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This paper presents an evaluation of several GNSS multicarrier ambiguity (MCAR) resolution techniques for the purpose of
attitude determination of low earth orbiting satellites (LEOs). It is based on the outcomes of the study performed by the University
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PROGENY. The existing MCAR literature is reviewed and eight possible variations of the general MCAR processing scheme are
identified based on two possible options for the mathematical model of the float solution, two options for the estimation technique
used for the float solution, and finally two possible options for the ambiguity resolution process. The two most promising methods,
geometry-based filtered cascading and geometry-based filtered LAMBDA, are analysed in detail for two simulated users modelled
after polar orbiting LEOs through an extensive covariance simulation. Both the proposed Galileo constellation and Galileo used
in conjunction with the GPS constellation are tested and results are presented in terms of probabilities of correct ambiguity
resolution and float and fixed solution baseline accuracies. The LAMBDA algorithm is shown to outperform the cascading
method, particularly in the single-frequency dual-GNSS system case. Secondly, more frequencies and multiple GNSS always offer
improvement, but the single-frequency dual-system case is found to have similar performance to the dual-frequency single-system
case.
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1. Introduction

PROGENY (PROvision of Galileo Expertise, Networking
and support for International Initiatives) is a research and
technological development project launched by the Euro-
pean GNSS Supervisory Authority (GSA), in the frame of the
6th Framework Programme. PROGENY consists of a series
of activities supporting the innovation and international
initiatives in relation to the Galileo programme. In particular,
the project has established a platform for scientific and
technological cooperation with different regions worldwide,
and has run a set of targeted studies in cooperation with
international partners.

This paper presents the results of the study performed
by the University of Calgary Department of Geomatics
Engineering related to the definition of a method for
LEO satellite attitude determination, using Multiple Carrier
Ambiguity Resolution (MCAR).

GNSS-based attitude determination is accomplished
by kinematic carrier-phase GNSS techniques. Namely, a
number of short baselines are established on the vehicle
with known coordinates in the vehicle body frame. Carrier-
phase GNSS is used to determine local level frame (east,
north, vertical) components of the same baselines and the
knowledge of the baselines in both frames is then used to
establish the rotation angles between the two frames.
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In order for attitude to be determined precisely, the GNSS
baseline components must be estimated using fixed carrier-
phase ambiguities. There are presently two main approaches
to dual-frequency kinematic double-difference ambiguity
resolution, and these two methods can be generalized to the
case where modernized GPS and Galileo provide additional
observations on additional frequencies.

The first approach is to estimate a position based on
pseudorange measurements and also form the wide lane
observable by differencing the L1 and L2 phase measure-
ments. Either the pseudorange or the pseudorange-derived
position can be used to provide an initial estimate of
the widelane ambiguity. The widelane can generally be
resolved quickly over short baselines typically associated
with attitude determination (i.e., order of a few metres).
Once resolved, the next step is either to use the fixed
widelane phase range, or alternately the fixed widelane
position estimate as a starting point to estimate a float
solution for the L1 ambiguity. Because a fixed widelane phase
range is more precise than a pseudorange measurement, it
becomes possible to estimate the L1 float ambiguity with
sufficient confidence to allow it to be resolved quickly.
The sequence of steps between pseudorange, widelane,
and L1 has led to this method being called “cascading.”
Triple-frequency variations of this algorithm have been
proposed for both modernized GPS and Galileo where an
additional step is added to make use of the third frequency
to form an even longer wavelength widelane observable
before cascading down to the widelane observable. These
methods are generally referred to as either three carrier
ambiguity resolution (TCAR), multiple carrier ambiguity
resolution (MCAR), or simply cascading integer resolution
(CIR) methods [1].

The second approach to multiple frequency kinematic
ambiguity resolution involves using Teunissen’s Least squares
AMBiguity Decorrelation Adjustment (LAMBDA) method
to determine an optimal linear combination of a set of float
ambiguities for the purposes of ambiguity resolution [2, 3].
In this method, any set of float ambiguities may be estimated
and then a linear combination is found that minimizes the
correlation between the set of ambiguity states.

In both these methods, either geometry-free or
geometry-based processing may be used. In geometry-
free processing, double-difference observations from each
satellite are treated independently until ambiguities are
resolved at which point the fixed phase range is used to
compute a position solution. In Geometry-based processing,
the float ambiguities and the baseline vector are estimated
together and the baseline vector is then improved once the
ambiguities are resolved [4, 5].

In the geometry-based case, the inclusion of observations
from more satellites, or satellites from more than one system
(e.g., GPS and Galileo) has been previously shown to result in
improved ambiguity resolution performance. Likewise, the
addition of a third frequency has been shown to improve
geometry-free ambiguity resolution [6].

The major contribution of this paper is that it presents,
to our knowledge, the first large-scale comparison through
simulation of geometry-based LAMBDA to geometry-based

cascading for any application (terrestrial or orbiting, posi-
tioning or attitude determination). Most previous work
comparing the two methods was theoretical only and
addressed only the geometry-free case [7] though the
geometry-based case is addressed in [8].

This paper aims to demonstrate the effectiveness of
various multicarrier ambiguity resolution methods for the
purpose of attitude determination of a Low Earth Orbiting
(LEO) satellite. The remainder of the paper is divided into
three sections. Following a brief review of carrier phase
GNSS in Section 2, a set of simulation scenarios are defined
in Section 3 in order to assess several ambiguity resolution
methods for two typical LEO orbiting users tracking GNSS
satellites. Performance is assessed by simulating the use
of Galileo alone, and Galileo and GPS together with one,
two and three frequencies. The results of this series of
simulations are presented in Section 4 with an emphasis on
the performance of each method in each scenario in terms of
probably of correct ambiguity resolution.

2. Background

GNSS data processing for attitude determination can be
divided into four steps listed in what follows. The first three
steps are identical to the process of carrier-phase GNSS
positioning without attitude determination. The difference
is that for attitude determination the baseline(s) being
determined connects two or more points on a vehicle with
known coordinates in the body frame of the vehicle. Attitude
determination is then implemented in the fourth step.

(1) Float Ambiguity Solution. This is the process of using
the available observations to estimate a real-valued (float)
estimate of the carrier phase ambiguities. These ambiguity
estimates may, if necessary, be filtered over time in order to
reduce their uncertainty.

(2) Ambiguity Resolution. This is the process of resolving
the float ambiguities to integer values. The output from the
ambiguity resolution process is a set of integer carrier phase
ambiguities. It is noted, however, that the ambiguities are not
necessarily guaranteed to be correct.

(3) Fixed Ambiguity Baseline Solution. The integer ambi-
guities are used, along with the corresponding carrier
phase measurements, to generate an estimate of the relative
position vector between the two receivers involved in the
double-difference. This relative position vector is usually
called the baseline vector, or simply “baseline.”

(4) Convert Baseline Solution to Attitude Solution. This is
the process of using the known baseline vectors in the
body frame of the vehicle (spacecraft) and baseline vectors
obtained from the GNSS solution in the local-level frame to
estimate the attitude of the vehicle.

