base and com.google.common.collect), the developer decides to perform an IDE

search using the common path prefix (i.e., com.google.common) with the expectation of imme-

diately locating all affected classes. However, their search yields many false positives, as the

system also depends upon a testing framework, called Truth, with imported classes in common

with Guava (e.g., com.google.common.Truth). Truth has more extensive usage and coupling with

the system in comparison to Guava. Instead of wasting time on going through false positives,

the developer decides to perform another IDE search while being more specific about imports by

using com.google.common.base and com.google.common.collect. Going through the results he fur-

14

Figure 2.1: Dependencies from classes in the developer’s system to Guava that he ultimately
discovers.

ther discovers four more imported classes (com.google.common.collect.Iterables, com.google.common.

collect.Table, com.google.common.base.MoreObjects, and com.google.common.base.Function) that he

previously missed. The developer then locates all affected classes of these imports before moving

to the next step. Figure 2.1 illustrates the dependencies between from their system’s classes and

the classes from Guava, as discovered by the developer.

Having performed their extensive search in the utility module, the developer now thinks that

he has located all affected classes relying on Guava within their system, so he moves to Step 2.

The developer starts their search for affected members from UtilityClass1: he manually locates the

impacted LOC directly using the imports in the class, and in the process, he tries to comprehend

the purpose of using the library. their search yields four utility methods and one field that depend

directly on the Guava library; Listing 2.1 shows the related logic in the utility function and fields.

For example, utilityFunction2() generates the list of dates based on the given year and month: the

function relies on the Range class for defining an interval of days falling in the given month range,

which is then utilized to populate the list of final selected dates to be returned after performing

some logic on it.

After successfully performing Step 2, the developer now thinks he has comprehended the

coupling of the system with the library. He can now move to locating transitive impacts of library

15

Figure 2.2: Transitive dependencies, from utilityFunction1 in the developer’s system to Guava, that
he ultimately discovers.

migration. In order to perform Step 3, the developer utilizes an impact analysis tool (Find it EZ16)

that recommends the ripple effects of changing the initial impact points. The developer is required

to perform impact analysis on each of the located members of affected classes from Step 2. He

starts Step 3 from UtilityClass1 (line 2.1) by locating the ripple effects of changing utilityFunction1()

(line 13). The impact analysis tool would report any member of a class that has a dependency on

(i.e., a call to) utilityFunction1() without being specific. Figure 2.2, shows the recommended classes

along with their members that depend on utilityFunction1(). The dashed lines show dependencies that

will not be impacted after library migration. The developer has to manually review each transitively

affected member in order to verify whether it would actually be impacted after migration or not.

For example, the transitively dependent classes DependentClass1 and DependentClass2 will not be

impacted after library migration, as callerFunction1() and callerFunction2() only utilize the returned

value (i.e., graphName) as-is in a conditional statement. On the other hand, DependentClass3 is

transitively impacted as it first stores the returned graphName, before performing further logic on

it. Since the developer has determined that DependentClass3 would be impacted, he has to further

determine the ripple effects of callerFunction3 on the system. In this case subDependentClass is not

impacted, as callerFunction4 also uses the returned value as-is. Similarly the developer determines

transitive impacts for other affected members from Step 2.

Finally after locating the impacted classes and the directly and transitively affected members,

and after comprehending library usage, he moves to Step 4 where he replaces the library with the

16https://www.finditez.com/ [accessed 2018/10/11]

16

https://www.finditez.com/

Java SDK. The developer has to find the appropriate alternative options in the SDK that would

retain the functionality after replacement. Listing 2.2 shows the members of class UtilityClass1 after

they are replaced with the alternative library; the developer has to keep the same semantics while

migrating between the two libraries that have different structure. For example, in utilityFunction2()

he replaces the use of Range with LocalDate (lines 28–29) for generating the boundary months that

are then used to populate the list of final selected dates. Similar changes are made for the imports

Joiner (line 18), Sets (line 32), Lists (lines 43 and 12), and Strings (line 38).

Listing 2.2: Listing of modified UtilityClass1.

1 // other imports

2 import java.lang.String ;

3 import java.time.LocalDate;

4 import java.time.Month;

5 import java. util .stream.Collectors;

6 import java. util .Collections;

7 import java.lang.Math;

8 import java. util . List ;

9

10 public class UtilityClass1 {

11 public static final String SEPARATOR = "_";

12 private List<Object> fields ;

13

14 public static String utilityFunction1 (boolean edges, Graph graph) {

15 String graphName;

16 if (edges) {

17 final List<String> edgesByPart = new LinkedList<>();

18 graphName = String.join(SEPARATOR, edgesByPart);

19 }

17

20 else

21 graphName = "EMPTY";

22

23 return graphName;

24 }

25

26 private List utilityFunction2 (ZonedDateTime graphReferenceDate, String[] from, int year, int

month, List dateToBeSelectedFrom) {

27 // Generate Range

28 int low = LocalDate.of(year, month, 1).getDayOfYear();

29 int high = month == 12 ? LocalDate.of(year, 12, 31).getDayOfYear() + 1 : LocalDate.of(year,

month + 1, 1).getDayOfYear();

30

31 // Generate Days candidates

32 List<Integer> finalSelectedDates = dateToBeSelectedFrom.stream().filter(dayOfYear −>

dayOfYear >= low && dayOfYear < high).map(dayOfYear −>

LocalDate.ofYearDay(graphReferenceDate.getYear(),

dayOfYear).getDayOfMonth()).collect(Collectors.toList());

33

34 return finalSelectedDates;

35 }

36

37 public void utilityFunction3 (String graphName) {

38 if (graphName!= null && !graphName.isEmpty()) {

39 /* ... */ }

40 }

41

42 public void utilityFunction4 (Object Graph) {

43 fields = Collections. singletonList (Graph);

18

44 }

45

46 // ...

47 }

After performing the change and running unit tests to confirm semantic preservation of the

system, the developer thinks that he has successfully migrated from the library. As the imports

from Guava are not needed anymore, the developer decides to remove them before dropping the

Guava dependency itself. However, in the process of doing this, he finds that he failed to consider

the class com.google.common.primitives.Ints imported by the class UtilityClass5, shown in Listing 2.3.

The import declaration was buried between other import declarations and resides in a different

package (com.google.common.primitives), which resulted in him missing it during the first iteration.

Realizing their mistake, the developer again performs an IDE search for other imported classes in

this package and then repeats Steps 2–4 on the located classes.

Listing 2.3: Listing of UtilityClass5.

1 // ... other imports

2 import com.google.common.primitives.Ints;

3 // ... other imports

4

5 public class UtilityClass1 {

6 public void utilityFunction5 () {

7 int checked = Ints.checkedCast(Math.round(getGraphSize()));

8 if (checked) {

9 // ...

10 }

11 }

12 }

19

13

14 // ...

After making the required changes, the developer confirms that he has successfully migrated

from the library by removing imports from the system. As all usage of the library has been

removed from the system, the developer finally removes Guava from the system’s build path and

re-builds the system. The build fails: their initial assumption about localized usage of Guava was

wrong. The file management module written by another developer was using the imported classes

com.google.common.io.Files and com.google.common.io.CharStreams directly. These import classes

reside in a different package and belonged to another module that resulted in them being missed

in previous searches. Again realizing their mistake, this time he decides to perform a thorough

search of the whole system based on build errors. He has to perform Steps 1–4 again on any newly

discovered imports while removing the imports one at a time.

Finally, after having performed multiple iterations of the steps, the developer successfully

replaces Guava with the Java SDK. At this point, the developer has spent significant time and effort

on the following:

1. Manual search for the directly affected classes, likely missing some and/or getting false hits.

2. Manual exploration of the directly affected classes in search of impacted members and their

ripple effects based on their past experience, via trial and error; in the process, he likely

misses some and/or gets false hits, plus he has to remember all the details.

3. Risk of the need for repeated iteration of the same steps, due to their limited knowledge and

unsystematic, manual approach.

4. The need to comprehend library usage for replacing it with another alternative.

On the other hand, the developer could have saved both time and effort if he had known

beforehand the affected classes of migration, along with their affected members and transitive

20

impacts. Moreover, migration could have been performed more efficiently if he had followed a

systematic approach with some insight and information on library migrations. The developer could

then have spent more time on comprehending how the library is used and how to replace it.

2.2 Summary

We described a scenario in which a software system was in need of migration from an unstable and

unsafe external library.

The motivational scenario demonstrates how mitigating migration of a strongly coupled de-

pendency requires the developer to perform different steps manually. The developer is required to

first find the impacted areas on different granularities: this involves locating the affected classes,

members, and lines of code, in this specific order. Once the developer has finalized the directly

affected classes the next step is to find the transitive impacted segments and their ripple effects. All

of these steps have to performed while remembering or recording results of the preceding steps and

actions. As a result, errors can easily be introduced into the procedure that require iteration of the

steps and repeated effort. Tool support for the mechanical aspects of the procedure would free the

developer’s time and attention on the more complex aspects of the problem.

21

Chapter 3

Related Work

Library migration falls under the general category of software evolution; however, our research is

more strongly related to the sub-domain of library upgrading, which considers upgrading existing

dependencies on libraries to new versions. Efforts have been made to understand library upgrading

by exploring evolution of APIs in dependencies, by conducting empirical studies specific to the

domains of API evolution, API breaking, and API migration. However, all of these studies are

restricted to an “intra”-level; that is, they are centred on studying changes among different versions

or variants of the same library. In contrast, library migration between independent libraries has

not been explored before, and we have little evidence as to the frequency and severity of this

phenomenon. Our research targets the scarcity of information regarding such “inter”-level library

migrations and explores the impacts of these changes on dependent systems. Due to the lack of

knowledge regarding librarymigration, we also lack specialized development tools aimed at helping

the developer to transition their software between libraries.

Section 3.1 discusses previous research on library upgrading. Section 3.2 highlights existing

tool support for library migration. Section 3.3 discusses approaches on change impact analysis.

Section 3.3.1 highlights the process of incremental change.

22

3.1 Library Upgrading

Library upgrading (also known as “library modernization”) due to API evolution has been studied

in recent years. Researchers have empirically studied how developers deal with library upgrading

that arises due to changes in APIs: the evolution occurs due to changes in the APIs of the library,

with impacts propagating to dependent systems. Mitigation of the issues of library upgrading has

been explored by conducting research on API evolution in software ecosystems, API migration,

API compatibility, and API upgrading in historic repository releases.

Bavota et al. [2015] thoroughly investigate the evolution of dependencies and their APIs in

the Apache ecosystem. The goal of their study is to understand what factors drive developers

toward updating their dependencies. They find that a new release of a library with major changes

usually triggers an upgrade in the dependent systems. Their results show that, at the API level,

developers tend to upgrade a dependency when substantial changes such as bug-fixing activities

are included. However, in most cases that involve API changes, developers are hesitant to perform

the final transition. McDonnell et al. [2013] study the Android ecosystem to understand the impacts

of API evolution in Android projects. They find that client adoption lags behind the exponentially

growing API evolution. They discovered that in their studied projects 28% of library references

were outdated. Developers did indeed upgrade to newer API versions, but the adoption time was

found to be much slower than the average API release intervals, as the projects had a median lag

time of 16 months. The findings of McDonnell et al. are further strengthened by Hora et al. [2018]:

they study the impacts of API evolution on the Pharo ecosystem, centring on exploring the reaction

of developers to the API evolution in the source code. They find that “53% of the analyzed API

changes caused reaction in 5% of the systems and affected 4.7% of developers [...]”.

Bogart et al. [2015] explore the stability of dependencies among modules of an ecosystem.

Continuing this work, Bogart et al. [2016] compare API breaking changes in libraries belonging

to three different ecosystems: Eclipse, R/CRAN, and Node.js/npm. They state the difference in the

applied practices, policies, and tools when performing a breaking API change in these distinct

ecosystems. They find that the three ecosystems differ significantly in their API cost negotiation

23

and community values. These studies explore the area surrounding API evolution and their conse-

quences on its respective ecosystems. The focus of these studies is to determine the significance of

changes in APIs while moving from an old version of the same library to a newer one.

Some research studies library upgrading by reviewingmigration of APIs between similar library

versions. For instance, Dig and Johnson [2006] study API migration between software systems, on

two major releases of four frameworks and one library written in Java. They define a catalogue of

breaking and non-breaking API changes that can be used by future researchers. In their research

they find out that 80% of the changes that break client code were due to refactoring operations;

Cossette and Walker [2012], however, call this result into question. Hora and Valente [2015]

propose a tool called apiwave, which keeps track of API popularity and migrations for popular

frameworks and libraries; their tool notifies system maintainers regarding the evolution of APIs in

the supported frameworks. Kula et al. [2018a] conduct a large scale study on library migration for

GitHub projects. They report that 81.5% of the studied systems kept their outdated dependencies

even when subject to the risk of security vulnerability; 69% of the interviewed developers were not

even aware of the vulnerable dependencies; most developers do not prioritize dependency update

as it means additional work for them. They conclude that updating deprecated dependencies is not

common practice for most developers and projects. Kapur et al. [2010] study the issue of dangling

references during API migration; they present a prototype tool called Trident that can be used to

automate refactoring of references during migration. The available research is only restricted to

migration of APIs belonging to different versions of the same library. The area related to migration

across domains and distinct libraries is yet to be studied thoroughly.

Another take on library upgrading considers API compatibility issues. Xavier et al. [2017]

study the breaking API changes in Java libraries and explored their impacts on client code. They

find out that 14.78% of library releases broke compatibility with previous versions while impacting

2.54% of the clients in the process. Moreover, the projects with higher frequency of breaking

changes are comparatively more popular, large, and active. They recommend that, to avoid the

imminent risk of using obsolete libraries, developers update their system as early as possible. Jezek

24

et al. [2015] study the compatibility issues of Java APIs as the third party library evolves. The

goal of their study is to locate impacts of API evolution on programs using these libraries. They

find that API compatibility is a commonly occurring issue and can cause problems for programs

depending on the library. They conclude that better tools and methods are in dire need to support

this ever growing library evolution. These empirical studies express concerns regarding issues with

API incompatibilities while updating a library to a newer version.

Researchers have also studied library upgrading in the history of releases in online repositories.

Kula et al. [2015] study the latency of adopting new releases in Maven projects. They explore

the adoption of new library versions based on the trust factor of functional and non-functional

correctness. They find that 82% of the studied systems were inclined towards adopting the latest

versions in favour of existing systems, in contrast to Bavota et al. [2015]. Visser et al. [2012]

perform a historical analysis of stability and impact on clients of the Apache Commons library. They

present four stability metrics based on method changes and removals. Their matrices can be used

to calculate stability of implementation of third-party libraries. Raemaekers et al. [2014] study the

means and approaches of notification about update options regarding breaking changes in libraries

on Maven Central Repository, finding that the current mechanism to signal interface instability is

not often used and requires further improvement. The research in this domain has studied library

upgrading by exploring different releases of the same library in a repository.

These studies focus on exploring API evolution of different versions of the same library. These

studies explore what changes drive the developers to opt for latest releases and the impacts of

these changes. However, this research does not explore movement between distinct libraries. The

questions of when and why to update a library to an alternative one still remains unanswered. The

reasons forcing a developer to move to another community or alternative option, the impacts due

to this decision, and the effort required to perform this transition are still not clear. Thus the library

“upgrading” performed on an inter-level (i.e., library migration) requires further exploration.

Our research addresses some of these unanswered questions by studying library migration

between independent libraries and explores the rationales behind such transformations.

25

3.2 Tool Support for Library Migration

Developers have to manually perform upgrading of software libraries, due to a lack of better

alternatives. The task of modifying a software system to start using a new library is developer

driven, error prone, and time consuming. The available literature shows that the current tool support

for dependency management and upgrading is lacking.

Walker and Murphy [2000] pointed out that tightly coupling to external libraries can cause

brittle APIs, but they presented only anecdotal evidence in support of it.

Bogart et al. [2015] argue that current collaboration tools work well within a single community

but break down when used for inter-dependent projects between distinct communities. Their

preliminary results show that in the studied ecosystems, developers struggled with dependency

management and evolution and existing tools were rarely used to help the cause. Cossette and

Walker [2012] study the incompatibilities of APIs between different versions of Java software

libraries, discovering that most of the available recommendation techniques for API migration

are incompetent, with an accuracy rate of only 20%. Their results show that most available

recommendation techniques are insufficient for library migration.

Researchers have recently started to explore approaches from the field of visualization to help

developers while mitigating library evolution. Kula et al. [2014] study the lack of historical

knowledge regarding efficient maintenance of outdated libraries, wanting to assist maintainers by

visualizing the evolution of relationships between a system and its dependencies. To materialize

their idea they propose a time-series visualization plot called library-centric dependents diffusion

plots (LDP): LDP incorporates knowledge of how different systems manage their dependencies.

Their approach shows potential in understanding the dependency management in real world evalu-

ated examples. Kula et al. [2018a] introduce the software universe graph (SUG) that can be used to

model the popularity, adoption, and diffusion trends of dependencies in a repository or ecosystem.

The SUG models the usage of a library over time and the latency of introducing new dependencies

in the system. The visualization provided by SUG can be used for extracting valuable insights from

dependency management. Building on the findings of Kula et al., Todorov et al. [2017] propose

26

a tool named SoL Mantra (Software Library Mantra) that makes use of the knowledge available

through wisdom of the crowd to suggest update opportunities to the developers; it checks which of

the system dependencies are out of date and recommends which dependencies should be updated

together or individually. By making use of the coexistence coefficient provided by Kula et al., SoL

Mantra can also compute the complexity of each potential update. The tool extensively makes use

of visualization to present the maintainer with a complex orbital layout17 for the dependencies re-

lation. Their visualization, however, gets messier in-case of massive systems that have overlapping

dependencies; such overlapping visualizations are very hard to comprehend for the user without

having proper support. SoL Mantra only provides visual cues for update opportunities of different

versions of the same library. It is helpful in an environment where a developer wants to update to

a newer version of the same dependency; however, the tool is not built for the purpose of moving

to another distinct library.

Another approach to upgrade libraries using visualization is proposed by Gerasimou et al.

[2018] as an end-to-end methodology. Their approach makes use of a visualization technique

called the city metaphor [Wettel et al., 2011], used to highlight the impacted areas of change

as three-dimensional cities associating the extracted dependency metrics with visual properties

of city components. Their approach is a four-step process that starts with parsing and analysis

of the source code that needs upgrading. The second step visualizes the gathered information

regarding dependencies metrics by utilizing the city metaphor. Steps 3 and 4 involve the automatic

transformation of old source code to the upgraded one with its verification. The impacted areas

are automatically mapped and transformed to certain template patterns which are then verified for

accuracy. Their results remain preliminary.

17https://github.com/emeeks/d3.layout.orbit [accessed 2018/10/11]

27

https://github.com/emeeks/d3.layout.orbit

3.3 Change Impact Analysis

Analogously to a stone thrown in a pond, an initial software change in a system can result in

“ripple effects” that demand subsequent, secondary changes to the rest of the code base [Bohner

and Arnold, 1996]. Therefore performing change impact analysis (CIA) is an essential step of

incremental software development Rajlich and Gosavi [2004]. The origin of impact analysis can be

traced back to Haney [1972], who described a simple model to estimate stability of a large system

as a function of its internal structure. The proposed matrix was able to record the probability of

change propagation in a system of significant size. The traditional definition of CIA comes from

Bohner and Arnold [1996]: the process of identifying and estimating the areas of a system that

need modification in order to accomplish a change.

As most changes in a system propagate due to program dependencies, several impact analysis

techniques exploit models that utilize the system dependence graph (SDG). [Horwitz et al., 1990]

proposes the SDG approach along with its two-phase graph reachability algorithm to compute inter

procedural slices. An SDG is a directed acyclic graph that utilizes program dependence graphs

[Ferrante et al., 1987] tomodel the inter-procedural structure of a systemunder analysis. By building

on top of the results from the Horwitz et al. algorithm, Reps et al. [1994] proposes an algorithm

that is asymptotically faster then the original one. However, the asymptotic complexity of their

algorithm is still bounded by O(n3) where n is the maximum number of parameters at any call site.

Similarly other research [Liang and Harrold, 1998, Forgács and Gyimóthy, 1997, Sridharan et al.,

2007, Graf, 2010] tries to improve the original proposed algorithm and model of SDGs by either

reducing additional parameter vertices, supporting new functionality, or optimizing the graph

traversal algorithm. Even with all these proposed advancements, constructing and maintaining

SDGs or similar graphs for the whole system is too expensive for practical purposes [Men, 2018].

The available CIA techniques can be classified into two broad categories: structural analysis

and semantic analysis. The structural analysis techniques construct dependence graphs in order

to extract structural dependencies between program entities, working on the principle that, if a

program entity in a structural dependency network changes, other dependent entities might also

28

have to change [Petrenko and Rajlich, 2009, Sun et al., 2010]. A call graph based approach is

proposed by Bohner and Arnold [1996], but it suffers from imprecise results as the call graph does

not contain the impacts of callees on callers. In order to further improve accuracy, Badri et al. [2005]

incorporate control flows into their model. Similarly different variants of structural approaches [Lee

et al., 2000, Tonella, 2003, Breech et al., 2004, Jász et al., 2008] have been proposed over the years.

These techniques usually start with building an intermediate representation of the program based

on the extracted structural dependencies. Change impact is then calculated based on the transitive

closure and traversal of the constructed representation.

The second type of CIA techniques incorporate the semantics of the source code in their

analysis. These techniques can distinguish between changes that have local (i.e., refactoring)

or substantial (i.e., functionality) impacts. The semantic CIA approaches recommend probable

changes by exploiting semantic rules and patterns of the source code. Poshyvanyk et al. [2009]

try to overcome the limitations of static coupling measures by capturing the conceptual relation

between programentities. Their approach uses latent semantic indexing for detecting the similarities

between code entities. Gyori et al. [2017] proposed an inter-procedural semantic CIA that was

based on equivalence relations between program versions. Their technique improves precision in

the presence of semantic preserving changes. Several other approaches [Robbes et al., 2007, ten

Hove et al., 2009, Canfora and Cerulo, 2005, Ajienka and Capiluppi, 2016] have been proposed over

the years, that perform fine-grained CIA by utilizing code semantics. These approaches compute

semantic similarity for embedded text information in the analyzed artifacts.

The semantic approaches for CIA are more thorough and they can even discover couplings that

are harder to find for the traditional techniques. These approaches, however, consume significant

resources in order to achieve their results, being too slow when applied on industrial scale. On the

other hand, structural techniques are comparatively faster and have more feasible applications in

the industrial domain. Moreover, fine-grained approaches have been proposed to remedy the issue

of lower precision and accuracy in structural techniques. However, the structural techniques have

the issue of producing overestimated results due to their undecidability [Landi, 1992].

29

3.3.1 Incremental change

The process of incremental change (IC) is a systematic approach to introduce new functionalities

in an existing system. [Rajlich and Gosavi, 2004] propose an incremental change model to support

evolution in software systems. Their model is divided into three broad phase namely initiation,

design and implementation of incremental change. The initiation phase includes interaction with

the customer or stakeholders to initiate the change request. The implementation phase that comes

after design deals with introducing the actual change in the system by performing several activities.

These activities are pre-factoring, actualization, change propagation, post-factoring, and testing.

The design phase involves concept location and impact analysis that are to be performed

before the actual implementation. Concept location allows the developers to determine the initial

location of change within the source code. If effectively followed, concept location can successfully

determine the areas where change is to be made [Marcus et al., 2005]. On the other hand, the

activity of impact analysis identifies the full extent of an initial change. Buckner et al. [2005]

propose JRipples in order to partly automate the IC cycle of Rajlich and Gosavi [2004]; it is an

interactive tool for program comprehension during IC that supports activities of impact analysis

and change propagation. JRipples requires developer to discover at least one class of the impact

set. The rest of the impact set is discovered by looking at the neighbours of the dependency graph

with an iterative approach. In order to calculate impacts, JRipples supports different propagation

rules (marks) that determine how change in one node is propagated to other dependent ones. An

“Impacted” mark indicates that the class would be changed during the IC. A “Propagating” mark

indicates that the class itself will not be changed but the neighbouring nodes might be affected.

