
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2021-04-16

Deadline-aware Bulk Transfer

Scheduling in Best-effort SD-WANs

Hosseini Bidi, Seyed Arshia

Hosseini Bidi, S. A. (2021). Deadline-aware Bulk Transfer Scheduling in Best-effort SD-WANs

(Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.

http://hdl.handle.net/1880/113278

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Deadline-aware Bulk Transfer Scheduling in Best-effort SD-WANs

by

Seyed Arshia Hosseini Bidi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

APRIL, 2021

© Seyed Arshia Hosseini Bidi 2021

Abstract

Wide area networks (WANs) that connect geo-distributed datacenters enable online ap-

plications to provide a diversity of services to their users in various locations throughout the

world. Inter-datacenter (inter-DC) traffic constitutes a significant portion of today’s world-

wide traffic while utilizing dedicated lines that are in different networks than the Internet,

making it a very expensive communication. Consequently, inter-DC network providers are

keen to minimize their expenses while guaranteeing the quality of service to their customers.

As a result, scheduling available resources is of paramount importance to increase the efficacy

of these networks for both their providers and customers. In this regard, software-defined

wide area networks (SD-WAN) seem to be a promising solution to mitigate legacy WAN’s

restrictions such as lack of a global view. While conventional multi-protocol label switching

(MPLS) tunnelling has proven to be a practical approach to guarantee performance, its sig-

nificant service price can be a drawback. Utilizing Internet best-effort paths is a cheap and

viable alternative. However, to utilize these paths, we have to take their capacity fluctua-

tions into account to avoid over-allocation. In this thesis, we first characterize and estimate

the fluctuations in short and long periods using statistical analysis and machine learning.

Next, we take the estimated capacities into account and consider the problem of scheduling

bulk transfer requests over best-effort SD-WANs to maximize the gained profit from suc-

cessful transmissions. Furthermore, we propose an approximate algorithm with a significant

computational advantage over our exact algorithm with an approximation ratio that only

depends on the number of overlapping requests with the same profit to bandwidth ratio. Fi-

nally, we provide a thorough mathematical analysis of the approximate algorithm, as well as

simulation and experimental results to evaluate our proposed algorithm’s performance. The

results show that our algorithm can improve the inter-DC provider’s profit by an average of

60% while reducing ISP service costs by an average of 15%.

ii

Preface

This thesis is an original work by the author and parts of this research will be published

[A. Hosseini, M. Dolati and M. Ghaderi, ”Bulk Transfer Scheduling with Deadline in Best-

Effort SD-WANs”, in Proc. IFIP/IEEE International Symposium on Integrated Network

Management (IM), Bordeaux, France, May 2021].

iii

Acknowledgements

I would like to express my gratitude to Prof. M. Ghaderi for the guidance and advice he

has provided throughout my time as his student. I would also like to thank my family and

friends who supported me along the way.

iv

Table of Contents

Abstract ii

Preface iii

Acknowledgements iv

Table of Contents vi

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Objective . 3

1.2.1 Bandwidth Prediction for Internet Tunnels 3
1.2.2 Scheduling Bulk Transfers over Best-effort SD-WANs 4

1.3 Thesis Contributions . 5
1.4 Thesis Organization . 6

2 Background and Related Work 8
2.1 Bandwidth Prediction . 8

2.1.1 Statistical Analysis . 8
2.1.2 Machine Learning . 10

2.2 Resource Scheduling in WANs . 14
2.3 Software Defined Networks . 15
2.4 Mathematical Preliminaries . 15
2.5 Software Tools . 19
2.6 Related Work . 20

2.6.1 Bandwidth Prediction . 20
2.6.2 Resource Scheduling in WANs . 24

3 Bandwidth Prediction 33
3.1 Bandwidth Prediction Problem . 33
3.2 RNN Model . 34
3.3 Data Collection . 35

v

3.4 Evaluation . 35
3.4.1 Short-term Predictability . 35
3.4.2 Long-term Predictability . 36

4 Resource Scheduling Problem Formulation 47
4.1 System Model . 47

4.1.1 Demand Model . 47
4.1.2 Network Model . 48
4.1.3 Capacity Fluctuation Model . 49

4.2 Formulation . 49
4.2.1 Exact Algorithm . 55
4.2.2 Approximate Algorithm . 56

5 Analysis 59
5.1 Theoretical Analysis . 59
5.2 Experimental Analysis . 61

5.2.1 Simulation Experiments . 62
5.2.2 Sensitivity Analysis . 70
5.2.3 Mininet Experiments . 73

6 Conclusion 79
6.1 Thesis Summary . 79
6.2 Future Research Directions . 80

Bibliography 82

vi

List of Figures

2.1 Structure of a neuron. 12
2.2 An LSTM RNN for time series prediction. 13
2.3 Architecture of an SDN network [54]. 16

3.1 The sliding window method to predict the bandwidth. 34
3.2 CDF of length of variability sequence. 38
3.3 Moving average with confidence band. 39
3.4 Predictions using the previously trained model. 46

5.1 Effect of requests on bandwidth allocation of each other. 60
5.2 Profit of different algorithms. 64
5.3 Run-time of different algorithms. 64
5.4 Effect of number of paths in path deviation model. 65
5.5 Effect of number of paths in time deviation model. 66
5.6 Effect of number of requests in the path deviation model. 66
5.7 Effect of number of requests in the time deviation model. 67
5.8 Effect of request deadline in path deviation model. 67
5.9 Effect of request deadline in time deviation model. 68
5.10 Effect of request demand in the path deviation model. 69
5.11 Effect of request demand in the time deviation model. 70
5.12 Effect of maximum capacity deviation from average in path deviation model. 70
5.13 Effect of maximum capacity deviation from average in time deviation model. 71
5.14 Effect of number of fluctuations per time window. 71
5.15 Effect of number of fluctuations per path per time window. 72
5.16 Topology of the experimental network. 75
5.17 Path deviation experimental results. 76
5.18 Time deviation experimental results. 77

vii

List of Tables

2.1 Works in SD-WANs. 32

3.1 Scores with a window size of 1. 40
3.2 Scores with a window size of 3. 41
3.3 Scores with a window size of 5. 41
3.4 Scores with a window size of 9. 42
3.5 Scores with a window size of 179. 42
3.6 Mean squared error for different window sizes in tuning experiments. 43
3.7 Mean squared error in the prediction experiments. 44

4.1 Important Mathematical Notations . 50

5.1 Effect of maximum capacity deviation from average 72
5.2 Effect of number of fluctuations per timeslot. 73
5.3 Effect of number of fluctuations per path per transmission period. 73

viii

Chapter 1

Introduction

1.1 Motivation

Today, cloud service providers establish multiple datacenters (DCs) in a geographically dis-

tributed manner to improve their performance, scalability, and robustness, and provide ser-

vices of high quality to their customers [41, 36, 45, 77]. These geo-distributed DCs are

inter-connected through a Wide Area Network (WAN) that constitutes a significant portion

of cloud service providers’ yearly budgets. On the one hand, legacy WANs maintain a low

average utilization to account for sudden high traffic bursts and mitigate packet loss. On the

other hand, measurement studies show rapid growth in the inter-DC traffic. Thus, inter-DC

WANs are assets whose costs sometimes exceed intra-DC networks [77, 69]. Furthermore,

legacy WAN technologies lack a global view of the network; therefore, they perform re-

source allocation in a distributed manner, which leads to a system that performs globally

sub-optimal.

Shortcomings of legacy WANs, such as lack of a global view and poor efficiency, moti-

vated companies such as Google, Microsoft, and Facebook to migrate to Software Defined

WANs (SD-WANS). SDN decouples the control logic (i.e., control plane) from the forward-

ing logic (i.e., data plane) and moves it to a centralized entity named the controller. This

1

controller enables a global view of the network and simpler management using application

programmable interfaces (APIs). Centralized resource allocation and the global view allow

us to schedule network traffic more efficiently and avoid under-provisioning.

Cloud service providers are interested in the characteristics of the SD-WAN traffic in

order to be able to manage their resources more efficiently and maximize their revenue.

Bulk transfer requests, which constitute a significant portion of the SD-WAN traffic, are

usually associated with a deadline. Cloud service providers can make a profit by successfully

submitting bulk transfers based on a service level agreement (SLA). The SLA generally

entails the complete submission of a transfer before a specified deadline, which obligates the

cloud providers to schedule the bulk transfers on time and space (i.e., tunnels or paths) due

to the resource limitations to meet the SLA requirements.

SD-WANs support a variety of connection types such as MPLS tunnels, leased lines, and

the Internet. Even though cloud providers were able to mitigate some of the shortcomings of

legacy WANs by leveraging SDN, using MPLS tunnels and dedicated lines is quite costly [36].

A cost-efficient alternative to MPLS tunneling is utilizing Internet best-effort tunnels. These

tunnels, however, suffer from capacity fluctuations due to various reasons such as random

cross-traffic, ISP traffic engineering, and link failure. As a result, Internet tunnels are not a

desirable option for traffic that demands guaranteed service (e.g., bulk transfers). To be able

to utilize these best-effort tunnels, we have to take into account the capacity fluctuations to

avoid overloading the tunnels and losing data.

Scheduling bulk transfers on a network with capacity fluctuations is an optimization prob-

lem with uncertainty. State-of-the-art works have used stochastic programming and robust

optimization to address programming problems that involve uncertainty. In such problems,

some or all parameters are uncertain. Stochastic programming requires that we know the

random variable’s distribution, which is hardly practical due to the extensive number of

factors that affect the bandwidth values. In contrast, robust optimization relies solely on

a range of estimations, namely uncertainty sets. This work argues that as opposed to the

2

complete distribution of the capacities, the range of their fluctuations (i.e., the uncertainty

sets) is predictable in short periods using statistical analysis and machine learning.

Many works in the literature have focused on traffic scheduling and resource allocation

in SD-WANs [61, 60, 36, 41, 42, 52, 23, 45]. These works have studied different aspects

of SD-WANs and have addressed various pertaining problems such as point-to-multipoint

scheduling [23, 60, 61], store-and-forward scheduling [29, 48, 71], cost reduction [30, 51],

deadline guarantee [52, 77], and fairness [36, 41]. However, state-of-the-art works have not

considered utilizing best-effort tunnels to achieve MPLS-like performance while reducing

operational costs in an SD-WAN. In this thesis, we first show that the bandwidth of the

best-effort tunnels has a predictable behaviour. Second, we propose to use the Internet best-

effort tunnels to emulate MPLS behaviour, taking into account the capacity fluctuations

that may cause overloading and loss of data.

1.2 Thesis Objective

In this thesis, the first objective is to utilize statistical analysis and machine learning to

demonstrate that the best-effort Internet tunnels’ capacity shows predictable characteristics.

Predicting Internet tunnels’ capacity is of significant importance when scheduling transfers

because unlike dedicated lines, their capacities are not fixed and fluctuate over time. Our

second objective is to formulate the problem of scheduling bulk transfers over best-effort

SD-WANs as a robust optimization problem and devise a scheduling scheme that provides

a deadline guarantee for bulk transfer requests by considering the capacity predictions.

1.2.1 Bandwidth Prediction for Internet Tunnels

Bandwidth prediction is crucial to scheduling bulk transfers on a network whose capacity

fluctuates. Numerous works focused on predicting computer networks’ bandwidth using

methods such as statistical analysis and neural networks. Even though statistical analysis

3

methods provide somewhat useful predictions, they lack the capability to remember val-

ues over arbitrary intervals, which makes them unable to deal with systematic deviations

and sudden changes caused by random cross traffic, link failure and ISP traffic engineer-

ing [47]. Consequently, machine learning seems to be a promising approach to overcome the

shortcomings of conventional prediction methods. State-of-the-art works demonstrate that

a shallow neural network is sufficient to produce accurate predictions on networks’ capac-

ity [47]. With respect to bandwidth prediction, the following questions arise:“How variable is

the bandwidth capacity of the Internet best-effort tunnels?” and “Are we able to predict the

capacity of these tunnels?”. In this thesis, we utilize neural networks to study the behaviour

of Internet tunnels, determine their variability, and design a model to predict the capacity

of these paths in short periods of time. These predictions allow us to make decisions some

time into the future.

1.2.2 Scheduling Bulk Transfers over Best-effort SD-WANs

There have been numerous works in the literature concerning the scheduling of bulk transfers

over WANs. Although some of these works have considered demand uncertainty, none of

them have considered bandwidth capacity uncertainty and using Internet best-effort tunnels

as the underlying network. In order to provide guaranteed delivery for bulk transfers with a

deadline, the main question is: “How can we provide guaranteed delivery for bulk transfers

with deadlines over best-effort tunnels?”. In this thesis, we propose to use multiple best-

effort Internet tunnels to schedule bulk transfer requests over an SD-WAN, and we formulate

the problem as a robust optimization problem. In this way, we can avoid saving a headroom

bandwidth to account for fluctuations, and we can guarantee an acceptable performance

without paying a substantial cost for the underlying network.

4

1.3 Thesis Contributions

In this section we briefly summarize the contributions of this research thesis including the

formulation, solution, and analysis of the bulk transfer scheduling over best-effort tunnels

problem, and our bandwidth prediction model using neural networks.

• Problem Formulation. We formulate the problem of scheduling bulk transfer re-

quests on best-effort Internet tunnels considering deadlines and the bandwidth capacity

constraints to maximize the profit gained by successfully transmitting each request.

• Bandwidth Prediction Model. We set up a long short-term memory (LSTM) neural

network which is used to learn order dependence in sequence prediction problems. We

then train the network with data gathered from our own measurements. Finally, we

utilize it to design our bandwidth prediction model. Our test results demonstrate that

the capacity of best-effort tunnels is predictable in short periods.

• Uncertainty Modeling. By utilizing the bandwidth prediction data and considering

the minimum and the maximum variations, We model the bandwidth capacity fluc-

tuations using cardinality-constraint sets [9]. Furthermore, we rewrite our problem

formulation as a robust optimization problem to consider capacity fluctuations.

• Bulk Transfer Scheduling with deadlines Over Best-effort Tunnels. We calcu-

late the dual of our robust formulation in order to preserve the linearity of the problem

and make it solvable by off-the-shelf solvers. However, it is still infeasible to solve large

instances of our problem using this formulation due to time and computational com-

plexity. Consequently, we design an approximate algorithm using the iterative-rounding

technique, which solves a relaxed version of the problem.

• Simulations and Mininet Experiments. We present extensive model-driven simula-

tions to demonstrate our algorithm’s performance under different conditions against two

5

baseline algorithms, namely Average Algorithm and Effective Bandwidth Algorithm [46].

Furthermore, we conduct a number of experiments in the Mininet network emulator to

verify our algorithm’s performance results in a realistic network environment.

Parts of the research conducted in this thesis will be published in the proceedings of

IFIP/IEEE International Symposium on Integrated Network Management (IM 2021). In

this respect, the findings and the results regarding the scheduling of bulk transfers over

best-effort tunnels will be published in the conference proceedings [38] and presented in the

conference venue in May 2021.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 1 discusses the motivation for our research, this thesis’s objective, and a sum-

mary of the contributions.

• Chapter 2 provides the required background in Bandwidth Prediction and Resource

Scheduling in WANs, and mathematical and software tools utilized in this study. Fur-

thermore, it provides a brief review of Bandwidth Prediction using machine learning and

statistical approaches. Then, it provides a thorough review of the Resource Scheduling

in WANs state-of-the-art, including legacy WANs and SD-WANs.

• Chapter 3 defines our bandwidth prediction problem. Then it describes the methods

with which we collected our data, created the neural network, and made predictions for

bandwidth capacities. Finally, it demonstrates the obtained results.

• Chapter 4 defines our resource scheduling problem in best-effort SD-WANs, and pro-

poses a robust formulation of the problem. Then, it proposes an approximate algorithm

that has a computational and run-time advantage over our exact method.

