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Abstract 

Shared micromobility is a rapidly growing transportation technology, with several 

companies establishing e-bike and e-scooter programs in cities across the globe. This thesis 

analyzes two years of empirical data on e-scooter usage from a shared mobility pilot program in 

the City of Calgary to create a synthetic workload model of e-scooter traffic. A synthetic workload 

generator is developed from this model and incorporated into a dedicated, custom-built simulation 

environment. This simulation is used to conduct experiments evaluating the impacts of different 

e-scooter management policies and infrastructure, such as fleet size, battery re-charging strategies, 

and urban parking infrastructure locations, on the efficacy of the shared e-scooter system. The 

results of these simulation experiments detail the impacts of these policies on satisfied user 

demand, costs of collecting depleted scooters to be recharged, and number of improperly parked 

scooters, and highlight the importance of proper site selection for parking areas and battery 

charging infrastructure.   
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1 Introduction 

1.1 Motivation 

Since 2017 [16], more and more cities around the world have become host to a growing 

population of shared standing electric scooters (e-scooters). These are the latest technological 

development within the increasingly popular domain of shared mobility transportation modes, 

which have historically ranged from car-sharing services like Car2Go (now ShareNow1) or 

ZipCar2, to ride-sharing services like Lyft3 or Uber4, to docked or dockless bike-sharing services 

like those offered by Lime5.  

In only a few years since their introduction, scooter-sharing programs have seen a much 

greater and more rapid adoption than either car-sharing or bike-sharing programs [16], [34]. In 

2018, only a year after shared e-scooter services became available in the United States, Bird had 

already expanded its operation to over 100 cities around the world [62], and by 2021 that number 

had increased to more than 250. Lime – which also launched in 2017 – reported 26 million e-

scooter trips using their service by December of 2018 [28]. A report of shared micromobility in 

the US released by NACTO (National Association of City Transit Officials) the same year showed 

that the number of shared scooter trips across the United States was already comparable to the 

number of shared bicycle trips [34] and their subsequent report in 2019 showed that e-scooter trips 

had far outstripped shared bicycle trips by a factor of two to one [35]. By 2030, micromobility 

 
1 https://www.share-now.com/ 
2 https://www.zipcar.com/ 
3 https://www.lyft.com/ 
4 https://www.uber.com 
5 https://www.li.me 
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programs including bike- and scooter-sharing could achieve a market potential of $200-300 billion 

US [20]. 

In 2018, the City of Calgary announced a new, two-year shared mobility pilot program that 

introduced dockless e-bikes and e-scooters throughout the city. Over the two years, the city 

partnered with Lime, Bird6, and Roll7 to supply shared mobility vehicles and record trip statistics 

for characterizing traffic patterns. In 2019, the city conducted a survey whereby Calgarians, e-

scooter users and non-users alike, were invited to provide their input on the pilot program and 

identify particular benefits or areas of concern [56]. The results of the survey suggested that there 

were some concerns about the safety of sharing pedestrian pathways with e-scooter users and about 

the inconvenience of abandoned or improperly parked scooters. Nonetheless, most Calgarians 

believed there was substantive benefit to having an additional mode of transportation available. 

Despite the disruption of the COVID-19 pandemic and its associated public health restrictions, the 

pilot program continued successfully through 2020, and in the spring of 2021, the City opted to 

continue private sector shared micromobility services (SMMS) in partnership with Bird and 

Neuron8[58]. 

Given the recent but rapid emergence of shared e-scooters as innovative disruption within 

the field of transportation, the currently available research on this particular mode of shared 

micromobility remains limited, but there can be no question about the value of such research. In a 

world that is becoming increasingly urbanized, shared mobility services may reduce the reliance 

on private motor vehicle ownership, consequently reducing traffic congestion and potentially the 

demand for associated motor vehicle infrastructure such as parkades, on-street parking, and wide, 

 
6 https://www.bird.co/ 
7 https://www.rollscooters.com/ 
8 https://www.rideneuron.com/ 
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multilane roads [16]. Deemphasizing the importance of private vehicles may also expand 

transportation access for low-income individuals by eliminating the upfront cost of a personal 

motor vehicle, which can act as a barrier to entry [48]. Shared bikes and scooters in particular may 

have direct environmental benefits by offering a zero-emission alternative to motor vehicles. These 

vehicles are more strictly range-limited than motor vehicles, making them well-suited to short trips 

including first-and-last-mile transportation that can help to facilitate public transportation. But for 

all their promise, these new technologies bring new challenges for operators and policy makers 

who must balance concerns about curb space management and the safety of e-scooter users and 

non-users with the growing demand for varied transportation options. Addressing these challenges 

requires careful analysis and the development of flexible tools to guide future policy decisions.  

The hypothesis of this thesis is that simulation is a promising approach to investigate the 

shared micromobility problem domain. In general, simulation is an effective tool for scenario 

analysis and policy recommendations, particularly in large systems where implementing changes 

can be expensive and potentially have negative impacts on the users of those systems. Discrete-

event simulation in particular can allow for efficient scalability of the simulation model and 

manageable runtimes, while accommodating data gaps surrounding the interacting behaviours of 

agents within the system. Discrete-event simulation modeling is the primary approach adopted in 

this thesis.  

1.2 Research Objectives 

The primary research questions for this thesis are as follows: 

• What are the key characteristics of e-scooter traffic in downtown Calgary? 
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• What are the primary challenges of implementing an effective shared e-scooter 

program in terms of costs to e-scooter operators, users, and non-users? 

• How can those challenges be addressed or mitigated through changes to e-scooter 

management policies or infrastructure dedicated to facilitating shared e-scooter 

programs? 

To answer these questions, a workload characterization is conducted using two years of 

empirical e-scooter data in downtown Calgary. Furthermore, a discrete-event simulation model is 

constructed from that characterization to represent the e-scooter system in downtown Calgary with 

a particular focus on e-scooter supply, fleet management strategies, and infrastructure needs for 

the e-scooter system. 

1.3 Contribution of the Thesis 

Although the amount of research into shared e-scooter programs is quickly growing [1], 

much of this research is focused on establishing definitions within the field [49], [50], [51], 

identifying policy challenges or potential benefits [4], [21], [23], [30], [37], [59], and interpreting 

public attitudes towards these programs. Some studies have conducted analyses of rider behaviour 

and traffic patterns [10], [24], [31], [32], [43], but only three have attempted to use discrete-event 

simulation to optimize the operation of shared e-scooters. Two of these were focused specifically 

on the challenge of relocation to maintain an optimal geographical distribution of e-scooters [19], 

[60]. The third, which examined the impact of e-scooter fleet size, variable low-charge threshold, 

and collection and redistribution strategies on operator costs and ability to satisfy user demand, 

was conducted using data from Louisville and Minneapolis in the United States [13].  



5 

 

The research contained in this thesis attempts to address policy questions regarding 

appropriate fleet size, dedicated e-scooter parking, and battery charging strategies, using the City 

of Calgary’s shared mobility pilot program as a case study. This work presents a detailed analysis 

of the publicly available e-scooter trip data from 2019 and 2020 to identify specific trends as well 

as distributions of individual trip characteristics, and describes the development of a customized 

discrete-event simulation model and dedicated simulation environment for examining the impact 

of policy changes to the e-scooter system.  

1.4 Organization of the Thesis 

The structure of this thesis is as follows. Chapter 1 introduces the problem and gives a brief 

overview of the rest of the thesis. Chapter 2 provides a review of the relevant literature, including 

research related to shared mobility, E-scooter and electric vehicle (EV) technology, and discrete-

event simulation. Chapter 3 examines the available data and develops a workload characterization 

with consideration for trip volume and characteristics. Chapter 4 describes the simulation model, 

including the type of simulation used, the simulation environment, the synthetic workload 

generation, and the simulation validation. Chapter 5 is a discussion of the experiments conducted 

and their results. Chapter 6 concludes the thesis and provides suggested directions for future 

research. 
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2 Background and Related Work 

This chapter provides a brief overview of the literature regarding shared micromobility and 

simulation modelling. Section 2.1 provides a summary of shared mobility and micromobility 

technologies and their role within the evolving transportation landscape. Section 2.2 describes the 

benefits and applications of workload characterization from empirical data and provides a review 

of workload characterization studies relating to shared mobility. Section 2.3 provides a review of 

simulation studies relating to shared mobility and discusses the necessary tools for developing a 

shared micromobility simulation model. Section 2.4 summarizes the chapter.  

2.1 Shared Micromobility  

2.1.1 Definitions  

Shared mobility refers to the broad umbrella of transportation services existing within the 

sharing economy, which includes peer-to-peer or centralized vehicle-sharing programs (i.e., Lime, 

Car2Go, ZipCar), ride-sharing and ride-sourcing services (i.e., Uber, Lyft), and alternative transit 

services like shuttles, buses, or rail transit [49]. This sharing structure allows users to have access 

to specific modes of transportation only as needed and for short periods of time, reducing the 

proportion of time when a vehicle sits idle or empty and reducing the cost to the individual of 

regular vehicle maintenance. 

Shared mobility is a concept that has existed within urban environments for generations, 

through car rentals, taxi services, and public transportation [54]. Small scale bike-sharing programs 

were in operation as early as 1965 in Amsterdam [1]. Throughout the 1990s, car-sharing was 

already being touted as a viable and innovative alternative to private car ownership [52]. However, 

shared mobility services saw a distinct surge in the wake of the recession of 2007-2009, along with 



7 

 

a shift towards integrating smart phone technology. Through the years that followed, several 

shared mobility services with integrated smart-phone apps, such as ZipCar, Uber, and Lyft, rapidly 

emerged as popular transportation options [51]. 

In more recent years, the landscape of shared mobility services has begun to shift again 

with the emergence of limited-speed, single-occupant shared vehicles, like human-powered or 

electric bikes, moped-style scooters, and standing e-scooters such as those shown in Figure 2.1.  

 

Figure 2.1: A row of Lime brand shared e-scooters in Berlin, Germany (Photo by Vince Jacob on Unsplash) 

These shared mobility modes fall under the narrower definition of shared micromobility 

[50] and fulfill different niche requirements than car-sharing or ride-sharing services because of 

their limited capacity and reduced range. The wide use of GPS tracking technology, geo-fencing, 

and integrated smart-phone applications also allows for these shared mobility fleets to be managed 

https://unsplash.com/@vincejacob?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/lime-scooters?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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without the necessity of centralized kiosks or storage areas, allowing for much greater flexibility 

in how, when, and where the vehicles are used. 

2.1.2 Potential Benefits and Challenges 

Increasing urbanization, particularly in conjunction with broad urban sprawl, has created a 

high reliance on private vehicle ownership, which in turn has given rise to a series of social, 

economic, and environmental concerns. One of the strongest driving factors behind the adoption 

of shared mobility and shared micromobility in particular is its potential to alleviate some of these 

concerns.  

Growing traffic volumes have resulted in congested streets and reduced traffic flow, with 

the average driving speed in many cities falling below 20 kph [18]. Approximately 80-90% of 

automobile travel is made up of short car trips transporting a single person. Because micromobility 

vehicles have a lower range than motor vehicles, and because they can only accommodate a single 

occupant, e-scooters could be used as an effective replacement for many of these trips, and the 

subsequent decrease in cars on the road would decrease congestion [16]. Moreover, a single user 

riding a powered micromobility vehicle takes up a much smaller footprint on the road or sidewalk, 

suggesting that with changes in dedicated infrastructure, a much higher number of e-scooter 

travellers could be accommodated before encountering similar congestion issues. A study of e-

scooter users in Paris suggested that although most of the considered shared e-scooter trips were 

substituted for walking or public transportation trips, 16% replaced private car trips [12]. 

Shared micromobility services (SMMSs), particularly those using dockless, free-floating 

fleets of micromobility vehicles, are also very well suited for first-and-last-mile transportation, 

effectively bridging the gaps in existing public transportation infrastructure [16], [29], [49]. As a 

result, shared-micromobility services can reduce travel times[1], thus making public transportation 
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both a more appealing option for many people who would otherwise default to the use of a private 

motor vehicle, and a more viable substitute for those without reliable access to a private motor 

vehicle.  

