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Abstract

Non-functional requirements form an intrinsic part of any software system. Compatibility between ver-

sions or different platforms of a software product is a form of NFRs. In this thesis, we have studied compat-

ibility in Android mobile applications. We are interested in understanding the different aspects of mobile

application incompatibility, their frequency of occurrence, how much effort developers have spent on it, and

whether the effort is commensurate with the needs of the users.

In this thesis, an analytical compatibility evaluation approach called ACOCUR is proposed. The main

characteristics of ACOCUR are: (i) compatibility requirements are automatically identified from user reviews

and their types are also determined, (ii) compatibility fixes done by developers are systematically analyzed,

and (iii) the requirements from users are linked to the fixes to identify the responsiveness of developers to

compatibility requirements.

We have evaluated open-source mobile applications and have analyzed their commits and reviews to

identify the compatibility fixes and requirements respectively. Both the commit messages and reviews have

been processed by a pipeline of Natural Language Processing steps. App developers have also been surveyed

and their responses have been analyzed to establish the state-of-the-practice and the problems currently

faced by developers in this respect. Finally, an automated tool has been developed that implements the

ACOCUR methodology to support app developers to identify and analyze compatibility requirements.
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Chapter 1

Introduction

1.1 Introduction

In the past few years, we have observed an explosion in the popularity of mobile devices and smartphones.

With these, the usage and development of mobile applications have proliferated. These mobile applications

are commonly referred to as mobile apps or simply, apps. To bolster this effort further, there has been an

increasing amount of software engineering research dedicated to mobile apps. Nagappan et al. [51] discussed

the current and future research trends within the framework of the various stages in the software development

life-cycle for mobile applications. Aspects related to functional requirements, non-functional requirements,

development, testing, maintenance, and monetization have been discussed in this paper. For our study, we

are focused on non-functional requirements (NFRs) as this is the core of our research.

Non-functional requirements (NFRs) are an intrinsic part of any software system, irrespective of whether

it is a mobile or a non-mobile application. These are often referred to as the quality requirements for the

software system. NFRs vary from functional requirements in that while the former is attributed to building

the system right, the latter is vital for getting the right system. However, there has been a lot of debate

within the research community as to what all should be considered as NFRs and how should we tackle them.

This is apparent when Martin Glinz [25] stated – “Although the term ‘non-functional requirement’ has

been in use for more than 20 years, there is still no consensus in the requirements engineering community

what non-functional requirements are and how we should elicit, document, and validate them. On the other

hand, there is a unanimous consensus that nonfunctional requirements are important and can be critical

for the success of a project”. He further added – “If you want to trigger a hot debate among a group of

requirements engineering people, just let them talk about non-functional requirements” [25]. The extent of
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this issue can be gauged in [54] where Niu et al. have referred to non-functional requirements as “The Pain

Point”. Depending on the nature of the software system, the non-functional requirements that are the most

important will vary. For example, the nature and type of quality requirements for a financial web application

will be different from that of a desktop ERP application. As such it is important to understand the software

system before deciding upon its non-functional requirements. In this research, we have concentrated on

non-functional requirements related to mobile applications.

In the case of mobile applications, some of the typical non-functional requirements that are primarily

discussed are usability, reliability, security, performance, availability, scalability, and maintainability. Past

researches have found that usability and reliability are the two most sought-after NFRs for mobile app

developers [86]. While these are important, we consider compatibility to be very pertinent in the recent

scenario for mobile apps.

Mobile apps are offered on a diversity of platforms and varying versions of the system. The user often

is confronted with reduced functionality or performance when changing between platforms and versions of

an application. Software compatibility is a complex and pervasive topic. By software compatibility, we

mean – “the characteristic of the software components or systems which can operate satisfactorily together

on the same device, or different devices linked by a network” [3]. We found that, even though compatibility

is critical, it is not well studied, not well defined nor well-documented [26]. Formally, it is classified as a

non-functional requirement. However, not much is known about the degree of occurrence and the time spent

on it. As such, we would like to investigate the compatibility aspect further in our research.

With the rapid growth in the diverse types of mobile devices and fast upgrading mobile operating systems,

it is challenging for the mobile application developers to keep pace with this fast-changing environment. Some

of the types of app incompatibilities that are commonly identified are:

• The app crashes in some particular mobile devices, while it works fine on others (device incompatibility).

• The app’s behavior and UI changes and works incorrectly after a change of the operating system of

the device (version incompatibility).

• The app’s performance is affected by some device configurations (performance incompatibility).

According to recent statistics [7], the Android operating system enjoys a majority in the mobile operating

systems’ market share worldwide. The first version of Android was launched in 2008; by January 2012, it

had already released nine different versions of the Android operating system. During that time, Android’s

market share was less than 25%. However, as of July 2020, Android’s market share has increased to 74.6%.

Figure 1.1 shows the gradual increase in the popularity of the Android operating system over the years. In

2



Figure 1.1: Mobile operating system market share (reference: www.statista.com [7])

Figure 1.2: Share of different Android versions (reference: www.statista.com [7])

these eight years, Android had released eight major versions. With the frequent release of newer versions and

a simultaneously larger number of smartphone users shifting to the Android operating system, the challenge

3



faced by Android app developers is constantly mounting. A large number of versions of the Android operating

system simultaneously used by mobile users coupled with a large number of different types of mobile devices

has led to a majority of the compatibility issues faced by app developers. Figure 1.2 shows the percentage

share of the different Android platform versions that have been simultaneously supported over the years. As

such, any Android application developed in such a scenario needs to ensure that the application is compliant

with all these different combinations.

Fragmentation is considered as one of the typical causes of incompatibility for Android apps [73]. It

resonates with the threat or concern that a proliferation of diverging variants of the Android platform will

result in the inability of some devices to properly run apps written with the Android SDK. With a large

number of custom versions of the Android platform emerging, the concern is that interoperability will be

affected as a result of the potential for applications built specifically for one variant or device not being

able to work with others. To cope with this challenge for maintaining compatibility in apps, researchers

have formulated different approaches; while some have proposed ways for enhanced testing for identifying

incompatibility in mobile apps like Huang [4] and Naith et al. [52], others have devised techniques to auto-

matically detect compatibility issues in the apps (like Li et al. [42]). These are proactive measures that can

be used by app developers to identify and resolve incompatibilities in mobile apps. While these techniques

are undoubtedly important and useful, it is often very time consuming and difficult to identify and address

all types of incompatibilities that mobile applications might encounter. As such, we would like to propose

a reactive approach in which compatibility issues can be addressed as and when they are identified. To

make this effective, we would like to take advantage of CrowdRE and take help from general app users for

identifying these quality issues.

App stores and other social platforms provide a wealth of information derived from users that can be of

enormous use for the app developers. Recent studies have shown how information can be retrieved from these

sources and effectively used in the development process. These studies have showcased different techniques

for extracting requirements from these social forums, and a majority of those are related to identifying

requirements from user reviews. We would like to adopt a similar approach and identify non-functional

requirements (specifically, compatibility requirements) from user reviews and empower app developers to

meet those.

The previous studies that have dealt with this aspect of the non-functional requirement for mobile apps

have often prescribed different ways to mitigate the risk arising from this challenge. But there is not enough

evidence to judge the current state of the practice. To the best of our knowledge, there has not been

enough investigation to understand how much of these approaches have been put into practice. We do

not know for certain how much are the app developers concerned about these problems and how much
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effort have they put to tackle the issues. In the course of this research, we have also surveyed mobile app

developers and the results from the survey have further strengthened the need for an automated process

to identify compatibility requirements from user feedback to empower app developers to tackle the mobile

apps’ compatibility challenge.

In this thesis, we have specifically focused on the compatibility aspect, but the approaches suggested

in this study can be applied to other non-functional requirements as well. In the next section, we shall

discuss the different research questions that we would like to answer as part of this thesis to get a better

understanding of this subject and also address some of the current limitations and problems related to

tackling mobile applications’ incompatibility issues.

1.2 Research questions

In this thesis, we shall address the following six research questions:

RQ1: In the context of open-source mobile app development, what percentage of developer commits are

related to compatibility?

Why and How? There is not sufficient evidence of how much app developers are concerned about

compatibility. To get insight into app development, we have opted for open-source mobile apps so that we

can access their code, versions, change history, and other relevant information.

Using all these available data and different ML techniques, we would identify the compatible related

commits to estimate the percentage of commits that deal with these quality requirements.

RQ2: How much are mobile app users concerned about compatibility?

Why and How? One of the major problems in requirement engineering (RE), as identified by Fernández

et at. [23], is insufficient involvement of customers. As such, it would be interesting to identify what per-

centage of user reviews complain about compatibility. Only then we can judge if the developer’s efforts in

this area are commensurate to the users’ needs.

Different ML techniques can be used for identifying compatibility complaints from user reviews. We

would use some of those to identify which all reviews contain compatibility requirements.

RQ3: What are the different types of compatibility fixes done by app developers? What are the types

of compatibility issues raised by users in their reviews?

Why and How? We consider compatibility as one of the most important non-functional requirements
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for mobile applications. Also, there can be different types of incompatibilities, and identifying the different

types would help in resolving them and addressing the concerns appropriately. As such, we would like to

identify the different types of compatibility issues raised in reviews and also those that have been addressed

by developers. To identify the different types, we would perform exploratory research and analyze user

reviews and commits; we intend to perform an card-sorting approach to identify the different types of in-

compatibilities.

RQ4: What is the degree of alignment between the users’ requests and the developers’ responsiveness

concerning mobile app’s compatibility requirements?

Why and How? We are interested in the relationship between demand (articulated in user reviews)

and the actual proportion of commits devoted to compatibility. It is important to evaluate if the developer’s

effort towards tackling the app’s incompatibilities are sufficient. There are different types of incompatibilities

and each of them has varying importance and effect on the app; as such, the developers must take a sys-

tematic approach while addressing the app’s incompatibilities. Since we refer to user reviews for identifying

compatibility requirements, this comparative analysis between reviews and commits would help developers

identify requirements that have higher priority. To evaluate the degree of alignment, we would pursue two

approaches; establish a connection between individual user reviews and commits to answer if the issues have

been addressed, and analyze the compatibility types to evaluate the alignment of the developers to the users’

needs.

RQ5: With respect to the mobile apps’ compatibility related requirements and fixes, what is the cur-

rent state-of-the-practice (methods used for identifying the requirements, challenges faced in the process,

importance on fixing these requirements, support from users etc.) followed by the app developers?

Why and How? It is essential to have a deep understanding of the current state of practice related to

the compatibility aspect of mobile apps. Only when we can estimate how app developers perceive this non-

functional requirement, the importance they associate to it, the approaches used to tackle this requirement,

and the challenges faced in this process; then we can attempt to make the process better and propose effective

ways to deal with it.

To answer this research question, we shall survey with mobile app developers and request their responses

to different aspects related to mobile apps’ compatibility. The survey will include questions on the impor-

tance of identifying and addressing compatibility issues, the processes followed, the challenges faced by the

developers, and what type of support they expect from the researchers.
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RQ6: How can we support app developers to automatically identify compatibility requirements and

analyze their responsiveness to these requirements?

Why and How? Identifying compatibility requirements and effectively addressing them is key for the

success of any application; in the case of mobile applications, compatibility requirements assume a greater

priority. However, without an efficient and automated tool, this process can be very tedious, time-consuming,

and often difficult to tackle effectively.

As such, as part of this thesis, we would like to propose a tool that can be effective in automatically

extracting the compatibility requirements from user reviews; also the tool can help analyze the developer’s

fixes to identify which all requirements have already been addressed and which all needs further action. With

the help of this tool, the developers can also identify other types of non-functional requirements and also

check which all of these requirements have already been addressed. This tool would provide them a way to

measure the amount of effort dedicated to tackling these different types of non-functional requirements.

1.3 Thesis Contributions

In this thesis, we have conducted the study in two phases; first, an exploratory search to identify how much

the users are concerned about app incompatibilities and to what extent the app developers deal with the

compatibility aspect, and then we propose an analytical compatibility evaluation approach called ACOCUR

(Analyze Compatibility requirements from Commit messages and User Reviews). The key characteristics

of ACOCUR are:

• Automatic mining of relevant data from various sources as necessary for evaluation

• Extraction of compatibility requirements from reviews

• Analysis of compatibility fixes done by developers

• Automatic classification of the requirements and fixes into different categories

• Use of pre-trained models that have been evaluated on a large set of Android mobile apps.

In the initial phase of the research, a large number of mobile apps have been analyzed. We have also

created two taxonomies for compatibility types – one based on the user reviews and the other based on the

developers’ fixes. The classification of categories has been based on these taxonomies. Although ACOCUR

has been modeled specifically to identify the compatibility requirements, a similar approach can be used for

other non-functional requirements as well.
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The primary contributions of this thesis are the following:

• ACOCUR – the proposed method for analyzing compatibility requirements

• Empirically evaluated different machine learners in their capability to classify developers’ commit and

user reviews for identifying non-functional requirements.

• Answered RQ1 by measuring the percentage of effort dedicated by app developers to tackle incompat-

ibilities in mobile apps.

• Evaluated RQ2 by analyzing the percentage of user reviews that complain about apps’ incompatibilities.

• Responded to RQ3 by establishing the taxonomies for the different compatibility types based on the

fixes done by the app developers and those reported in reviews by users.

• Analyzed RQ4 by comparing the degree of alignment between the users’ compatibility requirements

and the responsiveness of the developers in that regard.

• Identified the current state-of-the-practice (related to methods used, challenges faced, support from

users, etc. with respect to identifying and fixing compatibility requirements for mobile apps – RQ5)

by surveying mobile app developers and analyzing their responses.

• Resolved RQ6 by building an automated tool implementing ACOCUR to identify compatibility require-

ments from user reviews and commit messages and support app developers analyze their responses to

these requirements.

1.4 Thesis outline

The rest of the thesis is organized as follows: Chapter 2 discusses the related work, Chapter 3 depicts

our methodology, and Chapter 4 describes the survey with app developers and the results of the survey.

Chapter 5 describes the proposed tool, Chapter 6 gives an overview of the data collection process and some

of our initial analysis, and Chapter 7 describes the results from the empirical evaluation and the threats to

validity. In Chapter 8 we have discussed our conclusion and outlined some future research agenda.
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Chapter 2

Background and Literature Review

There has been considerable research done in identifying and tackling non-functional requirements. Although

NFRs are an intrinsic part of every software system, there has always been some debate regarding what all

should be considered as NFR. In this thesis, we deal with non-functional requirements related to mobile ap-

plications. In particular, we have concentrated on one particular non-functional requirement – Compatibility

– and have studied it in the context of open-source Android mobile applications. There are four main areas

of work related to our contributions: (a) studies related to non-functional requirements, (b) analyzing mobile

application reviews, (c) comparison to techniques for text classification, and (d) studies on compatibility for

mobile applications. All of the work discussed here addresses different facets of NFRs, app store mining and

data analysis, natural language processing techniques, and other related subjects.

In this chapter, we shall discuss the work related to each of these areas. We have only mentioned some of

the works that are closely related to this thesis; the studies mentioned here are by no means an exhaustive

list of all the work done.

2.1 Studies related to non-functional requirements

Since non-functional requirements constitute a very broad area of study, we have divided the background

work in this area under two categories: NFR studies on general software systems, and those specifically for

mobile applications.

For general software

Non-functional requirements are prevalent in all software systems; as such there have been different studies

related to NFRs. In this section, we shall discuss some of the researches that has been done specifically
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related to non-functional requirements.

Huang et al. [19] were one of the first to suggest different information retrieval methods for detecting and

classifying non-functional requirements from both structured requirement specifications as well as from un-

structured text documents. To assess which all non-functional requirements are most focused on by software

developers, Zou et al. [86] analyzed the non-functional requirements from Stack Overflow to comprehend the

needs of the developers. As per their analysis, the aspects of usability and reliability are more important

from the developers’ perspective and consequently most discussed in this discussion forum – maintainability

and efficiency are not their prime concerns. In another research, Hindle et al. [32] studied different software

repositories to extract non-functional requirements; specifically, they applied topic modeling (LDA) on com-

mit messages of large-scale projects to automatically label topics to different NFRs. This paper presented a

cross-project data mining technique. While previous topic analysis research produced project-specific topics

that needed to be manually labeled, in this study, the authors leveraged software engineering standards to

produce a method of partially automated (supervised) and fully-automated (semi-unsupervised) topic label-

ing. In another recent study, Li et al. [43] proposed an ontology-based learning approach for automatically

classifying security-related non-functional requirements.

There have also been some studies that have focused on NFRs in conjunction with continuous integration

(CI) and continuous deployment (CD) approaches. Paixao et al. [57] have investigated the interplay between

NFRs and build statuses in a continuous integration environment. Yu et al. [83] have conducted a literature

review to identify the state-of-the-art for utilizing the continuous integration environment for NFR testing.

They have also proposed a synthesized CI framework for testing various NFRs – the associated CI tools are

also mapped. Similarly, Haindl et al. [29] devised an operationalizable quality model to measure, assess, and

evaluate feature-dependent software quality characteristics (NFRs) throughout common DevOps toolchains.

While all of these studies are related to non-mobile software systems, a lot of them can also be extended

to the mobile domain. Since our research is related to non-functional requirements for mobile applications,

we take inspiration from all of these work and identify new ideas that have led to our contributions. Most of

the work in this section has described different ways for classifying non-functional requirements or analyzing

which NFRs are most widely discussed by developers. Our work differs from all these existing related work

since we have analyzed one particular NFR related to mobile apps and have studies different aspects related

to it. So although our work is similar to some of these studies in general, the nature of the study and the

related contributions are different.
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For mobile applications

To facilitate better management of non-functional requirements during the process of mobile application

development, Garba et al. [24] have proposed a data-driven model. This study provides support for mobile

application developers in dealing with non-functional requirements for mobile application development using

a data-driven approach; the study has proposed a model that can facilitate the management of NFRs just

like functional requirements.

Corbalán et al. [5] have performed a comparative analysis of six popular mobile application development

frameworks by focusing on three types of NFRs - performance, energy consumption, and storage. Mobile

app users heavily weight these non-functional requirements when it comes to deciding whether to install an

app on their mobile devices. The results of this study would help app developers decide which development

framework to prioritize the use of an approach over others, based on the expected levels of performance,

energy consumption and use of storage space.

Similarly, Zahra et al. [84] have focused on the aspect of usability concerning mobile apps. In this study,

different usability models have been compared; the authors opine that usability models for mobile applications

are relatively unexplored and unproven. Although several usability models for mobile applications do exist,

they are isolated and disintegrated. This issue is critical as existing usability guidelines are insufficient to

design effective interfaces for mobile applications due to peculiar features and dynamic application context

in mobile.

Ahmad et al. [10] investigated the non-functional requirements discussed by iOS developers over stack

overflow. The objective of their study was to identify and understand the real problems, trends, and critical

non-functional requirements related to iOS mobile application development.

While all of these studies, and few others, have focused on non-functional requirements for mobile apps,

none of them have considered compatibility as one of the criteria; our work is related to compatibility in

particular. Also, while some of the existing work has proposed ways to tackle NFRs or identify the most

discussed NFRs in various forums, none of them have analyzed the current state-of-the-practice that is

followed for dealing with NFRs. In our work, we have attempted to identify non-functional requirements

from commit messages; this approach is novel and has not been addressed previously. Therefore, our work

differs from all the above-mentioned studies is many aspects.
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2.2 Comparison of techniques for text classification

The automatic extraction of requirements from text documents has been the focus of several requirements

engineering researchers.

Maalej et al. [48] have emphasized the shift toward a data-driven user-centered identification, prioriti-

zation, and management of software requirements. As such developers should systematically use explicit

and implicit user data in an aggregated form to support requirements decisions. The goal is data-driven

requirements engineering by the masses and for the masses.

Knauss et al. [38] used a Naive Bayes (NB) approach to extract clarifications in requirements from

software team communication artifacts to detect requirements that are not progressing in a project.