Finally, a “Next” mark indicates that the marked class might change as consequence of changing

the neighbouring node. The JRipples analysis ends when there are no longer any classes that are

marked as “Next”.

JRipples is built to support IC, after the developer has located the initial impact points in the

code base; it does not specifically assist in library migration. As demonstrated in Section 2.1, its

use results in error-proneness and repetition that can waste time and resources: in essence, the

30

developer misses low-level details in migration, due to information overload.

3.4 Summary

We discussed the existing work related to software library upgrading, and pointed out how that

phenomenon potentially differs from library migration; thus, the literature contains little knowledge

of the issues that arise in library migration.

Similarly, available tool support for library upgrading relies on visualization to assist the devel-

oper in transformation. These tools only provide visual cues and feedback to the developers. None

of the available tools and approaches is appropriate for efficiently performing library migration.

We also discussed the available literature on change impact analysis. Semantic approaches

are quite costly in contrast to their purely structural counterparts. However, as a consequence

of their higher cost they are more accurate. The approaches based on SDG and similar graph

representations are expensive to construct and maintain; this generally makes them too expensive

for practical use. We also highlighted the systematic approach of incremental change to support

software systems evolution. JRipples, a tool for incremental change, can support a manual approach

for performing library migration, but this approach would require a developer to manually locate

classes, members, and impact points relying on the old libraries being removed, before calculating

their ripple effects; something more is needed.

31

Chapter 4

Data Collection and Analysis

In this chapter, we address our research questions on software library migration. Our aim is

to empirically explore the impacts of library migrations on Java projects and their transitively

dependent systems. We use the terms “dependency” and “library” interchangeably in this chapter;

they refer to an external system or JAR file which was added to a project in order to fill the void for

certain functionality.

Our research questions are as follows.

RQ0: How often does library migration occur?

RQ1: How often does library migration in a software system break it?

RQ2: What means are used by developers for notifying about library migrations?

RQ3: What impact does library migration from a system have on its dependent clients?

RQ4: How much effort is required for mitigating library migration?

To consider certain narrower aspects, we subdivide some of the research questions as follows.

RQ1.1: When do developers remove an external library without adding a new one?

RQ2.1: What are the rationales that drive developers to migrate libraries in a working system?

Figure 4.1 overviews our approach. The process conforms to a pipe-and-filter architectural

style, where each step transforms its input to its output that is used for the input to the subsequent

32

step. The rectangular boxes constitute the processing steps performed for our study (the greyed ones

are described further); the curved-bottom boxes represent the data passed to/from the processing

steps; the projected cylinders represent databases. The solid arrows represent the sequencing of

the processing steps with the data passed therein (note that the apparent cycle is only an artifact of

the representation); the dashed arrows represent additional dependencies. The solid circle at top

represents the start of the process, and the target symbol at bottom represents the end of the process.

A total of seven processing steps are performed for the sake of finding and analyzing data

relevant to our research questions. (1) Our custom crawler performs a GitHub search for relevant

projects by generating a series of queries; the search accesses theGitHub repository and it determines

metadata identifying the projects relevant to the queries. The metadata is then used by the crawler

to download the files stored in GitHub for the relevant projects (see Section 4.1.1). (2) We use a

custom analyzer to analyze the downloaded project source code for occurrences of librarymigration,

filtering out projects that have not (potentially) undergone library migration (see Section 4.1.2).

(3) We determine a random subset of these filtered projects through a manual selection process,

and obtain the binary code for the filtered subset through access to the Maven Central Repository

(see Section 4.1.3). (4) An industrial tool, Find it EZ, is used to determine initial points of impact

involved in the library migrations (see Section 4.2.1). (5) A second industrial tool, JAPICC, is

used to determine whether the library migrations have caused any breaking changes to the projects’

exposed APIs (see Section 4.2.2). (6) A third industrial tool, Code Compare, is used to determine

whether the changes that occurred broke the code or not (see Section 4.2.3). (7) We collected and

analyzed the resulting data (see Section 4.3).

4.1 Selection of Projects

We used GitHub, a web-based hosting service that supports the version control system Git, to retrieve

the systems used in this study. GitHub allows its users to access a large number of public repositories

and is considered to be the largest host of open source code in the world [Gousios et al., 2014].

33

Figure 4.1: Approach for data collection and analysis.

34

We selected GitHub due to its unrestricted access to commits, developer conversations, and source

code. GitHub is home to open source projects that are currently written in a total of 337 unique

programming languages18; however, we narrow our study to consider only Java, the third most

popular language on GitHub, for the sake of avoiding the engineering complexities in handling

additional languages. Furthermore, in order to automate extraction of dependencies, we restrict

our studied systems to Java-based Maven and Android projects. Both of these platforms contain

XML-based, central code management files (named POM.xml and Build.xml for Maven and Android

projects, respectively) containing general information about the project with their configuration

details that are used during compilation. More specifically, these files contain information about

any external library that a project depends on.

4.1.1 GitHub Crawler

We wrote a Java crawler that utilizes GitHub search to identify and download relevant projects.

GitHub offers representational state transfer (REST) APIs19 for helping researchers to automate

the tedious process of fetching large code bases. GitHub APIs allow the user to select various

parameters (e.g., star interval and language) to limit the search. The number of stars corresponds

to the popularity of a project; we decided to only download projects that had 100 stars or more.

In order to protect themselves against denial-of-service (DoS) attacks, GitHub limits the API

hit rates per user: 5,000 hits per hour when using authenticated access and 60 otherwise. We

adapted to this limitation by making use of periodic sleeping, reduced star interval, and access

tokens; the access tokens provide the authentication needed to permit 5,000 hits per hour, while

the periodic sleeping resets the current rate limit window. The crawler generates queries with

increasing star intervals, in order to avoid hit overload and for feasibly managing the retrieval

and download of relevant projects. The crawler generates a query for each interval difference of

100, starting from 100 until it reaches 27,000 (i.e., it starts from the interval [100,200], then

18https://octoverse.github.com/ [accessed 2018/10/11]
19https://developer.github.com/v3/? [accessed 2018/10/11]

35

https://octoverse.github.com/
https://developer.github.com/v3/?

for all p ∈ Projects do
for all vi ∈ Versions(p) \ vn do

xmli ← locateXMLFile(vi); xmli+1 ← locateXMLFile(vi+1)
DEPi ← Parse(xmli); DEPi+1 ← Parse(xmli+1)
return DEPi \ DEPi+1

end for
end for

Figure 4.2: Algorithm to detect elimination of external dependencies.

[201,300], and so on). We stopped at 27,000 as we manually verified that the most popu-

lar relevant project at that time had 26,220 stars. The metadata of projects returned from the

API is in paginated form; therefore, the crawler periodically increases the page number start-

ing from 1 until it reaches a page with 0 projects. The metadata of retrieved projects con-

tains a set of downloadable links for each of their released versions; the crawler uses these

links to download the source code of the projects for a star interval. The first query gener-

ated by our crawler is: “https//api.github.com/search/repositories?access_token=token&page=1&

q=language:Java%20language:Maven%20language:Android%20stars:100..200”. Other queries

generated by our crawler are similar; only the star intervals and page numbers are adjusted for

retrieving the relevant projects.

The crawler was used to download a total of 9,561 projects in May 2017, the complete set of

projects that satisfied our queries at that time.

4.1.2 Code Analyzer

We wrote a Java-based code analyzer to filter the downloaded projects. Selected projects were

required to have migrated between libraries in any two successive released versions. We tried

different approaches for our analyzer including the use of change logs, release notes, version

numbers, and different granularities, but such approaches resulted in excessively high false positive

rates; therefore, we reverted to the simple approach of checking the absence of prior dependencies

in newer versions. Our simple algorithm for the code analyzer is shown in Figure 4.2.

The algorithm iterates through the located projects. Assuming that the versions of the project

36

https//api.github.com/search/repositories?access_token=token&page=1&q=language:Java%20language:Maven%20language:Android%20stars:100..200
https//api.github.com/search/repositories?access_token=token&page=1&q=language:Java%20language:Maven%20language:Android%20stars:100..200

are ordered chronologically, it then iterates through them also locating each version’s successor (the

last version is not selected as it does not have a successor). It locates the relevant XML configuration

file in both versions, which are parsed to find the absence of an external dependency in the newer

version that was present in the older one. The projects demonstrating this phenomenon are collected

for further analysis. (Note: The algorithm will locate the XML configuration file and parse it two

times in total for versions 2 through n − 1 of each project. As the necessary processing has low

runtime cost, we chose this naive approach over the alternative of caching the information for the

successor version, which would have increased implementation complexity and hence the potential

of introducing bugs. Since the runtime cost of the algorithm is negligible relative to the high cost

of locating and downloading the projects, optimization of the algorithm was not warranted.)

We ran our analyzer on the downloaded 9,561 projects, returning a total of 1,135 projects which

consisted of 680 Android and 455 Maven projects.

4.1.3 Manual Selection

Wemanually selected a subset of the downloaded projects that fulfilled the following set of criteria.

• Each selected project must be actively using a library, in its older version, that was found

missing in the newer one.

• Each selected project must migrate between libraries not developed by the same develop-

ers. (Maven projects follow a modular structure; therefore, there are many intra-modular

dependencies in which the internal modules act as dependencies for each other in a Maven

system. The developer has control over these modules; therefore, we decided to ignore such

dependencies.)

• Each selected project must have been actively updated in the last 2 years. (We wished to

avoid stale or abandoned projects.)

• Transitive dependencies which are either used by the IDE or are required transitively by other

external libraries cannot satisfy the other criteria.

37

We found 218 projects that fulfilled the criteria. We randomized the list of these filtered

projects by using the RAND function provided by Microsoft Excel. Our use of RAND assigns a

random number between 0 and 1 to each project; the projects are then sorted on these numbers

to obtain their randomized list. We began by selecting the first 120 projects from the randomized

list that fulfilled our criteria; when we discovered that six of these projects involved only trivial

migration changes, we eliminated them as well, resulting in a final project count of 114. There

were 74 Maven projects and 40 Android ones. We obtained the binary code for these projects by

manually accessing the Maven Central Repository. The studied projects are listed in Appendix A.

Appendix B lists the involved third party libraries for the studied projects.

4.2 Data Gathering

To study migration of external dependencies, we collected information on: (1) impacts on projects

undergoing library migration; and (2) impacts on transitively dependent client systems after library

migration in a project they were depending on. We decided to use tools for data extraction where

possible, as a manual approach would have been error-prone and time-consuming for the scale of

our study. Our process of gathering data involved the following steps.

4.2.1 Find it EZ

In order to answer our research questions, we had to locate the directly impacted classes of the

library being migrated. Find it EZ is a software productivity tool that is language-independent and

can be used for change impact analysis on an industrial scale20; thus, it could be applied for our

needs and a community version is available free of charge.

Find it EZ requires a search query to locate the dependent classes in a project. We decided to use

the unique common parent package of a library for this search query. The package name is available

as an import reference in any class that depends on the library; hence there is no possibility of

20https://www.finditez.com/ [accessed 2018/10/11]

38

https://www.finditez.com/

missing a dependent class during the search, meaning that we avoid false negatives assuming we

made no errors. We manually compiled this package name for each library and then used it to

locate the impacted classes through Find it EZ. We then manually examined each of the reported

impacted class during our analysis; hence, there is no possibility of having a false positive in our

final set of impacted classes, assuming we made no errors.

4.2.2 JAPICC

In order to determine the consequences of library migration on a project’s dependent client, we

decided to explore compatibility issues between binary code of each project’s newer and older

versions. Any client relying on a project’s older version will not run nor compile with the projects’

newer version, if there are backward compatibility issues between successive versions of a project.

For our analysis, we only examined the compatibility issues resulting from library migration in the

project.

In order to achieve our goal we used Java API Compliance Checker (JAPICC),21 a tool for checking

backward compatibility of a Java library API. The tool checks class declarations of the older and

newer versions, to analyze changes that may break compatibility for a client depending on the older

version of a system. The tool reports compatibility issues that can arise for a client that tries to use

the newer version of the project it is depending upon. JAPICC reports the error messages of the

Java Virtual Machine and compiler that would be generated for each breaking change found in the

API. During our analysis, we only considered those breaking changes in the report that resulted

from library migration.

4.2.3 Code Compare

We had to determine the severity and type of impact resulting from library migration in a project.

In order to achieve this, we had to flag the discrepancies resulting from migration between the

impacted classes of a project. We decided to use a diff comparison tool Hunt and McIlroy [1976]

21https://github.com/lvc/japi-compliance-checker [accessed 2018/10/11]

39

https://github.com/lvc/japi-compliance-checker

to highlight these discrepancies. We used Code Compare, an industrial-scale diff comparison tool,22

on the impacted classes for the versions involved in migrations; Code Compare allows the user to

view a line-by-line comparison between two different projects or files. The diff comparison flagged

the discrepancies between successive releases. We examined the discrepancies that resulted from

the migration of library, which was then used to determine the breaking of system’s code.

We only considered changes in functionality that break system code. By “break system code”,

we mean that the code had compilation errors after migrating the system from a library. We decided

to ignore cosmetic changes (i.e., package and method name changes) that had trivial impact on

source code while answering our questions. If such changes are considered, all studied migrations

might break the source code, e.g., changing the name of a package being used might result in

compilation errors but correcting such errors requires trivial effort.

4.3 Analysis and Results

In this section, we address the research questions based on the collected data.

RQ0: How often does library migration occur?

We found that 1,135 out of the total 9,561 studied projects underwent library migration (11.87%

of the total studied projects). These 9,561 projects were retrieved through our GitHub crawler in

May 2017; recall from our earlier description that these were all the Java-based projects (in Maven

and Android) accessible via GitHub, with a popularity rating of at least 100 stars, which represents

the minimum number of developers that are interested in using the system. Thus, many projects

undergo library migration, and it is not a rare phenomenon. We cannot speak to the frequency of

library migration in nascent projects, or in projects that are unpopular for other reasons.

We found exactly one case in which a project underwent library migration twice: JStorm

migrated from Google JSON Simple to Fast Json and then reverted back to Google JSON Simple

when the developers were not content with the results of the initial migration.23 Our speculative

22https://www.devart.com/codecompare/ [accessed 2018/10/11]
23https://github.com/alibaba/jstorm

40

https://www.devart.com/codecompare/

explanations for the lack of a second migration include: none of the projects has been in existence

long enough to experience the need for a second library migration; the developers’ choices about

how to perform the initial library migration avoided the need for a second library migration; the

first library migration was sufficiently painful for the developers that they avoided doing it again.

RQ1: How often does library migration from a dependent system break it?

We found that 67.3% of library migrations broke the dependent system. This shows that depen-

dencies are often coupled with the system and moving them out can have a significant impact.

However, we also found that 32.7% of migrations did not break the dependent system completely,

having minimal impact. The reasons behind successful library migration without code breaking

are listed in Figure 4.3 and described in detail below.

• Version upgrade

We found that 18 projects depended on libraries that changed their product name (i.e., package

name) after a major release. This modification was due to alteration in ownership, developers,

or hosting platform. However, apart from these cosmetic changes, the new releases for such

libraries were mostly backward compatible. As a result, the dependent system was easily

repaired.

Figure 4.3: Project count versus reasons behind successful library migration without code breaking.

41

For example, Jackson is a popular high performance JSON processor for Java. Before 2011

it was being maintained at Codehaus, a prominent open source Java project community

and hosting platform a decade ago; however, after the increasing popularity of GitHub, its

influence started waning. Due to this the Jackson developers decided to shift their project to

GitHub. They released Jackson version 2.x which changed the name of their parent package

from codehaus to fasterxml. Moving from Jackson 1.x to 2.x in most cases (depending on API

usage) only requires a change in package names.

• Smooth replacement

We found 10 libraries (shown in Table 4.1) that support smooth replacement (i.e., with

minimal code impact). These libraries were involved in 14 smooth migrations in our study,

as three of them (Asynchronous Http Client, NineOldAndroids, and Picasso) were involved in

more than one library migration. The pairs of dependencies (Google Guice Core Library and

Javax Inject, Guava and Guava Mini, Retrofit and OkHttp) have the same developers and allow

easy replacement with each other.

For example, Javax and Guice are both dependency-injection frameworks. Javax is provided

by standard Java with standardized dependency injection functionality while GUICE is an

external dependency. Javax annotations can function as direct replacements for Guice with

little effort. The author of Guice (Bob Lee) is a spec-lead for the Javax team; thus, the basic

infrastructure for both libraries is similar. Moving from Javax to Guice is simple since Javax

is a subset of Guice, while moving in the opposite direction might require deletion of certain

functionalities.

In cases where library migration is the last resort, developers should first consider an alter-

native that can accommodate smooth replacement.

42

Table 4.1: Libraries that support smooth replacement with another one while having minimal code
impact.

From To

Jackson Dataformat YAML24 SnakeYAML25

Asynchronous Http Client Asynchronous Http Client
by com.ning26 by org.asynchttpclient27

Google Guice Core Library28 Javax Inject29

Apache Log4j API30 SLF4J API31
Guava32 Guava Mini33

Plexus Archiver Component34 Google Guice Core Library35

Apache HttpComponents Client for Android36 HttpClient Android Library37

NineOldAndroids38 standard Android SDK39

Retrofit40 OkHttp41

Picasso42 Glide43

• Removed impact set

For 12 systems, the module dependent on the library to be removed, was itself discarded.

These modules were so tightly coupled with the dependency that developers preferred to

completely rewrite the module instead of modifying the existing code. Since the complete

impact set (including transitive impacts) using the dependency was removed, there is no ques-

tion of breaking the code. For most of these migrations the module was already segregated

24https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/jackson-dataformat-yaml
[accessed 2018/10/11]

25https://mvnrepository.com/artifact/org.yaml/snakeyaml [accessed 2018/10/11]
26https://mvnrepository.com/artifact/com.ning/async-http-client [accessed 2018/10/11]
27https://mvnrepository.com/artifact/org.asynchttpclient/async-http-client [accessed 2018/10/11]
28https://mvnrepository.com/artifact/com.google.inject/guice [accessed 2018/10/11]
29https://mvnrepository.com/artifact/javax.inject/javax.inject [accessed 2018/10/11]
30https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api [accessed 2018/10/11]
31https://mvnrepository.com/artifact/org.slf4j/slf4j-api [accessed 2018/10/11]
32https://mvnrepository.com/artifact/com.google.guava/guava [accessed 2018/10/11]
33https://mvnrepository.com/artifact/com.github.davidmoten/guava-mini [accessed 2018/10/11]
34https://mvnrepository.com/artifact/org.codehaus.plexus/plexus-archiver [accessed 2018/10/11]
35See footnote 28.
36https://mvnrepository.com/artifact/org.apache.httpcomponents/httpclient-android [accessed 2018/10/11]
37https://mvnrepository.com/artifact/cz.msebera.android/httpclient [accessed 2018/10/11]
38https://mvnrepository.com/artifact/com.nineoldandroids/library [accessed 2018/10/11]
39See footnote 15.
40https://mvnrepository.com/artifact/com.squareup.retrofit/retrofit [accessed 2018/10/11]
41https://mvnrepository.com/artifact/com.squareup.okhttp3/okhttp [accessed 2018/10/11]
42https://mvnrepository.com/artifact/com.squareup.picasso/picasso [accessed 2018/10/11]
43https://mvnrepository.com/artifact/com.github.bumptech.glide/glide [accessed 2018/10/11]

43

https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/jackson-dataformat-yaml
https://mvnrepository.com/artifact/org.yaml/snakeyaml
https://mvnrepository.com/artifact/com.ning/async-http-client
https://mvnrepository.com/artifact/org.asynchttpclient/async-http-client
https://mvnrepository.com/artifact/com.google.inject/guice
https://mvnrepository.com/artifact/javax.inject/javax.inject
https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api
https://mvnrepository.com/artifact/org.slf4j/slf4j-api
https://mvnrepository.com/artifact/com.google.guava/guava
https://mvnrepository.com/artifact/com.github.davidmoten/guava-mini
https://mvnrepository.com/artifact/org.codehaus.plexus/plexus-archiver
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpclient-android
https://mvnrepository.com/artifact/cz.msebera.android/httpclient
https://mvnrepository.com/artifact/com.nineoldandroids/library
https://mvnrepository.com/artifact/com.squareup.retrofit/retrofit
https://mvnrepository.com/artifact/com.squareup.okhttp3/okhttp
https://mvnrepository.com/artifact/com.squareup.picasso/picasso
https://mvnrepository.com/artifact/com.github.bumptech.glide/glide

and had minimal coupling with other parts of the project.

For example, the project OpenZipkin dropped their support for elastic search native transport.

The release stated that the user base had no objection to removing the native support and

doing this would allow reduction in size44:

Most tools in the Elasticsearch world use HTTP as means to insert or query data.

Before, we supported storage commands via the HTTP transport (port 9200) or the

native transport (port 9300). Polling users, we found no resistance to removing the

native transport. By removing this, we deleted 3.6K lines of code and simplified

the dependencies of the project, allowing for easier maintenance moving forward.

• Extraction of code

We found that 10 projects depended on only a small part of a library. Their developers decided

to drop the library in favour of extracting the required classes from it as-is. They integrated

this extracted part into their system. This extraction made the project more approachable for

clients by reducing the total external dependencies of the system. This extraction was only

performed for libraries whose license was lenient enough to allow it, e.g., certain licenses

only allow the use of the software as a complete JAR and restricts the user from performing

reverse engineering of any kind. Since the required part was extracted as-is including the

packages, this change did not break the code.

For example, the developer of checkstyle decided to extract from Apache Commons Lang since

it only depended on a small part of it45:

We need to remove the dependency, as right now we depend only on util fields

of that library, we could copy them to our CommonUtils.java class. Dependency

should be removed.

44https://github.com/openzipkin/zipkin/releases?after=1.23.1 [accessed 2018/10/11]
45https://github.com/checkstyle/checkstyle/issues/2428 [accessed 2018/10/11]

44

https://github.com/openzipkin/zipkin/releases?after=1.23.1
https://github.com/checkstyle/checkstyle/issues/2428

The results show that, in many projects, library migration can break them. Key exceptions

involve situations inwhich themigration is between closely related libraries, where the dependencies

are completely re-written, or where the limited functionality needed is extracted from the library.

RQ1.1: When do developers remove an external library without adding a new one?

Developers usually remove a dependency in favour of an alternative one; however, for 43.6% of

migrations, libraries were removed from a project without adding a newer one. The results show that

a considerable number of developers decided not to add a dependency after migration. Figure 4.4

shows the reasons behind complete removal of a dependency from a project.

For 37 migrations, developers dropped a dependency outright due to the availability of a better

alternative offered by a standard Java software development kit (SDK). An SDK is typically a

set of software that is shipped along with the platform and does not require any extra addition

for functionality usage. The benefit of using an SDK includes reduction in size and external

dependencies, better support, and stability. For example, checkstyle decided to drop dependency on

Guava since JDK 8 started providing better support46:

46https://github.com/checkstyle/checkstyle/issues/3433 [accessed 2018/10/11]

Figure 4.4: Project count versus reasons behind complete removal of dependency from a project.

45

https://github.com/checkstyle/checkstyle/issues/3433

Since now we use Java 1.8, it[’]s worth cutting down on checkstyle’s dependencies on

Guava library: Guava’s Optional replaced with Java’s native; Guava’s Predicate and Iterables

should be replaced with Java’s Predicate and streams.

For 15 migrations, developers discarded a library when there was no further need of the

functionality provided by it. This involves a change in approach or a drop of support for certain

functionality that was previously provided by the system. For example, theHangout project provided

various common utilities including input/output/filter to the user for Logstash, an open source tool

for collecting, parsing, and storing logs for future use. They provided support filter for the Jinjava

template engine; however, later they decided to drop support for this filter and removed the complete

package along with it.

