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Abstract

Transportation sector is the largest contributor of global greenhouse gas emissions in the

USA. Disruptive technological changes in this sector, such as alternative fuel vehicles, are cru-

cial for emission reduction. We analyze how a cost-minimizing strategic transition plan can be

developed for a transportation firm that aims to adopt electric trucks in their fully diesel fleet,

over time. We consider the case in which the firm needs to invest in charging infrastructure

required to support this transition, as the public charging infrastructure is currently inade-

quate. The congestion effect at the charging stations, the charging times, and the potential loss

of productive driving time due to detours to reach charging stations are explicitly considered.

By developing an independence property, we are able to model this problem as a linear integer

program without any need to explicitly specify origins and destinations. We illustrate the

resulting transition plan with a realistic data set. Our results indicate that a transportation firm

that operates with high demand density over a given service region significantly benefits from

adoption of electric trucks, while also enjoying substantial carbon emissions savings. High

demand density also favors smaller battery capacity with shorter ranges under the optimized

charging network capacity, even though larger battery capacity would increase productivity

with extended ranges. Our analysis also offers insights for governments and regulators regard-

ing the impact of several influential factors such as carbon cost, content of renewable energy in

electricity mix, diesel engine efficiency, and subsidizing the charging infrastructure.
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1 Introduction

Technological change is necessary if we are to meet the aggressive emission targets of the 2016

Paris accord1. This is particularly true for the transportation sector, one of the largest contributors

to global greenhouse gas (GHG) emissions. As of 2017, the transportation sector generated the

largest share (28.9%) of all U.S. GHG emissions (EPA, 2019). Globally, the estimate is close to 25%

(IEA, 2017a). Moreover, road transport accounts for approximately 80% of all such emissions (IEA,

2017a).

Under current trends, energy demand and emissions related to transportation are predicted to

double by 2050 (IEA, 2016). Therefore, disruptive—rather than progressive—change is needed to

meet emission targets in the sector (Girod et al., 2012). Some estimates indicate that an adoption

of alternative fuel vehicles (AFV) in the order of 50% for overall traffic is required, by 2050, to stay

within the 2-degree climate target (UNFCCC, 2010). Other estimations are equally radical.

On the commercial front, the International Energy Agency has developed two scenarios for the

evolution of energy demand from freight vehicles (IEA, 2017b). The first scenario estimates the

evolution of the sector solely based on advances in current technologies2. This scenario leads to an

increase in GHG emissions in the order of 55% by 2050. The second scenario, however, explicitly

considers the adoption of a new type of “modern truck” based on radical technological change;

it achieves a reduction in GHG emissions in the order of 60%. In this scenario, the penetration

of AFVs in commercial fleets is in the order of 85% for light vehicles, 75% for medium freight

vehicles, and 70% for heavy freight vehicles.

Currently, the adoption of AFVs in the commercial space is virtually zero3. As of the end of

2018, the number of AFVs on the road was around 5 million, the vast majority of which were

consumer vehicles (IEA, 2019). Of these, 3 million are battery electric vehicles. (This is equivalent

to approximately 0.1% of the total number of consumer vehicles on the road.)

The lack of adoption of AFVs in the industrial sector can be attributed to a number of reasons.

Limited range, high cost of fixed assets, and a lack of fueling infrastructure are consistently listed

1Some countries even consider the Paris agreement too conservative. The Netherlands, for example, recently passed
legislation to cut 95% of carbon emissions by 2050.

2Based on policies and measures that are currently adopted or announced, e.g., improvements in fuel efficiency,
vehicle utilization, and routing.

3Particularly in the medium/heavy freight space. A number of hybrid and electric vehicles for urban light commercial
use are in the piloting and early deployment stages in several areas.
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as the primary factors holding firms back (IEA, 2017b). In contrast to the consumer space, an

investment in AFVs can potentially represent a significant portion of a firm’s total investment,

particularly for logistic service providers. A change in the technology basis of their largest asset

base is non-trivial. Thus, it is understandable for firms to take a wait-and-see approach, allowing

for the market to become less uncertain (i.e., allowing for the different technologies to mature)

before formulating an alternative-fuel strategy (Courtney et al., 1997).

From a technological perspective, however, we are currently at the verge of maturity. Electric

vehicles (e-vehicles) specifically targeted at the consumer sector deliver outstanding performance

(Lambert, 2017, 2018; Coppola and Kharif, 2018; Evarts, 2019). Recent research suggests that

battery technology is now at a stage where, even though they are still more expensive upfront,

the total ownership cost (considering maintenance costs and tax rebates) of consumer e-vehicles is

lower than the total ownership cost of internal combustion vehicles (IC-vehicles) (Wu et al., 2015;

Letmathe and Suares, 2017; Danielis et al., 2018). Moreover, forecasts estimate that the purchase

cost of consumer e-vehicles will be competitive with IC-vehicles as soon as 2025 (Deloitte, 2019).

Developments in the commercial space are slower, but several truck and e-vehicle manufac-

turers such as Daimler, Mack, Tesla, Nikola, Volvo, Navistar, and DAF have announced plans to

deliver long-haul electric trucks (e-trucks) (Extremetech, 2019).

Trucks based on other alternative-fuel technologies are also under development. The question

in the transportation sector is, therefore, not whether the current standard for commercial applica-

tions will be replaced by new vehicle technologies. Rather, the question is how to implement the

upcoming technology change in the best way possible. This question motivates our research.

In this paper, we study whether e-trucks can become a feasible alternative for a firm that

currently operates a fully diesel fleet. In particular, we analyse the way in which a firm can

optimize this (potential) transition over the years. We develop a model to optimize the investment

and salvaging decisions of a transportation firm for its fleet together with the required investment

for the charging infrastructure associated with its e-trucks. We contribute to the literature by

formulating a linear model that considers the vehicle and the infrastructure investment problems

simultaneously. Our model avoids a-priori assumptions regarding the fleet composition (e.g., we

allow new investments to be made on electric, diesel, or a combination of both types of vehicles in

each period) and on the assignment of vehicles to customers.
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The argument for considering vehicle and infrastructure decisions simultaneously is threefold.

First, there is no existing infrastructure for refueling AFVs on the scale necessary for commercial

use (Extremetech, 2019). Thus, early adopters must also invest in infrastructure. Second, even for

a sufficient coverage area of publicly available charging infrastructure, fleet owners might want to

avoid potential congestion, uncertain waiting times, and unavailability due to maintenance and

breakdowns. Third, the choice of charging technology and the density of the charging infrastruc-

ture have a substantial impact on the effective utilization of trucks and, hence, on the level of

customer service provided.

Our approach is generic and can thus be applied to alternative scenarios through different

parameter settings. We illustrate the use of our model by performing a numerical study based on

parameter settings inspired in real life use, reflecting strategies for e-vehicle adoption in a small

and a large area with dense and sparse demand, respectively. From our numerical study, we obtain

the following insights:

• Adopting e-trucks does not only have environmental appeal, but it may also be the cost-

optimal strategy. This result, however, relies on optimizing the infrastructure density as

well as the fleet composition. Unproductive time becomes too costly if charging stations are

located too far apart; the infrastructure itself becomes too costly if stations are located too

close together.

• The attractiveness of e-trucks, as well as the robustness of the solutions, are also tightly linked

to the density of demand: e-trucks become more cost-effective as the customer concentration

increases within a given area.

• Firms should opt for the optimal trade-off between battery capacity and infrastructure den-

sity, rather than investing in the largest batteries providing longer ranges. Indeed, it turns

out that high demand density favors smaller battery capacity.

