Effects of volume fraction and particle shape on the rheological properties of oblate spheroid suspensions

Guo, Junwei; Zhou, Qi; Wong, Ron Chik-Kwong

AIP Publishing

journal article

Unless otherwise indicated, this material is protected by copyright and has been made available with authorization from the copyright owner. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.

Downloaded from PRISM: https://prism.ucalgary.ca
Effects of volume fraction and particle shape on the rheological properties of oblate spheroid suspensions

Junwei Guo,¹ Qi Zhou*,¹ and Ron Chik-Kwong Wong¹

¹Department of Civil Engineering, University of Calgary

2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

(*Electronic mail: qi.zhou1@ucalgary.ca)

(Dated: 22 July 2021)

Coupled lattice Boltzmann and discrete element methods were employed to investigate the rheological properties of oblate spheroid suspensions in a Newtonian fluid. The volume fraction of the particles is varied, along with the particle aspect ratio. As the particle shape is varied from sphere to oblate, we observe an increase of the relative viscosity, as well as an increase of the particle contacts and the contact distance. The more oblate particles in denser suspensions are observed to reorient systematically subject to the shear flow. We recast the viscosity data using the Krieger–Dougherty formula and report the modified Einstein coefficients.
Rheology of oblate spheroid suspensions

The rheology of non-Brownian suspensions of spherical particles has been the topic of extensive studies and been reviewed elsewhere\(^1-^3\). The bulk rheological properties of these suspensions is the manifestation of physical processes occurring at the particle scale, such as the fluid-particle interactions and inter-particle interactions. One of the key parameters is the volume fraction of particles, \(\phi\), which has a direct impact on the viscosity of the suspension\(^4,^5\). With a few exceptions\(^6-^10\), most studies in the literature have been focused on spherical particle suspensions. In the present study, we focus instead on the ellipsoidal particle suspensions and investigate the effects of \(\phi\), as well as the particle shape, on the rheological properties of these suspensions.

In a simple shear flow, the relative viscosity \(\eta_r\) of the suspension is defined as

\[
\eta_r = \frac{\Sigma_{12}}{\eta_f \dot{\gamma}},
\]

where \(\Sigma_{12}\) is a component of the suspension stress tensor \(\Sigma\), \(\eta_f\) is the viscosity of the suspending fluid, and \(\dot{\gamma}\) is the imposed bulk shearing rate. Here, the 1, 2, and 3 directions correspond to the flow, velocity gradient, and vorticity directions of the shear flow, respectively. The first and second normal stress difference coefficients are defined as

\[
N_1^* = \frac{\Sigma_{11} - \Sigma_{22}}{\eta_r \eta_f \dot{\gamma}}, \quad \text{and} \quad N_2^* = \frac{\Sigma_{22} - \Sigma_{33}}{\eta_r \eta_f \dot{\gamma}},
\]

respectively, which measure the loss of isotropy in the normal stresses. The rheology of the suspension can largely be described by \(\eta_r\), \(N_1^*\), and \(N_2^*\), which are the focus of this paper.

The correlation between \(\eta_r\) and \(\phi\) has been well known for sphere suspensions. In the very dilute regime, \(\eta_r\) varies linearly with \(\phi\), according to Einstein\(^4\). Other viscosity laws were proposed (see Table I) and have enjoyed considerable success in matching experimental data (see Fig. 4 of Guazzelli and Pouliquen\(^3\)) for spherical particle suspensions. For the normal stress differences, studies on sphere suspensions suggest that \(N_2^*\) is generally negatively signed, whereas \(N_1^*\) exhibits more uncertainty and can be either positive or negative.

The motion of an ellipsoidal particle in a shearing flow was studied by Jeffery\(^13\). Utilizing Jeffrey’s solution, Mueller et al.\(^8\) combined analytical and experimental work to investigate the viscosity of ellipsoidal (both oblate and prolate) particle suspensions. They reported empirical values for the maximum packing fraction, \(\phi_m\), and the Einstein coefficient, \(B\). Numerical simulations were performed to study the viscosity of plate-like particle\(^14\) and oblate particle suspensions\(^9\). The latter work reported values of \(\eta_r\), \(N_1^*\), and \(N_2^*\) of oblate spheroidal particle suspensions for \(\phi\) up to 0.25. The algorithm used relies on Jeffrey’s solution to prescribe the particle motions and
Rheological properties of oblate spheroid suspensions

TABLE I: Some proposed correlations for the relative viscosity of sphere suspensions. $B = 2.5$ is the Einstein coefficient, and $\phi_m \approx 0.64$ is the maximum packing fraction for spheres.