Each of these steps is discussed in more detail in the
following sections.
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2.1. Float Solution. The primary objective of the float
solution is to obtain an initial, real-valued, estimate of
the carrier phase ambiguities. The actual implementation
of the float solution will depend on the data processing
strategy adopted, but these strategies can be broken down
into two categories: geometry-free and geometry-based [9,
10].

2.1.1. Geometry-Free Approach. The geometry-free approach
is not concerned with the position of the receiver and
instead aims to estimate the double-difference range and
ambiguity to each satellite, along with any significant
systematic errors. The pseudorange and carrier phase mea-
surements made on one or more frequencies are the inputs
into the system. The state vector usually consists of the
range to the satellite, the ambiguities to be estimated
and optionally an ionospheric error term. The latter is
usually only included when the residual double-difference
ionospheric error is nonnegligible. For the case at hand
however, because the receivers are all located within a few
metres of each other, the ionosphere term can be safely
neglected.

The fact that each satellite is treated separately is both
an advantage and a disadvantage. It is an advantage because
it provides a relatively simple implementation and it does
not depend on the number of satellites in view, nor their
distribution in the sky. It is a disadvantage because it does not
exploit the fact that the measurements to all of the different
satellites are related via the position of the receiver. In other
words, no information is shared between filters estimating
each double-difference ambiguity, which generally degrades
performance. A further disadvantage is that the pseudorange
errors—particularly multipath—can significantly degrade
reliability.

2.1.2. Geometry-Based Approach. In contrast to the
geometry-free approach, the geometry-based approach
explicitly estimates the baseline vector between the two
receivers along with the ambiguities and any other systematic
errors. Again, for the short baselines involved in this
application, these systematic errors need not be considered.
The state vector is usually divided into two components,
a vector of ambiguities to the various satellites and the
remaining states such as position, velocity, and so forth. In
this way, all of the observations are linked together via the
position information which provides geometric strength to
the solution. This also implies that the ambiguities for all the
satellites are estimated together, instead of on a satellite-by-
satellite basis, as with the geometry-free approach.

The main disadvantage of the geometry-based approach
is that it is dependent on the number and distribution of the
satellites being tracked. As such, if the number of satellites
tracked decreases below four, or if the distribution of
satellites in the sky is unsatisfactory, performance will suffer.
That said, for the application at hand, and for the planned
number of GNSS satellites in orbit (Galileo with/without
the addition of GPS), this is not expected to play a major
role.

2.2. Carrier Phase Ambiguity Resolution. In practice, there
are several strategies of ambiguity resolution, and in the
present section, the implementation details of each will
be described. As discussed earlier, ambiguity estimation
techniques can be broadly classified as either geometry-based
or geometry-free, depending on whether or not baseline
vector components are estimated simultaneously with the
ambiguity states. Ambiguity resolution methods can be
further classified as instantaneous or filtered depending on
whether or not more than a single epoch of observations
is used in the estimation process. Finally, multifrequency
methods can be further divided between those that use
specific linear combinations of the various frequencies
(referred to as cascading methods in this paper) and those
that attempt to estimate the optimal combination on the fly
(LAMBDA).

2.2.1. Widelaning, Cascading Methods and LAMBDA. In the
simplest sense, ambiguity resolution can be accomplished
by comparing an absolute measurement (a code pseudor-
ange) with a relative measurement (a phase measurement)
to determine the bias between the two (the ambiguity).
Conceptually, this requires that the code pseudorange be
accurate enough that one can confidently determine the
phase ambiguity. In practice, this means that the uncertainty
on the code measurement must be significantly less than
the carrier wavelength so that the code measurement can
place you definitively in a particular carrier phase cycle.
In low frequency radio-navigation systems this is relatively
easy but in GNSS, the wavelengths are short and the code
measurements are relatively noisy. For example, the GPS
L1 wavelength is approximately 19 cm but a typical double-
differenced code measurement may have errors on the order
of 50 cm or more.

Widelaning. If measurements on more than one frequency
are available, it is possible to form linear combinations of
these measurements that have larger effective wavelengths.
Specifically, a widelane (WL) observation is formed when
two phase observations are subtracted from each other.
The resulting linear combination has a frequency equal to
the difference between the frequencies of the two original
observations,

fWL = fa − fb, (1)

λWL = c

fWL
= c

fa − fb
. (2)

With current dual-frequency GPS, a widelane observation

ϕWL = ϕL1 − ϕL2 (3)

can be formed. The resulting combination has an effective
wavelength of approximately 86 cm, making it more rea-
sonable to estimate the widelane ambiguity from a between
receiver single-differenced code pseudorange measurement.
Once the widelane ambiguity has been determined, a fixed
widelane phase range can be formed that can then be used to
estimate the L1 ambiguity.
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Table 1: Characteristics of modernized GPS and GALILEO open service frequencies and signals.

Signal Modulation Frequency (MHz) Wavelength (m) Chipping rage (Mc/s)

Modernized GPS
L1 C/A BPSK 1575.42 0.190 1.023

L2 C BPSK 1227.60 0.244 1.023

L5 BPSK 1176.45 0.254 10.23

Galileo
E1-E2 MBOC 1575.42 0.190 1.023

E5b AltBOC 1207.14 0.248 10.23

E5a AltBOC 1176.45 0.254 10.23

Table 2: GPS and Galileo widelane wavelengths in metres.

(a)

GPS

L1

0.8619 L2

0.7514 5.8610 L5

(b)

Galileo

E1-E2

0.8140 E5b

0.7514 9.7684 E5a

With the addition of a third frequency on GPS and the
deployment of Galileo, new widelane phase combinations
are possible. From (2) it should be noted that a widelane
wavelength is inversely proportional to the difference in the
frequencies of the two signals involved. For this reason L2
and L5 in GPS and E5a and E5b in Galileo can be used to
form very long wavelength widelanes that are often referred
to as the extra-widelane (EWL) combination. For GPS L2-
L5, the EWL wavelength is 5.861 m. For Galileo E5a-E5b
it is 9.768 m. The existence of these very long wavelengths
forms the basis for a number of integer cascading ambiguity
resolution algorithms. Table 1 lists the modernized GPS and
Galileo frequencies and wavelengths while possible widelane
combinations are listed in Table 2.

Cascading Algorithms. The use of the L2-L5 widelane as the
first step in a cascaded ambiguity resolution for GPS has been
proposed by many researchers, particularly for the geometry-
free case [11, 12], and similar algorithms have been proposed
for Galileo [13, 14]. When the EWL ambiguity is resolved,
the resulting phase-range is then used to estimate a shorter
wavelength widelane ambiguity and this process is continued
until the L1 ambiguity is resolved at which point a carrier-
phase position solution is computed from the fixed L1 phase
measurements. GPS methods have traditionally been called
CIR (cascaded integer resolution) methods while Galileo
methods have been referred to as TCAR or MCAR (triple-
or multicarrier ambiguity resolution) methods.

