
�8�Q�L�Y�H�U�V�L�W�\���R�I���&�D�O�J�D�U�\

�3�5�,�6�0�����8�Q�L�Y�H�U�V�L�W�\���R�I���&�D�O�J�D�U�\�
�V���'�L�J�L�W�D�O���5�H�S�R�V�L�W�R�U�\

�*�U�D�G�X�D�W�H���6�W�X�G�L�H�V �7�K�H���9�D�X�O�W�����(�O�H�F�W�U�R�Q�L�F���7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V

��������������������

�$���5�H�L�Q�I�R�U�F�H�P�H�Q�W���/�H�D�U�Q�L�Q�J���%�D�V�H�G���)�U�D�P�H�Z�R�U�N���W�R

�*�H�Q�H�U�D�W�H���5�R�X�W�L�Q�J���6�R�O�X�W�L�R�Q�V���D�Q�G���&�R�U�U�H�F�W���9�L�R�O�D�W�L�R�Q�V���L�Q

�9�/�6�,���3�K�\�V�L�F�D�O���'�H�V�L�J�Q

�*�D�Q�G�K�L�����8�S�P�D

�*�D�Q�G�K�L�����8���������������������$���5�H�L�Q�I�R�U�F�H�P�H�Q�W���/�H�D�U�Q�L�Q�J���%�D�V�H�G���)�U�D�P�H�Z�R�U�N���W�R���*�H�Q�H�U�D�W�H���5�R�X�W�L�Q�J���6�R�O�X�W�L�R�Q�V

�D�Q�G���&�R�U�U�H�F�W���9�L�R�O�D�W�L�R�Q�V���L�Q���9�/�6�,���3�K�\�V�L�F�D�O���'�H�V�L�J�Q�����8�Q�S�X�E�O�L�V�K�H�G���P�D�V�W�H�U�
�V���W�K�H�V�L�V�������8�Q�L�Y�H�U�V�L�W�\���R�I

�&�D�O�J�D�U�\�����&�D�O�J�D�U�\�����$�%��

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�P�D�V�W�H�U���W�K�H�V�L�V

�8�Q�L�Y�H�U�V�L�W�\���R�I���&�D�O�J�D�U�\���J�U�D�G�X�D�W�H���V�W�X�G�H�Q�W�V���U�H�W�D�L�Q���F�R�S�\�U�L�J�K�W���R�Z�Q�H�U�V�K�L�S���D�Q�G���P�R�U�D�O���U�L�J�K�W�V���I�R�U���W�K�H�L�U

�W�K�H�V�L�V�����<�R�X���P�D�\���X�V�H���W�K�L�V���P�D�W�H�U�L�D�O���L�Q���D�Q�\���Z�D�\���W�K�D�W���L�V���S�H�U�P�L�W�W�H�G���E�\���W�K�H���&�R�S�\�U�L�J�K�W���$�F�W���R�U���W�K�U�R�X�J�K

�O�L�F�H�Q�V�L�Q�J���W�K�D�W���K�D�V���E�H�H�Q���D�V�V�L�J�Q�H�G���W�R���W�K�H���G�R�F�X�P�H�Q�W�����)�R�U���X�V�H�V���W�K�D�W���D�U�H���Q�R�W���D�O�O�R�Z�D�E�O�H���X�Q�G�H�U

�F�R�S�\�U�L�J�K�W���O�H�J�L�V�O�D�W�L�R�Q���R�U���O�L�F�H�Q�V�L�Q�J�����\�R�X���D�U�H���U�H�T�X�L�U�H�G���W�R���V�H�H�N���S�H�U�P�L�V�V�L�R�Q��

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���3�5�,�6�0�����K�W�W�S�V�������S�U�L�V�P���X�F�D�O�J�D�U�\���F�D

UNIVERSITY OF CALGARY

A Reinforcement Learning-Based Framework to Generate Routing Solutions and Correct

Violations in VLSI Physical Design

by

Upma Gandhi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

JANUARY, 2020

c! Upma Gandhi 2020

Abstract

The impact of this modern era has given rise to the demand for compact electronic devices

like mobile phones. With the decrease in the devicesÕ size, the pressure lands upon making

more compact and e!cient integrated circuits (IC). The process of making an IC is called

Very Large Scale Integration(VLSI). Under this process, a physical design step takes place

in which the physical shapes of circuit elements are determined. During physical design, all

the standard cells on the circuit are placed. This process is called placement. Then these

cells are connected by wires which is called routing. Routing is one of the most di!cult and

time-consuming parts of physical design, where over a million connections have to be routed

in a 3D arrangement while following strict design and manufacturing rules.

The contributions presented in this thesis aim to automate the routing process through

machine learning (ML) methods and remove any rule violations. The Þrst contribution is

called Alpha-router, a multiplayer game model to perform the routing step using a type

of ML method called reinforcement learning (RL). In RL, no external data is required in

training the neural network. As a proof of concept, a small grid based circuit is used. The

obtained routing results with Alpha-router show good performance with di"erent di!culty

levels of cell placement on the circuit. The parameters experimentally found are compared

with [1], which is RL based game model with similar complexity and grid-based environment.

The second contribution discussed in the thesis is called Alpha-PD-Router. The Alpha-PD-

Router is a combined routing and correction technique that corrects the violations occurring

in routed circuits. Testing with 99 cases, the Þnal iteration of Alpha-PD-Router achieved to

resolve 116 violations out of 177 violations.

The research presented in this thesis is aimed to open a new gateway to routing tools

which donÕt require any human intervention and can cope up with the ever-advancing needs

of new technologies.

ii

Preface

This thesis is an original work by the author. No part of this thesis has been previously

published.

iii

Acknowledgements

I would like to thank the people who helped me to brainstorms ideas, Þnd annoying bugs

and review the thesis. First and foremost thanks to Dr. Laleh Behjat to always supporting

me, believing in me and guiding me with her amazing suggestions and comments. Then I

would like to thank my lab-mates: Erfan, Ali, Aysa, Kirill, Daniel, Anna, Christine, Kirsten,

Jason and Robin for all those insightful discussions that helped me to gain progress. I would

also want to thank my friends who are always there for me. Last but certainly not least, my

father, mother, and brother to always encourage me to do my best and guide me in di!cult

situations

iv

To all the knowledge I have gained ...

v

Table of Contents

Abstract ii

Preface iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Figures and Illustrations ix

List of Tables xi

List of Symbols, Abbreviations and Nomenclature xii

1 Introduction 1
1.1 Design ßow of Very Large Scale Integration VLSI 1
1.2 Machine Learning . 2
1.3 Motivation . 3
1.4 Contribution . 4
1.5 Thesis Structure . 4

2 Background: Integrated Circuit (IC) Design and Routing 6
2.1 Integrated Circuit Design . 6
2.2 Very Large-Scale Integration . 9
2.3 Routing . 11

2.3.1 Global Routing . 11
2.3.2 Detailed routing . 12

2.4 Single and Multiple Net Routing . 13
2.4.1 Grid Based Model Routing . 14
2.4.2 Maze algorithm . 15
2.4.3 A-star algorithm . 17

2.5 Literary Review . 18
2.6 Summary . 20

vi

3 Background: Machine Learning 22
3.1 Introduction . 22
3.2 Overview of ML . 23

3.2.1 Supervised Learning . 23
3.2.2 Unsupervised Learning . 24
3.2.3 Semi-supervised Learning . 24
3.2.4 Reinforcement Learning (RL) . 25

3.3 Reinforcement learning methods . 25
3.3.1 Policy Iteration Vs Value Iteration 27
3.3.2 MCTS- Policy Evaluation Technique 28
3.3.3 Deep Learning - Policy Improvement Technique 30
3.3.4 Convolutional Neural Networks . 31

3.4 Working of AlphaGo Zero Ð a combination of self-play and ML 36
3.5 Summary . 37

4 Multiplayer Alpha-Router 38
4.1 Introduction . 38
4.2 Terminology of Alpha-router . 39

4.2.1 Alpha-router Parameters . 42
4.2.2 Control ßow of Alpha-router . 42

4.3 Controller . 44
4.3.1 Working of Controller . 45
4.3.2 Control Flow of Controller . 48

4.4 MCTS Based Policy Evaluation . 51
4.4.1 The Working of MCTS Algorithm 51

4.5 Deep Learning-based policy improvement . 56
4.5.1 CNN Architecture of Alpha-router 56

4.6 Experimental Result . 59
4.6.1 Experimental Setup . 59
4.6.2 Hyper Parameter . 59
4.6.3 Experimental Design . 61

4.7 Qualities of Alpha-Router . 64
4.8 Summary . 65

5 Alpha-PD-Router 66
5.1 Terminology . 67

5.1.1 Control Flow of Alpha-PD-Router 70
5.2 Controller . 72
5.3 Cleaner . 74

5.3.1 Cleaner Functions . 75
5.3.2 Cleaner Training . 77

5.4 Router . 78
5.4.1 Meet-In-The-Middle Algorithm . 79

5.5 Experimental Result . 81
5.5.1 Experimental Setup - Hardware and Software 81

vii

5.5.2 Experimental Architecture and Results 81
5.6 Qualities of Alpha-PD-Router . 86
5.7 Summary . 87

6 Conclusion and Future Work 88
6.1 Summary and Contributions . 88
6.2 Future Work . 89
6.3 List of Accepted publications . 90

Bibliography 91

A Copyright Permissions 105

viii

List of Figures and Illustrations

2.1 First Integrated Circuit - Courtesy of Texas Instruments [2] 7
2.2 An current day IC [3] . 7
2.3 Very Large-Scale Integration Design Flow describing Physical Design [4] . . . 9
2.4 Representation of a grid graph model under global routing [4] 11
2.5 Representation of global routing process after placement step [5] 12
2.6 Representation of detailed routing process [6] 13
2.7 (a) Representation of channels surrounding standard cells and (b) Intersection

of channels associated with the original circuit [7] 14
2.8 (a) Representation of a tile based circuit in multiple layers (b) Grid graph

showing the connections between multiple layers and horizontal and vertical
orientation in each layer [7] . 15

2.9 Representation of a complete iteration of maze algorithm to Þnd shortest
distance between source node and destination node. 16

2.10 Representation of a complete iteration of A-star iteration to Þnd shortest path
between source node and target node. 17

3.1 MCTS Algorithm Steps [8] . 29
3.2 ArtiÞcial Neural Network [9] . 30
3.3 Convolutional Neural Network [10] . 31
3.4 ReLU activation function [11] . 32
3.5 Input Image to a convolution layer with dimension 32 X 32 X 3 33
3.6 Convolution operation on a cropped input image 34
3.7 Maximum Pooling Layer Operation . 34
3.8 Softmax layer operation [12] . 35

4.1 A Description of detailed routing problem in RL environment 39
4.2 Hierarchy of Alpha-router and representation of its the components of their

relationship. 40
4.3 Flowchart of Training Alpha-Router Model 43
4.4 Controller part of Alpha-router . 45
4.5 Functions of Controller in Alpha-router . 46
4.6 Illustration of a win scenario in the game of routing in ML self-play 47
4.7 Illustration of a lose scenario in the game of routing in ML self-play 47
4.8 Control ßow of Controller . 49
4.9 A circuit board represented as a state in MCTS algorithm. 51
4.10 A circuit board representing a move of net 1 after calling MCTS algorithm. 53

ix

4.11 Input and output to the Alpha-routerÕs CNN [13] 57
4.12 Training samples input and output values to train with CNN 58
4.13 Di"erent di!culty levels of pin placement 61
4.14 Comparison of performance of Alpha-router with values under Parameter Case

1 and 2 in easy pin placement . 62
4.15 Comparison of performance of Alpha-router with values under Parameter Case

1 and 2 in medium pin placement . 63
4.16 Comparison of performance of Alpha-router with values under Parameter Case

1 and 2 in hard pin placement . 63

5.1 Hierarchy of Alpha-PD-Router . 67
5.2 ControllerÕs Output Circuit . 68
5.3 Output Circuits after Cleaner operations . 68
5.4 Output Circuits after Router operations . 69
5.5 Control Flow of Alpha-PD-Router . 70
5.6 Control Flow of Controller . 71
5.7 Input and Output of Cleaner part of Alpha-PD-Router 74
5.8 The representation of Cleaner function to make a dictionary called DRCDict. 76
5.9 The representation of concatenated original Cleaner board with current DRC 77
5.10 The representation of normalized input be trained in Cleaner part 77
5.11 Representation of transforming input board to a circuit board ready for Router

operation . 78
5.12 Representation of sub-nets under MIM algorithm 79
5.13 Representation of 2 sub-nets using MIM algorithm to route a net 80
5.14 Training curve of Router with training loss on y y-axis and number of epochs

on x-axis . 83
5.15 Training curve of Cleaner with training loss on y y-axis and number of epochs

on x-axis . 84
5.16 Images of Cleaner correcting DRCs [13] . 85

x

List of Tables

4.1 Routing parameters used in building the target environment of Alpha-router 41
4.2 ML parameters used in training and testing of Alpha-router 41
4.3 NNET parameters considered in ML infrastructure of Alpha-router 41

5.1 Comparison of NNET parameter values of Cleaner and Router in Alpha-PD-
Router that are experimentally discovered to get optimal results 82

5.2 Value of parameters used in training Alpha-PD-Router 82

xi

List of Symbols, Abbreviations and
Nomenclature

Acronyms

a Action
ANN ArtiÞcial Neural Network
CNN Convolutional Neural Network
CUR-NNET Current Neural Network
DRC Design Rule Checking
DRV Design Rule Violation
EDA Electronic Design Automation
G Graph model
IC Integrated Circuit
ISPD International Symposium on Physical Design
MCTS Monte Carlo Tree Search
MDP Markov Decision Processes
MIM Meet-In-Middle
ML Machine Learning
NEW-NNET New Neural Network
NNET Nueral Network
RAM Random Access Memory
ReLU RectiÞed Linear Unit
RL Reinforcement Learning
s State
VLSI Very Large Scale Integration

Sets

A Set of Actions
E Set of Edges
E(s,n) Python Dictionary of Outcome Values in Monte Carlo Tree Search with state s and

net ID n
S Set of States
V Set of Vertices

xii

V(s,n) Python Dictionary of Valid Moves in Monte Carlo Tree Search with state s and
net ID n

Scalars

C Exploration Constant
CNEW Number of Wins with Current Neural Networks
ITER-COUNT Value of Iteration Counter
M Move Function in A* Algorithm
MCTS-S Number of Monte Carlo Tree Search simulations
MLIter Number of Machine Learning Iterations
MLS-p Number of Machine Learning Self-play episodes
MLS-pC Number of Self-play episodes to Compare
N(s) Number of times a state s is visited in Moves in Monte Carlo Tree Search
NSA(s,a) Number of visits of an edge with state s and action a in Monte Carlo

Tree Search
NSA-array NSA array storing NSA values
P(s, a) Value of predicted outcome with state s and action a in Monte Carlo

Tree Search
PVAL Value of Predicted game outcome from Neural Network
Q(s,a) Action Value associated with state s and action a in Monte Carlo Tree

Search
r Reward value in Reinforcement Learning
SP-COUNT Value of Self-Play Counter
SP-WINS Number of Self-play wins
T Temperature Constant
WNEW Number of Wins with New Neural Networks

Functions

F() Cost of Node in A*
H() Heuristic Function in A* Algorithm

Sub-scripts

i Index of a vertex in graph
j Another index of a vertex in graph

xiii

Chapter 1

Introduction

In these modern times, we are quite dependent on electronic devices. These devices have

become a part of our life whether its in work as a mobile phone, computer, laptop or at-home

like a microwave, speakers, ovens or in transportation like cars. These devices not only make

our life easier to do simple tasks but also increase our work e!ciency by assisting us to do

the complex ones. These electronic devices have made our life e!cient in such a smooth way

that today it is hard to remember a time when we used to write letters to communicate.

As we have experienced their qualities and functionalities, we are now trying to use their

intelligence in the tasks that only humans are found intelligent enough to perform. Some

of these tasks include driving, cleaning, cooking and performing life saving surgeries. The

one thing that is common in all of them is the brain of the device called an Integrated

Circuit(IC). All the functions needed by the device to perform is programmed in this IC. So,

to make the device work better, we need to make this IC work better.

1.1 Design ßow of Very Large Scale Integration VLSI

During VLSI process, an IC is created by combining millions of transistors. This process

is packed with several steps from high-level factors such as size and performance. These

processes are system speciÞcation, architectural design, functional design, logic design, circuit

1

design, physical design, physical veriÞcation and signo", fabrication, packaging and testing,

and Þnally manufacturing [4]. The contributions presented in this thesis focus on the physical

design step in which the geometrical shapes and location of circuit elements are determined.