For 10 projects, the developers preferred to write their own in-house module instead of using

an external library. The in-house development was motivated by customization and control of

the module in future releases, which benefits are not obtained from an external library, since the

purpose of using one is to use the library as-is in order to save resources. For example, FXGL, a

game development framework, decided to drop using Ehcache in favour of developing an internal

cache, as Ehcache was creating random memory leaks which were very difficult to detect.

For 10 projects, the developers removed the external library after extracting the required part

from it. They integrated the extracted part into their system. For example, Zipkin, a distributed

tracing system, removed their dependency on Okio as they were only using one class from it. They

extracted the Base64 class from Okio and integrated it into their system.47

The results show that around half of the projects preferred to completely drop an external library

when they had an alternative solution that did not require using a dependency.

47https://github.com/openzipkin/zipkin/pull/1245 [accessed 2018/10/11]

46

https://github.com/openzipkin/zipkin/pull/1245

RQ2: What means are used by developers for notifying about library migrations?

41.2% of migrations were discussed in release notes: only 19% of the Android projects mentioned

their migrations in contrast to 43% of the Maven projects. These numbers are surprisingly low,

since migrating a library can directly impact the client using the dependent system.

In order to dig further into this question, we manually analyzed the pull requests (PRs) of

the studied projects. GitHub PRs allow developers to discuss and review potential changes within

the community before pushing them to the repository. We found that 59.39% of migrations were

discussed by the developer in PRs. The individual numbers also increase to 62.38% and 55% for

Maven and Android, respectively. This relatively low ratio shows that developers do not follow a

thorough process before performing amigration. The number (98) of migrations discussed in PRs is

greater than the number (68) found in release notes, suggesting that developers tend to preferentially

use internal threads as a means of notification while moving away from a dependency, in contrast

to release notes. However, these discussions are mostly not reviewed by general clients who are

only concerned with the release notes and the final product release; there are still a large number

of migrations that are not discussed at all. As in the studied projects, many of the migrations were

performed by the developers without being discussed in any of the explored sources.

We conclude that release notes are under-used for notification of dependency migrations. In

contrast developers prefer to use pull requests or other such internal threads, but this apparently

remains insufficient considering the large numbers of migrations without any discussion or notifi-

cation whatsoever.

RQ2.1: What are the rationales that drive developers to migrate libraries in a working

system?

Wemanually classified the rationales behind library migration into 4 mutually-exclusive categories

listed in Table 4.2. These categories were selected based on the motivation behind the change as

explicitly stated in the sources of information available to us. These rationales were motivated by

post-migration improvements (i.e., optimized size, performance, scalability, etc.) in the system.

We found that 52.72% of migrations were motivated by the availability of a “better” alternative.

47

Table 4.2: Mutually exclusive classification of rationales behind library migration.

Rationale Maven Android Total

Moving to a better alternative 61 26 87
Intention to remove external dependency 39 0 39
Improving API 0 23 23
Unknown 9 7 16

In order to explore the criteria of what constitutes a better alternative according to developers,

we further classified the implicit advantages of introducing a new library. Figure 4.5 lists these

subcategories in descending order of the number of projects.

41.3% of the alternative libraries were selected based on better performance, functionality,

resource consumption, and future scalability. For example, in the Metrics project, the developer

replaced Google Caliper with Oracle JMH as JMH provided better functionality and performance than

its counterpart. The developer of the PR for this migration posted the following48:

48https://github.com/dropwizard/metrics/pull/394 [accessed 2018/10/11]

Figure 4.5: Project count versus alternative library selection criterion.

48

https://github.com/dropwizard/metrics/pull/394

There is a recent tool from [the] Oracle Java Virtual Machine engineers Oracle JMH, which is

used for JDK benchmarking and verification. It has the advantage over Caliper by options

for organizing multi-threaded benchmarking.

The owner of the repository replied49:

This is awesome. I hadn’t heard of JMH, and it resolves my long-standing complaint about

how hard it is to produce a contended environment in Caliper. That said, I’d rather wait

until JMH is available in Maven Central [Repository] to drop Caliper.

The rest of the alternatives were selected based on evolution of dependencies, reduction in total de-

pendencies by unification or dropping extra libraries, size, better community, deprecation, avoiding

bugs, and module segregation.

Secondly, we found that 23.3% of migrations were motivated by an intention to remove external

dependencies from the system. These library removals were motivated secondarily by internal

implementation, reduction in size, elimination of external dependencies, improvement in the Java

SDK, and removal of unnecessary functionality. For example cron-utils removed various dependen-

cies as their usage was affecting the clients. One of the developers wrote50:

We would prefer to remove dependencies that are not required to provide the functionality

we support up to that moment. The goal is that anyone can use cron-utils without having to

download many transitive dependencies, which is most important for mobile applications.

Another goal is to avoid downloading the same library twice due to version conflicts.

Thirdly, for the Android projects, 41.1% of libraries were migrated to improve the minimumAPI

level of the application software (i.e., app). API level is an integer value that uniquely identifies the

framework API revision supported by a version of the Android platform. Each year a new Android

OS and API level is announced by Google along with deprecation and dropping of older ones.

49https://github.com/dropwizard/metrics/pull/394 [accessed 2018/10/11]
50https://github.com/jmrozanec/cron-utils/issues/259 [accessed 2018/10/11]

49

https://github.com/dropwizard/metrics/pull/394
https://github.com/jmrozanec/cron-utils/issues/259

For example, for the project Circular Reveal, the developers removed deprecated dependencies to

improve the minimum API level. The developer of the PR wrote51:

IMO, anything supporting belowAPI 14 is a waste of time and resources - NineOldsAndroid

dependency could be removed and save us thousands of method calls and kilobytes.

The NineOldAndroids library description states that new applications should instead rely on API

level 14 directly. They have stated this in their description as:

NineOldAndroids is deprecated. No new development will be taking place. Existing ver-

sionswill (of course) continue to function. Newapplications should useminSdkVersion="14"

or higher which has access to the platform animation APIs.

These findings show that the Android community is strongly concerned about software evolution.

This is due to the fact that the use of external libraries with deprecated API levels usually results in

an application that will not work with the latest OS.

Finally, for 16 projects, we were unable to locate a rationale behind their library migrations

from the considered sources. These changes went against the norms that were followed in other

projects. Due to this we classified them as changes performed due to unknown rationales.

For example in JStorm the developers moved from GSON to Fastjson, despite the fact that

GSON is more widely used in the community and has much better performance in contrast to other

available alternatives. We note that documentation and support for Fastjson was available in the

Chinese language and the developers of JStorm were native Chinese speakers.

The explored sources and our results depict that migrations of software libraries are usually

driven by valid rationales, rarely attributable to whimsy.

RQ3: What impact does library migration from a system have on its dependent clients?

22.42% of migrations broke dependent client code as a result of library migration. JAPICC

distinguishes binary code incompatibilities into three severity levels: high, medium, and low. Low-

severity problems can be considered warnings and do not affect the final compatibility verdict of

51https://github.com/ozodrukh/CircularReveal/issues/63 [accessed 2018/10/11]

50

https://github.com/ozodrukh/CircularReveal/issues/63

Table 4.3: Errors and types that impact client code after library migration.

Type Error

Signature This method has been removed because the return type is
part of the method signature. A client program may be
interrupted by a NoSuchMethodError exception.

Superclass method or field 1) Access of a client program to the fields or methods of the
old superclass may be interrupted by a NoSuchFieldError or
NoSuchMethodError exception.
2) A static field from a superinterface of a client class may
hide a field (with the same name) inherited from new super-
class and cause an IncompatibleClassChangeError exception.

Class removal A client program may be interrupted by a
NoClassDefFoundError exception.

Exception A client program may be interrupted by an added/removed
exception.

the tool. The 37 breaking changes were given a verdict of incompatibility, and thus had at least one

medium- or high-severity problem. These projects are listed in Appendix C.

Table 4.3 summarizes errors and types that impacted client code after library migration. The

breaking of client code occurred due to discrepancies in either data types or methods of a system.

81% of the problems with data types were due to removed classes and methods. Due to strong

coupling, developers preferred to revamp the dependent segments from scratch while using the new

alternative library. JAPICC also detected discrepancies in the exceptions that were being thrown

from methods or classes. The updated method either removed an exception or introduced an

alternative one, as the old exception class was being used from the original library.

None of the non-Maven Android projects broke client code. This indicates that the studied

Android projects were loosely coupled with their external libraries. We speculate that this behaviour

of Android projects can be explained by the limited domain of external libraries being used currently.

The result can also be attributed to the expected usage of the studied Android projects: in general,

most Android apps are used as an Android Package Kit (APK) on a mobile phone; they are not

developed to act as an external dependency for other Android systems.

The results show that library migration can propagate impacts to transitively dependent clients.

51

Table 4.4: Percentage of impacted classes.

Platform Mean Median

Maven 8.6 3.8
Android 15.5 8.8

combined 9.3 6.9

Table 4.5: Percentage of impacted LOC.

Platform Mean Median

Maven 12.1 5.58
Android 21 10.1

combined 15 7.5

This occurs only if the dependee project is using the migrated library in their API or exposed code.

Migration forces the developers to break their API contracts and causes backward incompatibility

issues for the clients.

RQ4: How much effort is required for mitigating library migration?

To estimate the effort required by developers in mitigating library migration, we determined the

impacts of transformations at two granularities: affected classes and affected lines of code (LOC).

In order to calculate these, we located the affected classes via Find it EZ (for the initial impact point)

and the developer’s commit (for any secondary impacts); the affected LOC were obtained using diff

comparison of the obtained classes, providing us with the additions and deletions for successive

versions of the impacted classes. Finally to get the percentage change for both granularities,

we required the counts of total classes and LOC for each project, which were retrieved using

ProjectCodeMeter,52 an industrial-scale estimation tool which allows the user to assess various code

quality and team productivity metrics. To compare the data collected from different projects, we

normalize the impact values for classes and LOC on the basis of its total number of classes and

LOC, respectively. We found that on average 9.3% of total classes and 15% of total LOC were

affected as a result of library migration. Tables 4.4 and 4.5 summarize the results for the percentage

52http://www.projectcodemeter.com/cost_estimation/index.html

52

http://www.projectcodemeter.com/cost_estimation/index.html

of classes impacted and of LOC impacted, respectively. The trend of the results suggests that the

Android projects required slightly more effort (in terms of affected classes and LOC) for integration

in contrast to the Maven ones.

The discrepancy between mean and median indicates that our data distribution is skewed to the

left. In order to visualize our data points, we plotted six histograms for the impacted percentages

of classes and LOC: Figures 4.6, 4.7, and 4.8 show the percentage of classes impacted for Maven,

Android, and all projects combined, respectively; Figures 4.9, 4.10, and 4.11 show the impacted

percentages of LOC for Maven, Android, and all projects combined, respectively.

The results depict that most migrations (69.7% for classes and 61.2% for LOC) required an

average impact of 1–10% of the total LOC and classes, thus skewing the results. This, however,

makes sense as in these projects the purpose of using an external library was to fill a small void

of functionality; these projects required comparatively minimal effort for migrating from a library.

On the other hand, the remaining migrations (30.3% for classes and 38.8% for LOC) required

significant effort for mitigation, as the library was at the core of the system, highly coupled with

internal modules. There were 28 migrations that had an impact of 20% or more on the classes

while there were 43 such migrations for LOC.

The outcome indicates that using an external library at the core of a system is dangerous, as this

can have significant impact during the mitigation efforts involved in library migration.

4.4 Summary

We highlighted the procedure for selection of projects, data gathering and answered our Research

Questions after analyzing the collected data. Our findings are as follows.

• RQ0: We found that many projects undergo librarymigration (11.9% of the studied projects).

• RQ1: We found that 67% of the migrations ended up breaking the dependent system. To

avoid library migration in future, in 43% of the migrations their developers decided to avoid

introducing a new alternative external library.

53

Figure 4.6: Percentage of classes impacted versus Maven project (sorted in descending order).

Figure 4.7: Percentage of classes impacted versus Android project (sorted in descending order).

54

Figure 4.8: Percentage of classes impacted versus project from either platform (sorted in descending
order).

Figure 4.9: Percentage of LOC impacted versus Maven project (sorted in descending order).

55

Figure 4.10: Percentage of LOC impacted versus Android project (sorted in descending order).

Figure 4.11: Percentage of LOC impacted versus project from either platform (sorted in descending
order).

56

• RQ2: Migrations of external libraries are performed for various reasonable motivations (i.e.,

the existence of a better alternative), rarely attributable to whimsy. However, developers tend

to be uncommunicative about these changes: they under-use release notes for notifying client

users about such library migrations and they even under-use other communication channels

(such as pull requests) that are more oriented towards other project developers.

• RQ3: 22% of library migrations impacted the dependent client projects. These migrations

resulted in breaking of APIs that caused backwards compatibility problems for the client

systems.

• RQ4: Mitigation of library migration required significant effort from the project developers.

We found that on average developers had to change 9.3% of the classes in their systems while

modifying 15% of the total lines of code.

57

Chapter 5

Tool

In Chapter 2 we presented a motivational scenario in which a developer wastes significant time and

energywhilemigrating between libraries due to following amanual approach. To solve this problem

we create a prototype tool called EDW (for External Dependency Watcher), a recommendation

system that assists users by forecasting the impacts of library migration. EDW is intended to assist

developers during librarymigration by following a systematic approach, thereby avoiding redundant

rework due to information overload.

From our empirical study we found that migrating from a library can end up breaking a

dependent system. The compilation errors that arise in such a broken system are localized to

classes and their members that directly reference the type and fields of the library. We refer to these

classes and members as the direct impact points, for simplicity.

EDW satisfies the following requirements. (1) Locate the direct impact points of a library.

(2) Assist in locating the transitive impact points for the discovered direct impact set of a library.

(3) Assist in estimating the mitigation effort for a library migration.

As demonstrated in Chapter 2, the first step during library migration is to locate these direct

impact points. EDW automatically locates the directly impacted classes and members for a library

to be migrated. EDW supports the discovery of direct impact points through the dependency viewer

(Section 5.2) and editor (Section 5.3) modules. The dependency viewer module allows the user to

58

view all impacted classes for a selected library. Then the editor module can be used to locate and

highlight the directly affected members for an impacted class.

Once the direct impact points have been located, their transitive impacts have to be determined

in order to discover the complete impact set of a library. Without determining the transitive impact

points, the developer cannot figure out the ripple effects of a library to be migrated. EDW assists in

locating the transitive impact points through the impact analysis module (Section 5.4). The module

calculates the ripple effects of changing the direct impact points by utilizing the impact analysis

provided by the JRipples tool [Buckner et al., 2005].

The process of locating all transitive impact points for a library with several direct impact points

can result in information overload. The ripple effect can become huge, making it harder for the

developer to recognize the relationship between direct and transitive impact points. Therefore,

a graph can assist the developer to direct their search during library migration. EDW generates

this graph through the graph builder module (Section 5.5). The generated graph visualizes the

dependency links between direct and transitively impacted classes.

Before initiating a library migration, the developer has to decide whether the benefits obtained

from migration outweigh the migration cost or not. Therefore, the availability of quantitative

measures can provide developerswith information about some aspects of the cost ofmigration. EDW

provides metrics to estimate the cost of migration through the metrics builder module (Section 5.6).

The calculated metrics can be used to estimate mitigation effort for a library migration.

Section 5.1 describes the design and structure of EDW. Section 5.2 describes the dependency

viewer module. Section 5.3 describes the editor module. Section 5.4 describes the impact analysis

viewer module. Section 5.5 describes the graph builder module. Section 5.6 describes the metrics

builder module. Finally, Section 5.7 describes the workflow of applying EDW to a library migration.

59

5.1 Overview of EDW

EDW is an Eclipse plugin developed using the Plug-in Development Environment (PDE) of Eclipse.53

It is developed for the latest Eclipse Oxygen54 build and works for Java-based Maven projects. EDW

starts its analysis with the creation of an evolving interoperation graph (EIG) [Rajlich, 2000]. The

EIGmodels a software system as a set of components and their interactions. The graph components

are represented as nodes while their interactions are represented as edges. As the software evolves,

changes occur in components which can even propagate to other modules of the system.

The EIG supports marking its edges and nodes to record these changes for the user to view and

analyze; the edges can be marked as “Impacted”, “Propagating”, or “Next”. An “Impacted” mark

indicates that the class would be changed during the IC. A “Propagating” mark indicates that the

class itself will not be changed but the neighbouring nodes might be affected. Finally, a “Next”

mark indicates that the marked class might change as consequence of changing the neighbouring

node. The analysis ends when there are no longer any classes that are marked as “Next”.

EDW comprises five modules, each having its separate graphical view (in the Eclipse IDE) for

interacting with the user. The data collected during analysis is kept in a centralized data base which

is accessible by all the modules. We provide a distinct Eclipse perspective for EDW that arranges the

graphical views for the user, placing the editor in the centre with the impact analysis viewer to its

right and the project explorer to its left; Figure 5.1 shows EDW operating on the project cron-utils55

while using our default view arrangement. The remaining modules are available in views at the

bottom of the perspective. The views can be moved in accordance to developer preferences, as per

standard Eclipse customizability support.

Figure 5.2 highlights the relationships between these modules (further described in the sub-

sequent sections). The boxes represent the five modules, one of which (the dependency viewer

module) contains three submodules. The dashed arrows represent dataflow between (sub)modules.

The developer is expected to start with the external JAR submodule, and this control flow is shown

53https://www.eclipse.org/pde/
54https://www.eclipse.org/oxygen/
55https://github.com/jmrozanec/cron-utils

60

https://www.eclipse.org/pde/
https://www.eclipse.org/oxygen/
https://github.com/jmrozanec/cron-utils

Fi
gu

re
5.
1:

E
D

W
an
al
ys
is
on

th
e
pr
oj
ec
tc

ro
n-

ut
ils

w
hi
le
us
in
g
ou

rs
ta
nd

ar
d
vi
ew

ar
ra
ng
em

en
t.

61

Figure 5.2: EDW structure and interaction between modules.

as a solid arrow; other control flow is flexible at the developer’s discretion (i.e., the developer can

switch to different views arbitrarily).

5.2 Dependency Viewer Module

The dependency viewer module is the core of EDW as it acts as an interface that allows interaction

with other provided modules; it is divided into three sub-modules: (1) the external JAR submodule;

(2) the affected classes submodule; and (3) the imports submodule. These submodules collectively

perform discovery of direct impact points for EDW. The external JAR submodule displays all used

libraries for the selected project, while the affected classes and import submodules list the impacted

classes and used imports for a selected library, respectively. Figure 5.3 shows the dependency

viewer after analysis on the project cron-utils. The user has selected Guava in the external JAR

submodule. This selection resulted in populating the affected classes and imports submodules with

impacted classes and their used imports fromGuava, respectively. The affected classCronBuilder and

62

Fi
gu

re
5.
3:

D
ep
en
de
nc
y
vi
ew

er
af
te
ra

na
ly
si
so

n
th
e
pr
oj
ec
tc

ro
n-

ut
ils
.

63

imported class Function have also been expanded to view the affected members and API signature,

respectively.

5.2.1 External JAR submodule

Maven maintains the required build information for a project including all dependency links in the

POM.xml file. The external JAR submodule therefore parses the POM.xml file in order to locate

all external dependencies being used in a project. Creating an EIG from scratch every time for a

system of significant size can waste time and resources. By locating all the external dependencies

at the start, EDW can perform its analysis for different libraries without creating an EIG every time

from scratch.

In order to determine impact points, the external JAR (EJ) submodule extracts the least common

parent package name for a library that users wants to migrate. This package name is referenced

as an import declaration in any class that is dependent on the library. The heuristic of using the

least common package name for search has two advantages. First, searching for this name is faster

as the number of packages in contrast to the total number of classes is significantly lower than the

alternatives. Second, using a single package name results in a unique and refined search result in

contrast to using the set of packages that directly contains a class, as in the latter case, the same class

can be returned more than once. The EJ submodule provides the extracted package as a query to

the Eclipse search engine which in turn locates the affected classes for a proposed library migration.

The Eclipse search engine requires creation of the search pattern, search scope, and result collector:

EDW creates a search pattern that is limited to searching the import references while using an exact

match strategy, whereas the scope of the project is restricted to the workspace of the project being

analyzed. The search using the Eclipse search engine is more efficient as the IDE already holds a

Java model representation of the project. This model is a lightweight representation of the Java

project; it does not contain as much information as the AST, but is fast to create. Searching via any

other means would have required to create an AST or model from scratch which would have been

expensive for our analysis. The search returns the initial impact set of the migration, which is then

64

provided as an input to the affected classes and imports submodules.

5.2.2 Affected classes submodule

The affected classes submodule analyzes the search result passed from the external JAR submodule,

in order to locate the list of affected classes. After retrieving the list of affected classes, it traverses the

EIG graph of the system to mark its edges. The affected classes’ edges are marked as “Impacted”

during traversal, which are then used to locate the transitive impact set by the impact analysis

module. It also communicates with the editor module, in order to provide the list of affected classes

as input, which are then used by it for further analysis.

5.2.3 Imports submodule

The imports submodule analyzes the search result passed from the external JAR submodule, in order

to locate the used classes of the selected library. It then extracts the API signature of the located used

classes from the library being migrated. These API signatures involve publicly available methods

being offered by the import classes of library. The API signature can assist while understanding

the usage of library and coupling in the system.

5.3 Editor Module

The editor module locates the directly affected members (methods or fields) of the discovered

impact set (classes) in order to mark them as “Impacted” in the EIG. EDW analyzes the classes by

creating abstract syntax trees (ASTs) for the impact set. An AST can represent Java source code as

a tree, which is more convenient to analyze and modify programmatically. In a simple AST every

element of the source code is mapped to a node or a subtree. However, such an AST misses out

on certain information such as the types of variables, or parent and child classes. This information

is contained in the bindings (from uses of names to their declarations). EDW utilizes bindings to

support polymorphism; therefore, it can also locate the impacted overridden methods in a class.

65

Fi
gu

re
5.
4:

Ed
ito

ra
fte

rs
el
ec
tio

n
of

th
e
aff

ec
te
d
cl
as
sS

tr
in

gV
al

id
at

io
ns
.

66

In order to save resources EDW creates ASTs by following the conservative strategy of lazy

instantiation: an AST is only created for an affected class when the user selects it for analysis the

very first time. Without following this strategy, EDW would have had to have created ASTs of all

affected classes at the same time, likely resulting in running out of memory in addition to causing

a slow startup period.

The ASTVisitor class56 is used for traversing and searching the nodes of the instantiated AST.

ASTVisitor conforms to the Visitor design pattern57 that allows efficient search of nodes in an AST.

56https://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Forg%
2Feclipse%2Fcdt%2Fcore%2Fdom%2Fast%2FASTVisitor.html [accessed 2018/10/11]

57https://sourcemaking.com/design_patterns/visitor [accessed 2018/10/11]

Figure 5.5: Impact analysis view after selecting the affected class StringValidations from the depen-
dency viewer.

67

https://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcdt%2Fcore%2Fdom%2Fast%2FASTVisitor.html
https://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcdt%2Fcore%2Fdom%2Fast%2FASTVisitor.html
https://sourcemaking.com/design_patterns/visitor

The EDW visitor locates the AST nodes that depend on the referenced classes of the library to be

migrated. The immediate parent (method or field) of the found node is stored in the database along

with its statement line number. In order to highlight the impacted code segments for modification,

EDW attaches Eclipse markers to them. The editor module allows the user to modify these impacted

code segments while mitigating a library migration.

Figure 5.4 shows an instance of the editor after selection of the affected class StringValidations.

The direct impacted code segments after AST traversal are highlighted using markers.

5.4 Impact Analysis Viewer Module

EDW utilizes the hierarchical view of JRipples to perform CIA on the initial impact set. As the

JRipples code base is incompatible with the latest Eclipse build, we extracted the CIA module and

updated it to make it compatible.