Both through direct substitution of private motor vehicle travel and supplementation of 

public transportation options, SMMS have the potential to substantially reduce CO2 emissions 

from urban travel. A shared e-scooter pilot program that ran in Portland in 2018 estimated that the 

number of trips substituting e-scooters for automobiles had resulted in a reduction of 

approximately 122 metric tonnes of CO2 [39]. However, some studies have suggested that this 

benefit is strongly mitigated, or perhaps even eclipsed, by the environmental costs of production 

and the emissions from motor vehicles used to collect and redistribute SMMS fleet vehicles, 

emphasizing the importance of longer life cycles for powered micromobility vehicles and efficient 

management strategies for SMMS operators [21]. 

The concerns about the true environmental impact of SMMS highlight a broader point, that 

without rigorous and carefully examined regulation, these services will likely fall short of their 

promised potential and introduce a host of new issues associated with the services themselves. 

Municipal governing bodies are now faced with the questions of how – or whether – to facilitate 

the development of SMMS in their cities while working to address the new challenges that they 

present. These questions include where and how e-scooters may be ridden and parked, such as 

restrictions to roads, sidewalks, or bike lanes, and the maximum speed limit for e-scooters; the 

minimum safety requirements for using e-scooters, such as mandated helmet usage, minimum age, 

and maximum occupancy limits; and how to appropriately share public spaces with pedestrians 

and other vehicles [30], [37].  
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Both the mid-pilot and final report on Calgary’s shared mobility program listed safety as 

one of the primary concerns related to the program [46], [47]. In fact, the safety of both users and 

non-users is a common theme in studies of attitudes and policies regarding e-scooter usage 

[30][36]. A study of e-scooter injuries resulting in calls to EMS was conducted in Copenhagen and 

found that most injuries reported were a result of falling off the scooter rather than collisions with 

an object, person, or vehicle [8]. The same study found that very few patients were wearing a 

helmet at the time of the accident, and that alcohol or drug intoxication was present in 

approximately one-third of e-scooter patients.  

Micromobility modes like bikes and scooters represent a hybridization of transportation, 

somewhere between a road vehicle and pedestrian, which may allow users to switch between 

modes when convenient [61]. Although most e-scooter riders prefer to use bikeways, they are 

likely to default to pedestrian pathways when bikeways are limited and road traffic is travelling at 

high speeds [39]. Thus, another frequent concern, particularly among non-users, is the 

infringement of SMMS vehicles and traffic on pedestrian areas [59]. Shaheen & Cohen [50] refer 

to this issue as curb space management, and list a number of policies for reducing e-scooter clutter 

on city curbs, including fleet size caps that limit the number of SMMS vehicles, designated parking 

areas for SMMS vehicles, and fees or fines for parking SMMS vehicles in public spaces. However, 

such policies must be carefully examined since efforts to restrict the placement of SMMS vehicles 

may not appropriately match the shift towards dockless shared mobility modes that has driven 

much of the demand for e-scooters in particular [36]. 

2.2 Data Analysis and Workload Characterization 

Understanding traffic flows and patterns in user behaviour is a crucial component of 

evaluating and improving the performance of a system. Several studies have been conducted in 
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recent years to characterize the usage patterns of shared mobility users. A study of Uber vehicle 

movements and ride requests in San Francisco and Manhattan identified key differences in the 

application of surge pricing between the two cities and recommended strategies for Uber users to 

avoid surge pricing when requesting a ride [11]. Another study, conducted in Chengdu, China, 

analyzed the use of ‘ride-splitting’ versus single-user ride-sourcing programs and found that 

although the current adoption rate of ride-splitting is small, it has the potential to reduce travel 

times by 22% [27]. Most recently, a study of three different car-sharing services in Vancouver 

compared usage patterns between services and public transportation modes with the goal of 

informing urban planning [2].  

As e-scooters have emerged as a popular alternative mode of shared mobility, more and 

more studies have attempted to characterize the population of e-scooter users and their usage 

patterns. A study of factors influencing mode-choice between docked or dockless e-bikes and 

dockless e-scooters in Zurich suggested that bikes are still preferred to scooters for longer or uphill 

trips, but that adverse weather was a stronger deterrent against use of a shared bike than use of a 

shared scooter [43]. A similar study of shared bike usage conducted in Beijing four years earlier 

also noted the negative impact of poor weather and air quality on the bike usage, particularly over 

more sheltered modes of transportation [9].  

In 2020, multiple studies were published that discussed the spatial associations [10] and 

trip characteristics [24] of shared e-scooter usage in Austin, TX between 2018 and 2019. These 

found that the density of e-scooter trips tended to be higher in areas with high population density, 

lower household income, and higher levels of education, such as in areas surrounding university 

campuses or downtown areas. Surveys of private and shared e-scooter users were conducted in 

France to characterize their demographic distribution and reasons for using the scooters [12], [61]. 
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Another 2020 study used text-mining from social media and machine learning to gauge public 

opinion about shared-micromobility programs, noting that public interest in shared e-scooters was 

on the rise [41].  

2.3 Simulating Transportation Systems 

Although the field of SMMS research relating to shared e-scooters is still emerging, shared 

mobility more generally has existed in some form for decades. As such, there is a wealth of 

simulation research on other modes of shared mobility services that can inform research on e-

scooters and shared e-scooter programs.  

In 2013, Clemente et al. identified the key determinants of shared mobility performance 

as: (1) optimal fleet size, (2) location of parking areas, (3) pricing policies, and (4) flexibility. They 

then used discrete-event simulation to assess the performance of a two-station car-sharing service 

model [14]. A 2001 paper outlined a set of performance metrics for managing the geographic 

distribution of vehicles in a station-based shared vehicle service [7]. In the years since, several 

papers have addressed the issue of vehicle distribution and relocation in different shared mobility 

and micromobility modes using dynamic routing of collection vehicles in conjunction with cost 

incentives for the user [38], defining geo-fenced areas of operation using k-clubs [42], and utilizing 

autonomous shared vehicles [44]. In 2017, a study using agent-based simulation assessed the 

efficacy of an autonomous shared mobility network in Melbourne and determined that the 

incorporation of autonomous vehicle technology reduced the total number of vehicles needed to 

satisfy demand within the service area [15].  

Most recently, some studies have examined strategies specifically for e-scooter battery 

charging and fleet management using simulation models. In 2018, a small pilot study was 
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conducted at a university campus in Taiwan that used battery-swapping stations and real-time 

location information about e-scooter use to extend the effective range of the e-scooters [55]. In 

2020, a larger simulation study of battery-swapping stations at high-traffic tourist locations in 

Taiwan outlined an efficient algorithm for placing stations and deploying batteries [63]. Other 

studies have focused on the established problem of vehicle distribution as it applies to fleets of 

shared e-scooters, using crowd-sourced repositioning [19] or using responsive algorithms to guide 

operators in relocating vehicles [60]. Lastly, a 2020 study leveraged public e-scooter data from 

Louisville and Minneapolis to create a simulation model and synthetic workload generator. These 

were then used to assess the impact of fleet size, low-battery charging threshold, and battery 

charging policy on the ability of the e-scooter fleet to satisfy user demand [13]. 

2.3.1 Simulation Software 

Simulation modeling is a general-purpose technique from the field of performance 

evaluation that can be used to assess the performance characteristics of a system. This type of 

modeling involves identifying the key actors within the system to be modelled and the primary 

events that change the state of the system. The model may then be used to track how the state of 

the system changes over time and in response to different changes to the system structure. These 

simulation models can be used to digitally analyze many real-world systems.  

In order to analyze the impacts of different fleet sizes, parking infrastructure, and battery 

charging strategies on the movement of e-scooters within a fixed geographical area and the ability 

of the e-scooter fleet to satisfy demand for new trips, a simulation model was required. The 

simulation model must closely approximate the observed traffic volumes from the available data 

and the characteristics of each trip while maintaining information about the state of each scooter 

in the system.  
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Two simulation softwares were considered as possible foundations for the research of this 

thesis. SUMO (Simulation of Urban MObility) is an open-source simulation package designed to 

simulate traffic flows through large vehicular traffic networks [3]. MATSim (Multi Agent 

Transport Simulation), likewise, is an open-source traffic simulation framework that supports 

large-scale agent-based simulation models [22]. However, in order to be effectively utilized, these 

environments would have required more specific data on e-scooter user behaviour and the e-

scooter specifications than were contained in the available datasets. By contrast, a custom-built 

discrete-event simulation environment would allow for more flexibility to focus on the primary 

research topic using only the available data, while maintaining an appropriate scale, computational 

load, and ability to accommodate frequent repetition with a varying workload model. This method 

also benefitted from previous experience working with discrete-event simulation in a similar 

problem domain (e.g., optimizing transportation for bottle recycling). Moreover, this approach 

could draw from this existing discrete-event simulation code base which could be modified and 

reused for the construction of the e-scooter simulation. 

2.3.2 EV Battery Models 

Because both the ability of the e-scooter fleet to satisfy user demand and the time and 

distance requirements to collect, recharge, and redistribute scooters are directly tied to the charging 

and discharging rates for the e-scooter batteries, the development of a robust e-scooter battery 

model was crucial to the construction of the simulation. This is a familiar problem within the field 

of EV simulation modelling and consequently there are previous studies that discuss approaches 

to modelling EV batteries.  

As with many aspects of simulation, one of the fundamental challenges in developing a 

battery model is clearly defining which aspects need to be modelled in detail and which 
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approximated through abstraction. The principal battery technologies used for EVs are lead acid, 

nickel metal hydride, lithium ion (li-ion), and sodium nickel hydride [5], with li-ion batteries being 

the most common battery used for e-scooters. An exact representation of e-scooter batteries would 

need to account for long-term degradation in capacity and performance resulting from the ambient 

temperature, the state of charge (SOC), and the frequency with which the battery is charged and 

discharged [53], as well as the precise dimensions of battery cells and the electrochemical reactions 

within each cell [17]. However, for large scale simulation in which the e-scooter battery is simply 

one of the building blocks in one of many moving components, a more efficient model is needed.  

A 2014 study simulating the installation of EV battery charging stations in Curitiba, Brazil 

calculated the energy consumed between battery charging stations as a function of the distance 

travelled, a penalty factor for traffic between stations, and a scalar variable relating the distance 

travelled with the energy consumed [45]. A slightly less abstracted model was proposed by 

Kurczveil, López, & Schnieder which used a mathematical model based on kinematic equations 

that accounted for air and rolling resistance as well as changes in elevation [26]. 

2.4 Summary 

The rapid adoption of SMMSs is indicative of a cultural shift away from privately owned 

motor vehicles and towards a more distributed transportation system. This shift carries a great deal 

of potential to solve problems of traffic congestion, vehicle related CO2 emissions, and create a 

more complete transportation network in urban centres. However, much work is required to 

facilitate widespread adoption of SMMSs and to identify and address the new problems of safety 

and space management that SMMSs present. This process must begin with rigorous analysis of 

empirical data to develop a thorough understanding of user behaviours and key performance 

metrics. This analysis is described in Chapter 3. 
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3  Data Characterization 

This chapter describes the data analysis and workload characterization processes. Section 

3.1 introduces and contextualizes the datasets to be analyzed. Section 3.2 discusses yearly, daily, 

and hourly variations in e-scooter traffic volumes. Sections 3.3, 3.4, and 3.5 describe the 

distributions of trip distance, speed, and duration, respectively. Section 3.6 summarizes the 

chapter.  