6

• Chapter 5, first, provides a theoretical analysis of our approximate algorithm. Then,

it provides the experimental analysis, which includes simulations and Mininet experi-

ments.

• Chapter 6 concludes the thesis by providing a summary of this research as well as its

possible future directions.

7

Chapter 2

Background and Related Work

2.1 Bandwidth Prediction

Bandwidth prediction is widely used for applications such as video streaming and voice over

IP to improve user experiences. The available bandwidth is predicted some time into the

future to allow the application to proactively decide the best level of service it is going to pro-

vide to the end-users. The bandwidth prediction problem has been traditionally addressed

using time series forecasting (TSF), which entails creating a model to find correlations be-

tween the past data and the future data. We can divide the bandwidth prediction methods

based on TSF into two main categories: 1) Statistical Analysis 2) Machine learning

2.1.1 Statistical Analysis

In this group of methods, algorithms such as moving average and simple linear regression is

utilized to predict future bandwidth based on the previous data.

Simple Linear Regression

Simple Linear Regression is a statistical method that allows us to study the relationship

between two continuous variables: the predictor and the response. Consider the model

8

function (2.1):

y = α + βx, (2.1)

which describes a line with slope β and y-intercept α. In this model, x is the predictor, and

y is the response. Linear regression is the relationship between the optimal α and β pair

that allows the prediction of y based on x with the lowest possible error. Error is defined as

the deviation of the predicted value of y from its real value. Various methods such as the

least-squares approach, can be applied to achieve a near-optimal pair [34, 19].

Moving Average

Another method based on statistical analysis for bandwidth prediction is the Auto Regressive

Integrated Moving Average (ARIMA). An ARIMA model is a form of regression analysis

that predicts future values by studying the previous values’ differences. An ARIMA model

constitutes the three following characteristics:

• Autoregression: In an autoregressive model, the output variable is determined by its

previous values as well as a stochastic term.

• Integrated: The model uses the differences between the data values rather than the

data itself to predict the future values.

• Moving Average: In a moving average model, the output variable is determined by a

stochastic term’s current and previous values.

Early models based on ARIMA were able to recognize the short-range dependency of

time series data (i.e., network traffic) [63, 4]. However, later studies demonstrated that

network traffic, in addition to short-term dependency, exhibits long-range dependency, which

makes ARIMA-based models unsuitable for network traffic and bandwidth prediction [49].

To account for short-range and long-range dependency of traffic data, the Fractional Auto

Regressive Integrated Moving Average (FARIMA) model was utilized by later works [66, 17].

9

Even though these simple algorithms work for the average case, their lack of adaptability

to sudden changes, anomalies, and systematic deviations make them a less preferable method

in environments with significant variability.

2.1.2 Machine Learning

Machine Learning (ML) means utilizing algorithms that improve automatically over time.

It consists in using statistics to find patterns in substantial amounts of data [57]. Today,

ML empowers many platforms such as Facebook, Amazon, and Google to provide a better

experience to their users by learning their habits and preferences. ML-based bandwidth

prediction methods have come to prominence due to their flexible ability to address the

issues of traditional TSF methods. Bandwidth prediction with ML is achieved by utilizing

Neural Networks (NNs).

Neural Networks

In Machine Learning, NNs are a set of algorithms modeling the human brain, which posses

the ability to be trained to find patterns in raw data [37]. Neural Networks are able to cluster

or classify data and make correlations between previous and future events, and eventually,

make predictions about the output of a system. A number of works in the literature have

utilized neural networks for bandwidth prediction [47, 53, 13, 27, 80, 18] whose results are

shown to be promising.

An NN comprises simple computational units called neurons (i.e., nodes). A neuron

receives the inputs from multiple edges, performs a weighted sum according to the edge

weights, and applies a non-linear function called the activation function, which is depicted in

Fig. 2.1. Also, equation (2.2) shows the mathematical representation of a neuron, where x,

w, b, and f represent the input vector, weight vector, neuron bias, and activation function,

10

respectively.

f(b+
n∑
i=1

xiwi) (2.2)

The activation function can be one of the many non-linear functions such as sigmoid, tanh,

rectified linear units (ReLU), to name a few, which are defined by equations (2.3),(2.4), and

(2.5), respectively.

σ(z) =
1

1 + e−z
(2.3)

tanh(z) =
ez − e−z
ez + e−z

(2.4)

ReLU(z) = max (0, z) (2.5)

a(z) = z (2.6)

Furthermore, we apply the identity function shown in equation (2.6) for regression prob-

lems that deal with continuous values.

Long Short-Term Memory

In a neural network, all inputs and outputs are independent. Consequently, NNs are not

suitable to make predictions for data in which a dependency exists within a sequence. For

instance, predicting the next word in a sentence requires information regarding the previous

words. Recurrent Neural Networks (RNNs), however, utilize sequential information to make

predictions. In other words, in an RNN, the output is dependant on the previous predictions.

Due to architectural restrictions, recurrent neural networks have trouble maintaining a short-

term memory to make predictions for longer sequences of data. As a result, traditional RNNs

are rarely used for real-world problems. Long Short-Term Memory (LSTM) networks were

proposed to resolve the memory problem in traditional RNNs. They are a type of RNN

that is used to learn the order dependence in sequential prediction problems with longer

sequences, such as the word prediction for long paragraphs or the bandwidth prediction

problem. The architecture of an LSTM allows it to maintain its short-term memory for

11

x1

x2

xn

? f

w1

w2

wn

b

Figure 2.1: Structure of a neuron.

longer periods, making it very efficient in detecting temporal patters in sequential data [55].

As it is shown in Fig. 2.2, an LSTM network essentially consists of an input layer, several

hidden layers, and an output layer [33].

An LSTM unit is a combination of inter-connected simpler nodes. Work [35] introduces

the main components of an LSTM unit as follows:

• Constant error carousel (CEC): This component acts as the memory for past informa-

tion.

• Input Gate: This component protects the unit’s memory from irrelevant input.

• Output Gate: This component protects other units from interference by the information

stored in the memory of the unit.

Each of these components can represent a conventional artificial neuron since they apply

an activation function to the weighted sum of their inputs. These components also regulate

the flow of data between different units. However, conventional LSTM units with CEC

gates faced an issue under specific circumstances, which caused the memory unit to reach

saturation and perform as a memory-less unit. To address this issue, later works utilized a

more efficient model proposed by [33], which replaced CEC gates with forget gates. Forget

gates can learn to gradually decay the memory to zero once its contents are out of date.

12

Input
Layer H idden

Layers

Output
Layer

Forget
Gate

Input
Gate

Output
Gate

Self-Recurrant
Connection

Figure 2.2: An LSTM RNN for time series prediction.

Accuracy

The accuracy of a neural network model is the precision on which the neural network performs

concerning its objective. In the case of a time series prediction, such as the bandwidth

prediction problem, the accuracy shows how close the predicted bandwidth values are to

their real values some time into the future. In this thesis, we use the Root Mean Squared

Error (RMSE) as a metric for our model’s performance. In statistics, the MSE of a predictor

is equal to average of the squares of the errors (i.e., difference between the real values and

the predicted ones). Furthermore, the RMSE of a predictor is equal to the square root of its

MSE. In order to calculate the RMSE of a predictor for a vector of n samples, we use the

following equation:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2, (2.7)

where Y is the vector of observed values and Ŷ is the vector of predicted values.

13

2.2 Resource Scheduling in WANs

Today, with a rapid increase in the number of Internet-based applications and their users,

cloud, Internet, and content providers have established multiple geographically distributed

DCs (datacenters) worldwide to provide their customers with reliability, performance, and

scalability. The wide area network (WAN) that interconnects these DCs carries a significant

fraction of Internet traffic [36, 41]. The inter-DC WANs (Inter-dc WAN) are often a dedi-

cated network separate from the Internet, which, along with the high traffic volume, makes

it an expensive resource. Consequently, it is crucial for the providers of this network and its

customers to reduce its annual costs and fully utilize its potential [36, 41]. Inter-DC traffic

has certain characteristics such as a wide range of deadlines, transfer sizes, and resource

requirements. These characteristics enable operators to properly schedule the transfers to

improve the networks’ efficiency. Essentially, Inter-DC traffic falls into three groups based

on its characteristics [36]:

• Interactive: This type of traffic is high priority traffic that is bursty and small. An

example of such traffic is a user request transferred to a DC from another DC because

the information does not exist in the requester DC.

• Elastic: Elastic traffic consists of bulk transfers that demand a timely delivery that

ranges between a few minutes to a few hours. For instance, traffic of distributed com-

puting applications such as MapReduce is considered as elastic traffic.

• Background: Background traffic is the group of huge transfers with extended deadlines

or no deadline. Data replication between DCs for redundancy purposes is an example

of background traffic.

14

2.3 Software Defined Networks

Software Defined Networks (SDN) is a recent paradigm in computer networks that decouples

the control logic (i.e., control plane) from the forwarding logic (i.e., data plane) and moves

it to a centralized entity called a controller. The switches in this paradigm are simple boxes

that merely forward the traffic according to the rules set on them by the controller. In case a

new flow of traffic arrives, the switches forward the flow to the controller, and the controller

sets the relevant rules on the switches.

The decoupling of the control plane from the data plane provides a global view of the

network and allows simple network management using programmable APIs. The end-user

connects to the northbound APIs and applies configurations through the control plane. Fur-

thermore, the switches’ simplification enables the controller to program them using a simple

southbound API, regardless of their vendors. OpenFlow is the most prominent southbound

API and is widely used in the industry and academia.

In general, SDN seems to be a promising alternative to traditional decentralized networks

due to its simpler management and reduced costs. Over the past few years, in addition to

service providers such as Google and Microsoft, network equipment vendors such as Cisco

and Juniper have started to produce OpenFlow-compatible equipment.

Fig. 2.3 demonstrates the architecture of an SDN network with the OpenFlow protocol,

wherein the controller receives the network’s configuration from the end-user through the

northbound APIs. Furthermore, the controller applies the relevant rules on the switches

through the southbound APIs (e.g., OpenFlow).

2.4 Mathematical Preliminaries

Constrained Optimization. Constrained optimization is the process of finding the max-

imum or the minimum of an objective with respect to several variables that are subject

to at least one constraint. Equation 2.8 demonstrate the general form of a constrained

15

Control PlaneSDN Controller

Switch
D ata Plane

Applicat ions

SwitchSwitch

App App App

Nor thbound API

Southbound API

Figure 2.3: Architecture of an SDN network [54].

optimization problem:

min f(x),

subject to gi(x) = ci, for i = 1, ..., n Equality constraints

hj(x) ≥ dj, for j = 1, ...,m Inequality constraints

(2.8)

where the first line is the objective and the second and third lines are the constraints.

In this problem, variable x can be of various types such as a real number (x ∈ R), an

integer (x ∈ Z), a natural number (x ∈ N) or a binary number (x ∈ {0, 1}). Moreover, while

the above example’s constraints are simple linear equations, in an optimization problem, the

constraints are often non-linear. Based on the variables and the constraints, optimization

problems are divided into Linear Integer, Non-linear Integer, Mixed-Integer Linear programs,

and Mixed-Integer Non-Linear programs.

Mixed-Integer Non-linear Program (MINLP). There is a mix of integer and real

variables in this type of optimization problem, and there is at least one non-linear constraint.

Our deadline-aware bulk transfer scheduling on best-effort paths is an example of an MINLP.

16

This type of optimization problem is generally NP-Hard, due to the integrality of some of

its variables. Furthermore, non-linearity of the constraints makes some instances of this

problem computationally intractable and nearly impossible to solve with typical solvers.

Robust Optimization. General optimization deals with deterministic input, while stochas-

tic and robust optimization deal with uncertainties. Stochastic optimization requires that

the distribution of the variables be known. On the other hand, robust optimization is only

concerned with uncertainty sets. In other words, having partial information regarding the

variables would suffice to find a robust solution. In our problem of deadline-aware bulk trans-

fer scheduling on best-effort paths, we use our neural network prediction model to predict a

maximal and a minimal value for bandwidth capacities, namely the cardinality-constrained

uncertainty set of the bandwidth capacity. Consequently, we reformulate the problem as

a Γ-robust optimization problem considering the uncertainty set for the bandwidth capaci-

ties [9].

Consider the optimization problem (2.9), in which variable ai is subject to uncertainty

and its value fluctuates within the range [āi− âi, āi + âi] where āi and âi are the average and

the maximum deviation of variable ai, respectively.

min f(x),

subject to
n∑
i=1

aix ≤ b, ∀ai ∈ [āi − âi, āi + âi]
(2.9)

In this problem, we have to assign the value of x by taking into account the deviation of

ai. To ensure that the constraint is not violated, considering all the possible values of ai is

not feasible. Instead, we may consider the worst-case scenario to ensure that the constraint

is never violated. In the worst-case, ai takes value āi + âi]. Consequently, we can rewrite the

constraint as follows:
n∑
i=1

(āi + âi)x ≤ b. (2.10)

Even though this scenario will never lead to a situation in which the constraint is violated,

17

assuming that all the variables ai are always deviating maximally from their average, is a

rather conservative approach. Instead, we can define a subset Q of the variables with size Γ

to take maximum deviations. Therefore, we can rewrite the constraint as follows:

n∑
i=1

āix+ max
Q⊆A,
|Q|≤Γ

∑
i∈Q

âix ≤ b. (2.11)

If we replace the constraint (2.11) with the one in (2.9), a Γ-robust optimization problem

is formed. Since the max operator is non-convex, we can utilize the duality theorem to

linearize the problem.

Duality. In optimization theory, the duality theory indicates that a problem can be viewed

from two perspectives: the primal and the dual problem. The solution to the dual problem

provides a lower bound for the primal problem. In the case of a convex problem, the solution

to the dual is the same as the solution to the primal problem.

Consider the constraint (2.11) of the Γ-robust optimization problem described before. In

order to linearize this constraint, first, we extract the inner part, including the max operator,

and rewrite it as a different optimization problem as follows:

max
n∑
i=1

âixzi

n∑
i=1

zi ≤ Γ,

0 ≤ zi ≤ 1.

(2.12)

where zi is a binary variable that indicates whether variable ai is deviating maximally from

its average (i.e., it is subject to worst-case scenario). However, the term xizi is still keeping

the non-linearity of the problem. To address this, we take the dual of this problem and

rewrite it as a linear program:

18

min Γx+
n∑
i=1

β̂i

subject to α + βi ≥ âix,

α, βi ≥ 0.

(2.13)

Finally, to achieve the complete Γ-robust formulation, we can replace the inner optimiza-

tion problem in constraint (2.11) with equation (2.13), and the result with the constraint of

the original optimization problem (2.9).

2.5 Software Tools

Gurobi. Gurobi optimizer is a very fast, user-friendly, widely-used off-the-shelf solver ca-

pable of solving a wide range of optimization problems [1]. Gurobi supports a variety of

programming languages such as Python, Java, and C/C++. Furthermore, Gurobi supports

multi-processor operations, which makes it a powerful distributed solver. Also, academic

users can obtain a free academic license. We have used Gurobi in Python 3 environment to

solve the instance of our robust optimization problem.

Mininet. Mininet is an open-source network emulator mainly focused on SDN [3]. Mininet

utilizes Linux kernels essential features such as namespaces and process virtualization to

create configurable virtual networks that emulate a real one. The default Mininet switches

are software defined switches with OpenFlow support. Furthermore, Mininet provides an

extensive Python API that allows users to create sophisticated custom networks. Mininet was

designed to target personal computers, making it a popular network emulator in academia.

We have used Mininet to conduct experiments in a realistic environment.

Iperf. Iperf is a network tool for active measurements of bandwidth on IP networks [2].

It supports TCP and UDP protocols and various parameters as input as well as different

operational modes and packet types, which makes it a powerful tool. Iperf can measure

19

the throughput between the two ends in one or both directions. It is open-source software

written in C that runs on multiple platforms, including Linux, Windows, and Unix. In this

work, we have used iPerf for bandwidth measurement.