Guzman et al. [28] proposed an approach, ALERTme, to automatically classify tweets for software re-

quirements and evolution. It uses supervised machine learning (Multinomial Naive Bayes) for classifying

tweets, topic modeling for grouping related tweets, and a weighted function for ranking the tweets.

Maalej et al. [47] used probabilistic techniques to classify user reviews into four types: bug reports,

feature requests, user experiences, and text ratings. They used review metadata such as the star rating and

the tense, as well as, text classification, natural language processing, and sentiment analysis techniques. It

was found that metadata alone results in poor classification accuracy. However, when combined with simple

text classification and natural language pre-processing of the text, the classification performance increases

significantly.

Similarly, Lu et at. [45] used ML classifiers in conjunction with bag-of-words (using word2vec) to extract

NFRs from user reviews.

In [70], Toth performed a comparative analysis of the performance and applicability of the state-of-the-

art techniques used in NLP and ML for text classification and extracting NFRs from the text. The results

of their experiments showed that the linear classification algorithm produced the best values - Multinomial

Naive Bayes, Support Vector Machine and the Logistic Regression classifiers outperformed all the other

classifiers.

Abad et al. [9] investigated how the automated classification of requirements into NFRs can be improved

and how different ML approaches perform in this context.

While all of these text classification techniques and many others have been validated on user reviews

and other textual documents, none of them have been evaluated on commit messages. A major focus of

our research in on classifying commit messages and identify how well do ML classifiers work for commit

messages. There have been a few studies that have attempted to classify commit messages but in ways

different from ours. As such, it is vital to test the different ML classifiers on commit messages to evaluate
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their performance. Also, while these techniques have been applied to classify broad categories, our work is

more directed towards one specific non-functional requirement.

2.3 Analyzing mobile applications reviews

Multiple research papers have investigated the nature of available information in mobile app stores, especially

user reviews, and tried to automated the process of extracting relevant information from them.

Harman et al. [31] pioneered the concept of app store mining and established the correlation between the

rating of an app and the download rank. Khalid et al. [35] manually examined low rated user reviews of iOS

apps and identified what the most common user complaints were. Pagano et al. [56] conducted an exploratory

study on a large number of reviews from the Apple App Store and built a taxonomy of common topics users

talk about in their reviews. The topics identified by Pagano were very general (praise, helpfulness, feature

information, etc.) and not specific to mobile applications. They found that users often report bugs and

shortcomings of an app in reviews and that those reports have a strong influence on the rating of an app.

Tian et al. [69] investigated the characteristics of high rated apps.

AR-MINER [17] represents one of the first automatic approaches to classify user reviews into informative

and non-informative content. The paper concluded that only 35.1% of reviews are informative, further

motivating the need for tools that automate the process of selecting relevant reviews. Gu and Kim [27]

concentrated on analyzing sentiments in user reviews and proposed their approach (SUR-MINER) that

summarises sentiments and opinions of reviews and classified them according to five predefined classes (aspect

evaluation, bug reports, feature requests, praise, and others).

Panichella et al. [59] used a combination of Natural Language Processing, Text and Sentiment analysis

techniques to classify reviews according to the following classes: Information Giving, Information Seeking,

Feature Request, and Problem Discovery. Although this is useful, the classification is too general and does

not address specific mobile issues. Villarroel et al. [71] proposed another approach, CLAP (Crowd Listener

for releAse Planning) – this approach can automatically categorize reviews into a suggestion for new feature

request, bug report and other. The tool then clusters the reviews and the developer is presented with a set

of clusters that share similar terms. But they still have to analyze each cluster and determine what specific

mobile issue they discuss.

Wang et al. [72] conducted an exploratory study to gain a deeper understanding of the nature of NFRs

in user reviews and to further compare the differences in the distributions of various NFRs between app user

reviews and industrial requirements specifications. The results of this study indicate that users report most

frequently on reliability and usability. However, the study also concludes that most NFRs in user reviews
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describe interface behavior of the systems which should be regarded as functional requirements.

Similarly, Jha et al. [33] mined non-functional requirements from iOS app store reviews and found that

40% of user reviews signify at least one type of NFRs. The results also show that users in different app

categories tend to raise different types of NFRs.

The closest related work to ours is URR [18]; this approach can classify reviews according to both

predefined high and low-level categories. There are six high-level categories one of which is compatibility,

the other five being usage, resources, pricing, protection, and compliant. The compatibility class has three

low-level categories which are device, Android version, and hardware. In our work, we have dived deep

into the compatibility aspect only and have identified more discrete low-level categories. Also, while URR

has attempted to identify the potentially associated source code that needs to be updated, we have worked

towards mapping the reviews to the commit messages to identify how many of the reviews have already been

addressed. Apart from these, some other factors distinguish our work from all of these described here.

2.4 Studies on compatibility for mobile apps

Compatibility is one of the important non-functional requirements when dealing with mobile applications.

With the rapid growth in the diverse types of mobile devices and fast upgrading mobile operating systems, it

is challenging for the mobile application developers to keep pace with this fast-changing environment. There

have been several studies that have focused on the compatibility aspects of mobile apps and have advised

various ways to cope up with this challenge. The impact of Android fragmentation has been extensively

discussed in [30], where Han et al. have analyzed the bug reports related to two popular mobile device

vendors. They have also studied how fragmentation is manifested within the Android project. For Android

applications, Android fragmentation remains a compatibility issue for app developers. In [73], Wei et al.

have studied over 200 compatibility issues in five popular mobile applications to understand and detect

fragmentation induced compatibility issues for Android apps. Studies related to compatibility analysis can

be broadly categorized into two subcategories: approaches for effective mobile application compatibility

testing, and approaches to automatically detect and identify compatibility issues.

Mobile application compatibility testing approaches

One of the biggest challenges faced by mobile app developers is testing their apps for compatibility. Since

the number of different combinations to test is infinitely large, mobile apps often suffer from limited testing

when it comes to compatibility related test cases. Most app developers neither have enough resources to test

their apps on many different mobile devices nor do they have the time to complete all these tests.
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To overcome this, Huang [4] proposed an automated compatibility testing service for mobile apps named

AppACTS – an online mobile app compatibility testing cloud facility where developers can upload a mobile

app for automated device compatibility testing and obtain the test results.

Naith et al. [52] have proposed a framework for compatibility testing for mobile apps; this framework

comprises of a crowd-sourced testing approach that leverages the power of the crowd to perform mobile device

compatibility testing. It aims to provide support for testing code, features, and hardware characteristics of

the mobile devices and ascertain app developers that the features and hardware characteristics of the device

model or features of a specific OS version will work correctly and not cause any problems for their apps.

Another approach suggested by researchers to overcome the limitation of compatibility testing is prioritiz-

ing the mobile devices on which the apps should be tested for compatibility. This has been demonstrated in

[46], where Lu et al. have proposed a tool named PRADA (approach to prioritizing Android device models

for individual apps, based on mining large-scale usage data). PRADA adapts the concept of operational

profiling for mobile apps – the usage of an app on a specific device model reflects the importance of that

device model for the app. It also includes a collaborative filtering technique to predict the usage of an app

on different device models based on the usage data of a large collection of apps.

While other studies have attempted to make the software testing process more effective, these are some

of the approaches that have been specifically proposed to tackle the problem of compatibility testing for

mobile applications.

Automatic Android version incompatibility detection

One of the major reasons for a large number of compatibility issues in mobile apps is the rapid evolution of the

Android Application Programming Interface (API). While the above researches have devised techniques for

testing mobile apps for compatibility related issues, another focus has been towards automatically detecting

compatibility issues in mobile apps.

In [42], an automated approach named CiD has been proposed by Li et al. that would systematically

model the life cycle of the Android APIs and analyze app byte code to flag usages that can lead to potential

compatibility issues. It works by analyzing the changes in the history of Android APIs. This process has

also been termed as “API side” learning.

To complement CiD, Scalabrino et al. [66] presented an alternative data-driven approach, ACRYL. Con-

trary to CiD, ACRYL learns from changes implemented in other apps in response to API changes (“client-

side” learning). It not only detects compatibility issues in mobile apps but also suggests probable fixes.

While all the previous work in this section has dealt with compatibility in mobile apps, there has been

limited research to understand how much of these approaches have been effectively used by the app devel-
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opers. To the best of our knowledge, this is the first study that attempts to analyze the developers’ effort

dedicated to compatibility by extracting compatibility fixes from commit messages and compare it with the

compatibility issues articulated by users.

2.5 Summary

In this chapter, we have discussed some of the work and background studies that are related to the different

facets of this thesis. The studies have been categorized into groups related to this thesis’s contributions. We

have also discussed how the nature of our work is different from each of these studies. We concluded that the

existing works do not provide an approach for identifying non-functional requirements from commit messages

and link those to requirements in user reviews. In our proposed approach, we have identified compatibility

fixes done by developers and associated those to requirements in reviews.
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Chapter 3

Methodology

In this chapter, we discuss the methodology that we have used to answer our research questions. The different

steps discussed in this chapter are the key components of our proposed ACOCUR approach. As already

mentioned earlier, although this approach has been specifically fine-tuned for tackling the compatibility

aspect, the same approach can be used for other non-functional requirements as well.

The ACOCUR approach mainly performs two types of analysis: (i) identify when the developers make

compatibility related changes to apps, and (ii) investigate how do mobile app users react to compatibility

related issues. The ACOCUR methodology works by automatically mining the mobile app’s commits and

reviews. Then it identifies the compatibility requirements from the reviews and the ones that have been

already been fixed by the developers. After the compatibility related requirements and fixes have been

extracted, those are further classified into the different types; the compatibility types can be a predefined

set of types or they can also be dynamically generated for each app. In the final step of the process, the

requirements are linked to the commits to analyze the responsiveness of the developers to these non-functional

requirements.

Figure 3.1 represents the process flow for the ACOCUR methodology and the relationship to our stated

research questions.

3.1 Android app selection, web scraping, and data collection

For this study, we focused on open-source Android mobile applications that are available under F-Droid, an

open-source app repository. We extracted the app name, package name, and the address of the source code

repository by crawling F-Droid. To limit the process of mining different repositories, we filtered out apps

that were not on GitHub.
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Figure 3.1: ACOCUR methodology process flow

For all the chosen apps, we gathered their GitHub repositories and collected all the app information

from GitHub logs (Step 1 in Fig. 3.1). We used this data to mine all the commits associated with the

apps. In particular, we extracted the following details for each commit: commit message, commit date,

the number of files changed, and the number of lines added and/or deleted for each commit. We used the

GitPython Python library (listed in Table 3.2 under Section 3.8) for collecting the GitHub repositories and

also accessing the logs.

We built another custom web crawler (using google-play-scraper Python library – listed in Table 3.2

under Section 3.8) to gather the applications’ details and user reviews from the Google Play (Step 2 in

Fig. 3.1).

The details of the data collection process and the number of apps selected and the data gathered at each

step of this process is described in Chapter 6.

3.2 Data pre-processing and lemmatization

The first step after data collection involves cleaning and pre-processing of the data (Step 3 in Fig. 3.1).

This is a very important and significant process as the outcome of the model is dependent on this step.
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Figure 3.2 shows the different steps followed to clean and pre-process the raw input data before it can be

analyzed.

Figure 3.2: Data cleaning, pre-processing and lemmatization flow

Commit messages usually contain a short textual description describing the nature and details of the

change performed in the corresponding code commit; it can also include other technical details. Similarly,

user reviews often tend to be short and usually contain grammatical mistakes or typos. As such it is essential

to clean and pre-process commit messages and reviews before it can be used for any processing or further

analysis. Although the basic steps involved in this process are similar for both the commit messages and the

reviews, there are some additional steps involved in both as the basic nature of the data is different. Here

are some of the common steps used for cleaning the commit messages and user reviews:

• Converted all the text to lower case to ensure there is no case conflict

• Removed all links, URLs, non-ASCII characters, special characters, and all punctuation marks

• Removed all dates from the text

• Lemmatized texts to map words into their dictionary form while retaining the context of the word

(using NLTK’s WordNetLemmatizer)

• Expanded Android version names so that they are not removed during the cleaning process (for exam-

ple, Android P is expanded to Android Pie)

• Removed English stop words from the text

For removing the stop words, we used the stop word list available under the NLTK Python package (refer

to Table 3.2 under Section 3.8) [44]. However, we had to override the list and removed the word not from

the stop word list so that this term is not removed as part of the stop word removal process. We have found

that the word not is often used in review for describing issues and as such important for our analysis.
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In additional to the above, we performed the following steps on user reviews as part of the data cleaning

phase:

• Corrected typos and spelling mistakes.

• Resolved contractions (and slang), using Contractions Python library (listed in Table 3.2 under

Section 3.8).

• Removed words that are very common in user reviews, and, thus, are not highly discriminating - review

specific stop words.

We have leveraged the finding of a previous study [58] to identify the review specific stop word list and

updated it as per our requirements. This list has been generated by calculating the entropy of all the terms

present in the reviews of a large set of 1,000 Android apps. The normalized entropy [22] of a given term t

in user reviews is calculated as:

Et =
∑
r∈Rt

p(t|r) · logµ p(t|r) (3.1)

where Rt is the set of apps’ reviews containing the term t, µ is the number of reviews on which the

terms entropy is computed, and p(t|r) represents the probability that the term t is in the review r. This

probability is computed as the ratio between the number of occurrences of the term t in the review r and

the total number of occurrences of the term t in all the considered reviews. Et lies in the range of [0, 1] –

the higher the value, the lower the discriminating power of the term. The final list of review specific stop

words comprises of all terms whose Et > Q3 (the third quartile of the distribution of Et).

Similar to reviews, while processing the commit messages, we removed some words that appear frequently

in commit messages (for example: merge, pull, branch, etc.) and do not provide any additional information

useful for this study.

For pre-processing, we have primarily used the NLTK Python package [44] in additional to our developed

modules.

3.3 Keyword search

After the data pre-processing and lemmatization step, we performed a keyword search (Step 4 in Fig. 3.1)

to identify the potential compatibility related texts (commit messages and reviews). These keywords are

present in commit messages and reviews that represent any compatibility related aspect in mobile apps.

This consolidated set of keywords (listed under Table 3.1) is the result of two types of activities – literature
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review on mobile app compatibility, and repeated manual iterative search on the data set. We also calculated

the keyword-count – the number of occurrences of these keywords – within each text (commit message or

review).

Keywords
Compatible, Incompatible, Support, Sync, Device, Phone, Integrate, Android, Version, Upgrade,
Update, Honeycomb, Ice Cream Sandwich, Jelly Bean, Kitkat, Lollipop, Marshmallow, Nougat,
Oreo, Pie, Gingerbread, Froyo, Eclair, Donut, Cupcake, Bluetooth, Platform, Crash, Cloud, API,
Samsung, Nexus, Redmi, Galaxy, Moto, Lenovo, Tablet, Pixel, Huawei, Nova, Htc

Table 3.1: List of Keywords

On running the keyword search on the commit messages, we identified all the commits that contained

at least one of these words. The maximum value of keyword-count for the commit messages was nine. On

evaluating some of the commit messages it was clear that there is a large amount of noise (false-positive) in

the data – all the commit messages identified using the keyword match were not related to compatibility.

Instead, many of the commits dealt with other aspects but they were obtained by the keyword search as

some of the terms are general and have a wide range of applicability. To reduce this high number of false-

positive results and attain a higher accuracy we adopted different machine learning classifiers that have been

discussed in the next section.

Similar to the commit messages, we also performed a keyword search on the user reviews and identified

all the reviews that matched this search. The maximum value of keyword-count for reviews was seven. Just

like the commits, these reviews also had a high number of false-positives; i.e. for a large number of the

reviews, although it contained one or more of the compatibility related keywords, these reviews did not

describe any compatibility aspect. So, even for the reviews, it was necessary to employ classifiers to achieve

better accuracy.

The following section describes the different steps related to the classification of commit messages and

reviews.

3.4 Text classification

The process of text classification comprises of the following phases:

3.4.1 Building training set

Machine Learning classifiers are part of AI’s supervised learning. As such it is imperative to train the

classifier models using a training set before it can be used for classification. To achieve optimum results, it
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is important to build a good training set such that it is representative of the actual data which would be

classified using the classifiers. As we are dealing with two sets of data – commit messages and user reviews

– we built two separate training sets.

It is also critical that the training set should be balanced, if possible. A balanced training set is one

that has an equal number of records for all the different categories. Our goal for running the classifier is to

identify the compatibility related text; i.e., we want to classify the text as either compatibility related or

non-related. This is known as binary classification as the classifier has only two possible predictions.

As the keyword searches had resulted in a large number of false-positives, we attempted to make the

training sets balanced by increasing the number of related records in the training sets; to achieve this, we

mostly included those texts that had higher keyword-count expecting a majority of them to be related.

For the commit training set, we selected all commits with keyword-count of three or more (a total of

3353 commits). This was done to increase the possibility of finding related commits in the training set. We

made a random selection of 6,667 commits from the remaining data set (keyword-count of one or two) and

included them to build a training set of 10,000 commits.

For the reviews training set, we used a similar approach like that of the commits. We included all reviews

with a keyword-count of three or more (5,492 reviews); to this, we randomly included 3,508 reviews with

keyword-count of one or two – the reviews training set consisted of 9,000 records.

Once the training sets were identified, our next task was to manually annotate these records as either

related or non-related. For labeling, we considered a commit message or review as related if it matched any

of the below criteria:

• Discussed any issue/fix related to a particular device

• Discussed incompatibility between Android versions

• Talked about any behavioral discrepancy between versions

• Mentions any other compatibility related concerns/fixes

We took the help of two research interns to annotate the training sets. These interns had good command

over different programming languages, and also a fair understanding of versioning control systems (GitHub)

and mobile app reviews. They also had a sound understanding of non-functional requirements. Before

annotating the training sets, these interns were familiarized with the context and goal of this research.

They were also trained on different compatibility aspects related to mobile applications. The two training

sets were divided amongst the two interns and also with the author of this thesis in such a way that each

record was annotated by two individuals. Each annotator independently labeled the training set assigned to
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him/her. This was done to mitigate the risk of any biased annotation. For most of the records, there was

unanimity, and the labels associated with the text by the two annotators matched. We analyzed the degree

of inter-annotator agreement by evaluating the Kappa coefficient (κ) [20] – a score that expresses the level

of agreement between two annotators on a classification problem. It is defined as:

κ = (po − pe)/(1− pe) (3.2)

where po is the probability of agreement on the label assigned to any sample (the observed agreement),

and pe is the expected agreement when both annotators assign labels randomly [20, 11]. We used the

scikit-learn Python library (listed in Table 3.2 under Section 3.8) to calculate inter-annotator agreement

which showed an almost perfect agreement (κ = 0.93 for commits and κ = 0.91 for reviews).

The mismatched labels were discussed among all the annotators and then individually resolved. After

resolving all the conflicts and eliminating the duplicate records, the commit training set had the following

labels – 2,237 commit messages labeled as related, and 6,403 commit messages labeled as non-related. Sim-

ilarly, the final training set for the reviews had the following configuration: 2,370 reviews were labeled as

related, and 6,583 reviews were annotated to be non-related.

3.4.2 Text vectorization

Text Vectorization (a.k.a. Word Embedding) is the process of converting text into a numerical representation;

it is an important step when dealing with textual data. There are different techniques available for text

vectorization like Bag-of-Words, TF-IDF, Word2Vec, and many other pre-trained embedding models. In

this section, we have discussed the four embedding techniques that have been used in our experiment. We

have chosen these techniques since these are known methods that have been applied in previous NLP studies

and they have shown promising outcome. In our experiment, we have evaluated these four techniques and

selected the one that has produced the best results.

TF-IDF

The term TF-IDF [34] stands for Term Frequency-Inverse Document Frequency which gives the importance

of the word in the corpus or dataset. This is one of the most frequently used text vectorization techniques.

TF-IDF encompasses two concept – Term Frequency(TF) and Inverse Document Frequency(IDF) [79].