As already discussed, the directly affected classes and their members are marked as “Impacted”

in the EIG by the preceding modules. The impact analysis viewer module traverses the EIG edges

in order to determine the transitively affected members of the migration. The transitive members

are automatically marked as “Next” which indicate that they should be manually inspected by the

user. The user can change the “Next” marked members to either “Propagating”, “Impacted”, or

“Unchanged” based on their observation during library mitigation. Further details of this module

are available online.58

Figure 5.5 shows the impact analysis view after selecting the affected class StringValidations.

The directly affected class members are marked as “Impacted” while any probably affected one is

marked as “Next”.
58http://jripples.sourceforge.net/jripples/manual/reference/views/hierarchical_view.html [accessed 2018/10/11]

68

http://jripples.sourceforge.net/jripples/manual/reference/views/hierarchical_view.html

5.5 Graph Builder Module

EDW provides a graph builder module that highlights the dependency links between affected classes.

EDW supports the calculation of complete CIAwhich calculates probable impacts for all the affected

classes of the initial impact set at the same time. Therefore, performing a complete CIA on a project

of significant size can result in information overload. Figure 5.6 shows the impact analysis view after

performing complete CIA on Guava for the project cron-utils. It can be seen that there are several

classes marked as “Impacted” along with their probable impact segments marked as “Next”. This

much information can easily become overwhelming as it is very hard to determine which “Next”

class depends on which “Impacted” class. On the other hand, by using the dependency graph, the

user can direct their search during library migration.

EDW creates a graph using the Eclipse Zest framework,59 an Eclipse visualization toolkit, which

has a set of graph components built for Java. The module creates a directed graph (specifically,

a tree) relative to an affected class. Each graph node represents a class, subdivided into three

compartments, with its top compartment showing affected fields and its bottom one showing

affected methods. The graph itself is organized into three parts: the top-level nodes depict the

classes of the system that depend on an affected class of library migration; the bottom-level nodes

show the classes referred to by the library upon which the affected class depends; and the middle

node shows the affected class itself. The tree structure is designed to make the dependency link

between artifacts more evident. For example, Figure 5.7 shows the dependency graph for the

project cron-utils class with affected class StringValidations. (Note: any interdependencies between

the nodes, other than with the affected class, are not shown.)

5.6 Metrics Builder Module

The metrics builder module allows the user to estimate the minimum effort required for migrating

a selected library. It provides quantitative measures for the supported metrics that can provide the

59https://www.eclipse.org/gef/zest/ [accessed 2018/10/11]

69

https://www.eclipse.org/gef/zest/

Figure 5.6: Impact analysis view after performing complete CIA on Guava for cron-utils.

Figure 5.7: Dependency graph for the class StringValidations in the project cron-utils.

70

developer with information about some aspects of the cost of migration. The developer can then

decide whether the benefits obtained from migration outweigh the migration cost or not.

Currently, EDW supports four different metrics related to library migration, all measuring the

average change in one kind of item: classes, methods, fields, or LOC. For example, Figure 5.8

shows the four metrics calculated for Guava on the cron-utils project. These metrics are calculated

using the affected and total number for each metric respectively. As the supported metrics are

preliminary, we have provided an Eclipse extension point for future development.

Figure 5.8: Four metrics calculated for the Guava library in the project cron-utils.

5.7 Workflow

To illustrate the workflow of applying EDW to library migration, we use the motivational example

(fromSection 2.1)with cron-utils project inwhich the developerwants tomigrate fromGuava. Before

performing the migration, the developer starts with the metrics builder module (see Figure 5.8),

which estimates the impacts of this library migration. The metrics show the estimated percentage

change required to migrate cron-utils away from Guava; from this information, the developer can

decide whether the benefits obtained from migration outweigh the migration cost or not. The

metrics show that migrating cron-utils away from Guava would impact 36% of the total classes while

affecting 9% of the total code base.

During migration, the developer needs to locate the affected classes that are dependent on

Guava. They can achieve this goal through EDW by selecting Guava in the external JAR submodule,

which would then locate the affected classes of the library, passing them as input to the affected

71

classes submodule; the external JAR submodule would also pass the used imports of Guava as

input to the import submodule. Figure 5.3 shows the dependency viewer module with its populated

subviews after performing analysis on cron-utils: the developer has selected the Guava dependency

in the external JAR subview, which results in populating the other two subviews respectively.

Once EDW has located the directly impacted classes for the developer, the next step is to

determine the affected members of each class. The developer can perform this by selecting a

class from the affected classes submodule, which would open it in the editor module, locating and

highlighting the affected members with directly impacted LOC for the selected class. Figure 5.4

shows an instance of the editor after selection of the affected class StringValidations; the direct impact

points are highlighted in green for the user to view.

After EDW has located all affected classes along with their members, the developer must

consider the transitive impact points of change. They can do this by performing a CIA on the

located classes through the impact analysis view. Figure 5.5 shows the impact analysis view

after selecting the affected class StringValidations: it shows the already located affected classes

and members as “Impacted”, while recommending the potentially transitively impacted points as

“Next”. The developer must explore the recommended points in order to consider whether these

will truly be impacted after migration. While performing CIA on a project of significant size, the

recommended points can result in information overload (e.g., see Figure 5.6). To avoid this, the

developer can create a dependency graph via the graph builder view, highlighting the relationship

between an impacted class and its transitively affected classes and members; Figure 5.7 shows the

dependency graph for the affected class StringValidations. Once the developer has understood the

consequences and impacts of library migration through EDW, they can finally replace Guava with

an alternative.

72

5.8 Summary

In this chapter, we introduced our prototype tool EDW that can assist developers while performing

a library migration. The plugin is built as a recommendation system and requires the developer to

work along with it while performing the change. Our plug-in works on Maven Java projects in the

context of software evolution where a developer wants to perform a library migration.

EDW is based on a modular approach as it distributes the functionality among five modules,

each with a corresponding graphical view. A developer can perform: discovery of direct impact

points, impact analysis, graph generation, and metrics generation, using the respective modules. In

order to support future development, we have provided Eclipse extension points for our modules.

73

Chapter 6

Simulation Study

This chapter discusses our evaluation of EDW through simulation. Our research questions are as

follows.

RQ5. How well is EDW able to locate the initial impact set for library migration?

RQ6. What factors impact how well EDW performs?

As a point of comparison, we also evaluate JRipples on the same projects, in order to determine

how well EDW does in contrast for locating the initial impact set. We followed a similar procedure

and setup for collecting initial impact set for both tools, while evaluating them on three different

granularities. Section 6.1 explains our criteria for the selection of evaluated systems. Section 6.2

discusses the procedure followed for evaluation. Section 6.3 presents the results of our evaluation.

6.1 Selection of Projects

We evaluate EDW on projects obtained from GitHub. In order to reduce bias, the selection of systems

was based on a set of criteria as follows.

• Each selected project must not be already studied in our retrospective study from Chapter 4.

• Each selected project must have a librarymigration between any two of its successive released

versions.

74

Table 6.1: Systems for evaluation.

ID Name Library replaced

1 graylog2-server60 JSON.simple61

2 Esper62 Apache Commons Logging63

3 Choco solver64 SLF4J API Module65

4 WebProtégé66 Google Guice Core Library67

5 GeoWave68 Apache Log4j69

6 HAPI-FHIR70 JSR 374 (JSON Processing) API71

7 Commands72 Guava: Google Core Libraries For Java73

8 azure-cosmosdb-java74 JSON in Java75

9 Apache Dubbo76 EasyMock77

10 ta4j-origins78 Joda-Time79

• Each selected project must possess successive released versions that were both compilable

under the latest Eclipse build. (We wanted to make sure that the systems were compatible

with our tool.)

• Each selected project must not be deprecated.

• Each selected project must have a unique library being migrated (amongst the set of selected

projects) to avoid redundancy.

60https://github.com/Graylog2/graylog2-server [accessed 2018/10/11]
61https://code.google.com/archive/p/json-simple/ [accessed 2018/10/11]
62http://www.espertech.com/esper/ [accessed 2018/10/11]
63https://commons.apache.org/proper/commons-logging/ [accessed 2018/10/11]
64http://www.choco-solver.org/ [accessed 2018/10/11]
65https://mvnrepository.com/artifact/org.slf4j/slf4j-api [accessed 2018/10/11]
66https://webprotege.stanford.edu/ [accessed 2018/10/11]
67https://mvnrepository.com/artifact/com.google.inject/guice [accessed 2018/10/11]
68https://github.com/locationtech/geowave [accessed 2018/10/11]
69https://logging.apache.org/log4j/ [accessed 2018/10/11]
70http://hapifhir.io/ [accessed 2018/10/11]
71https://static.javadoc.io/javax.json/javax.json-api/1.1/overview-summary.html [accessed 2018/10/11]
72https://github.com/aikar/commands [accessed 2018/10/11]
73https://opensource.google.com/projects/guava [accessed 2018/10/11]
74https://github.com/Azure/azure-cosmosdb-java [accessed 2018/10/11]
75https://github.com/stleary/JSON-java [accessed 2018/10/11]
76https://github.com/apache/incubator-dubbo [accessed 2018/10/11]
77http://easymock.org/ [accessed 2018/10/11]
78https://github.com/mdeverdelhan/ta4j-origins [accessed 2018/10/11]
79https://www.joda.org/joda-time/ [accessed 2018/10/11]

75

https://github.com/Graylog2/graylog2-server
https://code.google.com/archive/p/json-simple/
http://www.espertech.com/esper/
https://commons.apache.org/proper/commons-logging/
http://www.choco-solver.org/
https://mvnrepository.com/artifact/org.slf4j/slf4j-api
https://webprotege.stanford.edu/
https://mvnrepository.com/artifact/com.google.inject/guice
https://github.com/locationtech/geowave
https://logging.apache.org/log4j/
http://hapifhir.io/
https://static.javadoc.io/javax.json/javax.json-api/1.1/overview-summary.html
https://github.com/aikar/commands
https://opensource.google.com/projects/guava
https://github.com/Azure/azure-cosmosdb-java
https://github.com/stleary/JSON-java
https://github.com/apache/incubator-dubbo
http://easymock.org/
https://github.com/mdeverdelhan/ta4j-origins
https://www.joda.org/joda-time/

We used GitHub search for locating the projects of our study. We searched for Maven projects with

at least 100 stars; the returned projects were sorted based on popularity of the repository. The first

10 projects that fulfilled our criteria were selected for our study. Table 6.1 lists these systems while

Appendix D specifies their details.

6.2 Procedure

We evaluated EDW and JRipples on three different granularities, as follows.

• Class-granularity: Project classeswhich directly depended on the library under consideration.

• Method-granularity: Any method in the directly affected classes that was changed due to

migrating the library under consideration.

• Field-granularity: Any field in the directly affected classes that was changed due to migrating

the library under consideration.

6.2.1 Ground truth

To evaluate the selected projects, we first collected the “ground truth” (i.e., the actual impact set)

from the actual replacement from developers’ commits. The library migrations in each project

were accompanied by a specific online commit on GitHub, e.g., a specific commit for the Joda-Time

replacement in the project cron-utils.80 Ideally, such a commit only contains changes to the project

resulting from a migration, and we assumed that this ideal is met (i.e., we ignore the possibility of

needed changes missed by the committer or performed changes that are not related to the migration

that were extraneously included in the commit). We recorded the full path of each artifact (affected

classes, methods, and fields) in the impact set. For example, the following instance of artifacts

were collected for each respective granularity during the evaluation of the Choco solver project.

79https://github.com/search [accessed 2018/11/10]
80https://github.com/jmrozanec/cron-utils/pull/107/commits/289577660c55a80baada1ca397c10af980464f9f

[accessed 2018/11/10]

76

https://github.com/search
https://github.com/jmrozanec/cron-utils/pull/107/commits/289577660c55a80baada1ca397c10af980464f9f

• Class-granularity: org.chocosolver.util.objects.graphs.MultivaluedDecisionDiagram

• Field-granularity: org.chocosolver.solver.constraints.Propagator.LOGGER

• Method-granularity: org.chocosolver.memory.EnvironmentException.EnvironmentException

6.2.2 Estimated impact set for EDW

We collected the estimated impact set for EDW by running it on each selected project in turn. Within

EDW, we selected the library away from which the project was known to have been migrated in

the past. EDW located and marked the impacted classes, methods, and fields of the library to be

migrated. The impacted classes were retrieved from the affected classes submodule (Section 5.2.2)

in the dependency viewer (Section 5.2), while the affected members were located through the editor

module (Section 5.3). The reported results were recorded for each granularity and an estimated

impact set with the full path of the artifacts was created. The full path for method- and field-

granularity contains the path up to the parent class as a prefix, as shown in the example results for

Choco solver in the preceding section.

6.2.3 Estimated impact set for JRipples

JRipples requires manual search of initial impact points; therefore, we assumed to know each

system’s key class with the import declarations of the library to be migrated. We collected the

estimated impact set for JRipples on the projects through the following procedure.

1. With JRipples, we first located the initially impacted classes through manual, Eclipse-based

search. Since a developer is free to follow whatever procedure they deem appropriate, we

followed three independent strategies to generate queries, to be used for the search. The

strategies vary in their selection of different combinations of library import prefixes, and we

deem each to be a likely and feasible option. Each strategy was used to locate all affected

classes, working from scratch each time.

77

• Strategy 1: Iteratively use all unique import declarations of the library to locate their

affected classes. For the Guava example in the motivational scenario (Section 2), this

strategy would entail using each of the 10 imports being used in the system (starting

from com.google.common.base.joiner to com.google.common.primitives.Int).

• Strategy 2: Iteratively use the set of common prefix names among the import decla-

rations. For the Guava example in the motivational scenario, this strategy would be

followed using the set of common prefix names com.google.common.base, com.google.

common.collect, and com.google.common.primitives.

• Strategy 3: Use the prefix common amongst the used import declarations. For the

Guava example in the motivational scenario, this strategy would be performed using

com.google.common.

2. We then reviewed the returned search results for each strategy to verify its impact. The

verified affected classes were then manually marked in JRipples as “Impacted”. There were

overlaps in searches where the reviewed class was already marked from a previous search

result. We recorded such classes as an “overlap” for the search strategy.

3. Once all affected classes were marked in JRipples, we iteratively searched for the affected

methods and fields inside each affected class based on its used import declarations. The

located members were then manually marked as “Impacted” in JRipples.

4. Similarly to EDW, we found the marked results at the end for each granularity and recorded

an estimated impact set with the full path of each artifact.

6.2.4 Comparing estimated impact set and ground truth

We ignored all “Next” marked artifacts, as these require human intervention for confirming any

impact of migration on them. To reduce the possibility of human error, we wrote a simple program

that compared the estimated and actual impact sets. If a tool identified an artifact as impacted and

78

it was part of the ground truth set, the comparator labelled it as a true positive (TP). Otherwise if an

artifact was identified by a tool as affected but it was not part of the ground truth set, the comparator

labelled it as a false positive (FP). Finally if an affected artifact was present in the ground truth but

it was not identified by a tool, it was labelled as a false negative (FN).

We obtained the average precision and recall for each granularity with both tools, by calculating

the unweighted arithmetic mean of the precisions and recalls for individual projects.

6.3 Results

6.3.1 RQ5: How well is EDW able to locate the initial impact set for library

migration?

Table 6.2 lists the true positives, false positives, and false negatives at class-granularity for both

tools, across the ten projects; precision (P), recall (R), and F1 score (F1) [Sasaki, 2007] are thus

calculated as averages across the ten projects. Note, “F1” is the harmonic average of precision and

recall. “MSI” (manual search interpretation) represents the total number of search hits that the

user has to manually interpret in order to verify their impacts, across all ten projects. Table 6.3

lists the equivalent results for method- and field-granularity for both tools, where “PTR” (points to

remember) represents the total number of direct impact points that the user must keep inmind, in the

absence of tool support. The user needs to use some means (such as a piece of paper or whiteboard)

for storing and retrieving the impact points; we refer to this process of storing and retrieving

information as “memorization” and “remembering”, for simplicity. Appendix E summarizes the

results for individual projects for each granularity. JRipples under Strategies 2 and 3 cannot be

applied to locate the affected members due to their abstract nature. The strategies do not specify the

particular class of the third party library being used in the system, hence Eclipse is unable to locate

any points of impact. EDW has a precision of 1 for all granularities. For recall, it achieved over

0.99 for class- and field-granularity, and ∼0.86 for method-granularity. EDW produces no overlap,

no need to manually interpret search results, and no points that must be remembered.

79

Table 6.2: Approach mean accuracy for class-granularity.
Approach TP FP FN P R F1 Overlap MSI

EDW 102.2 0 0.4 1 0.99 0.99 0 0
JRipples: Strategy 1 102.2 2.6 0.4 0.89 0.99 0.93 50 232
JRipples: Strategy 2 102.6 7.7 0 0.86 1 0.92 15.34 391
JRipples: Strategy 3 102.6 39.3 0 0.86 1 0.92 0 502.6

Table 6.3: Approach mean accuracy for method- and field-granularity.

Approach Granularity TP FP FN P R F1 PTR

EDW method 32.4 37.1 0 1.00 0.86 0.92 0
JRipples: Strategy 1 method 32.4 9.8 4.7 0.85 0.86 0.82 155
JRipples: Strategy 2 method 0 0 0 0 0 0 N/A
JRipples: Strategy 3 method 0 0 0 0 0 0 N/A

EDW field 149.5 0 0.67 1 0.99 0.99 0
JRipples: Strategy 1 field 149.67 6.5 1.67 0.93 0.99 0.95 512
JRipples: Strategy 2 field 0 0 0 0 0 0 N/A
JRipples: Strategy 3 field 0 0 0 0 0 0 N/A

For comparison, JRipples places a much greater burden on the developer. While its recall is

essentially the same as that of EDW (which should not be surprising since EDW builds atop it), it

produces significant false positives (as evidenced by reduced precision), overlap for two of the three

search strategies, the need for frequent manual interpretation of search results, and many points to

remember independently from the tool. We expect that each of these burdens will be error-prone

and fatiguing on the developer.

• Class-granularity.

EDW and JRipples under Strategy 1 achieved promising recall for 9 of the evaluated systems.

However, the recall drops to 99% for the project Esper as the tools did not find four of the

affected classes. The reason for this drop is related to the usage of an on-demand import

declaration, i.e., import org.apache.commons.logging.*. This issue is discussed in detail in the

next section. On the other hand, JRipples under Strategies 2 and 3 was able to locate all

affected classes and hence achieved perfect recall.

EDW achieved a precision of 1 for the evaluated systems. For the search strategies of JRipples,

80

precision declines as we move from more specific strategies to being more general. EDW was

able to achieve better precision, without any manual search interpretation needed. JRipples

strategies, on the other hand, required the developer to review an average of 232, 391, and

502.6 MSI, respectively.

Each FP,MSI, and overlap would require human attention; thus, they represent an opportunity

that can confuse the developer during migration. The JRipples strategies require manual

interpretation and attention of the developer to verify the results, which require extra decisions

and interpretation. Search strategy 1 has slightly better precision in contrast to the other

two approaches; however, it requires the developer to review 50% of the retrieved classes

redundantly due to overlap. Since Eclipse search is not directly linked with JRipples, the

developer is required to first review the search results and verify whether they are already

marked or not. The review of the same search results manually and redundantly is an

opportunity for confusion.

• Member-granularity.

Method-granularity recall. EDW and JRipples under Strategy 1 achieved promising recall

for seven of the evaluated systems. However, their recall dropped for Choco solver (0.43),

GeoWave (0.35), and azure-cosmosdb-java (0.87). Therefore the average recall comes out to

be 0.86. For the project Choco solver, four directly impacted methods were not recalled by

EDW, due to their nested nature, as explained in the next section. JRipples under Strategies 2

and 3 cannot be applied to locate affected members in some cases, due to their abstract nature.

Table 6.4 summarizes the recall with their resulting FNs and “Next” (transitively affected)

marked methods. Both tools were unable to directly mark transitively affected methods as

“Impacted”, which affected their recall. We discuss this issue in the next section.

Field-granularity recall. EDW and JRipples achieved promising recall for five of the evaluated

systems. The project graylog2-server did not have any affected fields while the projects

WebProtégé’, HAPI-FHIR, and azure-cosmosdb-java had only one affected field each; therefore,

81

Table 6.4: Recall of projects at method-granularity.

Project TP FN Next Recall

1 12 0 0 1
2 8 0 0 1
3 24 31 27 0.43
4 23 0 0 1
5 6 11 11 0.35
6 37 0 0 1
7 30 0 0 1
8 62 9 9 0.87
9 69 0 0 1
10 53 0 0 1

they were not considered while calculating average precision and recall. For the affected

fields, recall drops to 99% only for the project Esper as the tools did not find four of the

affected classes that contained the fields. JRipples under Strategy 1 did not find these four

classes; under the other two strategies, it did.

Method- and field-granularity precision. EDW achieved a precision of 1 for locating the

impacted members in evaluated projects. The precision of JRipples is comparatively worse

than EDW for locating affected members. The decline in precision is due to the limitations of

Eclipse search of members inside a class. JRipples also requires the developer to remember an

average 155 and 512 points for methods and fields, respectively, during migration. JRipples

cannot directly mark the affected LOC and hence the developer is required to remember these

manually. These points are spread out in different classes, which can make it difficult and

impractical for the developer to manually memorize them. Therefore, each direct impact

point represents an opportunity that requires human attention and can create confusion.

Discussion

The precision and recall of JRipples can be attributed to our assumption that the developer is clearly

aware of the used imports. However, in a scenario where this assumption is not true, the developer

82

would have to first manually figure out the used imports. As demonstrated by our motivational

scenario, the discovery of imports requires extra steps and decisions that can result in further

confusion and mistakes. EDW on the other hand does not assume anything of this sort; it does not

require the developer to be aware of the imports of the library to be migrated.

Locating the initial impact set through JRipples results in higher FP, searches, MSI, and overlap.

Each of these requires human interpretation for decision and verification, which can result in

more mistakes and confusion. Moreover, for method- and field-granularity, the developer has

to remember a significant number of PTR manually. Therefore, the approach with JRipples can

become impractical to use for a project that is significantly impacted by library migration. For

example, in Esper, the three strategies resulted in 1,405, 2,949, and 2,976 MSI respectively, while

there were a total of 2831 PTR for affected members. Manually going through these with JRipples

requires more decisions and hence can create greater difficulty and confusion.

On the other hand, EDW automates the steps for locating the initial impact set, with comparatively

better precision. The developer is not required to manually and redundantly go through any search

result and hence makes fewer decisions at this stage. It also marks the affected class or members,

so the developer does not have to remember the direct impact points.

6.3.2 RQ6: What factors impact how well EDW performs?

We found that all false negatives discovered during our evaluation were due to three limitations of

our tool, as follows.

• On-demand import declarations.

Our tool ignores any on-demand import declarations. Such declarations import all the

classes in a package at once without requirement of being specific about a class. We decided

to ignore these import declarations since our empirical investigations suggested that most

stabilized systemprefer to fully specify their imported classes as it reduces extra dependencies.

Moreover, EDW is a recommendation system that needs the developer to work along with it

83

during migration; the developer should be aware of the library classes being used which is a

requirement for performing a successful transformation.

These issues can be worked around by replacing such import declarations through the pro-

grammatic support provided by the Eclipse IDE (i.e., “organize imports”) even on a temporary,

internal basis. This can also be integrated directly into the tool by adding an extension point

to the current search strategy.

• Granularity.

As already discussed, our tool works at the granularity of class members (methods and

fields). However, Java supports declaring nested classes as well. Currently our impact

analysis module is unable to mark such nested members. For example in Figure 6.1 the field

Logger from library is defined inside a class that also defines a nested type (an enumeration

type called Trace). The methods of Trace use this field; however, they are declared at a

granularity which is one level down from our tool’s reach. These methods are not marked by

EDW as “Impacted” in the impact analysis view. The user would have to mark these members

Figure 6.1: The field Logger used in a nested member.