• While the transition to e-vehicles may occur without the need for governmental intervention,

higher carbon costs accelerate the adoption of e-trucks in the optimal fleet composition.

• Increasing the efficiency of diesel engines can be counterproductive in the long run. This

is due to the fact that cleaner diesel vehicles are not green enough to significantly reduce
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emissions, but are clean enough to avoid or delay the adoption of the greener technologies.

The rest of this paper is structured as follows. In Section 2 we provide a survey of the literature

related to sustainable transportation and fleet replacement issues. Then, in Section 3 we introduce

our mathematical formulation and describe the parameters chosen for our model. Section 4 shows

the results of our numerical study and scenario analysis. We conclude with Section 5.

2 Literature Review

Our research is motivated by the sustainability-driven requirement for technological change in

commercial transport. Our paper is therefore positioned in the intersection of two literature

streams: sustainable operations (in particular, green transportation) and asset management (and

fleet composition).

2.1 Sustainable transportation

Within the general field of sustainable operations (see Drake and Spinler, 2013, for an overview),

much attention has centered around sustainable transportation and, in particular, on the need

to transition from internal combustion vehicles (ICV) to alternative fuel vehicles (AFV), both as

means of personal (see, e.g., Sun et al., 2010; Propfe et al., 2012) and commercial transportation

(e.g., Chocteau et al., 2011; Kleindorfer et al., 2012). Existing research ranges from engineering con-

siderations (Finesso et al., 2016) to economic issues, including fiscal incentives (Lévay et al., 2017)

and total cost of ownership (Hagman et al., 2016). The particular challenges facing commercial

operators in adopting AFVs are most relevant to our paper. In this context, Schneider et al. (2014)

and Pelletier et al. (2016) provide in-depth discussions of the challenges firms face and of future

research perspectives of goods distribution using AFVs. Note that, while there is no universal

consensus as to the optimal alternative fuel technology (see IEA, 2017b), electric vehicles (EV)

are typically considered the default AFV, with the current state of technology. Within the vast

literature on sustainable transportation, the electric vehicle routing problem (E-VRP) and facility

location problems (FLP) for optimal location of charging infrastructure have gathered considerable

attention, on which we elaborate further below.
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Afroditi et al. (2014) trace the early appearance of the electric vehicle routing problem (E-VRP)

to the beginning of the decade and suggest trends and insights for future research: a call for real-

world, industry-based solutions. In subsequent years, the topic has sparked considerable interest

from the research community. Given that the problem is NP-hard, hybrid heuristics are typically

used to solve problem instances. Among others, extensions to the E-VRP include addition of time

windows and recharging stations with or without mixed fleet and fleet size considerations, and

full or partial charging. We refer the reader to Macrina et al. (2019) for a complete survey of the

related literature in this domain.

Goods distribution using EVs poses a double challenge: limited range and long recharging

times. This challenge requires explicit modeling of the charging technology and infrastructure,

e.g. Sari (2017) considers adopting battery swapping stations, which has not emerged as a viable

technology for e-vehicles compared to the plug-in counterpart. Another approach in this domain

is to decompose the problem: identify a route and find the optimal station location among a set

of candidate locations (e.g., Wang, 2007). Within the facility location problems, Zhu et al. (2016)

develop a genetic-algorithm-based method to solve the charging station location and size problem,

and Zhang et al. (2017) incorporate demand dynamics in a multi-period capacitated fast-charging

infrastructure location planning model. We refer the reader to Karakitsiou et al. (2018) for a recent

review of the models and challenges in this domain.

A number of recent papers consider integrated location-routing problems. Schiffer and Walther

(2017) recognize the “chicken and egg” nature of the problem, in which the adoption of EVs

is hindered by a lack of infrastructure, and infrastructure investment is hindered by a lack of

EV adoption. They formulate the electric location routing problem with time windows and

partial recharging as a mixed integer programming model and allow for simultaneous routing

and infrastructure decisions, considering partial recharging and recharging at customer sites.

Schiffer and Walther (2018) later extend this model to incorporate demand uncertainty with robust

optimization.

In contrast to the short-term focus of the FLP and E-VRP, we account for the characteristics

of electric vehicles from a strategic perspective, focusing on the investment decisions for the

fleet assets and the charging infrastructure. We estimate the required capacity of the refueling

infrastructure based on the total driving times of vehicles scattered over a given region, without
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needing to identify their exact routes. We also do not identify the exact locations of charging

facilities, but confine our analysis to the design of a charging network defined in terms of the

maximum distance between the facilities. Rather than optimizing the routing, location, and sizing

decisions based on a given infrastructure, we optimize the timing of the capacity investment

decisions for a desired density of the infrastructure network at a strategic level. When a strategic

decision lays out a transition plan as an outcome of our model, desired FLP and E-VRP models

can be used by the decision maker to convert this plan into tactical and operational decisions for

locating charging facilities and for identifying vehicle routes and charging schedules.

Similar to our approach, Koç et al. (2018) consider investment decisions in the charging in-

frastructure. The authors consider an E-VRP problem with shared charging stations by allowing

multiple firms to invest jointly in the infrastructure of the charging stations. In addition to the

investment in the charging infrastructure, we also optimize for the investment in fleet assets.

2.2 Asset management, technology adoption, and equipment replacement.

The classical asset management/replacement problem considers the tradeoff between increasing

operating, maintenance, and depreciation costs of aging equipment against the salvage value

and replacement cost of new equipment (Hartman and Tan, 2014). A large literature on the

subject considers deterministic (Howe and McCabe, 1983) and stochastic factors (Adkins and

Paxson, 2017). Extensions to the pure replacement problem are the replacement problem with

new technology adoption (Karaca-Mandic, 2011), the renewal problem (Adkins and Paxson, 2011;

Reindorp and Fu, 2011), and the combined replacement and renewal problem (Stutzman et al.,

2017). When adopting a new technology, a decision maker faces the additional uncertainty of

future technological change, its associated attributes, and cost (Yatsenko and Hritonenko, 2015,

2017). Operationally, sustainability can be incorporated by framing the issue as a multi-objective

problem, with, e.g., energy consumption and GHG emissions as additional objectives (Liu et al.,

2017).

From a strategic perspective, the timeframe for technological change is aligned with the time-

frame over which environmental policies are evaluated (Jaffe et al., 2003). Thus, the problem

of strategic asset replacement with sustainable technologies has started to gain traction in the
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literature (Drake et al., 2016; Aflaki and Netessine, 2017).

2.2.1 Strategic fleet replacement

A number of papers study the different strategic aspects of the replacement of a fleet of ICVs by

EVs. Ansaripoor et al. (2016) use a risk-type analysis to optimize the expected conditional value

at risk (RECVaR) metric, Kleindorfer et al. (2012) formulate a stochastic dynamic programming

model with uncertain battery and fuel acquisition prices to support the fleet renewal decision at

the French postal operator (La Poste), and Cortés-Murcia et al. (2019) propose taking advantage of

mandatory lunch breaks for recharging.

Wang et al. (2013) and Patricksson et al. (2015) are closest in spirit to our paper. The former

present a dynamic capacity investment model for two competing technologies: “green” and

conventional. The authors assume stochastic demand and operating costs, formulating a dynamic

programming model in which the decision to invest/divest or do nothing is taken every period

for a certain time horizon. They illustrate an application of their model with a case study of the

diesel/electric vehicle fleet for Coca-Cola. The authors, however, consider a 1-to-1 replacement of

the diesel fleet with electric vehicles, thus foregoing the interaction effect between infrastructure

capacity and waiting times—and the associated impact on the required fleet size. Patricksson

et al. (2015) study the problem of fleet composition with regional emission limitations using RoRo

shipping as a case study. While they consider several technological characteristics in their model,

there is no infrastructure component in their analysis.