2.6 Related Work

2.6.1 Bandwidth Prediction

In this section, we study the state-of-the-art works in bandwidth estimation and predic-

tion. These works can be grouped into statistical (i.e., conventional) and machine learning

methods.

Statistical Analysis

Traditional methods for network traffic and bandwidth prediction are based on statistical

analysis. In some works, probing is combined with statistical analysis to produce more

realistic predictions and estimations under intense scenarios.

Work [67] introduces Spruce which works based on the Probe Gap Model (PGM). In

this model, multiple consecutive probes are sent over the network, whose arrival gap is

then measured in the receiver. Utilizing this information, Spruce estimates the available

bandwidth. In [43], DietTopp is proposed, which uses probe trains along with simple linear

regression to estimate the bandwidth. Estimating the bandwidth using probe trains involves

sending a train of probes with a specific rate and comparing it to the rate with which they

are received at the sender. The sending rate is increased gradually to trigger the bottleneck

spacing effect and make more accurate measurements, which means that the congestion on

the network’s tight link directly affects the arrival rate of probe trains [39]. Pathload [40] is

based on the idea that the delay of a stream of periodic probes will have an increasing trend

provided that the stream rate is higher than the available bandwidth. Work [24] estimates the

available bandwidth by inducing congestion and repeatedly sending probe pairs with random

20

rates. Moreover, it uses Kalman filtering to improve the estimation over time. However, the

Kalman filter only works efficiently when the measurement noises are Gaussian. Similarly,

PathChirp [62] utilizes self-induced congestion as well as chirps to estimate the available

bandwidth. Chirps are a sequence of probes, and they differ from probe trains and pairs in

that they are more bandwidth efficient, and they can capture critical delay correlations.

Work [63] proposes an upper bound for network traffic prediction based on ARIMA mod-

els. Furthermore, using analysis, it argues that traffic prediction is highly affected by various

factors and traffic properties such as the traffic measurement intervals, the network control

time-scale, and the utilization target of network resources. Corradi et al. [17] study the ap-

plications of FARIMA processes for modeling of traffic with long-range and short-range de-

pendencies. To this end, they first provide a theoretical analysis. Then they apply FARIMA

to simulated LAN and Video conferencing traffic to evaluate long-range and short-range

modeling capabilities of this approach. Similarly, work [66] proposes a procedure for traffic

prediction using FARIMA models, and shows that FARIMA models, as opposed to ARIMA

models, are capable of capturing both short-range and long-range dependencies of network

traffic.

Conventional methods which, are based on active probing and statistical preprocessing

can barely make any viable predictions for heterogeneous traffic of today’s networks. Fur-

thermore, they suffer from probe packet interference, packet loss, the randomness of cross

traffic, multiple tight links, and clock synchronization.

Machine Learning

As mentioned in the previous sections, ML can be used for regression problems such as

TSF for bandwidth and traffic. Recent works that utilized ML have achieved better results

than the works that were based on traditional statistical analysis. While the majority of

the TSF works in networks are based on NNs, there has been a number of works that used

Reinforcement Learning (RL) or Support Vector Regression (SVR).

21

Neural Networks.

Recently, there have been a great number of works employing NNs for bandwidth and

traffic prediction. Khangura et al. [47] argue that it is reasonable to use machine learning in

order to estimate bandwidth more efficiently. Their measurements are performed by utilizing

the vectors of packet dispersion. To this end, they used the packet trains approach in which

every probe packet adapts its rate based on the feedback from the previous packet. Similar

to [47], in [26], Eswaradass et al. propose a bandwidth prediction system based on NNs for

grid environments. The input of the NN is the minimum, maximum, and average bandwidth

in the previous iteration. The results show that this system outperforms previous statistical

analysis models in the same environment. Work [18] proposes an NN model to predict

network traffic targeting ISP networks. The model is trained using ISP backbone traffic as

well as inter-ISP traffic. Tests for real-time forecasting (online forecasting on a few-minute

sample), short-term (one-hour to several-hours sample), and mid-term forecasting (one-day

to several-days sample) demonstrate better performance and results, as well as lower time

and computational complexity than the traditional statistical analysis methods. Work [55]

argues that it is crucial that we account for the variations in the mobile networks and predict

them to some extent in order to adjust the transmission rate and improve the user experience

in applications that require high bandwidth and low delay. These variations can be due to

several reasons, such as mobility and fading. The writers have designed a neural network

using LSTMs and a Bayesian fusion to estimate mobile networks’ bandwidth in scenarios

with high mobility such as in the subway or a bus ride. In work [72], the authors argue that

utilizing neural networks on its own does not necessarily improve the accuracy of predictions

due to the biases that happen in the training phase of the model, due to most solutions

being only tested in the simulation or emulation environment rather than in real Internet

environment. In this work, which was deployed and tested using a real video streamer with

thousands of monthly users, supervised learning is combined with a conventional buffer-based

method to make more accurate predictions that can be checked immediately.

22

Other works have studied the effects of training algorithms for network traffic predic-

tion [13, 80]. In work [13], Chabaa et al. investigate the effects of using different back-

propagation algorithms for training of NNs for Internet traffic prediction. While back-

propagation algorithm involves local optimization, revolutionary algorithms such as Particle

Swarm Optimization (PSO) and Artificial Bee Colony (ABC), which involve global opti-

mization, can be utilized for NN training. Work [80] proposes a hybrid training algorithm

based on PSO and ABC. The NNs that were trained using this technique produced more

accurate predictions. This method also improves the training speed.

Reinforcement Learning. Reinforcement Learning (RL) has been mostly used for Adap-

tive Bitrate applications. In [53], Mao et al. propose Pensieve, which utilizes reinforcement

learning in order to employ an ABR scheme in the client-side of a video player to increase the

Quality of Experience (QoE) for the end-user. Pensieve, which works with neural networks,

can adapt to a diversity of environments and QoE parameters as opposed to the state-of-

the-arts that rely on static models and fixed assumptions about the environment. Chiariotti

et al. [14] also use RL for an online Dynamic Adaptive Streaming over HTTP (DASH) to

improve the long-term QoE for end-users. This work proposes a parallel learning technique

that achieves a faster and more accurate learning process than previous works.

Support Vector Regression. While other works mainly use NNs for bandwidth and traffic

prediction, work [8] has studied Support Vector Regression (SVR) for TSF of link load in

ISP networks. The model proposed by this work can provide significant improvement over

traditional methods on heterogenous traffic of an ISP network. While SVR has lower com-

putation overhead than NNs, NNs outperform SVR when extensive and continuous training

is required. Similarly, work [56] proposes a TCP throughput prediction method based on

Vector Regression modeling that combines prior transfer and current measurements. In other

words, it consists partly of active measurements to ensure accuracy.

Machine learning has been successfully utilized by numerous works in the literature for

traffic and bandwidth prediction. While NNs and SVRs were applied to TSF of traffic and

23

bandwidth in various environments [26, 18, 47, 55, 72], RL has been mostly utilized for

optimal adaptive bitrate in real-time video applications. Machine learning approaches can

accurately predict short-term and long-term dependencies at low complexity with simple

models.

2.6.2 Resource Scheduling in WANs

Legacy WANs

This section briefly introduces works based on MPLS traffic engineering (MPLS-TE) and

decentralized traffic engineering and resource scheduling in Inter-DC WANs.

Work [5], introduces RATE, an MPLS-based traffic engineering system that receives user

inputs from an interface and provides bandwidth-guaranteed LSPs (Label Switched Paths)

to online requests that arrive one by one. RATE operates in a centralized fashion wherein

it obtains the topology and link-state information either through standard protocols such as

SNMP (Simple Network Management Protocol) or link state peering. However, QoS-related

static link and nodal attributes are maintained by tracking the user’s allocation through a

graphical interface. Furthermore, LSPs are established from the source by signaling means.

In [11], writers introduce an RCP (Routing Control Platform), which is logically central-

ized and separate from the IP forwarding platforms. The RCP performs routing on behalf

of iBGP (interior Border Gateway Protocol) routers; then the routes are communicated to

the routers using the protocol of the same name.

Ethane [12] proposes a network architecture for enterprise networks whose primary enabler

is a controller with a global view of the network and enforces network-wide fine-grain policies

for the arriving flows. This work is a building block of today’s SDNs and the OpenFlow

protocol; however, it works in compliance with legacy switches.

Work [15] proposes WISE, a traffic engineering server for MPLS-based IP networks to

address some of the MPLS TE issues such as globally sub-optimal allocations and lack of a

24

sophisticated traffic statistics and analysis. WISE is a centralized solution that works in an

offline fashion.

In order to achieve fairness between multiple commodities over a set of fixed resources,

max-min fairness is a well-known approach. However, it suffers from scalability issues when

the number of commodities and resources increases. Work [20] proposes the Upward max-min

fairness, a relaxed solution that performs close to max-min fairness in terms of utilization and

fairness. Furthermore, work [21] extends the previous work and achieves a tradeoff between

fairness and throughput, as well as it speeds up the algorithm by reducing the number of

steps required to solve the problem.

MATE [25] proposes a multipath traffic engineering solution for MPLS networks that bal-

ances the traffic based on the measurements and analysis in order to prevent path congestion.

This decentralized work, however, does not account for the different service requirements of

various applications. Also, it lacks an admission control, which leads to gradual congestion

of the network when the number of arriving flows is high.

Work [31] refers to traditional IP routing protocols for traffic engineering by utilizing link

weights based on a global view of the network and traffic. This view, however, is achieved

through means such as router configuration and SNMP. This process is not flexible and is

sluggish, as well as the maintenance, and the implementation are cumbersome.

Kandula et al. introduce in [44] TeXCP, a network-based adaptive multipath routing in

which the load is adaptively balanced between multipaths by an administrative domain. In

this traffic engineering work, as opposed to prior works that utilize static load balancers or

offline multipath route optimizers, the load balancing happens in realtime to protect the

network from congestion, link failure, and traffic bursts.

TEAM [64] proposes an automated manager for networks that use a combination of MPLS

and DiffServ (differentiated services) to provide quality of service and to reduce congestion.

TEAM is implemented in a centralized fashion and utilizes online measurements to perform

resource and route management.

25

All the works introduced in this section fail to account for transfer requests with a dead-

line which, according to studies [36] constitute a major portion of today’s Inter-DC traffic.

Moreover, the expensive nature of the MPLS solutions, low utilization, and lack of a unified

solution for network monitoring and analysis of the heterogeneous networks make some of

these works unsuitable for today’s inter-dc WANs.

SD-WANs

In this section, we first discuss SD-WAN resource scheduling. We then cover the proposed

works in multiple groups based on their objectives, and finally, we present a classification

for them. Legacy Inter-DC WANs that are typically implemented using MPLS TE (Multi-

protocol Label Switching Traffic Engineering) suffer from low utilization. The first culprit

behind this problem is over-provisioning the resources to account for peak traffic hours, and

the second one is the lack of a global view in the decision-making components. In order to

solve the problems mentioned above, SD-WAN (Software-defined WAN) has separated the

control-plane from the data-plane, moving it to a central entity called the controller, which

has a global view of the network, including information about the switches, links between

them, and attached hosts. The global view enables the operators to make globally optimal

decisions by properly scheduling transfers and efficiently allocating resources.

Throughput Fairness. Microsoft and Google have proposed their SD-WAN solutions,

namely, SWAN and B4 [41, 36]. In both works, the objective is to maximize the network

utilization for their private networks since they are costly assets and constitute a notable

portion of the companies expenses, as well as to and provide fairness to the flows. To this

end, they use max-min fairness in a discreet time environment where scheduling happens at

the beginning of every timeslot for the flows that have arrived earlier. However, they only

schedule flows over paths and do not take future timeslots into consideration. As a result,

their approaches do not apply to requests with deadlines as they are likely to miss their

deadlines.

26

Deadline Guarantee. Other works have been proposed that are deadline-aware [45, 52].

Tempus [45] focused on flow fairness by maximizing the minimum transfer rate between all

the flows. However, Tempus lacks admission control and simply admits every flow. Con-

sequently, some admitted flows might lose their associated deadlines due to the limitation

of resources. There are other works, however, that provide a guaranteed admission before

the deadlines. PGA [52] admits only flows whose deadlines can be met with the available

resources. As opposed to the majority of state-of-the-art that focus either on hard or soft

deadlines, this work simultaneously considers soft and hard deadlines. In all the works men-

tioned above, capacity fluctuations have not been taken into account. In this respect, the

capacities are either fixed and stable or have predictable fluctuations due to interactive traf-

fic. Authors in [73] consider a fixed prediction error for realtime traffic. Transmission of

bulk transfers are conditional upon the status of the realtime traffic. If the realtime traffic

goes beyond the expected volume, bulk transfers are delayed in descending order of their

deadlines. Amoeba [77] is another work that considers capacity fluctuations but does not

provide a proper formulation and merely addresses uncertainty by reserving a proportion of

the resources according to the predicted cross or realtime traffic. These works cannot char-

acterize the uncertainty to provide a deadline guarantee and achieve a desirable resource

utilization. Works such as NetSticher [48] and ElasticTEN [71] address store-and-forward

mechanism in the inter-DC WAN. This mechanism is beneficial when the source and the

destination of a request are in different time-zones, and therefore, have different peak-hours.

ElasticTEN proposes a dynamic time-expansion graph for temporal-spatial scheduling of re-

quests to reduce the complexity of the graph, while other methods copy the network graph

for every timeslot and solve the scheduling problem. However, it lacks an admission control

mechanism which can cause some admitted requests to miss their deadlines. Both works

assume that all bandwidth capacities are known in advance.

Work [23] creates a Robust formulation of a Point-to-Multipoint transfer with deadlines

considering demand uncertainty for realtime transfers. Similar to other P2MP approaches,

27

they use Steiner trees to route the transfers. This work requires demand estimates of all

realtime flows in the network, limiting the scalability of their approach.

Cost Reduction. The store-and-forward (SnF) mechanism is a mechanism used in systems

where the source and destination are in different time zones, having different peak hours.

In this approach, the intermediate nodes store the traffic in peak hours and send them to

the destination in non-peak hours. Postcard [30] is an example of a work based on SNF

that only considers fixed capacities without fluctuations. Utilizing a usage-based billing

scheme provides users with much flexibility in their transmission schedule. For instance,

TrafficShaper [51] makes use of the free burstable timeslots in the q-percentile billing scheme

and maximizes the transmission volume during those timeslots. Utilizing the free burstable

timeslots allows them to transmit more transfers and gain more profit without paying more

for the traffic. Similarly, in [42] the Pretium framework provides a dynamic pricing scheme.

However, its objective is social welfare which is the total profit gained from successful trans-

fers minus the cost of transferring them. The authors claim that customers are encouraged

to report truthful characteristics rather than expand or tighten them to receive a better

service. The prices are dynamically chosen at the beginning of a time window based on the

statistics of previous time windows. For every bulk transfer, an initial route and schedule

are decided upon arrival. Then at the beginning of every timeslot, routes and schedules

are rescheduled in order to guarantee the promised service. Also, [50] introduces a similar

solution for deadline-agnostic flows with dynamic provisioning, which works in a distributed

fashion. However, it fails to consider capacity uncertainty. Jetway [29] is an inter-DC solu-

tion for deadline-agnostic video flows. This work only takes into account the historical data

about the system in order to make decisions. Jetway admits the maximum number of flows

that the available resources can support. Subsequently, it acquires the minimum amount of

extra resources to accommodate the remaining flows. Work [59] uses a similar approach for

deadline-aware bulk transfers. Considering only historical data, although making the system

simpler, has the disadvantage of not handling uncertainty in any form.