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstein (1906)</td>
<td>$\eta_r = 1 + B\phi$</td>
</tr>
<tr>
<td>Maron and Pierce (1956)</td>
<td>$\eta_r = (1 - \phi / \phi_m)^{-2}$</td>
</tr>
<tr>
<td>Krieger and Dougherty (1959)</td>
<td>$\eta_r = (1 - \phi / \phi_m)^{-B\phi_m}$</td>
</tr>
<tr>
<td>Batchelor and Green (1972)</td>
<td>$\eta_r = 1 + B\phi + 6.95\phi^2$</td>
</tr>
</tbody>
</table>

introduces equivalent spherical surfaces to approximate the spheroidal surfaces when calculating inter-particle interactions.

In this paper, we employ the lattice Boltzmann (LB) and discrete element (DE) methods to simulate the suspensions of oblate spheroidal particles. The fluid phase, whose motion is governed by Navier–Stokes equations, is solved by the LB method, while the solid phase is solved directly by the DE method. The volume fraction is varied (for ϕ up to 0.40), as well as the aspect ratio (α) of the oblate particles. The aim of the study is to investigate the effects of ϕ and α on the bulk rheological properties (such as η_r, N_1^*, and N_2^*) and quantify parameters (such as B) for oblate particle suspensions.

TABLE II: Material properties used in all simulations.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle density: ρ^p</td>
<td>1200 kg/m3</td>
</tr>
<tr>
<td>Fluid density: ρ^f</td>
<td>1000 kg/m3</td>
</tr>
<tr>
<td>Fluid viscosity: ν^f</td>
<td>1×10^{-6} m2/s</td>
</tr>
<tr>
<td>Young’s modulus: E</td>
<td>1×10^6 Pa</td>
</tr>
<tr>
<td>Poisson’s ratio: ν</td>
<td>0.3</td>
</tr>
<tr>
<td>Friction coefficient: μ_s</td>
<td>0.27</td>
</tr>
<tr>
<td>Shearing rate: $\dot{\gamma}$</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>Damping factor: c_n</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The coupled LB and DE methods are employed to simulate the fluid-particle flow. The algorithm is implemented through an open-source software package known as OpenLB$^{15–17}$ which is capable of simulating arbitrarily shaped particles. Two-way coupling is implemented for the momentum exchange between the particles and fluid and is performed by the procedure developed by Krause et al.15 enforcing the ‘bounce-back’ condition18,19 at the particle-fluid boundary nodes. An efficient scheme for ellipsoidal particle contact detection proposed by Lin and Ng20,21 is employed. The normal contact forces include Hertz’s elastic force22,23 and a small damping
Rheological properties of oblate spheroid suspensions

FIG. 1: (a) The initial position and orientation of the ellipsoidal particles ($\phi = 0.30$) in a fluid channel, and initial fluid velocity field shown by color. (b) A contacting particle pair. The distance between the particle centers is $2R_d r^*$, where r^* is the equivalent radius, $\sqrt{r_1 r_1 r_2}$. The normal vector n is the unit vector in the direction of the symmetric axis.

force specifically designed for ellipsoidal particles. The tangential contact force includes the Coulomb’s friction force. The physical parameters pertinent to the particle contact model are summarized in Table II. The particle Reynolds number, $\text{Re} \equiv \dot{\gamma}(r^*)^2/\nu_f$, is 0.014, which lies in the Stokes flow regime. The particle-to-fluid density ratio, ρ_p/ρ_f, is held constant at 1.2. Preliminary work done for $\rho_p/\rho_f = 2.7$ (not shown) suggests no significant variation of the rheological properties with the density ratio at this range, which is consistent with the observations by Thorimbert et al. For the LB calculations, the D3Q15 lattice with the Bhatnagar–Gross–Krook operator (see e.g., Krüger) is employed. Following two previous LB-based studies, no explicit lubrication force modeling is included in the LB-DE solver. A detailed documentation of the LB and DE methods for this specific configuration can be found in Chapter 3 of Guo.