Term Frequency (TF): Term Frequency is defined as how frequently the word t appear in the document

d. If n denotes the number of times t appears in d, and x denotes the total number of words in d, then TF

is defined as:
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tf(t, d) =
n

x
(3.3)

Inverse Document Frequency (IDF): Inverse Document frequency is a measure of how much information

the word provide; it is based on the fact that less frequent words are more informative and important. If

N represents the total number of documents, and D denotes the number of documents in which the term t

appears, then IDF is represented by the formula:

idf(t,D) = log
N

D
(3.4)

TF-IDF is the combination of these two concepts and is calculated as:

tf − idf(t, d,D) = tf(t, d) · idf(t,D) (3.5)

A high value in tf–idf is reached by a high term frequency (in the given document) and a low doc-

ument frequency of the term in the whole collection of documents. In this research, we have used the

scikit-learn [60] Python library’s implementation of TF-IDF.

Word2vec

Word2vec [50] is a deep learning technique that processes text by vectorizing words. It takes a corpus of

text as the input and generates a set of vectors as the output: feature vectors that represent words in

that corpus. This model is based on the assumption that “words appearing in similar locations will have

similar meanings”. It was developed by Google in 2013 and shows good performance in natural language

processing studies. Word2vec can utilize either of the two model architectures to produce a distributed

representation of words: continuous bag-of-words (CBOW) or continuous skip-gram. In the continuous bag-

of-words architecture, the model predicts the current word from a window of surrounding context words.

In continuous skip-gram architecture, the model uses the current word to predict the surrounding window

of context words. It has been found that while CBOW is faster than skip-gram, the latter produces more

accurate results.

Google provides a pre-trained word2vec model1 using the skip-gram technique that has already been

trained on a large data set (Google News Dataset with approximately 100 billion words). This model allows

us to use a vector that more accurately represents the meaning of a word since this model has learned a large

quantity of data. However, there is a disadvantage in that words that are not trained previously cannot be

1https://code.google.com/archive/p/word2vec
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used unless they are newly learned.

In our experiment, we have used the pre-trained model to obtain vectors from words. Since we are dealing

with sentences (a group of words), we have used two approaches to convert word embedding to sentence

embedding: Word2vec(Avg) – the vector representation of a sentence is equal to the average of the vectors

of all the words in that sentence, and Word2vec(TF-IDF) – a combination of TF-IDF on word vectors. To

implement Word2vec in our research, we utilized the Gensim Python library (details listed in Table 3.2 under

Section 3.8) [1].

Doc2vec

The Doc2vec approach [40] is an extension of the simple Word2vec embedding technique; this provides a

vectorized representation of a sentence (a group of words) taken collectively as a single unit. It does not

give the simple average of the words in the sentence. Doc2vec computes a feature vector for every document

in the corpus. It is an unsupervised framework that learns continuous distributed vector representations

for pieces of texts. The texts can be of variable-length, ranging from sentences to documents. This is also

referred to as Paragraph Vector to emphasize the fact that the method can be applied to variable-length

pieces of texts, anything from a phrase or sentence to a large document. Doc2Vec comes in two variants:

distributed memory model, and distributed bag of words.

We have used the Gensim Python library’s Doc2vec implementation in our work.

GloVe

GloVe [62] (coined from Global Vectors) is another unsupervised learning algorithm for obtaining vector

representations for words; it was developed by Stanford University in 2014. They noted that the existing

statistic-based word embedding techniques (e.g., bag-of-words, TF-IDF) show low semantic inference perfor-

mance and that the existing prediction-based word embedding techniques (e.g., word2vec) do not include all

statistics because they consider only surrounding words; GloVe solves these problems. The GloVe model is

based on the idea that semantic relationships between words can be derived from the co-occurrence matrix.

The advantage of GloVe is that, unlike Word2vec, GloVe does not rely just on local statistics (local context

information of words), but incorporates global statistics (word co-occurrence) to obtain word vectors. In

other words, it is a prediction-based word embedding technique that includes all of the statistics.

GloVe also has some pre-trained models2 that have already been trained on large data corpus (Wikipedia,

Twitter data, etc.). However, this model also cannot use words that have not been learned previously

2https://nlp.stanford.edu/projects/glove/
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without additional training. In our experiment, we have used a pre-trained model3 (trained with Wikipedia

data, approximately 6 billion tokens) to obtain vectors from words. To incorporate this model in our

code, we implemented the Gensim Python library’s glove2word2vec script that coverts a GloVe format to a

Word2vec format. Once converted, we used the same procedure as the Word2vec model described above.

We implemented two approaches to build the sentence vectors – GloVe(Avg), and Glove(TF-IDF).

3.4.3 Treating unbalanced training set

It was evident that our training sets were unbalanced as the number of non-related records was considerably

higher as compared to the related ones. It is recommended to use balanced training sets for training classifier

models, otherwise, the results could be skewed. In our case, as the training set had a large number of non-

related text (both commits and reviews), the classifier model could be biased towards the non-related class.

There are two approaches proposed to deal with unbalanced data: under-sampling (a.k.a. down-sampling),

and over-sampling (a.k.a. up-sampling). In the under-sampling technique, we take a subset of the samples

from the class with more instances to match the number of samples of each class. In the case of over-sampling,

we randomly duplicate samples from the class with fewer instances or we generate additional instances based

on the data that we have, to match the number of samples in each class.

In our experiment, we used SMOTE [16] – a process of oversampling by augmenting synthesized data

samples. A plausible downside of the approach is that the synthetic examples are created without con-

sidering the majority class which might result in the creation of ambiguous examples. We have used the

imbalanced-learn [41] Python package (details listed in Table 3.2 under Section 3.8) implementation of

SMOTE for treating unbalanced training sets.

3.4.4 Classifiers

The final step in text classification was classifying all the commit messages and reviews using supervised

learning. For that, the Machine learning classifiers (Step 5 in Fig. 3.1) should be first trained using the

training sets. The input to the models is the vectorized texts that were generated in the previous text

vectorization steps.

We chose four machine learning classifiers, Naive Bayes (NB), Support Vector Machine (SVM), Random

Forest (RF), and Logistic Regression (LR), all of which are known to perform well with text classification [70].

The NB classifier [64] is a simple algorithm that is based on the Bayes’ theorem using the naive assumption

3http://nlp.stanford.edu/data/glove.6B.zip
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that each feature makes an independent and equal contribution to the outcome. It finds the probability of an

event occurring given the probability of another event that has already occurred. Bayes’ theorem is stated

mathematically as the following equation:

P (y|X) =
P (X|y)P (y)

P (X)
(3.6)

where y is the class variable and X is a dependent feature vector.

The Support Vector Machine [21] algorithm finds a hyperplane in N-dimensional space (where N is the

number of features) that distinctly classifies the data points. The Figure 3.3a represents a simplistic SVM

classification approach.

(a) Support Vector Machine (b) Random Forest

Figure 3.3: Classifier algorithms (figure adapted from [80])

The Random Forest algorithm [14], like its name implies, consists of a large number of individual deci-

sion trees that operate as an ensemble (ensemble methods use multiple learning algorithms to obtain better

predictive performance). Each tree in the random forest makes a class prediction and the class with the

most votes becomes the model’s prediction; Figure 3.3b contains a simple representation of the RF classifier.

Logistic regression [37] is a classification algorithm, used when the value of the target variable is cate-

gorical. Logistic regression is most commonly used when the data in question has binary output, so when it
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belongs to one class or another. It implements a sigmoid function that resembles an ‘S’ shaped curve when

plotted on a graph. The sigmoid function [78] is defined as :

y = 1/(1 + e−x) (3.7)

where y is the predicted class variable and x is a dependent feature vector.

For implementing these classifier algorithms in our research, we have used the Scikit-learn [61] open-

source Python library. These machine learning models are defined as mathematical models that have several

parameters which are needed to be learned from the data. However, there are some parameters (known as

hyper-parameters) that cannot be directly learned. These are commonly chosen by humans based on some

intuition or hit and trial before the actual training begins. These parameters exhibit their importance by

improving the performance of the model such as its complexity or its learning rate. Models can have many

hyper-parameters and finding the best combination of parameters is often a time-consuming and difficult

process.

Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers

with good predictive performance. In our experiments, we have used the Grid Search technique for iden-

tifying these parameter values. This approach works by performing an exhaustive search and tries all the

combinations of the different parameter values that have been supplied. We have implemented this by using

the GridSearchCV class from the Scikit-learn library. GridSearchCV takes a dictionary of all the different

parameters along with their different values that could be tried on a model to train it. It then performs an

exhaustive search and returns the best estimator and best params values which is used to identify the ideal

combination of hyper-parameter values.

3.4.5 Classifier performance evaluation

In order to assess the classifier models (Step 6 in Fig. 3.1) and evaluate their performance, we used the

10-fold cross-validation technique. Cross-validation is a statistical resampling procedure used to evaluate

machine learning models on a limited data sample [6]. It is commonly used in applied machine learning to

compare and select a model for a given predictive modeling problem because it results in skill estimates that

generally have a lower bias than other methods. The procedure has a single parameter (k) that refers to

the number of groups that a given data sample is to be split into. As such, the procedure is often called

k-fold cross-validation. In our experiment, we had chosen k = 10; so we have referred to it as 10-fold

cross-validation.
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This method is primarily used to evaluate a machine learning model on unseen data. The general

procedure of cross-validation is as follows:

• Shuffle the data set randomly.

• Split the data set into k groups

• For each unique group:

– Take the group as a holdout or test data set

– Take the remaining groups as a training data set

– Fit a model on the training set and evaluate it on the test set

– Retain the evaluation score and discard the model

• Summarize the skill of the model across all the groups

It is important to note that each observation in the data sample is assigned to an individual group and

stays in that group for the duration of the procedure. This means that each sample is allowed to be used

in the test set once and used to train the model k-1 times. The results of a k-fold cross-validation run are

finally summarized with the mean of the model skill scores.

We evaluated the performance of classifier models based on the measures of Precision (P), Recall (R),

Accuracy (A), and F1-Score (F1), which are defined as:

P =
TP

TP + FP
(3.8)

R =
TP

TP + FN
(3.9)

A =
TP + TN

TP + TN + FP + FN
(3.10)

F1 = 2 ∗ P ∗R
P +R

(3.11)

Therein, TP, TN, FP, and FN denote true-positive, true-negative, false-positive and false-negative re-

spectively. We selected the classifier that provided the best results and used it to classify the remaining

commit and review messages.

We have used the scikit-learn [60] Python library’s implementation for k-fold cross-validation and

performance metric scores.
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3.5 Card sorting for taxonomy generation

To identify the different types of compatibility fixes done by the developers in the respective commits and

also the different types of compatibility issues raised by users in their review, we adopted the card sorting

approach (Step 7 in Fig. 3.1). This also helped us generate a taxonomy of compatibility types for issues

and fixes. Card sorting is an exploratory technique adopted to extract themes from text [65, 85]. It is widely

used to create mental models and derive taxonomies from data. In our case, card sorting also helped us

to deduce a higher level of abstraction and identify common themes. There are commonly two types of

card sorting [13, 85]: Open card sort – where there are no predefined groups and the categories emerge and

evolve during the sorting process, and Closed card sort – where the themes are known in advance and the

categories are predefined. Card sorting has three phases: in the preparation phase, the cards are created;

in the execution phase, cards are sorted into meaningful groups; finally, in the analysis phase, abstract

hierarchies are formed to deduce general categories and themes.

For our study, we performed the card sorting procedure twice; once for categorizing the compatibility

related commit messages, and the second time for categorizing the compatibility related reviews. Both these

experiments were performed independently of each other as the nature and the source of data were different

and we wanted to compare and contrast the taxonomies generated from the two data sets. However, the

process followed in both cases was similar. We adopted the Hybrid Card sort approach – we started with

a representative sample of cards and identified the different categories using an open card sort technique,

and then sort the remaining cards into the identified categories based on the closed card sort approach.

We performed the open card sort with 2,000 cards and identified the different categories, and subsequently

executed a closed sorting of the remaining 1,000 cards. Owing to the global Covid-19 pandemic, we were

forced to adopt an online card sorting approach as we could not physically take part in this exercise.

This exercise was conducted with the help of the same two research interns who were instrumental for

building the training sets as described above in Section 3.4. Since these interns were already trained earlier

and they had successfully annotated the training sets, they had already developed a fair understanding of the

context of this study and the expectation from the card sorting exercise. We also performed a workshop with

them having the author of this thesis as the facilitator to create a shared understanding of the compatibility

related commit messages and user reviews and the objective of the card sort exercise. Within this workshop,

each participant was assigned randomly to some commit messages (or user reviews) and reflected what types

of incompatibilities had been addressed (or reported, in case of reviews) in them. The reflection was discussed

in the group and settled once everyone got a shared understanding.

We mined taxonomies in separate sessions to extract “What types of compatibility issues are fixed in
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developer commits” and “What type of compatibility issues are raised in user reviews”. We limited the

number of cards sorted in each session in a way that each session took no more than three hours. Overall,

we performed the following four major steps:

• Preparing Cards: We used cards for open sorting from the manually labeled training sets (using the

ones that were labeled as compatibility related) for training the classifiers. For closed card sorting, we

randomly selected a subset of records (commit messages in one case, and reviews in the other) that

were classified by our chosen identifier as compatibility-related.

• Open card Sorting: To identify the different categories, the participants independently categorized and

grouped the cards. Each of them dealt with 1,000 cards. After the initial categories were formed by

the two participants, the session moderator (author of this thesis) discussed the mutual and different

categories until the team agreed upon a final set of categories. To limit the number of categories to a

reasonable finite number, some of the categories were further merged with everyone’s consensus.

• Closed Card Sorting: The two participants sorted the remaining 1,000 cards into categories identified

by open card sorting. 200 cards were categorized by all the members to evaluate their degree of

conformity; we used the Kappa measure [49] for this. The Kappa coefficient value was 0.83 on average

for the two taxonomies that we generated — this reflects an overall good level of agreement.

• Analysis and Taxonomy design: In this phase, the low-level categories were further grouped and the

relationship between the different categories was determined. After some iterative process, the final

high-level taxonomy was determined. The disagreements were resolved by discussion.

3.6 Classifying based on compatibility types

The different compatibility types (for commits and reviews) were determined using the card-sorting tech-

nique as discussed in Section 3.5. The next step in our research methodology was to again classify all

the compatibility related records (commits and reviews) into the different categories identified (Step 8 in

Fig. 3.1). The process followed for this classification was similar to what we had done earlier for classifying

related vs non-related. The only difference, in this case, was that we performed a multi-label classification

(whereas, earlier it was binary classification). We built two training sets (one for commits and the other for

reviews) to train the classifiers. This time we used the same training set that we had built earlier (output of

Section 3.4.1). We isolated the ones that were identified as related (2,237 and 2,370 for commits and reviews

respectively) and labeled them according to their compatibility types.
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The training sets were again divided amongst the three annotators (two interns and the author of this

thesis) such that each record was labeled by two annotators independently. After the annotation was com-

pleted, the training sets were compared. While there was a high-level agreement on the commit training

set, the number of disagreements was high for the reviews training set. While resolving the disputed ones

and analyzing the review set, it was identified that some of the reviews could be matched to more than one

class based on the text; that was the primary reason for the higher number of disagreements in the review

training set. We mutually agreed to a single class for all the disputed samples and finalized the training sets.

We used the same four classifiers (Naive Bayes, Support Vector Machine, Random Forest, and Logistic

Regression) that we had evaluated earlier (Section 3.4.4). These classifiers were again trained with the new

training sets and their performances were evaluated similarly; the one with the optimum performance was

eventually selected for classifying the remaining commits and reviews into the different compatibility types.

3.7 Measuring the responsiveness of developers to user reviews

The final step of the ACOCUR methodology (Step 9 in Fig. 3.1) involves linking the requirements (from

reviews) to the fixes (in commits). In this section, we shall discuss the two approaches that we have

undertaken to measure the responsiveness of developers to user reviews. The first approach describes the

attempt to map individual review to commits to check if each review complaining about compatibility has

been addressed in any commit. The second approach analyzes the percentage of commits and reviews for

the different compatibility types.

3.7.1 Linking individual reviews to commits

In this phase, we mapped the commits to the reviews; i.e., we were interested in evaluating if a particular

compatibility fix (in commit messages) was the result of a compatibility issue raised in the reviews. Analyzing

this aspect would help us answer the research question related to the responsiveness of app developers to

user reviews. To effectively evaluate this, we assumed that :

• Users always have the latest version of the app

• The app review is related to the most current version available in the play store

• If a compatibility fix is related to a user review, the fix should be done within a specified period (for

our research we set this period to 90 days since most apps release newer versions at quick intervals).

This mapping was done in a two-step process:
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1. Identifying all the possible commits that can be linked to the review based on the date

2. Select the most suitable commit based on similarity

The steps followed for this mapping procedure is described below:

1. Identify all the compatibility related issues raised in user reviews of the app

2. Extract all the compatibility related commits of the app

3. For each of the reviews, identify the commits that have been pushed after the review date and within

the specified period (90 days)

4. Compute the similarity between the review and the commit messages obtained in the above step

5. Filter out commits based on similarity scores and establish a suitable link between the two data sets

To calculate the similarity between a review and the corresponding commit messages, we have used the

following two approaches:

• Textual similarity computation

In order to link a commit to their corresponding review, we computed the textual similarity between

the reviews and their corresponding commits. There are different measures for evaluating similarity

(like Jaccard coefficient [55], cosine similarity [76], etc.). In our case, we used the asymmetric Dice

similarity coefficient to compute a textual similarity between a review and a commit message [12, 58].

We used the asymmetric Dice coefficient instead of other similarity measures because in most cases

commit messages are much shorter than user reviews and, as a consequence, their vocabulary is fairly

limited. Using this coefficient, the textual similarity (simtxt) between review rj and commit message

ci is defined as :

simtxt(rj , ci) =
|Wrj ∩Wci |

min(|Wrj |, |Wci |)
(3.12)

where Wx denotes the set of words contained in document x and the min function aims at normalizing

the similarity score based on the number of words contained in the shorter document between the

review and the commit message. The asymmetric Dice similarity ranges in the interval [0, 1].
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• Semantic similarity computation

While the above textual similarity works on the basis of word matching, a more advanced method

would be semantic similarity matching. In order to evaluate the semantic similarity between a review

and the corresponding commit messages, we have calculated the cosine similarity as well as the Word

Mover’s Distance [39] between the two text vectors. Among the different text vectorization approaches

as discussed under Section 3.4.2, we have used the GloVe Text vectorization technique to convert the

review and commit messages to vectors and then computed the cosine similarity between them. The

semantic similarity between two text vectors (A and B) using cosine similarity [76] is defined as :

simcos = cos(θ) =
A ·B
|A||B|

=

∑n
i=1AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(3.13)

Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space

that measures the cosine of the angle between them. It is thus a judgment of orientation and not

magnitude: two vectors with the same orientation have a cosine similarity of 1, two vectors oriented

perpendicular to each other have a similarity of 0. Thus the similarity ranges in the interval [0, 1].

The cosine similarity is advantageous because even if the two similar documents are far apart by the

Euclidean distance (due to the size of the document), chances are they may still be oriented closer

together. The smaller the angle, the higher the cosine similarity.

Word Mover’s Distance (WMD) [8] uses the word embeddings of the words in two texts to measure

the minimum distance that the words in one text need to travel in semantic space to reach the words

in the other text. The WMD is calculated by measuring the minimum Earth mover’s distance between

each word in the two documents in word2vec space; if the distance is small, then words in the two

documents are close to each other.

In order to calculate the cosine similarity and the WMD, we have used their Python implementa-

tions from the SciPy [2] and Gensim Python libraries respectively (details listed in Table 3.2 under

Section 3.8).

3.7.2 Linking compatibility types of reviews to those in commits

The second approach that we have used for measuring the alignment of the responsiveness of developers

to user reviews is by comparing the distribution of commits and reviews across the different compatibility

types. As discussed in Section 3.6, we have classified the reviews and the commits based on the compatibility

types. In this phase, we have compared the percentage allocation of the commits and reviews across different
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compatibility types to measure the alignment of developer responsiveness to user requests.