28

Completion Time. Yang et al. in [74] propose a scheduling mechanism that minimizes the

bandwidth costs and guarantees transfer deadlines. Even though the bandwidth capacity is

not fixed in this work (as opposed to state-of-the-art), it does not characterize the capacity

fluctuations, thus failing to address scheduling in environments with prevalent fluctuations

(such as the environment in our problem). Although most works in the literature propose

solutions for point-to-point (P2P) transfer requests, there are works proposed for point-

to-multipoint (P2MP) ones. Noormohammadpour et al. [61, 60] propose solutions based

on Steiner trees for P2MP transfers. Both works focus on reducing completion time and

bandwidth usage at the same time. QuickCast [60] is proposed to overcome the challenge of

shared bottleneck links among different destinations in a single P2MP transfer. They divide

destination nodes into subgroups and P2MP transfers into multiple transfers to overcome this

problem. They both only address a network with a fixed, predictable bandwidth capacity.

While works [77, 45, 52, 23, 42] consider demand fluctuations for high-priority traffic (i.e:

interactive traffic), none of them consider using unreliable resources - such as that of the

Internet - with a fluctuating capacity to provide performance similar to that of MPLS-TE

while reducing operational costs.

Quality of Service. In BDS [79], Zhang et al. designed a centralized solution for inter-

datacenter networks. In order to speed up the system, they decoupled the control algorithm

into the scheduling of data transfers and routing into overlay paths. The overlay paths are

chosen to be bottleneck-disjoint, meaning that they do not share any bottleneck paths. The

scheduling is done using the rarest-first manner wherein each cycle, the block with the fewest

duplicates is selected. This approach has been shown to balance the availability of blocks

and avoid starvation. The objective is to maximize the throughput in each cycle.

Work [76] claims that existing solutions for DCN and WAN do not work in compliance

because of the discrepancies between the nature of these two environments regarding buffer

depths and delays. These discrepancies make solutions such as ECN or delay signal in-

effective. For instance, the RTTs of inter-DC and intra-DC can vary by three orders of

29

magnitude. Therefore, they require a very different ECN threshold. Furthermore, the delay

signal cannot distinguish between the congestion in inter-DC and intra-DC as well, making

it inefficient on its own. Consequently, they propose using both ECN and delay signal in

conjunction to achieve reasonable congestion control for cross-DC networks.

Gao et al. in [32] propose a model for an inter-DC SD-WAN taking into account the traffic

priorities. In their model, the centralized controller is decomposed into a distributed two-

layer control structure. In this structure, the network is divided into several domains, and

each domain is controlled by a local controller. Furthermore, there is a central controller to

control the local controllers. While they took two traffic types into consideration including

background traffic and real-time user traffic, the optimization problem’s goal is to maximize

the background traffic throughput. The main problem is decomposed into multiple sub-

problems using the dual decomposition method. Subsequently, each sub-problem is solved,

and the results are used to solve the main problem. The experiment results demonstrate

that this architecture can perform as well as a centralized method with increased scalability.

Paper [70] proposes QTE to maximize background throughput and provide Quality of

Experience (QoE) for client-triggered traffic. They claim that relying solely on traffic pri-

orities is not sufficient to get QoE due to the complicated relationship between QoE, delay,

and bandwidth. First, they propose an optimization framework for QoE-aware SD-WAN.

They then formulate the QoE problem as two optimization problems and propose a heuristic

to solve it. The first problem intends to maximize the end-user QoE by routing client-

triggered flows over proper tunnels, while the second problem uses the remaining bandwidth

to maximize the utilization by routing the background flows based on their weights.

Works [79, 76, 32, 70] provide consistency to the system and provide QoE to the users.

However, in all works, capacity uncertainty has not been considered, and capacities are fixed

and known a priori, which is not the case in real-world networks, especially for the best-effort

Internet tunnels.

In [7], the authors propose a platform of software-defined internet exchange points (IXPs)

30

in which a logically centralized controller enforces rules onto IXPs to provision inter-ISP

routes with a better quality of experience (QoE) to end-users. To this end, they take into

account the bandwidth and delay demand of each origin and destination pair. They have

used the Branch and Reduce method so as to decrease the complexity of the resulted mixed

integer non-linear programming problem.

Work [78] suggests bringing SDN to information centric networks (ICN) in order to utilize

both of their advantages for future networks. Furthermore, they use deep learning (DL) to

predict bandwidth demand based on content name and deep reinforcement learning (DRL)

to perform traffic engineering (TE). In this system, cache and bandwidth information is sent

by the switches to the controller. The controller then decides the TE state and updates its

neural networks accordingly. Static mapping of edge to datacenter is faced with challenges

such as capacity limitations, fault intolerance, and failure to keep up with new services and

hardware.

Taiji [16] proposes a dynamic connection-aware routing between edge and data centers

for Facebook. It routes user requests for dynamic content to the most appropriate data

center in order to reduce the query load and network latency. This work is based on the

assumption that similar service providers share numerous communities. Therefore, users of

the same community are preferably routed to the same data center. Edge to data center

routing is conducted with regards to parameters such as edge capacity, utilization, traffic

volumes, and edge to data center latency. In order to maintain connection-awareness, social

hashing is used, which divides users to buckets of roughly the same size.

Dragon [58] argues that conventional SDN-based TE solutions barely meet diverse and

large-scale ISP networks’ requirements. Furthermore, the lack of interactions between inter-

domain and intra-domain policies leads to sub-optimal performance. Dragon proposes a

scalable framework that jointly optimizes intra-domain and inter-domain routes and divides

the whole problem into sub-problem, and then attempts to solve them separately to merge

the solutions as a whole. This work can also incorporate various objectives such as service

31

chaining, maximizing the throughput, and guaranteeing fault tolerance.

Work [28] proposes an SD-WAN platform to provide better QoS and load balancing than

MPLS-TE and CSPF algorithms. They have utilized the ONOS controller, Segment routing,

PCEP, and BGP-LS in this framework. In order to maximize the profit gained by providing

services, they propose to maximize the residue bandwidth on the link with the minimum

value. In this work, all flows have a constant bit rate and last for a uniform random time,

and all the links have a constant capacity.

The above works [7, 78, 16, 58, 28] take the scheduling to the edge of the network, bringing

scalability to the system. However, edge scheduling eliminates the possibility of having a

centralized control and a global view of the network, and consequently, the uncertainty

handling.

Table 2.1 provides an overview and a classification of the seminal works in SD-WANs.

Even though these works addressed several issues in the inter-DC networks such as deadlines,

multiple destinations, and demand uncertainty, they lack a mechanism to deal with band-

width uncertainty; therefore, they are not suitable to be utilized for best-effort SD-WANs.

Work Objective Deadline-
aware

SnF P2MP Provisioning Maximum
Capacity

Uncertainty-
aware

Admission
Control

[41, 36] Throughput
Fairness

N N N Fixed Fixed N N

[45] Completed
Fraction

Y N N Fixed Fixed N N

[52] Deadline
Guarantee

Y N N Fixed Fixed N Y

[77] Deadline
Guarantee

Y N N Fixed Fixed Static Y

[30] Cost Y Y N Dynamic Fixed N N
[51, 29,
59, 50]

Cost Y N N Dynamic Fixed N N

[48] Completion
Time

Y Y N Fixed Fixed N N

[71] Completed
Fraction

Y Y N Fixed Fixed N N

[61, 60] Completed
Time

Y N Y Fixed Fixed N N

[42] Welfare Y N N Dynamic Fixed Demand Y
[74] Completed

Time
Y N N Dynamic Dynamic N Y

[79, 76,
32, 70,
7, 78,
16, 58,
28]

Quality of
Service

Y N N Fixed Fixed N Y

Our
Work

Profit Y N N Dynamic Fixed Bandwidth Y

Table 2.1: Works in SD-WANs.

32

Chapter 3

Bandwidth Prediction

In this chapter, we describe our bandwidth prediction model based on Long Short Term

Memory (LSTM) [33] Recurrent Neural Networks (RNN) to find the answer to our first

two research questions: ”How variable is the bandwidth capacity of the Internet best-effort

tunnels?” and ”Are we able to predict the capacity of these tunnels?”. To this end, we train

an LSTM RNN model with offline data and utilize it to make online predictions.

Recent studies show that RNNs can learn temporal patterns so as to make precise pre-

dictions for applications with sequential data such as Natural Language Processing (NLP),

speech recognition, and time series processing, to name a few [55]. Behaviour of bandwidth

in the Internet tunnels demonstrates specific characteristics due to ISP traffic engineering,

cross-traffic, and link failure, which brings about an opportunity to LSTM-based bandwidth

estimations.

3.1 Bandwidth Prediction Problem

In this section, we formulate the bandwidth prediction problem. The problem consists in

estimating the instantaneous bandwidth b(t), n timesteps into the future by observing the

33

figs/lstm/Blank diagram.pdf

Figure 3.1: The sliding window method to predict the bandwidth.

past m timesteps at timestep τ , which is shown in equation (3.1):

{b(t), t = τ + 1, · · · , τ + (n− 1), τ + n} = f({b̂(t), t = τ −m, · · · , τ − 1, τ}), (3.1)

where f(·) is the estimation function. We have used a Simple Linear Regression (SLR)

as a baseline, to compare the results obtained by our LSTM RNN model.

3.2 RNN Model

As mentioned in previous chapters, neural networks are getting more attention in bandwidth

prediction due to their ability to adapt to sudden change and making an overall better

prediction. This advantage, is in fact, due to the ability of the LSTMs to save the memory

of older events as opposed to other simpler methods, which only use a window of data to

make predictions. Following a similar architecture as the state-of-the-art [47, 55], we design

an LSTM RNN architecture which consists of an input layer, two hidden layers (with 200

and 100 nodes), and an output layer. We follow a sliding window approach wherein every

consecutive sequence of multiple past inputs is used to make predictions for a sequence of

multiple future outputs. Fig. 3.1 shows an example of how the sequence of inputs is associated

with the sequence of outputs in the sliding window approach. It depicts a bandwidth trace

from our best-effort tunnel from the campus to a datacenter in the EU. There are five

consecutive sequences of 180 seconds input and output windows where the green windows

are the inputs and the red ones are the outputs.

34

3.3 Data Collection

In order to collect data for our bandwidth prediction model, we have established a best-effort

tunnel between the University of Calgary ICT building and a Virtual Private Server (VPS)

on Microsoft Azure cloud in Amsterdam using the SSH protocol. We used the iPerf3 tool

to measure the tunnel’s bandwidth using UDP packets with a frequency of 1 second. For

parameter tuning of the model, we used a 24-hour-long trace on this tunnel. After the initial

results, we found an appropriate model to which we added additional training and testing

using a 72-hour-long trace on the same path without any overlap in the data.

3.4 Evaluation

3.4.1 Short-term Predictability

In this section, we study the predictability of bandwidth capacity in best-effort Internet tun-

nels for short periods (e.g., around 180 seconds) to address our first research question: “How

variable is the bandwidth capacity of the Internet best-effort tunnels?”. Using statistical

analysis, we demonstrate that in short periods, best-effort tunnels’ bandwidth capacity does

not suffer from high variations and remains within a predictable range. To this end, we have

conducted the following studies:

• The effects of window size on variability sequence: We define variability sequence as a

sequence of bandwidth measurements in which the value does not deviate more than

20% from the first value in the sequence.

• The effect of window size on confidence band: Confidence band is used in statistical

analysis to demonstrate the deviation from an estimated value.

35

Effects of Window Size on Variability Sequence

In this experiment, we study the effects of moving average window size on variability se-

quence in short-term predictions. In Fig. 3.2 we show the CDF of the length of variability

sequence for our measurements. Having a longer variability sequence is a result of less severe

fluctuations. It is evident from the results that an increase in the window size leads to a de-

crease in variability. For instance, according to Fig. 3.2a, 90% of the sequences have a length

of less than 24 when the window size is 1 (i.e., there is no averaging), while approximately

40% of the sequences have a length between 50 and 250 in Fig. 3.2f when the window size

is 59. In other words, we are more likely to make an accurate prediction using statistical

analysis when the moving average window size is bigger than 59. However, we should note

that having a bigger window results in more smooth values and data loss.

Moving Average with Confidence Band

In this section, we calculate the moving average along with a 95% confidence band for our

bandwidth measurements in a short period of 15 minutes. The results in Fig. 3.3 show that

the confidence band can be moderately tight for various moving average window sizes, which

indicates that the bandwidth fluctuates within a predictable range.

3.4.2 Long-term Predictability

We utilize the LSTM neural network model described in 3.2 to study the long-term pre-

dictability of bandwidth in best-effort tunnels, and address our second research question:

“Are we able to predict the capacity of these tunnels?”.

Parameter Tuning

In order to find a suitable set of parameters for our model, we conducted comprehensive

experiments on our 24 hour long bandwidth data collected from our best-effort tunnel. The

36

0 50 100 150 200 250
Length of Variability Sequences

0.2

0.4

0.6

0.8

1.0

P{
x<

X}
Variability of Available Bandwidth on an Internet Best-effort path

(a) Window size 1.

0 100 200 300 400 500
Length of Variability Sequences

0.0

0.2

0.4

0.6

0.8

1.0

P{
x<

X}

Variability of Available Bandwidth on an Internet Best-effort path

(b) Window size 3.

0 100 200 300 400 500
Length of Variability Sequences

0.0

0.2

0.4

0.6

0.8

1.0

P{
x<

X}

Variability of Available Bandwidth on an Internet Best-effort path

(c) Window size 5.

0 100 200 300 400 500 600 700 800
Length of Variability Sequences

0.0

0.2

0.4

0.6

0.8

1.0

P{
x<

X}

Variability of Available Bandwidth on an Internet Best-effort path

(d) Window size 9.

0 200 400 600 800 1000 1200
Length of Variability Sequences

0.0

0.2

0.4

0.6

0.8

1.0

P{
x<

X}

Variability of Available Bandwidth on an Internet Best-effort path

(e) Window size 29.

0 500 1000 1500 2000 2500
Length of Variability Sequences

0.0

0.2

0.4

0.6

0.8

1.0

P{
x<

X}

Variability of Available Bandwidth on an Internet Best-effort path

(f) Window size 59.

37

0 1000 2000 3000 4000 5000 6000
Length of Variability Sequences

0.0

0.2

0.4

0.6

0.8

1.0

P{
x<

X}
Variability of Available Bandwidth on an Internet Best-effort path

(g) Window size 179.

0 1000 2000 3000 4000 5000 6000
Length of Variability Sequences

0.0

0.2

0.4

0.6

0.8

1.0

P{
x<

X}

Variability of Available Bandwidth on an Internet Best-effort path

(h) Window size 299.

Figure 3.2: CDF of length of variability sequence.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
T (m)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

Available Bandwidth on an Internet Best-effort path

(a) Window size 1.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
T (m)

0

50

100

150

200

Ba
nd

wi
dt

h
(M

bp
s)

Available Bandwidth on an Internet Best-effort path

(b) Window size 3.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
T (m)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

Available Bandwidth on an Internet Best-effort path

(c) Window size 5.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
T (m)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

Available Bandwidth on an Internet Best-effort path

(d) Window size 9.

38

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
T (m)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

Available Bandwidth on an Internet Best-effort path

(e) Window size 29.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
T (m)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

Available Bandwidth on an Internet Best-effort path

(f) Window size 59.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
T (m)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

Available Bandwidth on an Internet Best-effort path

(g) Window size 179.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
T (m)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

Available Bandwidth on an Internet Best-effort path

(h) Window size 299.

Figure 3.3: Moving average with confidence band.

data is divided to two subsets of 67% and 33% of the total data for training and testing,

respectively. The data is divided in such way to cover peak and non-peak hours in both

subsets. In this way, we made sure that both subsets possess the same fluctuation range and

have roughly the same average value.

Furthermore, we have studied the effects of a moving average on the bandwidth values

to find an acceptable tradeoff between smoother, more predictable values and loss of data.