3.1 Data Sources  

The e-scooter data that was analyzed and used as a basis for the simulation model consisted 

of a public dataset of e-bike and e-scooter trips in Calgary throughout 2019 [57] and a collection 

of aggregate data spanning across 2019 and 2020 shared by the City of Calgary. The 2019 trip data 

consisted of 482,021 data entries of seventeen fields, including: (1) type of vehicle (i.e., bike or 

scooter) used for the trip; (2) the date on which the trip took place; (3) the hour of the day when 

the trip was initiated; (4) the day of the week on which the trip took place; (5) the trip distance in 

metres; (6) the trip duration in seconds; (7) the start and end points of the trip; and (8) the 

community from which the trip originated. The aggregate data supplied by the city included 

geographical route and parking information, as well as combined statistics regarding trip volume, 

distance, and speed, from both 2019 and 2020.  

For the purposes of simulation modelling, only scooter trips were included, which reduced 

the number of trip entries to 464,743. Moreover, the data considered were limited to trips 

originating within the six Calgary communities that make up the downtown area shown in Figure 

3.1, referred to in the City of Calgary data as (1) ‘Beltline’, (2) ‘Downtown Commercial Core’, (3) 
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‘Downtown West End’, (4) ‘Downtown East Village’, (5) ‘Eau Claire’, and (6) ‘Chinatown’. 

Isolating for trip origin point further reduced the number of trip entries to 299,924. 

 

Figure 3.1: Calgary communities considered for data analysis [57] 

3.2 Trip Volume 

The mid-pilot report published by the City of Calgary in 2019 [46] stated that 750 000 e-

scooter trips had taken place since the pilot began, with that number rising to a total of 1.9 million 

e-scooter trips in the final report the following year [47]. During the shared mobility pilot period, 

the e-scooters were available only in summer and early fall, with the scooters being removed 

during the winter months. These numbers show a significant increase in ridership between 2019 

and 2020 as Calgarians became more familiar with the SMMS being offered. Although the exact 

number of trips recorded is inconsistent between data sets, suggesting that some trip records may 

have been filtered out, this increase does appear to be reflected in the aggregate data from 2019 

and 2020, with the sum of daily scooter trips rising from 672,853 in 2019 to 950,856 scooter trips 

in 2020.  
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While the total trip volume appears to have increased by 40-50% on a year-to year basis, 

the daily trip volumes, shown in Figure 3.2, are comparable between 2019 and 2020, with daily 

trip volumes in 2020 occasionally falling below their 2019 counterparts. The counts for 2020 also 

show much clearer periodicity as a result of differences in weekend and weekday behaviour, as 

well as a much earlier peak and an earlier accompanying drop-off in ridership than was reported 

in 2019.  

 

Figure 3.2: Total daily volume of e-scooter trips reported in 2019 and 2020 

There are several factors that may have influenced these differences in e-scooter ridership. 

In 2019, the e-scooters were not made available for use until mid-July, while in 2020 the scooters 

were made available in limited numbers as early as May, which may account for this earlier peak 

in traffic volume. The permissible fleet size in 2020 was initially reduced to a total of 450 scooters 

between May 22nd and June 22nd in an effort to accommodate public health concerns surrounding 

COVID-19 [47], as reflected by the later increase in traffic volume on June 23rd, 2020. Ultimately, 

the maximum permissible fleet size was increased to 2,800, a higher value than was used in 2019, 

which may also have contributed to higher traffic volumes. Finally, traffic volumes appear to 

decline earlier in the fall and more sharply in 2020 than in 2019, seeming to correspond with the 
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start of a new academic semester. Since e-scooter usage has often been shown to be higher in areas 

populated with students [10], [24], this may be related to most post-secondary institutions in 

Calgary transitioning to online learning in the fall of 2020, reducing the need for students to 

commute to and from campus.  

In both 2019 and 2020, e-scooter activity in Calgary is densely concentrated within the 

downtown area, with downtown trips accounting for two-thirds of all reported scooter trips. The 

trip data includes 464,743 scooter trips, 299,925 of which (64.5%) originated from one of the six 

downtown communities indicated above, while the aggregate data for 2019 reported that 

approximately 64.3% of scooter trips took place within or between these communities.  Although 

no trip-level data was published for 2020 e-scooter trips, the aggregate data from 2020 showed 

approximately 67.5% of trips took place within or between these communities.  

Neither of the available datasets included sufficiently precise information about trip start 

times to determine whether new trips arrive according to a particular statistical distribution. 

However, the available data was sufficient to graph the average hourly trip volumes for 2019 and 

2020, shown in Figure 3.3, which reveal specific trends in rider behaviour.   
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(a) 

 

(b) 

 

(c) 

 

Figure 3.3: Average hourly trip volumes recorded in (a) 2019 trip data isolated to the downtown, (b) 2019 aggregate 

data, and (c) 2020 aggregate data 
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Each of these graphs shows a clear diurnal pattern with a distinct lull around 4 AM, and a 

distinct high in the afternoon or evening. There is also consistently a notable distinction between 

weekend and weekday ridership patterns, with higher trip volumes on Friday and Saturday 

evenings and later starts on Saturday and Sunday mornings. However, there are distinct differences 

in the shapes of these three graphs, particularly with respect to weekday ridership. The 2019 trip 

data, which has been isolated to the downtown, shows three distinct peaks, at 8 AM (morning rush 

hour), noon (lunch hour), and 4 PM (evening rush hour) and a slow, steady increase in trip volumes 

between 4 AM and 4 PM. The 2019 aggregate data shows the same general trends, but the peaks 

are somewhat less pronounced. This is likely a result of communities outside the downtown being 

less strictly bound by standard office working hours. Similarly, the traffic volumes are higher 

because a wider geographical area is considered. 

The 2020 aggregate data is starkly different from both of the datasets for 2019. First, the 

weekday peaks are significantly reduced, with the average traffic volume during the morning rush 

hour at approximately half the value it reached in 2019, while the peaks at lunch time and evening 

rush hour have almost vanished. Second, the difference in ridership between weekends and 

weekdays is substantially more pronounced. In particular, the traffic volumes on Friday and 

Saturday evenings are higher and do not reach their peak until 9 PM. This is likely attributable to 

the shift towards telecommuting induced by public health concerns around COVID-19, which 

would have greatly reduced commuter traffic to and from the downtown. 



22 

 

3.3 Trip Distance 

 
Min Max Mean Median Mode Std. Dev CV 

101  27022 1740.112592 1175 642 1818.346795 1.044959277 

Figure 3.4: Histogram of observed trip distances in downtown Calgary in 2019 

The 2019 trip data included a reported distance in metres for each trip ranging from 0.1 to 

27 km. The distribution of trip distances reported in this data set is shown in Figure 3.4. The shape 

of the histogram suggests that the e-scooter trip distances may follow a lognormal or an 

exponential distribution. The mean value and standard deviation are similar, as reflected by the 

coefficient of variation that sits close to one, which is expected of an exponential distribution. 

However, we have no intuitive explanation for why the trip distances would exhibit the 

memoryless property that is characteristic of an exponential distribution. 

The QQ plots in Figure 3.5 were generated in R [40] using the qqexp() and qqplot() 

functions. The exponential QQ plot (left) shows a fairly straight line, although the observed 

distances begin to drift above the expected line towards the tail of the distribution. One common 

test for comparing statistical distributions is the Kolmogorov-Smirnov (KS) test. This test produces 

a KS statistic value which quantifies the difference between distributions, with higher statistic 
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values representing greater deviation between distributions and lower statistic values representing 

lower deviation between distributions. A KS test of the observed distances against an exponential 

distribution with a mean value of 1740.112592 produced a KS test statistic of 𝐷 =  0.067717. 

For a dataset with 299,924 samples, and 𝛼 = 0.001, the critical D value is 
1.94947

√𝑁
=

 0.00355967990195 which is less than the calculated KS statistic, suggesting that while the 

distribution of trip distances may be similar to an exponential distribution, particularly in the lower 

half, the sample distances are not strictly exponentially distributed and have a heavier tail.  

Interestingly, because the trip data does not include any trips below 101 metres, a two-

sample KS test of the empirical data against a corresponding exponential distribution that has been 

shifted by 101 produced a KS statistic that, while still not below the critical value, is approximately 

half that of the original sample set. 

  

Figure 3.5: QQ plot of observed 2019 trip distances against hypothetical exponential and lognormal distributions 

The lognormal QQ plot (right) shows a much closer match in the main body of the 

distribution but diverges by a more substantial margin at the tail. A KS test of the observed 

distances against lognormal distribution, fitted using R with a mean log value of 7.03425 and a 
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standard deviation log value of 0.9486314, produced a KS test statistic of 𝐷 =  0.015591. This 

value also lies above the critical D value, distribution of trip distances does not strictly adhere to a 

lognormal distribution.  

The report of trip distances contained in the aggregate data did not cover as extensive a 

range as the distances reported in the 2019 trip data, only including a distribution of trip distances 

ranging from 0 to 5 km. It is unclear whether this distribution reflects rider behaviour from 2019, 

2020, or both years together. A graph comparing distance distributions from the aggregate and trip 

datasets is shown in Figure 3.6. The distributions are closely matched over most intervals, however 

the trip data from 2019 showed a much smaller percentage of trips under 0.5 km and a much higher 

percentage of trips over 5 km, resulting in a higher average distance than was reported in the 

aggregate data. 

 

Figure 3.6: Comparison of trip data with the trip distance distribution given in the aggregate data 

Additional examination of the hourly variation in trip distances (Figure 3.7) shows that, 

like trip volume, the distances follow a distinct diurnal pattern, with a slow increase in trip distance 

throughout the day which quickly falls off between 2 and 6 AM. The hourly trip distances during 
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this period contain more variation than is present at other times of day, likely due to the lower trip 

volumes at this time resulting in a smaller sample size and consequently more noise. Interestingly 

the small, intermittent peaks in this graph appear to fall between the rush hour and lunch hour 

peaks previously observed in the hourly trip volumes, which may reflect a difference in trip 

purpose (i.e., commuting versus recreation). There is also a clear distinction between weekend and 

weekday riding behaviour, with early morning and day-time trips being longer on average on 

weekends than during the week.  

 

Figure 3.7: Average hourly trip distance observed in 2019 

Determining the distribution of trip distances within a given one-hour period posed a 

challenge, particularly during low traffic periods because of noise resulting from the reduced 

number of data points. Thus, for the purpose of analyzing hourly trip distance distributions, the 

trip distances were divided into 24 sets of one-hour intervals, without consideration for 

weekday/weekend variance. These distributions, shown in Figure 3.8, all appear to follow a similar 

general shape which, like the combined distance distribution, is visually similar to an exponential 

distribution. Figure 3.9 shows exponential QQ plots for trip distances over six selected one-hour 
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intervals. Like the QQ plot shown in Figure 3.5, these plots suggest that the hourly distributions 

initially follow an exponential distribution before beginning to deviate towards the tail. 

 

Figure 3.8: Hourly distance distributions 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.9: QQ plots comparing hourly distance distributions against hypothetical exponential distributions 

 



27 

 

3.4 Trip Duration 

Like the recorded trip distances, the trip durations from the 2019 trip data appear at first 

glance to follow a distribution similar to a lognormal distribution or an exponential distribution. 

The distribution of trip durations shown in the histogram in Figure 3.10 is weighted toward the left 

with a long right tail. Again, the mean and standard deviation are similar, although the coefficient 

of variation is higher than was seen in the trip distance distribution.  

 
Min Max Mean Median Mode Std. Dev CV 

31 9,521 746 476 236 806.5128916 1.081261435 

Figure 3.10: Histogram of observed trip durations in downtown Calgary in 2019 

However, the QQ plots shown in Figure 3.11 display a sharp divergence from both 

expected exponential values and expected lognormal values. A KS test comparing the empirical 

data with a corresponding exponential distribution returns a KS statistic of 𝐷 =  0.13256, 

rejecting the hypothesis that the trip durations are exponentially distributed. Similarly, a KS test 

comparing the empirical data with a corresponding lognormal distribution returns a KS statistic of 

𝐷 =  0.039393, which while substantially lower than the exponential is still greater than the 

critical D value. The aggregate data did not include a report of recorded durations for comparison.  