Most additional previous work focuses on finding better
linear combinations of the three phase measurements (other
than EWL, WL, L1) to increase the likelihood of successful
ambiguity resolution in the presence of large differential

atmospheric errors for long baseline surveying applications
[15–19]. There have been some attempts to use triple-
frequency GPS and triple-frequency Galileo simultaneously
in geometry-based ambiguity resolution techniques [4, 5]
including the use of the two common frequencies (L1 and
L5) to obtain an additional double-differenced measurement
between the two systems [6].

The LAMBDA Approach to Multifrequency Ambiguity Reso-
lution. The Least squares AMBiguity Decorrelation Adjust-
ment (LAMBDA) method is a generic method for ambiguity
resolution [20]. The method can be applied to any set of float
ambiguities that have been jointly estimated (meaning that
the float ambiguities share a covariance matrix). The method
can either be applied to the multifrequency geometry-free
case or to single- or multifrequency geometry-based cases.
Its excellent performance on short baselines is well known
and is described in [21]. In the geometry-free case two or
three ambiguities are being estimated for a single double-
difference satellite pair. In the geometry-based case, several
ambiguities and baseline vectors are being estimated. In both
cases, the key to the use of the LAMBDA method is in the
fact that double-differenced ambiguities that are estimated
together are usually highly correlated. Earlier search-based
techniques would estimate float ambiguities for either of the
two above-mentioned cases and then search a large volume
of possible ambiguity sets around the float solution for
the best fitting fixed ambiguity solution. Unfortunately, due
to the high correlation of the ambiguity states, the search
volume is typically very large making these methods very
time consuming [22]. The LAMBDA method also employs
a search, but prior to the search, it attempts to find a linear
transformation of the ambiguity set being estimated that
decorrelates the ambiguities from each other while main-
taining their integer nature. Unlike the cascading methods
mentioned earlier, which rely on specific linear combinations
of the phase measurements to facilitate ambiguity resolution,
the LAMBDA method uses the covariance matrix of the float
ambiguity solution to find the optimal linear combination
to facilitate ambiguity resolution. It has been previously
shown that the various cascading schemes (where the linear
combinations allowed are restricted the EWL, WL, and L1)
are theoretically suboptimal compared to the LAMBDA-
derived linear combinations in the geometry free case [7].
The LAMBDA method’s application to the multifrequency
ambiguity resolution problem has been studied extensively
in [6, 23–28].
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2.2.2. Geometry-Based AR and Assessing Probability of Correct
Fix. The general mathematical model for geometry-based
carrier-phase GNSS positioning can be described as follows:

z = Hx + v = [ H1 H2
]×

[
x1

x2

]

+ v, (4)

where z is the observation vector, x is the state vector to
be estimated in the filter, comprised of the ambiguities sub-
vector x1 and the other parameters x2 to be estimated,
for example, position, ionospheric and/or tropospheric esti-
mates, H is the design matrix for the full state vector x, and
H1 andH2 are the corresponding design matrices for states x1

and x2, v is the measurement noise, generally assumed to be
white and to follow a Gaussian normal distribution. There
are three steps to resolve the ambiguities to their integer
values, which can be described as follows.

(1) Estimate the ambiguities as real values, x̂1, with
the other state parameters, x̂2. The integer nature of the
ambiguities is ignored and the estimates are referred to as
float estimates. The corresponding covariance matrix of the
errors of the state vector can be the partitioned into the
covariance of the ambiguity errors, the covariance matrix of
the other states, and a cross-covariance term

P =
[
Px̂1 Px̂1x̂2

Px̂2 x̂1 Px̂2

]

. (5)

(2) Determine the integer value x̆1 of ambiguities based
on the float estimates x̂1. Various methods have been
proposed in the process of integer fixing, as discussed earlier.

(3) Compute the fixed estimates of parameter x̆2 based
on the earlier fixed integer ambiguities. The fixed estimates
and their variance can be formulated from the solution in
the aforementioned Step 1 as

x̆2 = x̂2 − Px̂2 x̂1P
−1
x̂1

(
x̂1 − x̆1

)
, (6)

Px̆2 = Px̂2 − Px̂2x̂1Px̂1
−1Px̂1 x̂2 , (7)

where the covariance of the fixed estimates Px̆2 is valid only
under the assumption that the ambiguities have been fixed
to their correct values. In the aforementioned Step 2, the
process of obtaining the integer values of the ambiguities can
be defined as a mapping of the real space to the integer space.
Then the probability that a given integer vector x̆1 is equal to
a particular integer vector z, and can be assessed as

P
(
x̆1 = z

) = P
(
x̂1 ∈ Sz

) =
∫

Sz
px̂1 (s)ds, (8)

where px̂1 is the probability density function (PDF) of
the float ambiguities [29]. This defines the probability of
correctly resolving the ambiguities, or the probability of
correct fix (PCF).

However, it is difficult to quantify (8) numerically
because of the complexity of the so-called pull-in region
and the computational load of the integration process. Thus
a simplification or approximation is required. There have
been various bounds proposed to approximate the PCF [29].
A method of ambiguity bootstrapping is widely used and

adopted to determining a lower bound of the PCF [29–31].
The evaluation is based on the following expressions:

P
(
x̆B = x

) =
n∏

i=1

(
2Φ
(

1
2σx̂i|I

)
− 1
)

, (9)

Φ(x) = 1√
2π

∫ x

−∞
e−(1/2)n2

dn. (10)

In (9), x̆B is the bootstrapped integer ambiguity vector,
σx̂i|I is the conditional standard deviation of ambiguity i
conditioned on the previous I = (1, 2, . . . , i− 1) ambiguities,
and Φ(x) describes the area under the normal distribution.

There are many methods to fix the float ambiguities to
integer values in Step 2. In the case of ambiguity rounding,
the conditional nature of the conditional standard deviations
are ignored and an estimate of the PCF can be obtained
from the variances of the float ambiguities. It has been
previously observed that (9) is not invariant to ambiguity
parameterizations [29–32]. In the remainder of this paper
the PCF is quantified in terms of Probability of Incorrect
Fix (PIF), which is equal to one minus PCF. Likewise,
the lower bound of probability of correct fix becomes an
upper bound on the probability of incorrect fix. In this
case “good” performance is represented as a small upper
bound (significantly less than 1) while “poor” performance
is represented by an upper bound on PIF that is close to one
(suggesting that incorrect ambiguity resolution is likely).

2.3. Fixed Ambiguity Baseline Solution and Transformation
to Attitude Solution. Generally speaking, if the carrier phase
ambiguities are resolved to their correct integer values, the
accuracy of the baseline estimate obtained from (6) is on the
order 1–3 cm in each coordinate direction. However, if one or
more ambiguities are resolved to an incorrect integer value,
then the baseline solution will contain errors on the order
of the carrier phase wavelength (e.g., approximately 19 cm
at L1). This is why the ambiguity resolution process is so
critical. Fixed position accuracy can be obtained from the
covariance matrix of the fixed solution obtained with (7).