A moving average can mitigate the effects of random, short-term fluctuations. The input

dataset has a maximum, minimum, mean, and median of 199.0, 0.0, 154.26, and 169.0,

respectively. We have measured the training score and the test score (i.e., RMSE of the

39

Steps In Steps Out Train Score Test Score
10 10 19.67 20.74
30 10 19.21 20.51
60 10 19.52 20.79
120 10 19.34 20.66
180 10 19.27 20.64
300 10 19.33 20.55
30 30 30.48 32.26
60 30 30.62 31.78
120 30 30.17 32.28
180 30 30.54 31.76
300 30 30.63 31.70
60 60 35.46 36.75
120 60 35.17 35.98
180 60 35.17 36.10
300 60 35.36 36.63
120 120 37.66 38.79
180 120 36.70 38.45
300 120 35.18 37.45
180 180 37.06 39.04
300 180 35.95 39.10
300 300 35.79 39.12

Table 3.1: Scores with a window size of 1.

predicted values and the actual values) for different values of the following parameters:

• Steps-in: The number of values in the sequence of inputs for each prediction.

• Steps-out: The number of values in the sequence of outputs for each prediction.

• Moving Average Window Size: The number of values that are averaged in each subset

of the full data set in a series of averages.

As it is evident from the results shown in tables 3.4a to 3.4f, there is a trade-off between

the window size of the moving average and the accuracy of the predictions. Table 3.6 also

shows the mean absolute percentage error for the moving average dataset as compared to

the original dataset. According to the results, a window size of more than 9 leads to an extra

5% error which is not desirable. Furthermore, a window size lower than 9 does not provide

a significant advantage over not applying a moving average at all, as shown in tables 3.1

to 3.5.

The results show that having a lower steps-out value yields more accurate predictions,

which expected since making predictions too far into the future has a higher probability of

40

Steps In Steps Out Train Score Test Score
10 10 16.67 17.59
30 10 16.60 17.63
60 10 16.60 17.46
120 10 16.87 17.76
180 10 16.80 17.98
300 10 16.74 17.53
30 30 28.93 30.06
60 30 29.11 30.00
120 30 42.76 40.99
180 30 39.56 39.67
300 30 29.02 29.92
60 60 34.73 35.18
120 60 34.49 35.00
180 60 34.68 35.15
300 60 33.30 34.44
120 120 35.19 38.10
180 120 36.44 38.60
300 120 33.90 36.33
180 180 35.12 38.12
300 180 35.07 38.15
300 300 34.78 38.27

Table 3.2: Scores with a window size of 3.

Steps In Steps Out Train Score Test Score
10 10 14.54 15.37
30 10 14.25 15.03
60 10 14.31 15.06
120 10 14.41 15.21
180 10 14.43 15.35
300 10 26.62 27.04
30 30 27.52 28.51
60 30 27.86 29.01
120 30 27.80 29.20
180 30 27.46 28.58
300 30 27.88 28.79
60 60 33.44 34.10
120 60 33.88 34.31
180 60 35.16 35.69
300 60 33.40 34.60
120 120 35.21 36.72
180 120 34.14 35.78
300 120 35.91 36.54
180 180 34.57 37.64
300 180 34.51 37.67
300 300 34.28 37.75

Table 3.3: Scores with a window size of 5.

41

Steps In Steps Out Train Score Test Score
10 10 11.52 11.98
30 10 10.75 11.30
60 10 11.00 11.43
120 10 11.629 12.094
180 10 11.03 11.52
300 10 11.12 11.61
30 30 25.40 26.31
60 30 25.36 26.40
120 30 25.64 26.56
180 30 36.20 37.23
300 30 26.48 27.53
60 60 31.94 32.50
120 60 32.53 32.89
180 60 32.59 32.98
300 60 32.29 32.66
120 120 34.17 36.67
180 120 33.74 36.67
300 120 32.19 34.57
180 180 33.57 36.82
300 180 33.56 36.81
300 300 33.32 36.93

Table 3.4: Scores with a window size of 9.

Steps In Steps Out Train Score Test Score
10 10 1.17 1.26
30 10 1.08 1.23
60 10 1.25 1.30
120 10 1.08 1.20
180 10 4.85 5.66
300 10 1.35 1.48
30 30 3.27 3.52
60 30 3.43 3.70
120 30 3.28 3.65
180 30 3.45 3.67
300 30 3.33 3.60
60 60 7.60 7.58
120 60 23.08 21.99
180 60 20.82 21.17
300 60 36.25 32.95
120 120 11.94 12.17
180 120 28.84 25.62
300 120 11.80 12.23
180 180 23.53 22.30
300 180 29.21 25.97
300 300 29.588 26.28

Table 3.5: Scores with a window size of 179.

42

Window Size MAPE
1 0.0
3 0.043
5 0.042
9 0.052
29 0.086
59 0.129
179 0.169
299 0.175

Table 3.6: Mean squared error for different window sizes in tuning experiments.

error. Also, having a higher steps-in either has a negative effect on the error or does not

provide significant improvements. Consequently, considering the points mentioned above,

we have conducted a test on a longer dataset with the previous model using a window size

of 1 (i.e., no moving average), and both a steps-in and steps-out value of 180. This value

is compatible with the timeslot size of our bulk transfer scheduler and does not apply high

computational burden on the system due to high frequency of prediction and scheduling.

With regards to epoch count, we observed there were not any significant improvements for

values higher than 30; therefore, we choose this number for our prediction experiment.

Prediction

In this section, we study the results of our prediction experiments. To this end, we have

utilized the model from previous sections to make predictions on multiple 1-hour datasets

gathered from our Internet tunnel from the University of Calgary to the Microsoft Azure

VPS in Amsterdam at different times. Table 3.7 shows the achieved performance in all

experiments in terms of RMSE. Figs. 3.4a to 3.4f also demonstrate the first 2000 predicted

samples compared to the data at different times. As it is shown, the model can make a

plausible prediction regarding the bandwidth trend with an average 20% MAPE and 18

RMSE, 180 seconds into the future. These results are achieved only with training on a small

dataset consisting of 96 hours of data. Throughout time, with more training, the model

will be able to make more accurate predictions. However, creating a model to make more

43

Experiment RMSE
1 61.93
2 63.60
3 18.42
4 12.45
5 15.07
6 14.39

Table 3.7: Mean squared error in the prediction experiments.

accurate predictions is out of the scope of this thesis.

44

0 250 500 750 1000 1250 1500
time (s)

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

data
prediction

(a) Experiment at 3 P.M.

0 250 500 750 1000 1250 1500
time (s)

25

50

75

100

125

150

175

200

Ba
nd

wi
dt

h
(M

bp
s)

data
prediction

(b) Experiment at 6 P.M.

0 250 500 750 1000 1250 1500
time (s)

80

100

120

140

160

180

200

Ba
nd

wi
dt

h
(M

bp
s)

data
prediction

(c) Experiment at 9 P.M.

45

0 250 500 750 1000 1250 1500
time (s)

100

120

140

160

180

200
Ba

nd
wi

dt
h

(M
bp

s)

data
prediction

(d) Experiment at 12 A.M.

0 250 500 750 1000 1250 1500
time (s)

100

120

140

160

180

200

Ba
nd

wi
dt

h
(M

bp
s)

data
prediction

(e) Experiment at 3 A.M.

0 250 500 750 1000 1250 1500
time (s)

100

120

140

160

180

200

Ba
nd

wi
dt

h
(M

bp
s)

data
prediction

(f) Experiment at 6 A.M.

Figure 3.4: Predictions using the previously trained model.

46

Chapter 4

Resource Scheduling Problem

Formulation

In this chapter, we introduce the system model for the deadline-aware bulk transfer schedul-

ing problem and show how we can formulate this problem using the robust optimization

theory.

4.1 System Model

In this section, we describe our system model including the demand model, network model,

and capacity fluctuation model.

4.1.1 Demand Model

This thesis focuses on the bulk transfers that transmit large volumes of data and are asso-

ciated with pertinent delivery deadlines. An example of such transfer is database backup.

Previous studies found out that these transfers constitute a significant portion of data trans-

mission on WANs between geographically distributed datacenters. We have adopted the

batch model in which bulk transfer requests arrive in batches at every timeslot [45, 52, 23].

47

In this model, a batch of bulk transfer requests, denoted by R, becomes available in the ori-

gin. Furthermore, we have utilized an admission control scheme in which a transfer is either

admitted for transmission or it is rejected. Admitted transfer r ∈ R should transmit Br

bytes of data between timeslots τ 1
r and τ 2

r to the destination. Specifically, τ 1
r is the earliest

timeslot that transfer r can start its transmission and τ 2
r is its delivery deadline. The WAN

provider gains the associated profit of Ur units for each transfer upon completely transmitting

it before its deadline, otherwise, it does not gain any profit from that transfer. Moreover, Pr
denotes the set of tunnels that request r is allowed to use among all the available tunnels (for

security or accounting reasons, a request may not use some of the available tunnels). The

sender should only admit from the batch, the requests that can be fully transmitted before

their deadlines. Each bulk transfer request i is in the form of a tuple (Bi, τ
1
i , τ

2
i) where Bi,

τ 1
i , and τ 2

i denote the request demand, arrival time, and deadline, respectively.

4.1.2 Network Model

Similar to the state-of-the art, in this work time is divided to discreet timeslots and the

scheduling is done at the beginning of every timeslot for the batch of requests that arrived

during the previous timeslot. We set the duration of each timeslot to 3 minutes in order

to leverage the predictability of interactive traffic [36] and reduce the complexity of the

optimization problem that we are going to solve at every timeslot. Furthermore, we assume

that a set of distinct tunnels, denoted by P , are available between the source and the

destination. However, you should note that the exact amount of tunnel capacities are not

known a priori since they are best-effort tunnels that undergo fluctuations. Thus, we assume

that according to the output of our bandwidth predictor, the capacity of tunnel p ∈ P in

timeslot t fluctuates in an interval given by,

[Cp(t)− C̃p(t), Cp(t) + C̃p(t)], (4.1)

48

where, Cp(t) is the expected capacity and C̃p(t) = δ Cp(t), for 0 ≤ δ ≤ 1, is the maximum

capacity fluctuation. Our measurements and state-of-the-art studies demonstrate that it is

feasible to obtain these intervals with prediction methods [47]. Since the probability of all

the tunnels hitting their lowest capacity (i.e., Cp(t)− C̃p(t)) in the same timeslot is low, we

assume that in each timeslot at most Γ ≤ P = |P | tunnels will fluctuate maximally from

their expected capacity.

4.1.3 Capacity Fluctuation Model

Depending on the bandwidth prediction model, we can define two variations of the uncertain

capacity problem.

Path Deviation Model. In the first model, a maximum of Γ paths deviate maximally

from their average capacity in each timeslot.

Time Deviation Model. In the second model, each path deviates a maximum of Υ times

maximally from its average capacity in a time window (i.e: several timeslots).

4.2 Formulation

In this section, we formulate our problem of deadline-aware admission and scheduling of

transfer requests over best-effort SD-WANs. To this end, we admit a set of requests and

specify their transmission rates on the available tunnels such that their deadlines are guaran-

teed, and their sum of profits is maximized. Furthermore, we use linear functions throughout

the problem formulation in order to control the complexity of the constructed model. For

the sake of space, we only bring the steps to formulate the path deviation model. The

time deviation model can be formulated in a similar approach. Table 4.1 provides a list of

employed notations and their definitions.

System Profit. The objective of our problem is to maximize the profit that is gained from

successfully transmitting the accepted requests on a set of permitted tunnels:

49

Inputs Definition

R Set of all requests
P Set of all tunnels
Br Demand (volume) of request r
Ur Profit gained by successfully transmit-

ting request r
Cp Average capacity of tunnel p at times-

lot t

C̃p(t) Deviation of tunnel p’s capacity from
its average

Γ Maximum number of tunnels that de-
viate from
their maximum capacity

δ Ratio of maximum capacity to average
capacity

τ 1
r Arrival time of request r
τ 2
r Deadline of request r

Variable Definition

xrp(t) Transmission volume of request r at
timeslot t over tunnel p

ar Admission status of request r

Table 4.1: Important Mathematical Notations

Max.
∑
r∈R

ar × Ur. (4.2)

Scheduling Bulk Transfers. The decision variable xrp(t) is defined to compute the trans-

mission rate of request r over tunnel p in timeslot t. The following constraints ensure that

each request is allowed only to use a set of permitted tunnels:

xrp(t) ≥ 0, ∀p ∈ Pr, t, r (4.3)

xrp(t) = 0. ∀p /∈ Pr, t, r (4.4)

Path Capacity Constraints. In each timeslot t, the total transmission rate on each tunnel

50

p should be less than or equal to its expected average capacity to avoid overloading of the

tunnels,

∑
r∈R

xrp(t) ≤ Cp(t). ∀t, p (4.5)

Deadline Guarantee. The Binary decision variable ar indicates whether request r is

accepted or not. For each accepted request r, the accumulated data transmission between

its arrival time τ 1
r and its deadline τ 2

r should be equal to Br, the demand of request r. In

this way, we can guarantee that each admitted transfer request is transmitted fully before

its associated deadline. This constraint is formulated as,

ar ×Br ≤
∑

t∈[τ1r ,τ
2
r]

∑
p∈Pr

xrp(t)×Θ, ∀r (4.6)

where, Θ is the length of a timeslot that is utilized to compute transfer volumes from

transfer rates.

Robust Formulation. In order to account for capacity uncertainty, we propose that the

total transmission on all tunnels should be less than or equal to the available bandwidth in

each timeslot, regardless of which paths experience a capacity fluctuation compared to the

estimated values. To this end, we define the following constraint,

∑
r∈R

∑
p∈Pr

xrp(t) ≤
∑
p∈P

Cp(t)− max
π(t)⊆P,
π(t)≤Γ

∑
p∈π(t)

C̃p(t) ∀t. (4.7)

In this equation, π(t) is the set of paths that deviate maximally, or in other words, hit

their lowest capacity in timeslot t. In this notation, Γ = 0 is the perfect scenario where

all the estimations are accurate and Γ = P is the worst-case scenario where all capacities

deviate maximally from their expected value at every time-slot. Note that we are not aware

of the value of π(t) at the moment of scheduling. Instead, we initialize it with the tunnels

that lead to the worst-case scenario using the optimization process (i.e., the employed max

51

operator). Therefore, constraint (4.7) allows us to be prepared for the worst-case scenario

that might prevail within the boundary of our assumptions about the accuracy of estimated

values.

However, the max operator in this problem is non-linear and leads to complications in

the optimization process. In order to linearize constraint (4.7), we utilize a similar approach

to [10] and extract the non-linear term and write it as a separate program. Consequently,

we have:

Max.
∑
p∈P

zp(t)× C̃p(t), (4.8)

s.t.
∑
p∈P

zp(t) ≤ Γ, (4.8a)

0 ≤ zp(t) ≤ 1, (4.8b)

where, zp(t) is a decision variable that indicates whether path p deviates maximally in

timeslot t and Γ restricts the number of fluctuating tunnels. Then, by defining two dual

variables λt and νpt , respectively, associated with constraints (4.8a) and (4.8b), we calculate

the dual of the linear program (4.8), which is another linear program itself. The dual linear

program is as follows:

Min. λp × Γ +
∑
p∈P

νtp, (4.9)

s.t. C̃p(t) ≤ λp + νtp, (4.9a)

0 ≤ λp, 0 ≤ νtp. (4.9b)

Next, we can replace the non-linear term of constraint (4.7) with the objective of (4.9)

and include constraints (4.9a) and (4.9b) in the original problem formulation. Specifically,

52

we replace constraint (4.7) with the following constraints:

∑
r∈R

∑
p∈Pr

xrp(t) ≤
∑
p∈P

Cp(t)− λp × Γ−
∑
p

νtp (4.10)

C̃p(t) ≤ λp + νtp, (4.11)

0 ≤ λp, 0 ≤ νtp. (4.12)

Objective (4.2) along with constraints (4.3)-(4.5) and (4.10)-(4.6) define the problem of

deadline-aware scheduling of bulk transfers over best-effort Internet tunnels, which is shown

in Algorithm 1.