We consider a good alignment as the one where the distribution of reviews and commits across the

different compatibility types are similar.

3.8 List of ML and NLP tools

In order to implement the ACOCUR methodology, we have used Python 3.6 programming language. The

NLP techniques and the ML tools that have been used in the different phases of the ACOCUR methodology

have been implemented using open-source python libraries. In Table 3.2, we have listed all the Python

libraries that have been used in this thesis.

Libraries Version

google play scraper 0.0.2.2

GitPython 3.1.3

imbalanced-learn 0.6.2

Contractions 0.0.25

NLTK 3.4.5

scikit-learn 0.22.2.post1

Gensim 3.4.0

SciPy 1.4.1

Pandas 0.25.1

Numpy 1.19.0

Table 3.2: List of Python Libraries

3.9 Summary

In this chapter, we have described the methodology for the proposed ACOCUR approach. It includes all the

steps right from the data collection process to the final process of mapping reviews to commits. It is worth

noting that some of the steps like choosing the word embedding technique or building the taxonomy using a

card-sorting approach is a one-time activity and it will not be repeated for each run; these steps are executed

only for the first time. But we have mentioned these processes under the methodology section since they

are an intrinsic part of the ACOCUR approach. Also, these steps should be performed if the methodology

is applied for other types of non-functional requirements.

35



Following these processes, we can answer the first four research questions that deal with identifying the

compatibility fixes and requirements from commits and reviews respectively. The last two research questions

have been discussed in the subsequent chapters.
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Chapter 4

A Survey with Android Developers

As discussed under Section 1.2, it is very important to understand the current state-of-the-practice that is

followed by app developers for dealing with the compatibility requirements. To answer our fifth research

question (RQ5), we decided to conduct a survey with app developers and analyze their feedback. In this

chapter, we have described the process that we have followed to conduct the survey and also its results.

4.1 Conducting the survey

To gain deeper insight into the compatibility aspects and understand the developers’ perspectives better, we

surveyed with mobile application developers. It not only helped us answer RQ5 (determine the state-of-the-

practice with respect to the methods used for identifying the compatibility requirements, challenges faced in

the process, importance of fixing these requirements, support from users etc), but also helped us clarify and

validate answers obtained for some of the other research questions.

However, since this survey involved working with humans (app developers), it was imperative that the

research should be reviewed by the appropriate board or committee and the necessary approval received

before the survey could begin. For this thesis, we approached the University of Calgary’s Research Ethics

Board (Conjoint Faculties Research Ethics Board, CFREB) responsible for reviewing research applications

involving human participants. Since we already had an existing ethics approval for a similar study that also

involved working with mobile app developers, this approval was renewed for this thesis before conducting

the survey; the ethics approval (Ethics Id: REB15-1986 REN5) is valid till July 30, 2021.

In this section, we describe the main steps for conducting the survey.
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4.1.1 Survey participants

This survey was targeted primarily for Android mobile application developers as this research has dealt with

Android apps only. We used convenient sampling [36] method among the list of app developers whose apps

have been included in this study. We invited 150 Android app developers to respond to this survey. Out of

these, 141 developers participated in the survey (response rate = 94%). Five responses were incomplete, and

we removed them from the analysis; the survey results have been based on the remaining 136 valid responses.

4.1.2 Survey question format

This survey has been designed in a Google Form 1 so that it can be quickly customized and easily accessible

to the participants. We had designed the survey with 14 questions that were divided into three main sections.

Survey Section I: The first section contained four questions that were related to the participant’s

profile to understand the demography of the developers. Answers to these questions enabled us to under-

stand the app developers better. This section was essential to get a better understanding of the developers’

details and also how the answers provided by them in the other two sections were shaped by their experiences.

Survey Section II: The second section of the survey was related to the compatibility issues faced and

addressed by the developers. Before conducting the survey, we had already completed analyzing the commit

messages to understand the different types of compatibility issues addressed in the apps. This section was

designed with the knowledge and understanding that we had already gathered by analyzing the commit mes-

sages. This section also contained four questions. Answers to these questions would enable us to measure

how close our initial findings are aligned to that of the developers. This section was also designed to get

insight into details that were not revealed from the commit messages.

Survey Section III: The last section of the survey contained six questions: these questions were related

to the compatibility issues raised by users in review and how the developers deal and respond to them. The

primary focus of our research has been to identify how app developers respond to compatibility issues raised

in user reviews. This section has been designed to understand this perspective better.

The questions were designed in a manner keeping the participants’ ease and comfort in mind, and at the

same time ensuring that the survey met its purpose. There were different patterns of questions included in

1https://forms.gle/vcHFUnYi7oRyVJnE6
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the survey — selecting a single option from a list of prescribed answers (radio button or drop-down list),

selecting multiple options from a list of answers (checkbox), rating different options in a Likert or Nominal

scale, and free flow text option to allow developers provide additional details.

4.1.3 Survey objective

This survey was designed with the objective to:

• Understand how important compatibility issues are for the developers

• Evaluate the different ways used by developers to identify compatibility issues (sources of information)

and how important those sources are

• Identify how much importance developers provide to user reviews

• Gauge the different ways used by developers to extract compatibility issues raised in reviews

• Explore the need for automated tools to identify compatibility issues raised by users

• Grab the developers’ opinion on how accurately users report compatibility issues in reviews

• Estimate the responsiveness of developers to compatibility issues raised in reviews

4.2 Survey results

In this section, we shall discuss the results of the survey. The analysis is based on the 136 valid responses

that were received.

4.2.1 Accessing developers’ profile

The first section of the survey was designed to understand the demographics of the developers. Table 4.1

contains the responses of the developers to the questions in this regard.

The app developers had varying years of experience in mobile app development. To categorize their

responses, we formulated three groups based on their app development experience: Beginners (developers

with less than 1 year of experience), Junior developers (those whose experience varied between 1 and 4

years), and Senior developers (having more than four years of app development experience). Among the

respondents, only 14 developers (≈ 10.29%) belonged to the Beginners category. A majority of the developers

(78, ≈ 57.35%) corresponded to the Junior developers group; and the remaining 44 developers (≈ 32.35%)
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Demographics

Q1. Total years of
experience in
mobile application
development

Less than one year 10.3 %

1 – 2 years 26.5 %

3 – 4 years 30.9 %

5 – 7 years 17.7 %

8 – 10 years 9.6 %

More than ten years 5.2 %

Q2. Total number
of developed apps

One app only 20.6 %

2 – 5 apps 48.5 %

6 – 10 apps 15.4 %

More than ten apps 15.4 %

Q3. Average
number of commits
for each app
releases

Less than ten 19.9 %

10 – 20 26.5 %

21 – 50 27.9 %

51 – 100 14.0 %

More than hundred 11.8 %

Table 4.1: Section I – Developers’ profile

were mapped to the Senior developers category. There were 20 developers with more than 8 years of Android

app development experience.

In terms of the total number of apps that had been developed by these developers (during the time of

this survey), 28 of them (20.58%) had developed only 1 app, while 66 developers (48.53%) had developed

between 2 to 5 apps; there were 21 developers (15.44%) who had developed between 6 and 10 apps, while

the remaining 21 had developed more than 10 apps.

In total, 63.24% of the app developers had more than three years of experience and 68.38% of them

have developed at least three Android apps. The developers have served various roles in the development

team, while some have been solo developers responsible for all the activities. To know how much involved

they have been during the app development process, we asked on an average how many commits they have

performed for each app release. To this 19.86% answered to have performed less than 10 commits on an

average (a majority of them are Beginners), 54.41% have performed in between 10 to 50 commits, 13.97%

did in between 50 and 100 commits, while the remaining 11.76% have attributed to more than 100 commits

for each app release. From these statistics, it is evident that a majority of the app developers have been

thoroughly involved during the app development process.
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4.2.2 Analyze app compatibility

Mobile app compatibility

Q5. Importance of
identifying and
fixing app’s
incompatibility
issues

1 (Not Important) 3.7 %

2 4.4 %

3 8.8 %

4 31.6 %

5 (Very Important) 51.5 %

Q6. Total number
of compatibility
fixes done

Less than ten 38.2 %

10 – 20 22.1 %

21 – 30 21.3 %

31 – 50 9.6 %

51 – 100 4.4 %

More than hundred 4.4 %

Q7. Importance of
different sources for
identifying compat-
ibility issue

Very Low Low Medium High Very High

Testing 13.2 % 15.4 % 29.4 % 30.1 % 11.8 %

Adhoc 7.4 % 9.6 % 30.9 % 35.3 % 16.9 %

Review 5.9 % 7.4 % 11.0 % 35.3 % 40.4 %

Others 21.3 % 10.3 % 44.9 % 16.9 % 6.6 %

Q8. Frequency of
occurrence of differ-
ent types of com-
patibility issues

Very Low Low Medium High Very High

Android
versions

3.7 % 13.2 % 30.9 % 33.8 % 18.4 %

Device 8.1 % 15.4 % 27.9 % 30.1 % 18.4 %

Software 16.2 % 25 % 35.3 % 15.4 % 8.1 %

Others 27.9 % 18.4 % 42.6 % 8.8 % 2.2 %

Table 4.2: Section II – Questions related to app compatibility

This section of the survey was designed to elicit the experience of the app developers while dealing with

the compatibility aspect. Table 4.2 shows the responses of the developers to the four questions.

The first question in this section was related to the importance on identifying and fixing incompatibilities

in mobile apps; on a scale of 1 to 5, more than 83% of the developers responded with a 4 or 5, while only 8%

responded with 1 or 2 (a majority of them are Beginners). Taking the developer’s experience into account,

86.36% of the Senior developers and 83.33% of the Junior developers have responded with a 4 or 5. This

demonstrates that app developers consider compatibility as an important aspect of mobile app development.

Experienced developers have associated more importance to compatibility as compared to those with less

experience.
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The next question in this section was related to the number of compatibility fixes that the developer has

addressed. To this question, 38.24% of the responses indicated less than 10 fixes in total, while another 22%

believed to have fixed in between 10 and 20 issues; 30.88% of the answers indicated 20 to 50 fixes, 4.41%

between 50 and 100, and 4.41% for more than 100 fixes. Unsurprisingly, the percentage of experienced

developers gradually increased as we moved from the lower to the higher ranges. Considering how important

compatibility aspect is for app developers and the numerous types of issues that occur in apps, the number

of fixes done by developers seems rather small. One of the common remarks from the developers regarding

this question was that the survey should have included an option as “Do not know” as the majority of them

have never analyzed how many of their commits addressed incompatibility issues.

The third question of the survey was related to the different sources for identifying compatibility issues

and how important these sources are. About 75.74% of the respondents considered the importance of user

reviews for identifying compatibility issues as high or very high (this proportion increases further if we

consider experienced developers), and only 13% of the remaining considered reviews’ importance as low

or very low (again this proportion decreases with increase in developer’s experience). Among the other

sources, only 41.91% considered the importance of dedicated testing as high or very high; on the contrary,

they attributed a higher percentage (52.21%) to ad-hoc chances of identifying compatibility issues by the

development team. 23.53% considered other sources of information in this regard as important. So, it

was again evident that app developers considered user reviews as the most important source for identifying

compatibility issues - this sense of importance shows an upward trend along with the experience of the

developers. Also, among the issues that were identified by the developers directly (and not from external

sources), they attached a higher percentage to finding the compatibility issues by unplanned means than

through dedicated testing.

The last question in this section was related to how frequently the different types of compatibility issues

occurred. These different types were based on the high-level categories that were identified during the

card-sorting exercise. About 83% of them considered Android version incompatibility issues as the most

frequently occurring. Also, 48.53% of them opined device-specific incompatibility frequency as high. They

attributed a lower percentage to other incompatibility types. To get further information about other types

of incompatibility, the survey offered the option to the developers to provide other types of incompatibilities

that they frequently face. Around 48.48% of these responses could be associated with different devices

and hardware incompatibilities, while one-third of the responses described incompatibilities arising from the

operating system versions. Only a small percentage of the remaining issues could be associated with other

factors.
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Key findings

Here are some of the our key findings from the survey analysis:

• With the increase of experience in app development, the importance associated with compatibility also

rises; among the survey participants, senior developers attached the highest importance to compatibil-

ity.

• Developers often can not comprehend what percentage of their effort is dedicated to addressing the

compatibility aspects.

• Among the various sources for identifying compatibility requirements or issues, developers regard

reviews as the most important.

4.2.3 Identify compatibility requirements from reviews

From the answers in the previous section, it has been evident that developers consider user reviews very

important for identifying compatibility issues. The last section of the survey focused specifically on user

reviews as a source for identifying incompatibility issues and how developers tackle reviews. This section

contained six questions (Table 4.3).

The first question in this section was related to the average number of reviews that the developers have

studied for each app release to analyze the users’ concerns. 44.12% of the developers responded that they

have analyzed less than 10 user reviews on average, while another 28.68% answered that they reviewed in

between 10 and 50 user reviews. The percentage of developers reading a higher number of reviews has

steadily declined. This is strikingly strange considering that developers consider reviews so important.

The next question was related to the different ways adopted by developers to identify compatibility issues

reported in user reviews. A majority of the developers (61.76%) reflected that they manually screen user

reviews to identify compatibility issues. This can be directly associated with the fact that developers read

only a few user reviews considering the amount of time and effort that needs to be devoted to identifying

compatibility issues from user reviews manually. Other than manually reading all reviews, 29.41% of the

developers stressed that they filter only on low rating reviews and use those to identify compatibility issues.

Although this option might reduce the number of reviews, it has been found that often compatibility issues

are reported along with other suggestions and compliments, and sometimes the rating of the review is also

high. While a similar percentage of developers also referred to using a mixed ad-hoc means for identifying

compatibility issues from user reviews, about 18.38% of the responses also concurred to using some kind of

automated tools for identifying compatibility issues from user reviews.
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Identifying compatibility requirements from reviews

Q9. Total
number of user
reviews
analyzed for
each app release

Less than ten 44.1 %

10 – 50 28.7 %

51 – 100 15.4 %

101 – 200 7.4 %

201 – 500 2.2 %

501 – 1000 1.5 %

More than thousand 0.7 %

Q10. Methods
for identifying
compatibility
requirements
from reviews

Manually 61.8 %

Ad hoc means 28.7 %

Only check low rating reviews 29.4 %

Automated tools 18.4 %

Do not read reviews 7.4 %

Q11. How
satisfied are you
with the
automated tools
used for
analysing
reviews

1 (Very upset) 3.8 %

2 5.8 %

3 38.5 %

4 42.3 %

5 (Highly satisfied) 9.6 %

Q12. Usefulness
of an
automated user
review
analysing tool

1 (Not useful) 5.9 %

2 5.1 %

3 22.1 %

4 39.7 %

5 (Very useful) 27.2 %

Q13. Accuracy
of users in iden-
tifying and re-
porting compat-
ibility issues in
reviews

< 20% 20 - 40% 40 - 60 % > 80% Not sure

Beginner 21.4 % 28.6 % 7.1 % 7.1 % 35.7 %

Junior 38.5 % 25.6 % 21.8 % 3.8 % 10.3 %

Senior 29.5 % 27.3 % 22.7 % 11.4 % 9.1 %

Q14. Compared
to other sources,
compatibility
issues from re-
views are fixed

Much slower Slower Same time Faster Much faster

Beginner 22.2 % 33.3 % 22.2 % 22.2 % 0 %

Junior 6.8 % 31.1 % 36.5 % 18.9 % 6.8 %

Senior 7.1 % 31.0 % 40.5 % 14.3 % 7.1 %

Table 4.3: Section III – Questions related to identifying app’s incompatibilities from reviews

The following question in this section was an optional one only for those who used some kind of automated

tool to extract compatibility issues reported in user reviews and we wanted to know how happy they have
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been with the tool. To this question we got a mixed response; among the 38.24% of the developers who

answered this question, 48.08% of the developers were not satisfied with the tool while the other 51.92%

seemed happy. Again considering the experience of the developers who answered this question, 66.67% of

the Senior developers and 45.16% of the Junior developers were unhappy with the automated tools. This

suggests that the existing tools are not effective in this regard.

The next question was related to whether the developers felt that a tool that would automatically classify

user reviews and analyze compatibility issues be helpful. 88.97% of the developers felt that the tool will be

useful with 66.91% rating the usefulness as high or very high. This demonstrated the need for a new tool

that would help developers with identifying compatibility issues from user reviews automatically.

The fifth question in this section was impressionistic: in the opinion of the developers, what percentage

of the compatibility issues reported in the users’ reviews were indeed compatibility issues. We wanted to

evaluate, according to the developers, how correct the users are while reporting compatibility issues. 33.82%

of the developers felt that users are correct only less than 20% of the times (a majority of them were Junior

developers), while another 26.47% of the developers believed that the users are correct in between 20 to 40

percent of the times. Only 6.62% of all the developers (11.36% of Senior developers) felt that user reviews

describe compatibility issues correctly in more than 80% of the cases.

The final question in this section was a comparative one. We wanted to compare the urgency in fixing

compatibility issues identified from user reviews to those identified from any other sources. 39.2% of the

developers felt that compatibility issues identified in reviews are fixed slower as compared to other sources,

while another 24% responded the opposite - they felt that issues mentioned in reviews are fixed at a faster

rate. The remaining 36.8% had a neutral opinion; they believed that issues identified in reviews take the

same time to be fixed as those identified from other sources.

Key findings

Here are some of our key findings from this section of the survey

• App developers often are not able to efficiently extract requirements from reviews; most of them use

manual techniques which is not possible for a large number of reviews.

• The currently available tools for extracting compatibility requirements from reviews are ineffective. As

such, developers are keen on having an automated tool that would help them identify compatibility

requirements from reviews.

• Developers do not associate high accuracy on the compatibility issues reported by users.
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• Most of the developers opined that the compatibility issues reported in reviews are resolved at a slower

rate as compared to other sources. This can be directly attributed to the fact that identifying issues

from reviews is difficult for the developers.

4.3 Statistical tests

In order to identify the correlation of the responses of the developers to their respective experiences, we

conducted some statistical tests [81]. As the responses consisted of different types of data (numerical,

categorical, and ordinal), we have used following statistical measures:

• Cramér’s V: Cramér’s V (denoted as ϕc) gives a measure of association between two nominal variables;

it gives a value between zero and one [75].

• Correlation Ratio (CR): A measure to calculate the correlation between two variables that have

mixed data types; i.e., one of the variables is categorical type and the other is of the numerical data

type [74, 67].

• Kruskal-Wallis (KWH): It is a non-parametric statistical significance test used for comparing two or

more independent samples of equal or different sample sizes [77].

In order to run these tests, we have used the statistical module under SciPy Python library [2]. Using

these tests, we have identified the following relations:

1. This is a high correlation (ϕc = 0.31) between the experience of the developers and the importance

given to reviews as a source for identifying compatibility requirements.

2. There is a certain degree of correlation (CR value calculated to be 0.14) between the developers’

experiences and the importance attributed to identifying and fixing compatibility issues in mobile

apps.

3. There is also a dependence between the experience of the developers and their perceptions about the

accuracy of the users in reporting compatibility issues (ϕc = 0.12) and that of the urgency in fixing

issues reported in reviews (ϕc = 0.18).

4. There is a high dependence between the developers’ experience and the importance associated with the

need for an automated tool for identifying and analysing compatibility requirements. Using the Kruskal-

Willis non-parametric statistical significance test, we could reject the null hypothesis (p = 0.0014) that

the need for a automated tool for extracting and analyzing compatibility requirements is independent

of the developers’ experience.
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4.4 Summary

In this chapter, we have discussed the survey that was conducted with mobile application developers. This

survey has been a key component of this thesis as it has not only helped us get a deeper understanding of

the state-of-the-practice followed by developers related to mobile app’s compatibility, but it has also served

as a motivation for proceeding with this research work. From the survey, the need for a tool for analyzing

compatibility requirements was evident; also, the need for certain features in the tool were also expressed by

some of the developers.