84

manually during the analysis. This limitation can impact the recall of methods and members

defined inside a nested element.

• Transitively affected methods.

EDW and JRipples do not directly mark transitively affected methods as “Impacted”, which

resulted in increasing the FNs and hence reducing recall of the tools for this granularity.

These transitively affected methods are first marked as “Next” by the impact analysis module.

For example, Figure 6.2 shows five marked artifacts (method, field, or class) in the class

CronParser; the method parse() is marked “Impacted” by the tool while cronDefination() is

labelled as “Next”. An artifact marked “Next” is considered to have a transitive dependency

on a method marked “Impacted”. For example, Figure 6.3 shows a method AlwaysFieldValue-

Generator in project cron-utils, that directly depends on the class List from the external library

Guava. Figure 6.4 shows another method from the class AlwaysFieldValueGeneratorTest that

depends on the method from Figure 6.3. The tools considers this as a transitive dependency

between the method of AlwaysFieldValueGeneratorTest and the external library. Human inter-

vention is required to decide whether the method of AlwaysFieldValueGeneratorTest actually

depends on the library or not. In reality, the method in Figure 6.4 does transitively depend

on the library since the Guava class List is being used in the highlighted line.

In calculating recall during evaluation of the tools, we did not consider “Next” marked

artifacts to be in our estimated impact set. This is reasonable since, analogous to the

example, the developer has to review the source code in order to figure out whether these

artifacts would be impacted or not. The total number of “Next” marked artifacts for a project

Figure 6.2: Areas marked “Next” and “Impacted” by the impact analysis view.

85

Figure 6.3: Method from the class AlwaysFieldValueGenerator in project cron-utils that is dependent
on the class List from the Guava library.

Figure 6.4: Method from the class AlwaysFieldValueGeneratorTest that depends on the class Al-
waysFieldValueGenerator.

can become extensive, since all dependent neighbour nodes of an impacted artifact are first

marked as “Next” by both tools. The developer has to then intervene to verify whether these

recommended artifacts are actually transitively impacted or not. Considering all of them to

be positives would have increased the recall of both tools at the expense of the precision.

Therefore, we decided to ignore all “Next” marked artifacts during our evaluation.

For the three mentioned projects, some of their “Next” marked methods were part of the

ground truth, as they were indeed transitively impacted. These methods were therefore

changed by developers in their commit for library migration. Ignoring all “Next” marked

methods resulted in reducing the recall of our tool for these projects. However, the tools

still recommended these transitively affected methods to the developer, which could have

been verified after exploring the impacts of library migration. For most of these methods,

developers would have been required to make only one extra decision in order to locate the

complete impact set.

86

6.4 Summary

In this chapter we evaluated EDW on real world Java projects, by assessing precision and recall

relative to the assumed ground truth data. Our results demonstrate that EDW achieves promising

results with perfect precision for all considered granularities, and a recall of 0.86 for the affected

methods while performing almost perfectly for the other two granularities. We discussed three

factors that can end up affecting the performance of our tool so that they can be improved in future.

The recall of our tool can be impacted either by usage of on-demand import declarations or by

having affected members at nested granularity; since these are engineering details, these limitations

can be easily addressed in future. We also evaluated JRipples to locate the initial impact set of library

migration. We found that using Eclipse search with JRipples has comparatively lower precision and

results in more searches that require human interpretation. Hence, there are more opportunities for

mistakes and confusion for the developers. It remains to be seen if actual mistakes and confusion

happen in practice.

87

Chapter 7

Human-Subjects Experiment

This chapter presents our controlled experiment with human participants, in order to contrast the

effectiveness and efficiency of EDW with JRipples. The experiment was approved by the Conjoint

Faculties Research Ethics Board at the University of Calgary, under ethics approval REB18-0239.

The rest of this chapter is organized as follows. Section 7.1 states the null and alternative

hypotheses for the study. Section 7.2 presents the selected system for our experiment along with

the criteria that led to its selection. Sections 7.3, 7.4, and 7.5 discuss the tasks, participants, and

data collection of our experiment, respectively. Section 7.6 highlights the procedure we follow.

Section 7.7 presents the results of our experiment, followed by limitations of our study in Section 7.8.

7.1 Hypotheses

The null and alternative hypotheses, with respect to RQ5, that we want to answer quantitatively are

as follows.

H1
0: There is no difference in time while locating the initial impact set of a library by using either

EDW and JRipples.

H1
A: Participants using EDW to locate the initial impact set of a library will complete their task in

less time as compared to performing the task using JRipples.

88

H2
0: There is no difference in precision and recall for locating the initial impact set of a library by

using either EDW and JRipples.

H2
A: Participants using EDW to locate the initial impact set of a library achieve better precision and

recall for their task as compared to JRipples.

7.2 Subject System

We selected an open source Java project called JUNG81 (Java Universal Network/Graph Framework)

for our experiment. JUNG supports the modelling, analysis, and visualization of data which can

also be represented as a graph or network. We selected its released version 2.1, which uses a

third-party library named Guava. JUNG is a Maven project with a modular structure; therefore,

we selected two of its modules, namely “api” and “io” for our experimental tasks. These modules

have different code bases, but follow a similar coding standard due to them being from the same

developers. The api module contains 30 classes with 10 kLOC, while io contains 54 classes with 6

kLOC. The selection of JUNG for our experimental tasks is based on the following reasons.

• JUNG is open source with its code publicly available on GitHub; this was a requirement for

the tasks in our experiment.

• JUNG is a popular project on GitHub; its code base is standardized with proper commenting

and documentation. The presence of self-explanatory variables, classes, and comments can

assist an unfamiliar developer in comprehending the general structure of the system.

• We selected Guava for the library migration of our experimental tasks. Guava is a famous

utility and collection library provided by Google. Moreover, since the library is an extension

to the standard Java collection library, it can be easier for an unfamiliar person to comprehend

its usage in a system.

81https://github.com/jrtom/jung

89

https://github.com/jrtom/jung

Table 7.1: Guava impact set for tasks.

Task Module Granularity Affected

1 api Class 7
1 api Method 4
1 api Field 9
2 io Class 15
2 io Method 51
2 io Field 36

• The selected modules are of reasonable sizes, meaning that the direct impact set for Guava in

the modules is also of a size locatable in the available time for the tasks.

7.3 Tasks

There were two different tasks that were performed by the participants during our experiment. Task

1 was performed on the api module, while Task 2 was performed on the io module. Participants

were provided 7.5 minutes for the tasks with EDW while they had 30 minutes with JRipples. Table

7.1 lists the size of the Guava direct impact set for the three granularities of the two modules.

The participants were asked to find the complete set of classes and their members (i.e., fields

and methods) that directly referenced the types and fields from Guava. Participants were asked

to perform this task with both tools on each module, first EDW and then JRipples, to allow any

bias (such as learning effects) to benefit JRipples. They were provided with detailed instructions

for the tasks with each tool. Since the tasks involved location of the direct impact set, no prior

understanding and comprehension of the code base was required before the experimental trials.

The description of tasks and their instructions are available in Appendix F.1.

7.4 Participants

We recruited eight graduate students from the University of Calgary for our experiment; Table 7.2

lists their characteristics. Note that, for familiarity, “1” means the participant was unfamiliar with

90

Table 7.2: Overview of participants’ experience.

Participant Familiarity (1-5) Experience

Eclipse Java libraries industry development

P1 5 4 4 0 5
P2 4 4 4 3 7
P3 4 4 4 0 4
P4 5 5 5 6 8
P5 4 4 3 0 3
P6 3 4 5 0.6 5
P7 4 4 5 8 12
P8 4 4 5 4 10

the language, whereas “5” means that they used it on everyday basis. The selected participants

were familiar with the Eclipse IDE and the Java programming language. All the participants were

also familiar with third-party libraries in general and had used them in their recent projects. Four

participants had industry experience of 3–8 years. Participant P6 had industry experience of 6

months, while two participants (P4 and P7) were also employed in industry contemporarily with

being a graduate student. Moreover, participants P1 and P4 indicated that they used Eclipse and

Java on a daily basis. The rest of the participants indicated that they had actively used Eclipse and

Java in the recent past.

7.5 Experimental Procedure

The experiment started with the participant reading and signing a consent form; we then asked them

to fill a quick pre-study questionnaire regarding their experience. Participants were then given a

short verbal overview of the experimental setup and the terminology to be used.

The participants were then given training sessions to familiarize them with the tools (EDW and

JRipples). First, they were given a demonstration of how the tools work along with a description of

the features to be used. Participantswere then set towork on a sample task for both tools respectively.

During training sessions, participants were allowed and encouraged to ask any questions they had.

Once the participants were comfortable with the tools, we started with the actual experimental

91

trials. The participants were provided with the source code, task description, and instructions to

perform each task. We first explained the task and encouraged them to ask any question regarding

the tasks before starting. The participants first performed Task 1 with EDW, for which they were

given a time limit of 7.5 minutes. After completing Task 1 with EDW, participants then performed

the same task with JRipples for which they were given 30minutes. Theywere asked to fill a post-task

questionnaire after completing Task 1 for each tool. The participants were then asked to perform

Task 2 with both tools in the same order, filling a post-task questionnaire after it. The participants

were asked to announce their results once they were done, after which we recorded the completion

time while saving the state of the used tool. The participants recorded their results by populating

the hierarchical view of the tools; this view contains all classes and members of a project under

analysis. The located classes and members were marked as “impacted” by the participants during

trials; we recorded the state of the view after each task. The announcement of result means that

the participant had populated the view and had a final look at it to verify that the results roughly

looked reasonable.

After completion of both tasks with each tool, the participants were given a final questionnaire

for comparing their performance with the tools. Each participant spent roughly 2–3 hours in total

for the experiment and were given an honorarium of 100 CAD as compensation for their time. The

details of task description, instructions, and questionnaires are available in Appendix F.

7.6 Data Collection

A variety of data were collected during the experiment; some of it came from our notes while

observing the participants’ decisions and comments during their trials, while the rest came from

the state of the Eclipse IDE after each task completion. We did not record any audio or video of the

participants during the experiment, as it was deemed too expensive to analyze and too difficult to

get ethics approval for as it would have possibly made the participants less comfortable during the

experimental trials.

92

7.7 Results

This section presents the quantitative and qualitative results for our study.

7.7.1 Quantitative

Hypotheses H1
0 and H1

A

Table 7.3 lists the individual time taken in minutes by the participants for performing the two tasks

with EDW and JRipples. Table 7.4 lists the average of the time taken in minutes for performing

the two tasks with tools respectively. Participants on average took ∼3 minutes for performing a

task with EDW; they took 12.8 and 25.9 minutes for performing Tasks 1 and 2, respectively, with

JRipples. While using JRipples, participants were able to perform Task 1 in comparatively less time

than Task 2, as Task 1 had an overall smaller direct impact set. However, with EDW the participants

on average required roughly the same amount of time for both tasks.

We conduct a t-test [Helmert, 1875] for dependent samples, in order to test the null hypothesis

Table 7.3: Time taken by individual participants for tasks (in minutes).

Participant EDW Task 1 JRipples Task 1 EDW Task 2 JRipples Task 2

P1 2 11 3 27
P2 4 10 3 30
P3 3 13 3 30
P4 3 19 4 29
P5 3 15 2 19
P6 2 10 3 21
P7 2 11 2 27
P8 2 13 2 24

Table 7.4: Average time taken in minutes for tasks.

Tool Task 1 Task 2

EDW 2.6 2.8
JRipples 12.8 25.9

93

(we use an online calculator82 to perform the calculation). The assumptions of t-tests for dependent

samples are that the data are normally distributed and belong to the same experimental block. The

time collected for EDW and JRipples is paired, as the same tasks were performed using both tools.

We use the Kolmogorov–Smirnov (KS) goodness-of-fit test [Karson, 1967] to test the normality of

our collected data (we use an online calculator83 for the calculation); we use the null hypothesis

that the data is normally distributed and the alternative hypothesis that it is not. Table 7.5 lists

the p-value for the KS test results with an α level of 0.01. (The α-level specifies the probability

of detecting a difference from the null hypothesis.) As p > 0.01 in all cases, the null hypothesis

cannot be rejected: the data is normally distributed.

Table 7.5: Results of the Kolmogorov–Smirnov test for elapsed time.

Data source EDW p-value JRipples p-value

Task 1 0.33 0.71
Task 2 0.51 0.67

combined 0.13 0.62

Table 7.6 lists the results of one-tailed t tests on the time taken for the tasks, as given in

Table 7.3. At an α level of 0.01, p < 0.01; hence we reject the null hypothesis H1
0. The results

show that participants using EDW to locate initial impact set of a library will complete their task

with significantly lower time as compared to performing the task with JRipples.

82https://www.socscistatistics.com/tests/ttestdependent/Default.aspx
83https://www.socscistatistics.com/tests/kolmogorov/Default.aspx

Table 7.6: Results of t tests on time taken.

Data source mean std deviation t p

Task 1 7.68 5.65 9.55 0.00003
Task 2 14.2 12.2 17.1 0.00001

combined 11 9.99 8.87 0.00001

94

https://www.socscistatistics.com/tests/ttestdependent/Default.aspx
https://www.socscistatistics.com/tests/kolmogorov/Default.aspx

Hypotheses H2
0 and H2

A

Table 7.7 lists the average precision, recall, and F-score for the three granularities at which we

apply JRipples. Appendix G lists the details of eight participants for each granularity of the two

tasks with JRipples. EDW achieved a precision and recall of 1 for the selected system. On the other

hand, participants made mistakes with JRipples due to manual work and errors.

For Task 1 JRipples achieved a recall of 0.82, 0.85, and 0.69 for class-, method-, and field-

granularity, respectively. For Task 2 JRipples achieved a recall of 0.78, 0.52, and 0.65 for class,

method, and field granularity, respectively. The precision suffered for method- and field-granularity

of Task 1. None of the participants were able to find all impacted methods for Task 2; only P7 was

able to achieve a recall of 0.78 with a precision of 0.86. In contrast, with EDW, all participants were

able to achieve perfect precision and recall. The effectiveness of performing a task with JRipples

apparently depends on its complexity: a task with a bigger impact set and system can lead the

developer to more FPs and FNs.

The data for the F-score is not normally distributed because EDW achieved an F-score of 1 for all

participants. Therefore, we can not perform a t-test for calculating significance. We instead use the

alternative Wilcoxon signed rank test [Wilcoxon, 1945] (we use an online calculator84 to perform

the calculation), a non-parametric test to evaluate if two dependent samples were selected from

populations having the same distribution; it does not require the data to be normally distributed.

Table 7.8 lists the results of theWilcoxon test on the Fmeasure for the three granularities, calculated

84https://www.socscistatistics.com/tests/signedranks/Default2.aspx

Table 7.7: Average JRipples task result.

Granularity Task P R F

Class 1 1 0.82 0.86
Method 1 0.72 0.85 0.74
Field 1 0.75 0.69 0.73
Class 2 0.97 0.78 0.85
Method 2 0.92 0.50 0.63
Field 2 0.99 0.65 0.73

95

https://www.socscistatistics.com/tests/signedranks/Default2.aspx

Table 7.8: Results for Wilcoxon test on F-score data combined from Task 1 and 2.

Granularity p

Class 0.02
Method 0.0004
Field 0.002

individually. Note that, for class-granularity, there are only 6 non-tied samples (two from Task 1

and four from Task 2); therefore, the p-value calculated by the Wilcoxon test is not exact.

For method- and field-granularity, there was a significant impact on F-score while using EDW in

contrast to JRipples at an α-level of 0.01, as p < 0.01. For class-granularity, there was a significant

impact at an α-level of 0.05, as p < 0.05. Because of this, we reject the null hypothesis H2
0. The

results show that the participants using EDW to locate the initial impact set of a library migration

achieve better precision, recall, and F-score in their tasks as compared to performing the task with

JRipples.

7.7.2 Qualitative

Table 7.9 summarizes the answer to the question “How did you find the task”, asked in the post-task

questionnaire after each task (see Section F.3). Note that “1” means the participant found the task

to be difficult, whereas “5” means the participant found the task to be easy. The table shows that

while using JRipples, most of the participants (except P4, and P3 for Task 1) found the tasks to be

difficult or moderately difficult. With EDW, all participants found the tasks to be easy or moderately

easy. This shows that the participants perceived the performed tasks to be relatively easier with

EDW in contrast to JRipples.

For the question “Did the task take more time or less then you anticipated at the beginning?”,

asked in the post-task questionnaire after each task (see Section F.3), all participants answered

“less” for the tasks with EDW and most answered “more” for the tasks with JRipples (except P4 in

Task 1). This is consistent with the results in Table 7.4, which show that participants took more

time for the tasks when using JRipples. For the last 4 questions in the final questionnaire (see

96

Table 7.9: Results for the post-task questionnaire.

Participants EDW Task 1 JRipples Task 1 EDW Task 2 JRipples Task 2

P1 5 1 5 1
P2 5 1 5 1
P3 5 2 5 1
P4 5 4 5 3
P5 5 3 5 1
P6 4 2 5 1
P7 4 1 5 1
P8 5 2 5 1

Section F.4), most participants strongly preferred EDW; they strongly agreed that they were more

likely to succeed with EDW in estimating the changes needed; they strongly agreed that they could

attempt larger changes and modification tasks with EDW; and they strongly agreed that they would

use EDW again. The only exception was P4 who only agreed (not strongly agreed) for the last three

questions. This shows that the participants found EDW to be helpful for the tasks, in contrast to

JRipples.

Observations during the experiment

For JRipples, all participants used a similar approach for locating the direct impact set, by relying

on the search functionality provided by the Eclipse IDE. At first they started with manually going

through the classes iteratively, until they found a class that was directly referencing Guava. Once

the participants had a general idea about the usage of Guava in the system, they used IDE search for

locating the impacted classes while marking them manually in the JRipples view. Apart from P1,

all other participants used a variant of either search strategy 2 or 3 (see Section 6.2.3) as a query

for IDE search. P1 used search strategy 1, while wrongly assuming that the only import usage of

Guava in the system was the one they had found in the first manually located class; however, P1

discovered some other imports during the task which they had initially missed. P1 then performed

another search while using the newly discovered imports, while commenting that they were not

sure about the success of the task any more. Participants P3 and P6 wrongly localized their IDE

97

search for Task 1 to only one of the packages of the system; therefore, they were unable to get a

complete impact set of the system. P3 corrected this mistake for Task 2, but still did not mark the

complete set of impacted classes due to confusing classes with similar names. P8 initially tried to

remove Guava from the build path of the system, in order to inject errors into the system; their idea

was to locate the classes that would cause errors after removal of the library. However, P8 had to

stop after a few unsuccessful tries due to limitation of time. P8 then decided to use Eclipse IDE

search for completing the task.

Once the participants found the directly referencing classes, they searched the directly refer-

encing members. Apart from P7 and P8 all other participants did this by either manual traversal

or IDE file search of a marked class for each of its Guava imports. Participants P7 and P8 used an

interesting approach to locate the affected members based on their experience; they removed all the

Guava imports from a class in order to inject errors. They then searched the members for which

Eclipse was giving them errors. This approach was comparatively faster; however, it resulted in

more false positives: the IDE would signal an error for any method that uses a defined field from

Guava in the class. The approach therefore signals errors for both directly and transitively impacted

methods; manually validating the large number of methods resulted in more false positives. Even

though participants P7 and P8 were careful to mark only the direct impacted members, they still

ended up marking some false positives during the task.

The participants complained that they were not confident about the success of their task while

doing it with JRipples. The JRipples view does not distinguish between overloaded methods defined

inside a class; therefore, the user is required tomanually cross-check each overloadedmethod. Some

participants thus complained that they got confused when a class contained overloaded methods.

On the other hand, for EDW, the participants were able to perform both tasks easily due to its

automation. Some participants were skeptical about the results of EDW; therefore, they decided to

randomly check a few classes and announced the results only after making sure that the tool was

working fine.

98

Characterizing good tasks as bad and vice versa. In order to review how sure participants

were about their performance of a task with a tool, we explored their answer to the post-task

question, “How well do you think you did the task?” We categorized the actual performance of

a participant as good if they were able to achieve more than 0.7 recall in any two granularities.

Table 7.10 lists the categorization of both tasks for each participant for JRipples. The columns

partially labelled “us” show our evaluation of the results, while those partially labelled “them”

show participants’ self-evaluation after completing the task. The cell values “G”, “B”, and “A”

signify that the participant’s performance in the task was good, bad, or average, respectively. “NS”

means that the participants were not sure about how they did. Therefore, we interpret any cases of

“NS” as the developer having performed a bad task in their own opinion.

For EDW all participants said they thought they performance was good, because the tool

automated the task for them. However, for JRipples the participants were not clear about their

performance. For Task 1, only P4 correctly characterized the good performance as good in the

post-task questionnaire; the rest of the participants either had good performance for the task but

characterized it as bad, or vice versa. Participants P1, P2, P5, P7, and P8 characterized that they

had bad performance for Task 1, even though they actually performed it pretty well. Participants

P3 and P6 said the opposite, that they had good performance while in reality they did not. For

Task 2 participants P1 and P6 correctly characterized their bad performance. P5 claimed that they

had average performance while in reality they did not. Participants P2, P4, P7, and P8 had good

performance for Task 2, but none of them were aware of this.

These results show that the majority of the participants were not sure about the success of a

task after completing it with JRipples, and thus that developer opinion is not a trustworthy measure

of success for determining the direct impact set during library migration.

Interesting comments and quotes. We selected some interesting comments made by the partic-

ipants regarding the used tools for further discussion.

Some participants pointed out the advantages of using JRipples. P6 said that JRipples helps in

99

Table 7.10: JRipples task categorization.

Participant Task 1: us Task 1: them Task 2: us Task 2: them

P1 G B (NS) B B
P2 G B (NS) G B (NS)
P3 B G B G
P4 G G G B (NS)
P5 G A B A
P6 B G B B
P7 G B (NS) G B
P8 G B G B

showing the code structure of the selected project. Similarly, P4 commented that “JRipples helps

in record keeping” of the impact set. P3 stated that “JRipples finds automatically the dependent

class after marking a class impacted”. Note that all these features are inherently available in EDW

as well, as it is built on top of JRipples.

Some participants pointed out disadvantages of using JRipples. P2 commented that, based on

their experience, “In a complex project with too many dependencies on a library, it is impossible for

JRipples because of manual search of impacted classes”; they were concerned about generalization

of JRipples to bigger systems that have a significant number of classes. P6 got confused while

marking overloaded methods in a class, as JRipples does not distinguish between them in its view;

they commented that “In JRipples there were times when I found an impacted code element but

after I noticed that there is another element of code with the same name which caused problem in

tagging the real impacted ones. I didn’t have this problem with EDW”. Similarly, P7 mentioned the

issue with manual work, “For JRipples I had to get into each class and find the impacted set. Also

had to comment out the import to break the code and identify which lines are impacted”. While

P3 faced problems while trying to find imports from Guava by stating that they were “looking for a

way to find the Guava library with the right name ‘google’.”

For EDW the participants pointed out some benefits. P7 stated thatEDWwas handy formigration,

as “The tool is very helpful. It is good to be able to see all the third party libraries in one place.”

P8 commented that “EDW was much easier in three clicks you can find the impacts”. However,

100

some participants wanted further improvement in the process of EDW. P4 was not happy with the

number of clicks and asked to further “Reduce the number of clicks”. P6 believed that “Even more

automation can be useful”.

7.8 Limitations

EDW automates the search for the direct impact set of a library; therefore, there is minimal chance

of a learning effect while performing similar tasks with JRipples. However, we took a number of

steps to reduce the potential learning effect (in favour of JRipples) during our experiment. First we

did not tell participants that they would perform similar tasks for both tools. This step was taken

to avoid them from consciously remembering the results from EDW. Second, we tried to make sure

that the participants did not thoroughly explore the results from EDW for a task. As the participant

were given 7.5 minutes with EDW for the tasks, it was highly unlikely for them to consciously

memorize the impact set in this time.