The baseline solution obtained from (6) can then be
used to compute the attitude of the vehicle. We denote this
solution in the local level frame as δx� . Assuming the baseline
vector between any two antennas is also known in the body
frame, δxb, then the following relationship will hold:

δx� = R�bδx
b, (11)

where R�b is the rotation matrix that transforms a vector
in the body frame into the local level frame. The assumed
convention for the rotation matrix is

R�b = R3(α)R1(−β)R2(−γ), (12)

where γ, β, and α are respectively the roll, pitch and azimuth
of the vehicle, and R1, R2, and R3 are rotation matrices
about the primary (x), secondary (y), and tertiary (z) axes
respectively. It is noted that other orders of rotations can also
be used without loss of generality.

Assuming two noncolinear (nonparallel) baseline vectors
are available, (11), (12) allow for the estimation of the
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attitude parameters using the known baseline vectors in the
body frame and the measured baseline vectors in the local
level frame. Mathematically,

δx̂� = δx� + ε�δx

= R�bδx
b + ε�δx,

(13)

where ε�δx are the errors in the baseline vector estimated from
the GNSS data. Estimation of the attitude parameters can
be performed using least-squares or Kalman filtering. The
covariance matrix of the attitude solution can be obtained
from the covariance matrices of baselines though covariance
propagation [33].

3. Simulation Test

In this section, the accuracy of a short baseline is simulated
for two different LEO satellites. The accuracy is highly depen-
dent on the ability to correctly resolve integer ambiguities,
and as such the first step is to assess the ambiguity resolution
performance.

3.1. Simulation Parameters. The signal characteristics of
modernized GPS and Galileo have been investigated in great
detail by many researchers [34]. Only the GPS civilian signals
and Galileo open service (OS) signals will be considered in
this study, their characteristics are listed in Table 1.

Note that the open services of modernized GPS and
Galileo have two frequencies in common, but the third
frequency on each is unique. Because of this, it could be
possible to form double-difference observations between
the two systems using L1 and E1/E2 phase measurements
and also L5 and E5a [6]. However, this is not possible for
L2 and E5b. Double-differencing between systems was not
conducted in this study and for all three frequencies a base
satellite was assigned for each system.

No official documents on the range accuracy of future
GPS and Galileo signals have been released but several studies
quantify the signal performances of future GNSS systems
(e.g., [35]). The code and carrier observations are affected by
systematic errors and random noise. However, for attitude
determination applications, where the baseline is very short,
the only error sources that will not be completely cancelled
by differencing are the code and phase multipath and the
receiver noise. Code multipath and noise depend on the
structure of the code and the design or the receiver. Phase
noise can be assumed to be a few percent of a carrier cycle
for all of the signals and similarly phase multipath can be
shown to have a maximum amplitude of one quarter of the
wavelength and typical values of less than a few centimetres
[36].

3.1.1. Frequency Combinations. In all of the cascading meth-
ods described earlier only a single code measurement is
used for each satellite. In principle, this should be the code
measurement with the smallest measurement noise and the
smallest multipath. The same can be said for the LAMBDA-
based methods. In principle, it is possible to use multiple

code observations in a geometry-based least-squares or
filtered LAMBDA solution, but in practice, little is gained
from this, particularly in short baselines where there are no
residual ionospheric errors.

In the geometry-based LAMBDA and cascading simula-
tions presented in what follows, a single code observation
from each satellite is used in conjunction with one, two or
three phase measurements from each satellite. The following
three frequency combinations are assessed.

Single-frequency. In this case, only L1 and E1/E2 code
and phase measurements are used. LAMBDA is applied to
decorrelate the estimated ambiguities and obtain PCF esti-
mates. This is contrasted with what could be called “single-
frequency cascading” or simply single-frequency ambiguity
resolution without the application of LAMBDA. In both
cases, the total number of double-difference ambiguities
estimated is (nGPS−1)+(nGal−1) where nGPS and nGal are the
number of GPS and Galileo satellites tracked, respectively.

Dual-frequency. In the dual-frequency case, L2 and E5b
phase observations are added to the single-frequency case
described earlier. In both the LAMBDA and cascading
scenarios this doubles the number of ambiguities to be
estimated to 2 × [(nGPS − 1) + (nGal − 1)]. With LAMBDA,
the ambiguities consist of some linear combination of
all the ambiguities on each frequency (as determined by
the algorithm) while with cascading the ambiguities are
specifically the Widelane ambiguities (which are resolved
first) followed by the L1 and E1/E2 ambiguities.

Triple-frequency. Finally, for the triple-frequency case, the
number of ambiguities increases again to 3 × [(nGPS − 1) +
(nGal − 1)]. Again, for LAMBDA, the ambiguities being
estimated are some linear combination of the ambiguities
of the three frequencies while for triple-frequency cascading
the extra-widelane (EWL) ambiguities are first resolved,
followed by the widelane (WL) ambiguities, and finally the
L1 and E1/E2 ambiguities.

In both the cascaded and LAMBDA cases, the same input
covariance matrix of the ambiguities is used, however, in
the LAMBDA cases the LAMBDA algorithm is allowed to
determine the optimal decorrelating transformation while in
the cascading cases a fixed set of linear combinations (EWL,
WL, and L1) are used.

3.1.2. Constellations. According to the Galileo Mission High
Level Definition document [37], the space segment com-
prises a constellation of a total of 30 MEO satellites in 3
orbital planes inclined at 56 degrees at 23616 km altitude.
For the simulation, the satellites were assumed to be equally
spaced in each plane. The satellites in the second and
third planes where advanced by 12 and 24 degrees in
mean anomaly with respect to the first plane. The relative
orientation of the GALILEO constellation with respect to
the GPS constellation has not yet been determined and due
to the different inclination and orbital radius of the two
systems, will not be constant over time either [38]. As a
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Figure 1: Combined GPS and GALILEO constellation on Septem-
ber 30, 2007 (GPS PRN: 1∼32 (noninclusive), GALILEO PRN:
36∼65).

result, the ascending nodes of the three orbital planes of the
simulated GALILEO constellation were arbitrarily assigned
right ascensions of 0, 120, and 240 degrees respectively. For
fair comparison, the real GPS constellation consisting of 30
satellites as it existed at the start of GPS week 1430 was used.
GPS is officially a 24 satellite constellation but has had on the
order of 30 satellites for the past several years. At the time of
writing, there were 32 GPS satellites but a 30 GPS satellite
constellation was chosen because previous studies have
shown that small differences in the number of satellites (e.g.,
between 24 and 32) does not greatly affect the results in terms
of positioning accuracy or ambiguity resolution. However,
differing numbers of satellites can lead to conclusions about
one constellation providing better performance than another
and in a vast majority of cases the constellation with
more satellites provides better performance [23, 39] . To
distinguish the two constellations, the Galileo satellites have
been arbitrarily assigned the numbers 36 through 65. A
combined constellation is shown in Figure 1.

3.1.3. Masking Environment. It is assumed that the satellite-
borne antennas are facing in the radial direction, have
hemispheric gain patterns and an unobstructed view of the
sky. An isotropic mask angle of 5 degrees is assumed to limit
use of low elevation signals that are likely to be corrupted by
large multipath (from other surfaces on the satellite, e.g.).