TABLE III: Parameters for simulations. The volume of each particle in all simulations is fixed. Hence, for suspensions with a specific ϕ, the number of particles in the system is the same, regardless of the difference in shape.

<table>
<thead>
<tr>
<th>$\alpha \equiv r_2/r_1$</th>
<th>r_1, r_2 (μm)</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>5.00, 2.00</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>4.37, 2.73</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>3.97, 3.17</td>
<td>0.00 – 0.40</td>
</tr>
<tr>
<td>1.0</td>
<td>3.74, 3.74</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Fig. 1(a), simulations are performed for a $150\mu m \times 50\mu m \times 50\mu m$ fluid channel.
Rheological properties of oblate spheroid suspensions

FIG. 2: Comparison of computed relative viscosity of spherical particle suspension ($\alpha = 1.0$) with viscosity laws (Table I) in the literature: Einstein\cite{1}, Maron and Pierce\cite{5} (MP), Krieger and Dougherty\cite{6} (KD), Batchelor and Green\cite{7} (BG).

A plane Couette flow is set up by the top and bottom boundaries, and the flow is periodic in the x and z directions. The top ($y = 2h = 50 \mu m$) and bottom ($y = 0$) walls move in opposite directions with a specific speed to create the imposed shearing rate $\dot{\gamma}$ (see Table II). The initial velocity field follows a linear profile, i.e., $u^i(t = 0) = (\dot{\gamma}(y-h), 0, 0)$. The initial position and orientation of the particles, which are randomized as much as possible, are generated by a program known as Packing Ellipsoid\cite{8}. Four sets of simulations are performed, whose input parameters are tabulated in Table III. No effects of gravity are included in the simulations. As shown in Fig. 1(b), the diameter of the oblate particle along the symmetric axis is $2r_2$, and the equal diameter along the other axes is $2r_1$. The particle aspect ratio, $\alpha \equiv r_2/r_1$, is varied from 0.4 to 1.0 (the latter corresponds to a sphere). Ten simulations are run for each α, with ϕ varied from 0.00 to 0.40. Each simulation is run up to a time corresponding to $\tau T = 20$. An initial transient is typically observed in the statistics for $0 < \tau T < 5$. Hence, we regard $5 < \tau T < 20$ as the quasi-steady state and produce time-averaged statistics for this specific time window. During the quasi-steady state, an approximately linear velocity profile (as in the initial condition) is observed for the mean flow between the two walls. Upon conducting mesh convergence tests, we set the grid spacing at 0.5 μm, time step at 41.7 ns, and the dimensionless relaxation time at 1.0 for LB calculations\cite{9}. The OpenLB program is executed on the Cedar cluster operated by Compute Canada. Each simulation takes approximately 10 days to run using 40 to 100 parallel processors, depending on the number of particles in the system. Detailed description of how the rheological parameters (Eqs. 1 and 2) are calculated from the results of the LB and DE calculations can be found in Chapter 2 of Guo\cite{10}.
The relative viscosity η_r of the spherical particle suspension (Eq. 1) is plotted against ϕ in Fig. 2. The results from our $\alpha = 1$ (sphere) simulation are compared with the viscosity laws (Table I). Our numerical results reproduce the expected trend between η_r and ϕ and are in general agreement with the Krieger–Dougherty (KD) formula. In Fig. 3(a), the η_r vs. ϕ relation is shown all four cases of α. For all cases, η_r increases with ϕ. In Fig. 3(b), the ratio $\eta_r/\eta_r, \alpha=1$ is shown, where $\eta_r, \alpha=1$ is the relative viscosity of the spherical particle suspension at each ϕ. $\eta_r/\eta_r, \alpha=1$ is greater than unity for all $\alpha < 1$, suggesting that the oblate spheroid suspensions yield a higher viscosity than their spherical counterparts. The ratio also generally increases with ϕ. In Fig. 3(c), we focus on η^p_r, i.e., the component of η_r due to inter-particle interactions, which can be calculated from the contact stresslet outlined by Eq. 2.24 of Gallier et al. As expected, η^p_r makes up a larger portion of η_r as ϕ increases up to 0.40, as inter-particle collisions become more likely in a denser suspension.