It was clear that although developers hold high esteem for user reviews and consider them as one of the

main sources for compatibility requirements, they are not able to effectively use it. By successfully executing

this survey, we have answered one of the research questions (RQ5) and this has been a vital piece of this

thesis. This survey has also helped us design a tool (discussed in the next chapter) to assist app developers.

Lastly, we would like to thank all the app developers who have participated in this survey and shared

their valuable feedback; it would not have been possible to conduct this survey without their support.

47



Chapter 5

Tool Support

5.1 Introduction

In this chapter, the design and implementation of the proposed ACOCUR approach as an integrated tool has

been described. This tool can support app developers to automatically identify compatibility requirements

and analyze their responsiveness to these requirements; this answers our last research question (RQ6).

The tool automates the processes such as data collection, data cleaning and preprocessing, data clas-

sification, compatibility types extraction, and finally summarizing and mapping data from two separate

sources. Tool support allows users (managers or app developers) to evaluate the proposed approach and

methodologies in real-life situations. In the context of software development management, providing tool

support with the integration of the different platforms is more meaningful and effective. Although ACOCUR

currently integrates two data sources (GitHub and Google Play), it can be enhanced to be integrated with

other platforms as well. As discussed in the earlier chapters, existing approaches have not sufficiently dealt

with identifying how much effort the app developers have already put into certain quality aspects or measure

their responsiveness to user demands.

By analyzing some of the existing approaches used for extracting requirements from user reviews and the

inputs from app developers (as part of the survey discussed in the previous chapter), we have developed a

comprehensive compatibility analysis tool to support software development and management. The tool has

the following functionalities:

• F1: The tool integrates the existing platforms so that required data (i.e. user reviews and developers’
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commits) for analyzing compatibility can be collected automatically.

• F2: The tool pre-processes and cleans the incoming data so that the accuracy of the process is not

affected.

• F3: The tool should provides the option to proceed with pre-trained models so that the users do not

need to train it separately. At the same time, there is the provision to run the tool with customized

models that have been trained with new data.

• F4: For identifying the different types of compatibility issues, the tool again provides both the options

– use the existing types, or include additional types and train the model accordingly.

• F5: The tool summarizes the result in a simplified format for easy analysis.

The compatibility analysis tool presented in this chapter addresses these requirements. The tool is

designed and implemented as a desktop application on top of GitHub and Google Play following the guideline

presented in [15]. In the following sections, the development platform, architecture, and system modules of

the tool are explained.

5.2 Architecture of the tool

The tool has been implemented as a desktop application on top of the existing project management and

tracking tool (GitHub) and mobile app store (Google Play). GitHub is one of the most popular distributed

project management and source code control systems. Key features of GitHub includes code versioning and

tracking, collaboration, integrated issue and bug tracking, code review, and dashboard for monitoring the

development activities. Data related to various aspects of project and quality management can be retrieved

from GitHub using different APIs that are available for quick and easy access. On the other hand, Google

Play is a popular mobile app store from Android applications. Not only does it provide the platform to

host or download Android apps, but it also provides a wealth of information and data on different aspects

related to the apps. With the continual increase in the popularity of Android apps, Google Play is now

the one-stop source for all app-related data. Other than the app’s description that explains the features of

the app, other relevant details like the last update date, number of installs, app’s rating, current version,

app’s requirements, content rating, permissions, and related information is directly available. Google Play

also contains users’ reviews about the app which is a direct feedback channel to the app developers and has

proved to be of immense use for making the apps better.
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Figure 5.1: Architecture of ACOCUR Tool

Both GitHub and Google Play provides a REST API to support integration with other tools and tech-

nologies. As shown in Figure 5.1, the data tier of the tool access the live data from GitHub and Google Play

via API and custom libraries and store them in the local database for analyzing compatibility. The applica-

tion tier of the tool contains the logic and services required to support compatibility extraction and analysis

for commit messages and user reviews. It uses the data available in the data tier to implement the services.

Key services include data collection, data pre-processing and cleansing, text classification, compatibility type

extraction, and summarization. The presentation tier of the tool contains various GUI components of the

tool which invoke the services hosted in the application tier. It also allows the stakeholders to interact with

the tool via the interface.

The three-tier architecture of the tool is shown in Figure 5.1. The tier-based architecture provides

benefits such as reusability, flexibility, manageability, maintainability, and scalability [63]. For instance, the

integration of another project management tool and app store requires modification only in the data tier.

Similarly, new services can be added easily in the application tier of the tool. Thus, the choice of three-tier

architecture was appropriate for developing the tool.
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5.3 Development platform

The tool is developed using Python 3 (version 3.6) which is an open-source, interpreted, high-level, and

general-purpose programming language. The tool has been developed as a three-tier architecture as explained

in Figure 5.1. It internally uses Python’s open-source libraries for different types of operations. An overview

of the tools and technologies used for managing, developing, and deployment of the tool are shown in

Table 5.1. As described in Table 5.1, the source code of the tool is hosted in GitHub repository 1 as open

source.

Tools and Libraries Version Usage

Python 3.6 Used as development platform

GitHub – For managing and hosting source code

google play scraper 0.0.2.2 Python library for Google Play API

GitPython 3.1.3 Python library for git repository and logs

pickle default Python library for saving or loading models

imbalanced-learn 0.6.2 Python library for unbalanced training set

contractions 0.0.25 Python library for text processing

nltk 3.4.5 Python library for natural language processing

scikit-learn 0.22.2.post1 Python library for various NLP operations

pandas 0.25.1 Python library for mathematical operations

numpy 1.19.0 Python library for mathematical operations

Table 5.1: Components of the ACOCUR tool

5.4 Using the tool

The workflow of the tool (Figure 5.2) has been implemented by following the ACOCUR approach that has

been described in Chapter 3. To identify compatibility requirements and analyze them, the development

team needs to complete the following steps.

5.4.1 Create input data

The first step (Figure 5.3) of the tool is to create the input data. Since ACOCUR identifies compatibility

requirements from user reviews (from Google Play) and compares those to developers’ commits (in GitHub),

the input data should include details of the app’s package name and the GitHub repository name. The tool

1https://github.com/debmukherj83/ACOCUR
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Figure 5.2: Workflow of ACOCUR Tool

Figure 5.3: Input Data creation for analysis

accepts .csv file as the input data source. The input file (named as ‘appfile.csv’ must be placed under the

‘Data’ Folder to be accessed by the tool.

5.4.2 Choose analysis type

The tool prompts the user to decide the nature of the analysis that he/she wants to perform (Figure 5.4).

There are three options to choose from:

• Option 1: Analyze reviews only

• Option 2: Analyze commits only

• Option 3: Analyze both reviews and commits

Option 1 can be used if the user is only interested in identifying compatibility requirements from the user
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Figure 5.4: What do you want to analyze today?

reviews. In that case, the input data should contain the Google Play package name. The tool does not need

the GitHub Repository details. Option 2 is used to identify compatibility fixes from the GitHub repository

only; the tool does not look into the user reviews to identify compatibility requirements. In this case,

the input data should contain the details of the GitHub repository. Option 3 performs the comprehensive

analysis that takes into account both the review and the commits.

5.4.3 Determine classification option

Figure 5.5: Choose classification method

Based on the choice in the previous step, the tool automatically connects the necessary data sources

and accumulates the data (reviews and/or commits). This data is pre-processed and cleaned and made

ready for further processing. The next step (Figure 5.5) for the tool is text classification where it identifies

and segregates the related and informative texts from the uninformative ones. The tool has already been

equipped to perform this step automatically with pre-trained models. However, the user also has the option

to re-train the tool with custom training data. As such, in this step the user has the option to choose between
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two options:

• Option 1: Identify informative text using pre-trained models

• Option 2: Identify informative text after training with custom data

If the user chooses Option 1, the tool automatically classifies the text and identifies the related data.

However, if the user chooses Option 2, the tool will again be trained with new sets of training data; as

such the new training data set files should be made available to the tool. The training file(s) (named as

‘Commit TrainingSet.csv’ and/or ‘Review TrainingSet.csv’ must be placed under the ‘Data’ Folder to be

accessed by the tool).

5.4.4 Choose type extraction option

Figure 5.6: Choose type extraction method

The tool identifies the informative texts in the previous step. In this step, the tool further classifies

the reviews and commits according to their corresponding compatibility types (Figure 5.6). Just like the

previous step, the user again has two options to choose from:

• Option 1: Extract types using pre-trained models

• Option 2: Extract types using new training data

If the user chooses Option 1, the tool automatically identifies the compatibility types from the text based

on the pre-trained models. However, if the user chooses Option 2, the tool will again be trained with new
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sets of training data; as such the new training data set should be made available to the tool. The training

file(s) (named as ‘Commit-Type-TS.cs’ and/or ‘Review-Type-TS.csv’ must be placed under the ‘Data’ folder

to be accessed by the tool). The tool also provides the option to update the pre-defined compatibility types

to include new compatibility types as deemed applicable by the users.

5.4.5 Summarization and final result

Figure 5.7: Result summarization process

In the final step (Figure 5.7), the ACOCUR tool summarizes the data and present the result in a readable

format for the users. The output is presented as an excel file that has a summary of the various compatibility

types identified. This file is made available under the folder ‘FINAL’.

The output file in dependent of the nature of analysis that has been performed. If the user has chosen

option 1 or 2 during the choose analysis type step, the result file has the list of all the compatibility records

identified along with a summary describing the different compatibility types amongst the identified records.

On the contrary, if the user had chosen option 3 (analyze both reviews and commits), the result file combines

the outputs for options 1 and 2 and also links the commits to the reviews.

5.5 High level use-cases

To better illustrate the capabilities of the tool, two high-level use cases (see Figure 5.8) are described from

the project manager or app developer’s perspective in the following sub-sections.

Use-case 1: Identify compatibility requirements reported in a particular app version

In this use case, the app developers can monitor and analyze the compatibility requirements from reviews

using the ACOCUR tool for particular app versions. Based on the pre-trained models or using new training

data as discussed in the earlier section, user reviews are classified to identify compatibility requirements. The
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Figure 5.8: High level use cases of ACOCUR Tool

requirements are further categorized under different types. This allows the project manager or developers to

know which compatibility requirements have been raised by app users that need to be fixed. This will serve

as a ready input for the development team as the set of requirements to act upon.

Use case 2: Evaluate the amount of effort already spent for addressing compatibility re-

quirements

In this use case, the stakeholders can monitor and analyze the various compatibility requirements that

have already been completed in the previous releases of the app. Based on the pre-trained models or using new

training data as discussed in the earlier section, the commit messages are classified to identify compatibility

fixes. The fixes are further categorized under different types. This allows the project manager or developers

to estimate how much effort has been dedicated to meet the quality requirements. This is essential as,

based on the results, the team can decide whether to pursue additional non-functional requirements. The

comparison of this result with the requirements from use case 1 will help the team decide on their future
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actions.

5.6 Summary

The tool is developed as a desktop application using the Python 3.6 frameworks. It can be used for identifying

compatibility requirements for the mobile Android applications which use GitHub as a source code repository

and Google Play as the app store. In this chapter, the requirements of the tool, overall system architecture,

process workflow, and two high-level use cases of the tool have been presented. Specifically, analyzing

compatibility fixes done by the development team and mapping those to the compatibility requirements in

user reviews are unique features of the tool. Overall the tool helps the development team with automated,

fast, and continuous non-functional requirement extraction and at the same time measurement of effort in

addressing these non-functional requirements.

Just like the ACOCUR approach that can be applied to other non-functional requirements, even this

tool can be extended for other non-functional requirements. Specifically, the pre-trained models and the

taxonomy have to be generated according to the new non-functional requirement. Since this tool has been

built by implementing the ACOCUR approach, it helps us answer RQ6. We have successfully developed a tool

that would support app developers to automatically identify compatibility requirements and simultaneously

analyze their responsiveness to the requirements.

In the following chapters, the applicability of the tool and the empirical evaluation of the ACOCUR

approach has been discussed.
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Chapter 6

Data Collection and Initial Analysis

6.1 Data collection

For our analysis we have taken real-world open-source Android mobile applications to analyze compatibility

related non-functional requirements. In order to properly evaluate the model, we require different sizes and

forms of mobile apps. Open-source projects often come with other additional information which can be

handy for other types of evaluation, if necessary.

In this research, we required two kinds of datasets for our study. The first set comprised mobile applica-

tions with their source code and version system, and the second set comprised users’ reviews for the selected

mobile apps.

In this section, we have described the steps for app selection and data collection.

6.1.1 Mobile app selection

To begin the mobile app search process, we started with F-Droid which is a popular open-source Android

app repository. In F-Droid the apps are grouped under different categories and some of the apps are also

listed under multiple categories.

To retrieve the comprehensive list of all the apps under F-Droid, we built a custom crawler that system-

atically mined the app details by performing the following steps:

1. Get F-Droid categories: The first step of the F-Droid crawling process involved retrieving the names

and the url of all the categories so that each of them can be individually crawled.

2. App list under each categories: The next step of this activity involved crawling the individual

category pages to gather the app name, package name, and the F-Droid address for each of the apps
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under each category.

3. App details: Using the address obtained from the above step, the crawler then crawled the individual

app’s pages in F-Droid and obtained the source code address for each of the apps.

In F-Droid there are a total of 17 categories. Using our custom crawler, we mined the following details

from F-Droid: app name, package name, the category under F-Droid, address of the app in F-Droid, and

address of the source code repository for the apps. In total, we extracted details of 3,460 apps from F-Droid

before removing duplicates. After eliminating duplicate apps (those listed under more than 1 category), we

had a total of 3,026 distinct apps in F-Droid for our analysis.

The Figure 6.1 shows the process of app selection for this research.

Figure 6.1: Process of mobile app selection

6.1.2 GitHub crawler

To unify the process of mining different repositories, we resorted to only one repository that hosted a majority

of the apps. Since GitHub is one of the most popular repositories and it contained a majority of the apps

from F-Droid, we decided to proceed with the GitHub repository for selecting apps for our research. After

eliminating all apps whose source code was not under GitHub, we had a total of 2,314 apps remaining for

consideration.

In order to scrape GitHub, we built another crawler using git Python library that is used to clone the

GitHub repositories into our local system. Using this process we gathered the GitHub repositories for these

2,314 apps and collected app and release information from GitHub logs. We used this data to mine all the

commits associated with the apps. In particular, we collected the following details for each of the commits:
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commit message, commit date, number of lines added, number of lines deleted, and the number of files

changed.

We collected a total of 17,93,306 commits along with the details from these 2,314 apps. We set a

threshold of a minimum of 200 commits for each app to be considered for evaluation in our research. Using

this benchmark, we eliminated 1,530 apps as each of them had less than 200 commits in total. As a result,

we were left with 784 apps which had a total of 13,78,736 commits; this is the data that we have finally

processed and analyzed in our research.

6.1.3 Scrape Google Play

We used another custom web crawler to gather the mobile applications’ details and the user reviews from

the Google Play. This crawler is built using google play scraper Python library which uses the Google Play

API to connect to the Android app store and retrieve app details and user reviews.

For each app, we collected the following details from the Google Play: app category, score, developer

details, app title, the number of reviews, the number of app installations, whether the app is editor’s choice,

app description, and content rating.

Since some of the apps have a large number of reviews, we restricted the number of reviews collected to

a maximum of 20,000 for each app. As such, for apps with less than 20,000 reviews, all the user reviews

were collected by our crawler. For the rest, the most recent 20,000 reviews were collected. For each review,

we scraped the following details: review text, review date, review rating, and thumbs up count (number of

times the review has been marked helpful).

Out of 784 apps, only nine apps had at least 20,000 reviews each (for these apps we gathered the latest

20,000 reviews). However, some apps had a small number of user reviews. We set a minimum threshold

for the number of reviews as 100 and only accepted those apps for our analysis that had a minimum of 100

reviews.

With this criterion, 476 apps were further eliminated; we had 308 apps remaining for analyzing. These

308 apps accounted for 7,39,421 reviews in total; out of a total of 13,78,736 commits considered in our study,

8,77,980 commits belonged to these 308 apps.

6.1.4 Data used for empirical evaluation

It is important to note that the initial phase of our research (analyzing commit messages) has been conducted

using the 784 apps, the second phase of the research (analyzing user reviews and evaluating the degree

of alignment between reviews and commits) had been performed using the 308 apps. These 308 apps are
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Figure 6.2: Process of data collection and count of apps, commits, and reviews

distributed across 23 app categories from the Google Play (Table A.1 contains the list of all the 23 categories)

— the top five categories based on the number of apps per category are Tools, Productivity, Communication,

Games, and Books & Reference. The apps have been listed under Table B.1. Figure 7.1 shows the number

of apps and the count of the commits and reviews in the different phases of the data collection process.

Figure 6.3 and 6.4 are the examples of some sample compatibility related commit messages and reviews

extracted from GitHub and Google Play respectively.

6.2 Initial Analysis

In this section we shall discuss the results of some of our initial analysis.

6.2.1 Keyword search results

As discussed under Section 3.3, we performed an initial keyword search to identify the compatibility related

text (both commit messages and reviews) from the large pool of data. This step had been introduced in our

methodology to narrow down the potential results set. Since the set of keywords that are used to identify

compatibility related text had been chosen after rigorous manual search iterations and a thorough literature

review, we are optimistic that the search result has included all potential compatibility related commits and

reviews. Some of the keywords are general and they can be used in a wide variety of contexts; as such the

chances that the result set has a large number of false-positives is considerably more as compared to the

scenario where it might have missed some valid results.

The keyword search on the commit messages resulted in 2,83,754 commits selected as compatibility

related from the total pool of 13,78,736 commits. The keyword-count had the maximum value of nine; this

indicated that there was at least one commit message that contained nine of the keywords chosen to describe

the compatibility-related text. On closely analyzing the result set, it was evident that the majority of the
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Figure 6.3: Some sample compatibility related commit messages

commit messages selected by this keyword search had the keyword-count of one or two; only a few had the

keyword-count of three or more. Also, the number of commits with higher values of keyword-count steadily

decreased. For the next phase of this research to identify the compatibility related commits accurately, we

used supervised learning – the training set of this process was built using a subset of the commits identified

from the keyword search. Table 6.1 has the count of the number of commits for each keyword-count and

those used in the training set.

We performed a similar keyword search on the reviews as well. Out of the total of 7,39,421 reviews

considered for study in this research, the keyword search selected 1,59,350 reviews which contained at least

one of the keywords. The maximum value for keyword-count for the reviews was seven. However, just like

the commits, a majority of the reviews coincided with a keyword-count of one or two. Table 6.2 has the

count of the number of reviews corresponding to each keyword-count and those used in the training set.
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Figure 6.4: Some sample compatibility related user reviews

Commits

Keyword-Count # Matched # Selected in Training set

1 2,51,004 5,811

2 29,397 856

3 2,980 2,980

4 313 313

5 45 45

6 11 11

7 3 3

8 0 –

9 1 1

SUM 2,83,754 10,020

Table 6.1: Keyword-count match for commit messages

6.2.2 Comparison of different text embedding techniques

Choosing an appropriate Word Embedding technique can be crucial for any machine learning model. In

this research, we have used and evaluated four classifiers for classifying commit messages and user reviews.
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Reviews

Keyword-Count # Matched # Selected in Training set

1 1,29,435 2571

2 24,423 937

3 4,484 4,484

4 829 829

5 142 142

6 31 31

7 6 6

SUM 1,59,350 9,000

Table 6.2: Keyword-count match for user reviews

However, before we can even proceed to run the classifiers, it is important to choose an appropriate word

embedding technique. The performance of the machine learners can vary considerably depending on the

vectorization technique.