28 

 

 

 

Figure 3.11: QQ plot of observed 2019 trip durations against hypothetical exponential and lognormal distributions 

There is no immediately apparent explanation for the unusual behaviour in the tail of the 

distribution. The hourly distribution of trip durations, given in Figure 3.12, closely matches the 

hourly distribution of trip distances given in Figure 3.7. A histogram showing the approximate 

number of trips ending in each hour of the day, given in Figure 3.13, closely matches observed 

traffic patterns discussed in Section 3.2 without any unusual spikes or lulls.  
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Figure 3.12: Average hourly trip duration observed in 2019 

 

Figure 3.13: Approximate portion of trips ending during each hour of the day 

An analysis of the trip durations in comparison with the trip distances appears to show 

minimal correlation between the two metrics, with one small exception. The scatterplot shown in 

Figure 3.14, with trip distances represented on the x-axis and trip durations represented on the y-

axis, appears to be roughly bounded at the bottom (shown in green) to a maximum speed of 

approximately 7.5 mps (27 kph), which complies with the typical maximum speed reported for 
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most commercial scooters9. The scatterplot also appears to be bounded at the top, though not 

strictly, to a maximum duration of 8000 seconds, or 2.2 hours. In fact, there is a dense band (shown 

in yellow) of points between 7000 and 8000 seconds that stand out from the surrounding plot. This 

band is consistent with the distinct corner at 7000 seconds that is visible in the QQ plot given in 

Figure 3.11. Isolating these trip records for further analysis did not reveal any particular trends in 

the time when these trips took place or their starting and ending locations. Thus, this may be a 

result of the data collection and filtration processes, or may simply reflect a peculiarity of rider 

behaviour. 

 

Figure 3.14: Scatterplot of trip distance vs. trip duration in 2019 

 
9 https://electricscootering.com/electric-scooters-fast/ 
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3.5 Trip Speed 

An analysis of trip speed was conducted using the average speed calculated from trip 

distance and duration. This calculation revealed 792 trip records with a reported average speed of 

more than 30 kph, with 6 reaching higher than 100 kph. The Segway Ninebot ES4 (Lime’s scooter 

of choice) has a top speed of approximately 30 kph10 and the ES2 and Xioami Mi M365 have a 

top speed of approximately 25 kph1112. Since these observed values are beyond the threshold of 

typical scooter operation, they were presumed to be the result of anomalous user behaviour or 

errors in data collection and these speeds were excluded from analysis.  

 
Min Max Mean Median Mode Std. Dev.  CV 

0.048422142 29.87307692 9.458027784 8.583999998 7.2 5.289484767 0.559258747 

Figure 3.15: Histogram of observed trip speeds in 2019 

Isolating the data entries with only plausible average speeds gave a mean trip speed of 9.5 

kph. Unlike the trip distances and trip durations, the average trip speeds reflected in the 2019 

aggregate data do not immediately appear to follow a familiar statistical distribution, and QQ plots 

 
10 https://www.segway.com/kickscooter-es4/es4-specs/#specs-es4 
11 https://www.segway.com/kickscooter-es2/es2-specs/ 
12 https://www.xiaomitoday.com/product/xiaomi-m365-electric-scooter/ 
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comparing the observed speeds against normal, exponential, and chi-squared distributions, given 

in Figure 3.16, did not yield promising straight-line matches. 

 

 

Figure 3.16: QQ plots comparing the observed trip speed distributions against various hypothetical distributions 

While the speed values taken from the 2019 trip data represent a simple trip-wise average 

speed, determined by the reported distance and duration, the aggregate data made available in 2020 

does not include information about how the speed data it includes was collected and aggregated, 

making it difficult to determine precisely what factors contribute to the differences in the two 

distributions. In particular, the 2020 data is bounded at the bottom to 3 kph and at the top to 14 

kph while the speeds from the 2019 trip data vary much more broadly. Even excluding reported 

trip speeds above 30 kph, these speeds range as low as 0.05 kph and as high as 29.87 kph. One 

factor that may account for some of the discrepancy between the aggregate and trip data is the 

2020 implementation of slow-speed zones in Kensington, Mission, Inglewood, and on Stephen 

Avenue, which automatically limited the maximum speed of the scooter to 15 kph. A comparison 

of the two distributions is given in Figure 3.17. 
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Figure 3.17: Comparison of trip data with the trip speed distribution given in the aggregate data 

Finally, an analysis was conducted between trip distance and trip speed, using the 2019 trip 

data, to look for correlation between the two distributions. The scatterplot given in Figure 3.18 

indicates a rather strict lower bound on trip speed as a function of trip distance, shown in yellow. 

This approximate lower bound may be given as:  

𝑚𝑖𝑛𝑆𝑝𝑒𝑒𝑑
km

ℎ
 =  

𝑡𝑟𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑘𝑚 

2.2ℎ 
. (1) 
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Figure 3.18: Scatterplot comparing observed trip distance and trip speed in 2019 

3.6 Summary 

This chapter has presented an analysis of two datasets of e-scooter usage in Calgary. The 

majority of e-scooter trips are concentrated within the downtown area and a temporal analysis of 

these trip volumes has shown both that e-scooter usage rose between 2019 and 2020 and that there 

are clearly weekly and diurnal variations in how e-scooters are used. An examination of the trip 

characteristics showed although neither duration nor speed clearly followed any statistical 

distribution, the distribution of trip distances was similar to an exponential distribution, though 

with a heavier tail. These analyses create the foundation for the development of the simulation 

model discussed in Chapter 4.  
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4 Simulation Model 

This chapter discusses the process of synthetic workload generation and the development 

of a custom-built simulation environment. Section 4.1 discusses the simplifying assumptions  

required to represent a complex, real-world system in a finite simulation. Section 4.2 describes the 

construction and modular structure of the simulation code, as well as the required input variables 

and output statistics. Section 4.3 describes the process of creating a geographic model for the 

simulation from the empirical geographic data regarding trip routes. Section 4.4 explains the e-

scooter battery model used for the simulation, and how the state of charge (SOC) for each e-scooter 

battery is determined by e-scooter usage and battery charging time. Section 4.5 discusses the 

generation of new trips with consideration for hourly variance in traffic volumes, and assignment 

of trip characteristics including trip distance, trip route, and trip speed. Section 4.6 summarizes the 

main points of the chapter.  

4.1 Abstractions and Assumptions 

In the process of transitioning from analysis of real-world data to development of a 

synthetic workload model, several simplifying assumptions were adopted to maintain the 

simulation at a manageable scale and reduce computational load, or to accommodate limitations 

on the available data. Because the daily traffic volumes in both 2019 and 2020 showed a distinct 

peak in ridership during the summer months compared to a distinct lull in winter, the simulation 

model focuses on rider behaviour for the months of July and August. In addition, because all 

datasets showed a clear concentration of e-scooter traffic in the downtown, the simulation 

geography is restricted to the downtown area, only using GEOJSON map data that falls within the 

bounding box shown in Figure 4.1. 
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Figure 4.1: Simulation area (© Open Street Map) 

 

In addition to these geographic and temporal limitations on simulation scale, several 

simplifying assumptions were made about the nature of e-scooter trips and collection strategies. 

These assumptions include: 

• new scooter trips arrive according to a Poisson arrival process, whose rate varies with the 

hour of the day and the day of the week; 

• scooters are selected at random without specific preference for location or charge level, so 

long as the scooter has sufficient charge to complete a trip; 

• no trips are abbreviated by limited scooter battery; 

• all e-scooter trips maintain a constant speed between initial acceleration and final 

deceleration, with no stops or changes in speed; and 



37 

 

• scooters are redistributed to the same point at which they were collected for recharging by 

the operator. 

4.2 Code Structure 

The e-scooter simulator was written using the Java programming language [6] and follows 

the paradigm of discrete-event simulation, whereby the simulation is updated only according to 

scheduled events that change the state of the simulated system. Designing the simulation this way 

allows for shorter runtimes of longer simulated periods because the simulation moves directly from 

one event to the next without having to wait through periods of inactivity, as would be required 

for continuous simulation using fixed length time steps.  

4.2.1 Simulation Classes 

The core simulator code is contained in seven Java classes, which have been divided into 

modules as shown in Figure 4.2.  

 

Figure 4.2: Simulation modules and classes 
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The ‘Event Scheduling’ module contains classes relating to the creation and management 

of simulated events. The ‘Event’ class stores relevant information about a simulated event 

including: (1) the time in the simulation when the event occurs, (2) the type of event, and when 

necessary (3) the scooter and map edge associated with the event. The ‘EventList’ class is a time-

ordered linked list of Event objects, so that the earliest upcoming event is at the head of the list 

and new events are slotted into the list according to the time in the simulation when they are 

scheduled to occur.  

The ‘Simulation’ module contains the simulation code itself, as well as the object classes 

for the structural and moving components in the simulated e-scooter system. The ‘Scooter’ class 

includes a unique identifier for the scooter and state variables to keep track of (1) the scooter’s 

location, (2) the current charge level in the scooter battery, (3) whether the scooter is currently 

available for use13, and (4) if parked, whether the scooter is parked at an Share-and-Go (SNG) 

zone, a battery charging station, or neither. The ‘Edge’ class contains a unique identifier, as well 

as (1) the distance across the edge, (2) the edge weight, which represent the relative traffic volume 

across that edge and is used to determine trip routes, (3) the starting and ending coordinates of the 

edge, and (4) a list of immediately adjacent edges. The primary simulation class includes an event 

loop that tracks the simulation time and reads new events from the event list until the simulation 

stop time is reached, as well as event handling functions that update the state of the system and 

track statistic variables.  

 
13 A scooter may be unavailable for use if the scooter battery reaches 0, if the scooter has been/is being collected by 

the operator to be recharged, or if the scooter is already in use by another rider. 
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Finally, the ‘Tools’ module contains a parser for reading in complex simulation inputs, 

such as the edge geography for the simulation or the hourly ITTs, and a random number generator 

for generating ITTs, trip distances, and trip speed. 

4.2.2 Inputs and Outputs 

The simulation takes four text files as input, as shown in Figure 4.3. These include the edge 

geography for the simulation, which consists of: an entry for each edge containing the edge length, 

weight, and neighbours; the mean ITTs in the form of twenty-four rows (hours) of seven columns 

(days); the mean trip distances in the form of twenty-four rows (hours) of two columns 

(weekday/weekend); and the empirical distribution for trip speeds between 0 and 30 kph.  

 

Figure 4.3: Text file simulation inputs 

In addition to these inputs, the simulation contains a number of parameters that may be 

directly modified in the code, including the duration of the simulation, the number of scooters to 

simulate, the battery percentage threshold below which a scooter will be collected to be recharged, 

the operator location from which the route for scooter collection originates, and the percent chance 

of e-scooter riders extending or truncating their trip to find available parking on an adjacent edge. 

These parameters and their default values or statistical distributions are given in Table 4.1. 

edgeMap.txt 

0 3.18 16.1 ⋯
1 5.21 109.9 …
⋮ ⋮ ⋮ ⋱

2500 26.1 3.65 ⋯

 

speedDistribution.txt 

0.008389
0.02692

⋮
0.003424

 

distances.txt 

2113.4 1801.6
2127.5 1916.2

⋮ ⋮
1941.0 2148.7

 

interTripTimes.txt 

62.3 83.2 ⋯ 50.2
83.4 133.3 … 77.3

⋮ ⋮ ⋱ ⋮
58.0 65.2 … 34.3
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Table 4.1: Simulation parameters and default values 

Parameter Default Value Notes 

Number of Scooters 500 N/A 

Charging Threshold 25% N/A 

ITT Exponential(itts[hour][dayOfWeek]) Mean ITTs stored in a 24x7 array 

Speed Distribution Empirical N/A 

Trip Distance Exponential(distances[hour][weekend?1:0]) Mean distances stored in a 2x7 array 

SNG Parking 23 locations with 6 spaces each Included in the edge geography file 

Throughout its runtime, the simulator keeps track of several statistic variables, including 

(1) the max and mean number of scooters in use at one time, (2) the number of scooter trips both 

successful and unserved, (3) the number of trips ended at an SNG zone and the number of trips 

ended at a battery charging station, (4) the average trip distance and duration, and (5) the average 

time/distance required for an operator to collect scooters with low charge. The simulator also 

generates a text file that mimics the structure of the 2019 dataset, consisting of start time, day of 

week, hour of day, distance, duration, and start/end coordinates for each simulated trip.  