The time deviation model can be formulated in a similar approach. We replace con-

straint (4.7) with (4.13) as follows:

∑
t∈T

∑
r∈R

xr(p)× hr(t) ≤
∑
t

Cp(t)−max
∑
t∈τ(t),

π(t)≤Γ2(p)

C̃p(t),∀p (4.13)

Then, we utilize the same approach we used to linearize constraint (4.7) in order to derive

53

constraint (4.10).

Algorithm 1: Bulk Transfer Scheduling with Deadline on Best-effort SD-WANs

max
∑
r∈R

Ur × ar

subject to∑
r∈R

∑
p∈Pr

xrp(t) ≤
∑
p∈P

Cp(t)− λp × Γ−
∑
p

νtp

ar ×Br ≤
∑
p∈P

∑
t∈[τ1r ,τ

2
r]

xrp(t), ∀r

C̃p(t) ≤ λp + νtp

0 ≤ λp,

0 ≤ νp

54

4.2.1 Exact Algorithm

In this section, we present our exact algorithm for bulk transfer scheduling with deadline

over best-effort SD-WANs.

Algorithm 2: Exact Algorithm

Input:

B(t) = b1, b2, ..., bn : A batch request with n bulk transfer requests at timeslot t;

P (t) = p1, p2, ..., pm : Set of m available tunnels between source and destination;

C(t) = cp1(t1), cp2(t1), · · · , cpm(t1), · · · , cpm(tτ) : Matrix of expected capacities over

the next τ timeslots for all tunnels;

Γ : Expected number of tunnels that experience worst-case deviation;

δ : Maximum deviation from expected value

Output:

A = a1, a2, ..., an : Set of admission status of all transfer requests B(t)

Xr
p(t) = xr1p1(t1), cp2r1(t1), · · · , cpmr1(t1), · · · , cpmrm−1(tτ), cpmrn(tτ) : Matrix of

transmission rate of each transfer request over τ timeslots for all tunnels;

max
∑
r∈R

Ur × ar

subject to∑
r∈R

∑
p∈Pr

xrp(t) ≤
∑
p∈P

Cp(t)− λp × Γ−
∑
p

νtp

(4.9a), (4.9b), (4.6)

Algorithm 2, however, is computationally demanding and time-consuming due to the

integrality of some of its variables, which makes it impractical for big problems.

55

4.2.2 Approximate Algorithm

In order to mitigate the complexity issue of our exact algorithm, we develop an approximate

algorithm based on the iterative rounding technique. To this end, we remove the integrality

of ar variables, which yields an optimal fractional solution in polynomial time. Then, we

run a greedy algorithm that iteratively chooses a request with the highest profit to demand

ratio (i.e., ρr = Ur

Br
)), round ar to 1, and determine whether the network capacity allows

this admission. Please note that we choose the request with the highest demand among the

requests with the same profit to volume ratio (Br). If rounding to 1 leads to an infeasible

56

solution, we round it to 0. Algorithm 3 shows our approximate solution.

Algorithm 3: Approximate Algorithm

1 procedure xBESD()

2 M ← MIP() /* create integer model */

3 M̃ ← relax(M)

4 A← {} /* accepted requests */

5 J ← {} /* rejected requests */

6 status, {ãr}, {xrp(t)} ← solve(M̃)

7 while True do

8 foreach r ∈ R− A ∪ J and ãr = 1 do

9 ãr.lower bound ← 1 /* fix the decision variable to 1 */

10 A.append(r)

11 foreach r ∈ R− A ∪ J and ãr = 0 do

12 ãr.upper bound ← 0 /* fix the decision variable to 0 */

13 J .append(r)

14 if A ∪ J 6= R then

15 r? ←r∈R−A∪J {ρr, Br}

16 ãr? .lower bound ← 1

17 status, {ãr}, {xrp(t)} ← solve(M̃)

18 if status = INFEASIBLE then

19 ãr? .lower bound ← ãr? .upper bound ← 0

20 J .append(r?)

21 status, {ãr}, {xrp(t)} ← solve(M̃)

22 else

23 A.append(r?)

24 else

25 return {ãr}, {xrp(t)}

57

In the following, we explain the approximate algorithm in detail. Please note that we

have used tilde to indicate relaxed variables. First, the algorithm constructs the problem;

then it starts by relaxing the integrality constraint of ar variables, which is shown in line 3.

Furthermore, lists A and J are created to store the accepted and rejected requests, respec-

tively. Then the relaxed model is solved in line 6, and an optimal fractional solution is

obtained. Subsequently, a while loop computes a feasible integral solution iteratively in

lines 7 through 25. In each iteration, first, all requests whose values are already 1 and 0

are directly added to the accepted and rejected sets in lines 8 and 11, respectively. Then,

in lines 15 through 23, each variable is first rounded to 1 by setting its lower bound to 1,

then the problem is solved, and if the solution is feasible, the relevant request is added to

the accepted list. Otherwise, if the solution is infeasible, the variable is rounded to 0 by

setting its upper bound to 0 and the request is added to the rejected list. Then the problem

is solved again, and the solution is stored. Finally, when no requests remain that are not in

either of the accepted or rejected sets, the solution is returned in line 25.

58

Chapter 5

Analysis

In this chapter we first provide theoretical analysis to evaluate the run-time complexity and

approximation ratio of our approximate algorithm. Then we provide our simulation and

experiment results.

5.1 Theoretical Analysis

In theorem 5.2, we prove that our approximate method, specifically selecting requests, has

an approximate ratio that depends on the number of requests with an equal profit to demand

ratio.

Theorem 5.1. The approximate algorithm runs in O(|R| × (|R||P |T)3.5).

Proof. Since each iteration, we subtract at least one request from the remaining requests

and add it either to the accepted requests or to the rejected ones, the while loop terminates

after at most |R| iterations. This is shown in lines 23 through 20) respectively. Moreover, we

solve at most two linear programs with O(|R| × |P | ×T) decision variables in each iteration,

where T is the length of the data transmission period from the smallest τ 1
r to the largest

τ 2
r . In the worst-case scenario, the interior point method solves a linear program in O(n3.5),

where n is the number of decision variables.

59

Time

Br

τ 1r1 τ 2r1
τ 1r2 τ 2r2

τ 1r3 τ 2r3
τ 1r4 τ 2r4

τ 1r5 τ 2r5
τ 1r6 τ 2r6

1 2 3 4 5 6 7 8 9 10 11

A Fractional Knapsack At Time 5

Figure 5.1: Effect of requests on bandwidth allocation of each other.

Theorem 5.2. The approximation ratio of the algorithm is at most Ψ − 1, where Ψ is the

maximum number of requests that overlap in a timeslot and their ρr (i.e., profit to demand

ratio, ρr = Ur

Br
) is equal.

Proof. In order to accept r1 with ãr1 ∈ (0, 1), we have to reject a set of requests Rr1 , whose

size is at most Ψ − 1. Fig. 5.1 shows that the total network consumption of set Rr1 in the

[τ 1
r1
, τ 2
r1

] period is at least (1 − ar1)Br1 . If Rr1 is empty, it is not possible to accept the

request r1; therefore, we set ar1 = 0 and solve the fractional solution again. Also, we can

take bandwidth from one request and give it to another one since none of the requests are

complete yet. In each timeslot the problem is similar to a fractional knapsack, where more

bandwidth is allocated to requests with a higher profit to volume ratios (i.e., ρr = Ur/Br).

Furthermore, all admitted incomplete requests in a timeslot have an equal profit to volume

ratio since the solution is optimal, and there is no possibility for increasing the objective value

by admitting a request with higher profit to volume ratio. Our problem, however, differs

from a fractional knapsack in that the allocated bandwidth to each request is determined by

the solution and is not known a priori. As a result, we cannot apply a relevant solution to

our problem. Moreover, by accepting r1, the rounded solution gains Ur1 , while the optimal

solution can gain, at most,
∑

r′∈Rr1
Ur′ . In order to bound the ratio

∑
r′∈Rr1

Ur′

Ur1
, we define r′′

to be the request in Rr1 with the maximum Br′′ . An upper bound for the approximation

ratio is

60

∑
r′∈Rr1

ρr′Br′

ρrBr1

≤

∑
r′∈Rr1

Br′′

Br1

= (Ψ− 1)
Br′′

Br1

(5.1)

We have Br′′ ≤ Br1 , which leads to
Br′′
Br1
≤ 1. Therefore, the rounding technique with the

descending order of transfer volume has an approximation ratio of at most Ψ− 1.

5.2 Experimental Analysis

Methodology

We used simulations and Mininet experiments to evaluate our proposed algorithm. The

simulations are focused on evaluating the performance of our algorithm compared to baseline

algorithms under different circumstances. Furthermore, the Mininet experiments intend

to evaluate our algorithm’s performance in a realistic network environment. We use the

acceptance rate of the transfers, the total profit gained, and run-time in various

scenarios for our performance metric.

Algorithms

State-of-the-art algorithms have a reactive approach with regards to capacity fluctuations;

therefore, they fail to leverage the extra profit gained by utilizing the cheaper best-effort tun-

nels. On the other hand, our algorithm considers the fluctuations and proactively schedules

bulk transfers on the best-effort tunnels in such a way as to maximize the profit. Conse-

quently, we chose two baseline algorithms to which we compared our result.

1. Average Algorithm: The average algorithm, denoted by AVG, takes into account

only the predicted average capacities and schedules requests based on those values. It

goes without saying that AVG does not consider capacity fluctuations.

2. Effective Bandwidth Algorithm: The Effective Bandwidth algorithm, denoted by

61

EB, calculates an effective bandwidth value for each tunnel somewhere between the av-

erage capacity and the maximum capacity fluctuation. Depending on how conservative

we are on calculating the effective bandwidth, it can be either closer to the average

bandwidth or to the maximum fluctuation. We used the algorithm in [46] to implement

EB with three percentiles of 90, 95, and 99, with 99 being the most conservative (i.e.,

closer to the maximum fluctuation) and 90 being the least conservative (i.e., closer to

the average capacity).

5.2.1 Simulation Experiments

Setup

In our simulation experiments, we used a topology that consists merely of a source and a

destination to focus on the performance of point-to-point scheduling. However, our algorithm

can also be utilized for more complicated topologies. In different experiments, we evaluate

the performance of all algorithms for different values of several parameters, including the

number of paths, the duration of the deadline, the number of requests, maximum capacity

deviation, and frequency of fluctuations (i.e., number of fluctuating paths). We have repeated

each experiment 33 times and used a 95% confidence interval to present the results.

The default values for all other parameters are as follows. The number of end-to-end

tunnels is set to 10. These tunnels have an average capacity in the range [50, 200] Mbps

with a maximum fluctuation of 40% from the average. Our measurements demonstrate a

fluctuation range of 15% to 20%; however, it may reach up to 50% due to factors such as

traffic shaping and link outages [47, 68, 75]. We set Γ to 7 and Υ to 35 for the tunnel

deviation model and the time deviation model, respectively. The requests’ start time is

modeled as a Poisson process with an arrival rate of λ = 4 request per second. Also, the

requests’ deadline is modeled as an exponentially distributed random variable with a mean of

10 timeslots from their starting time. We generated the utility associated with each request

62

as a random variable with uniform distribution in range [1, 10]. We set each timeslot duration

to be 3 minutes and the total transmission period to be 50 timeslots. We implemented all the

simulations in Python 3 environment on a machine with an Intel® CoreTM i7-8700 processor

at 3.20 GHz and 8 GB of RAM.

Results

First, we provide an overview of the performance of our algorithm under the aforementioned

general setup. In this overview, we demonstrate using Fig. 5.2 that our algorithm achieves

better profit than its counterparts. At the same time, Fig. 5.2b shows that the difference

between Bulk transfer Scheduling with DEadline over best-effort SD-WANs (BESD) and

approximate-BESD (xBESD) is more subtle in the time deviation model. Nevertheless,

xBESD still manages to outperform baseline algorithms by a significant margin in both

models. Concerning the run-time, all algorithms perform similarly within a range of [7, 13]

seconds, while our approximate algorithm has a slight advantage over the baseline algorithms,

as shown in 5.3. This run-time is reasonable for our case of scheduling bulk transfers where

each transfer takes approximately 30 minutes to finish, and we run the algorithm once every

150 minutes for a large number of transfers. Afterwards, we provide micro-benchmarks, each

of which focuses on a different aspect of the algorithm or the environment in order to provide

a thorough evaluation of the performance. Since our exact algorithm is computationally

hard and has a long run-time, we focus on our approximate algorithm, which has a similar

performance with a considerable computational and run-time advantage.

Effect of Number of Paths

Figs. 5.4 and 5.5 demonstrate the benefits of our proactive algorithm for a different number

of paths with a fixed total network capacity. We set Γ to be 1, 2, 3, 7, and 10 for 1, 3, 5,

10, 15 number of paths, in the path deviation experiment, as well as we set Υ to be 35 for

the time deviation experiment. For one path, under both models, our algorithm performs

63

BESDxBESD AVG EB90 EB95 EB990

20

40

60

80

100
Pr

of
it

(a) Path deviation model.

BESDxBESD AVG EB90 EB95 EB990

20

40

60

80

100

Pr
of

it

(b) Time deviation model.

Figure 5.2: Profit of different algorithms.

xBESD AVG EB90 EB95 EB990.0

2.5

5.0

7.5

10.0

12.5

Ru
n

Ti
m

e
(s

)

Figure 5.3: Run-time of different algorithms.

close to optimal since there is only one path and our algorithm is aware of its fluctuations,

while the other algorithms fail to transmit many transfers before their deadline successfully;

therefore, they gain low to no profit. Specifically, we observe a very high gained profit in

the path deviation model due to our algorithm’s considering the worst-case scenario. For

our algorithm, we notice a slight upward trend in the acceptance rate by increasing the

number of available paths, whereas there is a downward trend for the profit. Exhibiting the

downward trend arises from an increased misprediction probability due to a higher number

of paths and partial information about the fluctuations. In the path deviation experiment,

we notice an upward trend in the baseline algorithms’ profit since they no longer suffer from

64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of Paths

0.75

0.80

0.85

0.90

0.95

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of Paths

0

100

200

300

400

500

600

700

Pr
of

it

AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.4: Effect of number of paths in path deviation model.

constant fluctuations. On the other hand, in the time deviation model, a similar trend to

our algorithm is demonstrated. In summary, our algorithm shows superior performance over

the baseline for path values in range 1 to 15, which indicates the advantage of our robust

formulations.

By increasing the number of paths beyond this point and to the infinity, while our al-

gorithm’s gained profit will converge to zero, the baseline algorithms’ gained profits will

converge to the optimal value. However, having a large number of paths is very costly and

defeats the purpose of our algorithm, which is reducing the expenses of the network.

Effect of Number of Requests

Figure 5.6 and 5.7 show the behavior of different algorithms as the transfer request rate

increases. Under both experiments, algorithms show a decrease in the acceptance rate, which

implies that the paths are already close to capacity saturation with the current environment

values. On the other hand, with more requests arriving in the system, there is a higher

chance of admitting a request with higher profit and lower demand due to a more varied

selection, resulting in an upward trend in our algorithm’s profit.

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of Paths

0.75

0.80

0.85

0.90

0.95

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of Paths

50

100

150

200

250

Pr
of

it

AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.5: Effect of number of paths in time deviation model.

2 4 6 8
Request arrival rate ()

0.6

0.7

0.8

0.9

1.0

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

2 4 6 8
Request arrival rate ()

20

40

60

80

100

120

Pr
of

it
AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.6: Effect of number of requests in the path deviation model.