Under the physical design process, there are many sub-processes. One of which is called

routing which is the focus of the contributions in this thesis. In the routing process, the

standard cells which are a collection of transistors are connected with wires. The input and

output of standard cells are deÞned as pins and the physical connection between the cells

is called a net. Under the routing process, 2 or multiple pin nets are connected to a 3D

arrangement of layers. Each layer has a direction horizontal or vertical orientation for nets

to route.

There are thousands of nets connecting millions of pins on a tiny circuit with multiple

layers which makes routing a hard problem. The infamous MooreÕs law states that in every

2 years the number of transistors will double which has to lead to making the VLSI process

especially routing more complex [14]. Moreover, the size of the IC process nodes has de-

creased from 180 nm to 5 nm in the last 20 years. With size reduction many manufacturing

and design rules are introduced. These include spacing rules, short and open violations. If

these rules are not followed, a Design Rule Violation(DRV) occurs. These rules are very

detailed and comprise of elaborate information that needs to be followed to make circuit

design approved to manufacture. One of the main objectives of routing is to perform Design

Rule Checking (DRC) to make sure there are no violations. These factors and advancements

have lead to making the routing process an NP-hard problem.

1.2 Machine Learning

Machine learning(ML) techniques have become an e"ective tool to solve problems in areas

where problems are too time consuming and in some cases too di!cult for humans to solve

[15Ð17]. In VLSI physical design, there have been many attempts to solve some parts of

2

the routing process via supervised learning [18, 19]. The main issu where using supervised

learning is to have a large amount of data. Due to the competitive nature of industries in

Electronic Design Automation (EDA), benchmarks for new technologies are not available for

academic research. This has limited the power and scope of applying ML to VLSI physical

design processes such as routing.

1.3 Motivation

Applying the methods and algorithms of one research Þeld to solve the problems of another

research Þeld is a creative but complicated process. These ideas have proven to be successful

solutions in some signiÞcant research Þelds [20,21]. Applying ML to other Þelds have lead to

many useful discoveries which in-turn improved the quality of human experiences. Similarly,

the motivation of the research work presented in this thesis aims to improve the quality of

ICs using the methods of ML.

The idea behind this research work comes from the famous AlphaGo Zero program developed

by GoogleÕs Deep mind team. Google published a paper Ó Mastering the game of Go without

human knowledgeÓ in Nature journal in Oct 2017 [22]. In this paper, a general reinforcement

learning (RL) [23,24] algorithm is discussed which beats all the previous versions of AlphaGo

including AlphaGo Lee version has also beaten world champion of the game of Go Lee Sedol.

The main quality of AlphaGo Zero is that the program doesnÕt require any external data. It

trains itself by executing episodes of self-play and improves the accuracy of move predictions

leading to winning the game.

This architecture is perfect for the routing problem which also has a larger decision space

as the game of Go and needs a lot of data to train.

3

1.4 Contribution

Routing is one of the most important steps in VLSI physical design. Generally a signiÞcant

amount of time as well as memory resources are used during routing. In this thesis, routing

tools: Alpha-router and Alpha-PD-Router have been proposed and developed as a proof of

concept which works with a self-learning algorithm operating at the back-end.

Following are the main contributions discussed in this thesis :

¥ Proposed Alpha-router, a self-routing tool based on RL.

¥ Developed a routing based Monte Carlo Tree Search algorithm.

¥ Proposed a DRC correcter tool called Alpha-PD-Router based on min-max optimiza-

tion and generalized RL algorithm. With Alpha-PD-Router, 116 DRCs are resolved

out of 177 DRCs in 99 test cases of di"erent circuit arrangements by training with only

1 CPU.

¥ Designed a neural network (NNET) architecture to accept routing based input and

output structures in Alpha-router and Alpha-PD-Router

1.5 Thesis Structure

The structure of the remaining thesis is as follows:

1. Chapter 2: In this chapter, the background concepts of IC and its application are

presented. After that, processes under VLSI are discussed with routing sub-processes

called global and detailed routing. After that, the main algorithms used in the routing

is explained. Finally, a literature review of algorithms used in global and detailed

routing in recent years are discussed.

2. Chapter 3: In this chapter, an introduction to ML and its application is presented.

A brief explanation of the types of ML including supervised, unsupervised, semi-

4

supervised and RL is discussed. At the end of the chapter, the most important methods

under RL have been elaborated.

3. Chapter 4: In this chapter, the methods and algorithms developed under the proposed

Alpha-router are presented with experimental results.

4. Chapter 5: In this chapter, the methods and algorithms developed under proposed

Alpha-PD-Router are discussed following the experimental results.

5. Chapter 6: The scope of future research and some signiÞcant concluding remarks are

presented in this chapter.

5

Chapter 2

Background: Integrated Circuit (IC)

Design and Routing

The objective of research presented in this thesis is to solve problems of an IC designÕs process

called Routing. In this chapter, an explanation is presented in a top-to-bottom hierarchy,

starting from the broader concept of IC design to the speciÞcs of routing.

The chapter is organized as follows: In Section 2.1 the concepts and terms used in

integrated circuit design are discussed. In Section 2.2, an introduction to a category of

IC design called Very Large Scale Integration(VLSI) digital design process is presented. In

Section 2.3, an introduction to routing process and types of routing is discussed. An overview

of single and multiple net routing processes, associated data-structures and shortest-path

algorithms are discussed in Section 2.4. Recent works in global and detailed routing are

presented in Section 2.5. Finally the chapter is summarized in Section 2.6

2.1 Integrated Circuit Design

An integrated Circuit(IC) is an tiny electric circuit in size consisting of electrical components

placed on a ßat semiconductor surface to form a set of electronic circuits. ICs were invented

by Jack Kilby in 1958 at Texas Instruments for which he received a Nobel prize in Physics

6

Figure 2.1: First Integrated Circuit - Courtesy of Texas Instruments [2]

Figure 2.2: An current day IC [3]

7

[25]. In Figure 2.1, the image of the Þrst IC is presented and an image of a current day IC

is shown in Figure 2.2. The success of modern technology can be see through the di"erence

in design of these two chips.

Every electrical circuit has a speciÞc function. To carry out these functions, the circuit

needs to turns on and o" electronic components called transistors using electrical signals.

The Transistor is an electronic device which is used to amplify an electric signal and power

across the circuit [26]. Di"erent logical operation like AND, NAND, OR etc are implemented

using these transistors and their implementation are saved as standard cells. Standard cells

use the functionality of transistors. These standard cells are placed on a electrical chip which

also includes multiple layers of wires [27].

Below are some deÞnitions related to IC components that are used in this thesis [4] [7]:

¥ Standard Cell - A collection of transistors and the interconnections to achieve a logic

operation AND, OR, NAND etc.

¥ Pin - Pin is deÞned as the input and output of standard cell in logic operation. For

example in AND gate, there will be 2 input pins and one output pin.

¥ Net -A physical connection between n pins is called a Net. These connection are made

by physical wires. As mentioned in [4], Ó n-pin net connects an output pin of a gate

to p-1 input pins of other gatesÓ.

¥ Netlist - List of nets to route.

¥ Metal Layer - A semiconductor layer on which the cells and interconnections are placed.

Each metal layer has a horizontal or vertical orientation. The layers follow alternate

orientations for example - Horizontal-vertical-Horizontal.

¥ Via - The connection between metals layers is called a Via.

¥ Track - Tracks are deÞned as the routable paths in the on printed metal layer on which

the nets can be assigned.

8

¥ Routing Region - The region which comprises of the available routing tracks.

¥ Blockage - A blockage on the chip is deÞned as an area where circuit elements or

interconnections cannot be placed.

2.2 Very Large-Scale Integration

Figure 2.3: Very Large-Scale Integration Design Flow describing Physical Design [4]

The process used to create an IC is called Very Large-Scale Integration (VLSI). In the VLSI

process, there are many steps as shown in the Figure 2.3. One of the most important steps

in VLSI design ßow is physical design. The geometric shape representation of all the circuit

elements are determined in this phase [28]. This phase outputs the Þnal manufacturing set

speciÞcations of the IC. Physical design is divided in several steps. These steps are shown in

Figure 2.3 - Partitioning, Chip Planning, Placement, Clock-tree Synthesis, Signal Routing

and Timing closure [4]. Following is a brief introduction of each step is as follows:

9

¥ Partitioning

During partitioning process, the circuit is divided into sub circuits to make the design

of the circuit easier. During this process, constraints are fulÞlled that are related to

external connections, size of circuit, and test-ability are considered [29].

¥ Chip Planning

The process of Chip planning is responsible to position the sub circuits/modules and

Þxing their shapes, so that no overlap occurs between the modules and the length of

interconnections can be minimized [30].

¥ Placement

During Placement step each cell is placed within the chip boundary. The most com-

monly used objective is minimizing wire-length of interconnections between cells [31][32].

¥ Clock-tree Synthesis

The Clock-tree synthesis is the step where a tree is designed to distribute clock signal

throughout the circuit. One of the main objectives of this step is to minimize the skew

in the developed Þnal layout. Skew is deÞned as the maximum di"erence that a clock

signal takes to reach all the clock sinks. Reducing power consumption is another major

objective of this step [33] [34].

¥ Signal Routing

In the Signal routing, standard cells that were placed in the placement stage are con-

nected through wires. Each wire is assigned to speciÞc tracks. These tracks are printed

on metal layers placed on top of each other [4] [35].

¥ Timing closure

The Timing closure process is an optimization step of the VLSI physical design that

governs the application of timings constraints of IC layout after the routing step [4][36].

10

Figure 2.4: Representation of a grid graph model under global routing [4]

2.3 Routing

The process of routing is one of the steps in the physical design that is responsible for con-

necting pins by following di"erent type of manufacturing and design rules after the placement

process. These connection determine the routing regions and exact locations of tracks the

wire used. On the basis of the complexity of the process, routing is divided in two-sub

processes: global routing and detailed routing. During global routing, the routing regions

of each net in the given netlist are determined. During detailed routing, the details of rout-

ing are dealt with and assignment of the connecting wires to routing tracks takes place.

Descriptions of global and detailed routing is presented in the following:

2.3.1 Global Routing

Global routing is the Þrst routing step under signal routing of physical design process. The

main objective of this step is to connect pins of same electric potential to each other [4].

There are several sub-objectives during global routing which are as follows[4] [7]:

1. To verify if the placement is routable.

2. To Þnd routing regions that result in the shortest path to minimize total wire length.

11

Figure 2.5: Representation of global routing process after placement step [5]

3. To follow the design rules while routing.

4. To optimally utilize the routing resources among multiple nets.

5. To avoid congestion in designs where the area is limited.

Global routing is performed using the graph data-structure in a course grid layout as

represented in Figure 2.4. In Figure 2.5 (a), the output from placement step is shown. In

Figure 2.5 (b), the global routes found on the placed layout of standard cells are shown.

2.3.2 Detailed routing

Detailed routing is one of the most challenging problems of the VLSI physical design. During

detailed routing many design and manufacturing rules are considered in order to Þnd a

routable solution [27]. This step is one of the Þnal steps in the physical design ßow [37].

During this step, the exact route for all nets are determined while timing, spacing and

congestion constraints are met, short violations are eliminated and manufacturing rules are

observed [4]. In Figure 2.6, the Þxed routes between the pins in blue are shown, which is the

12

Figure 2.6: Representation of detailed routing process [6]

output of detailed routing process. The red and green rectangles are connecting wires the

layers with vertical and horizontal orientation.

The scope of this research is focused on 2-pin net routing, hence a description to the

current algorithms commonly used for routing these nets are discussed in the following

subsections.

2.4 Single and Multiple Net Routing

Single net routing is type of routing in which the objective is to route one net at a time [7].

Multi-net routing is a process which multiple nets are routed sequentially or concurrently [7].

In sequential routing, multiple nets are routed one after the other. In this type of routing,

the order in which the nets are routed is an important factor which can also give rise to the

net ordering problem. On the other hand, in concurrent routing, multiple nets are routed

at the same time. Concurrent routing methods are largely used to reduce the congestion

between the wires [38]. A multiple commodity ßow problem and its improvements are taken

into account under concurrent process [39].

13

Figure 2.7: (a) Representation of channels surrounding standard cells and (b) Intersection
of channels associated with the original circuit [7]

2.4.1 Grid Based Model Routing

The routing problem is generally represented using a grid based model [40Ð42] to represent

relationship among standard cells [7]. To use a grid based model, concepts from the graph

theory are applied where in Graph G(V, E), V represents a set of vertices and E represents

a set of edges. There are two type of graph models used during the routing step.

¥ Channel Based Graph Model

This type of graph model is used when the number of layers are smaller and the area

used for routing is limited. The circuit is divided in channels in this model [43,44]. A

Channel is deÞned as the surrounding area of a standard cell or a macro. A channel

intersection graph G is built associated with the channeled circuit. In the graph, each

vertex Vi is deÞned as the intersection of channeli and connection betweenVi and Vj

deÞnes the edgeEi, j . The Ei, j is a channel that exists betweeni and j [7] . In Figure

2.7 (a), the process of division of a circuit into channels is represented. On the other

side, in Figure 2.7 (b) the associated intersection graph of this circuit is shown.

¥ Tile Based Graph Model

14

Figure 2.8: (a) Representation of a tile based circuit in multiple layers (b) Grid graph showing
the connections between multiple layers and horizontal and vertical orientation in each layer
[7]

To overcome the shortcomings of channel-based routing [45], tile based routing model

is considered to route multiple layers stacked on top of each other. Each layer of a

circuit is divided into square tiles which make the circuit look like a matrix. The

bottom layers are used to place standard cells whereas the upper layers are used for

routing. Orientation of each layer is decided before the routing process. In Figure 2.8

(a) a multi-layer arrangement of tile based grid model is represented and in Figure 2.8

(b) the associated grid graph of the circuit is shown.

2.4.2 Maze algorithm

Maze algorithm is one of the oldest path Þnding algorithm designed by Lee [46] in 1961. The

algorithm works on a grid like structure to Þnd shortest distance between two points and is

used in tile based graph model. In Figure 2.9, an illustration of a maze router is shown in a

grid matrix with a source node(s) and a target node(T).

The algorithm works in two steps as described in [7] :

¥ Wave-formation

In this step an exploration wave from source node is generated to mark the surrounding

15

Figure 2.9: Representation of a complete iteration of maze algorithm to Þnd shortest distance
between source node and destination node.

nodes. In Figure 2.9, the colored nodes represent the nodes which have been explored.

The value of nodes is the distance from the source node. After the Þrst wave of ex-

ploration, the nodes that have been evaluated become the sources of wave-exploration.

The nodes which have been explored in the previous wave-exploration will remain

unchanged. This process goes on until the terminal node is the next node to explore.

¥ Back-propagation

After completing the Þrst step, a shortest path is calculated based on the values of

nodes explored. The objective of this phase is to start from target node and proceed

towards source node to Þnd the path that corresponds to the minimum score value of

nodes.

16

Figure 2.10: Representation of a complete iteration of A-star iteration to Þnd shortest path
between source node and target node.

2.4.3 A-star algorithm

A* star algorithm is a graph based algorithm which used to Þnd shortest path between

two grids. A-star is an improvement over Dijkstra shortest-path algorithm [47, 48]. This

algorithm is widely used in routing step of physical design process and other application

areas [4], [49Ð51].

With A* algorithm, a grid like matrix data-structure is utilized to Þnd the shortest path

between the source node and target node. A node in the matrix is deÞned as an individual

square. A heuristic function (H()) is used to determine the distance between current node

and the target node. Manhattan distance is the most common metric applied to Þnd the

shortest distance in H(). A move function (M) is used to calculate the distance from source

to the current node. Summation of H() and M decides F(), the cost of each node. In Figure

2.10, an iteration of A* algorithm is shown to Þnd shortest path between the source node

at grid 19 and target node at grid 39. All the colored nodes, apart from source and target

17

node show the cost value associated with each node. The arrows from target node to source

node represent the shortest path found by A* algorithm.

This algorithm also works well in cases where blockages are present in the circuit. Gener-

ally, A* is faster than the maze algorithm because it evaluates less number of nodes [52,53].

The run time complexity of A* algorithm is O(nlog(n)), wheren is the number of grid points

[54]. This algorithm guarantees a solution of it exists at all.

2.5 Literary Review

This section presents the most related works in global and detailed routing.

¥ Global Routing

In recent years, many new techniques have been published to perform global routing

from optimization methods to machine learning methods. In optimization methods,

congestion based optimization, rip-up and reroute heuristic and region-wise routing

are some of the successful routing techniques [55Ð57].