3.1.4. User Motion and Orbit Descriptions. The simulated
users are two low earth orbiting (LEO) satellites in either
highly inclined (near polar) or moderately inclined orbits.
Two typical LEO users were modelled after two existing LEO
satellites. ENVISAT, a European space agency earth obser-
vation satellite was selected as a model for a polar orbiting

Table 3: Keplerian elements and other orbital information used to
simulate LEO users.

ENVISAT ISS

Semimajor Axis (a) 7155 km 6712.5 km

Eccentricity (e) 0.0001030 0.0001202

Inclination (e) 98.5◦ 51.6◦

Right-ascension of
ascending node (Ω)

161.5◦ 51.6◦

Argument of Perigee (ω) 0◦ 331.9◦

Mean anomaly 263.19◦ 28.22◦

Mean orbital altitude 790 km 338.7 km

Period 101-minutes 91.31-minutes

LEO. The satellite is in a near-polar sun-synchronous orbit
with an orbital period of 101-minutes and an altitude of
approximately 790 km. The International Space Station (ISS)
was selected as an example of a LEO in a moderately inclined
orbit. The Keplerian elements used for each satellite and
some other information are given in Table 3. It should be
noted that these orbital elements are approximate values
taken from public sources and are neither synchronized with
each other nor with the simulated GNSS constellations. They
are meant to be representative of each type of user on an
arbitrary day and time. Typical ground tracks for the two
satellites as well as the ground tracks for the GPS and Galileo
satellites are shown in Figures 2 and 3. Note that the GNSS
satellites are in medium earth orbit, far above the user LEOs.
In the two figures, the blue portions of the GNSS satellite
ground tracks indicate periods when they are in the field of
view of the LEO and are being used in the solution.

3.1.5. Simulation Time and Data Rates. The trajectories of
the two user LEOs and the two GNSS constellations were
modelled for an arbitrary 24-hour period. In this 24-hour
period, filtered geometry-based LAMBDA and cascading
ambiguity resolution schemes were implemented with a
reset interval of one-minute such that 1440 intervals were
evaluated. This was done to create many samples of the initial
convergence phase of the filter, which is of interest in terms
of ambiguity resolution performance. A data rate of one
observation per ten seconds (0.1 Hz) was assumed for the
purposes of evaluating ambiguity resolution methods.

At the beginning of each one-minute interval, the
Kalman filters used in each method were reset and re-
dimensioned to handle the number of satellites that were
above the elevation mask at the start of the interval and were
above the elevation mask at the end of the interval. This was
done to avoid having to introduce or remove ambiguity states
part way though the one-minute filtering interval.

4. Data Analysis and Results

Results from using Galileo alone are now presented and
discussed followed by a section where the same simulations
are repeated but with GPS and Galileo being used together.
Each section begins with satellite availability and dilution of
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Figure 2: Typical ground track for ENVISAT shown in magenta
with the Galileo constellation. The circle containing the black cross
indicates the initial ENVISAT location (∼80◦S, ∼60◦W). The GNSS
satellites are labelled by PRN number. The blue portion of their
ground tracks indicates the GNSS satellite is being used in the
solution.
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Figure 3: Typical ground track for the ISS shown in magenta with
the combined GPS + Galileo constellation. The circle containing the
black cross indicates the initial ISS location (∼0◦N, ∼50◦E). The
GNSS satellites are labelled by PRN number. The blue portion of
their ground tracks indicates the GNSS satellite is being used in the
solution.

precision results, followed by 1, 2, and 3 frequency geometry-
based cascading probability of correct fix results, followed by
1, 2, and 3 frequency geometry-based LAMBDA probability
of correct fix results. The first section concludes with a
discussion of fixed ambiguity baseline solution estimates
and corresponding attitude angle error estimates and these
results can be generalized to the dual GNSS case.

4.1. Galileo Results

4.1.1. Satellite Availability and Dilution of Precision. Figure 4
shows a plot of the number of available satellites and the
corresponding HDOP and VDOP values as a function of
time for ENVISAT. Results for the ISS were very similar,
and have been omitted to save space. The main difference
between the two is that the VDOP of the polar orbiting
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Figure 4: Availability, HDOP, and VDOP of Galileo as viewed from
a polar orbiting LEO (ENVISAT) over a 24 hour period.

ENVISAT tests tends to be worse as the satellite travels over
the poles due to the lack of overhead GNSS satellites in the
polar regions.

As expected, VDOP values are larger than HDOP. This
is due the geometrical distribution of satellites in GNSS
and the fact that observability of the vertical direction is
limited by the correlation between the vertical position
state and the receiver clock offset. This effect remains
despite the elimination of the clock offset term in the
double-differencing process. A major result of this is that
generally the vertical baseline component will be poorer
than the horizontal components, making pitch and roll more
difficult to estimate than azimuth when receiver antennas are
configured in the horizontal plane.

The DOP values are also periodic with the orbital period
of the LEO as can be seen by comparing the DOP time
series to the latitude of the LEO shown in Figure 5. This
is especially true for polar satellites since when they are
over the poles, they will only see GNSS satellites on the
horizon around them (since GNSS satellites are generally
in 54 to 56 degree inclined orbits). As a result, baseline
solutions and corresponding attitude estimation quality will
vary periodically with the LEO orbit period.

4.1.2. Cascading with Galileo. Results of the geometry-based
cascading schemes are now presented. A single filtered 1-
minute interval (of the 1440 1-minute intervals simulated)
consisting of 6 simulated observations occurring at time =
0, 10, 20, 30, 40, and 50 seconds is presented in detail first.
The results for all 1440 trials are then shown together. An
arbitrary 1-minute segment for the ENVISAT was selected.
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Figure 5: Latitude of ENVISAT as a function of time.

For this, and every 1-minute segment, the following proce-
dure is used. First, the assumption is made that the system
is warm started meaning that the receiver has approximate
coordinates for itself and has acquired and is tracking all
visible satellite before the start of the 1-minute segment. At
the beginning of the 1-minute segment, the “rover” receiver
in the two receiver pair estimates its position with respect
to the “base” receiver to an accuracy of 1 m (1σ) in each
dimension in the satellite body frame. This initial value is
based on typical differential code positioning accuracy. A
Kalman filter is then initialized with this initial estimate
for the antenna position, and an initial ambiguity estimate
variance that corresponds also to 1 m (but is expressed in
terms of cycles).

The combined position and float ambiguity filter is
then updated once every 10 seconds with a single code
observation from each satellite, and a phase observation
for each frequency being used from each satellite for the
particular scenario. E1/E2 phase observations are used to
estimate both an E1/E2 ambiguity and WL, E5b is used to
estimate the WL and the EWL, and E5a contributes only the
EWL. Due to the short baseline length and fixed nature of
the antennas, the position (baseline component) states are
modelled as a random walk processes with a process noise of
0.01 m2/s (about a mean value determined from an existing
orbital and attitude model for the satellite) and ambiguity
states are modelled as random constant processes. After each
Kalman update, the covariance matrix of the ambiguities is
analysed to determine the lower bound on the probability of
correct fix of the full set of ambiguities using the technique
described in Section 2.2.