Our study consisted of only 8 participants with all being graduate students. Only half of

the participants had significant industry experience; therefore a study with more participants and

specifically industrial developers is needed to generalize the results.

7.9 Summary

We performed a controlled experiment with 8 participants, in order to compare the effectiveness

and efficiency of EDW with JRipples. Participants were asked to find the complete set of classes

and their members that directly referenced the types and fields from Guava. The experimental

trials required the participants to perform this task on two modules, namely “api” and “io” of the

project JUNG. Participants first used EDW for performing the task followed by doing it again with

JRipples. Participants were asked to provide feedback on the used tool after each trial, and at the

end to provide final feedback on both tools. We recorded time and confusion matrix as measures

of efficiency and effectiveness.

101

Participants were able to perform the tasks with higher efficiency and effectiveness while using

EDW, in comparison to JRipples. Compared to JRipples, EDW significantly improves the time

required for the task. Participants on average took only ∼3 minutes for performing a task with

EDW. On the other hand, they spent on average 12.8 and 25.9 minutes for performing Tasks 1 and 2

with JRipples, respectively. Similarly, EDW significantly improves precision and recall in contrast

to JRipples. For Task 1, JRipples achieved an F score of 0.86, 0.74, and 0.73 for class-, method-,

and field-granularity, respectively. For Task 2, JRipples achieved an F score of 0.85, 0.63, and 0.73

for class-, method-, and field-granularity, respectively. However, with EDW participants achieved a

F score of 1 due to the automation provided by the tool.

102

Chapter 8

Discussion

In this chapter we discuss remaining issues related to our empirical study on library migration

and the proposed tool. Section 8.1 discusses trends in the usage of external libraries. Section

8.2 explains the breaking of source code as a consequence of migration and highlights the type of

libraries that have a high probability of breaking client code. Section 8.3 highlights the approaches

used for notification of library migration. Section 8.4 describes issues with our tool and our

evaluation thereof. Sections 8.5 and 8.6 discuss threats to validity of our work, and future work of

our study, respectively.

8.1 Trends in Software Library Usage

We found a trend in the choice of external libraries being used by developers of Android projects.

The libraries being used mostly belonged to the domains of network communication, graphical user

interfaces, data encoding, and data structures. In contrast, we found no such trends for the Maven

projects. The libraries being used in Maven projects belonged to diverse domains and were harder

to classify. We note that the available library domains in Android are restricted due to the structure

of the platform, as most of the used libraries perform narrower tasks compared to their counterparts

found in Maven. This observation is strengthened by the fact that library migration did not result in

breaking transitively dependent client code in any of the Android projects.

103

Table 8.1: Preferred libraries involved in Android migrations.

Library Alternative Projects

OkHttp standard Java 9
NineOldAndroids standard Android support 6
ActionBarSherlock standard Android support 5
Retrofit standard Java 4
Picasso Glide 3

Furthermore in Android, we also found a trend in the selection of alternative libraries being

introduced to replace an existing one. Table 8.1 summarizes these libraries involved in Android

migrations along with the alternative that replaced them. Different developers consistently opted

for the same alternative, but we note that there are not many libraries available for the Android

platform. It is interesting to note that a large majority of projects had to migrate to the standard

SDK support, due to scarcity of external libraries. The trend shows that the Android community is

still maturing in terms of software libraries and there are not that many viable substitutes available

in the market.

8.2 Code Breaking of Systems and Their Clients

Our findings regarding breaking of source code show that sometimes the system can couple strongly

with a software library; as a result their migration can have severe impacts on the dependent code.

Our analysis shows that these impacts can even propagate further to transitively dependent systems

in cases where APIs are coupled with the external library.

Our results highlight two important points: first, it shows that library migration would often

break dependent code; second, it raises a red flag for developers to be careful while using an

external library. While using a library has short-term benefits, in the long-term migration of this

dependency can have severe consequences for both the developer and their clients.

104

Table 8.2: Domain of libraries that have a higher probability of breaking transitively dependent
clients.

Domain Examples

data encoding JSON.simple,JAXB
data structures Guava, Apache Commons
web asset Jetty, Spring

8.2.1 Categories of Libraries that Broke Clients

We found three categories of libraries that mostly broke transitively dependent clients. Breaking

of client projects mostly occurred due to dependencies belonging to the three categories listed in

Table 8.2. These categories are taken from Maven Central Repository, which uses them in organizing

and searching the repository.

Generally libraries from these categories are directly used by clients and their removal from

the system can result in discrepancies. For example, Java Script Object Notation (JSON) is a format

for data encoding, that is commonly used for communication among platforms. JSON.simple is a

library for JSON provided by Google. JSON.simple provides a data structure named JSONObject,

that contains the attribute-value mapping of the encoded data. A client project receiving or utilizing

JSONObject from a systems’ old version would expect the same object containing the similar format

of data mapping from the newer version; therefore, a change in object type or format due to

migration to an alternative JSON library would most likely result in breaking the client code. Note:

Each JSON library has a different data structure for containing the attribute-value mapping. For

example the library GSON provides an object named Gson for this purpose.

We recommend that these libraries should be used with a dependency inversion principle

[Martin, 1996] to limit their impact on client code. Note, the dependency inversion principle

preach to depend on abstraction and not on concretion.

105

8.3 Notification of Software Library Migration

We found that developers are uncommunicative about library migration. Even though release notes

are a standard way of informing client about changes, developers still underuse them. They prefer

using pull requests and internal threads for discussing about migrations. Similarly, the rationale

behind migration, if available, is more frequently offered through pull requests than in release notes.

These findings do not coincide with the analysis that dependency migration ended up breaking

client code, since one would expect the project developers to notify their clients about migration,

in order to warn them of incompatibility issues while using the new release. We speculate that

due to lack of awareness of their external importance, project developers do not use release notes

that often. The project developers do not consider migration of dependencies as a major change

and as a result avoid informing the clients about it, even though the reality runs contrary to this

assumption. As a result, clients face incompatibility issues when using new releases of systems

that have migrated from external libraries.

This underuse of notification resources might be either due to lack of knowledge or the unavail-

ability of a systematic approach for library migration. If the project developers start following a

systematic incremental process to handle this change, the migration could be performed properly

with appropriate notification to all involved stakeholders.

8.4 Evaluation of EDW

In our evaluation, EDW works well for locating the affected impact points, due to the fact that EDW

makes use of direct import references for locating the impacted classes. The recall for EDW can

be impacted negatively by on-demand import declarations and nested granularity, as explained in

Section 6.3.2. However, since these are both minor engineering details, the limitations can be easily

addressed in future.

We evaluated JRipples for locating the initial impact set of library migration, in contrast to

EDW. We found that EDW significantly outperforms JRipples in three areas. First, EDW improves

106

the time required for locating the direct impact points of a library. Second, the precision and

recall of EDW is comparatively better. Third, EDW does not require human intervention while

locating the direct impact points, as it automates the process. On the other hand, JRipples relies on

manual Eclipse search for locating the affected classes. Moreover, it also requires the developer to

manually record/memorize the point of impacts of affected members; therefore, JRipples requires

more decisions from the developer, each of which represents an opportunity for confusion and

making mistakes.

8.5 Threats to Validity

In this section we discuss the threats to validity of our research. Section 8.5.1 highlights the threats

to validity of our empirical study on software library migration, while Section 8.5.2 discusses the

threats to validity for the evaluation of EDW.

8.5.1 Threats to validity of the library migration study

The accuracy of our empirical study on dependency migration depends on the selection of systems,

the accuracy of the tools we used, and the measures we used for effort estimation.

Selected systems

We defined and followed criteria while selecting projects for our study; we note three issues that

arose due to our choices. (1) We chose only open source systems; therefore, our findings may

not reflect how external dependencies are treated in closed and corporate systems. It is possible

that closed and corporate systems might be hesitant to use external libraries due to issues with

licensing and copyright; further study would be needed to test this conjecture. (2) We only selected

Maven and Android projects for our study; as a result, our findings might not generalize across other

languages and platforms. (3) We only considered popular and stable products with a history of

at least two years; therefore, our results might not be applicable to relatively new or unpopular

107

projects.

The accuracy of third party tools

Our findings are dependent on the third party software that we used: Find it EZ, JAPICC, and Code

Compare. We used Find it EZ to locate the affected classes which were then utilized to figure out

the impacts of library migrations. JAPICC was used to find the probability of API breakage along

with the compatibility issues that arose in client code due to migrations. Code Compare was used to

determine the discrepancies resulting from migration between the impacted classes of the project.

The accuracy of our analysis depends on how well these tools performed their respective functions.

To validate the results, we manually checked a few random results from these tools and found them

to be accurate. However, checking all the outputs from the tools was infeasible; as a result, the

accuracy of the third party software remains a threat to validity for our study.

Measurement of effort

Two measures (the number of changed classes and lines of code) were used to estimate the effort

required by developers during library migration. We acknowledge that estimating migrations

through these measures might not be the best indicator of effort. Certainly, our own experience

indicates that migrations involving fewer affected artifacts (classes and LOC) can be more complex

and time consuming than those that impact more artifacts. Our choice for these measures was due

to lack of a better alternative options that were easily achievable. Therefore, the results of our study

should be taken as an estimate of effort.

8.5.2 Threats to validity for the evaluation of EDW

The accuracy of the evaluation of EDW is impacted by two factors: (1) selection of evaluation data

set and (2) manual analysis by a single experimenter.

108

Selection of evaluation data set

We evaluated our tool on the first ten projects that satisfied our criteria mentioned in Section 6.1.

However, the results of our evaluation still depend on the projects we selected. The size of the

evaluated data set is also not large and could be improved in future work.

Manual evaluation by a single experimenter

The evaluation of EDW was performed manually by the author. To avoid researcher bias, we used

developers’ commits of the library migration as the ground truth, and we wrote a comparator script

for compilation of the data that populated the confusion matrix and that generated precision and

recall for our results. However, the qualitative analysis of the data sources was performed by a

single researcher. Therefore, this stands as a threat to validity for our evaluation of EDW.

8.6 Future Work

In this section we discuss the future scope of our work.

8.6.1 Knowledge base for external libraries

A large number of software libraries providing similar functionalities are available online. These

libraries vary in their performance, platform, resource consumption, and supported use cases.

Currently developers have to search various forums and repositories for finding an optimal library

that fits their systems need. This search results in developer wasting a lot of time and resources on

a non-productive task. Lack of time can even result in developer making a rash selection, which

would create repercussions for the product in future.

We would like to create a queryable central knowledge base consisting of all the available

libraries. The knowledge base would contain real time data regarding the history of performance,

bug, vulnerabilities, patches, and popularity of the classified libraries. Such a system would allow

the developers to easily compare popular alternatives available for a domain before making a final

109

decision. This centralization can guide developers while making selection of an external library

and can reduce the required effort and time.

8.6.2 Improve effort estimation

The measure used for estimating effort invested by developers for mitigating library migration

needs further improvement. We would use better alternatives such as expert- and combination-

based models for measuring effort in future work.

8.6.3 Improvements to EDW

Our tool does fairly well in terms of precision and recall. However, there is still scope for future

work. Some of the areas that can be improved are as follows.

Search strategy

The search strategy being used to locate affected classes in EDW is rather simple. We make use of

Eclipse IDE search to locate any reference of external library in the system. The search cannot be

customized per use case as it does not support filters or wildcards of any kind. Therefore in future

work we would improve the basic search by supporting filters, customization, and wildcards for the

user.

Support for nested granularity

The current version of EDW does not support marking a class member that is declared at a nested

granularity. The support of nested members would make the analysis performed through EDW

more thorough. Incorporating this into EDW would require changing our impact analysis module.

Integrating a mode for selection of different granularity level would allow this the tool to support

nested granularity in future.

110

Extension Points

Eclipse extension points allow contribution of further functionality to an existing plugin. We have

provided extension points in EDW to support future improvements. The graph builder and metrics

builder modules can be extended by future researchers through these extension points. The graph

builder module can create a dependency graph for one affected class at a time. Therefore, a

possible extension can be to support graph generation for multiple affected classes present in a

module, package or the complete system. This extension can allow the user to feasibly switch

between different granularity of graph representation while performing the library migration.

Similarly, the metrics builder module supports metrics that are related to usability of a single

library; therefore, that module can be extended to support system-wide metrics such as the total

number of dependencies, unnecessary dependencies, or coupling of dependencies. The system-

wide metrics could provide an overview to the developers regarding the management and usability

of dependencies in a project.

Furthermore, currently EDW only supports Java- and Maven-based projects. It can be extended

to other platforms to further support library migration. The ideal candidate would be platforms

that store the information related to external libraries such as Apache Ant, Gradle, and Android.

Human-Subjects Experiment

The human study introduced in Chapter 7 involved only 8 participants. The participants were all

graduate students with only half having significant industry experience. Therefore, a study with

more participants and especially industry developers is required to generalize the results.

8.7 Summary

In this chapter we highlighted several remaining topics related to our research. We discussed

the found trends for the domain of libraries being used in the android projects. We highlighted

the breakage of source code in the system and their clients resulting from migration. We also

111

stated the found patterns in the domain of libraries that have a higher probability of breaking

transitively dependent systems. We further discussed our findings regarding the notification of

library migrations from developers. We also explained the evaluation of EDW and highlighted the

limitations of JRipples and EDW.

We highlighted the threats to validity of our study. Our data analysis on library migration is

affected by the choice of selected systems, accuracy of third party tools and the used measures for

effort estimation. On the other hand, the threats to validity of our tool are due to selected system

for evaluation and analysis by a single experimenter.

Finally we discussed the future work for our research and highlighted how it can be further

improved.

112

Chapter 9

Conclusion

Third party software libraries are used by developers for the sake of reuse [Ebert, 2008], resulting

in improved development time and maintainability [Mohagheghi and Conradi, 2007]. However,

libraries are subject to deprecation and evolution, resulting in newer releases. As a consequence,

developers have to consider migrating to better alternatives in the market. But the difficulties of

dependency management are greatly underestimated by developers, and most software systems

keep their outdated libraries [Kula et al., 2018b]. Existing work on library migration is restricted

to updates between versions of the same library, and does not consider when, whether, or why

software systems migrate from one library to another. Thus, until now, we had little evidence and

understanding of this phenomenon.

The first part of this thesis comprises a retrospective study of library migration in 114 open

source, Java-based software systems. The study explores the consequences of migration on both

directly and transitively dependent systems, the developers’ rationales behind such migrations and

the effort required to mitigate such changes.

We found that many projects undergo library migration (11.9% of the studied projects) and that

67%of themigrations ended up breaking the dependent system. To avoid librarymigration in future,

in 43% of the migrations their developers decided to avoid introducing a new alternative external

library. Migrations of external libraries are performed almost always for various, identifiable,

113

reasonable motivations (i.e., the existence of a better alternative). However, developers tend to

be uncommunicative about these changes: they under-use release notes for notifying client users

about such library migrations and they even under-use other communication channels (such as

pull requests) that are more oriented towards other project developers. 22% of the studied library

migrations impacted the dependent client projects; thesemigrations resulted in breaking ofAPIs that

caused backwards compatibility problems for the client systems. Mitigation of library migration

required significant effort from the consuming developers; on average, these developers had to

change 9.3% of the classes in their systems while modifying 15% of the total lines of code.

As a corollary to the lack of knowledge about library migration, we lack specialized tool support

aimed at helping developers during library migration. Therefore, the second part of the thesis deals

with solving the problem of library migration by providing a prototype tool, called EDW. EDW

utilizes the concept of change impact analysis for locating areas affected by library migration.

Through EDW, the user can view all external dependencies of a project along with their direct and

transitive impacts. Developers are notified about the impacted LOC by highlighting, and the tool

allows them to change affected artifacts through the editor. The user can also estimate the effort

required for transformation through the metric module, this can allow them to perform a cost-worth

analysis before performing a migration. Our evaluation shows that EDW has a promising precision

of 1 across all considered granularities. For recall, it obtained over 0.99 for class- and field-

granularity while achieving ∼0.86 for method-granularity. Using Eclipse search with JRipples, on

the other hand, results in similar recall but with comparatively lower precision. Moreover, JRipples

results in more searches that require human interpretation; hence, there are more opportunities for

mistakes and confusion for the developers.

We conducted a controlled experiment with human participants, in order to compare the ef-

ficiency and effectiveness of EDW against JRipples, an existing tool for structurally-based change

impact analysis. Participants were able to perform the tasks with higher efficiency and effectiveness

while using EDW, and in significantly lower time. Participants on average took only ∼3 minutes

for performing a task with EDW, but with JRipples they spent on average 12.8 and 25.9 minutes

114

for performing the two tasks posed to them. Similarly, EDW significantly improves precision and

recall in contrast to JRipples: EDW resulted in perfect precision and recall in terms of the initial

impact points, while JRipples achieved F-scores varying between 0.63 and 0.86, depending on the

task pursued and the granularity at which the measurements are taken.

The two contributions of this thesis are:

• We empirically explored library migration in 114 Java-based projects, selected from both

Maven and Android platforms in order to diversify the sample.

• We developed a prototype tool, EDW, to assist the developer in performing library migration.

EDW utilizes change impact analysis for locating the impacted areas of change for the user,

and provides resources through which library migration can be performed systematically. We

conducted both a simulation and an experiment with human participants, in order to evaluate

EDW. The high precision and recall along with significant time savings of our tool showed

that it has promise in guiding developers during the process of library migration.

9.1 Future Work

In order to support developers in their search for an appropriate software library, there is need for

a centralized knowledge base containing real time data regarding the history of performance, bugs,

vulnerabilities, and popularity of classified libraries. The knowledge base would allow developers

to compare the available alternatives for a library domain before making a final selection.

EDW does well in terms of precision and recall; however, there is still scope for its future

improvement. The search strategy being used by EDW to locate affected classes is rather basic. The

basic search can be extended in future to support filters, customization, and wildcards for the user.

Similarly, the current EDW version does not support marking a nested class member; such support

could be incorporated into EDW to make its analysis performed more thorough. In order to support

such future work, we have provided extension points in EDW. The graph builder and metric modules

currently support a singular selected library. Therefore, they can be further extended to support

115

system-wide graphs and metrics. The system-wide graphs and metrics can provide an overview to

the developers regarding the management and usability of dependencies in a project.

The prospects for improving support beyond locating the initial impact points are limited, due

to the fundamental limits of computability for change impact analysis. Any future improvements

in the general context of change impact analysis could be applied here, too.

The human study performed for the evaluation of EDW only involved 8 graduate students, with

only half having significant industry experience. Therefore, a study with more participants, having

significant industry experience, is required to generalize the results. Finally, EDW only supports

Java- and Maven-based projects. It can be extended to support other platforms such as Apache Ant,

Gradle, and Android.

116

Bibliography

Nemitari Ajienka and Andrea Capiluppi. Semantic coupling between classes: Corpora or identi-

fiers? In Proceedings of the International Symposium on Empirical Software Engineering and

Measurement, pages 40:1–40:6, 2016. doi: 10.1145/2961111.2962622.

Linda Badri, Mourad Badri, and Daniel St-Yves. Supporting predictive change impact analysis:

A control call graph based technique. In Proceedings of the Asia-Pacific Software Engineering

Conference, pages 167–175, 2005. doi: 10.1109/APSEC.2005.100.

Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano

Panichella. How the Apache community upgrades dependencies: An evolutionary study. Empir-

ical Software Engineering, 20(5):1275–1317, October 2015. doi: 10.1007/s10664-014-9325-9.

Christopher Bogart, Christian Kästner, and James Herbsleb. When it breaks, it breaks: How

ecosystem developers reason about the stability of dependencies. In Proceedings of the Inter-

national Conference on Automated Software Engineering Workshop, pages 86–89, 2015. doi:

10.1109/ASEW.2015.21.

Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How to break an API:

Cost negotiation and community values in three software ecosystems. In Proceedings of the

SIGSOFT International Symposium on Foundations of Software Engineering, pages 109–120,

2016. doi: 10.1145/2950290.2950325.

Shawn A. Bohner and Robert S. Arnold. Software change impact analysis. IEEE Computer Society

Press, 1996.

117

B. Breech, A. Danalis, Stacey Shindo, and Lori Pollock. Online impact analysis via dynamic

compilation technology. In Proceedings of the IEEE International Conference on Software

Maintenance, pages 453–457, 2004. doi: 10.1109/ICSM.2004.1357834.

Jonathan Buckner, Joseph Buchta, Maksym Petrenko, and Václav Rajlich. JRipples: A tool for

program comprehension during incremental change. In Proceedings of the IEEE International

Workshop on Program Comprehension, pages 149–152, 2005. doi: 10.1109/WPC.2005.22.

Gerardo Canfora and Luigi Cerulo. Impact analysis by mining software and change request

repositories. In Proceedings of the IEEE International Software Metrics Symposium, pages

29:1–29:9, 2005. doi: 10.1109/METRICS.2005.28.

Bradley E. Cossette and Robert J. Walker. Seeking the ground truth: A retroactive study on the

evolution andmigration of software libraries. InProceedings of the ACMSIGSOFT International

Symposium on the Foundations of Software Engineering, pages 55:1–55:11, 2012. doi: 10.1145/

2393596.2393661.

Danny Dig and Ralph Johnson. How do APIs evolve?: A story of refactoring. Journal of Software

Maintenance and Evolution, 18(2):83–107, March 2006. doi: 10.1002/smr.v18:2.

Christof Ebert. Open source software in industry. IEEE Software, 25:52–53, May 2008. doi:

10.1109/MS.2008.67.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and its

use in optimization. ACM Transactions on Programming Languages and Systems, 9(3):319–349,

July 1987. doi: 10.1145/24039.24041.

István Forgács and Tibor Gyimóthy. An efficient interprocedural slicing method for large pro-

grams. In Proceedings of the International Conference on Software Engineering and Knowledge

Engineering, 1997. URL https://www.researchgate.net/publication/245660970_An_Efficient_

Interprocedural_Slicing_Method_for_Large_Programs/download.

118

https://www.researchgate.net/publication/245660970_An_Efficient_Interprocedural_Slicing_Method_for_Large_Programs/download
https://www.researchgate.net/publication/245660970_An_Efficient_Interprocedural_Slicing_Method_for_Large_Programs/download

Brian Fox. Now available: Central download statistics for OSS projects, 14 December

2010. URL https://blog.sonatype.com/2010/12/now-available-central-download-statistics-for-

oss-projects/.

Simos Gerasimou, Maria Kechagia, Dimitris Kolovos, Richard Paige, and Georgios Gousios.

On software modernisation due to library obsolescence. In Proceedings of the International

Workshop on API Usage and Evolution, pages 6–9, 2018. doi: 10.1145/3194793.3194798.

Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman. Lean GHTor-

rent: GitHub data on demand. In Proceedings of the Working Conference on Mining Software

Repositories, pages 384–387, 2014. doi: 10.1145/2597073.2597126.

Jurgen Graf. Speeding up context-, object- and field-sensitive SDG generation. In Proceedings

of the IEEE Working Conference on Source Code Analysis and Manipulation, pages 105–114,

2010. doi: 10.1109/SCAM.2010.9.

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush. Refining interprocedural change-impact

analysis using equivalence relations. In Proceedings of the ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis, pages 318–328, 2017. doi: 10.1145/3092703.3092719.

Frederick M. Haney. Module connection analysis: A tool for scheduling software debugging

activities. In Proceedings of the Fall Joint Computer Conference, Part I, pages 173–179, 1972.

doi: 10.1145/1479992.1480016.

Friedrich Robert Helmert. Über die bestimmung des wahrscheinlichen fehlers aus einer endlichen

anzahl wahrer beobachtungsfehler. Zeitschrift für Angewandte Mathematik und Physik, 20:

300–303, 1875.

Andre Hora and Marco Tulio Valente. Apiwave: Keeping track of API popularity and migration.

In Proceedings of the IEEE International Conference on Software Maintenance and Evolution,

pages 321–323, 2015. doi: 10.1109/ICSM.2015.7332478.