In rip up and reroute heuristic method, nets causing congestion or violations are re-

moved from the routing and re-routed. In [57], a hybrid global router called BoxRouter

2.0 is presented which used path-Þnding algorithms like A* search and rip up to make

the routing solution ßexible. The BoxRouter 2.0 performed better than the other

routers which entered in International Symposium on Physical Design (ISPD) compe-

tition benchmarks for the year 2007 [58]. ISPD organizes a widely known competition

on physical design [59] for several years. Re-routing each violation causing net without

learning from mistakes is time consuming. In this thesis, the Alpha-PD-Router contri-

bution confronts the time consumption issue by ripping nets based on the knowledge

learned from mistake in training phase of reinforcement learning(RL) based feedback

environment.

One of the most related work to this thesis is a deep RL method to optimize the

18

global routing process presented in [60]. A deep Q-network RL algorithm is used

to route nets conjointly by training a neural network with routing solution produced

with A* algorithm. This RL based router is able to surpass the A* algorithm in

most of the test cases. This work considers solving 2-pin net global routing which is

the biggest disadvantage, whereas the Alpha-router model contribution in this thesis

acknowledges multi-pin net routing requirements and is ßexible to include a multi-

player game environment infrastructure.

In [61], another supervised ML method is presented to predict congestion in global

routing with supervised learning regression methods. This work improved the quality

of the global routing solution and was 9.33 times faster than the conventional global

routing congestion tools. The main shortcoming of using supervised learning is the

lack of data available to the academics. By using RL based methods which doesnÕt

require any external data, this issue is resolved in both contributions presented in this

thesis.

¥ Detailed Routing

Similar to the global routing, in detailed routing as well the optimization and machine

learning based algorithms are applied.

Works such as [62Ð65] use optimization algorithms like correct-by-construction path

search, design rule aware path search algorithm, parallel routing and electromigration.

In [62], DR. Cu detailed router is developed which uses a combination of optimization

algorithms to tackle issues such as graph size of routing gird, minimum area constraint,

enormous run-time. One of these algorithms is called a correct-by-construction graph.

Under this algorithm, an additional cost of minimum area constraint is considered

with a traditional cost function in a path-Þnding algorithm called Dijkstra [48]. The

performance of Dr. Cu has been compared with 1st place winner of ISPD 2018 contest

[37]. The results show that DR. Cu exceeds in optimizing parameters such as wire

19

length, the number of vias and DRVs in most of the ISPD 2018 contest benchmarks

with 80-93 % less memory and 2.5-15 times speed-up.

Moreover, the application of parallel routing is utilized in the work presented in [64]

with TritonRoute. The TritonRoute detailed router is able to reduce DRVs upto 94 %

in comparison to the Þrst place winner of ISPD 2018 contest.

However due to the size constraint of ICs, the process of detailed routing is getting

more complex with design and manufacturing rules. Hence, these optimization algo-

rithms need to consider and alter according to these new constraints. The ßexibility

towards rules is accommodated in the RL based contribution without using any ex-

ternal optimization algorithms. The RL model trains itself to generate good quality

routing solution and resolve violations.

Previously ML methods also have been used in detailed routing such as [19]. In this

framework, short violations are predicted using supervised ML methods. A short vio-

lation is deÞned as the violation that occurs when interconnecting wires are overlapped

on the metal layers [4]. To predict these violations, a binary classiÞcation problem was

developed on a grid-based circuit. By testing this framework with ISPD 2015 [66], 90

% success rate is achieved. As mentioned in global routing literature review, the lack

of data remains the main issue with supervised learning, which is solved by using RL

in this thesisÕs contributions.

2.6 Summary

In this chapter, the concepts behind IC, VLSI and routing are discussed which make up

the problem statement part of this thesis. At Þrst, an overview of IC and its application is

presented. Then, going deeper into one of the design process of IC, the process of VLSI have

been discussed. The routing step and its sub-processes were explained next which is a part

of VLSI physical design process. A description of grid-based infrastructure on which routing

20

step is performed and the shortest path Þnding algorithms are presented next. In the end,

most related works in global and detailed routing done in recent years are discussed.

21

Chapter 3

Background: Machine Learning

3.1 Introduction

Machine Leaning (ML) is sub Þeld of artiÞcial intelligence which deals with solving problems

by observing data and making decision without any human intervention. The basic idea

behind the concept of ML can be presented in the words of Donald Michie, the founder

of Turing Institute as Óif computers could learn from experience their usefulness would be

increasedÓ [67]. Therefore if a particular task is given to an ML model, then it should learn

from its mistakes and make better decision in next iterations. The resources needed to learn

can be external data called training data which gives the information about good and bad

scenarios [68] . So, if the ML model faces similar problems with di"erent parameters, then

it should know how to achieve a good solution. The algorithms deÞned in ML which are

explained in the rest of the chapter aim to build this decision model.

The chapter is organized as follows: In Section 3.2 an overview of the ML techniques

are presented. Reinforcement learning methods are discussed in Section 3.3, these are the

main ML methods utilized in developing the Alpha-Router model. In Section 3.4 talks about

AlphaGo Zero which is the inspiration of Alpha-Router is discussed. Finally the chapter is

summarized in Section 3.4.

22

3.2 Overview of ML

ML has become a relevant and practical tool because of its wide application areas and

robust predictive modeling capabilities. In the last two decades, ML has o"ered solutions to

signiÞcant areas such as cancer research, agriculture, weather prediction and web security.

These areas are of utmost importance for the growth and survival of human species [15Ð

17, 69Ð71]. ML uses several algorithms to solve problems have good models to be solved

using traditional optimization. These algorithms are divided in 4 subcategories - Supervised

learning, unsupervised learning, semi-supervised learning and reinforcement learning.

3.2.1 Supervised Learning

Supervised ML is a model in which the input data is already labelled. The objective of

supervised learning is to train the model for unknown data. ClassiÞcation is one of the main

application of supervised learning. These methods classiÞes and predicts the label of an

unlabelled data point [18]. The main advantage of supervised learning is that the model

is trained exactly according to the decision boundaries set as the data given to the model

determines how the model learns. The main disadvantage of supervised learning is that the

dependency on external data. If the data doesnÕt include perfect boundary between good

and bad examples, then the model will not be able to learn properly. Hence, with unknown

data, it wonÕt be able to perform accurately. For example, in Cifar 10 [72], the objective is

to classify images in 10 di"erent categories - airplane, automobile, bird, cat, deer, dog, frog,

horse, ship, truck. There are 50,000 training images and 10,000 test images. The training

images come under one of the 10 labels and testing images are not labelled. The ML model

is trained using a neural network. The neural network consists of one input layer, one output

layer and in between multiple hidden layers. At the end, a loss function is used to minimize

the loss between the predicted label and the actual label which trains the model to learn

and predict more accurate labels at the next iteration of training.

23

3.2.2 Unsupervised Learning

Unsupervised ML focuses on Þnding the patterns in a data-set with the unlabeled data [73].

Labelled data is di!cult to generate in terms of time and cost, hence unsupervised learning

provides an advantage over supervised learning model in applications like classifying images

[74]. The model works by identifying the structure of the input using methods such as

clustering [75]. Clustering is a techniques that helps to group similar objects from the data

[76]. These groups are called clusters and the number of clusters can be given by the user

or the model can learn how many clusters are needed. Some application areas of clustering

includes image retrieval in browsing [77] which is a signiÞcant areas in terms of searches in

internet. The main disadvantage of unsupervised learning is its inability to learn and deÞne

clear boundaries between clusters of data [78].

3.2.3 Semi-supervised Learning

Semi-supervised ML combines the quality of data used in supervised and unsupervised learn-

ing. This model perform classiÞcation with both labelled and unlabelled data. Application

area of this model is expanded to spam Þltering, natural language parsing, speech recogni-

tion etc [78,79]. Semi-supervised learning is divided in 2 settings: Inductive semi supervised

learning and Transductive semi supervised learning.

¥ Inductive semi-supervised learning

In this type of learning, the objective is to predict the label of test data, given the

labelled training data. This method focuses on learning functions that can give good

accuracy in predictor unknown test data labels [80].

¥ Transductive semi-supervised learning.

In this type of learning, the objective is to predict the label of the training data and

labelled data is not given. This method also focuses on training a function that can

predict labels on just training data, not any unknown test data [80].

24

3.2.4 Reinforcement Learning (RL)

RL is an technique in which the model tries to generate the data while learning [23] [81]. It

is the main method used in building Alpha-Router in this thesis. This method is described

in detail in the following section.

3.3 Reinforcement learning methods

RL is a ML method that focuses on building intelligent models. In this method, no external

expert data is provided to help the system learn. The structure of Markov decision processes

(MDP) is used to deÞne an RL model. MDP helps achieve high reward in longer terms

in the RL model. MDP follows the Markov property which states that an action to be

performed fully depends on that current state and not any preceding state or information

[81]. Markov property estimates the probabilistic transitions between states [81]. In following

are deÞnitions used in MDP [24]-

¥ Action Space (A): A set of possible behaviours an agent can demonstrate at a point of

time(can be discrete or continuous).

¥ State Space (S): A set of possible situations of an agent after taking a speciÞc action

(can be discrete or continuous)

¥ Transition Operator (p(st+1 |st , a)) : Probability of entering state t+1 if the current

state of the agent ist and agent took actiona.

¥ Reward (r): The quantity awarded when an agent takes an action. The rewards are

awarded for eachS, A pair.

RL considers a scenario of an agent which learns from the environment to take the most

optimal action on a basis of a policy to achieve its goal. A policy is deÞned as a function that

transforms states to actions [82]. Unlike other ML techniques, RL uses a search algorithm

to produce data, hence doesnÕt require external data to learn.

25

As an example, consider a robot trying to learn to walk in a dark room can be considered.

In this case, the robot is the agent, the dark room is the external environment and a step

taken by the robot is the action. The robot canÕt see an example of a human walking

(external data) or does not have anyone to help it walk (evaluation function). So, it has to

try to walk by itself. It will fall many times and after every step it will learn a little bit

more. At some point it will learn how to balance (policy) and walk by itself. This is how

RL works.

RL considers MDPÕs deÞnition with a policy! ! which is the instinct of the agent to take

an action in a state which results in best reward. Hence, a trajectory(") of state and action

pair is produced at each time interval. The objective of the RL problem is to maximize

the expectation of the sum of rewards of each state and action pair under a parametric

distribution of #. The following two equations stated in [82] explains goal of RL.

p! (s1, a1,, sT , aT) = p(s1)
T!

t=1

! ! (at |st)p(st+1 |st , at) (3.1)

#! = argmax! E[# t r (st , at)] (3.2)

wherep! (s1, a1,, sT , aT) refers to parametric distribution of states and action a pair

from time step 1 to t. ! ! is the policy that agents follows.p(st+1 |st , at) is the probability of

landing in state st+1 by taking an action at in state st . # t r (st , at) refers to the summation of

rewards obtained in taking actionat in state st . #! is the probability of maximum reward to

take actionat in state st . The RL model starts with a random policy. Over the iterations the

policy is re-evaluated and improved based on the rewards. There are certain functions that

are deÞned under RL to Þnd an optimal policy[23], [24] such as state-value and action-value

function. These functions are brießy described below:

1. State-value function(V " (s)) - This function quantiÞes how good a state is. Mathemat-

ically state-value function is the summation of expectation of rewards if starting from

26

state st! and then following the policy! ! until the end.

V " (st) =
T"

t

E! ! [r (st ! , at)|st] (3.3)

2. Action-value function (Q" (s, a)) - This function quantiÞes the advantage of an agent

to select an action if it is currently in state s.

Q" (st , at) =
T"

t

E! ! [r (st ! , at)|st , at] (3.4)

An Optimal policy is determined by the value function that produces maximum reward.

Policy iteration and value iteration approaches are used to Þnd the optimal policy using

value functions.

3.3.1 Policy Iteration Vs Value Iteration

¥ Value Iteration

In the value iteration, the state value function is computed by improving state value

V " (st), iteratively. A random value is used to initializeV " (st). Then, both Q" (st , at)

and V " (st) are updated by the algorithm until they converge to the maximum reward

[23] within the number of iterations speciÞed.

¥ Policy Iteration

During policy iteration, the aim is to improve the policy of the model. This is achieved

in two steps: Policy evaluation and Policy improvement. Policy evaluation measures

the performance of the current policy by calculating the rewards throughV " (st) [83].

Monte Carlo tree search (MCTS) is a compelling method used in policy evaluation.

Policy improvement improves the current policy to achieve better rewards by using

di"erent methods such as deep learning or policy gradient etc.

27

3.3.2 MCTS- Policy Evaluation Technique

Monte Carlo is a technique which helps in the evaluation of a policy. Using an initial

policy ! ! , r reward at each state and action (s, a) is calculated via random sampling [8].

Value function V " (st) is learned through the trajectory of pairs of (s, a, r). Tree search

adds accuracy and organization to the Monte Carlo roll-outs, this method is called MCTS.

MCTS is most commonly applied in a deterministic game environment where the next state

is known when taking an action from the current state [1] [84] . In MCTS, a tree is deÞned

with each node as a state and the edges between the nodes are called action. A root node is

deÞned as the Þrst node (top-most) in the tree. A leaf node in the tree is deÞned as a node

with no children (states). MCTS focuses on searching for next optimal action from a state,

when the current game state is given [85]. This method quantiÞes the quality of each game

state and uses this quantity to Þnd the next best action [86]. In terms of a board game, the

game state is in the form of a board that contains information of each position.

MCTS is divided in 4 steps as shown in Figure 3.1:

¥ Selection:

During the Selection step of the algorithm, a child node is selected on the basis of tree

policy. Tree policy is deÞned as a function that handles the balance of exploration

and exploitation. Exploration in terms of tree search is deÞned as a process to select

more unvisited nodes against the visited ones. Exploitation is deÞned as selecting nodes

which have proven to give best rewards in the past. In Figure 3.1 (a) it is shown a the

next node in a tree is selected from the root node on the basis of tree policy.

¥ Expansion:

The Expansion step of the algorithm concentrates on adding more nodes in a tree when

the current state does not have a single child node. Possible actions from a are taken

to expand the tree. In Figure 3.1(b), the process of a new node to the current state in

consideration is shown.

28

Figure 3.1: MCTS Algorithm Steps [8]

The above Þgure presents 4 steps of MCTS - Selection, Expansion, Simulation and
Back-Propagation. First a node is selected based on tree policy. The selected node
is expanded if there are no child nodes. Next, a simulation runs on the selected node
based on default policy to calculate the reward and then the calculated reward is
back-propagated in last step.

¥ Simulation:

The Simulation step is responsible for selecting an action among possible choices in

a. This step is governed by a default policy which generally uses a random function

to select actions. However, the actions can be weighted by heuristic functions to give

preference to some actions over others in order to achieve better rewards [8]. As shown

in Figure 3.1(c), the highlighted selected node undergoes simulation process using the

default policy to calculate the rewards.

¥ Back-propagation

The Back-propagation step is responsible for propagating the rewards calculated in

the simulation step all the way to the root node. This information is be used in the

upcoming iterations of MCTS in order to make the evaluation policy better. In Figure

3.1(d) the rewards transfer to the back to the root node in the tree is shown.

MCTS has proven to be successful in the Þeld of artiÞcial intelligence by showing superior

results in games like Go [84], [22], Settlers of Catan [87] Othelo, [1], Atari [88] and Hex [89].

29

Figure 3.2: ArtiÞcial Neural Network [9]
The above Þgure represents an abstract view of artiÞcial neural networks which consists
an input layer with input nodes, output layer with output nodes, and the hidden layers
in between. Each node in every layer is connected to every other node with layer in the
front except output layer which is connected with layer in the back.

The MCTS application extends beyond games. MCTS can theoretically be applied to any

domain that can be described in terms of state, action pairs and a simulation to forecast

outcomes [90]. The algorithm is able to provide a valid solution (next move in the game) at

any moment in time, independently from the number of iterations that have been performed

(although more iterations generally produce better results).

3.3.3 Deep Learning - Policy Improvement Technique

Deep learning is an ML method that enables machines to acquire knowledge in order to

perform tasks that need human intelligence. Deep learning needs a lot of data to gain such

knowledge and experience. The data is obtained by performing tasks several times and

evaluating their improvement. The concept is very similar to the way how humans learn to

perform any task.

Deep Learning utilizes the architecture of a deep neural network. The deep neural network

is a form of artiÞcial neural network (ANN) that calculates the output probability using an

30

Figure 3.3: Convolutional Neural Network [10]
The above Þgure represents a CNN training weights with a sample image of a car.
Feature learning and classiÞcation are the two functions which are performed by using
several layers.

infrastructure of multiple layers in between input layer and output layer. Starting from the

input layer, the output of each layer goes to the input of next layer. Each layer represents

linear or non-linear behaviour. As shown in Figure 3.2, each layer consists of multiple nodes

and connections. These connections help the machine understand and process complex

inputs like images to produce simple output such as probabilities of image labels [91], [92],

[23]. Currently, most popular deep neural networks being used are recurrent neural network

for game theory problems and language modelling [84], [22]. To conclude, deep learning

enables the ML model to learn crucial features from the input data that generate better

output than hand picked features. Output probabilities help improve current policy in an

RL system by comparing with policy evaluation technique output.