Increased particle collisions may also result in anisotropy in the normal stresses. The normal stress difference coefficients N^*_1 and N^*_2 (Eq. 2) are plotted against ϕ in Fig. 4. Similar to the spherical particle suspension data compiled by Guazzelli and Pouliquen, the sign of N^*_1 is inconclusive. As the particles become more oblate, the sign of N^*_1 switches from positive to negative for the denser suspensions ($\phi \geq 0.20$). N^*_2 appears to be negative for all cases, which is consistent with the sphere cases. As compared to N^*_1, N^*_2 seems less sensitive to α at a given value of ϕ. Particle collisions are expected to occur most frequently within the plane of shear, i.e., the x-y plane, which leads to a negative N^*_2 – this seems to be the case regardless of the particle shape.

To visualize any reorientation of the particles subject to shearing, we perform equal area projection (EAP) (Sec. 3.3 of Fisher et al.) to display the normal vector n of each particle on the x-z
Rheological properties of oblate spheroid suspensions

FIG. 4: First and second normal stress difference coefficients, (a) N_1^* and (b) N_2^*, vs. ϕ.

plane (Fig. 5). EAP, which was previously used to visualize particle orientations by Lin and Ng20 (see their Fig. 8), has the advantage of preserving the number density of the projected points over the flat surface. Two typical cases are shown in Fig. 5, both of $\phi = 0.40$. For both cases, the initial distribution of particle orientation is relatively more random with some preference towards 90° and 270° (T_3) angles, which is a result of the initialization scheme28 at this large value of ϕ. As the shear strain ($\dot{\gamma}t$) increases, the particles in the $\alpha = 0.4$ case notably migrate towards the center of the circle, which corresponds to a particle with normal vector aligned with the y-axis (T_2). Particles are observed to reorient such that their normal vectors are more aligned with the direction of the velocity gradient, which is consistent with the findings by numerical simulations9,14 and laboratory measurement30. For comparison, in the case with $\alpha = 0.8$, no systematic reorientation of the particles is observed. Having inspected all simulations, we found no such reorientation for cases of $\alpha = 1.0$ or 0.8, where the particles are spherical or too close to a sphere. Presumably, the reorientation is a consequence of inter-particle collisions. Therefore, one may expect the reorientation to be more likely for denser suspensions. Indeed, for $\alpha = 0.6$, systematic reorientation occurs for $\phi \geq 0.30$; for $\alpha = 0.4$, it occurs for $\phi \geq 0.15$.

The behavior of N_1^*, which is presented in Fig. 4(a), may be linked to the particle reorientation shown in Fig. 5(a-c). According to the results from particle pair interactions3, N_1^* is expected to be negative. It was also found recently that wall confinement31,32 could be the main contributor to the normal stress in the wall-normal direction, leading to positive N_1^*. A consequence of the
Rheological properties of oblate spheroid suspensions

FIG. 5: Equal area projection of particle normal vector \mathbf{n} (Fig. 1(b)) onto the x-z plane for the cases with (a–c) $\alpha = 0.4$ and (d–f) $\alpha = 0.8$, both at $\phi = 0.40$ and for various strain ($\dot{\gamma}t$). The contour lines show the particle’s number density over the projection plane. Three types of particles, whose \mathbf{n} points at x-, y- and z-axes respectively, are labelled as T_1, T_2 and T_3 for illustration.

particle reorientation could be that the oblate particle suspension is not as effective in transmitting the normal stress in the wall-normal y direction as the spherical case, because the longer axes of the particles become more parallel to the walls, i.e., closer to the T_2 orientation shown in Fig. 5(b). As a result, the wall confinement effects are expected to be weaker for the more oblate particle suspensions, which could be the reason for the sign change in N_1^* observed in Fig. 4(a) as α decreases from 1.0 to 0.4. In particular, N_1^* for the $\alpha = 0.4$ case (Fig. 4(a)) becomes more negative at larger volume fraction ϕ, which is presumably due to increased particle pair interactions3 and weakened wall confinement effects31,32.