We consider the specific strategic issue of the transformation of an entirely diesel fleet into

an electric fleet within a given time horizon. The aim of our model is to assist with strategic

decision-making by finding the optimal investment decision in terms of truck technology and

charging infrastructure. We optimize over the entire planning horizon; thus, our solution implies

a time-varying investment strategy. We make general assumptions regarding the demand for

transportation and the location of origins, destinations, and charging infrastructure. In contrast

to prior research, the number of facilities and charging instruments installed in a given period

are treated as decision variables; this allows us to trade off infrastructure investment against

unproductive time (i.e. deviations from route and queueing time prior to recharging).
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3 Problem Environment and Settings

We consider a freight-moving firm operating with a fleet of diesel trucks (d-trucks) in a given

geographical region. The firm aims to minimize the investment and operational costs associated

with its fleet (composition) over a certain planning horizon. We also incorporate a carbon emission

cost component in the objective function, which can be a carbon tax, the cost of permits in a cap-

and-trade system, the cost of carbon offsets, or simply an internal proxy for the firm to account for

the environmental impact of its operations (zero being a special case, if the environmental effect

is to be neglected). The firm might reduce the carbon footprint of its transportation operations by

adopting a ‘greener’ fleet containing e-trucks. Given the current state of the technology, we assume

that the charging infrastructure required to operate the e-truck fleet is not readily available, hence,

the firm must also invest in the charging infrastructure to materialize this transition. Operational

cost components are ‘fuel’ (diesel or electricity), carbon emissions, driver wages, and maintenance

of trucks and charging outlets. Investment cost comprises procurement costs and salvage values

associated with trucks and charging infrastructure. We introduce a metric for measuring the

‘sustainability’ of the fleet composition: the Green Ratio (GR), which we define as the fraction of

e-trucks that the firm owns in its current fleet. We assume that the firm initially operates with

GR = 0 and might adopt e-trucks at any time until the end of the planning horizon.

We adopt a strategic level analysis of the freight movement operations. We do not predicate

our analysis on the exact locations of origins, destinations, and the routes traversed, which might

differ on a daily basis. Instead, we assume that the trucks are continuously traversing roads,

destined for a drop-off, pick-up, refueling, or parking location in a given service region defined at

a city, country, or continent scale. Our analysis considers a dense road network over which origins

and destinations are randomly scattered, implying that the traversing trucks are also randomly

dispersed over the service area at any given time, without any condensed mass at a particular

region. This topology fits well to Europe, where the road network is not sparse, and origins

and destinations can be anywhere, due to a large and dispersed population. It also fits to highly

populated areas such as the North American coasts, as well as Asian, Latin American, and African

metropolitan areas. The problem under concern applies to any firm that owns and operates a fleet

of trucks, whether in-house or for-hire.
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Currently, the charging infrastructure for e-trucks is not available on a sufficiently large scale to

support the industrial adoption of e-trucks. Hence, we concurrently plan for the establishment of

the charging infrastructure that will support a green transition. We define a “charging facility” as a

charging station that contains one or more charging outlets, which we call “charging instruments”.

We treat the number of facilities and instruments installed as design variables to be optimized.

Depending on the invested charging capacity, e-trucks may need to detour to access a charging

facility by deviating from their main route and may also need to wait for an available instrument,

due to congestion at the facility. In contrast, we assume that d-trucks can find a refueling station

along their main route whenever necessary and start refueling without delay, as gas stations are

ubiquitous and with abundant capacity.

3.1 Definition of Demand and Productive Driving Time

A typical trucking operation consists of productive and non-productive work elements. Productive

work elements are driving times to reach a drop-off, pick-up, or parking location. Non-productive

elements include loading, unloading, and refueling times. The non-productive element associated

with the refueling of e-trucks includes the duration of the detour required to reach a charging

facility and to return to the main route after receiving the service, potential waiting time at the

facility for an available charging instrument due to congestion, and the recharging time; whereas

that of the d-trucks includes only the fueling time at the gas station. We denote the total working

time of a truck, excluding the non-productive work elements, as the “productive driving time”.

Depending on the number and locations of the destinations to be visited in a given time period,

we define the transportation demand in terms of

Wt: total productive driving time required to satisfy the demand for the trucking

operations in year t.

Let τe be the non-productive work element of e-trucks due to recharging, ν be the average speed

of the truck, and Re be the driving range of an e-truck. Then, the productive driving time of an

e-truck, Dp
e , can be estimated by

Dp
e =

Re/ν
Re/ν + τe

. (1)

10



3.2 Charging Infrastructure Design

Transitioning to a greener fleet can be viable only if the operations are backed up with sufficient

charging capacity. The two variables that dictate this capacity are

Ft: number of charging facilities installed in the service area in year t, and

γt: number of charging instruments installed in each facility in year t.

Recall that we consider the demand to be homogeneous across the service region, meaning that the

charging facilities are spread uniformly within that region with identical capacities. The charging

capacity will factor in when estimating the non-productive working time of e-trucks, which is their

main operational adversity compared to d-trucks. Obviously, installing more charging capacity

will decrease the non-productive driving times of e-trucks, while increasing their investment

requirements.

Rather than setting Ft and γt as independent decision variables, we adopt a service level target

aimed by the decision maker through the following design variables:

δ: distance between any two charging stations, and

ω: maximum average waiting time at a charging facility due to congestion.

Note that δ and ω imply how much time a driver will spend to recharge an e-truck. Based on the

target service level pair (δ, ω) set by the decision maker, investment decisions can be optimized.

We model the congestion at a charging facility via a G/D/γt queueing system, in which the

‘customers’ are e-trucks arriving at charging facilities equipped with γt charging instruments.

Even though the state-of-charge (SoC) might differ for arriving trucks in general, we assume in

our analysis that the SoC of the arriving trucks will be consistently low, as the drivers would be

instructed to maximize their battery usage before recharging. This implies that the service delay

at a charging instrument will be degenerate with a service time equal to the recharging time of an

e-truck battery, denoted by µe. The design parameters (δ, ω) will dictate the arrival rate and the

required γt value.

Estimating the Number of Facilities: Let G be the total area (in km2) of the region served by the

transportation firm. Assuming that the charging facilities can be located anywhere in the service

region on a continuous domain, the maximum number of charging facilities, F, required to ensure
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δ kilometers between any two charging facilities can be estimated by

F =
G
δ2 ,

supposing that charging stations are installed at the centers of δ × δ grids that span all service

areas on a continuous scale. This estimation warrants the maximum detour length to access a

charging station and return to the main route to be δ kilometers from anywhere on the road, by

using rectilinear metric. Note that this estimation is merely an upper bound, as it ignores the

topology of the network. More realistic values can be estimated by solving a coverage problem

on a given network. However, we use this upper bound in our analysis, because we conduct a

strategic analysis to generate generic insights about the transformation process.

If the firm operates with a mixed fleet of diesel and electric trucks at any point in time, a

decision should be made regarding the allocation of each type of truck to different regions and

customers. As the adoption of e-trucks requires investment in charging infrastructure, allocating

e-truck fleet to satisfy the customer demand in a continuous sub-region as a whole is more efficient

than splitting the fleet to satisfy multiple separate regions. As we assume that the trucks are

scattered randomly over the service area at any given time, the service area allocated to the e-

truck fleet must be proportional to the demand satisfied by e-trucks. With this in mind, Ft can be

estimated by

Ft =
VteD

p
e He

Wt
F, (2)

where Vte is the number of e-trucks in the fleet of year t, and He is the number of operating hours

of an e-truck in one year.