3.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are one of the forms of ANN used in implementing

concepts of deep learning. The origin of CNN goes back to 1980Õs when Kunihiko Fukushima

published Neocognitron [93]. It works by optimizes.

A CNN consists of many layers which helps the model to learn important features. The

31

Figure 3.4: ReLU activation function [11]

The ReLU in used in CNN to make negative feature value zero.

features are the information that is used to distinguish images in a classiÞcation problem

[94]. To explain the functionalities of these layers, an examples of an image classiÞcation

problem is considered in Figure 3.3. The input image is passed to several layers to generate

an output. These layers are described as follows-

¥ RectiÞed Linear Unit(ReLU)

ReLU is an activation function which used speciÞcally in CNNs as well as other types of

NNETs [95]. A graphical representation of ReLU function is shown in Figure 3.4 where for

all negative y axis value, the corresponding x value is zero. The main job of using ReLU

is to introduce non-linearity to the model in order to learn complex relationship function

to classify data.

ReLU is mathematically represented as :

y = max(0, x) (3.5)

wherex is the input value andy is the output value. Max operation Þnds the maximum

32

Figure 3.5: Input Image to a convolution layer with dimension 32 X 32 X 3

value between 0 andx.

¥ Convolution Layer

In mathematical terms, convolution is an operation which takes two separate functions

and outputs one function. The output function will have qualities of both input functions.

In CNN, the convolution layer is used in feature extraction [96].

The working of convolution layer is explained below with an example of an input image

in Figure 3.5, where each pixel represents a Red Green Blue (RGB) value of in a 32 pixels

sized image in height and width.

The Convolution layer tries to Þnd the value of correct Þlter to get the information of

important features. A Þlter is a 2D matrix with some initial values and predeÞned size. In

Figure 3.6 shows the convolution operation with a Þlter size of 5 X 5 X 3 on the cropped

input image of size 24 X 24 is shown. With, size of Þlters, number of Þlter is another

signiÞcant parameter. If in this example 64 Þlters are used and the output of convolution

layer will be 24 X 24 X 64. This output is called an activation map.

33

Figure 3.6: Convolution operation on a cropped input image

Figure 3.7: Maximum Pooling Layer Operation

In this way, convolution layer preserves the spatial structure of the image by convolving

(taking dot product) of a Þlter over the image.

¥ Max Pooling

The Max pooling layer helps to down sample the number of values after the convolution

layer. Down sampling takes place by taking the maximum value under a Þlter and dis-

carding all the other values. Figure 3.7 represents the maximum pooling layer operation

where the Þlter size is 3 X 3.

¥ Flatten

The role of ßatten layer is to convert the 3D matrix containing features to a column that

can be fed in a full connected layer [96].

¥ Fully Connected

34

Figure 3.8: Softmax layer operation [12]

Softmax layer outputs on an input image which goes through many hidden layers and fully
connected layer.

Fully connected layer is usually one of the last layers in the CNN. The function of classiÞ-

cation is performed by fully connected layer on the basis of features extracted by previous

layers [97].

¥ Softmax

The Softmax layer is responsible to determine the score of each label class for an input in

case of classiÞcation problem [97]. For example, if the input image is of a cat and there

are 10 di"erent class label of di"erent animals, the output of softmax will the probability

of the input images belonging to each of the class labels. In Figure 3.8, an example of a

cat image is shown with the structure of softmax output values in classifying a cat image.

35

3.4 Working of AlphaGo Zero Ð a combination of self-

play and ML

This thesis is inspired by AlphaGo Zero research paper published in Journal Nature by

GoogleÕs Deep mind team in Oct 2017 [22]. Alpha Go Zero uses a RL system which is

trained from its own experience, in principle allowing it to exceed human capabilities, and to

operate in domains where human expertise is lacking. No external data is given to AlphaGo

Zero. It is trained only from the data provided by self-play RL games which start with a

random play move. No human supervision is provided either. It uses only black and white

stones from the Go game board as input features. The Go game is an ancient Chinese game

played with generally 19X19 board using white and black stones. The major objective of this

game to acquire the most space on a board by surrounding other playersÕ stones. AlphaGo

Zero utilizes simple a tree search that relies on this single neural network to evaluate positions

and sample moves without performing all the Monte Carlo roll-outs. AlphaGo Zero contains

Neural Networks which process the data from MCTS (explained above) and self-play.

AlphaGo Zero was successfully implemented in game of Go [26]. AlphaGo Zero has been

also implemented in tic tac toe [27]. Tic tac toe is a game played on 3 X 3 board with XÕs

and OÕs. The objective of this game to make straight like pattern (vertical, horizontal or

diagonal) with XÕs or OÕs. Bin packing problem [28] uses algorithm called MCTS that is

main search algorithm used in AlphaGo Zero. Bin packing problem explains a scenario to

put certain number of elements in bins in a way to minimize the number of bins.

1. Neural Network

¥ Input - It takes the raw board position st as its input, passes it through many convolu-

tional layers with parameters#

¥ Output Ð Both a vector pt representing a probability distribution over moves and a

scalar value vt representing the probability of the current player winning in position st .

36

2. Updating of neural network based on RL- [13] The AlphaGo Zero neural network param-

eters# are updated for satisfying 2 objectives

¥ To maximize the similarity of the policy vector pt to the search probabilities! t .

¥ To minimize the error between the predicted winner vt and the game-winner z.

3.5 Summary

In this chapter, the core concepts of ML, speciÞcally RL that has been used in this thesis are

discussed. An overview of ML is presented at Þrst which includes an introduction to di"erent

types of ML practices. Going to more speciÞcs, RL methods and related search algorithms

- MCTS and deep learning techniques are explained next. In the end, the motivation of

alpha-router - AlphaGo zero and its working are presented.

37

Chapter 4

Multiplayer Alpha-Router

4.1 Introduction

In this chapter, the development of the Alpha-router framework is discussed. Alpha-router

focuses on Þnding solutions for a 2D grid-based circuit arrangement. The framework devel-

oped for Alpha-router can be used both in global and detailed routing processes, by assigning

nets to routing resources as well as allocating interconnections used in nets to routing tracks.

The whole process is completed by a combination of machine learning algorithms working

with routing rules without any external information other than the basic input arguments

needed to complete the routing.

This chapter is organized as follows: In Section 4.2, an overview of the Alpha-router model

and its ßow chart are discussed. In Section 4.3, the details of Controller, a sub-component

of Alpha-router which is responsible to synchronize and work as an interface between other

components are presented. In Section 4.4, the algorithm developed to evaluate the optimal

policy using MCTS is discusses. The architecture of neural network (NNET) used in alpha-

router is presented in Section 4.5. Experimental setup and results of training Alpha-router

are presented in Section 4.6. In Section 4.7, qualities of Alpha-router versus other routing

algorithms is given. In Sections 4.8, a summary of the chapter is provided.

38

Figure 4.1: A Description of detailed routing problem in RL environment

4.2 Terminology of Alpha-router

Alpha-router is an RL-based routing tool that Þnds and optimizes the path of 2-pin nets.

Alpha-router treats each net as a player and the process of routing as a game with win and

loss scenarios.

The core concepts of RL are applied in the development of Alpha-router. In RL, no

external data is used. This quality Þts the problem statement of a complex detailed routing

process because a large amount of circuit data that can be trained with supervised learning

methods are normally not available.

In Figure 4.1, a simple case of routing three nets in a Þve by Þve circuit is shown. If net

1 is considered as an agent, then the action space consists of grid indices in four directions:

North, South, East or West. After moving towards one of the directions, the resultant

circuit board is taken as the next state and a rewardr is calculated based on the action taken

and assigned to the action. Therefore, the routing for each net is performed to maximize

its reward. This case is a representation of a core RL concept application of the routing

problem. However, Alpha-router uses many additional techniques under RL to route the

whole circuit which are presented as follows.

39

Figure 4.2: Hierarchy of Alpha-router and representation of its the components of their

relationship.

The infrastructure of Alpha-router comprises of 3 main parts- MCTS based policy eval-

uation, Controller and NNET based policy improvement. In Figure 4.2, the hierarchy of

Alpha-router is shown. In Alpha-router, the Controller acts as an interface between the

MCTS algorithm and NNET. The MCTS based policy evaluation is used to search for good

moves with the current policy. The NNET based policy improvement is utilized to optimize

a policy to take to take good moves in routing. The main quality of Alpha-router is the

advantage of using ML algorithms to improve the quality of solutions after each iteration of

training. Moreover, Alpha-Router also provides the ßexibility to include design rules of both

global and detailed routing processes which makes it robust to all the new requirements in

the EDA industry. Currently, Alpha-router is designed with the following EDA requirement:

¥ The metal layer circuit is considered as the board with the intersection of the vertical and

horizontal track as a grid position.

¥ A win scenario in routing is considered when legal routes are found between all the pin

combination given in the netlist.

¥ A loss is considered when a legal move for any of the nets in the netlist cannot be found.

¥ A legal move is deÞned as an empty grid position in North, South, East or West direction.

40

Routing Parameter Description

Pinlist List of source and destination pins under each net

Netlist List of 2-pin nets

Dimension of circuit Number of horizontal and vertical tracks of the metal layer

Pin Combination Number of random pin combinations to train

Table 4.1: Routing parameters used in building the target environment of Alpha-router

ML Parameter Description

Iteration (MLIter) Number of iteration to update NNET weights

Self-play (MLS-p) Number of episodes of self-play in the game of routing

MCTS simulations (MCTS-S) Number of MCTS simulation

Self-play comparison (MLS-pC) Number of episodes of self-plays in comparing NNETs performance

NNET Update threshold Value that determines which NNET to choose

Temperature constant(T) Number of moves allowed to be randomly selected

Exploration constant (C) Value of exploration constant

Table 4.2: ML parameters used in training and testing of Alpha-router

NNET Parameter Description

Queue length Number of training examples to be saved

Train example Threshold Number of train examples allowed under an Iteration to be saved

Learning rate The rate at which neural network architecture converges to zero error [98]

Dropout rate The percentage of samples that are dropped before training [98]

Table 4.3: NNET parameters considered in ML infrastructure of Alpha-router

41

4.2.1 Alpha-router Parameters

The Alpha-router used RL based environment in which good quality samples are generated

with policy evaluation and improvement to increase the possibility of win scenarios in testing.

To generate these samples, values of some parameters need to be set before starting the

process. The parameter values in Alpha-router are divided into 3 categories: routing, ML,

and NNET. The arguments under each category are explained in Table 4.1, Table 4.2 and

Table 4.3. Many of the parameters considered below are similar to ones discussed in [1].

4.2.2 Control ßow of Alpha-router

In Figure 4.3, the control ßow of training Alpha-router is presented. The steps of the ßow

chart are explained as follows:

1. Input parameters: Routing, ML and NNET parameters shown in Table 4.1, 4.2 and 4.3

are entered in the model.

2. Build netlist:

A netlist is built with random source and destination pin location with a list data structure

of python library.

3. Check Routability:

The netlist build in the last step goes to the router checker which checks the routability of

random pins generated in the Þrst step. The routabilty of random pins are checked using

A* algorithm [99Ð101]. This also ensures that the quality of routing solution produced by

Alpha-router should be at least as good as A*.

4. Assign Net ID:

If the netlist is routable then the list data structure is converted to a dictionary data

structure which is also a part of python library and the model calls this dictionary ÕnetdictÕ.

Netdict stores (key, value) pairs where the key is used to search a value in the dictionary

42

Figure 4.3: Flowchart of Training Alpha-Router Model

The above Þgure represents the control ßow of training Alpha-router model. Alpha-router
takes the input parameters, checks the routability of random pins selected and interacts
with the Controller as shown in the ßowchart.

43

and is not allowed to be repeated. The key under the netlist will be the net ID and the

value will be source and destination. For example for 3 nets, the dictionary generated can

be - 1:(2,9), 2:(10,20), 3:(17, 3).

5. Conduct Repetitive Test:

A repetitive test is conducted, which evaluates if the netdict is already selected by the

random function in training during previous iterations. If netdict does not have a duplicate,

then pin values are added to a text Þle. This text Þle saves all the net combinations for

which the model have been trained to keep a record. If the pins are already trained, the

control of the model is passed to the Controller part.

6. Pass Control to Controller:

The counter of the number of nets combination (net-counter) is increased by one immedi-

ately after the ControllerÕs job ends.

7. Check Number of Trained Nets Achieved:

The net-counter is evaluated against the number of net combination parameter. If the

net-counter reaches this value then the training ends. If not, the netlist is cleared and

control goes to step 2 and gain the model is select new pin locations to be trained.

8. Document Training results:

The memory and time of the above steps are documented in a separate text Þle.

9. Delete NNET To save RAM memory usage, any NNET loaded is deleted with each netdict

trained.

4.3 Controller

The Controller in Alpha-router manages input and output of the MCTS algorithm and

NNET. The outputs from both components are then put together to make the model learn

e!ciently.

44

Figure 4.4: Controller part of Alpha-router

The Þgure represents input and output components of Controller in Alpha-router. Con-
troller receives a dictionary of un-routed net with key as net id and value as index of
source and destination. As an output, the Controller provides a trained NNET. This
neural NNET is trained with data from self-plays executed within Controller.

4.3.1 Working of Controller

The Controller perform various functions in order train the ML model to generate routing

of pins with source and destination passed as input in the form of netdict (a dictionary of

nets). The output of Controller is a trained NNET as represented in Figure 4.4. The Þgure

represents 4 main functions of Controller which includes Þrst to execute an ML iteration and

then carry out episodes of ML self-play under each ML iteration. Using results of self-play,

Controller trains a NNET. The last function is to document all the win results from each

self-play within each ML iteration. In the testing phase, this trained NNET will be used to

generate routings with random netdict.

The main functions of Controller are presented in Figure 4.5 and explained below:

¥ Execute ML iteration :

The Þrst function of the Controller is to carry out an ML iteration which comprises of

all other functions listed in the following points. The Controller builds trained examples

from ML self-plays and uses this data to train the current NNET. Also, the weights of the

previous NNET are saved. MLIter is the number of iterations speciÞed by the user at the

45

Figure 4.5: Functions of Controller in Alpha-router

start and passed to the Controller to carry out this function.

¥ Execute ML self-play

A self-play is deÞned as an episode of routing which considers each net as a player and

the circuit as the board. At each point of time, the current player can move only one

grid point after that it is the next playerÕs turn to move. In Figure 4.6, a win scenario of

self-play is represented. The dimension of the circuit is 5X5. Initially, a netdict is drawn

on the board which represents the sources and destinations of all pins. In Figure 4.6 (a),

3 nets are plotted initially with their sources and destination. At Þrst,s1 net 1 will move

to a valid grid away from its source. Thes2 and s3 nets will follow the same procedure

and will move one grid point according to the position of their sources. When all the nets

have moved one grid point, the circuit moves to step 2 as represented in Figure 4.6(b).

The self-play continues until a lose or a win is obtained. In Figure 4.6(c) it is shown that

after 3 game moves, a win scenario is achieved and the game ends.

46

Figure 4.6: Illustration of a win scenario in the game of routing in ML self-play

Figure 4.7: Illustration of a lose scenario in the game of routing in ML self-play

In Figure 4.7, a loss scenario is shown. Steps 1-4 represented in Figure 4.7 (a), (b), (c),

(d) depict the routing of nets 1, 2 and 3. At Step 4, the nets 1 and 2 are routed, net 3

does not have a valid move to its destination d3, Figure 4.7 (e), hence the game is lost.

Execution of the MCTS algorithm is carried out with MLS-p number of episodes which

are speciÞed in ML parameters. Each ML iteration has multiple self-play MCTS episodes.

¥ Comparison and updates of NNET weights

Alpha-routerÕs NNET learns to produce better results in terms of routing by comparing

47

the wins predicted two separate NNETs : current NNET (CUR-NNET) and new NNET

(NEW-NNET). The idea to compare the results is inspired by AlphaGo Zero and [1].

The CUR-NNET refers to the NNET whose weights are initialized from scratch. The

NEW-NNET is an updated version of the current and is trained with examples produced

with the last iteration of ML self-play. To compare the quality of both NNETs, MLS-pC

parameters is used. Both NNETs will be used MLS-pC times to execute self-play episodes.

The NNET which predicts moves leading to more win outcomes than the other will be

chosen. The chosen NNETÕs weights will be saved for future predictions.

¥ Documentation of results

All the win/lose data from MCTS algorithm for each self-play within each MLIter is

considered and saved. These results are saved in a text Þle for performance measurement.

¥ Delete NNET in memory

The loaded NNETs in memory are deleted at the end of Alpha-router iteration.