The Kalman covariance update equation is given by

P+
k = P−k − P−k HT

k

[
HkP

−
k H

T
k + Rk

]−1
HkP

−
k , (14)

where Hk is the design matrix, Rk is the measurement
error covariance matrix, and P−k and P+

k are the covariance
matrices of the errors of the states before and after the update
respectively. Note that for simplicity the Kalman gain matrix
is included in, but not shown as a separate quantity in (14).
The prediction step assumes that the baseline components,
and thus also the direction cosines in H are expressed
in terms of the local level frame of the satellite, thus the
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Figure 6: Sample Probability of Incorrect Fix upper bounds for
single-frequency, dual and triple-frequency cascading for ENVISAT.
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Figure 7: Sample Probability of Incorrect Fix upper bounds for the
EWL, WL, and E1/E2 ambiguities in triple-frequency cascading for
ENVISAT.

transition matrix of the system is an identity matrix and is
not shown. The Kalman covariance prediction equation is
simply

P−k = P+
k−1 +Q, (15)

where Q contains process noise for the baseline component
states and is zeros in all rows and columns corresponding the
ambiguity states.



10 International Journal of Navigation and Observation

50454035302520151050

Time since filter reset, t (s)

Float solution estimated
baseline errors-cascading-ENVISAT-Galileo

0
0.1
0.2
0.3
0.4
0.5

σ E
(m

)

(a)

50454035302520151050

Time since filter reset, t (s)

0
0.1
0.2
0.3
0.4
0.5

σ N
(m

)

(b)

50454035302520151050

Time since filter reset, t (s)

0
0.2
0.4
0.6
0.8

1

σ h
(m

)

E1/E2
WL + E1/E2
EWL + WL + E1/E2

(c)

Figure 8: Sample estimated float solution accuracy for single, dual
and triple-frequency cascading. E, N, h indicate longitude, latitude
and vertical components in the local level frame of the spacecraft.

For the cascading technique, the probability of partially
fixing each step (the EWL alone, the EWL and WL, and
all three) is also evaluated. As a final step, the estimated
covariance of the fixed position states is computed using (7).
The results of this can then be used to compute the estimated
accuracy of the derived attitude angles.

Figure 6 shows the overall probability of incorrect fix
upper bounds for single-, dual-, and triple-frequency cas-
cading (over one 1-minute interval). To interpret this figure,
consider the red line near the top. This is the probability
of incorrectly resolving the E1/E2 ambiguity as a function
of time in the case that only a single-frequency receiver is
used. The line decreases as a function of time indicating
increasing odds of correct ambiguity resolution. However,
the dual- and triple-frequency cascading options, shown
by the green and blue lines, respectively, show that dual
and triple-frequency cascading methods offer several orders
of magnitude improvement. The y-axis is logarithmically
scaled and for example 10−4 indicates a probability of correct
fix of 99.99%. Note that these are the probabilities of fixing
all of the ambiguities, and in dual- and triple-frequency cases
there are two and three times as many ambiguities to fix. But
even though there are more ambiguities to fix, the ability
to cascade substantially increases the chances of correctly
resolving the ambiguities.
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Figure 9: Sample estimated fixed solution accuracy for single, dual,
and triple-frequency cascading. E, N , h indicate longitude, latitude,
and vertical components in the local level frame of the spacecraft.

Figure 7 shows the probability of incorrect fix for each
stage of the cascading process for the triple-frequency case.
The blue line represents PIF for the EWL ambiguities as a
function of time. Note that resolving the EWL ambiguities is
more or less assured. Though it is not visible, there is a green
line plotted almost directly under the red line. This green
line represents the probability of correctly resolving the WL
after resolving the EWL. The reason it is not visible is that
resolving the WL more or less ensures resolving the E1/E2
ambiguity (in the short baseline for attitude determination
case) meaning that the probability of resolving the E1/E2
ambiguity after resolving with WL is close to unity. The
result is that the probability of resolving all three is only very
slightly less than the probability of resolving the EWL and the
WL alone. Note that the red line, representing the probability
of resolving the E1/E2 ambiguities after resolving the EWL
and WL is identical to the probability of resolving all of the
ambiguities in triple-frequency cascading which is plotted as
the blue line in Figure 6.

Figure 8 shows the corresponding float solution baseline
component accuracies as a function of time for the three
scenarios shown in Figure 6. The three baseline component
labels, E, N, and h, correspond to the longitude, latitude, and
vertical direction in the local level frame of the spacecraft.
Note that the scale of the vertical subplot is double those of
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Figure 10: Probability of Incorrect fix upper bounds for single-
frequency, dual and triple-frequency cascading for ENVISAT.

the two horizontal components corresponding the decreased
accuracy provided by GNSS in the vertical direction. Note
how float solution is relatively poor, on the order of 10 to
20 cm. In this regime, attitude determination on a short
baseline would not be feasible.

Figure 9 shows the corresponding baseline accuracy
components for the fixed solution. Note that the accuracy is
more or less constant as a function of time. These estimated
accuracies are the accuracies assuming the ambiguities have
been correctly resolved and this figure does not take into
account the fact that at the beginning of the filtering interval
the likelihood, for example, of correctly resolving the E1/E2
ambiguity with a single-frequency receiver is quite low.
However, this accuracy level does represent the steady state
assuming the ambiguities have been correctly resolved and is
useful as the attitude accuracy can be derived directly from
this baseline accuracy. For small errors, such as those shown
in Figure 9, and a simple antenna configuration with two or
three antennas in the horizontal plane, the corresponding
attitude errors expressed in radians are well approximated by
the ratio of the horizontal positioning accuracy to baseline
length for azimuth, and by the ratio of the vertical error to
baseline length for the roll and pitch errors.

Figure 10 shows the PIF as a function of time for single,
dual and triple-frequency cascading for ENVISAT. All 1440
simulations are plotted on one figure to demonstrate the
range of PIF for varying LEO to Galileo satellite geometry.
As can be seen, the sample result shown in Figure 6 was in
fact one of the best cases and even with three frequencies,
the PIF can still be relatively high (e.g., only 10%) after
a minute of filtering. Also, the larger performance gain is
from one frequency to two, with all of the PIF samples for
the single-frequency case being worse than any of the dual
or triple-frequency samples whereas there is some overlap
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Figure 11: Probability of Incorrect Fix upper bounds for the
EWL, WL, and E1/E2 ambiguities in triple-frequency cascading for
ENVISAT.

between good dual-frequency results and relatively poor
triple-frequency results. Figure 11 shows all of the samples
of EWL, WL and E1/E2 PIF for the triple-frequency case
as discussed earlier in the context of Figure 7. Again, the
sample result shown earlier is one of the better samples. From
Figure 11 it can be seen that the probability of resolving the
EWL in a triple-frequency cascading scheme is very high
and very consistent between samples while there is more
variability between the probabilities of resolving the WL in
the second step in the cascading scheme. It can also be seen
that there is little difference in the probability of resolving
the WL and the probability of resolving all three, indicating
again that once the widelanes are resolved in triple-frequency
cascading, resolving the E1/E2 ambiguities is relatively easy.