Under this construct, the total non-productive time for recharging an e-truck, τe, to be used in

Equation (1) is given by

τe = 2δ/ν + ω + µe.

Note that there can also be non-productive times other than τe, due to loading and unloading

operations, but we ignore them, because they apply to both d- and e-trucks.

Estimating the Arrival Rate: Under the settings described above, we have the following proposition
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that enables us to develop an efficient solution approach. In particular, the proposition allows us

to formulate the problem as a linear optimization problem, as explained in the next section.

Proposition: The arrival rate of e-trucks to a charging facility is independent of the size of the

e-truck fleet Vte and is given by

λt =
νWt

RDp
e HeF

.

Proof:

λt =
ηVte

Ft
=

ηVte

VteD
p
e He

Wt
F

=
ηWt

Dp
e HeF

,

where η = ν/R. �

Estimating the Number of Instruments: For any G/D/γt queue with an arrival rate of λt and service

time of µe, the γt value that ensures the service level target ω can approximately be estimated by

using the waiting time in the queue as follows:

γt = min

m : ω ≤
C2

a

2
(λtµe/m)

√
2(m+1)−1

m − λtµe
µe

 ∀t, (3)

where Ca is the coefficient of variation of the arrival time. See Whitt (1983) and Hopp and Spear-

man (2011) for discussions on estimating the waiting time in the queue.

3.3 Problem Formulation

In this section, we present a linear mathematical programming formulation of the problem under

concern. Table 1 summarizes the parameters. We use the following indices:

t: year index; 0, ..., T

k: truck type index; d: diesel truck, e: electric truck

h: age index; 0,..., L,

where T denotes the total number of years in the planning horizon, and L is the maximum useful

life of a truck. The decision variables are
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Pi
t: Number of charging instruments purchased at the beginning of year t

Pv
tk: Number of type k vehicles purchased at the beginning of year t

Qi
ht: Number of charging instruments of age h owned at the beginning of year t

Qv
htk: Number of type k vehicles of age h owned at the beginning of year t

Si
ht: Number of charging instruments of age h salvaged at the beginning of year t

Sv
htk: Number of type k vehicles of age h salvaged at the beginning of year t.

For any given service level target pair (δ, ω), one can estimate F and γt values by using (2) and

(3), respectively, for each year t. Then, the Sustainable Fleet Management Problem, SFMP, can be

formulated as a function of F and γt as follows:
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A: Annualized fixed cost of a charging facility
ci

t: Purchasing cost of one charging instrument in year t
cv

tk: Purchasing cost of one type k vehicle in year t
Dk: Driving hours of type k vehicle in one working hour
Dp

k : Productive driving hours of type k vehicle in one working hour
ed

htk: CO2 emissions in kg per hour of driving by a type k vehicle of age h in year t
em

k : CO2 emissions in kg due to the manufacturing process of a type k vehicle
fhtk: Fuel cost of a type k vehicle of age h in year t for one hour of driving

F: Minimum number of charging facilities required to have an access within δ
kilometers from anywhere on the road network

GR: Green Ratio; fraction of e-trucks in the fleet
Hk: Number of operating hours of a type k vehicle per day
m f

t : Annual maintenance cost required in a charging facility per year
mv

htk: Maintenance cost of a type k vehicle of age h for one hour of driving in year t
Q

v
h0k: Number of vehicles of type k of age h owned at the beginning of the planning horizon
Rk: Range of a type k vehicle in kilometers, with a full tank or battery

sv
htk: Salvage value of a type k vehicle of age h in year t
si

ht: Salvage value of one charging instrument of age h in year t
ut: Driver cost per hour in year t

Wt: Daily productive driving hours necessary to satisfy the annual demand in year t
Y: Number of working days in a year
βt: Discount factor for year t
γt: Number of charging instruments kept in each charging facility in year t
δk: Average distance that a type k vehicle deviates from its route to reach

a charging facility
εt: Cost of emissions in year t per kilogram of CO2 emissions
η: Number of times that an e-truck must visit a charging facility per day
λt: Arrival rate of e-trucks per hour to a charging facility in year t
µk: Average recharging or refueling time for a type k vehicle
ν: Average speed of the truck
τk: Total time spent for refueling/recharging including the back-and-forth access time

to the charging facility
ωk: Average waiting time in the queue allowed at the charging facility for a type k vehicle

Table 1: Summary of Notation
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SFMP(F, γt|δ, ω):

Min.
∑
t,k

ctkPv
tkβt −

∑
h,t,k

sv
htkSv

htkβt +
∑
h,t,k

( fhtk + mv
htk)YHkDkQv

htkβt +
∑
t,k

εtem
k Pv

tkβt

+
∑
h,t,k

εtehtkYHkDkQv
htkβt +

∑
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s.to Qv
0tk = Pv

tk ∀t, k (4)

Qv
h0k = Q

v
h0k − Sv

h0k ∀h ≥ 1, k (5)

Sv
h0k ≤ Q

v
h0k ∀h ≥ 1, k (6)

Qv
htk = Qv

h−1,t−1,k − Sv
htk ∀h ≥ 1, t ≥ 1, k (7)

Sv
htk ≤ Qv

h−1,t−1,k ∀h ≥ 1, t ≥ 1, k (8)

Qi
0t = Pi

t ∀t (9)

Qi
h0 = Q

i
h0 − Si

h0 ∀h ≥ 1 (10)

Si
h0 ≤ Q

i
h0 ∀h ≥ 1 (11)

Qi
ht = Qi

h−1,t−1 − Si
ht ∀h ≥ 1, t ≥ 1 (12)

Si
ht ≤ Qi

h−1,t−1 ∀h, t (13)

Wt ≤
∑

k

HkDp
k

∑
h

Qv
htk ∀t (14)

Ft =
Dp

e He
∑

h Qv
hteF

Wt
∀t (15)∑

h

Qi
ht = γtFt ∀t (16)

Qv
htk,P

v
tk,S

v
htk,Q

i
ht,P

i
t,S

i
ht ∈ Z≥0. (17)

The objective function calculates the present value of all operational costs and benefits, which

include the purchasing cost of trucks; salvage value of trucks; fuel and electricity costs; maintenance

costs of trucks; carbon emission costs due to manufacturing and transportation operations; cost

of the driver; fixed cost of installing charging facilities; and purchasing cost, salvage value, and

maintenance costs of charging facilities, in the respective order. Parameter Dk measures the driving

time of each truck type and can be calculated as Dk =
Rk/ν

Rk/ν+ωk+µk
, whereωe is the service level target
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for e-trucks and ωd = 0 for d-trucks, by assumption.

Constraint sets (4) – (8) are the balance equations for each type of truck through acquisition and

salvaging. Constraint sets (9) – (13) are similar balance constraints for the charging instruments.

Constraint set (14) ensures that the size of the fleet is adequate to satisfy the demand, considering

the available working time of each truck. Constraint set (15) defines the auxiliary decision variable,

Ft, which is the required number of charging facilities in period t to serve the e-truck fleet in that

period. Constraint set (16) ensures that an adequate number of charging instruments are installed

in each charging facility. Note that γt is a parameter in this constraint given by (3). Constraint set

(17) are the nonnegativity and integer constraints.

3.4 Operational Constraints

We extend the base model to include operational constraints that can originate from internal or

external mandates.