4.3.2 Control Flow of Controller

The ßowchart of the Controller is represented in Figure 4.8. Controller is responsible for

carrying out multiple functions as shown in Figure 4.5 using di"erent user-deÞned parameters

discussed in Section 4.3.1. In Þgure 4.8 control ßow of ControllerÕs functions is presented.

Each step in the ßowchart is as follows :

1. Controller receives the original netdict as input from Alpha-router. In this step, the

iteration counter(iter-count) and self-play counter(sp-count) are initialized to 0 along with

a list of training examples. This list will be used to store the training examples for training

of new NNET. A counter SP-WINS is initialized to keep track of the number of wins by

self-play episodes.

2. A terminating condition is evaluated in which the current ITER-COUNT is compared with

MLIter which is an input parameter set at the beginning of Alpha-router. If the value of

48

MLIter is smaller than ITER-COUNT, the ßow proceeds to the next step, otherwise to

the second last step.

Figure 4.8: Control ßow of Controller

49

3. The control is passed to MCTS algorithm to execute a self-play game of routing.

4. After the execution of MCTS algorithms for a self-play, Controller receives the training

examples in form of Board, a probability distribution over moves and the win/loss score

(1 or -1).

5. A terminating condition is evaluated. The SP-COUNT parameter is compared with MLS-

p. If MLS-p value is bigger than SP-COUNT, the routing in netdict from last self-play

is cleared and control goes to MCTS to again execute another self-play episode. In other

case, the ßow continues to the next step.

6. The number of wins in self-plays from MCTS are documented in this step.

7. Initial weights of CUR-NNET are saved.

8. Another NNET called NEW-NNET is initialized with CUR-NNET weights.

9. NEW-NNET is trained with the examples generated by MCTS simulations.

10. MLS-pC number of self-play episodes are executed with CUR-NNET and NEW-NNET.

11. Number of wins recorded with move prediction by CUR-NNET (CNEW) and in NEW-

NNET (WNEW) are recorded.

12. A condition is evaluated by comparing WNEW value with CNEW using update threshold

value given under category the of NNET parameters.

13. If the value of WNEW is greater than CNEW by at least the value of update threshold

parameter, then NEW-NNET is accepted to be used as NNET in the next set of MCTS

self-play simulations. The control of ßow is sent back to Step 2.

14. If the conditions in Step 11 is false, then the weight of NEW-NNET are discarded and the

use of CUR-NNET is continued. The control of ßow is sent back to Step 2.

50

Figure 4.9: A circuit board represented as a state in MCTS algorithm.

The above Þgure the represents a circuit board which is considered as a state s. The
MCTS algorithm considers 3 players represented with blue, green and yellow colours for
the above state in terms of net 1, 2, 3 with each having source and destination.

4.4 MCTS Based Policy Evaluation

MCTS algorithm in Alpha-router combines the theoretical knowledge of MCTS applied on

game of Go in [22] and implementational structure of MCTS used in [1] to play Othello

game. To Þt the routing problem with multiple players, the MCTS tree in Alpha-router

carries much more information than both of the above sources.

4.4.1 The Working of MCTS Algorithm

A node in MCTS tree is represented in terms of state s and action a. The s in Alpha-router

MCTS tree is deÞned as the circuit board with value of nets as players as represented in

Figure 4.9. Possible actions for each node are the valid directions to move which can be

north, south, east or west. Every node in Alpha-router carries 4 type of information :

¥ NSA(s,a) : The value of the number of times an edge (s, a) have been visited in the tree

search is stored in this variable

¥ Q(s,a) : The action value of the s and a is stored in this variable. Action value refers to

the quantity on which the selection of next s, a is based.

51

¥ P(s, a) : The value of predicted outcome ([-1,1]) when current sÕs board is fed with current

a to take into the NNET is stored under this variable.

¥ N(s) : The value of the number of times s is visited. This value is saved asN (s).

In addition to the above 4 variables, 2 additional variables in a list data structure are

used in each iteration of tree search on the current net. These variables are based on the

ones explained in [1]. Due to the complexity of the routing problem, it is discovered that

just using list data structure is not enough to di"erentiate between states with di"erent

players. Hence, the dictionary data structure has been used with 2 keys: state (board) and

the numerical value ID of the current net.

¥ V(s,n) : A dictionary of index values of valid moves under keys current board and current

net are stored with this variable.

¥ E(s,n) : A dictionary is saved under this variable with values of the real outcome of the

game which can be 0, 1 or -1. The Value 1 refers to a win, -1 refers to a loss and 0 refers

to the condition in which the current net still has legal moves and the game is still going

on.

52

Figure 4.10: A circuit board representing a move of net 1 after calling MCTS algorithm.

The above Þgure represents a board in which Net 1 has a after a successful moce call to

MCTS algorithm. Each call to MCTS algorithm includes several search step simulations.

Each simulation helps the algorithm to search many steps ahead to Þnd the best path

possible for the current net.

The above 6 variables are used to carry out each iteration of the MCTS algorithm. It

should be noted that although many nodes are visited in each iteration, the outcome is

always one move of the currently considered net. In Figure 4.10, the result of calling MCTS

algorithm on Net 1 is shown. Initially, all 6 variables discussed above are set to none. To

keep a record of all the nodes explored, a temporary netdict is initialized with the values

of original netdict from the Controller. The predicted value of the game from NNET is

represented as PVAL variable.

The pseudo-code of each search call under a MCTS algorithm is explained below:

53

Algorithm 1 Search step under MCTS
Require: Current board, current net, temporary netdict

if Current board state value is not visited with current net: board state value not in
E[currentnet] then

Calculate game outcome = 0,1,-1
Initialize E[currentnet][board] = game outcome

end if
if Game outcome of current net with current board is win or lose Ó E[current net][board]
= 1 or -1 then

Return - game outcome (for next player to move)
end if
if A prediction for current board state value have never been done: board state value not
in P then

P[board], PV AL " NNET
Superimpose value of valid moves for current net on predicted value from NNET
Normalize the probability array so that the sum of probabilities is 1

end if
if Valid moves of the current net have not been saved yet: current net not inV then

Moves = Þnd valid moves
V[currentnet][board] " Moves
Current net " next net in order

else
if current board is used as a key to store valid moves under current net: board in

V[currentnet] then
Check if stored moves are correct according to the present temporary dictionary, if

not Þnd the valid moves again and store.
else

Moves" Þnd valid moves
V[currentnet][board] " Moves
Current net " next net in order

end if
end if
best action value" - #
best action" -1

54

for all action possible for the current board: cur actiondo

if cur action is valid and (board, curaction) is in Q(s, a) then

action value" Q(board, curaction)+ cp $P(board, curaction) $
#

N (board)
NSA (board,curaction)+1

else

action value" cp $ P(board, curaction) $
$

N (board) + smallvalue(intermsof 10" 7)

end if

if action value> best action valuethen

best action value = action value

best action = cur action

end if

end for

action = best action

Append action to the net under temporary dict

next board = Apply the action on current board with the current net

Go to next net in order eg: from net 1 to net 2

PV AL = search with next board, new cur net and updates temporary dict

if Action value of Current board and action is already calculated: (board, action) in Q

then

Q(board, action) " (NSA (board,action)! Q(board,action)+ P V AL)
NSA (board,action)+1

NSA(board, action) " NSA(board, action) + 1

else

Q(board, action) " PV AL

NSA(board, action) " 1

end if

N (board) " N (board) + 1

return PV AL

55

MCTS Algorithm uses the search function to Þnd a move for a net by using the value

of NSA(s, a) found in the search function. The pseudo-code for MCTS algorithm is given

below. In this algorithm, NSA %array is used to storeNSA(s, a) values corresponding to

each grid index in the board.

Algorithm 2 The MCTS algorithm
Require: Current board, current net, netdict

for run for MCTS-S times do
search(Current board, current net, temporary dict)
reset temporary dict to initial netdict

end for
make NSA-array usingNSA(board, action) values
if

%
NSA %array is 0 then

return 0 means no valid moves found
end if
NSA %array " NSA %array 1/T

moveprobabilities" NSA " array!
NSA " array

return moveprobabilities

4.5 Deep Learning-based policy improvement

Deep learning plays a major role in the working of Alpha-router as it is the backbone of

improving the policy to select good moves for a net that brings it closer to its destination.

In Alpha-router, A convolutional neural network is considered to be the architecture that

deep learning operates on.

4.5.1 CNN Architecture of Alpha-router

Alpha-router is a grid-based model in which the input to the CNN is in the form of a matrix.

The architecture described in [1] (which is also a grid-based model) is used in Alpha-router

to ensure of the stability of CNN. Due to the di"erence in the problem statement of Alpha-

router and [1], it was needed to deÞne a new structure of input and output of CNN.

56

Figure 4.11: Input and output to the Alpha-routerÕs CNN [13]

The above Þgure represents the dimensions of the input matrix and output values of the

CNN in Alpha-router. The input is a 3D matrix with the Þrst two dimensions of the

circuit boardÕs height and width. The third dimension is Þxed to accommodate 3 real

values which are the depth. The Þrst value is 0 or 1 which shows if the grid is occupied

or not. The second value is the index of the current grid considered under the current

netÕs turn. The third value is the index value of the destination grid of the current net.

The output is a 2D matrix and a value that lies between -1 and 1. The 2D matrix is

a probability to make a move to that respective grid. The numerical value refers to the

win/loss score if the highest probability move is chosen.

57

Figure 4.12: Training samples input and output values to train with CNN

The above Þgure represents an example of the numerical values of each sample taken at

every move in self-play to train CNN in Alpha-router. In Figure (a) the current in which

net 1 has moved to the grid index 2 is shown. In Figure (b) the numerical values of the 3D

input matrix are presented. In Figure (c), the output 2D matrix and the win/loss score is

shown. Figure 4.12 is an ideal example, hence the probabilities of all output invalid moves

are 0. In the real simulation, these values will be very very small.An additional point to

note in the above Þgure is the destination grid occupancy. During self-play, the model

assumes the destination grid of all the pins is occupied. In the phase of training, the circuit

board prepared to input doesnÕt include destination grid occupied i.e. the value of the

grid is not equal to one. The Þrst reason behind this assumption is that the destination

index is taken as a separate input. The second reason is to increase the variation between

the input circuit boards to train.
58

4.6 Experimental Result

The experimental results of Alpha-router are presented in three sections: Experimental

setup, Hyper Parameters and Experimental design.

4.6.1 Experimental Setup

¥ Hardware setup

The experiments of Alpha-router are performed on a MAC book with 1.3 GHz Intel Core

i5 64 bit processor. The RAM of the system is 16 GB.

¥ Software setup

The programming language used to develop Alpha-router algorithm is Python [102]. The

reason to use this programming language is that the tools to run ML oriented algorithms

are more developed and have better documentation to help with the development in

Python than in other language. Pycharm Community 2018.2 has been used to run and

debug python program [103]. The resultant routings from the program have been saved in

a PDF Þle. The value of parameters hyper-parameters along with number of wins during

testing and training are saved in separate text Þles which are generated during the run

time. Due to powerful processing resource requirement for RL, a smaller circuit of 5X5

have been used to test the e!ciency of Alpha-router model as a proof of concept.

4.6.2 Hyper Parameter

Hyper-parameters are deÞned as the parameters that are initialized before training an ML

model [104]. The value of these parameters is Þxed throughout the training process of the

Alpha-router. Hyper-parameters play a major role in the performance of NNETs. The

process of Þnding the optimal values of hyper-parameters to get the best possible results is

called hyper-parameter tuning. In the case of Alpha-router, the deÞnition of best possible

results is predicting high probabilities for moves that lead to winning scenarios in a circuit

59

arrangement.

For Alpha-router, the value of hyper-parameters have been chosen experimentally by com-

paring the game models [1] [22] with routing problem model.

¥ Comparison of performance based on values of parameters. Two set of benchmarks are

taken in account to Þnd out best parameters. These benchmarks divide the types param-

eters fed into the Alpha-router in 3 categories:

1. Algorithm iterative category:

This category consists mainly of parameters that control the working of algorithmic

potion of Alpha-router. The parameters needed to run MCTS algorithm are the main

part of the this portion. These parameters include the number of MCTS simulations,

exploration rate in MCTS, etc.

2. Physical routing category:

Under this category, routing parameters are monitored. Routing parameters are set on

the basis of physical properties of the circuit being routed. These properties include the

size of the circuit, the number of nets, di!culty level of the nets placed, etc.

3. Neural network category:

To ensure NNET architectureÕs e!cient learning in Alpha-router, the hyper-parameters

under neural network category are set. These parameters include the learning rate,

dropout rate, etc.

60

4.6.3 Experimental Design

Figure 4.13: Di"erent di!culty levels of pin placement

(a)Easy level pin placement, (b) Medium level pin placement, (c) Hard level pin placement

The parameters from physical routing and neural network category are considered together

to compare with the hyper-parameters used in [1]. In [1], a AlphaGo Zero based Tick Tack

Toe game model have been implemented. Due to the similarity in grid based environment

of Alpha-router game model and Tick Tack Toe game, this comparison is performed.

The two cases for comparison considers neural network parameter. In Parameter case 1,

values from [1] are used including learning rate(.001) and dropout rate(0.3). Parameter

case 2 consists of the values that have been found by experimenting the Alpha-router

model with the learning rate(0.01) and the dropout rate(0.1).

The results from the testing parameters such as di!culty level of pin placement from

physical routing category, dropout and learning rate from neural network category are

61

presented as follows:

Three levels of di!culties are considered - easy, medium and hard. In easy pin placement,

the source and destination of pins are placed 1 grid point apart shown in Figure 4.13 (a).

In Figure 4.13 (b), a pin placement with medium level of di!culty is shown where the

source and destination pins are placed within 2-3 grids apart. The hard level of di!culty

is shown in Figure 4.13 (c) where the shortest distance between source and destination

can be up-to 5 grids in case of a 5X5 circuit.

Figure 4.14: Comparison of performance of Alpha-router with values under Parameter Case

1 and 2 in easy pin placement

In Figures 4.14, a resultant graph with the easy pin placement with Alpha-router iteration

on x-axis and number of wins in the iteration on y-axis. In case of the easy pin placement

both Parameter case 1 and Parameter case 2 generates comparable number of wins.

62

Figure 4.15: Comparison of performance of Alpha-router with values under Parameter Case

1 and 2 in medium pin placement

In Figure 4.15, a resultant graph with the medium pin placement is shown. A similar be-

havior as easy pin placement of generating comparable number of wins by both parameter

cases is observed.

Figure 4.16: Comparison of performance of Alpha-router with values under Parameter Case

1 and 2 in hard pin placement

In the hard pin placement, the number of wins generated by Parameter Case-2 becomes

63

quite higher than Parameter case 1 as shown in Figure 4.16.

Through the data presented in Figures 4.14, 4.15 and 4.16 it can be shown that as the

di!culty level goes up, Parameter Case 2 performs better. This case parameter is used

in Alpha-PD-Router contribution part discussed in the next chapter. Apart from being

utilized in Alpha-PD-Router, Alpha-router can also be used in independent environment,

which will require multiple decisions to be an one step while routing multiple nets.

4.7 Qualities of Alpha-Router

In Alpha-router model, an RL approach is implemented to optimize the solution of rout-

ing problem without using any traditional path-Þnding optimization algorithms. The main

qualities of Alpha-router are listed below:

¥ Flexibility:

Due to following the ML approach, this model has the advantage of being ßexible to new

designs. As more examples of circuits arrangements are generated through RL method

for training NNET, the success rate of testing for new circuit arrangements also increases.

Moreover, the model is ßexible to include di"erent type of rules to follow which can be

externally implemented and simply be used with the model. The training and testing

phases will not be a"ected as the right moves are decided by the model itself.

¥ Robustness:

In the Alpha-router model, the bad moves are used in conjunction with good moves which

makes the model robust towards making bad decisions. Hence, even if the model starts

with loosing in self-play many episodes, the weights learned will help it to Þnd good moves

and eventually wins of self-play episodes will be achieved.

¥ Visionary:

64

In the Þeld of EDA where data-sets are extremely limited, Alpha-router can provide a new

framework to solve the routing problem. This will help the EDA industry to leave a very

di!cult problem in the hands of a self-su!cient model which doesnÕt require any external

data.

4.8 Summary

In this chapter, the Þrst contribution of the thesis Multiplayer Alpha-router has been dis-

cussed. At Þrst, the application of RL concepts is presented. Then the overview of Alpha-

routerÕs infrastructure is presented. To get a deeper view, the parameters of Alpha-router

are set before the process begins are discussed. After that, the control ßow of all three parts

of Alpha-router has been presented with ßow chats and pseudo-codes. Finally, the qualities

of Alpha-router over other algorithms have been presented.