4.2.3 Events and Event List 

Within the scope of this thesis, only four state-changing events were identified as 

fundamental to the simulation of Calgary’s e-scooter system. These events are listed below along 

with a description of the simulation state changes, statistic variable updates, and subsequent event 

scheduling triggered by each one. 

• Start Trip: This event marks the start of a new e-scooter trip and contains no additional 

information beyond event type and time. An available scooter is selected at random, and a 

target trip distance and trip speed are generated from their respective stochastic 

distributions, which in turn determine the percentage of the e-scooter battery consumed by 

the trip. If the selected scooter does not have sufficient battery to complete a trip of the 
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length and speed, a new scooter is selected. This process may be repeated up to five times 

before the trip is counted as unserved. 

The origin of the trip is determined by the location of a randomly selected available scooter, 

rather than the scooter being determined by a randomly selected trip origin. This is because 

neither of the analyzed data sets contained particularly revealing or precise information 

about trip start and end points or the general directionality, and because these datasets 

reflected satisfied demand, where the rider necessarily found an available scooter. If the 

selected scooter has sufficient battery to complete the trip, a route is generated using the 

scooter location as an origin point and iteratively extending the route by randomly selecting 

one new edge at a time, according to their relative traffic volume weights, until the target 

distance is reached.   

Once the scooter, trip speed, trip distance, and route have been determined, the scooter is 

marked as unavailable because it is in use, any parking or battery charging space the scooter 

may have occupied is marked as available, and the scooter battery is decremented by the 

battery consumption of the trip. A record of the trip details is appended to the trip log and 

the statistic variables relating to distance travelled, trip duration, number of served or 

unserved trips, and number of scooters in use at one time are updated accordingly. Finally, 

a new ‘End Trip’ event for this scooter is scheduled to occur after the determined trip 

duration at the end to the generated trip route.  

Whether or not the trip was successfully served, a new ‘Start Trip’ event is scheduled 

according to a Poisson arrival process and the hourly rate of new trips.  

• End Trip: This event marks the end of a trip and contains additional information about 

where the trip has ended, and which scooter was used. Because most of the trip details were 
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determined when the trip was initiated, there is little additional computation that needs to 

be done at this stage beyond marking the scooter as available again (provided the scooter 

battery has not reached 0), decrementing the number of scooters in use, and ‘parking’ the 

scooter by updating its current location and, where parking or battery charging spaces are 

available, updating the scooter and edge variables to indicate how it is parked and how 

many parking or battery charging spaces remain available. No additional events need to be 

scheduled as a follow up to this type of event. 

• Collect Scooters: This event occurs once per day at 10 PM and initiates the process of 

collecting, recharging, and redistributing e-scooters with a low charge level. The threshold 

for which scooters are considered as having low-charge may be set in the simulation 

parameters. When this event is triggered, the simulation identifies all the scooters whose 

battery has fallen below the threshold level, marks each of them as unavailable, and 

compiles a set of edges with scooters to be collected. Then, with the operator location 

specified in the simulation parameters as a starting point, the simulation uses Manhattan 

distance estimation and a modified Shortest Seek Time First algorithm to determine the 

collection route and the distance driven to collect all the necessary scooters. The time 

needed to collect these scooters is estimated from the Manhattan distance using an assumed 

constant speed of 30 kph and with an additional 60 seconds for each edge the collection 

vehicle must stop at and an additional 30 seconds for each scooter that must be loaded onto 

the vehicle.  

Since this is a regularly recurring event, a new ‘Collect Scooters’ event is scheduled for 10 

PM the next day. Finally, a new ‘Distribute Scooters’ event is scheduled to occur after a 
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period of twice the collection time, plus up to 8 hours or as much time is required to charge 

all of the scooters to a full battery.  

• Distribute Scooters: Because the simulation assumes that scooters will be returned to the 

same location from which they were collected, no additional determinations must be made 

about the route to distribute scooters or scooter placement. Instead, handling of this event 

simply requires that each scooter that had been ‘collected’ for recharging be marked as 

available with its battery level returned to 100%. 

In addition to these four events, a bookkeeping ‘Update Time’ event is scheduled to occur 

at the top of every hour to keep track of the current hour (between 0 and 23), the current day of the 

week (between 0 and 6), and the current day of the simulation, in order to maintain the correct 

mean ITT and mean distance.  

4.3 Geographic Model 

The aggregate data included several GEOJSON files mapping aggregate route data along 

streets and pathways. These files were used to create an edge graph in the simulation, with each 

edge representing a city street or alleyway, and weighted according to relative daily trip volume 

across that edge. The data contained in these files included total number of trips observed across 

that edge and the average number of trips per day as well as latitude and longitude coordinates 

describing each edge. The starting and ending coordinates of each edge were used to define a 

simplified simulation geography that ignored curved streets and to identify a list of neighbouring 

edges for each edge.  The aggregate data did not include information about the origin or destination 

points of individual trips, and the origin and destination points included in the trip data from 2019 

were not at a sufficiently fine granularity to make specific observations about the general 
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directionality of traffic throughout the day. Thus, the route for each e-scooter trip was determined 

instead by the location of the e-scooter and the relative daily traffic volumes of the surrounding 

edges.  

(a) 

 

(b) 

 

 
Figure 4.4: Generated maps from (a) observed daily average trips across edge, and (b) simulated daily average 

trips across edge. 

Figure 4.4(a) shows the geographic distribution of average daily traffic volume throughout 

the downtown as reported in the aggregate data. The map shows several distinct concentrations of 

traffic, particularly along the River Walk on the north edge of the downtown, but also along the 

pedestrian road of Stephen Avenue (8th Avenue, one block south of the downtown LRT line) as 
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well as 12th Avenue and 17th Avenue. In addition, 4th Street and 5th Street, which are two of the 

main north-south routes across the Canadian Pacific Railway line that bisects the downtown, show 

a clear concentration of e-scooter traffic. Beyond these specific high-traffic areas, there is a general 

gradient in traffic volumes that is highest in the eastern-centre of the downtown and gradually 

decreases towards the edges of the map. 

The traffic patterns generated in the simulation using these weights to select trip routes are 

shown in Figure 4.4(b). In comparison, the simulated traffic closely matches observed traffic in 

most areas but shows generally more distributed traffic with slightly higher traffic volumes 

between high traffic streets than is seen in the empirical data.  

4.4 E-Scooter Battery Model 

4.4.1 Battery Usage 

Because the scooters are battery-powered, a robust model for battery charging and 

discharging behaviour was developed to determine SOC for e-scooter objects within the simulation 

environment. The fidelity of this model was important, because the rate of charge and discharge 

would directly impact both the availability of e-scooters for riders and the costs to the operator of 

collecting and recharging the depleted e-scooters.   

The method for calculating e-scooter battery usage is based on the EV battery models in 

SUMO [26], which derives the equations for battery usage over discrete time intervals, k, from 

kinematic equations. Here Ebatt (Equations 1 and 2) is the energy stored within the scooter battery, 

Egain (Equation 4) is the energy gained by the battery between time steps, and Eveh (Equation 5) is 

the energy contained within the scooter motor. Because the geographical map of the downtown is 

assumed to be flat with no changes in elevation, and because the mass of a scooter is substantially 



46 

 

lower than the mass of an electric car, Eveh is determined only by kinetic energy while the potential 

and rotational energy are ignored. Equations 6 through 8 describe energy lost to wind and rolling 

resistance. The calculation uses Equation 2 when energy gained by the battery is positive (i.e., 

when the scooter is decelerating) and Equation 3 when the energy gained by the battery is negative 

(i.e., when the scooter is accelerating or maintaining constant speed): 

𝐸𝑏𝑎𝑡𝑡[𝑘 + 1] = 𝐸𝑏𝑎𝑡𝑡[𝑘] + ∆𝐸𝑔𝑎𝑖𝑛[𝑘 + 1] ∙ 𝜂𝑟𝑒𝑐𝑢𝑝 (2) 

𝐸𝑏𝑎𝑡𝑡[𝑘 + 1] = 𝐸𝑏𝑎𝑡𝑡[𝑘] + ∆𝐸𝑔𝑎𝑖𝑛[𝑘 + 1] ∙ 𝜂𝑝𝑟𝑜𝑝
−1 (3) 

∆𝐸𝑔𝑎𝑖𝑛[𝑘] = 𝐸𝑣𝑒ℎ[𝑘] − 𝐸𝑣𝑒ℎ[𝑘 + 1] − ∆𝐸𝑙𝑜𝑠𝑠[𝑘] (4) 

𝐸𝑣𝑒ℎ[𝑘] = 𝐸𝑘𝑖𝑛[𝑘] + 𝐸𝑝𝑜𝑡[𝑘] + 𝐸𝑟𝑜𝑡[𝑘] (5) 

𝐸𝑙𝑜𝑠𝑠[𝑘] = ∆𝐸𝑎𝑖𝑟[𝑘] + ∆𝐸𝑟𝑜𝑙𝑙[𝑘] (6) 

Δ𝐸𝑎𝑖𝑟[𝑘] =
1

2
𝜌𝑎𝑖𝑟 ∙ 𝐴𝑣𝑒ℎ ∙ 𝑐𝑤 ∙ 𝑣2[𝑘] ∙ |∆𝑠[𝑘]| (7) 

∆𝐸𝑟𝑜𝑙𝑙[𝑘] = 𝑐𝑟𝑜𝑙𝑙 ∙ 𝑚𝑣𝑒ℎ ∙ 𝑔 ∙ |∆𝑠[𝑘]|. (8) 

The primary scooter specifications are taken from the published specifications for the 

Segway Ninebot Kickscooter ES414 which is one of the scooters used by Lime. This scooter has 

two batteries with a combined total of 374 Wh of power, or approximately 1350 kJ. The 

specifications also claim a typical range of 45 km and a top speed of 30 kph. Some calibration of 

vehicle acceleration and efficiency was conducted based on these specifications to try and match 

the range as closely as possible. The final values used for the battery model, and their justifications, 

are given in Table 4.2. 

 
14 https://www.segway.com/kickscooter-es4/es4-specs/#specs-es4 
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Table 4.2: Symbols and values used in battery usage equations 

Symbol Meaning Value Justification 

ηprop 
Propulsion 

Efficiency 
0.8 

Most EVs report a propulsion efficiency of 0.85-0.9. Accounting 

for variation and less than ideal conditions, the simulation uses a 

slightly lower value. 

ηrecup 
Regenerative 

Braking 

Efficiency 

0.01 

Although many e-scooters offer regenerative braking, it is 

frequently inefficient and does not slow down the scooter as 

quickly as other braking methods. This value gave the best match to 

the maximum range of a Segway Ninebot ES4 

ρair Air Density 1.225 Standard 

Aveh Drag Area 0.875 m2 
This value is the average height of a Canadian adult (1.7 m) 

multiplied by the approximate width of an average adult (0.5 m) 

cw Drag Coefficient 1.2 The drag coefficient of a standing human falls between 1.0 and 1.3 

croll 
Rolling 

Resistance 

Coeffecicent 

0.008 
Bicycle tires range from 0.004 to 0.008; solid tires tend to have a 

higher croll 

m Mass 94 kg 
Mass of an average adult human is ~80 kg; mass of an average 

scooter is ~14 kg 

g Gravity 9.81 m/s2 Standard 
 

4.4.2 Battery Charging 

Estimating the battery charging time of the scooters was a challenge, particularly with 

respect to the implementation of public battery charging stations where scooters may be charged 

for a short period of time rather than a full charging cycle from 0% to 100%. The ES4 scooter, 

described above, includes a battery charging time of 7 hours in its specifications, while the Bird 

One scooter15 used by Bird can take up to 12 hours to charge. One of the factors that further 

complicates this issue is that EV batteries frequently do not charge at a constant rate. Rather, the 

rate of charge tends to vary depending on the charge level of the battery.  