Budget Constraint. An obvious operational constraint in practice is having budget limitations

for new investments. Let Ba
t and Bo

t be the available budget in year t for investment in assets and

for operational expenses, respectively. Then, the following two constraints can be added to SFMP:

∑
k

ctkPv
tk +

∑
t

AFt +
∑

ci
tP

i
t ≤ Ba

t ∀t∑
h,k

( fhtk + mv
htk)YHkDkQv

htk +
∑
h,k

εtehtkYHkDkQv
htk +

∑
t

m f
t Ft ≤ Bo

t ∀t.

Green Ratio. An internal constraint can be imposed to achieve a (potentially progressive) target

level of “green ratio” in year t. Let Gt be the minimum green ratio that the decision makers want

to attain in year t. Then, the following constraint can be added to SFMP:

∑
h

Qv
hte ≥ Gt

∑
h,k

Qv
htk ∀t.

Emission Constraints. As discussed above, there can be emission targets mandated by govern-

ments that should guide the optimal investment plan. Such mandates can be in the form of a single
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absolute or relative target within a given number of years (e.g. net-zero within 10 years or 50%

savings in emissions within the next five years, respectively) or in the form of progressive savings

over the years (e.g. at least 10% annual savings over the next 10 years). Let

Ea
τ: Maximum CO2 emissions to be achieved by year τ, and

Ep: Minimum percentage of CO2 savings compared to the previous year

until reaching net-zero.
An absolute target of Ea

τ can be achieved by adding the following constraints to SFMP:

∑
h,k

ehτkYHkDkQv
hτk ≤ Ea

τ∑
h,k

ehtkYHkDkQv
htk ≤

∑
h,k

eh,t−1,kYHkDkQh,t−1,k ∀t ≥ τ + 1.

Progressive savings targets can be achieved by adding the following constraints to SFMP:

∑
h,k

ehtkYHkDkQv
htk ≤

(100 − Ep

100

)∑
h,k

eh,t−1,kYHkDkQv
h,t−1,k.

3.5 Technology related costs and parameters

We present relevant costs and parameters in three categories: Trucking, charging infrastructure,

and energy and technology.

Trucking related costs: Purchasing Cost. In our numerical study, we consider heavy duty Class 8

trucks that can accommodate about 15 tons. The average price of a Class 8 diesel truck in 2017 was

$118,000 (USD), and the average price increase since 2011 was 5% (Statista, 2019). Accordingly,

we set the base procurement price of a diesel truck to $120,000 in the first year of our analysis and

inflate the price by 0.8% until the end of the planning horizon. There are no e-trucks available in

the market as of 2019, but several manufacturers like Daimler, DAF, and Tesla have announced

plans to produce and sell functionally comparable e-trucks with varying prices and technological

characteristics in the near future (Lambert, 2017, 2018; Coppola and Kharif, 2018). Because these

announcements are in the form of marketing initiatives to create public interest, the announced

price information is speculative. Rather than relying on these prices, we set the price differential
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between d-trucks and e-trucks as much as the battery price (along with the suggestion of IEA,

2017b), which is roughly the case for consumer vehicles in the current market.

Salvage Value. The useful life of industrial trucks is accepted as seven years, even though many

trucking firms prefer to renew their fleets more frequently. We assume that both d- and e-trucks

depreciate based on sum-of-the-years method (cf. Danielis et al., 2018, who report that the battery

EVs retain 10% of their value after 6 years).

Maintenance Costs. During the course of this study, we contacted two North American large-

sized carriers: an in-house and a for-hire fleet operator. Both firms reported that their maintenance

and repair costs are around $0.2 per mile. We use this quantity as the base for d-trucks in Year 1 and

increase it by the inflation rate over the planning horizon. Maintenance and repair costs of e-trucks

are expected to be lower than d-trucks, as electric engines are much simpler than combustion en-

gines (Morris, 2015). Such potential savings reported in literature vary between 18 – 45% (Danielis

et al., 2018; Letmathe and Suares, 2017; Weldon et al., 2018). In our analysis, we use an average sav-

ings of 30% for e-trucks over the maintenance and repair costs of d-trucks, in every year. With the

wider adoption of EVs in general, it is reasonable to expect a decrease in maintenance costs, with

increased practice and experience in the sector. Therefore, we assume an annual 3% decrease in the

maintenance costs of an e-truck of a particular age. Obviously, the maintenance costs of a truck will

increase as it ages, and this raise is taken as 20% in our study both for d- and e-trucks (Martin, 2016).

Charging Infrastructure Related Costs. Charging Facility: Charging instruments can be housed in

existing facilities, such as gas stations, or at locations that might require new construction. Hence,

establishment costs of charging facilities may vary significantly from one facility to another. We

assume that the installation cost is somewhere between $50,000 (e.g. modifications required at

an existing facility) and $350,000 (maximum installation costs estimated by Smith and Gonzales,

2014). Consequently, we assume an annualized fee of $15,000 which corresponds to an investment

requirement of $175,000 with an 8% rate of return over 30 years. Charging Instruments: Level

3 charging is the current industry standard. These chargers operate with 480 volts of energy,

providing much faster charging time, but requiring an elevated upfront cost of procurement and

installation, compared to its Level 1 and 2 counterparts. As high utilization is desired in indus-

trialized applications, we assume the adoption of Level 3 charging instruments. The list prices of
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Level 3 chargers sold by a North American EV charging station installation company vary between

$12,500 for single-headed chargers to $35,800 for two-headed chargers, depending on the power

provided (SCA, 2019). Referencing to this seller, we assume that the procurement and installation

cost of one charging instrument is $15,000 in the base scenario, with an annual increase by the

inflation rate. We take the useful life as seven years, with linear depreciation for salvage value

calculations. Maintenance: We assume $10,000 of annual maintenance cost requirements to keep

up the charging instruments and related infrastructure per each charging facility, with an annual

increase by the inflation rate.

Energy and Technology Related Costs and Parameters. Fuel Prices: The price of diesel fuel

depends on volatile oil and gas prices in the global commodity market, whereas electricity prices

are driven by the demand/supply dynamics of a given regulated market, which might differ from

region to region. The US Department of Energy (DoE, 2019) projects that retail prices of diesel

oil will increase in 2018 dollars by 13% from 2020 to 2030, in their reference scenario. We set the

diesel price as $2.5 per gallon in Year 1 and assume that the retail price will increase annually by

the inflation rate plus 1.2%. DoE (2019) projects that electricity prices will stay about the same in

2018 dollars from 2020 to 2030, in their reference scenario. Based on the current price, we set the

electricity price at $0.1 per kWh in Year 1, which will increase by the inflation rate over the years

through the planning horizon. Consumption Rates: The US Environmental Protection Agency has

recently proposed Phase II standards for fuel efficiency—which include Class 7 and 8 trucks for

the first time—that will take effect starting in the model year 2021 (Stone, 2016). According to these

standards, average fuel economy for 2018 is 6.24 miles per gallon (mpg) for diesel Class 7-8 trucks

and is expected to rise to 8.55 mpg by the year 2050 (DoE, 2019), with a 1.6% increase from 2020

to 2030. Our contact carrier firms reported their current consumption rate around 7 mpg, with

the help of their recent sustainability initiatives. We set the fuel efficiency as 7 mpg in the first

year and assume that it will increase by 1.5% every year, for new trucks purchased. The electricity

consumption rate per kilometer for e-trucks depends on the capacity of the battery used in kWh

and the driving range that the battery provides. In our numerical analysis, we used a 300 kWh

battery with a 350 km range (announced by Daimler) and a 1000 kWh battery with a 800 km range

(announced by Tesla) as base parameters that dictate the battery prices and electricity consumption
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rates. Battery price: The current battery price is around $200 per kWh, with a projected 8% rate of

decrease per year (Letmathe and Suares, 2017; UCSUSA, 2018). Charging Times: Battery charging

times rely on the battery capacity, charging voltage, and power of the charger. There are several

other environmental factors that affect the charging times and efficiencies. For Level 3 chargers,

also known as rapid chargers, the manufacturers aim for almost-full charging in 30 minutes,

as an industry standard (EVConnextions, 2019; PodPoint, 2019). Consequently, we assume that

whatever the battery capacity is, the manufacturer will provide a charger that can charge 80% of

the battery in 30 minutes (which we consider as our base case) and 100% in 60 minutes. This is in

line with current expectations behind Tesla’s upcoming semi-truck charging solutions (Teslarati,

2018).