119

https://blog.sonatype.com/2010/12/now-available-central-download-statistics-for-oss-projects/
https://blog.sonatype.com/2010/12/now-available-central-download-statistics-for-oss-projects/

André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien, and Stéphane

Ducasse. How do developers react to API evolution? a large-scale empirical study. Software

Quality Journal, 26(1):161–191, March 2018. doi: 10.1007/s11219-016-9344-4.

SusanHorwitz, ThomasReps, andDavidBinkley. Interprocedural slicing using dependence graphs.

ACM Transactions on Programming Languages and Systems, 12(1):26–60, January 1990. doi:

10.1145/77606.77608.

James W. Hunt and M. Douglas McIlroy. An algorithm for differential file comparison. Computer

Science Technical Report 41, Bell Laboratories, June 1976. URL http://www.cs.dartmouth.edu/

~doug/diff.pdf.

Judit Jász, Árpád Beszédes, Tibor Gyimóthy, and Václav Rajlich. Static execute after/before as

a replacement of traditional software dependencies. In Proceedings of the IEEE International

Conference on SoftwareMaintenance, pages 137–146, 2008. doi: 10.1109/ICSM.2008.4658062.

Kamil Jezek, Jens Dietrich, and Premek Brada. How Java APIs break: An empirical study.

Information and Software Technology, 65(C):129–146, September 2015. doi: 10.1016/j.infsof.

2015.02.014.

Puneet Kapur, Brad Cossette, and Robert J. Walker. Refactoring references for library migration.

In Proceedings of the ACM International Conference on Object Oriented Programming Systems

Languages and Applications, volume 45, pages 726–738, 2010. doi: 10.1145/1932682.1869518.

Marvin Karson. Handbook of Methods of Applied Statistics, volume 1: Techniques of Computation

Descriptive Methods, and Statistical Inference. JohnWiley, 1967. doi: 10.1080/01621459.1968.

11009335.

Raula Gaikovina Kula, Coen De Roover, Daniel M. German, Takashi Ishio, and Katsuro Inoue.

Visualizing the evolution of systems and their library dependencies. In Proceedings of the IEEE

Working Conference on Software Visualization, pages 127–136, 2014. doi: 10.1109/VISSOFT.

2014.29.

120

http://www.cs.dartmouth.edu/~doug/diff.pdf
http://www.cs.dartmouth.edu/~doug/diff.pdf

Raula Gaikovina Kula, Daniel M. German, Takashi Ishio, and Katsuro Inoue. Trusting a library: A

study of the latency to adopt the latest Maven release. In Proceedings of the IEEE International

Conference on Software Analysis, Evolution, and Reengineering, pages 520–524, 2015. doi:

10.1109/SANER.2015.7081869.

Raula Gaikovina Kula, Coen De Roover, Daniel M. German, Takashi Ishio, and Katsuro Inoue. A

generalized model for visualizing library popularity, adoption, and diffusion within a software

ecosystem. InProceedings of the IEEE InternationalConference on SoftwareAnalysis, Evolution,

and Reengineering, pages 288–299, 2018a. doi: 10.1109/SANER.2018.8330217.

Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro Inoue. Do

developers update their library dependencies? Empirical Software Engineering, 23(1):384–417,

February 2018b. doi: 10.1007/s10664-017-9521-5.

William Landi. Undecidability of static analysis. ACM Letters on Programming Languages and

Systems, 1(4):323–337, December 1992. doi: 10.1145/161494.161501.

Michelle Lee, A. Jefferson Offutt, and Roger T. Alexander. Algorithmic analysis of the impacts

of changes to object-oriented software. In Proceedings of the International Conference on

Technology of Object-Oriented Languages and Systems, pages 61–70, 2000. doi: 10.1109/

TOOLS.2000.868959.

M. M. Lehman. Laws of software evolution revisited. In Proceedings of the European Workshop

on Software Process Technology, pages 108–124, 1996. doi: 10.1007/BFb0017737.

Donglin Liang and M. J. Harrold. Slicing objects using system dependence graphs. In Proceedings

of the IEEE International Conference on Software Maintenance, pages 358–367, 1998. doi:

10.1109/ICSM.1998.738527.

Bennet P. Lientz. Issues in software maintenance. ACM Computing Surveys, 15(3):271–278,

September 1983. doi: 10.1145/356914.356919.

121

Wayne C. Lim. Effects of reuse on quality, productivity, and economics. IEEE Software, 11(5):

23–30, September 1994. doi: 10.1109/52.311048.

Fernando López de la Mora and Sarah Nadi. Which library should I use?: A metric-based

comparison of software libraries. In Proceedings of the International Conference on Software

Engineering: New Ideas andEmergingResults Track, pages 37–40, 2018. doi: 10.1145/3183399.

3183418.

Andrian Marcus, Vaclav Rajlich, Joseph Buchta, Maksym Petrenko, and Andrey Sergeyev. Static

techniques for concept location in object-oriented code. In Proceedings of the International

Workshop on Program Comprehension, pages 33–42, 2005. doi: 10.1109/WPC.2005.33.

Robert C. Martin. The dependency inversion principle. C++ Report, 8, May 1996.

Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of API stability and

adoption in the android ecosystem. In Proceedings of the IEEE International Conference on

Software Maintenance, pages 70–79, 2013. doi: 10.1109/ICSM.2013.18.

Hao Men. Fast and Scalable Change Propagation through Context-Insensitive Slicing. PhD thesis,

University of Calgary, Calgary, Canada, November 2018.

Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and economic benefits of software

reuse: A review of industrial studies. Empirical Software Engineering, 12(5):471–516, October

2007. doi: 10.1007/s10664-007-9040-x.

Maksym Petrenko and Václav Rajlich. Variable granularity for improving precision of impact

analysis. In Proceedings of the IEEE International Conference on Program Comprehension,

pages 10–19, 2009. doi: 10.1109/ICPC.2009.5090023.

Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. Using information

retrieval based coupling measures for impact analysis. Empirical Software Engineering, 14(1):

5–32, February 2009. doi: 10.1007/s10664-008-9088-2.

122

Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic versioning versus breaking

changes: A study of the Maven repository. In Proceedings of the IEEE International Working

Conference on Source Code Analysis and Manipulation, pages 215–224, 2014. doi: 10.1109/

SCAM.2014.30.

Václav Rajlich. Modeling software evolution by evolving interoperation graphs. Annals of Software

Engineering, 9(1–4):235–248, January 2000. doi: 10.1023/A:1018933026438.

Václav Rajlich and Prashant Gosavi. Incremental change in object-oriented programming. IEEE

Software, 21(4):62–69, 2004. doi: 10.1109/MS.2004.17.

Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up slicing. SIGSOFT

Software Engineering Notes, 19(5):11–20, December 1994. doi: 10.1145/195274.195287.

Romain Robbes, Michele Lanza, and Mircea Lungu. An approach to software evolution based on

semantic change. In Proceedings of the International Conference on Fundamental Approaches

to Software Engineering, pages 27–41, 2007.

Yutaka Sasaki. The truth of the F-measure. Technical report, School of Computer Science,

University ofManchester, 01 2007. URL https://www.researchgate.net/publication/268185911_

The_truth_of_the_F-measure/download.

Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slicing. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation, pages 112–122,

2007. doi: 10.1145/1273442.1250748.

Xiaobing Sun, Bixin Li, Chuanqi Tao, Wanzhi Wen, and Sai Zhang. Change impact analysis based

on a taxonomy of change types. In Proceedings of the IEEE Computer Software and Applications

Conference, pages 373–382, 2010. doi: 10.1109/COMPSAC.2010.45.

David ten Hove, Arda Goknil, Ivan Ivanov, Klaas van den Berg, and Koos de Goede.

Change impact analysis for SysML requirements models based on semantics of trace

123

https://www.researchgate.net/publication/268185911_The_truth_of_the_F-measure/download
https://www.researchgate.net/publication/268185911_The_truth_of_the_F-measure/download

relations. In Proceedings of the ECMDA Traceability Workshop, pages 17–28, 6

2009. URL https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&

cad=rja&uact=8&ved=2ahUKEwjMrISkvYvhAhUktHEKHasWAKgQFjABegQIARAC&url=

https%3A%2F%2Fresearch.utwente.nl%2Ffiles%2F5290256%2FGoknil_paper.pdf&usg=

AOvVaw2jeyoK3NXjBDRbL_1UuC8w.

Boris Todorov, Raula Gaikovina Kula, Takashi Ishio, and Katsuro Inoue. SoL Mantra: Visual-

izing update opportunities based on library coexistence. In Proceedings of the IEEE Working

Conference on Software Visualization, pages 129–133, 2017. doi: 10.1109/VISSOFT.2017.23.

Paolo Tonella. Using a concept lattice of decomposition slices for program understanding and

impact analysis. IEEE Transactions on Software Engineering, 29(6):495–509, 2003. doi:

10.1109/TSE.2003.1205178.

Joost Visser, Arie van Deursen, and Steven Raemaekers. Measuring software library stability

through historical version analysis. In Proceedings of the IEEE International Conference on

Software Maintenance, pages 378–387, 2012. doi: 10.1109/ICSM.2012.6405296.

Robert J. Walker and Gail C. Murphy. Implicit context: Easing software evolution and reuse. In

Proceedings of the ACM SIGSOFT International Symposium on the Foundations of Software

Engineering, pages 69–78, 2000. doi: 10.1145/355045.355054.

Richard Wettel, Michele Lanza, and Romain Robbes. Software systems as cities: A controlled

experiment. In Proceedings of the International Conference on Software Engineering, pages

551–560, 2011. doi: 10.1145/1985793.1985868.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83,

1945. URL http://www.jstor.org/stable/3001968.

Laerte Xavier, Aline Brito, Andre Hora, andMarco Tulio Valente. Historical and impact analysis of

API breaking changes: A large-scale study. In Proceedings of the IEEE International Conference

124

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwjMrISkvYvhAhUktHEKHasWAKgQFjABegQIARAC&url=https%3A%2F%2Fresearch.utwente.nl%2Ffiles%2F5290256%2FGoknil_paper.pdf&usg=AOvVaw2jeyoK3NXjBDRbL_1UuC8w
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwjMrISkvYvhAhUktHEKHasWAKgQFjABegQIARAC&url=https%3A%2F%2Fresearch.utwente.nl%2Ffiles%2F5290256%2FGoknil_paper.pdf&usg=AOvVaw2jeyoK3NXjBDRbL_1UuC8w
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwjMrISkvYvhAhUktHEKHasWAKgQFjABegQIARAC&url=https%3A%2F%2Fresearch.utwente.nl%2Ffiles%2F5290256%2FGoknil_paper.pdf&usg=AOvVaw2jeyoK3NXjBDRbL_1UuC8w
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwjMrISkvYvhAhUktHEKHasWAKgQFjABegQIARAC&url=https%3A%2F%2Fresearch.utwente.nl%2Ffiles%2F5290256%2FGoknil_paper.pdf&usg=AOvVaw2jeyoK3NXjBDRbL_1UuC8w
http://www.jstor.org/stable/3001968

on Software Analysis, Evolution, and Reengineering, pages 138–147, 2017. doi: 10.1109/

SANER.2017.7884616.

125

Appendix A

Studied Systems

Tables A.1 and A.2 respectively list the Maven and Android projects studied in our research. The

tables contain general information such as stars, commits, releases, etc. for each project. The URL

column for each project lists the group and project name of the system; prepending each with

“https://github.com/” would create the URL that can be used to directly access the project repository.

We retrieved this corpus before August 2017.

Table A.1: Maven projects.

Project Stars Commits Issues Releases URL

admiral 100 2383 20 6 vmware/admiral
allure1 696 1379 5 60 allure-framework/allure1
apollo 1670 1457 11 77 ctripcorp/apollo
auto 5414 826 88 32 google/auto
bitsquare 1401 3359 132 42 bitsquare/bitsquare
brave 666 906 24 60 openzipkin/brave
cassandra-lucene-index 399 1112 25 18 Stratio/cassandra-lucene-

index
checkstyle 2174 7060 384 79 checkstyle/checkstyle
commafeed 1457 2497 90 13 Athou/commafeed
crawler4j 2152 299 77 3 yasserg/crawler4j
crawljax 354 1468 68 18 crawljax/crawljax
cron-utils 195 665 15 28 jmrozanec/cron-utils
DCMonitor 189 95 1 4 shunfei/DCMonitor
density-converter 167 123 1 16 patrickfav/density-

converter

Continued on next page

126

Table A.1 (continued from previous page)

Project Stars Commits Issues Releases URL

disconf 2732 1156 115 24 knightliao/disconf
Discord4J 237 1235 10 41 austinv11/Discord4J
druid 5185 8009 657 396 druid-io/druid
EasyReport 263 339 11 6 xianrendzw/EasyReport
erlyberly 404 356 19 30 andytill/erlyberly
fb-android-dagger 296 121 6 7 adennie/fb-android-

dagger
ff4j 266 698 10 18 clun/ff4j
freedomotic 209 1340 45 8 freedomotic/freedomotic
FXGL 263 1690 56 22 AlmasB/FXGL
galen 1037 1421 107 82 galenframework/galen
geo 183 358 4 12 davidmoten/geo
GeoIP2-java 251 459 4 29 maxmind/GeoIP2-java
GoogleAuth 330 186 5 13 wstrange/GoogleAuth
google-java-format 1002 349 35 5 google/google-java-

format
grakn 270 1916 6 18 graknlabs/grakn
greenmail 180 653 25 8 greenmail-mail-

test/greenmail
ha-bridge 664 454 45 69 bwssytems/ha-bridge
hangout 198 595 5 17 childe/hangout
hawkular-apm 109 1658 2 27 hawkular/hawkular-apm
Hive2Hive 317 1967 32 6 Hive2Hive/Hive2Hive
HotSUploader 168 837 18 23 eivindveg/HotSUploader
hprose-java 297 436 0 44 hprose/hprose-java
htmlelements 182 464 17 10 yandex-

qatools/htmlelements
jacoco 748 1404 56 35 jacoco/jacoco
JCloisterZone 152 896 55 9 farin/JCloisterZone
jmx_exporter 172 169 3 8 prometheus/jmx_exporter
jparsec 174 331 7 11 jparsec/jparsec
jstorm 3055 330 140 23 alibaba/jstorm
kumuluzee 147 387 9 14 kumuluz/kumuluzee
lambadaframework 191 91 15 5 lambadaframework/

lambadaframework
leshan 140 643 21 18 eclipse/leshan
lolibox 131 170 2 8 chocotan/lolibox
light-task-scheduler 1139 1032 50 31 ltsopensource/light-task-

scheduler
maven-jaxb2-plugin 158 459 45 24 highsource/maven-jaxb2-

plugin
metrics 5039 2218 114 62 dropwizard/metrics
MongoDB-Plugin 154 108 15 19 T-baby/MongoDB-Plugin

Continued on next page

127

Table A.1 (continued from previous page)

Project Stars Commits Issues Releases URL

mpush 948 1518 6 8 mpusher/mpush
mvvmFX 179 982 17 19 sialcasa/mvvmFX
netty-zmtp 197 272 0 8 spotify/netty-zmtp
newts 146 552 0 14 OpenNMS/newts
objenesis 199 571 0 14 easymock/objenesis
PixelController 184 2521 16 32 neophob/PixelController
RankSys 146 446 8 7 RankSys/RankSys
requests 159 182 4 15 clearthesky/requests
retrofit 22788 1494 58 40 square/retrofit
rtree 500 1019 11 43 davidmoten/rtree
seyren 861 640 40 8 scobal/seyren
simple-java-mail 188 474 3 14 bbottema/simple-java-

mail
SlimFast 170 112 2 12 HubSpot/SlimFast
solo 2954 1829 6 10 b3log/solo
speedment 945 2852 82 33 speedment/speedment
symphony 1694 5083 43 11 b3log/symphony
tablesaw 567 666 40 23 lwhite1/tablesaw
underscore-java 132 535 0 28 javadev/underscore-java
webmagic 4960 1005 97 23 code4craft/webmagic
weixin-java-tools 1794 380 9 21 chanjarster/weixin-java-

tools
weixin-popular 714 203 8 33 liyiorg/weixin-popular
xembly 146 319 6 45 yegor256/xembly
YCSB 1684 1110 117 45 brianfrankcooper/YCSB
zipkin 6242 1209 152 69 openzipkin/zipkin

128

Table A.2: Android projects.

Project Stars Commits Issues Releases URL

AboutLibraries 1823 964 0 97 mikepenz/AboutLibraries
android 1303 1380 211 38 cSploit/android
Android-
ActionItemBadge

1087 191 0 29 mikepenz/Android-
ActionItemBadge

AndroidScreencast 175 107 12 12 xSAVIKx/
AndroidScreencast

AndroidPicker 2406 296 37 29 gzu-
liyujiang/AndroidPicker

Android-Remote 128 738 41 11 clementine-
player/Android-Remote

android-sdk 369 705 4 42 qiniu/android-sdk
AndroidViewAnimations 7915 140 29 14 daimajia/

AndroidViewAnimations
andstatus 120 1636 104 113 andstatus/andstatus
AntennaPod 1608 3939 268 77 AntennaPod/

AntennaPod
Applozic-Android-SDK 375 1224 55 17 AppLozic/Applozic-

Android-SDK
AppUpdate 100 31 0 15 fccaikai/AppUpdate
CircularReveal 2082 88 8 19 ozodrukh/

CircularReveal
cwac-pager 101 47 0 9 commonsguy/

cwac-pager
Dragger 1102 191 0 12 ppamorim/Dragger
FileDownloader 4585 626 44 53 lingochamp/

FileDownloader
glide 16810 1684 412 23 bumptech/glide
Iron 101 216 1 16 FabianTerhorst/Iron
java-telegram-bot-api 202 287 2 24 pengrad/java-telegram-

bot-api
LicensesDialog 541 220 1 13 PSDev/LicensesDialog
LollipopShowcase 1776 83 0 6 mikepenz/

LollipopShowcase
material-menu 2328 118 3 20 balysv/material-menu
MusicUU 308 59 22 15 Qrilee/MusicUU
Ok2Curl 131 99 2 15 mrmike/Ok2Curl
openxc-android 199 571 0 14 openxc/openxc-android
OkHttpFinal 608 101 13 2 pengjianbo/

OkHttpFinal
PanicButton 1107 1046 4 18 PanicInitiative/

PanicButton
PictureSelector 1853 995 14 54 LuckSiege/

PictureSelector

Continued on next page

129

Table A.2 (continued from previous page)

Project Stars Commits Issues Releases URL

pulsar 184 2521 16 32 apache/incubator-pulsar
rpicheck 100 443 18 15 eidottermihi/rpicheck
RxFlux 324 62 1 2 skimarxall/RxFlux
RxJavaSamples 2672 12 18 2 rengwuxian/

RxJavaSamples
ShowcaseView 4866 496 65 14 amlcurran/

ShowcaseView
signal-cli 365 242 17 18 AsamK/signal-cli
SkyTube 142 378 143 9 ram-on/SkyTube
slidr 1505 71 8 4 r0adkll/Slidr
SlyceMessaging 876 121 20 10 Slyce-Inc/

SlyceMessaging
SMSSync 551 1816 79 44 ushahidi/SMSSync
sugar 2353 483 225 6 chennaione/sugar
ViewAnimator 1625 59 9 3 florent37/ViewAnimator

130

Appendix B

Studied Library Migrations

Tables B.1 and B.2 list the studied successive versions of the projects along with the two libraries

involved in migrations. The tables also show whether the developer removed the dependency after

migration or not.

Table B.1: Maven projects.

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

admiral 0.9.2 1.1.0 Jackson-
Dataformat-YAML

SnakeYAML N

allure1 1.4.10 1.4.11 Old-JAXB-
Runtime

standard
Java (java.
nio. charset)

Y

apollo 0.6.3 0.7.0 Plexus-Archiver Google
Guice

N

apollo 0.6.3 0.7.0 UnidalFrameWork internal
implementa-
tion

Y

auto 1.4 1.4.1 org. ow2. asm module
removed

Y

bitsquare 0.3.4 0.3.5 Enzo standard
Java (javafx)

Y

brave 2.4.2 3.0.0-alpha-1 Apache-
Commons-Lang

AutoValue N

brave 2.4.2 3.0.0-alpha-1 Guava standard
Java (javafx)

Y

Continued on next page

131

Table B.1 (continued from previous page)

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

cassandra-lucene-
index

2.2.9.0 3.0.5.4 Data-Mapper-For-
Jackson

Jackson-
Core

N

checkstyle 6.16.1 6.17 Apache-
Commons-Lang

extracted
files

Y

checkstyle 7.1.1 7.1.2 Guava standard
Java

Y

commafeed 2.2.0 2.3.0 Swagger-Jaxrs Swagger-
Annotations

N

commafeed 2.2.0 2.3.0 Querydsl-JPA-
Support

Querydsl-
Core-
Module

N

crawler4j 4.1 4.3 Lidalia-SLF4J-
Extensions

(SLF4J) N

crawljax 2.2 3.0.0 Apache-
Commons-
Configuration

internal con-
figuration

Y

crawljax 2.2 3.0.0 Apache-
Commons-IO

standard
Java (java.
io)

Y

cron-utils 5.0.0 5.0.1 Apache-
Commons-Lang

extracted
files

Y

cron-utils 4.1.3 5.0.0 Guava standard
Java

Y

cron-utils 4.1.3 5.0.0 Joda-Time standard
Java

Y

DCMonitor 0.1.2-rc 0.1.3 Influxdb Prometheus N
density-converter 0.9.1 0.9.2 Imgscalr Thumbnailator N
disconf 2.6.2 2.6.25 Jackson knightliao.

apollo.
JsonUtils

N

disconf 2.6.30 2.6.31 Jersey-Core-Client Apache-
HttpClient

N

disconf 2.6.2 2.6.25 Spring-Framework Spring-core N
Discord4J 2.7.0 2.8.0 Gson Jackson-

Core
N

Discord4J 2.4.1 2.4.2 Java-WebSocket Jetty-Core N
druid 0.9.2 0.10.0 metamx:java-Util extracted

files
Y

EasyReport 1.0.15 2.0.16 Apache-Log4j- projectlombok N
erlyberly 0.2.3 0.3.0 ShichimiFX javafx N
fb-android-dagger 1.0.3 1.0.5 Guava extracted

files
Y

Continued on next page

132

Table B.1 (continued from previous page)

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

ff4j 1.4 1.5 Jackson Jackson-
Core
(fasterxml)

N

freedomotic 5.5.1 5.6.0-rc3 standard Java (log-
ging)

SLF4J N

FXGL 0.1.9 0.2.0 Ehcache Internal-
Cache

Y

galen 1.6.4 2.0.0 Rainbow4J extracted
files

Y

geo 0.7.4 0.7.5 Guava module
segregation

N

GeoIP2-java 2.7.0 2.8.0-rc1 Google-HTTP-
Client

Apache-
HttpClient

N

GoogleAuth 0.4.2 0.4.3 Javax. ws Apache-
HttpClient

N

GoogleAuth 0.4.1 0.4.2 Guava standard
Java

Y

google-java-format 1.1 1.2 AutoValue internal
implementa-
tion

Y

google-java-format 1 1.1 Jcommander internal
implementation-

Y

grakn 0.11.0 0.12.0 Logback-Core module
removed

N

greenmail 1.4.1 1.5.0 Apache-
Commons-Lang

extracted
files

Y

ha-bridge 2.0.7 3.0.0 Jackson-Core
(fasterxml)

Gson N

hangout 0.1.2 0.1.3 Jinjava module
removed

Y

hawkular-apm 0.1.0. 0.2.0. Swagger-
Annotations

Swagger-
Annotations

N

Hive2Hive 1.1.0 1.1.1-alpha1 Jansi internal
implementa-
tion

Y

HotSUploader 1.0-rc.1 1.0-rc.2 Google-HTTP-
Client

standard
Java (java.
net)