In this research, we have evaluated the following vectorization techniques:

• TF-IDF

• Word2Vec (Avg & TFIDF)

• Doc2Vec

• GloVe (Avg & TFIDF)

To evaluate these word embedding techniques, it was essential to train a classifier with each of these

techniques and then determine the accuracy of the model. In our research, we had the option to use any of

the four classifiers that we had eventually used for the actual classification activity. We used the Logistic

Regression (LR) classifier for this step as we had found in an earlier study that LR performs well with

classification of commits and reviews. However, it is worth mentioning that we could have used the other

three classifiers as well.

The Table 6.3 and Figure 6.5 shows the performance of the different embedding techniques using the

Logistic Regression model on the commit messages. It is evident that the overall performance of all the

techniques was very similar; however, TF-IDF performed the best among all the other techniques for each of
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Commit Embedding Techniques

Embedding Techniques Precision Recall Accuracy F1 Score

TF-IDF 88.54 88.22 88.22 88.19

Word2Vec (Avg) 85.25 85.21 85.21 85.2

Word2Vec (TFIDF) 80.65 80.57 80.57 80.56

Doc2Vec 84.02 84 84 84

GloVe (Avg) 85.45 85.41 85.41 85.41

GloVe (TFIDF) 80.26 80.19 80.19 80.18

Table 6.3: Performance of embedding techniques for commit messages

Figure 6.5: Performance of embedding techniques for commit messages

the four performance metrics. So, we have selected TF-IDF as the text vectorization technique for commit

messages in this research.

We performed a similar evaluation for the review messages as well. Table 6.4 and Figure 6.6 show the

performance of the different text embedding techniques using the LR classifier on the reviews. We observed

that even for reviews, TF-IDF vectorization performed considerably better than the other techniques on

all the performance measures. As a result, we have chosen TF-IDF as the ideal option for all further text

vectorization activities.
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Review Embedding Techniques

Embedding Techniques Precision Recall Accuracy F1 Score

TF-IDF 90.3 89.9 89.9 89.88

Word2Vec (Avg) 80.56 80.52 80.52 80.51

Word2Vec (TFIDF) 76.2 76.18 76.18 76.17

Doc2Vec 81.54 81.43 81.43 81.41

GloVe (Avg) 80.14 80.09 80.09 80.09

GloVe (TFIDF) 76.81 76.77 76.77 76.77

Table 6.4: Performance of embedding techniques for user reviews

Figure 6.6: Performance of embedding techniques for commit messages

6.2.3 Evaluation of classifiers

In the previous section, we had observed that TF-IDF vectorization produced the best results among the

different vectorization techniques. In this section, we have discussed the performance of the different clas-

sifiers. As mentioned in Section 3.4.4, we have evaluated four ML classifiers in this research: Naive Bayes,

Logistic Regression, Support Vector Machine, and Random Forest. For each of these classifiers, the ideal

combination of hyper-parameters was chosen using the GridSearchCV method as described in the earlier

chapters. Table 6.5 shows the different combinations of hyper-parameter values supplied to the classifiers

and the best parameter combinations identified for both commit messages and reviews.

With the chosen hyper-parameter values, we ran the four classifiers. To evaluate the performance of the

classifiers, we have used 10-fold cross-validation (as described under Section 3.4.5) and calculated the four

performance metrics (precision, recall, accuracy, and f1-score). In Table 6.6, the average values of these met-
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Classifier Parameter Values Best Parameter
(Commits)

Best Parameter
(Reviews)

SVM C : 0.1, 1, 10, 100
γ : 1, 0.1, 0.01
kernel: ‘rbf’, ‘poly’, ‘sigmoid’, ‘linear’

C : 10
γ: 1
kernel : ‘poly’

C : 100
γ: 1
kernel : ‘poly’

LR C: 0.001, 0.01, 0.1, 1, 10, 100, 1000 C: 100 C: 100

RF max depth: 80, 90, 100, 110
max features : 2, 3
min samples leaf : 3, 4, 5
min samples split : 8, 10, 12
n estimators : 100, 200, 300, 1000

max depth : 110
max features : 3
min samples leaf : 3
min samples split : 10
n estimators : 1000

max depth : 90
max features : 3
min samples leaf : 3
min samples split : 8
n estimators : 1000

Table 6.5: Classifier hyper-parameters tuning

rics for the four classifiers after classifying commit messages have been listed; the number in the parenthesis

is the measure of their standard deviations (σ).

Commit Messages

Classifier Precision Recall Accuracy F1-score

SVM 94.86 (0.71) 94.84 (0.71) 94.84 (0.71) 94.84 (0.71)

LR 91.24 (0.79) 91.12 (0.78) 91.12 (0.78) 91.11 (0.78)

RF 78.76 (2.57) 77.49 (2.74) 77.49 (2.74) 77.23 (2.83)

NB 85.33 (0.98) 83.97 (0.91) 83.97 (0.91) 83.81 (0.92)

Table 6.6: Performance of classifiers on Commit messages

As evident from the above table, the performance of the Support Vector Machine (SVM) classifier was the

best among all the four classifiers. SVM had obtained the highest score on each of the four metrics. These

values were obtained with the following hyper-parameters: C = 10, γ = 1, and kernel = ‘poly’. Other than

SVM, the performance of the Logistic Regression (LR) classifier was also very good on all the measures. The

Random Forest (RF) classifier had obtained the worst results in this case. Figure 6.7 shows the violin plot for

precision, recall, accuracy, and f1-score obtained from 10-fold cross-validation for the four classifiers. It can

be observed that the performance of SVM was better than the other classifiers for identifying compatibility

aspects from commit messages.
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Figure 6.7: Violin plot of performance metrics for the four classifiers on commit messages

User reviews

Classifier Precision Recall Accuracy F1-score

SVM 94.33 (0.70) 94.31 (0.70) 94.31 (0.70) 94.31 (0.70)

LR 89.11 (0.64) 88.88 (0.65) 88.88 (0.65) 88.86 (0.65)

RF 81.06 (0.77) 80.88 (0.74) 80.88 (0.74) 80.86 (0.75)

NB 84.18 (0.63) 83.33 (0.56) 83.33 (0.56) 83.23 (0.56)

Table 6.7: Performance of classifiers on user reviews

We used a similar approach for the user reviews as well; we evaluated the performance of the four

classifiers to identifying compatibility issues raised in user reviews. Table 6.7 shows the efficiency of the

classifier models based on the performance metrics discussed earlier. Again, the values in the table describe

the mean of the results obtained from the 10-fold cross-validation and the numbers in parenthesis denote
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Figure 6.8: Violin plot of performance metrics for the four classifiers on user reviews

their standard deviations. Just like the commits, even for user reviews, the performance of SVM was the

best among all the different classifiers; it had obtained the highest value on all the four performance metrics.

These values were obtained with the following hyper-parameters: C = 100, γ = 1, and kernel = ‘poly’. The

performance of LR was close to SVM and it had also achieved good results on the different measures. Again,

the performance of RF was the lowest among the four classifiers that we have evaluated in this research.

Figure 6.8 shows the violin plots for precision, recall, accuracy, and f1-score obtained from 10-fold cross-

validation for the four classifiers on user reviews.

This evaluation helped us evaluate the performance of the different ML classifiers and identify the ideal

one for our study. We have identified that the Support Vector Machine (SVM) classifier has achieved the

best results for classifying compatibility aspects for commit messages and user reviews. Also, for both the

cases, the performance of Logistic Regression (LR) was comparable to SVM and can also be used for this

type of text classification tasks.
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6.2.4 Key findings

In this section, we have listed some of our key findings from this chapter.

• Although the word embedding approaches built using neural networks are more sophisticated and

known to produce good results, we obtained the best results with TF-IDF which is one of the traditional

approaches. This strengthens the fact that the applicability of NLP and ML techniques is dependent

on the context.

• Although Naive Bayes and Random Forest classifiers have been used for other types of text classifica-

tion, they are not very effective for classifying compatibility related non-functional requirements.

• Our results show that the Support Vector Machine and the Logistic Regression classifiers have consis-

tently produced the best results in all our experiments. As such, these are more effective for classifying

compatibility related requirements.

6.3 Summary

In this chapter we have discussed the data collection process in detail – the amount of data (commits and

reviews) collected and those retained after each step. We have also discussed the initial findings of some

of the key components of the ACOCUR methodology. We have evaluated four types of word embedding

techniques; although the more recent techniques are known to work well in other contexts, however in the

case of compatibility analysis, we found that the TF-IDF approach provided the best results. We have

also evaluated four ML classifiers and observed that two of them have consistently produced good results.

As such we have proceeded with these two classification algorithms for all the later analyses. In the next

chapter, we shall discuss the empirical evaluation of the results for our research questions.
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Chapter 7

Empirical Evaluation

In Chapter 3, we have already discussed the methodology for ACOCUR, and in Chapter 5 we have discussed

the tool that has been built by implementing this methodology. Using this tool and the methods discussed,

we have analyzed a large number of open source Android apps. In the previous chapter (Chapter 6), we

have discussed the data selection process and some of our initial analysis. In this chapter, we shall proceed

with the empirical evaluation of the ACOCUR and discuss the answers to our research questions.

7.1 Evaluate RQ1: Commits related to compatibility

To assess the first research question and identify the percentage of developer commits related to addressing

the compatibility requirements, we have classified all the commits using the chosen classifier. As discussed in

the last chapter, the Support Vector Machine (SVM) and the Logistic Regression (LR) algorithm classifiers

produced the best results and their performance metrics were close; as such we have used both the classifiers

for identifying compatibility fixes from commit messages.

From our initial data set of 784 apps, we had extracted 283,754 commits using the keyword search. We

ran the LR classifier on these commit messages to extract the compatibility related commits. The classifier

identified a total of 12,537 commits as related and the remaining as non-related. This corresponds to ≈ 4.42%

of the user commits. However, if we consider all the commit messages (including those that did not have any

keyword match, i.e., 1,378,736 commits in total), the percentage of compatibility related commit is ≈ 0.91%.

We also ran the SVM classifier to extract compatibility related commits. However, this time we did not

run it on the entire 784 apps. Instead, we ran the SVM classifier on the 308 apps (which is a subset of the 784

apps) that were selected for the second phase of the research (i.e., considering the user reviews as well). These

308 apps had a total of 877,980 commits, out of which 180,381 were chosen by keyword search. The SVM
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Figure 7.1: Commit and Review classification results

classifier was run on these 180,381 commits and it identified 8,153 of these as compatibility related. This

corresponds to ≈ 4.52% of the commits. Again, considering all the commits, these number of compatibility

related commits constitute for ≈ 0.92% of the total. Figure 7.1 shows the number of number of commits

identified at different stages of the evaluation.

To understand the variation across different apps, we calculated the percentage of compatibility fixes for

each app. This value ranges from a maximum of 7.04% (15 compatibility fixes out of a total of 213 commits)

to a minimum of 0% (not a single compatibility fix). To understand this better, we further classified the apps

based on the total number of commits. Table 7.1 shows the distribution of the percentage of compatibility

Total # of commits Compatibility-related commits # of apps

6 300 2.15% 39

301 – 400 2.02% 31

401 – 500 1.64% 19

501 – 1,000 1.62% 67

1,001 – 2,000 1.56% 66

2,001 – 3,000 1.41% 20

3,001 – 4,000 1.09% 21

4,001 – 5,000 1.39% 10

5,001 – 10,000 1.07% 22

10,001 – 15,000 0.93% 5

15,001 – 30,000 0.48% 3

30,001 – 50,000 0.40% 3

> 50, 000 0.21% 2

Total 0.92% 308

Table 7.1: Distribution of compatibility related commits
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related commits based on the total number of commit messages. It is evident from the table that the

percentage of compatibility fixes decreases as the total number of commits increases.

7.2 Evaluate RQ2: Users concerned about compatibility

To assess how much users are concerned about compatibility, we calculated the percentage of user reviews

that complain about the apps’ compatibility issues. To determine this, we again chose SVM as it had pro-

duced good results in the evaluation phase. For the 308 apps selected for this phase of the research, the

keyword match extracted 159,350 reviews from a total of 739,421 reviews. The classifier was run only on

the keyword searched reviews and it identified a total of 17,845 reviews as compatibility related while the

remaining were considered non-related (see Figure 7.1). This corresponds to ≈ 11.20% of keyword matched

user reviews. On considering all the user reviews, this compatibility related user reviews constitute for

≈ 2.41%.

% of Compatibility-related reviews # of apps

< 0.5 39

0.5 – 1 47

1 – 2 81

2 – 3 48

3 – 4 38

4 – 5 19

5 – 10 28

> 10 8

Total 308

Table 7.2: Distribution of percentage of compatibility related reviews

To understand the distribution of the compatibility related reviews across apps, we calculated the per-

centage of compatibility related reviews for each app. The value ranges in between a minimum of 0% (14

apps, for which not a single compatibility related issue raised in the user reviews) to a maximum of 17.43%

(19 out of a total of 109 reviews have raised compatibility related issues). Table 7.2 shows the total number

of apps for the different ranges of the percentage of compatibility-related reviews.

We have also analyzed the distribution of the percentage of compatibility-related reviews based on the

total number of user reviews available; Table 7.3 shows this distribution results. It is clear that the average
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Total # of reviews Compatibility-related reviews # of apps

6 200 3.19% 69

201 – 300 2.02% 31

201 – 300 3.24% 27

301 – 500 2.54% 46

501 – 1000 2.50% 49

1001 – 2000 2.39% 37

2001 – 3000 2.42% 20

3001 – 5000 2.13% 21

5001 – 10000 2.35% 21

> 10, 000 2.47% 18

Total 2.41% 308

Table 7.3: Distribution of compatibility related reviews based on total review count

distribution of compatibility related reviews across the different apps based on the total number of reviews

is similar; therefore, we can conclude that the percentage of compatibility related reviews is independent of

the total number of user reviews.

7.3 Evaluate RQ3: Different compatibility types

In this section, we shall evaluate research question 3 that is related to the different compatibility types for

commits and reviews. Since we have performed the card sorting exercise separately for commits and reviews

to identify the different types in them, we have created two separate taxonomies – one for compatibility

types in commits, and the other for the reviews.

7.3.1 Compatibility types in commit messages

By analyzing the compatibility related commit messages during the card sorting process, we identified

different types of compatibility related fixes done by developers. As a result of the open card sorting phase,

we identified twelve different categories into which the compatibility fixes could be distributed; however,

since some of these categories were very discrete and the number of cards allocated to them was very less,

we grouped some of them to create broader categories. As an outcome of this exercise, we developed a

two-level taxonomy: the top level has a broad categorization, while the second level contains the low-level

types. Table 7.4 describes the taxonomy for the different types of compatibility fixes identified from commit
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High Level
Taxonomy

Low level
Taxonomy

% of
Cards

Example

Android version

Support for Android ver-
sions

55.86 Android Oreo support; Update targetSdkVer-
sion to the latest (API 22, Android 5.1)

Support libraries 9.72 Upgrade support libraries to version 26.1.0

Fix issues on specific An-
droid versions

8.64 Fix crash in Ice cream sandwich Android ver-
sions

Fix for previous versions 7.37 Makes the toolbar shadow visible for pre-
Lollipop Android versions

Remove support for An-
droid versions

4.06 Set minimum required Android version to 12
(Honeycomb 3.1)

Devices

Device specific fixes 6.56 Catch exception on possibly incompatible
Samsung tasks version (in Galaxy S3)

Device configuration 1.22 Support super widescreen Android devices;
Remove ANT entries from preferences if the
device does not support ANT

Stop support 0.54 Removing support for armeabi since there are
no armeabi devices that support our minimum
api level.

Devices - others 0.40 Bump MK to fix crash on modern devices; Up-
dated to support landscape tablets; Removed
bluetooth backport and made other necessary
changes to get it working with a more modern
Android phone

Others

Other software 1.90 Fix compatibility with new Kanboard version
API; Try to fix Dropbox conflicts by waiting
on newer versions

Platform related 0.99 Improve cross-platform compatibility

General 2.76 Use ResourceCompat to support more An-
droid versions; Updated PermissionsDis-
patcher to fix compatibility issues.

Table 7.4: Taxonomy of compatibility types in commits

messages. It comprises of three high-level categories (Android version, Devices, and Others) that have been

further decomposed into the twelve low-level types.

The low-level taxonomy more specifically refer to the type of fix that the commit is associated with. For

example, the fix might have been done to add support for different Android versions, fix some compatibility

issues for specific Android versions, resolve compatibility issues with some particular device, remove compat-
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ibility support for particular versions or devices, etc. On the other hand, the high-level taxonomy broadly

describes the type of fix; i.e., whether it is for Android versions, devices, or other general types. From the

table we can see that a majority of the cards (85.62%) belonged to Android version, while only 8.73% were

related to Devices category and the remaining 5.65% were mapped to Others. It is evident from the card

sort exercise that most of the fixes done by app developers to address the app’s incompatibility are related

to Android versions, and only a few are related to the other two categories.

7.3.2 Compatibility types raised from reviews

Similar to Section 7.3.1, we have also analyzed the compatibility related reviews using the card sorting

technique to identify the different types of compatibility issues expressed in user reviews. After extracting

the different groups, we realized that the total number of categories identified were too large to form a

High Level
Taxonomy

Low level
Taxonomy

% of
Cards

Description

Android version
Android-Crash 19.70 App crashes and completely stops working on

particular Android versions

Android-Behavioral 9.03 The app works but some of the functionalities
or behaviors are affected

Platform update
Platform-Crash 2.95 App crashes after Android update

Platform-Behavioral 2.50 Some of the functionalities or behaviors are
affected after Android update

App version
Version-Crash 12.95 The app version crashes and does not work

Version-Behavioral 6.58 Some of the app functionalities are affected
after a version update

Devices
Device-Crash 24.36 The app crashes on particular devices

Device-Behavioral 7.64 Some of the functionalities are affected on par-
ticular devices

Others

Irregular crashes 4.51 App crashes on different circumstances

Performance 5.23 The app’s performance is affected in certain
configurations

Other software 2.57 App is not compatible with other related soft-
ware

General 1.98 Other types of general incompatibilities

Table 7.5: Taxonomy on compatibility types in reviews
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taxonomy. The reason for the creation of so many distinct groups was that users are discrete in describing

the unique issues that they encounter and thus each of the different issues can be attributed to individual

categories. So to build a taxonomy that can be generalized, we have further grouped the different types

of incompatibilities to broader categories. After due deliberation and multiple iterations, we have finalized

12 categories into which the different types of incompatibilities could be mapped. These 12 categories form

the low-level taxonomy that describes the different aspects of the compatibility issues. These low-level

taxonomies have been mapped to five broader categories that represent the high-level taxonomy. These five

broad categories represent the primary sources for the compatibility issue. Table 7.5 describes our two-level

taxonomy describing the compatibility issue types extracted from user reviews.

It is clear from the table that each of the first four high-level categories contains two subcategories; the first

subcategory represents the cases where the apps crash or suffers terribly as a result of the change discussed

under the main category, and the second category represents those types where the app works with some

imperfection and fault as a result of the changes described under the main category. To maintain uniformity

in the terms, we have associated the term Crash with the first subcategory, and the term Behavioral with

the second subcategory. Again, the different types of behavioral incompatibilities have been described under

Table 7.6. This ensured that we can keep track of the different variants of the incompatibility types discussed

in the user reviews and at the same time keep the taxonomy manageable.

Behavioral

Compatibility Types Android Platform Version Device

SD Card & External device X X X X

Sync & Connectivity X X X X

Finger print scanner X X X

Display & GUI X X X

Access permissions X X

Audio & Mic X X

Unsupported Features X X

Notifications X

Others X

Table 7.6: Types of behavioral issues in reviews

From Table 7.5, we can see that percentage of cards associated with the five broad categories are as follows:

28.73% associated to Android version, 5.44% are for Platform update, 19.54% belong to App version, 31.98%
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are for Devices, and the remaining 14.30% are classified under Others. Contrary to the taxonomy generated

from commit messages where the majority of the cards belonged to a single category, in this case, the cards

are more uniformly distributed among the five categories.