Ultimately a fixed battery charging time of 8 hours was chosen, based on correspondence 

with Spin, a scooter company that offers public battery charging hubs for e-scooters. This battery 

charging model assumes two linear charging functions, requiring three hours to charge a scooter 

battery from 0% to 50% and an additional five hours to charge a scooter battery from 50% to 

100%. 

 
15 https://support.bird.co/hc/en-us/articles/360040173312-Bird-One-Specs-FAQs- 
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4.5 Trip Generation 

New trips within the simulation were generated according to a Poisson arrival process 

determined from the average number of hourly trips observed in the 2019 trip statistics. This 

process uses a mean inter-trip time (ITT) and a uniform random value between 0 and 1 to generate 

a random ITT according to an inverse exponential CDF, as shown in Equation 9:  

𝑣 =  −𝜇 ln 𝑢 . (9) 

However, it was clear from comparison of the total trip volumes in 2019 and 2020 that 

these values would need to be scaled to better reflect the activity of e-scooter users in 2020. To 

address this issue, a scalar modifier of 1.55 was introduced to increase the trip volume generated 

for one simulated month of traffic to 67.5% of the total trip volume reported for July 2020 in the 

2020 aggregate data, or the approximate trip volume observed in the downtown area throughout 

that period. Figure 4.5 shows the average hourly trip volumes observed in downtown Calgary in 

2019 (left) side by side with the average hourly trip volumes generated in one month of simulated 

e-scooters with the 1.55 scaling factor. The simulated traffic captures the diurnal patterns observed 

in 2019, as well as the distinct tri-peaked shaped of weekday traffic and the later rise in traffic 

volumes on weekends. 
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Figure 4.5: Average hourly trip volume in 2019 (left) and simulated hourly trip volume with scalar modifier to 

match 2020 traffic volumes (right) 

4.5.1 Distance 

As discussed in Chapter 3, the observed trip distances do not strictly fit an exponential or 

lognormal distribution. However, because the exponential distribution showed less significant 

deviation in the lower half of the distribution and because the use of a standardized distribution 

that is simple to emulate allowed the temporal variation in trip distances to be modelled more 

efficiently, the trip distances in the simulation are generated according to a shifted exponential 

distribution, as shown in Equation 10:  

𝑣 =  −(𝜇 −  101) ln 𝑢  +  101. (10) 

Generating simulated distances using this method resulted in an average difference 

between the observed trip distances and trip distances generated according to a corresponding 

exponential distribution with a lower bound of 101 metres was only 85.7 metres (slightly less than 

an average city block in downtown Calgary). 
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From there, several possible implementations were considered to most accurately reflect 

hourly, daily, and overall variation in trip distances without introducing undue noise into the 

system from using too small a sample set. The options considered included drawing random trip 

distances from: 

(a) a single exponential distribution using the overall mean value from the observed trip 

distances, irrespective of the current day or hour; 

(b) one of four possible exponential distributions, using the mean values for weekday peak, 

weekday off-peak, weekend peak, and weekend off-peak trip distances; 

(c) one of twenty-four possible exponential distributions, using the mean hourly values from 

the observed trip distances, and a uniform scalar value to account for differences in 

weekday and weekend rider behaviour; or 

(d) one of forty-eight possible exponential distributions, using the weekday and weekend mean 

hourly values from the observed trip distances.  

A comparison of the simulated trip distances using the four different methods is shown in 

Figure 4.6, with the empirically observed hourly trip distances for reference. The fourth distance 

generation method (d) clearly gives the closest visual match to the observed values, without adding 

significant noise or noticeable computation time to the simulation process.  
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Figure 4.6: Four possible approaches to modelling trip distance 

A combined histogram showing the distribution of trip distances in the simulated trip log 

and the distribution of trip distances in the observed 2019 trip data is given in Figure 4.7, along 

with a QQ plot comparing the two distributions. This plot lies very close to the ideal line, though 
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as a result of using an exponential distribution to generate trip distances, the simulated distribution 

has a lighter tail than the observed distribution. This is reflected also in the histogram, wherein the 

simulated distance distribution (purple) lies above the observed distribution (blue) and does not 

stretch as far to the right. 

 

Figure 4.7: Combined histograms and QQ plot comparing observed vs. simulated trip distances 

4.5.2 Route 

Once the trip distance was determined, a trip route was created using the location of a 

chosen scooter and the relative weights of surrounding edges. Neither the aggregate data nor the 

trip data set included route information at a particularly fine granularity, making it difficult to 

directly compare simulated route information to real world traffic. Although the trip data collected 

in 2019 included origin and destination coordinates for each trip, there was no discernable 

geographical trend in trip behaviour that could direct simulated route generation. Thus, the origin 

point for each new trip was determined by randomly selecting an available scooter with a non-

empty charge and using the scooter’s current location. The route for each trip was then determined 

by iteratively adding neighbouring edges, selected at random using the reported daily trip volumes 

from 2020 to weight the probability of selecting any given edge, until the target trip distance was 

reached.  
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To approximate the forward momentum of a hypothetical rider, and to reduce the risk of a 

scooter trip simply travelling back and forth along the same set of high-volume edges, the route 

selection method prevents directly backtracking across the current edge unless the edge leads to a 

dead end. While this method does not prevent cyclical trip routing, it does reduce the number of 

repeated edges. Moreover, wide variation were observed in the 2019 trip data between the reported 

trip distance and distance between starting and ending coordinates, suggesting that cyclical trips 

are not uncommon in normal rider behaviour. 

4.5.3 Speed 

Finally, a trip speed is randomly selected from an empirical distribution with a lower bound 

determined by the trip distance. Because the distribution of trip speeds observed in 2019 did not 

clearly match any established statistical distribution and because the trip speeds were constrained 

by a fixed and finite range with only limited variation by time of day, the trip speeds were modelled 

using the empirical distribution directly, after filtering out any reported average trip speeds of 

greater than 30 kph (8.33 mps). This distribution was used to select a 1 kph interval for trip speed, 

and then the actual trip speed was selected from that interval using a uniformly distributed random 

variable.  

In addition to the probability distribution constructed from observed data, the generated 

trip speeds are determined with consideration for the lower bound identified in Chapter 3, which 

showed a strict correlation between trip distance and minimum average speed. Thus, the simulation 

first generates the trip distance, then uses this value to set a lower bound on the speed distribution, 

before finally selecting a trip speed from the remaining range of values according to the empirical 

distribution. 
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The histogram given in Figure 4.8 shows a relatively close match between the simulated 

and observed speed distributions, though the simulated distribution (shown in purple) has a distinct 

step-wise variation, reflecting the uniform selection of precise speeds over each 1 kph interval. 

The QQ plot, likewise, gives a near perfect match between the two distributions.  

 

Figure 4.8: Combined histograms and QQ plot comparing observed vs. simulated trip speeds 

4.5.4 Duration 

In order to maintain a reasonable correlation between trip distance and trip duration, while 

still respecting the speed limitations of the e-scooter specifications, only the trip distance and trip 

speed were randomly generated for each trip, with the duration being determined as a function of 

these values. Thus, the simulated trip durations are difficult to validate against the observed 

durations because they are not being modelled directly, and the difference between the simulated 

and observed durations can be seen clearly in Figure 4.9. In particular, the distribution of simulated 

trip durations has an earlier and lower peak and a longer tail, indicating a higher number of very 

short-duration trips, and a much higher number of very long-duration trips.  
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Figure 4.9: Combined histograms and QQ plot comparing observed vs. simulated trip durations 

Although the simulated duration is less closely matched to the empirical trip characteristics 

than either trip distance or trip speed, this metric has no direct impact on battery usage and is only 

likely to affect the number of e-scooters in use at one time. Moreover, this method of randomly 

generating speed and distance from specified distributions and determining duration from these 

values allows for the most fluid correlation of distance and duration and accounts for the observed 

correlation between distance and speed.  

4.6 Summary 

This chapter has discussed the development of a discrete-event simulation model in Java. 

The model uses geographic e-scooter data from 2020 to create a representative simulation map of 

downtown Calgary. E-scooter objects are modelled using a mathematical battery model and placed 

on edges around the map. New trips are generated according to a Poisson arrival process, with the 

trip distance and speed being selected at random from their respective distributions. This workload 

model produces trip volumes, distances, and speeds that are comparable to the empirical data. This 

model provides the basis for the simulation experiments described in Chapter 5. 
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5 Simulation Results 

This chapter describes the simulation experiments conducted and offers analyses of the 

results16. Section 5.1 discusses the impacts of varying the fleet size in the simulation and 

recommends an ideal range for the number of scooters operating in the downtown. Section 5.2 

discusses placement strategies for additional SNG parking zones and recommends ideal strategies 

for increasing utilization and decreasing collection costs. Section 5.3 discusses the placement and 

number of e-scooter battery charging stations and gives specific and general recommendations on 

their placement. Section 5.4 summarizes the findings of this chapter.  

5.1 Fleet Size 

In 2019, there were 1500 scooters deployed throughout the city, and although that number 

rose as high as 2,300 (out of a maximum limit of 2,800) in 2020, the City later opted to cap the 

number of e-scooters at 1500 [47]. The aggregate data collected in 2020 showed approximately 

40% of parking events took place within the six primary communities that make up the downtown, 

suggesting a fleet size of around 600 scooters within the downtown. One of the first experiments 

conducted using the simulation model was to run the simulation using various fleet sizes ranging 

from 100 to 1600 scooters and examine the impacts of the changes in fleet size on relevant 

performance metrics such as the number of successful or unserved trips per day, the time and 

driving distance required to collect scooters to be recharged, and the approximate utilization of the 

e-scooter fleet. The results from these experiments are given in Table 5.1.  

 
16 A subset of the results presented in this chapter have been accepted for publication and presentation at the IEEE 

MASCOTS 2021 conference [33]. 
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Table 5.1: Impacts of e-scooter fleet size on fleet usage and e-scooter collection in downtown Calgary 

Number of Scooters 100 200 400 800 1600 

Max scooters in use 100 182 208 199 195 

Avg. scooters in use 42.3 59.6 66 65.3 64.8 

Successful trips per day 3656 5227 5753 5750 5732 

Unserved trips per day 2086 557 0 0 0 

% Trips ended at SNG 2.87% 2.99% 2.97% 2.95% 2.90% 

Avg. collection time 1:24:41.3 1:48:34.9 2:01:03.8 2:01:47.6 1:55:21.1 

Avg collection distance 24.523 km 28.462 km 30.662 km 29.684 km 27.944 km 

The outputs from these experiments reveal several interesting trends. The first is that 

although the maximum and average number of scooters in use at one time rises when the fleet size 

in the downtown area is increased from 100 to 200, or 200 to 400, these values appear to reach a 

plateau and do not continue to rise with further increases in the number of available scooters in the 

study area. This is likely an example of Little’s law, a well-known principle in queuing theory for 

estimating the number of customers in a system at one time [25]. Using the average intertrip time 

of our simulation, as well as the average trip duration, the expected average number of scooters in 

use at one time is given in Equation 11: 

𝑛𝑢𝑚𝑆𝑐𝑜𝑜𝑡𝑒𝑟𝑠𝐼𝑛𝑈𝑠𝑒 =  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑇𝑟𝑖𝑝𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝑛𝑡𝑒𝑟𝑇𝑟𝑖𝑝𝑇𝑖𝑚𝑒
=

984.41𝑠

15.01𝑠
= 65.59. (11) 

When the number of unserved trips falls to approximately zero and all demand is being 

met, the simulation averages approximately 65 scooters in use at one time. The difference between 

the estimate given in Equation 10 and the measured value is likely a result of variations in ITTs 

and trip distances throughout the day. 