4.1.3. LAMBDA with Galileo. With the LAMBDA method,
as opposed to cascading, all of the ambiguity states are
estimated together and ambiguity resolution is facilitated by
the LAMBDA algorithm deciding what linear combination
of the original ambiguities most decorrelates the ambiguities
thus making them easiest to fix. In terms of the covariance
simulation, the same Kalman filter equations are used, only
in this case the design matrix reflects the fact that the original
ambiguities (and not widelanes) are being estimated. The
result of the float solution is then sent to the LAMBDA
algorithm for decorrelation.

Figure 12 shows the PIF results for the LAMBDA method
and can be compared directly the corresponding cascading
results shown in Figure 10. Note that there is improvement in
all three cases (single-, dual-, and triple-frequency) but most
notably the triple-frequency ambiguity resolution PIF (the
blue lines) is significantly reduced compared to cascading
demonstrating the potential of the LAMBDA method to find
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Figure 12: Probability of Incorrect Fix upper bounds for single-,
dual- and triple-frequency LAMBDA for ENVISAT.

optimal linear combinations of the ambiguities that provide
more ambiguity resolution potential compared the EWL,
WL, and E1/E2 used in the cascading method.

One important result to note is that less is gained by
adding a third frequency in terms of ambiguity resolution
for very short baselines. In other words, there is a larger
change in PIF from the single-frequency case to the dual-
frequency case than there is from the dual- to triple-
frequency case. The addition of the second frequency allows
the LAMBDA algorithm to automatically form a widelane
combination, which for a short baseline such as this, is more
than sufficient for ambiguity resolution. The addition of the
third frequency provides only a marginal improvement as
the code error in this case is smaller that the extra-wide
lane wavelength and there is no differential ionosphere error
affecting either the code or phase measurements in this
application. This is similar to the results of using cascading
(found in the TCAR/CIR literature) where the largest gains
from using three frequencies are found in longer baseline
applications. A final note about the LAMBDA results is
that close inspection shows a small number of dual and
triple-frequency trials where the PIF appears to increase
counter-intuitively from one epoch to the next. This is not
an error. An unfortunate feature using the bootstrapped
lower bound for the PCF as an estimate of the integer
least squares PCF is that the lower bound is not invari-
ant to the decorrelating linear combination found using
LAMBDA. Occasionally, the LAMBDA algorithm changes
its linear combination from one filter epoch to the next
and this can result in discontinuities, both decreasing and
increasing, in the PCF lower bound. It should be noted
that the actual PCF does not change, only value of the
bound.
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Figure 13: Availability, HDOP, and VDOP of GPS/Galileo as viewed
from a polar orbiting LEO (ENVISAT) over a 24-hour period.

4.2. GPS/Galileo Results. In this section, the results presented
for Galileo are now repeated for the case that both GPS and
Galileo are being used.

4.2.1. Availability and Dilution of Precision. With two sys-
tems, the number of satellites observed roughly doubles, as
shown in Figure 13. The corresponding DOP values also
decrease. As in the Galileo only case, the largest (poorest)
DOP values occur when the fewest satellites are tracked and
the results are periodic with the orbital period of the LEO
satellite.

4.2.2. Cascading with GPS/Galileo. Figure 14 shows the
dual GNSS probabilities of incorrect fix bounds for cas-
cading for ENVISAT analogous to those presented in
Figure 10 for the Galileo only case. The same patterns
are observed, though with roughly double the number of
observations and double the number of ambiguities to
estimate, the performance improvement is only marginal.
Likewise, the probability of successfully resolving each stage
in the three-frequency case, shown in Figure 15, is only
marginally better than the results for Galileo only shown in
Figure 11.

4.2.3. LAMBDA with GPS/Galileo. Use of the LAMBDA
method with two systems results in a major improvement
in the probability of correct fix than can be obtained with
a single-frequency receiver. Though the dual- and triple-
frequency cases are also improved with LAMBDA, the
significant improvement can be seen in the red lines in
Figure 16 when compared to the Galileo only case shown
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Figure 14: Probability of Incorrect Fix upper bounds for single-
frequency, dual and triple-frequency cascading for ENVISAT using
two GNSS.
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Figure 15: Probability of Incorrect Fix upper bounds for the
EWL, WL, and E1/E2 ambiguities in triple-frequency cascading for
ENVISAT using two GNSS.

in Figure 12. Most striking is the absence of cases where
the probability of incorrect fix hovers near the top of the
figures (in the 0.1 to 1.0 range). This can be explained
by the fact that the LAMBDA method is able to exploit

50454035302520151050

Time since filter reset, t (s)

Probability of incorrect fix-LAMBDA-ENVISAT-GPS + Galileo

L1/E1/E2
L1 + L2, E1/E2 + E5b
L1 + L2 + L5, E1/E2 + E5b + E5a

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

P
IF

u
pp

er
bo

u
n

d
Figure 16: Probability of Incorrect Fix upper bounds for single-
frequency, dual and triple-frequency LAMBDA for ENVISAT using
two GNSS.

the geometric diversity of the single-frequency signals from
the two systems by forming linear combinations of all
of the L1 and E1/E2 ambiguities while in the Galileo
only case, approximately half as many ambiguities are
available. There is less improvement with the dual and
triple-frequency cases because these cases already have a
diversity of ambiguities on different frequencies for the
LAMBDA algorithm work with even in the Galileo only
case.

4.3. Galileo versus GPS/Galileo: Recommendations. Based
on these results it can be concluded that the LAMBDA
approach is superior to the cascading approach in all cases.
However the LAMBDA method is particularly useful in the
case of a single-frequency dual-GNSS application. However
to obtain the most reliable ambiguity resolution, multiple
frequencies are required when using both one or two GNSS
constellations. If power and weight of the GNSS receiver
payload is no object, a dual-system triple-frequency receiver
using LAMBDA will provide the best performance. However,
if power and weight are an issue, a dual-frequency single-
system receiver offers similar performance to a single-
frequency dual-system one. Similar results were obtained
with the ISS as the simulated user and are therefore not
shown.

While these results consider the case of attitude determi-
nation for an orbiting user, they can be generalized to ground
based users. Of course while the absolute performance of
each algorithm will depend on measurement accuracies,
satellite geometry, and user dynamics, it is reasonable to
expect the relative performance of the algorithms to remain
unchanged.
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5. Conclusions

In this paper, the effectiveness of two approaches to multiple-
frequency carrier phase ambiguity resolution was evaluated
for case of attitude determination onboard a low-earth
orbiting satellite. The evaluation is based on simulations
of a polar orbiting LEO and an inclined orbiting LEO.
The overall conclusion is that the geometry-based LAMBDA
method is superior to the geometry-based cascading method
in terms of probability of correct ambiguity resolution,
and time required to achieve a particular probability of
correct fix. Further conclusions may also be made about the
various frequencies and systems available. The use of two
GNSS provides a significant increase in ambiguity resolution
performance while the addition of the third frequency on
each provides only marginal improvement compared to the
dual-frequency case.
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and M. Martin-Neira, “Analysis of three-carrier ambiguity
resolution (TCAR) technique for precise relative positioning
in GNSS-2,” in Proceedings of the 11th International Technical
Meeting of the Satellite Division of the Institute of Navigation
(ION GPS ’98), pp. 417–426, Nashville, Tenn, USA, September
1998.