Effect of Request Deadline

Figs. 5.8a and 5.9a show that the acceptance rate of all algorithms increases as the duration

of requests increases. For the baseline algorithms that do not consider fluctuations (i.e., AVG

Algorithm) or take conservative decisions about them (i.e., EB Algorithm), the increased

acceptance rate results in an upward trend in the profit, which results from loose deadlines

that allow a higher number of requests to finish before their associated deadlines on non-

66

2 4 6 8
Request arrival rate ()

0.5

0.6

0.7

0.8

0.9

1.0
Ac

ce
pt

an
ce

 R
at

e
(%

)
AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

2 4 6 8
Request arrival rate ()

25

50

75

100

125

150

175

Pr
of

it

AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.7: Effect of number of requests in the time deviation model.

10 12 14 16
Mean duration of requests (ts)

0.75

0.80

0.85

0.90

0.95

1.00

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

10 12 14 16
Mean duration of requests (ts)

0

20

40

60

80

Pr
of

it
AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.8: Effect of request deadline in path deviation model.

fluctuating paths or when fluctuations do not occur. On the other hand, our algorithm

suffers from more mispredictions when a request stays longer in the system, hence, the

downward trend. However, to avoid repeated rejection of the requests with longer deadlines,

the relevant profit value can be modified according to the time the request has spent awaiting

admission.

67

5 10 15 20 25
Mean duration of requests (ts)

0.75

0.80

0.85

0.90

0.95

1.00

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

5 10 15 20 25
Mean duration of requests (ts)

30

40

50

60

70

80

90

Pr
of

it

AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.9: Effect of request deadline in time deviation model.

Effect of Request Demand Volume

In both experiments, as we increase the mean demand of requests, we observe a drop in the

profit in Figs. 5.10b and 5.11b. The drop in the profit is anticipated because, as shown in

Figs. 5.10a and 5.11a, fewer requests are admitted; therefore, less profit is gained from their

transmission.

Effect of Capacity Fluctuations

In this scenario, we study the effect of maximum capacity deviation from the estimated

values. We let δ to be 10%, 20%, 30%, 40%, and 50% to demonstrate the effect of small

and large fluctuations. In Fig. 5.12a, we observe that while the baseline algorithms do not

react to the severity of the fluctuations in the network, our algorithm admits fewer requests

in such a situation. Furthermore, Fig. 5.12b shows that our algorithm outperforms other

algorithms in terms of profit under different fluctuations.

68

0 20 40 60 80 100
Mean demand of requests (ts)

0.4

0.6

0.8

1.0
Ac

ce
pt

an
ce

 R
at

e
(%

)
AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

0 20 40 60 80 100
Mean demand of requests (ts)

0

100

200

300

400

Pr
of

it

AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.10: Effect of request demand in the path deviation model.

Effect of Number of Fluctuations

In this scenario, we study the effect of different values of Γ (i.e., number of paths whose

capacity fluctuate in a timeslot) and Υ (i.e., number of times a path’s capacity fluctuates in

a transmission period) on the performance of our algorithm. In the first experiment, we set

the number of available paths to 10, and increase Γ from 7 to 10. The paths with capacity

fluctuations are chosen in such a way to account for the worst-case scenario (i.e., paths with

the lowest capacities fluctuate and hit their maximum deviation). Fig. 5.14a shows that our

algorithm admits fewer requests when this number increases. Our algorithm outperforms the

other algorithms significantly in terms of profit, which is shown in Fig. 5.14b. In the next

experiment, we increase Υ from 35 to 50 and observe the behaviour of different algorithms.

Similar to the previous experiment, Figs. 5.15a and 5.15b show that our algorithm admits

fewer requests and successfully transmits a higher portion of them compared to baseline

algorithms.

69

0 20 40 60 80 100
Mean demand of requests (ts)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

ce
pt

an
ce

 R
at

e
(%

)
AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

0 20 40 60 80 100
Mean demand of requests (ts)

0

50

100

150

200

250

300

350

Pr
of

it

AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.11: Effect of request demand in the time deviation model.

10 15 20 25 30 35 40
 (%)

0.75

0.80

0.85

0.90

0.95

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

10 15 20 25 30 35 40
 (%)

0

20

40

60

80

100

Pr
of

it
AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.12: Effect of maximum capacity deviation from average in path deviation model.

5.2.2 Sensitivity Analysis

In this section, we evaluate the performance of our algorithm under unpredictable changes

to the estimations. In order to conduct this experiment, we make our algorithm unaware of

the changes to the values of Γ, Υ, and δ.

70

10 15 20 25 30 35 40
 (%)

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

10 15 20 25 30 35 40
 (%)

40

60

80

100

Pr
of

it

AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.13: Effect of maximum capacity deviation from average in time deviation model.

7.0 7.5 8.0 8.5 9.0 9.5 10.0

0.75

0.80

0.85

0.90

0.95

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

7.0 7.5 8.0 8.5 9.0 9.5 10.0
0

20

40

60

80

Pr
of

it
AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.14: Effect of number of fluctuations per time window.

Effect of Capacity Fluctuations

In this scenario, we demonstrate that small unpredictable changes to the maximum capacity

fluctuations do not severely affect our algorithm’ performance. Table 5.1 shows that 30%

change to the estimations causes about the same percentage of performance drop.

71

35.0 37.5 40.0 42.5 45.0 47.5 50.0

0.75

0.80

0.85

0.90

Ac
ce

pt
an

ce
 R

at
e

(%
)

AVG
EB90

EB95
EB99

xBESD

(a) Effect on acceptance rate.

35.0 37.5 40.0 42.5 45.0 47.5 50.0
0

20

40

60

80

100

Pr
of

it

AVG
EB90

EB95
EB99

xBESD

(b) Effect on profit.

Figure 5.15: Effect of number of fluctuations per path per time window.

δ Acceptance Profit
Rate

30% 0.79 82.95
32% 0.83 82.45
34% 0.81 82.9
36% 0.79 71.85
38% 0.77 65.68
40% 0.83 66.63

Table 5.1: Effect of maximum capacity deviation from average

Effect of Number of Fluctuations Per Timeslot

In Table 5.2 we notice that our algorithm has a mild reaction to unpredictable changes at

first, then its performance drops significantly. However, we should note that we do not

expect more than 30% unpredictable change in the estimations, as was mentioned in the

previous chapters.

Effect of Number of Fluctuations Per Path Per Transmission Period

Similar to the previous experiment, in Table 5.3, we observe that our algorithm has a negli-

gible loss up to the 30% threshold. Afterwards, there is a significant performance loss.

72

Γ Acceptance Profit
Rate

7 0.79 81.7
8 0.84 53.7
9 0.82 45.8
10 0.79 20.5

Table 5.2: Effect of number of fluctuations per timeslot.

Υ Acceptance Rate Profit

20 0.75 114.95
21 0.73 116.6
22 0.72 115.2
23 0.73 108.23
24 0.75 106.63
25 0.76 106.13
26 0.77 104.56
27 0.74 97.15
28 0.75 96.36
29 0.74 93.29
30 0.72 89.64

Table 5.3: Effect of number of fluctuations per path per transmission period.

5.2.3 Mininet Experiments

We use Mininet [3] to evaluate our algorithm’s performance in an emulated realistic net-

work environment. The available bandwidth of each path changes according to the same

fluctuation models as the simulations, namely Path Deviation Model and Time Deviation

Model.

Setup

To carry out Mininet experiments, we set up an environment with the following specifications:

• Trials: We conducted a trial of 150 minutes (i.e., 50 timeslots of 3 minutes) for each

of the algorithms. During each trial, we generated traffic in such a way to account for

bulk transfers as well as to emulate the capacity fluctuations.

73

• Topology: Our emulated topology consists of 12 switches and 2 hosts. Ten switches

that emulate the Internet paths are connected to both of the hosts through two ingress/egress

switches. This topology is shown in Fig. 5.16. We set the capacity of the links using

the tc command so as to conform to the parameters we used for the paths in the sim-

ulations. In order to create capacity fluctuations, we generated background traffic and

sent it over the network. One of the hosts acted as the sender, and the other acted as

the receiver of the bulk transfers.

• Controller: We built the developer edition of the ONOS SDN controller from the source

and used it as our controller, which is shown in Fig. 5.16. Our solver passes the op-

timization problem’s solution as the set of available paths per transfer per timeslot to

the controller. The controller then installs the pertinent flows at the beginning of every

timeslot according to that information.

• Multipath Routing: We implemented a software module on top of the ONOS con-

troller using its Java API v1.13.1 and the TopologyService interface in order to

enable the controller to assign multiple paths to each flow.

• Traffic Monitoring: We implemented the traffic monitoring module on top of the

controller to collect port utilization statistics using PortStatistics interface during

each experiment.

• Traffic Generator: We implemented a custom traffic generator consisting of a client

and a server. The client generates bulk transfers using UDP packets. For each specific

transfer request, we used a unique destination port number.

• Environment: We conducted all experiments on an Ubuntu 20.0 LTS VM on Amazon

AWS with four vCPUs and 8 GBs of RAM.

74

Traff ic
Monitor ing

Multipath
Routing

Control
Layer

Data
Layer

Application
Layer

Figure 5.16: Topology of the experimental network.

Path Deviation Model

In this experiment, in order to create 70% fluctuation intensity (i.e., Γ = 7), we introduce a

40% fluctuation from the estimated average for 7 out of 10 paths, while the other 3 stay within

their estimated average. We chose the other parameters to conform with the simulations and

studied the following metrics:

• Link Utilization: The amount of traffic traversing a link divided by its total link

capacity.

• Profit: The total profit gained from successfully transmitting bulk transfer requests

before their associated deadlines.

Figs. 5.17a and 5.17b demonstrate the achieved results in this experiment. Specifically,

Fig. 5.17a shows that our algorithm achieves approximately 12% lower utilization in the

majority of timeslots, which means significantly less bandwidth consumption. However,

baseline algorithms have roughly the same utilization because they admit more or less the

75

0.0 0.2 0.4 0.6 0.8 1.0
Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0

P{
x
<
X
}

AVG

EB95

EB90

EB99

xBESD

(a) CDF of link utilization.

xBESD AVG EB90 EB95 EB990
10
20
30
40
50
60
70
80
90

Pr
of

it

(b) profit of different algorithms.

Figure 5.17: Path deviation experimental results.

same requests, which is also compatible with the results obtained from the simulations.

This stems from the fact that our robust formulation allows our algorithm to admit requests

according to the characteristics of the fluctuations, therefore, it is less likely to admit requests

that cannot be successfully transmitted before their deadlines. On the other hand, not having

a proper formulation of the fluctuations puts baseline algorithms in a disadvantages, leading

to admitting too many requests that eventually cannot successfully finish, hence the higher

utilization. Furthermore, Fig. 5.17b shows that baseline algorithms, due to over-allocation

and under-allocation of the paths, perform inferior to our algorithm. The AVG algorithm

does not consider fluctuations and over-allocate the paths in every fluctuation timeslot. On

the other hand, the EB algorithm takes a conservative approach and considers a capacity

between the maximum fluctuation and the average, causing EB to over-allocate the paths in

a fluctuation timeslot and under-allocate them in other times, which puts EB at a significant

disadvantage compared to AVG and xBESD, hence the lower achieved profit.

It is worth mentioning that having a lower bandwidth consumption gives xBESD a notable

financial advantage. In this regard, burstable billing or usage-based billing is a common

billing scheme for Internet paths [65, 22]. In these schemes, the user is charged a bill according

76

0.0 0.2 0.4 0.6 0.8 1.0
Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0

P{
x
<
X
}

AVG

EB99

EB95

EB90

xBESD

(a) CDF of link utilization.

xBESD AVG EB90 EB95 EB990
10
20
30
40
50
60
70

Pr
of

it

(b) profit of different algorithms.

Figure 5.18: Time deviation experimental results.

to their bandwidth consumption in a billing cycle. In state-of-the-art algorithms that utilize

leased lines in an MPLS network, maximizing path utilization is of utmost importance since

a significant portion of the costs are dedicated to these lines; therefore, they are ought to

be used most efficiently. In our work, on the other hand, we utilize Internet best effort

paths that are most likely billed using a usage-based scheme. Consequently, lower path

utilization leads to paying less for the provided service to the ISP and lowering the costs. In

summary, our algorithm has superior performance in terms of gained profit and bandwidth

consumption compared to baseline algorithms.

Time Deviation Model

In this experiment, similarly, we study bandwidth utilization and achieved profit. To this end,

we create capacity fluctuations for every path in 70% of the total timeslots in a transmission

period. In other words, each path fluctuates maximally in 35 timeslots randomly chosen

among all timeslots (i.e., Υ = 35). Figs. 5.18a and 5.18b demonstrate the advantages of our

robust formulation of capacity fluctuations compared to algorithms that either do not take

them into consideration or utilize a conservative approach towards them. Baseline algorithms

77

can successfully transmit a transfer provided that no paths on which the transfer’s traffic

traverses suffer from capacity fluctuations during the total course of transmission. Since

this occurrence is rare, baseline algorithms cannot transmit too many requests successfully.

On the other hand, xBESD achieves a robust formulation of capacity fluctuations, giving

it the advantage of a higher probability of predicting the fluctuations, thus, successfully

transmitting more requests.

78

Chapter 6

Conclusion

6.1 Thesis Summary

In this thesis, we provided a solution for scheduling bulk transfer requests over the Internet

best-effort paths. We argued that we could provide a cheaper alternative to dedicated leased

lines by utilizing the software defined networks and best-effort paths. We also provided a

solution to account for the capacity fluctuations on the best-effort paths due to cross traffic,

traffic engineering, and maintenance by proposing a robust formulation of the scheduling

problem, which requires partial information with respect to the behaviour of the path capac-

ities. Using statistical analysis, we demonstrated that Internet paths’ capacity is predictable

in short periods and does not suffer significant fluctuations. Furthermore, by utilizing the

machine learning technique and LSTM neural networks, we showed that it is feasible to

predict an estimation range with acceptable error for capacities in more extended periods,

hence the possibility of realizing the robust formulation.

Moreover, considering the computational complexity of the deduced optimization prob-

lem, we proposed an approximate algorithm using the rounding technique, which has com-

parable performance as well as a significant computational advantage. We evaluated our

proposed proactive algorithm’s performance against two baseline methods using two sets of

79

experiments, namely simulations and Mininet experiments. In the former, we first showcased

the performance advantage of our algorithm in a general setup. Then, we provided several

micro-benchmarks in order to provide a thorough analysis of our algorithm under the effects

of different environments and algorithm parameters. In the Mininet experiments, we studied

our proposed algorithm’s performance in an emulated real-world scenario, which validated

our simulation results. In summary, we showed that we could estimate the behaviour of best-

effort SD-WAN capacities within an acceptable error margin and properly formulating the

problem of bulk transfer scheduling over best-effort SD-WANs, and utilizing their estimated

behaviour we can obtain a cheaper alternative than the leased dedicated WANs.

6.2 Future Research Directions

This section highlights interesting future research directions of resource scheduling in SD-

WANs.

• Reconfigurable Networks: The myriad of the state-of-the-art works in inter-datacenter

networks, though sophisticated, are demand-oblivious with regards to the network’s

topology. In other words, the underlying network’s topology is fixed regardless of the

user application’s demand, and it rather suggests to the user a set of available resources

from a fixed pool. However, a new paradigm has brought about a new opportunity

for the network providers to reconfigure the topology at run-time based on the user’s

demand [6]. Combined with SDN, reconfigurable optical networks provide many oppor-

tunities for application-aware bulk transfer requests.

• Passive Optical Networks: Passive optical networks (PON) is a new paradigm of optical

networks in which the upstream works in a Time Division Multiplexing fashion and the

downstream is broadcast, which allows some units to put their sender or receiver to

sleep at specific times in order to conserve energy. By utilizing SDN and this type of

networks for inter-DC transfers we can save a significant amount of energy. To this

80

end, we can optimize the sleep schedules in such way to only meet the request deadlines

while maximizing energy conservation.