Some micro-structural statistics for particle contacts are presented in Fig. 6. First, the dimensionless contact distance, R_d (see Fig. 1(b)), averaged for all contact pairs in each simulation, is plotted in Fig. 6(a) as a function of ϕ. For the sphere case ($\alpha = 1$), R_d is unity by definition. For all oblate cases ($\alpha < 1$), R_d is observed to be greater than unity, suggesting that the average contact distance has been increased from the sphere case of the same equivalent radius r^* (Fig. 1). Moreover, at a given ϕ, R_d increases as the particle becomes more oblate (i.e., as α decreases). In Fig. 6(b), the contact ratio R_c, i.e., the average number of contacts per particle, can be seen to
increase with ϕ, which is as expected. In general, R_c also increases as α decreases. The latter trend was also reported by Donev et al.33 in their study of maximum packing fraction for nonspherical particles, which was attributed to the increase of the degrees of freedom as the particle shape becomes less isotropic. The same mechanism could take place in the shear flow, although the volume fraction ϕ is smaller than those studied by Donev et al.33 The increase of R_c implies a higher likelihood for momentum transfer to occur due to inter-particle collisions and thus a higher viscosity, which is in agreement with the trend observed in Fig. 3 between viscosity and the control parameters, i.e., ϕ and α. In short, inter-particle collisions are found to be more frequent on a per-particle basis in the more oblate particle suspensions, which is consistent with the observed increase of viscosity with decreasing α (Fig. 3).
Rheological properties of oblate spheroid suspensions

TABLE IV: Parameters for the best fit of KD model. Data for $\alpha = 0.13$ (bottom row) are obtained from Mueller et al.8

<table>
<thead>
<tr>
<th>α</th>
<th>ϕ_m</th>
<th>B</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.64</td>
<td>2.46</td>
<td>0.994</td>
</tr>
<tr>
<td>0.80</td>
<td>0.70</td>
<td>2.65</td>
<td>0.999</td>
</tr>
<tr>
<td>0.60</td>
<td>0.71</td>
<td>2.79</td>
<td>0.998</td>
</tr>
<tr>
<td>0.40</td>
<td>0.68</td>
<td>2.80</td>
<td>0.989</td>
</tr>
<tr>
<td>0.13</td>
<td>0.62</td>
<td>3.17</td>
<td>0.998</td>
</tr>
</tbody>
</table>

In order to compile the viscosity data in Fig. 3, we formulate the best fits directly to the viscosity laws. Specifically for the KD model, one could find the best fit for both ϕ_m and B. Instead, we use the experimental results33 to obtain the maximum packing fraction ϕ_m for each α and fit the KD model to our data (Fig. 3(a)) to obtain the Einstein coefficients, B. Such results are tabulated in Table IV and can complement an earlier result8 for $\alpha = 0.13$ (see their Table 3). It can be seen that ϕ_m reaches the maximum at $\alpha \approx 0.60$33 and B decreases monotonically with increasing α.

In conclusion, we have presented the rheological properties of oblate particle suspensions for a considerable range of volume fraction and aspect ratio. Other than these two parameters, there could be numerous other factors in determining the rheology which have been studied recently34–37 for spherical particle suspensions. Investigating these effects for non-spherical particle suspensions, as well as extending the simulations to even denser suspensions, could be avenues for future research.

Acknowledgements The support from the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged. This research was enabled in part by support provided by Compute Canada (www.computecanada.ca). The initial random packing of the ellipsoids is generated by the software Packing Ellipsoid 3 kindly provided by Dr. R. D. Lobato. We thank two anonymous referees whose constructive comments helped us improve the paper significantly.
Rheological properties of oblate spheroid suspensions

REFERENCES

Rheological properties of oblate spheroid suspensions

Rheological properties of oblate spheroid suspensions