Table 5.1 also shows that, using an approximation of 2020 traffic volumes, almost all rider 

demand within the simulation is met with a fleet size as small as 400. This suggests that the 

appropriate number of scooters to satisfy demand in the downtown lies nearer to 400 than 800 
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scooters, though additional runs of the simulation indicate that if ridership continues to increase 

the necessary fleet size increases correspondingly.  

Finally, the time and distance required to collect depleted scooters increases slightly as the 

number of scooters increases. The percentage of trips ending in a SNG parking zone initially 

increases, but decreases again as the e-scooter fleet grows larger. These trends indicate that finding 

the appropriate number of scooters is a careful balance between limiting the costs of collection 

(operator costs) and the number of improperly parked scooters cluttering pedestrian pathways 

(non-user costs) and ensuring that sufficient rider demand is met (user costs). For the remaining 

experiments, a default fleet size of 500 scooters was used. 

5.2  Parking 

One of the key challenges identified by the City of Calgary’s mid-pilot report was an excess 

of improperly parked scooters. To address this problem, several SNG zones, consisting of small, 

dedicated parking areas that could each accommodate approximately six scooters, were installed 

in the downtown area to facilitate proper e-scooter parking. The 2020 aggregate data included 

GEOJSON files specifying the location of 23 SNG zones, which are used as the baseline for the 

simulation model. Their placement is given in Figure 5.1 below. 
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Figure 5.1: SNG scooter parking zones identified in 2020 location data 

The second set of simulation experiments involved varying the number, size, and 

placement of SNG zones within the downtown area. We examined the impacts of these changes 

on the number of trips ended at an SNG zone and the time and distance required to collect the 

scooters. Four different strategies were considered for the placement of additional SNG zones 

which would increase the total number of available parking spaces by factors of two, four, six, 

eight, and ten. The simulation model assumes each SNG zone can accommodate exactly six 

scooters and does not account for viable parking areas in the ‘furniture zones’ of the sidewalk 

which are widely variable and difficult to model accurately. 

5.2.1 Increased Size of Parking Zones 

The first and simplest strategy was to expand the areas identified in the aggregate data to 

accommodate more scooters. In a real-world implementation, this expansion would be necessarily 

limited by the available space and the need for non-scooter infrastructure, and not every existing 

SNG zone could realistically be expanded to accommodate sixty e-scooters, but for the purpose of 

comparison with the other strategies, the same scalar modifiers were used.  
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The results of this set of experiments are given in Table 5.2 and show that simply increasing 

the size of the SNG zones has very little impact on any of the relevant performance metrics. In 

fact, the percentage of trips ending at an SNG zone actually decreases, though not by any 

significant margin. It is not terribly surprising that increasing the size of the SNG zones is an 

ineffective method of increasing utilization, as these simulation experiments measured only trips 

that ended organically at an SNG zone and did not account for the possibility of riders modifying 

their trip depending on proximity to available parking, but it does suggest that the baseline parking 

strategy does occasionally see SNG zones at maximum capacity.  

Table 5.2: Impacts of increasing parking space at existing SNG zones 

Parking Scaling Factor Baseline 2x 4x 6x 8x 10x 

% Trips ended at SNG 3.00% 3.00% 2.92% 2.99% 2.99% 2.99% 

Avg. Collection Time 2:01:41.4 2:01:59.6 2:02:10.6 2:02:45.6 2:02:45.6 2:02:45.6 

Avg Collection Distance 30.19 km 30.64 km 30.46 km 30.58 km 30.58 km 30.58 km 

5.2.2 Additional Parking Zones Placed at Random 

The second strategy considered was to place additional SNG locations at random 

throughout the downtown area. The same randomized placement was used for each of the five 

scaling factors, meaning that the SNG locations used at each scaling factor included all the 

locations used at smaller scaling factors. The locations selected are shown in Figure 5.2. 
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Figure 5.2: Additional SNG randomly placed parking zone locations at various scaling factors 

The results of these experiments, given in Table 5.3, show a much greater impact from 

increasing the number of available parking spaces than was seen in the first round of SNG 

placement experiments, with the percentage of trips ending with a successfully parked scooter 

more than tripling at 10x scale.  

Table 5.3: Impacts of installing additional SNG parking zones at random locations 

Parking Scaling Factor Baseline 2x 4x 6x 8x 10x 

% Trips ended at SNG 3.00% 3.98% 5.72% 7.64% 9.20% 10.55% 

Avg. Collection Time 2:01:41.4 2:03:01.8 2:01:11.1 2:01:08.0 2:01:41.7 2:01:45.1 

Avg Collection Distance 30.19 km 30.93 km 29.92 km 29.93 km 30.29 km 30.21 km 

5.2.3 Additional Parking Zones Placed by Edge Length 

The third strategy was to systematically assign additional SNG zones on the longest edges, 

which translated practically to placing additional SNG zones only on avenues (east-west streets). 

The placement of these SNG zones is given in Figure 5.3.  
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Figure 5.3: Additional SNG parking zone locations by edge length at various scaling factors 

The results of these experiments are given in Table 5.4. This strategy proved more effective 

than either of the first two strategies, with the portion of trips successfully parked at an SNG zone 

reaching as almost as high as 20%. The effectiveness of this strategy may be slightly biased by the 

simplifying assumptions of the simulation model, namely the route generation method that appears 

slightly more likely to reach the target trip distance along longer edges, and the lack of 

consideration for trips being modified to find parking. This strategy produces a much higher 

percentage of SNG parking events than was seen using the previous strategy.  

Table 5.4: Impacts of installing additional SNG parking zones according to edge length 

Parking Scaling Factor Baseline 2x 4x 6x 8x 10x 

% Trips ended at SNG 3.00% 4.30% 8.25% 12.22% 16.08% 19.72% 

Avg. Collection Time 2:01:41.4 2:01:40.3 2:01:49.5 2:02:01.0 2:02:20.1 2:00:56.8 

Avg Collection Distance 30.19 km 30.02 km 30.26 km 30.25 km 30.47 km 29.90 km 

5.2.4 Additional Parking Zones Placed by E-Scooter Traffic Volume 

The last and most effective strategy considered was to place additional parking areas 

according to the e-scooter traffic volumes across each edge, resulting in dense concentrations of 
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SNG zones along the River Walk and along the southern portions of 4th Street and 5th Street, as 

shown in Figure 5.4.  

 

Figure 5.4: Additional SNG parking zone locations by traffic volume at various scaling factors 

This placement strategy saw marked increases in trips parked at an SNG zone across all 

scaling factors, though with diminishing returns. This strategy also outperformed each of the other 

three strategies across all scaling factors, with the percentage of trips parked at an SNG zone 

reaching as high as 22%. The results of this round of experiments are given in Table 5.5. 

Table 5.5: Impacts of installing additional SNG parking zones according to edge traffic volume 

Parking Scaling Factor Baseline 2x 4x 6x 8x 10x 

% Trips ended at SNG 3.00% 5.95% 10.35% 14.41% 18.95% 22.25% 

Avg. Collection Time 2:01:41.4 2:02:14.2 2:01:40.6 2:01:07.2 2:02:16.9 2:01:53.6 

Avg Collection Distance 30.19 km 30.46 km 30.09 km 29.84 km 30.24 km 30.24 km 

5.2.5 Impacts of Extended Trips 

Finally, each of the four rounds of experiments was repeated with a modification to the 

simulation allowing for some percentage of the trips ending on an edge with no available parking 
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to be diverted to an adjacent edge with a free parking space in an SNG zone. This process was 

carried out twice, first with a 25% and then with a 50% chance of modifying a trip.  

Figure 5.5 shows a comparison between the percentage of trips successfully parked at an 

SNG zone using the four different SNG placement strategies with 0%, 25%, and 50% chance of 

modifying a trip to find parking. This graph reveals three particularly interesting trends.  

 

Figure 5.5: Impacts of four different parking strategies with 0%, 25%, and 50% chance to extend scooter trip to 

adjacent block to find parking 

The first trend is that modifying the simulation to allow some percentage of trips to be 

extended or truncated as needed to find parking on an immediately adjacent edge resulted in 

marked improvement across all SNG placement strategies. This is a predictable outcome, as this 

modification to the simulation effectively increases the range of each SNG parking zone by as 

many as six edges. It also suggests that the increase in trips successfully parked at an SNG zone 

could be further magnified by increasing the number of adjacent edges by which to extend or 

truncate an e-scooter trip. However, achieving this behaviour amongst the real-world population 
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of e-scooter users would likely require the implementation of incentives for parking scooters in an 

SNG zone, such as offering a discount on that trip or future trips.  

The second notable trend is that increasing the size of existing SNG zones continued to 

have minimal impact on the effective utilization of parking zones even when the percentage of 

trips that could be extended to find parking was increased, although the baseline utilization was 

higher. By contrast, the random and length-weighted placement strategies both saw distinctly 

greater utilization increases between scaling factors when the chance of extended trips was 

increased, in addition to the rise in baseline utilization.  

 The third trend is that although the SNG placement strategy that favoured high-traffic 

edges clearly yielded the highest SNG utilization in the first round of experiments, the SNG 

placement strategy that favoured long edges was the most effective strategy when trips were 

permitted to be extended or modified. This is likely because the length-weighted placement 

strategy resulted in the most evenly and broadly distributed SNG locations, maximizing the 

number of edges with an SNG zone or adjacent to an SNG zone. By comparison, the volume-

weighted placement strategy created dense clusters of edges with parking, meaning that most edges 

adjacent to an edge with parking already contained an SNG zone, effectively minimizing the 

impact of extended trips.  

5.3 Battery Charging Stations 

The final round of experiments assessed the impact of installing one or more public e-

scooter battery charging stations in the downtown on the number of unserved trips, and the time 

and distance required to collect e-scooters to be recharged. Each of the twenty-three SNG locations 

identified in the previous section were considered as possible battery charging station locations 
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(blue, A-W), as well as ten additional locations selected by highest traffic volume (green, a-j), as 

shown in Figure 5.6.  

 

Figure 5.6: Possible locations for a 6-bay e-scooter battery charging station 

5.3.1 Sensitivity Study 

In order to determine the value of relevant metrics, like the percentage of trips ended at an 

available charging bay and the average collection time, as measures of performance for optimizing 

placement, a sensitivity study was conducted comparing these metrics from multiple experiments 

while varying one parameter at a time, including using different seeds for random number 

generation (57391 vs. 15397), increasing and decreasing e-scooter battery capacity by 25% 

(1687.5 kJ vs. 1012.5 kJ), increasing and decreasing fleet sizes by 25% (625 scooters vs. 375 

scooters), and increasing and decreasing low-battery thresholds for scooters to be collected and 

recharged by 25% (31.25% threshold vs. 18.75% threshold).  

The results of this sensitivity study are given in Figure 5.7 and Figure 5.8. The comparison 

of the percentage of trips ending at an available charging bay shows a largely consistent behaviour 

across all scenarios with minimal variation. The largest variations are at battery charging locations 

a, U, V, and B and result primarily from reductions in the number of scooters or the low-battery 
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charging threshold for collecting and recharging scooters. Although the comparison of collection 

times shows much more distinct variation between various simulation conditions, the general 

shape of each graph is both largely similar between different conditions and largely flat, aside from 

a few small but distinct reductions at locations R, V, a, and c which mirror peaks in Figure 5.7. 

 

Figure 5.7: Sensitivity study comparing percentage of trips ending at an available charging bay under varied 

simulation conditions 

 

Figure 5.8: Sensitivity study comparing time required to collect scooters with low charge under varied simulation 

conditions 
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5.3.2 Placement of Battery Charging Stations 

Finally, two additional rounds of experiments were conducted, allowing for the placement 

of first two, and then three battery charging stations on the simulation map. After running the initial 

sensitivity test, the ten candidate locations with the highest average percentage of trips ending at 

an available charging bay were selected as candidate locations for the second round of 

experiments. These locations are given in Table 5.6. Figure 5.9 shows a comparison of the percent 

of trips ended at an available charging bay and the average collection time for each pair of 

candidate locations.  