7.3.3 Classifying commits based on compatibility types

We have classified all the compatibility-related commits (8,153 commit messages - those identified by running

the SVM classifier on 308 apps, Section 7.1 ) into the different categories based on the taxonomy generated

under Section 7.3.1. The performance of the classifiers suffered when the classification was done using the

low-level taxonomy. This was because the number of classes was too many for the machine learning classifiers

to deal with. As such, to achieve better results, we decided to classify the commits based on the high-level

taxonomy only.

As described under Section 7.3.1, we had identified three broad categories into which the compatibility

fixes could be mapped. All the commits were classified into these three categories. To choose the best

model for this multi-label classification, we again evaluated the four ML classifiers (Naive Bayes, Logistic

Regression, Support Vector Machine, and Random Forest). The only difference, in this case, was that while

earlier the classifier was used for binary classification (related vs non-related), this time the classifier was

multi-label (Android versions, Devices, and Others).

Commit Messages

Classifier Precision Recall Accuracy F1-score

SVM 88.62 89.75 89.75 88.54

LR 87.53 88.85 88.85 86.08

RF 72.87 85.36 85.36 78.62

NB 80.31 86.12 86.12 80.86

Table 7.7: Performance of classifiers for identifying compatibility types

To evaluate the performance of the classifiers, we have used 10-fold cross-validation (as described under

Section 3.4.5) and calculated the four performance metrics (precision, recall, accuracy, and f1-score). In

Table 7.7, the average values of these metrics for the four classifiers have been listed. The performance of

the Support Vector Machine (SVM) classifier was again the best among all the four classifiers. Other than

SVM, the performance of the Logistic Regression (LR) classifier was also very good on all the measures.
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The performance of the Random Forest (RF) classifier was again the lowest among the four classifier mod-

els. Therefore, we chose SVM for classifying the 8,153 commit messages into the different compatibility types.

Category # of commits % of commits

Android version 6,868 84.24%

Devices 800 9.81%

Others 485 5.95%

Total 8,153 100%

Table 7.8: Distribution of compatibility types in commits

The result of the compatibility type classification is shown under Table 7.8. As evident from the table,

the distribution of the commits into the three categories is similar to what we had observed during the card

sorting exercise; almost 85% of the related commits fell under Android versions compatibility type, while

the other two types had a much smaller share.

Therefore, we can conclude that a majority of the compatibility fixes done by app developers are for

Android versions. All incompatibilities arising out of the discrepancies in the Android versions are of utmost

importance to Android app developers as the impact of these issues is much wide; on the contrary, the

incompatibilities with particular devices assume a much lower priority.

7.3.4 Classifying reviews based on compatibility types

We have also classified all the compatibility-related reviews (17,845 reviews - those identified by running

the SVM classifier in Section 7.2) into the different categories based on the compatibility types identified

under Section 7.3.2. Again, as the low-level taxonomy had a large number of categories, we have used the

high-level taxonomy categories for this classification.

In Section 7.3.2, we had identified five broad compatibility types from the user reviews. For classifying

the reviews into these five categories, we had again evaluated the four ML classifiers. The process was exactly

similar as we had performed under Section 7.3.3. Table 7.9 describes the performance of the four classifiers

for classifying user reviews messages into the five compatibility types. We observed that Logistic Regression

performed the best on all the four performance metrics; SVM’s performance was very close to LR. However,

the overall performance of the classifiers was significantly lower as compared to all the earlier cases.

We have examined some of the reviews and the reason for this apparent drop in classifier performances.
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Review Messages

Classifier Precision Recall Accuracy F1-score

SVM 69.72 71.79 71.79 69.74

LR 70.98 74.38 74.38 69.91

NB 53.99 60.35 60.35 54.09

RF 48.43 48.94 48.94 39.83

Table 7.9: Performance of classifiers for identifying compatibility types from user reviews

This can be attributed to the same reason as to why there were a larger number of conflicts while building

the training sets. Users often provide all the configuration specifications while reporting a problem - as such

it becomes difficult to pinpoint the actual origin of the issue. We chose LR for classifying the remaining user

reviews into the five compatibility types.

Category # of reviews % of reviews

Android version 3,854 21.60%

Platform update 818 4.58%

App version 3,119 17.48%

Devices 8,197 45.93%

Others 1,857 10.41%

Total 17,845 100%

Table 7.10: Distribution of compatibility types in user reviews

The result of the compatibility type classification for user reviews is shown under Table 7.10. The top

three categories into which the reviews had been classified were Devices, Android version, and App version.

As such we can infer that the majority of the compatibility issues reported by users in their reviews correspond

to these three categories. We have observed that almost half of the compatibility-related reviews have been

classified as Devices compatibility type; we can infer that users mostly feel that the incompatibility in the

app is related to their particular device and not for any other reason.

7.4 Evaluate RQ4: Responsiveness of developers to user requests

To measure the degree of alignment between reviews and commits, we have performed two types of analysis

as described in Section 3.7. In this section, we shall discuss the results of our analysis.
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• Linking individual reviews to commits To measure the responsiveness of the developers to the re-

views, we wanted to determine if a particular compatibility fix is a result of a compatibility requirement

or issue articulated in the reviews. As such we have identified all the compatibility fixes (commits)

that have been made after a compatibility-related review has been posted and within a specified time

frame (for our thesis, we have considered the time frame as 90 days). Next for each of the reviews, we

have calculated the similarity with all the identified commits.

Textual Similarity - Out of 17,845 reviews that were identified as compatibility related, 12,878

reviews either did not have a corresponding commit or the textual similarity was zero. For the remaining

4,967 reviews, the textual similarity was non-zero; i.e., there is at least one commit with a minimum

of a one-word match. However, this approach did not provide any promising results as we could not

identify any threshold value for textual similarity to consider the commit linked to the review.

On manual investigation, we have identified several cases where a commit is linked to the review despite

textual similarity being zero; also there are cases where there is no apparent link between a review

and the commit although the textual similarity is non-zero. Therefore, it was evident that textual

similarity based on word matching is not a suitable approach for linking reviews to commits.

Semantic Similarity - Before calculating the semantic similarity on the entire data set, we evaluated

the approach on a small set of reviews and commits that were manually selected. The semantic simi-

larity between reviews and commits was calculated using both the approaches – cosine similarity, and

word mover’s distance. However, just like textual similarity, the results were not comprehensible. Let

us take the following examples -

Case 1:

Review : The app is incompatible with samsung phone (Date: 2017-09-22)

Commit : Fixed crash while loading (Date: 2017-11-17)

There is no word match between these two sentences. As such the textual similarity is zero. However,

the cosine similarity (using the GloVe embedding) between these two texts is 0.85 and the WMD is

1.35. This implies a high semantic similarity. But no manual inspection it is obvious that there is no

apparent connection between these two sentences. The fix in the commit is not associated with the

issue raised in the review.

Case 2:
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Review: The autofill function has stopped working, and uninstall/reinstall doesn’t work. I’m won-

dering if it’s an OS incompatibility because I’ve seen it work on newer phones. I’m running Android

4.1.2 on the Samsung Galaxy Stellar. (Date: 2015-03-16)

Commit : Fixes for autocomplete crashing (Date: 2015-03-22)

Again, in this case, there is no word match; so textual similarity is zero. The GloVe embeddings cosine

similarity is 0.64 and WMD is 1.24. These values are similar to Case 1, but the commit is probably

related to the issue raised in the review. Also, the dates of the review and the commit suggest that

the fix has been applied six days after the issue has been reported.

As explained in the above two cases, it was obvious that even semantic similarity between review and

commit may not be an ideal way to establish the linkage between reviews and commits. Therefore, we

resorted to the second option to measure the responsiveness of the developers to user reviews.

• Linking compatibility types of reviews to those in commits

Tables 7.8 and 7.10 show the distribution of the commits and reviews respectively across the different

compatibility types. In Figure 7.2, we have plotted the data in one graph for easy comparison.

Figure 7.2: Distribution of compatibility types for commits and reviews

In the case of commits, the majority of the fixes are related to the Android version. We have observed

that ≈ 85% of the commits fall under this category; less than 10% of the commits were related to

Devices, and only about 6% were of the Others types.

On the other hand, in the case of reviews, the distribution of the reviews across the compatibility types

are different. First of all, the compatibility types for the reviews do not completely match those of the
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commits; therefore, we can not perform a point-by-point comparison. However, we have found that

the largest share of reviews (≈ 46%) has been associated with the Devices compatibility types, while

21.59% discuss the Android version, and 17.48% are related to the App version incompatibility. The

remaining two categories have around 10.41% and 4.58% of the reviews.

From these two distributions, it is evident that while users mostly focus on Device specific compatibility

issues, developers mostly target Android versions specific issues. Thus, we can only conclude that the

percentage of commits across the different compatibility types does not align with those for the reviews.

As such, that there is not proper alignment between user reviews and developer commits when respect

to compatibility requests.

It might be possible that while users perceive a compatibility issue as device-specific, the actual reason

might be different (as expressed by developers in the survey). As such while the user reports the issue

as device type, the developer fix might be of a different type. We believe that the developers address

the compatibility fixes based on what they deem necessary (developer-driven development).

7.5 Key findings

In this section, we have discussed some of our important findings.

• The percentage of reviews discussing about apps’ incompatibility issues is higher than the percentage

of commits related to compatibility fixes.

• The percentage of compatibility fixes related to Android versions is the highest. The number of fixes

in the other categories is low.

• The compatibility requirements from reviews are more uniformly distributed across the different cate-

gories.

• The existing textual similarity measures for identifying compatibility requirements are not effective if

the nature of the texts are different (reviews vs commit messages).

• App developers often follow a developer-driven development approach when addressing compatibility

requirements.
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7.6 Threats to validity

We proposed an approach to perform compatibility analysis in mobile applications and evaluated our ap-

proach to open-source Android apps. However, it is pivotal to any research to identify and evaluate any

threats to validity to further reinforce the robustness and applicability of the approach for other non-

functional requirements and other data types.

We identified several instances of the existence of threats to validity in the evaluation of our approach.

In this section, we define the threats to validity for the studies conducted and our efforts to mitigate them.

Following Wright et al. [82], Siegmund et al. [68], and Wohlin et al. [81], we define the following classifications

of threats to validity:

• Internal validity threats. It relates to the threats that refer specifically to whether an experimental

treatment/condition makes a difference to the outcome or not. It relates to how well the experiments

and analyses have been conducted.

Here we shall discuss some of the internal threats to our work.

Dependence on ML and NLP techniques: The ACOCUR approach for identifying compatibility fixes

from commit messages and requirements from reviews is dependent on a pipeline of natural language

processing and machine learning techniques. The outcome of the process and the results might vary

based on the extensiveness of data sanitization and the process of lemmatization. Also, the choice of

hyper-parameters for the classifiers is dependent on the current data set. While these have produced

good results for the selected apps, the outcome might change on a different data set. Moreover, the

efficiency of any ML technique depends on a lot of factors. Testing all of them in conjunction was

beyond the scope of this work.

• External validity threats. It relates to the validity concerns caused by the generalization and repli-

cation of the results of an experiment to other scenarios. We have identified two types of external

validity threats that have been listed below.

Origin of Datasets: Our evaluation is based on 784 open-source Android applications publicly hosted

on GitHub. Therefore, our results may not be valid for applications on other platforms. Also, the total

number of available apps in the Android play store is very large and a majority of them are not open
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source which we could not evaluate. Also, we have not evaluated any app from the Apple App Store.

As such, we can not claim the general applicability of our results for all the available mobile apps.

Analysis of these apps may lead to different results. Nonetheless, our approach is still relevant to all

mobile apps for which we intend to analyze the compatibility requirements.

Applicability of the approach for other non-functional requirements: We have proposed an approach

for analyzing non-functional for mobile apps. However, in this thesis, we have worked with only one

NFR (compatibility) and analyzed it in detail. We have not dealt with any other NFRs in this thesis,

nor have we evaluated the approach for other types of non-functional requirements. As such, though,

the concept is theoretically applicable to other cases as well, we have not empirically evaluated the

same. As such, we can not claim for external validity for this approach with other non-functional

requirements.

• Construct validity threats. It relates to the influence of generalizing the result of the experiment

on the concept or theory behind the experiment. It covers issues that relate to the design of the

experiment.

Here we have listed two construct validity threats that have been identified.

Training set misclassification: The proposed ACOCUR model is dependent on supervised machine

learning classifiers; as such it is very important to build good training sets to train the models to

produce desirable results. The performance of the models and the applicability of the results relies

on the training set. Although the training sets for our proposed models have been labeled by two

independent annotators to mitigate the problem of biased labeling, we can not completely eliminate

the risk of misclassification. The results might vary if the training set was built by different annotators.

Commit messages are developer dependent: The ACOCUR methodology relies on commit messages

for identifying compatibility related fixes. The commit messages are supposed to describe the nature

of change done by the developer in that particular commit. As per the standard good development

practices, it is recommended that commit messages should clearly describe the changes done in that

commit such that anyone can comprehend the change in the commit from the commit message itself.

However, in reality, we have seen that developers often fail to include good commit messages; the
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messages are rather vague or cryptic. In such a scenario, it might not be possible to comprehend

the type of changes done in a particular commit by referring to the commit messages alone. Our pro-

posed approach is solely dependent on commit messages to identify the non-functional requirement fixes

using the assumption that app developers will provide meaningful descriptions in the commit messages.

• Conclusion validity threats. It relates to the extent to which the conclusions made about the

relationship in our observations are correct and scientifically sound. It corresponds to the relationship

between the independent and dependent variables.

Developer-Driven development: Using the ACOCUR methodology, we have empirically evaluated a

large number of apps. Our attempt to measure the dependence of developers on reviews to identify

compatibility requirements resulted in making a comparative analysis of the different compatibility

types. We have found that while users report mostly based on devices incompatibility type, developer

fixes are mostly based on Android versions.

Although this analogy makes us believe that app developers follow a developer-driven development

approach for compatibility requirements and don’t rely on reviews, it might be possible that developers

rely on reviews on certain other aspects. While majority of the fixes related to compatibility are

Android versions specific, the compatibility requirements might have been traced from the reviews

which described some other type of compatibility issue.

7.7 Summary

In this chapter, we have discussed the empirical evaluation for the first four research questions. The answers

to the other two questions (RQ5 and RQ6) have already been discussed in the previous chapters. We have

identified the percentage of commits that are related to compatibility fixes; using that analysis, we can

estimate the effort dedicated by developers to address the compatibility related requirements. Also, we have

identified the different types of compatibility fixes performed by the developers and how the effort dedicated

to the different types vary.

Simultaneously, we have also identified the importance given to the compatibility requirements by users

by calculating the percentage of reviews that are related to the app’s incompatibility issues. We have also

extracted the different types of compatibility issues raised by users.

Comparing the different statistics, we have analyzed how the distribution of data among the different
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compatibility types vary for commits and reviews. We have also discussed our findings on measuring the

dependence of developers on reviews.

Finally, we have listed our key findings and observations from these evaluations; also discussed the

different threats to validity that we have identified in our work.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

It is clear beyond doubt that non-functional requirements are a key component of any system; failing to

address these requirements severely affects the overall execution of the software system. This ongoing

research is part of a larger effort to study NFRs for mobile apps. Nayebi et al. [53] performed a study

with participants of the 4th International Workshop on Software Release Engineering (RELENG 2016) to

evaluate the impact of “the market” on release decisions for mobile apps. Asked to compare mobile with

non-mobile apps, 20 out of the accepting 22 participants (90.9%) believed that customer feedback has the

highest importance for evaluating the success and failure of mobile apps. The current work was following

this agenda and tried to figure out how customer feedback is related to actual changes of developers.

In the study conducted by Jha et al. [33], it has been identified that 40% of user reviews depict at least

one type of non-functional requirements; of this 8.22% are related to supportability. Zou et al. [86] and

Ahmad et al. [10] have evaluated stack overflow posts from iOS developers to identify which non-functional

requirements developers focus on; it has been found that more than 90% of the posts discuss at least one

type of NFR and developers mostly focus on usability and reliability ; however, none of these studies have

analyzed compatibility in particular.

In this thesis, we have studied the compatibility aspect in great detail; however, the study can be

extended to other non-functional requirements as well. We have analyzed a large number of open-source

Android apps and studied their commit messages to ascertain how much effort the app developers provide

to deal with mobile app incompatibilities. In the course of this research, we have explored different machine

learning algorithms and various word embedding techniques for identifying and classifying compatibility
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fixes from commit messages. We observed that two of the ML classifiers (Support Vector Machine and

Logistic Regression) have performed consistently well in this regard. We also built a two-level taxonomy

for describing the different types of compatibility issues fixed in the commits. With these results, we have

successfully answered the research questions that dealt with analyzing compatibility from commit messages.

Simultaneously, we have also evaluated the user reviews from the apps that were selected for this study.

We have been interested in identifying how much the users are concerned about the app’s incompatibilities

and what types of incompatibilities they report in the reviews. Just like the commits, we have explored

different ML classifiers and several word embedding techniques for identifying and classifying compatibility

requirements from user reviews. We have also built another taxonomy on the different types of compatibility

requirements described in reviews. These studies have enabled us to answer the research questions related

to analyzing compatibility from user reviews.

As a part of this thesis, we have also evaluated the degree of alignment between user reviews and

developers’ commits related to the app’s compatibility. We have also investigated the limitations of some of

the available techniques for analyzing the degree of responsiveness of developers to user reviews.

We have proposed an approach, ACOCUR, for systematically analyzing compatibility requirements from

reviews and their corresponding implementations from commits. To facilitate the process, we have also

proposed a tool that implements the methodology of ACOCUR. Based on the user’s choice, the tool would

automatically mine user reviews and commits from their respective data sources and systematically analyze

compatibility requirements and fixes from them.

As part of this thesis, we have also surveyed with mobile app developers and discussed different aspects

related to compatibility for mobile apps. The developers have stressed the importance of identifying and

fixing app incompatibilities reported in user reviews, but have also expressed their inability to effectively do

so for lack of automated tools. They have also unanimously conveyed the need for an automated tool that

would facilitate this process.

While we have discussed certain aspects related to the mobile app’s compatibility in our work, there are

other aspects that also needs to be investigated to form a comprehensive knowledge on this subject. In the

following section, we shall discuss some of these aspects that we intend to study in the future.

8.2 Future work

As part of our future work, we aim to extend, formalize, and generalize our approach to other non-functional

requirements. Although theoretically, the approach should apply to other non-functional requirements as

well, we can not claim for external validity as those have not been tested.
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Also, in this thesis, we have concentrated only on open source Android applications. However, a major

chunk of the Android applications is not open source and we could not empirically evaluate those apps in

this study. As such, we would like to study other Android apps to evaluate the behavior of the developers

for those apps. At the same time, this study has not referred to other non-android platforms. Since iOS

applications constitute the second-biggest share of mobile apps, it will be interesting to evaluate compatibility

and other non-functional requirements for iOS apps as well.

A major part of the work in this thesis is related to identifying compatibility fixes in commit messages.

But as described under the threats to the validity section, commit messages may not reflect the complete

details of changes done in the commit. As such, the analysis performed using commit messages only may

miss certain critical information. As part of our future work, it would be interesting to include other aspects

of the data apart from the commit messages only to identify the actual nature of the commit fixes.

And lastly, we have noticed that the existing techniques for linking individual reviews to commits did

not provide meaningful results for non-functional requirements. As such, we would also like to explore other

options to be able to map individual review to commits and explicitly check which reviews have been acted

upon and which all have been ignored.
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Vetrò, Tayana Conte, M-T Christiansson, Desmond Greer, Casper Lassenius, et al. Naming the pain in

requirements engineering. Empirical software engineering, 22(5):2298–2338, 2017.

[24] Salisu Garba, Babangida Isyaku, and Mujahid Abdullahi. DATA-DRIVEN MODEL FOR NON-

FUNCTIONAL REQUIREMENTS IN MOBILE APPLICATION DEVELOPMENT.

[25] Martin Glinz. On non-functional requirements. In 15th IEEE Requirements Engineering Conf. (RE

2007), pages 21–26. IEEE, 2007.