Y

HotSUploader 2.0.5 2.1.0 Gluon-Ignite-
Common

Spring-
Framework

N

Continued on next page

133

Table B.1 (continued from previous page)

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

hprose-java 2.0.30 2.0.31 JavaServlet-
Specification

Java-
Servlet-API

N

htmlelements 1.16 1.17 Commons-Lang Apache-
Commons-
Lang

N

htmlelements 1.14 1.15 Lambdaj standard
Java (java.
util)

Y

jacoco 0.6.5 0.7.0 ASM-All ASM-
Debug-All

N

JCloisterZone 2.7 3.0.2 Apache-MINA-
Core

standard
Java (java.
nio.
channels)

Y

jmx_exporter 0.4 0.5 JSON. simple SnakeYAML N
jparsec 2.3 3.0-rc1 Cglib-Nodep standard

Java
(Lambda)

Y

jstorm 0.9.6.1 0.9.6.2 Curator Apache-
Curator

N

jstorm 0.9.6.1 0.9.6.2 Fastjson JSON. sim-
ple

N

jstorm 0.9.6 0.9.6.1 JSON. simple Fastjson N
kumuluzee 2.1.0 2.1.0 YamlBeans SnakeYAML N
lambada
framework

0.0.3 0.0.4 Ini4j module
removed

Y

leshan 0.1.11-M5 0.1.11-M7 Apache-
Commons-Codec

extracted
files

Y

light-task-
scheduler

1.6.6 1.6.7.1 ReflectASM module
removed

Y

light-task-
scheduler

1.6.4 1.6.5 Curator Apache-
Curator

N

light-task-
scheduler

1.6.4 1.6.5 Apache-
Commons-DbUtils

extracted
files

Y

lolibox 0.0.3- 0.0.4- JavaServlet-
Specification

module
removed

N

lolibox 0.1.0 0.2.0 Argparse4j module
removed the
library

Y

lolibox 0.1.0 0.2.0 Javax. ws. rs-Api Spring-Web Y
maven-jaxb2-
plugin

0.12.2 0.12.3 Maven-Plugin-API SLF4J N

Continued on next page

134

Table B.1 (continued from previous page)

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

metrics 3.0.2 3.1.0 Caliper Oracle-JMH N
MongoDB-Plugin 1.0.6.3 1.0.7 SLF4J Logback-

Classic
N

mpush 0.6.1 0.7.0 Gson Fastjson N
mvvmFX p-0.1.3 0.1.4 Javax. inject Google-

Guice-Core-
Library

N

mvvmFX p-0.1.3 m-0.1.4 standard Java
(reflect)

TypeTools N

netty-zmtp 0.2.0 0.2.1 JeroMQ JeroMQ N
newts 1.0.0 1.1.0 Dropwizard Dropwizard N
objenesis 2.4 2.5 Spring-OSGi-Core OPS4J-

PaxExam
N

PixelController 1.5.1 2.0.0. RC1 Processing-Core standard
Java

Y

RankSys 0.1 0.3 Apache-
Commons-Lang

standard
Java (java.
util)

Y

requests 4.7.0 4.7.2 Apache-Log4j-API module
removed

Y

retrofit 0.6.0-rc3 0.6.0-rc4 Google-Guice-
Core

Javax. inject N

retrofit 1.6.0 2.0.0 RxJava RxJava N
retrofit 1.6.0 2.0.0 AppEngine-API module

removed
Y

retrofit 0.6.0-rc6 0.1.0 EasyMock Mockito N
retrofit 0.6.0-rc6 0.1.0 Javax. inject module

removed
Y

retrofit 0.6.0-rc6 0.1.0 Apache-HttpClient module
removed

Y

rtree 0.7.4 0.7.5 Guava Guava-Mini N
seyren 1.2.1 1.3.0 PagerDuty-API PagerDuty-

Incidents
N

simple-java-mail 3.1.0 4.0.0 Hamcrest-Core AssertJ-
Assertions

N

SlimFast 0.13 0.14 JetS3t AWS-SDK N
solo 1.3.0 1.4.0 Appengine-

ApiStubs
module
removed

Y

solo 2.1.0 2.2.0 Pegdown Flexmark-
Core

N

solo 1.3.0 1.4.0 MarkdownPapers-
Core

Pegdown N

Continued on next page

135

Table B.1 (continued from previous page)

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

speedment 2.0.0-EA 2.0.0EA2 Apache-Log4j internal
implementa-
tion

Y

speedment 2.3.7 3.0.0-EA Gson internal
implementa-
tion

Y

speedment 2.2.3 2.3.0 Apache-Groovy Internal-
Json

Y

speedment 2.3.7 3.0.0-EA ControlsFX JavaFX-
Maven-
Plugin

Y

symphony 2.1.0 2.2.0 Pegdown Flexmark-
Core

N

symphony 1.3.0 1.4.0 MarkdownPapers-
Core

Pegdown N

symphony 1.3.0 1.4.0 Jetty-Websocket WebSocket-
Server-API

N

tablesaw v0.7.1 v0.7.1.1 Opencsv Opencsv N
underscore-java v1.17 v1.18 Guava standard

Java
Y

webmagic 0.4.2 0.4.3 Apache-Log4j-API SLF4J N
webmagic 0.5.3 0.6.0 Guava standard

Java
Y

weixin-popular 2.0.1-R 2.2.0-R Jackson-Databind Fastjson N
xembly 0.16.2 0.16.3 Rexsl-Test Jcabi-

Matchers
N

YCSB 0.6.0 0.7.0RC1 yahoo-gemfire-
binding

com. gem-
stone

N

zipkin 1.6.0 1.7.0 Okio extracted
files

Y

zipkin 1.6.0 1.7.0 Moshi Gson N
zipkin 1.20.0 1.22.0 elasticsearch module

removed
Y

136

Table B.2: Android projects.

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

AboutLibraries 5.5.9 5.6.0 cardsui-for-android removed Y
android 1.5.3 1.5.4 ActionBarSherlock Android-

support
Y

Android-
ActionItemBadge

1.2.0 2.5.5 Android-Iconify Android-
Iconics-
Library

N

AndroidPicker 1.4.5 1.4.6 MaterialViewPager Android-
support

Y

Android-Remote 10.1 11 ShowcaseView-
Library

Android-
support

Y

AndroidScreencast 0.0.9 0.0.10 Spring-Framework Dagger N
AndroidScreencast 0.0.9 0.0.10 Apache-Log4j SLF4J N
android-sdk 7.1.3 7.2.0 OkHttp OkHttp N
Android ViewAni-
mations

1.1.3 2 Nine-Old-
Androids

Android-
support

Y

andstatus 24.03-r 25.04-r HttpComponents-
Client-For-Android

HttpClient-
Android-
Library

N

AntennaPod 1.4.0.12 1.4.1.4 Apache-
Commons-Lang

Android-
support

Y

Applozic-Android-
SDK

1.61 4.82 Apache-HttpCore standard
Java (java.
net)

Y

AppUpdate 2.0.6 2.0.7 OkHttp standard
Java (java.
net)

Y

CircularReveal 1.3.0 1.3.1 Nine-Old-
Androids

Android-
support
(animation)

Y

cwac-pager 0.2.5 0.2.6 ActionBarSherlock Android-
support

Y

Dragger 1.0.5.1 1.0.5.2 Nine-Old-
Androids

Android-
support

Y

FileDownloader 1.3.0 1.3.9 OkHttp standard
Java (java.
net)

Y

glide 3.3.1 3.4.0 Hamcrest-Library Truth-Core N
Iron 0.6.5 0.7.2 Kryo-Serializers Kryo N
java-telegram-bot-
api

1.3.3 2.0.0 Retrofit OkHttp N

LicensesDialog 1.2.0 1.3.0 Android-Native
(Log)

SLF4J N

Continued on next page

137

Table B.2 (continued from previous page)

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

LicensesDialog 1.2.0 1.3.0 Simple-XML XML-Pull-
Parsing-API

N

LicensesDialog 1.4.0 1.5.0 SLF4J Removed Y
LicensesDialog 1.2.0 1.3.0 Apache-

Commons-IO
standard
Java (java.
io)

Y

LollipopShowcase 2.0.2 2.2.0 Android-Iconify Android-
Iconics-
Library

N

LollipopShowcase 2.0.2 2.2.0 AboutLibraries AboutLibraries-
Library

N

LollipopShowcase 2.0.2 2.2.0 Crouton Snackbar N
LollipopShowcase 2.2.0 2.3.0 Snackbar Android-

support
Y

material-menu 1.5.5 2.0.0 ActionBarSherlock Android-
support

Y

material-menu 1.5.5 2.0.0 Nine-Old-
Androids

Android-
support

Y

material-menu 1.5.5 2.0.0 AppCompatActivity removed Y
MusicUU 1.1.8 1.2.1 OkHttp NoHttp N
MusicUU 1.1.8 1.2.1 Retrofit NoHttp N
MusicUU 1.1.8 1.2.1 Zhy. OkHttpUtils OkHttpUtils N
Ok2Curl 0.0.4 0.1.0 OkHttp OkHttp N
OkHttpFinal 1.2.2 2.0.6 OkHttp OkHttp N
openxc-android 5.3.2 6.0.0-a1 Jackson Gson N
PanicButton 1.2.0 1.2.1 RoboGuice Android-

support
N

PictureSelector 1.4.5 1.4.6 OkHttp removed Y
PictureSelector 1.5.0 1.5.2 EventBus self-written Y
pulsar 1.15.7 1.16 AsynchronousHttp-

Clientning
Asynchronous-
Http-Client

N

pulsar 1.15.7 1.16 JSON-In-Java Gson N
rpicheck 1.6.5a 1.7.1 Android-

PullToRefresh
Android-
Support

Y

rpicheck 1.6.5a 1.7.1 ActionBarSherlock Android-
Support

Y

RxFlux 0.2.1 0.4.1 OkHttp OkHttp N
RxFlux 0.2.1 0.4.1 Retrofit Retrofit N
RxJavaSamples 1.0 1.01 OkHttp OkHttp N
RxJavaSamples 1.0 1.01 Retrofit Retrofit N
ShowcaseView 4.0 5.0.0 Nine-Old-

Androids
Android-
support

Y

Continued on next page

138

Table B.2 (continued from previous page)

Version Version Library RemovedSystem Migrating Next Migrated Alternative Library

signal-cli 0.0.4 0.0.5 JSON-In-Java Jackson-
Core

N

SkyTube 2.3 2.4 Picasso Glide N
Slidr 2.0.3 2.0.4 Picasso Glide N
SlyceMessaging 1.0.1 1.0.2 Picasso Glide N
SMSSync 2.5.1 2.6 ActionBarSherlock Android-

Support
Y

sugar 1.4 1.5 Guava:-Google-
Core-Libraries-
For-Java

Java.
net(Map)

Y

ViewAnimator 1.0.3 1.0.4 Nine-Old-
Androids

Android-
support

Y

139

Appendix C

Systems that Broke Transitively Dependent

Clients

Table C.1 lists the projects that probably broke client code after library migration. The table shows

the severity of data type problems (DT) and method problems (M) as found by JAPICC for each

project. Details regarding the severity metric used by JAPICC can be found online.85 The table also

shows whether migration caused issues with parameters (P), return type (RT), and superinterfaces

(SI), as well as the compatibility score (C) between versions.

Table C.1: Breaking APIs.

DT M
System

High Med Low High Med Low
P RT SI C

admiral Y N N N N N Y N N 0.201
allure1 Y N N N N N N N N 0.863
Android Screencast Y N N N N N Y N N 0.343
apollo Y N N N N N N N Y 0.976
apollo N Y N N N N N N Y 0.976
brave Y N N Y N N Y Y Y 0.875
brave Y N N N N N N N N 0.875
cassandra-lucene-index N N Y Y N N Y N N 0.695
checkstyle N N N Y N N N Y N 1

Continued on next page

85https://lvc.github.io/japi-compliance-checker/#Maintainers

140

https://lvc.github.io/japi-compliance-checker/#Maintainers

Table C.1 (continued from previous page)

System DT M P RT SI C
High Med Low High Med Low

crawljax Y N N N N N Y N N 0.017
disconf Y N N N N N Y N N 0.962
geo N N N N N N N N N 1
ha-bridge N N Y Y Y Y Y N N 0.806
hangout Y N N N N N N N N 0.833
Hive2Hive Y N N N N N N N N 0.74
HotS Uploader Y N N N N N N N N 0.737
JCloister Zone Y N N N N N Y N N 0
jmx exporter Y N N N N Y N N N 0.985
jparsec Y N N N N N Y N N 0
jstorm Y N N Y N N Y Y N 0.97
jstorm Y N N Y N N Y Y N 0.978
jstorm N N Y Y N N N Y N 0.978
Licenses Dialog Y N N N N N N N Y 0.922
light-task-scheduler N N Y Y N N Y Y N 0.911
lolibox Y N N N N N N N N 0.279
metrics N Y N N N Y N Y Y 0.882
mpush Y N N N N N Y N N 0.745
newts N N Y N N N N N Y 0.985
openxc-android Y N N N N N N N N 0.904
pulsar Y N N Y Y N Y Y N 0.987
retrofit Y N N N N N N N N 0.009
speedment Y N N N N N N N N 0.001
symphony Y N N N N N Y Y N 0.849
webmagic Y N N N N N N N N 0.955
weixin-popular Y N N N N N Y Y N 0.927
YCSB Y N N N N N N N N 0
zipkin Y N N N N N N N N 0.998

141

Appendix D

Systems Used for Evaluation

Table D.1 lists the projects that were used for evaluation of EDW, along with their successive

versions and involved libraries. The table also shows the total classes (C), methods (M), fields (F),

and lines of code (LOC) for each evaluated project.

Table D.1: Systems for evaluation.

System
First

version
New

version
Migrated
library

Alternative
library C M F LOC

Graylog2-
server

0.13.0-rc.1 0.20.0 JSON.
simple

FasterXML 226 1089 651 18389

Esper 5.4.0 6.0.0 Apache
Commons
Logging

SLF4J 5086 39652 13726 539559

Choco-
solver

3.3.1 3.3.2 SLF4J Removed 797 6673 2478 121959

Webprotege 2.6.0 3.0.0 Google
Guice
Core
Library

Dagger 1987 11216 4016 110105

Geowave 0.9.3 0.9.4 Apache
Log4j

SLF4J 1422 11533 4843 192608

Hapi-fhir 1.6 2 JSR 374
(JSON
Process-
ing)

Gson 5428 4079 1332 59193

Commands commit 0.1 (master) Guava Java
native

144 950 317 12396

Continued on next page

142

Table D.1 (continued from previous page)

System
First

version
New

version
Migrated
library

Alternative
library C M F LOC

Azure-
cosmosdb-
java

1.0.2 2.0.0 JSON in
Java

Jackson
Core

274 2277 1274 35973

Incubator-
dubbo

2.61 2.6.2 EasyMock Mockito 546 4462 1371 54919

Ta4j-
origins

0.8 1 Joda Time Java
native

298 989 489 20590

143

Appendix E

Individual Project Results for Evaluation

Tables E.4, E.1, E.2, and E.3 list the TP, FP, FN, precision, recall, F-score, and MSI (manual search

interpretation) at class-granularity for EDW and JRipples search strategies, respectively. Tables

E.6, E.5, E.8, and E.8 list the TP, FP, FN, precision, recall, F-score, and PTR (points to remember)

at method- and field-granularity, for EDW & JRipples search strategy 1, respectively.

144

Table E.1: Individual project results for class-granularity, JRipples search strategy 1.

Project TP FP FN P R F1 MSI

1 10 2 0 0.83 1 0.91 24
2 636 0 4 1 0.99 0.99 1405
3 31 0 0 1 1 1 78
4 54 18 0 0.75 1 0.86 70
5 186 0 0 1 1 1 592
6 2 2 0 0.5 1 0.67 15
7 23 0 0 1 1 1 38
8 43 0 0 1 1 1 48
9 23 4 0 0.85 1 0.92 31
10 14 0 0 1 1 1 25

sum 1022 26 4 — — — 2326
mean 102.2 2.6 0.4 0.89 0.99 0.93 232.6

Table E.2: Individual project results for class-granularity, JRipples search strategy 2.

Project TP FP FN P R F1 MSI

1 10 2 0 0.83 1 0.91 24
2 640 0 0 1 1 1 2949
3 31 0 0 1 1 1 47
4 54 18 0 0.75 1 0.85 88
5 186 45 0 0.81 1 0.89 651
6 2 2 0 0.5 1 0.67 8
7 23 0 0 1 1 1 42
8 43 6 0 0.87 1 0.93 48
9 23 4 0 0.85 1 0.92 31
10 14 0 0 1 1 1 25

sum 1026 77 0 — — — 3910
mean 102.6 7.7 0 0.86 1 0.91 391

145

Table E.3: Individual project results for class-granularity, JRipples search strategy 3.

Project TP FP FN P R F1 MSI

1 10 2 0 0.83 1 0.91 21
2 640 26 0 0.96 1 0.98 2976
3 31 0 0 1 1 1 47
4 54 18 0 0.75 1 0.85 88
5 186 337 0 0.36 1 0.52 1621
6 2 0 0 1 1 1 130
7 23 0 0 1 1 1 42
8 43 6 0 0.87 1 0.93 51
9 23 4 0 0.85 1 0.92 27
10 14 0 0 1 1 1 23

sum 1026 393 0 — — — 2026
mean 102.6 39.3 0 0.86 1 0.91 502.6

Table E.4: Individual project results for class-granularity, EDW.

Project TP FP FN P R F1 MSI

1 10 0 0 1 1 1 0
2 636 0 4 1 0.99 0.99 0
3 31 0 0 1 1 1 0
4 54 0 0 1 1 1 0
5 186 0 0 1 1 1 0
6 2 0 0 1 1 1 0
7 23 0 0 1 1 1 0
8 43 0 0 1 1 1 0
9 23 0 0 1 1 1 0
10 14 0 0 1 1 1 0

sum 1022 0 4 — — — 0
mean 102.2 0 0.4 1 0.99 0.99 0

146

Table E.5: Individual project results for method-granularity, JRipples search strategy 1.

Project TP FP FN P R F1 PTR

1 12 2 0 0.85 1 0.92 50
2 8 0 0 1 1 1 18
3 24 0 27 1 0.47 0.64 94
4 23 0 0 1 1 1 258
5 6 0 11 1 0.35 0.52 12
6 37 18 0 0.67 1 0.80 128
7 30 5 0 0.86 1 0.92 88
8 62 27 9 0.69 0.87 0.75 161
9 69 18 0 0.79 1 0.88 594
10 53 28 0 0.65 1 0.79 147

sum 324 98 47 — — — 1550
mean 32.4 9.8 4.7 0.85 0.86 0.82 155

Table E.6: Individual project results for method-granularity, EDW.

Project TP FP FN P R F1 PTR

1 12 0 0 1 1 1 0
2 8 0 0 1 1 1 0
3 51 0 31 1 0.43 0.60 0
4 23 0 0 1 1 1 0
5 17 0 11 1 0.35 0.52 0
6 37 0 0 1 1 1 0
7 30 0 0 1 1 1 0
8 71 0 9 1 0.87 0.93 0
9 69 0 0 1 1 1 0
10 53 0 0 1 1 1 0

sum 324 371 0 — — — 0
mean 32.4 37.1 0 1 0.99 0.86 0

147

Table E.7: Individual project results for field-granularity, JRipples search strategy 1.

Project TP FP FN P R F1 PTR

2 636 31 4 0.95 0.99 0.97 2813
3 16 0 1 1 0.94 0.97 17
5 202 0 0 1 1 1 202
7 15 7 0 0.68 1 0.81 15
9 18 1 0 0.94 0.97 1 18
10 7 0 0 1 1 1 7

sum 898 39 5 — — — 3072
mean 149.67 6.5 1.67 0.93 0.99 0.95 512

Table E.8: Individual project results for field-granularity, EDW.

Project TP FP FN P R F1 PTR

2 636 0 4 1 0.99 0.99 0
3 16 0 0 1 1 1 0
5 202 0 0 1 1 1 0
7 15 0 0 1 1 1 0
9 18 0 0 1 1 1 0
10 7 0 0 1 1 1 0

sum 897 0 4 — — — 0
mean 149.5 0 0.67 1 0.99 0.99 0

148

Appendix F

Experimental Materials

This appendix provides all the materials provided to participants during the experimental trials

described in Section 7.5.

The detailed description and instructions for the tasks are provided in F.1. The pre-study,

post-task, and final questionnaire are provided in Sections F.2, F.3, and F.4, respectively.

149

F.1 Task Descriptions and Instructions

Task 1

150

Task 2

151

F.2 Pre-Study Questionnaire

152

153

F.3 Post-Task Questionnaire

154

F.4 Final Questionnaire

155

156

Appendix G

Detailed Experimental Results

Tables G.1, G.2, and G.3 list the confusion matrix, precision, recall, and F-score achieved by

JRipples for each participant in Task 1 for class-, method-, and field-granularity, respectively.

Tables G.4, G.5, and G.6 list the confusion matrix, precision, recall, and F-score achieved by

JRipples for each participant in Task 2 for class-, method-, and field-granularity, respectively.

Note that EDW achieved perfect precision and recall in all cases.

157

Table G.1: Effectiveness: JRipples on Task 1 at class-granularity.

Participant TP FP FN P R F

P1 7 0 0 1 1 1
P2 7 0 0 1 1 1
P3 2 0 5 1 0.29 0.44
P4 7 0 0 1 1 1
P5 7 0 0 1 1 1
P6 2 0 5 1 0.29 0.44
P7 7 0 0 1 1 1
P8 7 0 0 1 1 1

Table G.2: Effectiveness: JRipples on Task 1 at method-granularity.

Participant TP FP FN P R F

P1 4 0 0 1 1 1
P2 4 0 0 1 1 1
P3 3 0 1 1 0.75 0.86
P4 4 2 0 0.67 1 0.8
P5 4 1 1 0.8 0.8 0.8
P6 2 1 2 0.67 0.5 0.57
P7 4 11 0 0.27 1 0.42
P8 3 5 1 0.38 0.75 0.5

Table G.3: Effectiveness: JRipples on Task 1 at field-granularity.

Participant TP FP FN P R F

P1 9 0 0 1 1 1
P2 9 0 0 1 1 1
P3 0 0 9 0 0 0
P4 9 0 0 1 1 1
P5 7 0 2 1 0.78 0.88
P6 0 0 9 0 0 0
P7 9 0 0 1 1 1
P8 7 1 2 0.73 0.78 1

158

Table G.4: Effectiveness: JRipples on Task 2 at class-granularity.

Participant TP FP FN P R F

P1 8 2 7 0.89 0.53 0.67
P2 15 0 0 1 1 1
P3 11 0 4 1 0.73 0.85
P4 15 0 0 1 1 1
P5 8 0 7 1 0.53 0.70
P6 7 1 8 0.88 0.47 0.61
P7 15 0 0 1 1 1
P8 15 0 0 1 1 1

Table G.5: Effectiveness: JRipples on Task 2 at method-granularity.

Participant TP FP FN P R F

P1 25 0 26 1 0.49 0.65
P2 40 0 11 1 0.78 0.88
P3 25 0 26 1 0.49 0.66
P4 26 4 25 0.86 0.50 0.64
P5 14 0 37 1 0.27 0.43
P6 13 6 38 0.68 0.25 0.37
P7 40 6 11 0.86 0.78 0.82
P8 30 1 21 0.96 0.58 0.73

Table G.6: Effectiveness: JRipples on Task 2 at field-granularity.

Participant TP FP FN P R F

P1 23 0 13 1 0.64 0.78
P2 28 0 8 1 0.78 0.88
P3 16 1 20 0.94 0.44 0.60
P4 35 0 1 1 0.97 0.99
P5 2 0 34 1 0.06 0.11
P6 13 0 23 1 0.36 0.53
P7 34 0 2 1 0.94 0.97
P8 36 0 0 1 1 1

159