65

Chapter 5

Alpha-PD-Router

Alpha-PD-Router is the second contribution presented in this thesis in which another model

of solving the routing problem is described [13]. Alpha-PD-Router is based on the min-max

optimization concept [105Ð107], collaborative game theory and RL. This model also uses

supervised learning and path-Þnding algorithms like the A* algorithm to generate routing

samples and train them. Similar to Alpha-router, this model doesnÕt require any external

circuit data. In Alpha-PD-Router, a min-max game formulation is developed with the main

objective divided into two ÓcollaboratingÓ sub-objectives assigned to two players. One sub-

objective is of minimizing nature and other is of maximizing nature. In the end, both of the

sub-objectives work to optimize the main objective.

This chapter is divided into the following subsection: In Section 5.1 the terminology of

Alpha-PD-Router is presented. In Section 5.2, the description of Controller is given which is

one of the main parts in Alpha-PD-Router that controls the modelÕs working. Diving into a

little speciÞcs, the working of Cleaner is introduced in Section 5.3 and the working of router

is presented in Section 5.4. The experimental setup and results are discussed in Section 5.5.

In Section 5.6, the qualities of the model is presented. Finally, in Section 5.7, the summary

of the chapter is provided.

66

5.1 Terminology

Alpha-PD-Router is a collaborative RL based model that functions to Þnds routing solutions.

The model works with 2 players: Cleaner and Router. Both players run in cooperation and

try to produce good routing solutions for a circuit arrangement. The main idea behind being

a collaborative model is to allow both players to participate in the routing process and reach

a global optimum solutions. Initially, a routed circuit with the help of the A* algorithm is

given to the model. The Þnal objective is to generate a routing solution without any short

violations. To achieve this objective, several input parameters that control the working of

Alpha-PD-Router need to be set before starting training.

In Figure 5.1 the hierarchy of Alpha-PD-Router is shown. The model is made up of 3

main parts: Controller, Cleaner, and Router.

Figure 5.1: Hierarchy of Alpha-PD-Router

The main attributes of the model are as follows:

¥ Controller

The Controller acts as an interface between Cleaner and Router. It takes care of the

inputs and outputs to and from Cleaner and Router. The job of documenting the training

result is handled by the Controller as well. In Figure 5.2, an example a 5 X 5 board is

67

Figure 5.2: ControllerÕs Output Circuit

Figure 5.3: Output Circuits after Cleaner operations

shown with 3 nets to route. A* algorithm routes the nets with the shortest possible paths

without considering overlapping or crossing of nets. Therefore, a DRC at grid index 17 is

created by net 2 and net 3.

¥ Cleaner

The Cleaner acts as a cleaning agent. The main function of Cleaner includes Þnding

the DRCs in the board and the nets causing that DRC. First, the Cleaner cleans up the

routing of Þrst culprit net and send the output board to Router. The process of making

68

routing grids of a net unoccupied between source and destination pins is called ripping.

The Cleaner iterates over each culprit net and rips them one by one to be re-routed by the

Router. In Figure 5.3, Cleaner Þnds the DRC at index 17 and the culprit nets 2 and 3.

It then rips them one be one. In Figure 5.3(a), board when Net 3 is ripped and in Figure

5.3 (b) the board with Net 2 ripped is shown.

Figure 5.4: Output Circuits after Router operations

¥ Router

The Router acts as a routing agent. After receiving ripped board from the Cleaner, Router

tries to re-route the ripped net. In Figure 5.4 (a), board with re-routed Net 3 is shown

and in 5.3 (b) board with re-routed Net 2 is presented. By re-routing Net 2 , a DRC

free routing solution could not be generated, so this net will be associated with a negative

reward.

69

5.1.1 Control Flow of Alpha-PD-Router

Figure 5.5 represented the control ßow of Alpha-PD-Router. This control ßow is similar to

the Alpha-router shown in Figure 4.3. The main di"erence is that a routed circuit with A*

algorithm is given to the Controller in Step 5.

Figure 5.5: Control Flow of Alpha-PD-Router

70

Figure 5.6: Control Flow of Controller

71

5.2 Controller

The Controller part in Alpha-PD-Router is responsible to supervise the operations of Cleaner

and Router and acts as a data exchange agent between them. An iteration of Controller

oversees the training of one circuit arrangement. In Figure 5.6, the control ßow of Controller

is shown. A step-by-step explanation of the ßowchart in Figure 5.6 is as follows:

1. The Controller receives original netdict which consists of net ID as the key and values as

the source and destination indices of the nets from Alpha-PD-Router .

2. The control of the model is passed to the Cleaner with netdict as the argument.

3. During this step, the output from the Cleaner which consists of a dictionary of DRCs is

called DRCDict is obtained. The dictionary contains DRC grid index as key and values

as the culprit nets which are responsible to cause the DRC.

4. Every DRC in DRCDict is iterated and then deleted from the dictionary. In this step, the

terminating condition of the model which is the length of DRCDict is checked.

5. If there are still DRCs left in the DRCDict then a new variable is created called curDRC.

CurDRC stores the values of current DRC in consideration with the ongoing iteration.

6. If there are no more DRCs left to Þx, then that leads to the iteration to end after docu-

menting the results of the iteration to en external text Þle.

7. Inside the iteration, another condition is checked to evaluate if all the nets under the

curDRC in DRCDict is iterated or not.

8. In Figure 5.6, on the left side shows the ÕNoÕ condition steps. If all the nets are not

evaluated yet, then Þrst value under the key of curDRC in DRCDict is set to the variable

rippedNet.

9. The control of the model is again passed to the Cleaner with arguments of curDict and

rippedNet.

72

10. The Cleaner rips the rippedNet from the board and delete the path under the rippedNet

in netDict. Both of these values are passed to Controller as Cleaner output.

11. The control of the model is then passed to the Router with the arguments of Cleaner in

the previous step.

12. The Router outputs a routed list named winList which contains the new path of rippedNet

which is returned bath to the Controller.

13. A sub-condition evaluates the output of Router winList not be equal to None and -1.

14. If the above conditions are true, that means the routing was successful. An entry in

rewardDict is made which contains the new path found.If the condition is false, then the

routing has failed and the control tries to iterate other nets by moving to Step 7

15. In Figure 5.6, on the right side shows the ÕYesÕ condition steps. This condition was

mentioned in step 7. If all the nets are evaluated then, the reward attached to each net is

calculated.

16. After calculating nets, a sub condition is considered which checks if the curDRC is Þxed.

By Þxing the curDRC means that there are no more violations left in the circuit board.

17. (a) If the DRC is Þxed, then the data with curDRC, rippedNet and the input board is

saved to an external location. This data will be used to train a NNET before testing new

with new board arrangements.(b) If the DRC is not Þxed, then model tries to Þx the next

in DRCDict by moving to step 4.

18. After Cleaner data is saved, the curDRC value is deleted from the DRCDict. Moreover, in

the original netdict, the routing of nets are updated with the highest rewarding net path.

The control of the model goes back to the primary terminating condition of checking the

length of DRCDict.

73

5.3 Cleaner

Figure 5.7: Input and Output of Cleaner part of Alpha-PD-Router

The Cleaner in Alpha-PD-Router works as a self-correcter agent which focuses on Þnding the

mistakes, correcting them and then double-checking if the correction gives high reward score

or not. If a high reward is achieved, then the way of correction is learned by the system.

This whole process is similar to trial and error with an extra step of learning. This is how

an RL model works. Checking if the correction gives a good reward is the feedback system

in the model.

In terms of routing problem, the feedback system consists of the following factors:

¥ Mistakes correspond to DRCs.

¥ Correcting Mistakes correspond to Þxing DRCs.

¥ Reward corresponds to the score of re-routing a net.

74

¥ Learning a way of correcting mistakes means training the Cleaner with all the successful

examples to learn which is the best net to rip based on supervised learning method.

In Figure 5.7, the input and output of the Cleaner model are represented. In terms of

RL, the state s is the input board received by the Cleaner. The action space that describes

the valid actionsa can be taken will be the choices of the nets that have caused the DRC at

the grid index 17. The reward will be associated with every action is calculated by further

processing which is not a part of the Cleaner. The rewards are calculated on the basis of

quality of routing paths produced by the Router.

5.3.1 Cleaner Functions

One of the main functions of the Cleaner is to clean the DRCs causing nets as represented in

Figure 5.7. The other function is to make the dictionary of DRCs for a circuit arrangement.

This step is relatively simple but crucial as the output of this step is needed by the Router

to re-route ripped nets.

75

Figure 5.8: The representation of Cleaner function to make a dictionary called DRCDict.

In Figure 5.8, the input circuit board of size 10 x 10 in which 7 nets are routed is shown.

The python dictionary data-structure DRCDict contains key-value pair with key as DRC

index and the values as the nets responsible for the DRC. These net values are not limited to

2 nets, they can be multiple. For example, if a DRC at index 17 is caused by 4 nets together,

then under key value 17, the net id of those 4 nets will be stored. This data structure stores

one of the most crucial information for both Cleaner and Router. For Cleaner, the net values

will deÞne the action space. For the Router, DRCDict will give the index of current DRC

in consideration and the net which needs to be re-routed.

76

5.3.2 Cleaner Training

Figure 5.9: The representation of concatenated original Cleaner board with current DRC

Figure 5.10: The representation of normalized input be trained in Cleaner part

The Cleaner in Alpha-PD-Router is trained using supervised machine learning techniques

and deep learning architectures. A CNN is used as the deep learning architecture with

multiple hidden layers. The input to the CNN architecture is presented in Figure 5.9. The

input is a 2D board dependent on the size of the board. In Figure 5.9, the process of forming

77

Figure 5.11: Representation of transforming input board to a circuit board ready for Router
operation

a 5 X 5 X 1 input board is shown. The original board consists of 3 nets and the unoccupied

grids are Þlled with zero value.

In deep learning, data normalization is very signiÞcant in cases where the data ranges are

di"erent. Under the third dimension of input, the Þrst value is in range of 0 to a maximum

number of nets to consider. For example, in Figure 5.10(a), normalized input board is

represented. The Þrst value id normalized with 3 (total number of nets).

In Figure 5.10(b), the output array is represented to be fed in the CNN. The size of the

output array is 1 X number of nets. The index of the highest rewarding net to be ripped will

be 1 and other indexes will be zero. In Figure 5.10(b), the best net selected to be ripped is

net 2. Hence, the index 2 value is set 1 and the other net indexes are set at 0.

5.4 Router

The Router in Alpha-PD-Router is a RL based model that re-routes the ripped net passed by

the Controller. The Router works in cooperation with Cleaner and uses the Controller to pass

the paths taken by the re-routed nets. The Router uses a similar CNN architecture as Alpha-

78

router but the structure of input and output is completely di"erent with few modiÞcation in

the RL algorithm. As the goal of the Router is to just re-route 1 net that is ripped, hence

all other nets are considered as blockages and on Router board, they are represented as ÕXÕ.

This Router board is prepared from the input board transferred by the Controller.

In Figure 5.11 (a) , the input board is shown, and in the Figure 5.11 (b), Router board is

shown which represents the ÕXÕ for the other nets routes and only consider the current net

to be routed.

5.4.1 Meet-In-The-Middle Algorithm

Figure 5.12: Representation of sub-nets under MIM algorithm

Alpha-PD-Router uses MCTS algorithm for policy evaluation and deep learning-based

policy improvement in Router part which is similar to the ones discussed in Alpha-router in

Chapter 4. Although to accommodate a single net routing scenario in a collaborative RL

based routing algorithm have been developed under the Router part called Meet-In-Middle

(MIM). MIM considers 1 net to be routed in terms of 2 sub-nets. To make the routing

faster and more e!cient, the Router plays a smaller game where all the pins are trying to

79

connect to at least one other pin in the net and the routing grid circuit is considered to be

the board. Sub-net 1 is Þrst player, which is the original net to be routed and the sub-net 2

is the second player which is obtained by switching the source and destination grid indexes

of the Þrst sub-net.

In Figure 5.12, an example of a 5 X 5 circuit board is shown in the routing case. In

Figure 5.12(a), sub-net 1 player is shown with source at index 20 and destination at index

12. Sub-net 2 player is represented in Figure 5.12(b). The aim of both of the players is to

reach the destination grid index. If the players meet somewhere in the middle or at source

or destination, then a win is declared. A loss is declared when there are no legal moves

available for any of the players. This loss situation can arise in cases where all the grids

around all the players are already occupied or when the source or destination grids of the

current net are completely surrounded by the blockages.

Figure 5.13: Representation of 2 sub-nets using MIM algorithm to route a net

Sub-nets move one grid at a time and take turns like multiplayer nets discussed in Chapter

4. In Figure 5.13, an example of routing of a net with the help of MIM algorithm with 2

80

sub-nets is shown. Routing starts with sub-net 1 turn as shown in Figure 5.13(a). After

that, itÕs the chance of sub-net 2 as presented in Figure 5.13(b). In this way, one by one both

sub-nets take turns to Þnd their respective destination grids. The terminating condition of

the algorithm is shown in Figure 5.13(c), when the next valid move for sub-net 2 is a grid

occupied by sub-net 1. Hence, the Þnal routing will be the result of concatenating the routing

indexes of both the sub-nets as represented in Figure 5.13(d). In this way, MIM algorithm

works to re-route culprit nets.

5.5 Experimental Result

5.5.1 Experimental Setup - Hardware and Software

A 1.3 GHz Intel Core i5, 64 bit Mac Book is utilized to perform training and testing of

Alpha-PD-Router. The Mac Book has 16 GB RAM. Python programming language is used

to develop Alpha-PD-Router. Libraries such as Tensorßow(1.14) and Keras(2.1.6) are used

to save and load the NNET weights and samples while training and testing. The Alpha-PD-

Router is programmed in Pycharm 2018.2 community edition environment.

5.5.2 Experimental Architecture and Results

The most important part of the simulation in RL is to generate good quality data that can

be used in training the NNET and improve the accuracy of predictions. Under the Alpha-

PD-Router: Cleaner and Router parts consist of separate NNETs to learn two di"erent

objectives. This problem is similar to the min-max problem where the aim of two sub-

problems is di"erent but the objective of the whole system is one. In the Cleaner part,

the aim is to learn to rip a net that will solve the DRC. In the Router part, the goal is to

learn where to move on the grid circuit to route the net from source to destination. The

learning of the Cleaner is based on the rewards generated by the Router part which makes

the Alpha-PD-Router a collaborative model.

81

To train two separate NNETs, it is signiÞcant to know the structures of inputs and

outputs. These input and output structures for both Cleaner and Router parts are discussed

in the previous sections. To make sure the overall objective of learning is achieved, hyper-

parameter tuning of NNETs is performed.

Parameter Cleaner NNET Router NNET

Learning Rate .05 0.001

Batch Size 64 64

Epochs 10 10

Dropout Rate .1 .3

Training Samples 5480 42400

Testing Sample 99 N/A

Table 5.1: Comparison of NNET parameter values of Cleaner and Router in Alpha-PD-

Router that are experimentally discovered to get optimal results

Parameter Value

Number of nets 3

Number of pin combination 157

Dimension 5X5

MLIter 3

MLS-p 5

MCTS-S 5

T 30

C 0.5

Table 5.2: Value of parameters used in training Alpha-PD-Router

In Table 5.1, the values of the learning rate, batch size, number of epochs, dropout rate,

number of testing and training samples are shown. The learning rate of NNET used in the

82

Cleaner part is much higher than the Router part to cope up with the far fewer number of

samples to train. It should be noted that it took days of non-stop computations to generate

these Cleaner and Router samples on a single CPU. Similarly, in Table 5.2, parameters of

Alpha-PD-Router base algorithm have been Þxed to deÞne the routing problem that can be

solved with the computing power in hand.

Figure 5.14: Training curve of Router with training loss on y y-axis and number of epochs

on x-axis

83

Figure 5.15: Training curve of Cleaner with training loss on y y-axis and number of epochs

on x-axis

In Figure 5.14, the training curve of Router is represented with training loss on y-axis

and number of Epochs on x-axis. It is observed that after 10 epochs the loss saturates to a

constant value. For Cleaner, similar behavior has been observed and represented in Figure

5.15.

84

Figure 5.16: Images of Cleaner correcting DRCs [13]

This setup successfully resolved 116 DRCs out of 177 DRCs in 99 testing samples in 51.6

seconds which presents a 65.5% accuracy. Each testing sample is a 5X5 circuit with three

nets. To improve accuracy, it is proposed to use much higher computation power than 1

85

CPU in future. With higher computation power, more number of samples will be produced

to achieve the higher accuracy in testing Alpha-PD-Router. These results embark a way

to the development of self-su!cient and collaborative tools to DRCs free routings in VLSI

physical design. The performance of Alpha-PD-Router cannot be compared to optimization-

based Router tools available in the industry as the dimension of the circuit is too small. To

increase the size of the circuit to even 20X20 to train and test, a large number CPUsÕ(64)

and GPUsÕ(19) are required as utilized in training AlphaGo Zero a success.