Carbon price: The cost of carbon can be a direct tangible cost for transportation operations in

regions where a carbon tax is implemented and is directly reflected in fuel prices. Currently, a

carbon tax is in effect in 24 national jurisdictions around the world (WorldBank, 2019). Canada

has one of the most ambitious carbon tax programs, in which the current per-ton price is around

$15, and the projected price for 2022 is $38 (Plumer and Popovich, 2019). Some firms internalize

a carbon cost to improve their corporate social responsibility performance, even when there is no

carbon pricing regulation in effect. EDF (2019) estimates that the intangible social costs of carbon

emissions add up to $40 per ton. Some countries adopt an Emission Trading System (ETS) to control

carbon emissions (37 national jurisdictions, according to WorldBank, 2019), but transportation is

typically not included in this system. The average price of CO2 European Emission Allowance per

ton in 2018 was 15.48 Euros, which is almost triple the average 2017 price (BusinessInsider, 2019),

and the price as of August 2019 is around 27 Euros per ton, continuing the increasing trend since

mid-2017. Consequently, we set the price of carbon to $20 per ton and analyze various scenarios.

Carbon Emissions: The combustion of one liter of diesel fuel emits 2.64 kg of CO2. We estimate the

carbon emissions of a d-truck based on this value, the fuel efficiency of the engine, and the average

speed of 80 kilometers per hour. The CO2 emissions of an electric engine depend on how much

CO2 is emitted in the production phase of the electricity. We assume that 0.456 kilograms of CO2 is

emitted on average per generation of 1 kWh of electricity (Carbonfund, 2019). This amount is based

on the latest figures reported by the EPA, which represent the overall average emissions in the USA

(see EPA, 2018, for detailed data). The generation mix is approximately 67% fossil and biomass,
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20% nuclear, and 14% renewables; emissions would be lower with more renewable content. DoE

(2019) projects that the percentage of renewable energy in the total electricity generation capacity

will increase from 19.56% in 2020 to 24.12% in 2030, in their reference scenario. Accordingly, we

assume that an electric engine emits about 456 grams of CO2 per kWh in Year 1 and will emit 0.5%

less in every year thereafter. Another source of carbon is due to the manufacturing process of the

trucks. We follow the approach adopted by Zhou et al. (2017) and assume that the main difference

between total CO2 emissions in the manufacturing process of a diesel and electric vehicle is largely

due to the difference between the energy storage systems. Sen et al. (2017) report the total GHG

emissions due to the manufacturing of one d-truck as 0.35 tons of CO2e. Hao et al. (2017) estimate

the GHG emissions of a battery during the manufacturing stage as 0.1 t CO2e per kWh of capacity.

Consequently, we set em
1 to 350 for d-trucks and em

2 to 350 plus 100 times the battery capacity for

e-trucks.

4 Numerical Study

In this section, we present the results of a numerical study to demonstrate how our model can be

used to analyze a strategic transition plan to a sustainable fleet, which gives insights into identifying

the key technological, economical, and political factors that influence this transition. The results of

this numerical study should not be considered a plug-and-play solution that necessarily applies to

all; but it is an illustration of how our model would help a decision maker under given operational

characteristics and parameter estimations over time. We used Gurobi Optimizer to solve the model

by relaxing the integrality constraints.

In addition to the base parameters presented in Section 3.5, we conduct the numerical study with

the following values for the remaining parameters. We consider the demand for transportation

operations to be 2400 daily productive driving hours, with an annual increase of 3% for a small

and a large region4 over which the trucks operate, the small region being 160,000 km2 representing

a high demand density case and the large one being 640, 000 km2 representing a low demand

density case, which we refer to as “dense” and “sparse” cases, respectively. We consider a carbon

cost that increases annually by 20% and set the planning horizon to 15 years. The inflation and the

discount rates are set to 2% and 10%, respectively. We assume that a d-truck can be refueled in 15
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minutes, and the range of a full tank is 800 km. We also set ω, the maximum allowed waiting time

due to congestion for e-trucks, as 15 minutes and assume zero waiting time for d-trucks. Finally,

we set the number of working days in a year as 250 and the number of operating hours per day

for both type of trucks as 12 hours.

Figure 1 provides the optimal solution for two types of batteries: 300 kWh and 1000 kWh.

Under our current battery cost assumptions, an e-truck equipped with a 300 kWh battery has a

purchasing cost of $180,000, and one equipped with a 1000 kWh battery has a purchasing cost of

$320,000. Note, however, that Tesla has announced the intention of selling 1000 kWh e-trucks at

a price in the order of $180,000 – 200,000 (Lambert, 2017). This price implies a battery cost of $60

per kWh: less than half the current estimates. Therefore, we analyze this scenario separately, as a

third battery option “1000 kWh @ $60/kWh”.
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Figure 1: Total Cost and Total CO2 Emissions for Varying δ values for 300 and 1000 kWh batteries in Dense Demand
Scenario

We observe that neither too closely nor too widely placed charging facilities are preferable

from a cost perspective. This is because the charging facility costs are dominant in the former case,

and detouring to recharge the e-trucks becomes excessive in the latter case (which also results in

4For reference, the large region selected has a total area roughly comparable to the combination of France and
Benelux.
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a lower green ratio in the optimal solution). For the parameter set that we consider, the optimal δ

is 40 or 50 kilometers, depending on the cost of the battery. Despite the extended driving range of

1000 kWh batteries, the optimal choice is a 300 kWh battery under our regular cost assumptions.

Observe that this optimal result also lowers carbon emissions. What might seem intuitive—that

one would be better off with larger batteries, due to the extended driving range resulting in higher

productive hours and less detouring to recharge—only holds if the cost of the battery decreases,

as is the case for the battery cost of $60/kWh in our numerical setting. This would also result in a

much higher green ratio, i.e. 0.91 instead of 0.48. Even though the reduced cost of a large battery

makes this option attractive cost-wise, the saving in emissions is less significant, because of the

higher manufacturing emissions associated with larger batteries.

Table 2 compares the characteristics of the optimal solutions for sparse and dense demand

under the 300 kWh battery option and different charging choices. We show the effect of waiting

until the battery is fully charged (recall that the base scenario assumes 80% at 30 mins).

Table 2: Characteristics of optimal solution for sparse/dense demand with small battery under different charging
choices (base scenario in boldface).