Table 5.6: Single candidate locations for placement of charging stations 

Location % Trips Ending at Charging Bay Average Collection Time 

L 0.1801% 2:00:20 

E 0.1818% 2:00:24 

R 0.1843% 1:59:22 

K 0.1848% 2:00:23 

W 0.1854% 2:00:20 

B 0.1873% 2:00:08 

C 0.1903% 2:00:21 

c 0.2039% 2:00:00 

a 0.2477% 1:59:02 

V 0.2770% 1:58:06 
 

 

Figure 5.9: Relative performance of different pairs of battery charging station locations 
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After running the second round of experiments, the process was repeated, identifying the 

top performing locations to be used as candidate locations for the third round of experiments, those 

being locations R, W, B, C, c, a, and V. Figure 5.10 gives a comparison of each combination of 

three candidate locations. A comparison of the top ten best performing scenarios from each round 

of experiments is given in Figure 5.11.  

 

Figure 5.10: Relative performance of different trios of battery charging station locations 

The results of these experiments show two particular trends. The first is that, as one would 

expect, the number of trips ending at a battery charging station with an available bay increases as 

the number of battery charging stations increases. Interestingly, however, the increase from one 

charging station to two is more significant than either the increase from no battery charging stations 

to one charging station or the increase from two charging stations to three.  

The second trend is that the average time required to collect scooters for recharging tends 

to decrease as the number of trips ending at an available charging bay increases, with the most 

efficient charging station placement scenario dropping the average collection time from its 

baseline value of two hours and one minute to just over one hour and forty-nine minutes, a 
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reduction of approximately 10.5%. However, the relationship between the increase in charging 

station utilization and the decrease in collection time is not strict. The best performing placement 

scenario in terms of battery charging station utilization (RaV) is only the sixth-best performing 

scenario in terms of the reduction in collection time. Conversely, the best performing placement 

scenario in terms of reduced collection times (LaV) is second in terms of battery charging station 

utilization. Moreover, the variation between collection times for different battery charging station 

locations becomes more pronounced as more stations are added to the system.  

 

Figure 5.11: Percent of trips parked at a charging station and e-scooter collection time for top performing locations 

of 1, 2, or 3 charging stations 

What’s curious from the results from this area of experimentation is a lack of consistency 

between the characteristics of the high-performance candidate locations. Generally, locations 

along 17th Avenue and along the River Walk tend to perform better than locations along north-

south streets or that lay towards the edges of the simulation area. However, of the nine candidate 

locations that lie along or adjacent to 17th Avenue, only four were selected to be used in the second 

round of experiments (V, C, B, and R) while one location (M) was not even in the top half of 

locations when ranked by battery charging station utilization. All ten of the additional locations 
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selected by edge volume lie along the River Walk, including location a, which was one of the best 

performing locations across all three rounds of experiments. However only two (a and c) were 

identified as candidates for the second and third rounds of experiments, and three of the additional 

candidate locations were among the worst performing half of locations.  

The only consistency between the ‘top’ locations that distinguished them from the 

remaining candidate locations were increased edge length and e-scooter traffic volume. The 

average edge length of the best-performing locations was 60% greater than the average of all 

candidate locations and 138% larger than the average of all edges in the map. The average e-

scooter traffic volume across edges with the best-performing locations was 3% greater than the 

average of all candidate locations and 366% larger than the average of all edges in the map. 

5.4 Summary 

This chapter has discussed the experiments conducted using the simulation model.  

Varying the simulated fleet size demonstrated the careful balance between meeting user 

demand and managing operator costs and improperly parked scooters. These experiments 

suggested that the optimal range for e-scooter fleet size in the downtown is 500-600 scooters.  

Increasing the number of SNG parking zones using various placement strategies showed 

that simply increasing the size of the zones was ineffective at increasing SNG zone utilization. 

Adding parking on longer, east-west streets more effectively increased SNG zone utilization, 

particularly when trips were permitted to be extended or modified to find parking, but also 

increased the time and distance required to collect scooters. Adding parking along streets with high 

volumes of e-scooter traffic proved effective at increasing SNG utilization even without permitting 

trips to be modified, and created minimal increase in collection costs.  
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Adding one, two, or three charging stations slightly reduced average collection time, even 

with as little as 0.2% of trips ending at a battery charging station with an available charging bay. 

The locations that resulted in the highest levels of utilization tended to be longer, higher volume 

streets along 17th Avenue and the River Walk. 



73 

 

6 Conclusion 

E-scooters, and shared micromobility more generally, are rapidly gaining a strong foothold 

within the domain of urban transportation. They have the potential to offer many benefits to an 

urban population, such as reducing the reliance on privately owned and/or internal combustion 

engine vehicles, facilitating the use of public transit, and combatting transportation inequity. Yet 

in order to effectively fulfill the promise of shared-micromobility, policymakers and e-scooter 

operators will have to grapple with balancing rising demand for shared micromobility options with 

the costs and infrastructure demands of storing and maintaining these vehicles.  

This thesis has helped to address these social and technical issues by studying e-scooter 

usage patterns in the City of Calgary and developing a simulation model to study different 

management strategies for shared micromobility. This chapter summarizes the research and 

observations outlined in this thesis and discusses conclusions and future work.  

6.1 Thesis Summary 

This thesis has discussed the growing popularity of SMMSs and their role within the 

transportation landscape, and examined the impact of different fleet management policies on 

specific performance metrics. The thesis was structured as follows: 

• Chapter 1 introduced the focus of this thesis, and outlined the primary motivations, 

objectives, and contributions of the research.  

• Chapter 2 provided a historical and cultural context for the development and use of SMMSs 

and shared e-scooters in particular. The chapter also discussed the bodies of work relating 

to shared mobility research, workload characterization from empirical data, and systems 

modelling and simulation. 
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• Chapter 3 described the available datasets on e-scooter activity in Calgary and their 

limitations. The data analysis process was described and specific trends and statistical 

distributions that characterized the e-scooter data were identified.  

• Chapter 4 described the construction of a custom-built, dedicated simulation environment 

in Java. The chapter discussed the development of a simulation model from the workload 

characterization conducted in Chapter 3 and validated the simulation model against the 

empirical data.  

• Chapter 5 outlined the structure of three sets of experiments relating to (1) fleet size, (2) 

SNG parking zone placement, and (3) placement and number of e-scooter battery charging 

stations. The chapter presented the results of each of the experiments, describing the 

principal impacts on performance metrics and identifying policy guidelines. 

6.2 Thesis Contributions 

There are three main technical contributions in this thesis, namely a workload 

characterization study, the development of a simulation model, and simulation experiments to 

evaluate management strategies for Calgary's e-scooter system. These contributions are briefly 

summarized next. 

This thesis has presented a detailed workload characterization of shared e-scooter usage in 

downtown Calgary, using empirical data from 2019 and 2020. The results from this analysis 

include the temporal variations in traffic volumes and statistical distributions of trip characteristics.  

A simulation model was developed from these analyses and used in the creation of a 

discrete-event simulation environment for testing different changes to the e-scooter program and 

examining their impact on performance metrics relevant to the City and the e-scooter operators, as 
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well as the populations of e-scooter users and non-users. These included the ability of the e-scooter 

fleet to meet the transportation demands of e-scooter users, the frequency with which scooters 

were properly parked in a dedicated parking area, and the costs to the operator of collecting 

scooters for recharging. 

Finally, experiments were conducted using the constructed simulation model to measure 

the impact of different fleet management policies on these performance metrics. These 

experiments revealed specific trends in fleet performance and offered insights that could help to 

inform future policy decisions.   

6.3 Conclusions 

6.3.1 Workload Characterization 

Analysis of the empirical e-scooter data from 2019 and 2020 revealed several  observations 

about how, when, and where the e-scooters were used:  

• Geographic Variation: In both 2019 and 2020, approximately 67% of e-scooter trips 

in Calgary took place within the downtown. Route data from the downtown area 

showed that the busiest downtown avenues were the River Walk, 8th Avenue, 12th 

Avenue, and 17th Avenue, and the busiest downtown streets were 4th Street and 5th 

Street.  

• Temporal Variation: In 2019, hourly e-scooter traffic volumes displayed consistent 

diurnal variation and a distinct tri-peaked structure on weekdays, with increased 

volumes during morning and evening rush hour, as well as at lunch hour. This shape 

was most clearly defined when data was isolated to the downtown but still visible in 

general traffic volumes. In 2020, the traffic patterns were different with much less 
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pronounced peaks. This difference likely reflects the changes in transportation 

requirements as a result of COVID-19 public health mandates.  

• Trip Distance: The majority of e-scooter trips are less than 2 kilometres, with the 

average trip distance being 1.74 kilometres in 2019 in the downtown and approximately 

1.5 kilometres in 2020, with the average hourly trip distance showing distinct diurnal 

variation. The distribution of trip distances in the downtown appears to closely match 

an exponential distribution in the main body of the distribution but deviates toward the 

tail. 

• Trip Duration: Most e-scooter trips are less than 15 minutes, with the average trip 

duration in 2019 in the downtown being approximately 12.5 minutes. The observed trip 

durations also showed a fairly strict upper bound at just over two hours.  

6.3.2 Simulation Outcomes 

The three sets of experiments described in Chapter 5 each offered specific insights to 

inform governmental policy regarding e-scooters or fleet management strategies for e-scooter 

operators.  

• Fleet Size: At demand levels consistent with the trip volumes observed in 2020, the 

number of e-scooters required to meet that demand within the downtown area lies 

between 400 and 800. This is consistent with the City’s vehicle cap of 1500 e-scooters 

and the estimated proportion of e-scooters residing within the downtown.  

• Parking Zones: Investigation into the effective placement of additional SNG parking 

zones emphasized the value of frequency over total volume of parking spaces, 

particularly when accounting for the possibility of e-scooter users modifying their trips 
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to end at an SNG zone. In particular, giving preference to longer streets or streets with 

a very high volume of e-scooter traffic yields the highest utilization of SNG zones, 

whereas expanding the capacity of existing zones offers effectively no benefit. 

• Charging Stations: These experiments showed that installing one or more charging 

stations on longer, higher volume streets along 17th Avenue and the River Walk could 

reduce the time required to collect scooters to be recharged by approximately 3-10%, 

thus lowering the fuel and labour costs to the operators.  

6.4 Future Work 

There are many possible directions for expanding on this research, relating to workload 

characterization, simulation modelling, and incorporating other mobility and micromobility 

services.  

Because the e-scooter program was only recently introduced to Calgary, only a limited 

timeframe was considered for our workload characterization, but future studies could examine a 

longer timeframe to identify long-term variations in behaviour, seasonal variations, or investigate 

the impacts of the COVID-19 pandemic more thoroughly. Additional research could also compare 

e-scooter usage patterns with other cities with shared micromobility programs, or use trip-level 

trajectory data to more precisely characterize the variations in directionality of traffic.  

Future research could build on this simulation model by (1) incorporating more thorough 

characterizations of e-scooter usage behaviour and demand from the perspective of users (e.g., 

pricing sensitivity, behavioural incentives, brand loyalty, last-mile access, pedestrian interactions, 

crowd dynamics, congestion effects), rather than just operators, (2) developing a more precise 

model of e-scooter battery behaviour, or one that uses trajectory data from e-scooter operators to 
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model directionality of trips to more closely examine the effective placement of parking zones or 

battery charging stations, (3) investigating the efficacy and optimal implementation of pricing 

incentives to encourage the use of parking zones and battery charging stations, and (4) 

experimenting with alternate battery charging strategies such as public e-scooter battery-swapping 

stations.  

Further investigation into the role of e-scooters within the larger transportation landscape 

is also needed, to determine how e-scooters can most effectively facilitate public transportation or 

reduce congestion arising from large events like concerts, sports games, and the Stampede.  
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