In Figure 5.16, some test case results are shown. In Figure 5.16 (a), (b) and (c) are the

circuits represented with violations marked by ÕXÕ. In the Figure 5.16(e), (f) and (g) are the

circuits corrected by Alpha-PD-Router. Note that the path found in the circuit is near to

the shortest path. This shows that not only the violations are corrected but also the shortest

path is found between pins.

5.6 Qualities of Alpha-PD-Router

Alpha-PD-Router is a method to solve the routing process under VLSI physical design

problem. All the qualities that make Alpha-router a useful model applies to Alpha-PD-

Router as well. Additionally, some features of the Alpha-PD-Router add notable advantage

to its functionality over Alpha-router:

1. Speed

In the router part of Alpha-PD-Router , the objective is to route one net which is again

divided into sub-nets. Both sub-nets have the opportunity to use MIM algorithm to

complete the routing. This feature a"ects the overall time it takes to route as the whole

routing process is completed faster in comparison with multi-player Alpha-router.

2. Routing Decisions

In Alpha-router, there are multiple nets that are trying to Þnd the best move to achieve

a win scenario. Hence, there are multiple decisions to take in one iteration which makes

86

it harder to get all the decisions correct. The complexity of this problem rises with the

size of the circuit and the number of nets to route. In case of Alpha-PD-Router , there is

always only one net to re-route at one Router iteration, hence the number of decision are

far less than that of Alpha-router. Moreover even if the number of nets increases, it will

not a"ect the number of decisions as there will be only two sub-nets.

3. Collaborative Learning

In Alpha-router method, there is one learning agent which learns to route multiple nets,

in Alpha-PD-Router, there are two learning agents - the Cleaner and the Router. The

Cleaner learns if it rips the best net by the RouterÕs solution and the Router routes a

net based on CleanerÕs decision. Both of these player have separate objective but they

work together collaboratively to achieve a single main goal to produce DRC free routing

solutions. Although there are two separate NNETs for Cleaner and Router, the model is

more robust to achieve a DRC free routing solution due to their collaboration.

5.7 Summary

In this chapter, the second contribution of the thesis Alpha-PD-Router has been discussed.

The terminology of 2 player Alpha-PD-Router and its parts have been discussed at Þrst.

Then the control ßow is explained with the help of a ßowchart. After that, an overview of

the Controller is presented which is one of the three sub-parts of Alpha-PD-Router . Then

an introduction to Cleaner is presented explaining the working and functions. The Router

part is discussed after that along with a collaborative routing algorithm called MIM. In the

end, the qualities of Alpha-PD-Router over Alpha-router have been presented.

87

Chapter 6

Conclusion and Future Work

6.1 Summary and Contributions

Multinational EDA companies like Cadence, Synopsis, Mentor Graphics spend a lot of time

and money to cope up with the manufacturing requirements of IC in the routing step of

VLSI physical design process. Every design and manufacturing rule adds complexity to

optimization-based current routing algorithms to improve and accommodate these rules.

However, with size constraints of IC (approx 5 nm), the running times of these algorithms are

in hours and memory usage in Gega-bytes for completing routing step on a single benchmark.

In year 2018 and 2019, the well-know EDA oriented ISPD contest was organized on

detailed routing. The winner of the contest, Dr.CU took around 51 GB of memory to

complete the detailed routing process on one of the most complex benchmarks [27]. These

results show that using a combination of optimization algorithm requires a lot of memory

usage and time consumption. To overcome these complex issues, the contributions discussed

in Chapters 4 and 5 present RL based routing models.

In Alpha-router and Alpha-PD-Router, new ways of routing has been presented. These

frameworks learn the optimization function independently without using any external opti-

mization algorithm. A quality of using the RL based architecture is the reduction of running

88

time and memory usage while routing every benchmark. These routing tools will be able to

produce results after training once with the data produced using RL algorithm. Hence no

external data is required.

To prove the e!ciency of this model as a proof of concept, experiments have been con-

ducted on a small 5X5 grid circuit with three nets. For the Þrst contribution, NNET parame-

ters have been experimentally discovered. The performance of parameters with Alpha-router

have been compared with AlphaGo Zero inspired Tick Tack Toe game parameters [1]. It is

shown that as the level of di!culty in pin placement increases, parameters discovered with

Alpha-router produce more wins. With the second contribution of Alpha-PD-Router, 116

DRCÕs out of 177 drcÕs are resolved in 99 test cases in 51.6 secs. The samples used to train

Router and Cleaner are generated with the RL algorithm designed according to the routing

environment.

The main contributions presented in this thesis are as follows:

¥ Proposed Alpha-router, a self-routing tool based on RL.

¥ Developed a routing based Monte Carlo Tree Search algorithm.

¥ Proposed a DRC correcter tool called Alpha-PD-Router based on min-max concept of

optimization and generalized RL algorithm [13].

¥ Designed a neural network(NNET) architecture to accept routing based input and output

structures in Alpha-router and Alpha-PD-Router.

6.2 Future Work

The goal of the research work presented in this thesis is to extend the game theory-based

methods in order to generate high-quality solutions on actual routing benchmarks. In the

future, it is proposed to test the frameworks developed with bigger circuit sizes to expand

the learning experience. The applicability of the work will also be increased to obtain better

89

results. The scope of this project can also be expanded by increasing the number of nets to

route and switching the models perform to 3D routing.

It should be mentioned that extensive processing resources will be needed with increase

in size of circuit, as was the case with GoogleÕs AlphaGo Zero.

6.3 List of Accepted publications

1. Upma Gandhi, Ismail Bustany, William Swartz, Laleh Behjat, ÓA Reinforcement Learning-

Based Framework for Solving Physical Design Routing Problem in the Absence of Large

Test SetsÓ in 1st ACM/IEEE Workshop on Machine Learning for CAD (MLCAD), 2019.

Accepted, unpublished.

2. Upma Gandhi, Erfan Aghaeekiasaraee, Ismail Bustany, William Swartz , Laleh Behjat,

ÓAlphaRouter - Detailed Routing Model Using Reinforcement LearningÓ in the Association

of European Operational Research Societies(EURO) conference, 2019, presented.

90

Bibliography

[1] J. Thakoor, Shantanu, Nair, Surag, ÒLearning to Play Othello Without Human Knowl-

edge,Ó tech. rep., Stanford University, 2018.

[2] Wikipedia, ÒInvention of Integrated Circuit.Óhttps://en .wikipedia .org/wiki/

Invention of the integrated circuit#/media/File:Kilby solid circuit .jpg .

Accessed on 2019-04-10.

[3] G. Fogerlie, ÒStack Exchange.Óhttps://electronics .stackexchange.com/

questions/56649/what-is-a-die-package , Aug 2011. Accessed on 2019-08-

10.

[4] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design: From Graph

Partitioning to Timing Closure. Springer Publishing Company, Incorporated, 1st ed.,

2011.

[5] V. U. Blogger, ÒVLSI Universe.Óhttps://vlsiuniverse .blogspot .com/2013/06/

routing-connecting-dots-within-chip .html , Aug 2013. Accessed on 2019-08-19.

[6] E. Aghaeekiasaraee, ÒDoctoral Research - University of Calgary,Ó Sept 2019. Unpub-

lished.

[7] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar,Handbook of Algorithms for Physical

Design Automation. Boston, MA, USA: Auerbach Publications, 1st ed., 2008.

91

[8] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,

S. Tavener, D. Perez, S. Samothrakis, and S. Colton, ÒA Survey of Monte Carlo Tree

Search Methods,ÓIEEE Transactions on Computational Intelligence and AI in Games,

vol. 4, pp. 1Ð43, March 2012.

[9] ÒWhat is Deep Learning and Neural Network.Óhttps://www .houseofbots .com/news-

detail/1443-1-what-is-deep-learning-and-neural-network . Accessed on 2019-

03-20.

[10] S. Saha, ÒA comprehensive guide to convolutional neural networks - the eli5 way.Ó

https://towardsdatascience .com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53 , 2018. Accessed on 2019-08-30.

[11] D. Liu, ÒA Practical Guide to ReLU.Óhttps://medium .com/@danqing/a-practical-

guide-to-relu-b83ca804f1f7 , 2017. Accessed on 2019-08-04.

[12] Y. Saplakoglu, ÒWhy Did the USDA perform ÕCat CannibalismÕ ExperimentsÕ.Ó

https://www .livescience .com/65038-why-usda-conducted-experiments-cat-

cannibalism .html , 2019. Accessed on 2019-04-08.

[13] U. Gandhi, I. Bustany, W. Swartz, and L. Behjat, ÒA Reinforcement Learning-Based

Framework for Solving a Physical Design Routing Problem in the Absence of Large

Test Sets,Ó inpost-workshop proceedings of 2019 ACM/IEEE 1st Workshop on Machine

Learning for CAD, Accepted, Unpublished, 2020.

[14] G. E. Moore, ÒReadings in Computer Architecture,Ó ch. Cramming More Components

Onto Integrated Circuits, pp. 56Ð59, San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2000.

[15] S.-B. Cho and H.-H. Won, ÒMachine Learning in DNA Microarray Analysis for Cancer

ClassiÞcation,Ó inProceedings of the First Asia-PaciÞc Bioinformatics Conference on

92

Bioinformatics 2003 - Volume 19, APBC Õ03, (Darlinghurst, Australia, Australia),

pp. 189Ð198, Australian Computer Society, Inc., 2003.

[16] D. Shalvi and N. DeClaris, ÒAn unsupervised neural network approach to medical

data mining techniques,Ó in1998 IEEE International Joint Conference on Neural

Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat.

No.98CH36227), vol. 1, pp. 171Ð176 vol.1, May 1998.

[17] A. L. Beam and I. S. KohaneJAMA , vol. 319, pp. 1317Ð1318, April 2018.

[18] M. J.Zaki and W. Meira Jr., Data Mining and Analysis: Fundamental Concepts and

Algorithms - Mohammed J. Zaki, Wagner Meira, Jr, Wagner Meira - Google Books.

2017.

[19] A. F. Tabrizi, N. K. Darav, S. Xu, L. Rakai, I. Bustany, A. Kennings, and L. Behjat,

ÒA Machine Learning Framework to Identify Detailed Routing Short Violations from

a Placed Netlist,Ó inProceedings of the 55th Annual Design Automation Conference,

DAC Õ18, (New York, NY, USA), pp. 48:1Ð48:6, ACM, 2018.

[20] L. E. Peterson and M. A. Coleman, ÒMachine Learning-based Receiver Operating

Characteristic (ROC) Curves for Crisp and Fuzzy ClassiÞcation of DNA Microarrays

in Cancer Research,ÓInt. J. Approx. Reasoning, vol. 47, pp. 17Ð36, Jan 2008.

[21] H. Yu, H. Wu, W. Wang, S. Jolly, J.-Y. Jin, C. Hu, and F.-M. S. Kong, ÒMachine

Learning to Build and Validate a Model for Radiation Pneumonitis Prediction in Pa-

tients with Non-Small-Cell Lung Cancer,ÓClinical Cancer Research, 2019.

[22] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van Den

Driessche, T. Graepel, and D. Hassabis, ÒMastering the game of Go without human

knowledge,ÓNature, vol. 550, no. 7676, pp. 354Ð359, 2017.

93

[23] R. S. Sutton and A. G. Barto,Introduction to Reinforcement Learning. Cambridge,

MA, USA: MIT Press, 1st ed., 1998.

[24] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, ÒPolicy Gradient Methods

for Reinforcement Learning with Function Approximation,Ó inProceedings of the 12th

International Conference on Neural Information Processing Systems, NIPSÕ99, (Cam-

bridge, MA, USA), pp. 1057Ð1063, MIT Press, 1999.

[25] ÒJack S. Kilby - Biographical.Óhttps://www .nobelprize .org/prizes/physics/

2000/kilby/biographical/ . Accessed on 2019-3-17.

[26] J. A. Becker, ÒTransistors,ÓElectrical Engineering, vol. 69, pp. 58Ð64, Jan 1950.

[27] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and G. Posser, ÒISPD 2019

Initial Detailed Routing Contest and Benchmark with Advanced Routing Rules,Ó in

Proceedings of the 2019 International Symposium on Physical Design, ISPD Õ19, (New

York, NY, USA), pp. 147Ð151, ACM, 2019.

[28] N. A. Sherwani,Algorithms for VLSI Physical Design Automation. Norwell, MA, USA:

Kluwer Academic Publishers, 1993.

[29] A. S$lowik and M. Bia$lko, ÒPartitioning of VLSI Circuits on Subcircuits with Minimal

Number of Connections Using Evolutionary Algorithm,Ó inArtiÞcial Intelligence and

Soft Computing Ð ICAISC 2006(L. Rutkowski, R. Tadeusiewicz, L. A. Zadeh, and

J. M. úZurada, eds.), (Berlin, Heidelberg), pp. 470Ð478, Springer Berlin Heidelberg,

2006.

[30] M. Tang and X. Yao, ÒA Memetic Algorithm for VLSI Floorplanning,ÓIEEE Trans-

actions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, pp. 62Ð69,

Feb 2007.

94

[31] K. Shahookar and P. Mazumder, ÒVLSI Cell Placement Techniques,ÓACM Comput.

Surv., vol. 23, pp. 143Ð220, June 1991.

[32] J.-M. Lin, S.-T. Li, and Y.-T. Wang, ÒRoutability-driven Mixed-size Placement Pro-

totyping Approach Considering Design Hierarchy and Indirect Connectivity Between

Macros,Ó inProceedings of the 56th Annual Design Automation Conference 2019, DAC

Õ19, (New York, NY, USA), pp. 119:1Ñ-119:6, ACM, 2019.

[33] J. Burkis, ÒClock tree synthesis for high performance ASICs,Ó in[1991] Proceedings

Fourth Annual IEEE International ASIC Conference and Exhibit, pp. P9Ð8/1, Sep.

1991.

[34] H. Kao, C. Hsu, and S. Huang, ÒTwo-Stage Multi-bit Flip-Flop Clustering with Use-

ful Skew for Low Power,Ó in2019 2nd International Conference on Communication

Engineering and Technology (ICCET), pp. 178Ð182, April 2019.

[35] G.-J. Nam, C. Sze, and M. Yildiz, ÒThe ISPD Global Routing Benchmark Suite,Ó in

Proceedings of the 2008 International Symposium on Physical Design, ISPD Õ08, (New

York, NY, USA), pp. 156Ð159, ACM, 2008.

[36] W. Gosti, S. P. Khatri, and A. L. Sangiovanni-Vincentelli, ÒAddressing the Timing

Closure Problem by Integrating Logic Optimization and Placement,Ó inProceedings

of the 2001 IEEE/ACM International Conference on Computer-aided Design, ICCAD

Õ01, (Piscataway, NJ, USA), pp. 224Ð231, IEEE Press, 2001.

[37] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu, ÒISPD 2018 Initial

Detailed Routing Contest and Benchmarks,Ó inProceedings of the 2018 International

Symposium on Physical Design, ISPD Õ18, (New York, NY, USA), pp. 140Ð143, ACM,

2018.

[38] L. Rakai, L. Behjat, S. Areibi, and T. Terlaky, ÒA Multilevel Congestion-based Global

Router,ÓVLSI Des., vol. 2009, pp. 6:1Ð6:1, Jan. 2009.

95

[39] J. Hu and S. S. Sapatnekar, ÒA survey on multi-net global routing for integrated

circuits,ÓIntegration, vol. 31, pp. 1Ð49, Nov 2001.

[40] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, ÒBoxRouter 2.0: Architecture and Implemen-

tation of a Hybrid and Robust Global Router,Ó inProceedings of the 2007 IEEE/ACM

International Conference on Computer-aided Design, ICCAD Õ07, (Piscataway, NJ,

USA), pp. 503Ð508, IEEE Press, 2007.

[41] A. B. Kahng, L. Wang, and B. Xu, ÒTritonRoute: An Initial Detailed Router for Ad-

vanced VLSI Technologies,Ó2018 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pp. 1Ð8, 2018.

[42] G. Chen, C.-W. Pui, H. Li, J. Chen, B. Jiang, and E. F. Y. Young, ÒDetailed Routing

by Sparse Grid Graph and Minimum-area-captured Path Search,Ó inProceedings of

the 24th Asia and South PaciÞc Design Automation Conference, ASPDAC Õ19, (New

York, NY, USA), pp. 754Ð760, ACM, 2019.

[43] A. K. Khan and B. Das, ÒA new algorithm with minimum track for four layer channel

routing in VLSI design,Ó in2013 International Conference on Computer Communica-

tion and Informatics, pp. 1Ð5, Jan 2013.