[15] S. Han and C. Rizos, “The impact of two additional civilian
GPS frequencies on ambiguity resolutions strategies,” in
Proceedings of the ION National Technical Meeting (ION NTM
’99), pp. 315–321, San Diego, Calif, USA, June 1999.

[16] Y. Feng, “Long-range kinematic positioning made easy using
three carrier GNSS signals,” in Proceedings of the National
Technical Meeting of the Institute of Navigation, pp. 694–702,
San Diego, Calif, USA, January 2005.

[17] Y. Feng and C. Rizos, “Three carrier approaches for future
global, regional and local GNSS positioning services: concepts
and performance perspectives,” in Proceedings of the 18th
International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS ’05), pp. 2277–2287, Long
Beach, Calif, USA, September 2005.

[18] R. Hatch, “A new three-frequency, geometry-free, technique
for ambiguity resolution,” in Proceedings of the 19th Interna-
tional Technical Meeting of the Satellite Division of The Institute
of Navigation (ION GNSS ’06), pp. 309–316, Fort Worth, Tex,
USA, September 2006.

[19] M. Cocard, S. Bourgon, O. Kamali, and P. Collins, “A system-
atic investigation of optimal carrier-phase combinations for
modernized triple-frequency GPS,” Journal of Geodesy, vol. 82,
no. 9, pp. 555–564, 2008.

[20] P. J. G. Teunissen and C. C. J. M. Tiberius, “Integer least-
squares estimation of the GPS phase ambiguities,” in Pro-
ceedings of International Symposium on Kinematic Systems in
Geodesy, Geomatics and Navigation (KIS ’94), pp. 221–231,
Banff, Canada, 1994.

[21] P. J. G. Teunissen, P. J. de Jonge, and C. C. J. M. Tiberius,
“The least-squares ambiguity decorrelation adjustment: its
performance on short GPS baselines and short observation
spans,” Journal of Geodesy, vol. 71, no. 10, pp. 589–602, 1997.

[22] D. Chen and G. Lachapelle, “Comparison of the FASF
and least-squares search algorithms for on-the-fly ambiguity
resolution,” Navigation, vol. 42, no. 2, pp. 371–390, 1995.

[23] P. Alves, “Effect of Galileo on carrier phase ambiguity
resolution,” in Proceedings of the 14 International Technical
Meeting of the Satellite Division of the Institute of Navigation
(ION GPS ’01), pp. 2086–2096, Salt Lake City, Utah, USA,
September 2001.

[24] W. Cao, K. O’Keefe, M. Petovello, and M. E. Cannon,
“Simulated performance of multiple-signal and multiple-
system positioning for land vehicle navigation,” in Proceedings



International Journal of Navigation and Observation 15

of the National Technical Meeting of the Institute of Navigation,
vol. 2, pp. 603–612, San Diego, Calif, USA, January 2008.

[25] P. Joosten, P. J. G. Teunissen, and N. Jonkman, “GNSS
three carrier phase ambiguity resolution using the LAMBDA-
method,” in Proceedings of the 3rd European Conference on
Global Navigation Satellite Systems (GNSS ’99), pp. 367–372,
Genova, Italy, October 1999.

[26] S. Verhagen, “Reliable positioning with the next generation
global navigation satellite systems,” in Proceedings of the
3rd International Conference on Recent Advances in Space
Technologies (RAST ’07), pp. 618–623, Istanbul, Turkey, June
2007.

[27] S. Verhagen, P. J. G. Teunissen, and D. Odijk, “Carrier-
phase ambiguity success rates for integrated GPS-Galileo
satellite navigation,” in Proceedings Space, Aeronautical and
Navigational Electronics Symposium (SANE ’07), pp. 139–144,
The Institute of Electronics, Information and Communication
Engineers (IEICE), Ibaraki, Japan, June 2007.

[28] S. Ji, W. Chen, C. Zhao, X. Ding, and Y. Chen, “Single epoch
ambiguity resolution for Galileo with the CAR and LAMBDA
methods,” GPS Solutions, vol. 11, no. 4, pp. 259–268, 2007.

[29] S. Verhagen, “On the reliability of integer ambiguity resolu-
tion,” Navigation, vol. 52, no. 2, pp. 98–110, 2005.

[30] P. J. G. Teunissen, “Success probability of integer GPS
ambiguity rounding and bootstrapping,” Journal of Geodesy,
vol. 72, no. 10, pp. 606–612, 1998.

[31] M. G. Petovello, K. O’Keefe, G. Lachapelle, and M. E. Cannon,
“Quantifying ambiguity resolution performance in the pres-
ence of time-correlated measurement errors using geometric-
based techniques,” in Proceedings of the 61st Institute of
Navigation Annual Meeting, pp. 1073–1085, Cambridge, Mass,
USA, June 2005.

[32] K. O’Keefe, M. Petovello, G. Lachapelle, and M. E. Cannon,
“Assessing probability of correct ambiguity resolution in the
presence of time-correlated errors,” Navigation, vol. 53, no. 4,
pp. 269–282, 2007.

[33] G. Lu, Development of a GPS multi-antenna system for
attitude determination, Ph.D. thesis, Geomatics Engineering,
University of Calgary, Calgary, Canada, 1994.

[34] J.-A. Avila-Rodriguez, G. W. Hein, S. Wallner, et al., “The
MBOC modulation: the final touch to the Galileo frequency
and signal plan,” in Proceedings of the 20th International
Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS ’07), vol. 5, pp. 1515–1529, Fort
Worth, Tex, USA, September 2007.

[35] K. McDonald and C. Hegarty, “Post-modernization GPS
performance capabililties,” in Proceedings of the 56th Institute
of Navigation Annual Meeting (ION AM ’00), pp. 242–249, San
Diego, Calif, USA, September 2000.

[36] P. Misra and P. Enge, Global Positioning System, Signals, Mea-
surements, and Performance, Ganga-Jamuna Press, Lincoln,
Mass, USA, 2001.

[37] ESA, “Galileo Mission High Level Definition,” European Space
Agency, 2002.

[38] A. Leonard, H. Krag, G. Lachapelle, K. O’Keefe, C. Huth,
and S. C, “Impact of GPS and Galileo orbital plane drifts
on interoperability performance parameters,” in Proceedings of
the European Navigation Conference (ENC-GNSS ’03), p. 11,
Graz, Austria, April 2003.

[39] K. O’Keefe, “Availability and reliability advantages of
Galileo/GPS integration,” in Proceedings of the 14th
International Technical Meeting of the Satellite Division of
the Institute of Navigation (ION GPS ’01), pp. 2096–2104, Salt
Lake City, Utah, USA, September 2001.