[26] John A Gosden. Software compatibility: what was promised, what we have, what we need. In Proceedings

of the December 9-11, 1968, fall joint computer conference, part I, pages 81–87, 1968.

[27] Xiaodong Gu and Sunghun Kim. What Parts of Your Apps are Loved by Users?(T). In 2015 30th

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 760–770. IEEE,

2015.

[28] Emitza Guzman, Mohamed Ibrahim, and Martin Glinz. A little bird told me: Mining tweets for require-

ments and software evolution. In 2017 IEEE 25th International Requirements Engineering Conference

(RE), pages 11–20. IEEE, 2017.
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[81] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén.

Experimentation in software engineering. Springer Science & Business Media, 2012.

[82] Hyrum K Wright, Miryung Kim, and Dewayne E Perry. Validity concerns in software engineering

research. In Proceedings of the FSE/SDP workshop on Future of software engineering research, pages

411–414, 2010.

[83] Liang Yu, Emil Alégroth, Panagiota Chatzipetrou, and Tony Gorschek. Utilising CI environment for

efficient and effective testing of NFRs. Information and Software Technology, 117:106199, 2020.

[84] Fatima Zahra, Azham Hussain, and Haslina Mohd. Usability evaluation of mobile applications; where

do we stand? In AIP Conference Proceedings, volume 1891, page 020056. AIP Publishing LLC, 2017.

[85] Thomas Zimmermann. Card-sorting: From text to themes. In Perspectives on Data Science for Software

Engineering, pages 137–141. Elsevier, 2016.

[86] Jie Zou, Ling Xu, Weikang Guo, Meng Yan, Dan Yang, and Xiaohong Zhang. Which non-functional

requirements do developers focus on? an empirical study on stack overflow using topic analysis. In 2015

IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 446–449. IEEE, 2015.

98



Appendix A

Categories of mobile apps

App Category Count of apps

Tools 90

Productivity 39

Communication 31

Games 22

Books & Reference 19

Social 13

Finance; Music & Audio; Personalization 12 * 3

Video Players & Editors 9

News & Magazines 8

Maps & Navigation; Travel & Local 7 * 2

Health & Fitness 6

Education; Photography 5 * 2

Entertainment; Shopping 3 * 2

Business; Comics; Lifestyle; Sports; Weather 1 * 5

Table A.1: App Categories
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Appendix B

List of mobile apps

Table B.1: List of 308 apps analyzed in our study

App Name Category Rating # Commits # Reviews

And Bible Books & Reference 4.6 1619 5044

APV PDF Viewer Books & Reference - 1200 293

Atarashii! Books & Reference - 410 1983

BookWorm Books & Reference - 100 510

Cool Reader Books & Reference 4.3 7483 4356

FBReader: Favorite Book

Reader

Books & Reference 4.4 7814 7673

Google I/O 2019 Books & Reference 4.4 1100 1764

Kiwix, Wikipedia offline Books & Reference 4.4 2120 3516

Librera PRO - eBook and PDF

Reader (no Ads!)

Books & Reference 4.5 456 3426

MHGU Database Books & Reference 4.8 1291 585

Offline Survival Manual Books & Reference 4.6 6725 386

Pathfinder Open Reference Books & Reference 4.8 1838 220

Poet Assistant (English) Books & Reference 4.7 787 802

QuickDic restored Books & Reference 4.6 129 688

Simple Dilbert Books & Reference - 132 480
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App Name Category Rating # Commits # Reviews

Sky Map Books & Reference 4.2 18893 330

Wikipedia Books & Reference 4.6 19977 7952

WikipOff Books & Reference - 150 416

Wiktionary Books & Reference - 351 1218

Wire - Secure Messenger Business 3.5 4145 3943

Easy xkcd Comics 4.7 194 730

/u/app Communication 4.7 183 226

Riot.im Communication 3.8 245 6827

APG Communication - 499 3775

ConnectBot Communication 4.4 5009 1488

FairEmail - open source, pri-

vacy oriented email

Communication 4.7 674 12421

Firefox Browser: fast, private &

safe web browser

Communication 4.4 19999 6727

Firefox Klar: The privacy

browser

Communication 4.1 131 2596

GTalkSMS Communication - 111 1118

Jitsi Meet Communication 3.3 1062 6523

K-9 Mail Communication 3.9 15483 8071

Lightning Browser Plus - Web

Browser

Communication 3.9 464 1852

OpenConnect Communication - 434 987

OpenKeychain: Easy PGP Communication 4.2 583 6216

OpenVPN for Android Communication 4.1 4078 1600

Plumble - Mumble VOIP Communication 4 268 378

QKSMS Communication 4.3 4343 2113

RDP Remote Desktop

aFreeRDP

Communication 3.9 123 10912

Rocket.Chat Communication 4.3 769 3154

Signal Private Messenger Communication 4.5 20000 5368

Sipdroid Communication 3.1 1826 302
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App Name Category Rating # Commits # Reviews

SMS Popup Communication - 10884 297

Telegram Communication 4.4 20000 331

Telegram Communication 4.4 20000 370

Tint Browser Communication - 210 233

Tutanota - Free Secure Email &

Calendar App

Communication 4.2 989 4667

VoIP.ms SMS Communication 4.4 232 386

VX ConnectBot Communication 3.9 252 746

Weechat Android Communication 3.9 133 929

Xabber Communication 4.1 1254 4023

Yaaic Communication - 463 1056

yaxim - XMPP/Jabber client Communication 4 118 1490

AnkiDroid Flashcards Education 4.5 6524 7551

AnyMemo: Flash Card Study Education 4.4 248 1817

phyphox Education 4.6 307 654

PSLab Education 4.7 288 911

Stepik: best online courses Education 4.8 1388 7726

Moonlight Game Streaming Entertainment 4.3 1798 2183

Reicast - Dreamcast emulator Entertainment 3.2 5317 3291

SUSI.AI Entertainment 4.1 115 970

Bankdroid Finance - 433 1054

Bitcoin Wallet Finance 4 3319 3495

Dash Wallet Finance 4 206 3297

GnuCash Finance 4.5 1338 1354

Green: Bitcoin Wallet Finance 4.2 151 786

GreenAddress.It Finance - 114 345

Mileage Finance 3.4 2037 442

Ministocks - Stocks Widget Finance 4.1 1082 259

Money Manager Ex Finance - 617 4091

My Expenses Finance 4.6 523 7749

Smart Receipts Plus Finance 4.7 430 2166
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App Name Category Rating # Commits # Reviews

Stocks Tracker Widget (open-

source)

Finance 4.6 565 456

Andor’s Trail Games 4.2 3365 3420

BoardGameGeek Games - 606 4957

Chess Games 4.1 552 289

Client for Pretend You’re

Xyzzy (open source)

Games 4.3 182 722

Dolphin Emulator Games 3.9 9364 24740

DroidFish Chess Games 4.6 2362 964

Freebloks 3D Games 4.5 704 1219

Hex Games 3.9 145 344

MH4U Database Games - 1141 465

Mindustry Games 4.5 5715 6478

Minetest Games 3.5 786 8491

Nounours and friends Games - 103 401

OpenMicroWave (OMW)

Nightly

Games - 319 812

OpenSudoku Games 4.3 1392 239

PPSSPP - PSP emulator Games 4.3 17880 21201

Scid on the go Games 4.4 158 327

ScummVM Games 4.1 1019 96692

Shattered Pixel Dungeon:

Roguelike Dungeon Crawler

Games 4.8 3828 3740

Simon Tatham’s Puzzles Games 4.7 1570 3337

Simple Solitaire Collection Games 4.5 206 766

SuperTuxKart Games 4.2 537 18855

Unciv Games 4.5 2445 3506

Dr. Greger’s Daily Dozen Health & Fitness 4.9 2244 553

openScale Health & Fitness - 126 1602

Pedometer Health & Fitness 3.8 459 404

Plees Tracker Health & Fitness - 440 217
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App Name Category Rating # Commits # Reviews

RunnerUp Health & Fitness - 129 2278

Zen! Health & Fitness 4.7 128 240

Aelf - Bible et lectures du jour Lifestyle 4.7 127 668

A2DP Volume Maps & Navigation 4 274 330

Androzic Maps & Navigation - 127 723

BART Runner Maps & Navigation 4.4 474 210

CycleStreets journey planner Maps & Navigation 3 288 1513

GPSTest Maps & Navigation - 189 660

Navit Maps & Navigation 2.8 235 7547

RMaps Maps & Navigation - 604 638

AntennaPod Music & Audio 4.7 5074 4903

Car Cast Podcast Player Music & Audio 4.4 474 246

Clementine Remote Music & Audio 4 404 718

DSub for Subsonic Music & Audio 3.9 624 3559

Phonograph Music Player Music & Audio 4.1 7423 1458

QuickLyric - Instant Lyrics Music & Audio 4.3 6409 955

RadioDroid 2 Music & Audio 4.6 110 833

Simple Scrobbler Music & Audio 3.3 2513 653

Squeezer Music & Audio 4.2 493 1519

Vanilla Music Music & Audio 4.3 653 1251

Vinyl Music Player Music & Audio 4.2 168 1479

Voice Audiobook Player Music & Audio 4.3 1551 3825

Diode for Reddit News & Magazines 4 291 935

Flym News Reader News & Magazines 4.4 132 1281

HN - Hacker News Reader News & Magazines 4.3 247 254

Materialistic - Hacker News News & Magazines 4.3 631 1178

NewsBlur News & Magazines 3.7 488 11105

Reddinator Widget for Reddit News & Magazines 4.3 139 362

RedReader News & Magazines 4.6 911 1265

Slide for Reddit News & Magazines 4.2 1767 3089

AcDisplay Personalization 3.6 8301 1060
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App Name Category Rating # Commits # Reviews

ADW Launcher 2 Personalization 4.3 18782 923

DashClock Widget Personalization - 6688 239

Default Dark Theme for Sub-

stratum

Personalization 2.7 306 302

KISS Launcher Personalization 4.4 756 3101

Lawnchair 2 Personalization 4.4 4812 8686

Lawnchair 2 Personalization 4.4 4812 6391

MultiPicture Live Wallpaper

dn

Personalization 3.9 177 250

Muzei Live Wallpaper Personalization 4.2 5248 2036

Rootless Launcher Personalization 4.3 4059 6095

Status Personalization 4 3452 570

Theia Icon Theme Personalization - 20000 238

Camera Roll - Gallery Photography 4.1 742 367

Focal Photography - 2655 463

FreeDCam Photography 3.8 297 5718

Simple Camera - Capture pho-

tos & videos easily

Photography 3.9 400 1010

Wikimedia Commons Photography 4 125 4023

BiglyBT, Torrent Downloader

& Remote Control

Productivity 4.4 178 1477

Book Catalogue Productivity 4.1 1245 1084

CUPS Printing Productivity 3.7 102 238

Diary Productivity - 19507 552

DigitalOcean Swimmer An-

droid

Productivity 4.3 193 249

Document Viewer: PDF,

DjVu,...

Productivity 4.1 715 1665

Event Sync for Facebook Productivity 2.1 356 384

ForkHub for GitHub Productivity 4.2 160 2803

GitHub Productivity - 984 3121
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Habitica: Gamify Your Tasks Productivity 4.3 4095 2821

Hacker’s Keyboard Productivity 4.2 7982 1244

LibreOffice and OpenOffice

document viewer

Productivity 3.9 2521 4740

Loop Habit Tracker Productivity 4.7 7296 1284

Markor: Markdown Editor -

todo.txt - Notes Offline

Productivity 4.7 503 1292

Minimalist Pomodoro Timer

(Goodtime)

Productivity 4.6 1168 856

Nextcloud dev Productivity - 729 11851

NoNonsense Notes Productivity - 523 1385

OctoDroid for GitHub Productivity 4.5 354 2578

Omni Notes FOSS Productivity - 629 2808

Open Explorer Beta Productivity 3.9 291 1441

OpenTasks Productivity 4.4 284 671

Orgzly: Notes & To-Do Lists Productivity 4.7 483 1821

ownCloud Productivity 4.1 1493 6922

Password Store (legacy) Productivity 4.4 124 1136

PDF CONVERTER: Files to

PDF

Productivity 4.3 271 582

Persian Calendar Productivity 4.5 4645 2852

PinDroid Productivity 3.8 158 900

Scarlet Notes Productivity 4.2 177 626

Seafile Productivity 4 192 1974

SealNote Secure Encrypted

Note

Productivity 4.2 970 283

SGit Productivity - 221 302

Simple Alarm Clock Free No

Ads

Productivity 4.1 1010 1039

Slim Launcher - Fewer distrac-

tions, more life

Productivity 4.1 460 297
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Standard Notes Productivity 4 482 598

Syncthing Productivity 4.5 790 1673

Tasks.org: Open-source To-Do

Lists & Reminders

Productivity 4.7 1266 8573

Termux:API Productivity 4.4 498 262

WordPress Productivity 4.4 20000 35032

World Scribe Productivity 4.2 253 529

Barcode Scanner Shopping 4.1 20000 3443

Loyalty Card Keychain Shopping 4.6 103 393

OI Shopping list Shopping 4.1 2345 469

BombusMod Social 3.9 108 1366

Chanu Social - 556 1243

Clover Social - 1131 1218

Frost for Facebook Social - 167 815

nan Social - 391 3117

surespot encrypted messenger Social 4.3 317 2258

surespot encrypted messenger Social 4.3 317 1778

Talon for Twitter Social 4.3 4762 480

Tinfoil for Facebook Social - 2085 295

Tusky for Mastodon Social 3.8 703 2096

Tweet Lanes Social 2.9 1491 612

Twidere for Twitter Social 4 2449 2957

Twidere for Twitter Social 4 2448 2957

XCSoar Sports 4.8 190 34633

AdAway Tools - 2774 1885

AdGuard: Content Blocker for

Samsung and Yandex

Tools 4.4 3169 345

Aegis Authenticator - Two Fac-

tor (2FA) app

Tools 4.5 135 582

AFWall+ (Android Firewall +) Tools 4.1 1171 1522

Alarm Klock Tools 3.8 1254 622

107



App Name Category Rating # Commits # Reviews

Amaze File Manager Tools 3.8 1767 2957

Andlytics Tools - 465 947

andOTP - Android OTP Au-

thenticator

Tools 4.6 144 956

AnySoftKeyboard Tools 4 3469 4960

Autostarts Tools 3.3 609 431

Battery Charge Limit [ROOT] Tools 4.2 378 223

BatteryBot Battery Indicator Tools 4.3 6387 200

BatteryBot Pro Tools 4.4 1457 954

Better Wifi On/Off Tools 4.1 124 273

Cache Cleaner Tools 3.8 668 349

Calculator Tools 4.3 2814 959

Calculator ++ Tools 4.8 2236 2190

Calendar Notifications Tools - 255 921

CatLog - Logcat Reader! Tools 3.7 606 336

Counter Tools 4.5 478 268

cSploit Tools - 8737 1210

CurrentWidget: Battery Moni-

tor

Tools 3.6 1178 218

Device Frame Generator Tools 3.9 292 366

DigiLux: Fingerprint Gestures

for Phone Brightness

Tools 3.4 144 354

dreamDroid Tools 4.2 435 1416

DuckDuckGo Privacy Browser Tools 4.7 20000 784

Equate Tools 4.8 141 402

EtchDroid [NO ROOT] - Write

ISOs and DMGs to USB

Tools 4.2 688 274

FareBot Tools 3.5 547 256

Hangar - Smart app shortcuts Tools 4.1 306 267

J2ME Loader Tools 4.3 1793 1212
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Keepass2Android Password

Safe

Tools 4.6 3779 2443

KeePassDroid Tools 4.1 4963 1085

KeepScore - Score Keeper Tools 4 336 499

Kernel Adiutor Tools - 4702 1208

Keyboard/Button Mapper Tools 4.1 162 1067

MIFARE Classic Tool - MCT Tools 4.1 109 640

ML Manager: APK Extractor Tools 4.2 166 295

Moscow Wi-Fi autologin Tools - 313 1090

Mozilla Stumbler Tools 3.9 181 1799

MTG Familiar Tools 4.5 2836 1591

NetGuard - no-root firewall Tools 4.2 2898 3347

Network Discovery Tools - 387 439

Network Log Tools 3.7 167 469

OI File Manager Tools - 4228 449

OI Safe Tools 4 818 233

OONI Probe Tools 4.2 221 1179

Open Link With Tools - 410 829

OS Monitor Tools 4.5 1402 333

Overchan (fork) Tools - 160 1113

Pocket Paint: draw and edit! Tools 3.7 500 2386

Port Authority Tools - 138 904

Prayer Times (Namaz Vakti) Tools 4.2 130 422

Primitive FTPd Tools 4.5 120 661

qBittorrent Controller Pro Tools 4.2 139 825

RasPi Check Tools 4.4 202 551

Recurrence Tools - 152 231

SAI Tools - 519 608

Screen Notifications Tools - 642 241

Screen Stream over HTTP Tools 3.9 813 347
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SecondScreen - better screen

mirroring for Android

Tools 3.9 267 326

Shader Editor Tools 4.6 110 546

Simple App Launcher - Launch

apps easily & quickly

Tools 4.3 108 378

Simple Calendar Pro - Events

& Reminders Manager

Tools 4.8 1054 3487

Simple Contacts Pro - Manage

your contacts easily

Tools 4.3 171 1658

Simple File Manager Pro -

Manage files easy & fast

Tools 4.5 248 1232

Simple Flashlight - Bright dis-

play & stroboscope

Tools 4.5 131 424

Simple Gallery Pro - Photo

Manager & Editor

Tools 4.8 7729 5302

Simple Music Player - Play au-

dio files easily

Tools 4.2 586 1048

Simple Notes Pro: To-do list or-

ganizer and planner

Tools 4.8 186 1035

Simple Thank You - Thanks for

supporting us :)

Tools 4.7 453 223

SMS Backup+ Tools 2.8 15529 1642

Superuser Tools - 123 570

Superuser Tools - 3471 482

Taskbar - PC-style productivity

for Android

Tools 4.1 857 1235

Terminal Emulator for Android Tools 4.3 7408 879

Termux Tools 4.4 9071 651

Todo Agenda for Android 4 -

7.0

Tools - 1634 645

Traccar Client Tools 4.3 111 337
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UniPatcher Tools 3.9 962 217

Unit Converter Ultimate Tools 4.5 3351 332

UserLAnd Tools 4.3 613 876

Vespucci - an OSM Editor Tools 4.1 117 4246

VIMTouch Tools - 313 344

VPN Hotspot - tethering/Wi-

Fi repeater

Tools 4.3 334 955

WiFi Analyzer (open-source) Tools 4.2 1548 1327

WiFi Automatic Tools 4.2 1195 252

Wifi Fixer Tools 3.9 2506 1255

WiGLE WiFi Wardriving Tools 4.4 499 1410

Yubico Authenticator Tools 3.3 181 394

FixMyStreet Travel & Local 3.5 135 1039

GPS Logger for Android Travel & Local 4.2 693 1478

OsmAnd+ - Offline Maps,

Travel & Navigation

Travel & Local 4.8 1843 53347

PassAndroid Passbook viewer Travel & Local 4.4 885 1642

Tram Hunter Travel & Local 4.4 515 275

WarmShowers Travel & Local 2.8 142 682

World Clock & Weather Wid-

get

Travel & Local 4.4 494 502

Kodi Video Players & Editors 4.2 20000 42981

Kore, Official Remote for Kodi Video Players & Editors 4.3 2177 688

Markers Video Players & Editors 4.1 847 213

MPDroid Video Players & Editors 4.2 509 2412

Mythmote Video Players & Editors 4.1 229 330

ObscuraCam Video Players & Editors 2 322 571

Transdroid Video Players & Editors - 705 617

VLC for Android Video Players & Editors 4.4 20000 13691

XBMC Remote Video Players & Editors - 2681 897

Blitzortung Lightning Monitor Weather 3.5 423 927
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