[44] S. Das, L. Barua, N. Choudhury, and A. K. Khan, ÒAn algorithm for Via minimization

in two layer channel routing of VLSI design,Ó in2015 International Conference on

Electronic Design, Computer Networks Automated VeriÞcation (EDCAV), pp. 125Ð

129, Jan 2015.

[45] J. E. Crenshaw, S. Tragoudas, and N. A. Sherwani, ÒHigh performance over-the-cell

routing,Ó inProceedings of 7th International Conference on VLSI Design, pp. 137Ð142,

Jan 1994.

[46] C. Y. Lee, ÒAn Algorithm for Path Connections and Its Applications,ÓIRE Transac-

tions on Electronic Computers, vol. EC-10, pp. 346Ð365, Sep. 1961.

96

[47] E. W. Dijkstra, ÒA Note on Two Problems in Connexion with Graphs,ÓNumer. Math.,

vol. 1, pp. 269Ð271, Dec 1959.

[48] G. Qing, Z. Zheng, and X. Yue, ÒPath-planning of automated guided vehicle based on

improved Dijkstra algorithm,Ó in2017 29th Chinese Control And Decision Conference

(CCDC), pp. 7138Ð7143, May 2017.

[49] P. O. N. Saian, Suyoto, and Pranowo, ÒOptimized A-Star algorithm in hexagon-based

environment using parallel bidirectional search,Ó in2016 8th International Conference

on Information Technology and Electrical Engineering (ICITEE), pp. 1Ð5, Oct 2016.

[50] J. Chaichawananit and S. Saiyod, ÒSolving inverse kinematics problem of robot arm

based on a-star algorithm,Ó in2016 13th International Joint Conference on Computer

Science and Software Engineering (JCSSE), pp. 1Ð6, July 2016.

[51] T. Chen, G. Zhang, X. Hu, and J. Xiao, ÒUnmanned aerial vehicle route planning

method based on a star algorithm,Ó in2018 13th IEEE Conference on Industrial Elec-

tronics and Applications (ICIEA) , pp. 1510Ð1514, May 2018.

[52] X. Liu and D. Gong, ÒA comparative study of A-star algorithms for search and rescue

in perfect maze,Ó2011 International Conference on Electric Information and Control

Engineering, pp. 24Ð27, 2011.

[53] W. Yin and X. Yang, ÒA Totally Astar-based Multi-path Algorithm for the Recogni-

tion of Reasonable Route Sets in Vehicle Navigation Systems,ÓProcedia - Social and

Behavioral Sciences, vol. 96, pp. 1069Ð1078, 2013.

[54] I. Chaari, A. Koubaa, H. Bennaceur, A. Ammar, M. Alajlan, and H. Youssef, ÒDe-

sign and performance analysis of global path planning techniques for autonomous mo-

bile robots in grid environments,ÓInternational Journal of Advanced Robotic Systems,

vol. 14, no. 2, p. 1729881416663663, 2017.

97

[55] J. Chen, J. Liu, G. Chen, D. Zheng, and E. F. Y. Young, ÒMARCH: MAze Rout-

ing Under a Concurrent and Hierarchical Scheme for Buses,Ó inProceedings of the

56th Annual Design Automation Conference 2019, DAC Õ19, (New York, NY, USA),

pp. 216:1Ð216:6, ACM, 2019.

[56] P. Tu, C. Pui, and E. F. Y. Young, ÒSimultaneous Reconnection Surgery Tech-

nique of Routing with Machine Learning-based Acceleration,ÓIEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, pp. 1Ð1, 2019.

[57] Minsik Cho, Katrina Lu, Kun Yuan, and D. Z. Pan, ÒBoxRouter 2.0: architecture and

implementation of a hybrid and robust global router,Ó in2007 IEEE/ACM Interna-

tional Conference on Computer-Aided Design, pp. 503Ð508, Nov 2007.

[58] D. G.-J. Nam, ÒISPD 2007 Global Routing Contest Announcements.Óhttp://

www.ispd .cc/contests/07/contest .html , 2007. Accessed on 2019-10-25.

[59] ÒInternational Symposium on Physical Design.Óhttp://www .ispd .cc, 2019. Accessed

on 2019-5-26.

[60] H. Liao, W. Zhang, X. Dong, B. P«oczos, K. Shimada, and L. B. Kara, ÒA Deep

Reinforcement Learning Approach for Global Routing,ÓCoRR, vol. abs/1906.08809,

2019.

[61] Z. Zhou, S. Chahal, T. Ho, and A. Ivanov, ÒSupervised-Learning Congestion Predictor

For Routability-Driven Global Routing,Ó in 2019 International Symposium on VLSI

Design, Automation and Test (VLSI-DAT), pp. 1Ð4, April 2019.

[62] G. Chen, C.-W. Pui, H. Li, J. Chen, B. Jiang, and E. F. Y. Young, ÒDetailed Routing

by Sparse Grid Graph and Minimum-area-captured Path Search,Ó inProceedings of

the 24th Asia and South PaciÞc Design Automation Conference, ASPDAC Õ19, (New

York, NY, USA), pp. 754Ð760, ACM, 2019.

98

[63] S. M. M. Gonücalves, L. S. Rosa, and F. S. Marques, ÒDRAPS: A Design Rule Aware

Path Search Algorithm for Detailed Routing,ÓIEEE Transactions on Circuits and

Systems II: Express Briefs, pp. 1Ð1, 2019.

[64] A. B. Kahng, L. Wang, and B. Xu, ÒTritonRoute: An Initial Detailed Router

for Advanced VLSI Technologies,Ó in2018 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 1Ð8, Nov 2018.

[65] X. Jia, J. Wang, Y. Cai, and Q. Zhou, ÒElectromigration Design Rule Aware Global and

Detailed Routing Algorithm,Ó in Proceedings of the 2018 on Great Lakes Symposium

on VLSI, GLSVLSI Õ18, (New York, NY, USA), pp. 267Ð272, ACM, 2018.

[66] ÒISPD 2015 Blockage-Aware Detailed Routing-Driven Placement Contest.Óhttp://

www.ispd .cc/contests/15/ispd2015{ }contest .html , 2015. Accessed on 2019-10-17.

[67] D. MICHIE, ÒÒMemoÓ Functions and Machine Learning,ÓNature, vol. 218, pp. 19Ð22,

April 1968.

[68] N. J. Nilsson, ÒIntroduction to machine learning an early draft of proposed textbook,Ó

tech. rep., Stanford University, 1998.

[69] V. K. Somvanshi, O. P. Pandey, P. K. Agrawal, N. V. Kalanker, M. R. Prakash,

and R. Chand, ÒModelling and prediction of rainfall using artiÞcial neural network

and ARIMA techniques,ÓThe Journal of Indian Geophysical Union, vol. 10, no. 2,

pp. 141Ð151, 2006.

[70] R. Bitton and A. Shabtai, ÒA Machine Learning-Based Intrusion Detection System

for Securing Remote Desktop Connections to Electronic Flight Bag Servers,ÓIEEE

Transactions on Dependable and Secure Computing, pp. 1Ð1, 2019.

[71] R. Jinnouchi, F. Karsai, and G. Kresse, ÒOn-the-ßy machine learning force Þeld gen-

eration: Application to melting points,Ó tech. rep., 2019.

99

[72] A. Krizhevsky, ÒLearning Multiple Layers of Features from Tiny Images,ÓUniversity

of Toronto, May 2012.

[73] R. Sathya and A. Abraham, ÒComparison of Supervised and Unsupervised Learning

Algorithms for Pattern ClassiÞcation,ÓInternational Journal of Advanced Research in

ArtiÞcial Intelligence, vol. 2, no. 2, 2013.

[74] L. Bruzzone and D. Prieto, ÒUnsupervised retraining of a maximum likelihood classi-

Þer for the analysis of multitemporal remote sensing images,ÓIEEE Transactions on

Geoscience and Remote Sensing, vol. 39, no. 2, pp. 456Ð460, 2001.

[75] R. A. Wilson and F. C. Keil, The MIT Encyclopedia of the Cognitive Sciences Edited

by Evolution Neurosciences. Cambridge, United States of America: The MIT Press,

1999.

[76] A. J. Masino and K. A. Folweiler, ÒUnsupervised learning with GLRM feature selection

reveals novel traumatic brain injury phenotypes,ÓCoRR, vol. abs/1812.00030, 2018.

[77] Yixin Chen, J. Wang, and R. Krovetz, ÒCLUE: cluster-based retrieval of images by

unsupervised learning,ÓIEEE Transactions on Image Processing, vol. 14, pp. 1187Ð

1201, aug 2005.

[78] Q. Liu, S. Levinson, Y. Wu, and T. Huang, ÒInteractive and Incremental Learning via

a Mixture of Supervised and Unsupervised Learning Strategies,Ó inProceedings of the

Fifth Joint Conference on Information Sciences, JCIS 2000, Volume 1(P. Wang and

P. Wang, eds.), vol. 5, pp. 555Ð558, 12 2000.

[79] A. Sarkar and G. Ha"ari, ÒInductive Semi-supervised Learning with Applicability to

NLP,Ó tech. rep., School of Computing Science, Simon Fraser University, Vancouver,

British Columbia, Canada.

100

[80] X. Zhu, ÒSemi-Supervised Learning Literature Survey,Ó tech. rep., Computer Science

Department, University of Wisconsin Madison, Wisconsin, 2005.

[81] J. Zheng and A. Siami Namin, ÒA Markov Decision Process to Determine Optimal

Policies in Moving Target,Ó inProceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, CCS Õ18, (New York, NY, USA), pp. 2321Ð

2323, ACM, 2018.

[82] S. Levine and R. Munos, ÒLecture 4: Reinforcement Learning Introduction,Ó 2018.

[83] M. L. Littman, T. L. Dean, and L. P. Kaelbling, ÒOn the Complexity of Solving

Markov Decision Problems,Ó inProceedings of the Eleventh Conference on Uncertainty

in ArtiÞcial Intelligence, UAIÕ95, (San Francisco, CA, USA), pp. 394Ð402, Morgan

Kaufmann Publishers Inc., 1995.

[84] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,

T. Graepel, and D. Hassabis, ÒMastering the game of Go with deep neural networks

and tree search.,ÓNature, vol. 529, no. 7587, pp. 484Ð9, 2016.

[85] Z. Liu, M. Zhou, W. Cao, Q. Qu, H. W. F. Yeung, and V. Y. Y. Chung, ÒTowards

Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep

Reinforcement Learning,ÓCoRR, vol. abs/1903.01747, 2019.

[86] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, ÒMonte-Carlo Tree Search: A New

Framework for Game AI.,Ó Jan 2008.

[87] I. Szita, G. Chaslot, and P. Spronck, ÒMonte-Carlo Tree Search in Settlers of Catan,Ó

in Advances in Computer Games(H. J. van den Herik and P. Spronck, eds.), (Berlin,

Heidelberg), pp. 21Ð32, Springer Berlin Heidelberg, 2010.

101

[88] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, ÒDeep Learning for Real-Time

Atari Game Play Using O%ine Monte-Carlo Tree Search Planning,Ó inAdvances in

Neural Information Processing Systems 27(Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, eds.), pp. 3338Ð3346, Curran Associates, Inc.,

2014.

[89] B. Arneson, R. B. Hayward, and P. Henderson, ÒMonte Carlo Tree Search in Hex,Ó

IEEE Transactions on Computational Intelligence and AI in Games, vol. 2, pp. 251Ð

258, Dec 2010.

[90] K. Luckow, C. S. Pùasùareanu, and W. Visser, ÒMonte Carlo Tree Search for Find-

ing Costly Paths in Programs,Ó inSoftware Engineering and Formal Methods(E. B.

Johnsen and I. Schaefer, eds.), (Cham), pp. 123Ð138, Springer International Publish-

ing, 2018.

[91] Deep AI, ÒNeural Network DeÞnition Ñ DeepAI.Óhttps://deepai .org/machine-

learning-glossary-and-terms/neural-network . Accessed on 2019-04-25.

[92] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. A. Riedmiller, ÒPlaying atari with deep reinforcement learning,ÓCoRR,

vol. abs/1312.5602, 2013.

[93] K. Fukushima, ÒNeocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition una"ected by shift in position,ÓBiological Cybernetics,

vol. 36, pp. 193Ð202, April 1980.

[94] H. Liu and H. Motoda, Feature Selection for Knowledge Discovery and Data Mining.

Norwell, MA, USA: Kluwer Academic Publishers, 1998.

[95] S. Qian, H. Liu, C. Liu, S. Wu, and H. S. Wong, ÒAdaptive activation functions in

convolutional neural networks,ÓNeurocomputing, vol. 272, pp. 204Ð212, 2018.

102

[96] V. Dumoulin and F. Visin, ÒA guide to convolution arithmetic for deep learning,Ó

ArXiv , vol. abs/1603.07285, 2016.

[97] U. Gandhi, ÒImage ClassiÞcation By Convolutional Neural Networks,Ó tech. rep., Uni-

versity of Calgary, Calgary, 2017.

[98] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ÒImageNet ClassiÞcation with Deep

Convolutional Neural Networks,Ó inAdvances in Neural Information Processing Sys-

tems 25(F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), pp. 1097Ð

1105, Curran Associates, Inc., 2012.

[99] P. E. Hart, N. J. Nilsson, and B. Raphael, ÒA Formal Basis for the Heuristic De-

termination of Minimum Cost Paths,ÓIEEE Transactions on Systems Science and

Cybernetics, vol. 4, pp. 100Ð107, July 1968.

[100] R. Dechter and J. Pearl, ÒGeneralized Best-Þrst Search Strategies and the Optimality

of A*,Ó J. ACM, vol. 32, pp. 505Ð536, July 1985.

[101] J. Yao, C. Lin, X. Xie, A. J. Wang, and C. Hung, ÒPath Planning for Virtual Human

Motion Using Improved A* Star Algorithm,Ó in2010 Seventh International Conference

on Information Technology: New Generations, pp. 1154Ð1158, April 2010.

[102] ÒPython.Óhttps://www .python.org. Accessed on 2019-08-10.

[103] ÒPyCharm - The Python IDE for Professional Developerd.Óhttps:

//www.jetbrains .com/pycharm/. Accessed on 2019-08-10.

[104] M. Claesen and B. D. Moor, ÒHyperparameter Search in Machine Learning,ÓCoRR,

vol. abs/1502.02127, 2015.

[105] P. O. M. Scokaert and D. Q. Mayne, ÒMin-max feedback model predictive control

for constrained linear systems,ÓIEEE Transactions on Automatic Control, vol. 43,

pp. 1136Ð1142, Aug 1998.

103

[106] H. Aissi, C. Bazgan, and D. Vanderpooten, ÒMinÐmax and minÐmax regret versions

of combinatorial optimization problems: A survey,ÓEuropean Journal of Operational

Research, vol. 197, no. 2, pp. 427Ð438, 2009.

[107] C. Jin, P. Netrapalli, and M. I. Jordan, ÒWhat is Local Optimality in Nonconvex-

Nonconcave Minimax Optimization?,Ó 2019.

104

Appendix A

Copyright Permissions

In this appendix, the copyright permissions related to chapter-5 of the thesis are presented.

RE: Copyright permission from co-authors

Ismail S. K. Bustany

Mon 1/13/2020 21:54 PM

To: Upma Gandhi ; Laleh Behjat ; Bill Swartz

Hi Upma,

How are you? Hope all is well. Mine is granted.

Best regards,

Ismail

From: Upma Gandhi

Sent: Monday, January 13, 2020 12:42 PM

To: Laleh Behjat ; Ismail S. K. Bustany ; Bill Swartz

Subject: Copyright permission from co-authors

EXTERNAL EMAIL

Hi Everyone,

I am submitting my thesis to the Faculty of Graduate StudiesÕ s vault. In my thesis, chapter

105

5 is a part of the manuscript submitted. As being co-authors, I need your permission.

Kindly reply to this email with your decision of granting permission. Thanks.

Best,

Upma

Re: Copyright permission from co-authors

Bill Swartz

Wed 1/15/2020 9:30 AM

To: Laleh Behjat; Upma Gandhi Cc: Ismail S. K. Bustany

Hi Upma,

I give my permission.

Best,

Bill

On January 14, 2020 8:14:09 PM Laleh Behjat wrote:

Upma,

I grant permission for the manuscript written. Best,

Laleh

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÐ

Laleh Behjat, PhD, PEng

Professor

Department of Electrical and Computer Engineering

University of Calgary

Calgary Alberta

On Jan 13, 2020, at 1:41 PM, Upma Gandhi wrote:

Hi Everyone,

I am submitting my thesis to the Faculty of Graduate StudiesÕ s vault. In my thesis, chapter

106

5 is a part of the manuscript submitted. As being co-authors, I need your permission.

Kindly reply to this email with your decision of granting permission.

Thanks.

Best,

Upma

107

	Abstract
	Preface