81

Bibliography

[1] Gurobi, the fastest solver. Available: https://www.gurobi.com. Accessed: December

2020. [Online].

[2] Iperf, the ultimate speed test tool for tcp, udp and sctp. Available: https://iperf.fr.

Accessed: December 2020. [Online].

[3] Mininet, an instant virtual network on your laptop (or other pc). Available: http:

//mininet.org. Accessed: December 2020. [Online].

[4] Abdelnaser Adas. Traffic models in broadband networks. IEEE Communications Mag-

azine, 35(7):82–89, 1997.

[5] Petri Aukia, Murali Kodialam, Pramod VN Koppol, TV Lakshman, Helena Sarin, and

Bernhard Suter. Rates: A server for mpls traffic engineering. IEEE Network, 14(2):34–

41, 2000.

[6] Chen Avin and Stefan Schmid. Toward demand-aware networking: A theory for self-

adjusting networks. Proc. ACM SIGCOMM, 48(5):31–40, 2019.

[7] Abdul Basit, Saad Qaisar, Mudassar Ali, Muhammad Naeem, Marc Bruyere, and

Joel JPC Rodrigues. Interconnecting networks with optimized service provisioning.

Telecommunication Systems, 73(2):223–239, 2020.

[8] Paola Bermolen and Dario Rossi. Support vector regression for link load prediction.

Computer Networks, 53(2):191–201, 2009.

82

https://www.gurobi.com
https://iperf.fr
http://mininet.org
http://mininet.org

[9] Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and applica-

tions of robust optimization. SIAM review, 53(3):464–501, 2011.

[10] Dimitris Bertsimas and Melvyn Sim. The Price of Robustness. Operations Research,

52(1):35–53, 2004.

[11] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh, and

Jacobus van der Merwe. Design and implementation of a routing control platform. In

Proc. USENIX NSDI, pages 15–28, 2005.

[12] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and

Scott Shenker. Ethane: Taking control of the enterprise. volume 37, pages 1–12, 2007.

[13] Samira Chabaa, Abdelouhab Zeroual, Jilali Antari, et al. Identification and prediction of

internet traffic using artificial neural networks. Journal of Intelligent Learning Systems

and Applications, 2(03):147, 2010.

[14] Federico Chiariotti, Stefano D’Aronco, Laura Toni, and Pascal Frossard. Online learning

adaptation strategy for dash clients. In In Proc. ACM MMSys, pages 1–12, 2016.

[15] TS Choi, SH Yoon, HS Chung, CH Kim, JS Park, BJ Lee, and TS Jeong. Wise: traffic

engineering server for a large-scale mpls-based ip network. In Proc. IEEE/IFIP NOMS,

pages 251–264, 2002.

[16] David Chou, Tianyin Xu, Kaushik Veeraraghavan, Andrew Newell, Sonia Margulis, Lin

Xiao, Pol Mauri Ruiz, Justin Meza, Kiryong Ha, Shruti Padmanabha, et al. Taiji:

managing global user traffic for large-scale internet services at the edge. In Proc. ACM

SOSP, pages 430–446, 2019.

[17] Massimo Corradi, Rosario Giuseppe Garroppo, Stefano Giordano, and Michele Pagano.

Analysis of f-arima processes in the modelling of broadband traffic. In Proc. IEEE ICC,

volume 3, pages 964–968, 2001.

83

[18] Paulo Cortez, Miguel Rio, Miguel Rocha, and Pedro Sousa. Internet traffic forecasting

using neural networks. In Proc. IEEE IJCNN, pages 2635–2642, 2006.

[19] David R Cox. The regression analysis of binary sequences. Journal of the Royal Statis-

tical Society: Series B (Methodological), 20(2):215–232, 1958.

[20] Emilie Danna, Avinatan Hassidim, Haim Kaplan, Alok Kumar, Yishay Mansour, Danny

Raz, and Michal Segalov. Upward max-min fairness. Journal of the ACM (JACM),

64(1):1–24, 2017.

[21] Emilie Danna, Subhasree Mandal, and Arjun Singh. A practical algorithm for balancing

the max-min fairness and throughput objectives in traffic engineering. In Proc. IEEE

INFOCOM, pages 846–854, 2012.

[22] Xenofontas Dimitropoulos, Paul Hurley, Andreas Kind, and Marc Ph Stoecklin. On the

95-percentile billing method. In Proc. Springer PAM, pages 207–216, 2009.

[23] Mahdi Dolati, Majid Ghaderi, and Ahmad Khonsari. Proactive inter-datacenter multi-

cast with realtime and bulk transfers. In Proc. IEEE/ACM IWQoS, pages 1–10, 2019.

[24] Svante Ekelin, Martin Nilsson, Erik Hartikainen, Andreas Johnsson, J-E Mangs, Bob

Melander, and Mats Bjorkman. Real-time measurement of end-to-end available band-

width using kalman filtering. In Proc. IEEE/IFIP NOMS, pages 73–84, 2006.

[25] Anwar Elwalid, Cheng Jin, Steven Low, and Indra Widjaja. Mate: Mpls adaptive traffic

engineering. In Proc. IEEE INFOCOM, volume 3, pages 1300–1309, 2001.

[26] Alaknantha Eswaradass, X-H Sun, and Ming Wu. A neural network based predictive

mechanism for available bandwidth. In Proc. IEEE IPDPS, pages 10–pp, 2005.

[27] Alaknantha Eswaradass, Xian-He Sun, and Ming Wu. Network bandwidth predictor

(nbp): A system for online network performance forecasting. In Proc. IEEE CCGRID,

volume 1, pages 4–pp, 2006.

84

[28] Ilhem Fajjari, Nadjib Aitsaadi, and Djamel Eddine Kouicem. A novel sdn scheme for

qos path allocation in wide area networks. In Proc. IEEE GLOBECOM, pages 1–7,

2017.

[29] Yuan Feng, Baochun Li, and Bo Li. Jetway: Minimizing costs on inter-datacenter video

traffic. In Proc. ACM MM, pages 259–268, 2012.

[30] Yuan Feng, Baochun Li, and Bo Li. Postcard: Minimizing Costs on Inter-Datacenter

Traffic with Store-and-Forward. In Proc. IEEE ICDCSW, pages 43–50, 2012.

[31] Bernard Fortz, Jennifer Rexford, and Mikkel Thorup. Traffic engineering with tradi-

tional ip routing protocols. IEEE communications Magazine, 40(10):118–124, 2002.

[32] Qian Gao, Jiang Liu, Ningjie Gao, and Tao Huang. A dual decomposition method for

hierarchical traffic control in inter-dc wans. In Proc. IEEE/CIC, pages 310–315, 2019.

[33] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual

prediction with lstm. In Proc. IET ICANN, pages 850–855, 1999.

[34] Arthur S Goldberger. Econometric computing by hand. Journal of Economic and Social

Measurement, 29(1-3):115–117, 2004.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-

tion, 9(8):1735–1780, 1997.

[36] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan

Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven wan.

In Proc. ACM SIGCOMM, pages 15–26, 2013.

[37] John J Hopfield. Neural networks and physical systems with emergent collective com-

putational abilities. In Proc. PNAS, volume 79, pages 2554–2558, 1982.

[38] Arshia Hosseini, Mahdi Dolati, and Majid Ghaderi. Bulk transfer scheduling with dead-

line in best-effort sd-wans. In Proc. IFIP/IEEE IM, (Forthcoming 2021).

85

[39] Van Jacobson. Congestion avoidance and control. In Proc. ACM SIGCOMM, volume 18,

pages 314–329, 1988.

[40] Manish Jain and Constantinos Dovrolis. Pathload: A measurement tool for end-to-end

available bandwidth. In Proc. Springer PAM, pages 14–25, 2002.

[41] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, et al. B4: Experience with a

globally-deployed software defined WAN. In Proc. ACM SIGCOMM, page 3–14, 2013.

[42] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier, and Ishai Menache.

Dynamic Pricing and Traffic Engineering for Timely Inter-Datacenter Transfers. In Proc.

ACM SIGCOMM, pages 73–86, 2016.

[43] Andreas Johnsson, Bob Melander, Mats Björkman, and M Bjorkman. Diettopp: A

first implementation and evaluation of a simplified bandwidth measurement method. In

Proc. IEEE SNCNW, volume 5. Citeseer, 2004.

[44] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the tightrope:

Responsive yet stable traffic engineering. In Proc. ACM SIGCOMM, volume 35, pages

253–264, 2005.

[45] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj Babbula. Calen-

daring for wide area networks. In Proc. ACM SIGCOMM, pages 515–526, 2014.

[46] Frank P. Kelly. Effective bandwidths at multi-class queues. Queueing systems, 9(1):5–15,

1991.

[47] Sukhpreet Kaur Khangura, Markus Fidler, and Bodo Rosenhahn. Neural Networks for

Measurement-based Bandwidth Estimation. In Proc. IFIP Networking, pages 1–9, 2018.

[48] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang, and Pablo Rodriguez. Inter-

datacenter bulk transfers with netstitcher. pages 74–85, 2011.

86

[49] Will E Leland, Murad S Taqqu, Walter Willinger, and Daniel V Wilson. On the self-

similar nature of ethernet traffic (extended version). IEEE/ACM Transactions on Net-

working, 2(1):1–15, 1994.

[50] Wenxin Li, Keqiu Li, Deke Guo, Geyong Min, Heng Qi, and Jianhui Zhang. Cost-

minimizing bandwidth guarantee for inter-datacenter traffic. IEEE Transactions on

Cloud Computing, 7(2):483–494, 2016.

[51] Wenxin Li, Xiaobo Zhou, Keqiu Li, Heng Qi, and Deke Guo. TrafficShaper: Shaping

Inter-Datacenter Traffic to Reduce the Transmission Cost. IEEE/ACM Transactions

on Networking, 26(3):1193–1206, 2018.

[52] Long Luo, Hongfang Yu, Zilong Ye, and Xiaojiang Du. Online Deadline-Aware Bulk

Transfer Over Inter-Datacenter WANs. In Proc. IEEE INFOCOM, pages 630–638, 2018.

[53] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video streaming

with pensieve. In Proc. ACM SIGCOMM, pages 197–210, 2017.

[54] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innovation

in campus networks. In Proc. ACM SIGCOMM, volume 38, pages 69–74, 2008.

[55] Lifan Mei, Runchen Hu, Houwei Cao, Yong Liu, Zifa Han, Feng Li, and Jin Li. Realtime

mobile bandwidth prediction using lstm neural network. In Proc. Springer PAM, pages

34–47, 2019.

[56] Mariyam Mirza, Joel Sommers, Paul Barford, and Xiaojin Zhu. A machine learning

approach to tcp throughput prediction. In Proc. ACM SIGMETRICS, volume 35, pages

97–108, 2007.

[57] Tom Mitchell. Introduction to machine learning. Machine Learning, 7:2–5, 1997.

87

[58] Mehrdad Moradi, Ying Zhang, Z Morley Mao, and Ravi Manghirmalani. Dragon: Scal-

able, flexible, and efficient traffic engineering in software defined isp networks. IEEE

Journal on Selected Areas in Communications, 36(12):2744–2756, 2018.

[59] Thyaga Nandagopal and Krishna PN Puttaswamy. Lowering inter-datacenter bandwidth

costs via bulk data scheduling. In Proc. IEEE/ACM CCGRID, pages 244–251, 2012.

[60] Mohammad Noormohammadpour, Cauligi S Raghavendra, Srikanth Kandula, and Sri-

ram Rao. Quickcast: Fast and efficient inter-datacenter transfers using forwarding tree

cohorts. In Proc. IEEE INFOCOM, pages 225–233, 2018.

[61] Mohammad Noormohammadpour, Cauligi S Raghavendra, Sriram Rao, and Srikanth

Kandula. Dccast: Efficient point to multipoint transfers across datacenters. In Proc.

USENIX, 2017.

[62] Vinay Joseph Ribeiro, Rudolf H Riedi, Richard G Baraniuk, Jiri Navratil, and Les

Cottrell. Pathchirp: Efficient available bandwidth estimation for network paths. In

Proc. Springer PAM, 2003.

[63] Aimin Sang and San-qi Li. A predictability analysis of network traffic. Computer

Networks, 39(4):329–345, 2002.

[64] Caterina Scoglio, Tricha Anjali, Jaudelice Cavalcante de Oliveira, Ian F Akyildiz, and

G UhI. Team: A traffic engineering automated manager for diffserv-based mpls net-

works. IEEE Communications Magazine, 42(10):134–145, 2004.

[65] Scott Shenker, David Clark, Deborah Estrin, and Shai Herzog. Pricing in computer

networks: Reshaping the research agenda. ACM SIGCOMM, 26(2):19–43, 1996.

[66] Yantai Shu, Zhigang Jin, Lianfang Zhang, Lei Wang, and Oliver WW Yang. Traffic

prediction using farima models. In Proc. IEEE ICC, volume 2, pages 891–895, 1999.

88

[67] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A measurement study of available

bandwidth estimation tools. In Proc. ACM SIGCOMM IMC, pages 39–44, 2003.

[68] Yi Sun, Xiaoqi Yin, Junchen Jiang, et al. CS2P: Improving video bitrate selection and

adaptation with data-driven throughput prediction. In Proc. ACM SIGCOMM, pages

272–285, 2016.

[69] Jessie Hui Wang, Jilong Wang, Changqing An, and Qianli Zhang. A survey on resource

scheduling for data transfers in inter-datacenter wans. Computer Networks, 161:115–137,

2019.

[70] Yi Wang, Jiaqi Zheng, Lijuan Tan, and Chen Tian. Joint optimization on bandwidth

allocation and route selection in qoe-aware traffic engineering. IEEE Access, 7:3314–

3319, 2018.

[71] Yiwen Wang, Sen Su, Alex X. Liu, and Zhongbao Zhang. Multiple bulk data transfers

scheduling among datacenters. Computer Networks, 68:123–137, 2014.

[72] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang,

Philip Levis, and Keith Winstein. Learning in situ: a randomized experiment in video

streaming. In Proc. USENIX NSDI, pages 495–511, 2020.

[73] Z. Yang, Y. Cui, X. Wang, Y. Liu, M. Li, S. Xiao, and C. Li. Cost-efficient scheduling

of bulk transfers in inter-datacenter wans. IEEE/ACM Transactions on Networking,

27(5):1973–1986, 2019.

[74] Zhenjie Yang, Yong Cui, Xin Wang, Yadong Liu, Minming Li, Shihan Xiao, and

Chuming Li. Cost-Efficient Scheduling of Bulk Transfers in Inter-Datacenter WANs.

IEEE/ACM Transactions on Networking, 27(5):1973–1986, 2019.

89

[75] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic

approach for dynamic adaptive video streaming over HTTP. In Proc. ACM SIGCOMM,

pages 325–338, 2015.

[76] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu, and Lei Cui.

Congestion control for cross-datacenter networks. In Proc. IEEE ICNP, pages 1–12,

2019.

[77] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, et al. Guaranteeing Deadlines for Inter-

Data Center Transfers. IEEE/ACM Transactions on Networking, 25:579–595, 2017.

[78] Qingyi Zhang, Xingwei Wang, Jianhui Lv, and Min Huang. Intelligent content-aware

traffic engineering for sdn: An ai-driven approach. IEEE Network, 34(3):186–193, 2020.

[79] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J Reed, Haiyang Wang,

Guang Yao, Miao Zhang, and Kai Chen. Bds: a centralized near-optimal overlay network

for inter-datacenter data replication. In Proc. ACM EuroSys, pages 1–14, 2018.

[80] Yan Zhu, Guanghua Zhang, and Jing Qiu. Network traffic prediction based on particle

swarm bp neural network. J. Networks, 8(11):2685–2691, 2013.

90