Demand Charging Choice δ∗ Total Cost Total CO2 Green Ratio
(Km) ($) (Ton)

Dense 30 Min/80% 40 378 497 0.48
60 Min/100% 40 387 505 0.47

Sparse 30 Min/80% 60 395 512 0.47
60 Min/100% - 400 728 0

The results show that the optimal infrastructure investment depends strongly on the demand

density, with higher demand density associated with higher infrastructure density. Furthermore,

the optimal solution involves quickly charging batteries to “almost full” status, rather than waiting

for a full charge. In the sparse demand case, the charging choice has a particularly significant

influence, inasmuch as no investment in electric vehicles is made, if the charging policy is to fully

charge the batteries (cf. rapid charging to 80%). The average green ratio in all scenarios that adopt

e-vehicles is close to half.

Table 3 shows the absolute increase or decrease in Cost (million $) and CO2 Emissions (million

kg) associated with opting for the optimal solution over the status quo (i.e., all d-trucks) and the
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increase/decrease associated with two “fully green” policies: (1) adopting 100% e-trucks at time 0

with the infrastructure density derived from the optimal policy, and (2) adopting 100% e-trucks at

time 0 with a high infrastructure density (δ = 10). Numbers in parentheses show the percentage

increase or decrease.

Table 3: Absolute Increase (+) or Decrease (-) in Cost and Emissions with respect to Status Quo.

Demand Measure Optimal Strategy (δ∗) All Green at δ∗ All Green at δ = 10

Dense Cost -22 (5%) -10 (2.5%) +310 (77.5%)
CO2 -231 (32%) -417 (57%) -455 (62.5%)

Sparse Cost -5 (1%) +40 (10%) +1,488 (371%)
CO2 -216 (30%) -391 (54%) -455 (63%)

The optimal strategy achieves lower costs and emissions in both demand scenarios. For

additional emissions savings, decision-makers can opt for an “all green” strategy, in which the

entire diesel fleet is replaced at time zero with an electric fleet. When this strategy is compounded

with the optimal infrastructure density, it can still achieve cost savings (in the dense demand

scenario) or be made at a moderate cost penalty (sparse demand scenario), with respect to the

status quo. Going all green and investing heavily in the infrastructure density to maximize

productive driving times introduces significant cost penalties for relatively incremental savings in

emissions.

Increasing the green ratio has a large direct effect on emissions and a relatively minor effect

on cost. Increasing infrastructure density, on the contrary, has a large direct effect on costs and

diminishing returns on emissions; additional infrastructure only affects the non-productive time

per truck.

These results suggest that firms may realize a large portion of the potential emissions and

cost savings by moving a relatively low percentage of transportation demand to e-vehicles. Fleet

composition decisions, however, cannot be dissociated from infrastructure decisions; optimizing

both fleet size and charging infrastructure appears critical for the success of e-vehicle adoption.

Table 4 shows the effect of a change in the carbon cost under dense and sparse demand

conditions.

These results show that an increase in the carbon cost is followed by an increase in the green
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Table 4: Effect of carbon cost on the optimal solution (base scenario in boldface).

Dense Demand Sparse Demand

ε1 δ∗ Cost CO2 GR δ∗ Cost CO2 GR
($/Ton CO2) (Km) ($) (Ton) (Km) ($) (Ton)

10 40 370 501 0.47 - 385 729 0
20 40 378 497 0.48 60 395 512 0.47
40 40 392 393 0.75 60 412 511 0.47

100 40 428 343 0.88 50 462 481 0.55

ratio. This is consistent with prior research, which suggests that increasing these costs is an

effective way to incentivize the move to more sustainable transport modes (i.e., from air/truck

shipping towards barge and deep sea, see Hoen et al., 2013). Whereas said research shows that

carbon costs need to increase drastically to affect the transport mode, our results show that the

carbon cost that doubles the green ratio for the dense demand scenario is within the order of

magnitude of the current carbon price. Accordingly, carbon taxes can be effectively used to steer

existing truck fleets towards electric alternatives. These results also show that, in the dense demand

scenario, carbon tax achieves the desired effect through increasing the attractiveness of converting

additional vehicles to electric; the infrastructure investment remains unchanged in all scenarios.

When demand is sparse, however, carbon taxes have an effect on the infrastructure investment.

Table 5 shows the effect of the assumptions behind the adoption rate of renewable electricity

generation and the initial proportion of renewable content in the electricity mix. As discussed

in §3.5, the base scenario is derived from the average energy mix in the USA and an increase in

renewables of 5% per year. The next scenario considers an energy mix with half the emissions of

the base scenario. (For reference, this is close to the average emission values in California of 0.206

kg/kWh.) Finally, we also consider a fully renewable scenario, with zero emissions from electricity

generation.

The results show that the source of electricity has a significant effect on the total emissions.

All else equal, a greater percentage of renewables is directly related to fewer emissions. In the

dense demand scenario, the energy mix also shows a second order effect; the greener the power

source, the larger the average green ratio becomes, because the energy mix plays a significant role

in the dynamics of e-vehicle adoption. Renewable energy generation offsets the (relatively high)
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Table 5: Effect of renewable content in electricity generation (base scenario in boldface).

Dense Demand Sparse Demand

CO2 Release Annual δ∗ Cost CO2 GR δ∗ Cost CO2 GR
(kg/kWh) Increase (Km) ($) (Ton) (Km) ($) (Ton)

0.456 5% 40 378 497 0.48 60 395 512 0.47
10% 40 375 (1%) 409 (18%) 0.57 60 392 (1%) 455 (11%) 0.47
25% 40 372 (2%) 274 (45%) 0.67 60 389 (2%) 394 (23%) 0.47

0.228 5% 40 375 (1%) 360 (28%) 0.63 60 392 (1%) 447 (13%) 0.47
0 – 40 371 (2%) 209 (58%) 0.73 60 388 (2%) 383 (25%) 0.47

emissions related to the production of e-vehicles—a large proportion of renewables speeds up the

adoption of e-vehicles. For the sparse demand case, the energy mix only has a first order effect.

The trade-off in this scenario is such that the infrastructure cost limits the density of the charging

infrastructure, which, in turn, limits the adoption of e-vehicles.

Table 6 shows the effect of technological advances in diesel engines.

Table 6: Effect of the increase in diesel engine efficiency (base scenario in boldface).

Dense Demand Sparse Demand

Annual δ∗ Cost CO2 GR δ∗ Cost CO2 GR
Increase (Km) ($) (Ton) (Km) ($) (Ton)

1.50% 40 378 497 0.48 60 395 512 0.47
2.50% 40 377 491 0.47 - 393 683 0
5.00% 40 372 463 0.46 - 376 576 0

For the dense demand scenario, there is a relatively minor change in the fleet composition,

with the average GR decreasing slightly with a change in diesel technology. In these scenarios, the

increased (emission) savings from more efficient diesel engines compensate the relatively small

decrease in the number of e-vehicles. As this technology change is assumed to be independent

of price, the larger proportion of diesel trucks is related to a decrease in costs. Note, however,

that the charging infrastructure does not change. For the sparse demand scenario, however, an

increase in the diesel efficiency is enough to negate the potential benefits of e-vehicle adoption.

Thus, when diesel vehicles become “good enough”, it is optimal not to invest in any charging/e-

vehicle infrastructure. The side effect is that the optimal solution with higher diesel efficiency is
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outperformed (in terms of carbon emissions) by the optimal solution with lower diesel efficiency.

These results suggest that, even though an increase in diesel efficiency can be rightly viewed as

a positive development, there is a risk that efficiency increases are such that diesel trucks become

“good enough” to postpone investments in electric trucks, but not “good enough” to bring about

a substantial decrease in emissions. In such cases, policy-makers may have to intervene (see Table

4) to ensure the transition to green technologies.

Governments can facilitate the transition by providing certain incentives. One possibility

could be to subsidize all of the facility installation and maintenance costs by designating a place

for the transportation firms to install their charging network. These designated facilities can be

used by more than one transportation firm, and each firm can install their own charging network

at these locations—for the firm not to risk longer waiting times. Such an initiative taken by

public authorities will eliminate the charging facility installation and maintenance costs for the

transportation firm. When designing this incentive mechanism, the public authority should decide

on the number of facilities provided in the service area. This variable can be controlled by the δ

parameter in our setup. For any given value of δ, the transportation firm will solve SFMP by setting

A = 0 and m f
t = 0 ∀t. Obviously, smaller δ values will entice a transportation firm to switch to

e-trucks earlier, resulting in lower CO2 emissions; however, the total installation and maintenance

costs for the public authority will be higher. The decision should be made by resolving this

trade-off. Figure 2 depicts the trade-off between emission savings obtained and the corresponding

cost for the public with this initiative, considering a single transportation firm. On this graph,

each point is an efficient solution, and the point (0, 0) denotes the default action of not providing

this subsidy. If the public authority solves this problem for the firm with the densest demand,

the resulting charging facility network will enable longer productive driving times for the firms

with sparser demand (in comparison to the optimal charging network that the firm would have

invested on its own), benefiting the whole transportation sector operating in the region. Therefore,

the emission savings reported in Figure 2 for a particular public cost will be (much) higher. The

figure shows that for higher levels of subsidy, the green ratio increases, as might be expected.

Moreover, the “biggest bang for the buck” materializes in the dense demand case.
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Figure 2: Efficient Frontier for Emission Savings versus Public Cost. First numbers in the boxes indicate the Green
Ratio at that efficient solution.

5 Conclusions

In this study, we model the adoption of electric vehicles in the context of an existing fleet of

commercial diesel trucks. In contrast to prior research, our model explicitly considers sequential

investment decisions within a time horizon and includes charging infrastructure costs, as part of

the investment strategy of a firm that explores the possibility of adopting electric trucks. Our model

also distinguishes itself from prior research by considering the effect of infrastructure density on

the fleet size itself. Infrastructure is not only required to enable access to a larger service area,

but a denser charging infrastructure also implies shorter unproductive driving times (driven by

shorter detours and queueing times) and, thus, affects the total capacity requirements. Our model,

therefore, enables firms to evaluate medium to long-term investment strategies by simultaneously

considering the effects of the adoption of e-trucks and the required infrastructure.

Through a numerical experiment based on a realistic data set, we generate a number of insights.
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First, in most of the scenarios we consider, it is cost-optimal to invest in e-trucks. Considering that

e-trucks are also generally more environment-friendly, this result suggests that the adoption of e-

trucks has the potential to bring about the disruptive change required, if emission targets are to be

met. However, the adoption potential of e-trucks depends to a large extent on the demand density

in the area they are assigned to serve. The optimal fleet for scenarios with a dense demand is

consistently greener than that for a sparse demand, mainly due to the infrastructure requirements.

Infrastructure needs to be developed regardless of whether demand is dense or sparse, thus, all

else equal, a dense demand area will utilize a given charging instrument to a higher degree and

thus result in less unproductive time. In the case that firms can introduce/pilot the fleet changes

in different areas, denser demand areas appear to be particularly well suited for this technology

shift. Our results suggest that when demand is dense enough, the optimal policy of investing

in e-trucks seems to be quite robust to parameter changes; whereas in sparse demand areas, the

optimal solution can shift from no investment in electric technology towards the majority of the

fleet being e-trucks, as particular problem parameters change. Moreover, our results suggest that,

in such dense environments, e-trucks need not have a comparable range to d-trucks to become

attractive. E-trucks can therefore be equipped with smaller (cheaper and lighter) batteries. In fact,

our results show that fast charging small batteries to 80% capacity provides enough autonomy to

the trucks. In particular, we see that 300 kWh batteries with charging stations spaced 40Km apart

are the sweet spot for the demand density we analyzed.

Our results demonstrate the importance of coupling the e-truck adoption strategy with the

charging infrastructure investment decisions. In particular, over-investing in infrastructure with

the aim of minimizing emissions results in relatively low emission savings at the expense of severe

increases in total costs, in comparison to the coupled optimal solution.

Given that we compare diesel vehicles to electric ones, it stands to reason that the fuel used in

the electricity generation plays a decisive role. We show that even a relatively clean energy mix

such as the one implemented in California results in higher e-truck adoption and brings about

substantial reductions in total transportation emissions.

Our results also show that for a large number of settings, the optimal policy is a gradual shift

towards electric trucks resulting in a mixed fleet, during the transition to a greener fleet. Thus,

even though regulators are already envisioning a hard cut-off point after which all vehicles should
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be zero-emissions, the decision itself need not be “all at once”.

Concerning regulatory intervention, if the charging infrastructure is to be subsidized to entice

the transition, the usual suspect is to invest in dense-demand regions. Our results show that even

pricing the transport emissions at moderate levels has a significant impact on the adoption of the

cleaner transport alternative, unlike previous findings in literature concerning the transition to

cleaner transport modes.

Our motivation to study electric trucks as the contending green technology stems from the

current developments in truck manufacturers. However, there are other green technologies in

preparation, lab, or idea phase making the future of electric trucks precarious. Our model is generic

enough to analyze the adoption of any given truck fueling technology, barring a fundamentally

different freight transporting technology, such as hyperloop. An interesting problem is which

technology to invest in, given multiple promising contenders with inherent uncertainty, which

requires future research attention.

31



References

Adkins, R., D. Paxson. 2011. Renewing assets with uncertain revenues and operating costs. Journal

of Financial and Quantitative Analysis 46(3) 785–813.

Adkins, R., D. Paxson. 2017. Replacement decisions with multiple stochastic values and deprecia-

tion. European Journal of Operational Research 257(1) 174–184.

Aflaki, S., S. Netessine. 2017. Strategic investment in renewable energy sources: The effect of

supply intermittency. Manufacturing & Service Operations Management 19(3) 489–507.

Afroditi, A., M. Boile, S. Theofanis, E. Sdoukopoulos, D. Margaritis. 2014. Electric vehicle routing

problem with industry constraints: Trends and insights for future research. Transportation

Research Procedia 3 452–459.

Ansaripoor, A. H., F. S. Oliveira, A. Liret. 2016. Recursive expected conditional value at risk in

the fleet renewal problem with alternative fuel vehicles. Transportation Research Part C: Emerging

Technologies 65 156–171.

BusinessInsider. 2019. CO2 European emission allowances.

https://markets.businessinsider.com/commodities/co2-emissionsrechte. Accessed: 2019-10-

01.

Carbonfund. 2019. How we calculate? https://carbonfund.org/how-we-calculate/. Carbonfund.org

Foundation. Accessed: 2019-10-01.

Chocteau, V., D. Drake, P. R. Kleindorfer, R. Orsato. 2011. Collaborative innovation for sus-

tainable fleet operations: The electric vehicle adoption decision. INSEAD Working Paper No.

2011/52/TOM/INSEAD Social Innovation Centre. https://ssrn.com/abstract=1791623.

Coppola, G., O. Kharif. 2018. Daimler adds two electric trucks in race against Tesla,

VW. https://www.bloomberg.com/news/articles/2018-06-06/daimler-adds-two-electric-trucks-

in-race-against-tesla-vw. Accessed: 2019-10-01.

Cortés-Murcia, D. L., H. M. Afsar, C. Prodhon. 2019. Recharge at lunch, an alternative to handle

the range issues of electric vehicles. Université de Technologie de Troyes. Working Paper.
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