
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2021-09

Dagger Linear Logic and Categorical

Quantum Mechanics

Srinivasan, Priyaa Varshinee

Srinivasan, P. V. (2021). Dagger linear logic and categorical quantum mechanics (Doctoral

thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.

http://hdl.handle.net/1880/114030

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

Dagger Linear Logic and Categorical Quantum Mechanics

by

Priyaa Varshinee Srinivasan

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 2021

© Priyaa Varshinee Srinivasan 2021



Abstract

This thesis develops the categorical proof theory for the non-compact multiplicative dag-

ger (†) linear logic, and investigates its applications to Categorical Quantum Mechanics

(CQM).

The existing frameworks of CQM are categorical proof theories of compact †-linear logic,

and are motivated by the interpretation of quantum systems in the category of finite di-

mensional Hilbert spaces. This thesis describes a new non-compact framework called Mixed

Unitary Categories which can accommodate infinite dimensional systems, and develops mod-

els for the framework. To this end, it builds on linearly distributive categories, and ∗-
autonomous categories which are categorical proof theories of (non-compact) multiplicative

linear logic. The proof theory of non-compact †-linear logic is obtained from the basic setting

of an LDC by adding a dagger functor satisfying appropriate coherences to give a †-LDC.

From every (isomix) †-LDC one can extract a canonical “unitary core” which up to

equivalence is the traditional CQM framework of †-monoidal categories. This leads to the

framework of Mixed Unitary Categories (MUCs): every MUC contains a (compact) unitary

core which is extended by a (non-compact) isomix †-LDC. Various models of MUCs based on

Finiteness Spaces, Chu spaces, Hopf modules, etc., are developed in this thesis. This thesis

also generalizes the key algebraic structures of CQM, such as observables, measurement, and

complementarity, to MUC framework. Furthermore, using the MUC framework, this thesis

establishes a connection between the complementary observables of quantum mechanics and

the exponential modalities of linear logic.

ii



Acknowledgements

I thank my supervisor Dr. Robin Cockett for the trust he placed in me even though I was

not a mathematician and had no clue about Category Theory when I joined his group. I

am eternally grateful for his unwavering support and patience in helping me refine my art of

learning, and, dually, my art of teaching. I am also grateful to him for providing an inclusive,

safe and a comfortable environment for me to learn Mathematics and to do research. Thank

you, Robin, for all the proofs we worked out over a cup of tea and the group hikes.

I am thankful to Jonathan, my friend, for the countless hours he spent in teaching me

Category Theory and helping me write proofs in the initial days of my Ph.D., without which

this journey would not have been possible. Thank you, Jonathan!

I thank my co-supervisor Dr. Gilad Gour for his patience and kind support throughout

my degree. I thank Dr. Kristine Bauer for her support as my interim supervisor during Dr.

Cockett’s sabbatical and for all the fun conversations we shared during the weekly seminars

and symposiums. I thank Dr. Renate Scheidler for her excellent mentorship during the

practicum of my SAGES teaching certification. I thank Dr. Jalal Kawash for the kind

guidance I received as his teaching assistant. I thank Dr. Barry Sanders for the financial

support he provided me during the first three years of my degree. I thank Dr. Bob Coecke,

Dr. Jamie Vicary, and Dr. Chris Heunen for hosting me at the University of Oxford and at

the University of Edinburgh during my Mitacs Globallink internship. I thank my examiners

Dr. Peter Selinger, Dr. Philipp Woelfel, Dr. Carlo Maria Scandolo, and Dr. Kristine Bauer

immensely for their time and effort in reading my thesis, and their feedback.

I thank my friend and colleague Jean Simon Lemay (JS) for many examples in this thesis,

and for making my research visit to Oxford quite enjoyable. Thank you, JS, for lending me

your bicycle during the visit! Thank you, Jonathan, Amolak, JS, and Ben for proof-reading

my thesis. Thank you, Cole, for the fun and successful collaborations on the CNOT and the

dagger linear logic papers. A big thanks to all my colleagues, in the past and in the present,

from Dr. Cockett’s and Dr. Gour’s group for all the enlightening conversations and support.

It was an honour for me to work with you all.

A ton of thanks to my friends, for making me feel home in Calgary and for all the

iii



beautiful memories - Sunday afternoons at coffee shops, night walks at the Confederation

park, dumpling parties, road trip to Okanagan, hiking in the Rockies, hot tea, home-made

delicacies, shared lunch, weeding bees, and many more. I thank all my overseas friends for

being there for me over Skype and other mediums whenever I was in need of you.

Many thanks to Maryam, Jackie, and Katie at the front office of the Computer Science

Department for providing excellent administrative support throughout my degree, and for

their gentle smile whenever I turned up at their desk with a request.

Last, but most of all, I thank my family for their extra-ordinary support, and encour-

agement in all my endeavors, and for making possible this first ever doctorate degree in my

family tree.

iv



To my parents Shanthi and Srinivasan,

and to all the front-line workers in this world and in heaven (COVID-19).

v



Symbols, abbreviations and

nomenclature

Symbol Definition

∪,
⋃

Set union

t Disjoint union of sets

∩,
⋂

Set intersection

∈ A member of

Jx1, x2, · · · , xnK finite multiset

∅ Empty set

{∗} Singleton set

{x | Condition on x} defining a set by a condition

X,Y Categories except for C and R which sometimes mean

complex numbers, and real numbers respectively

A,B,C, · · · Objects in a category

A ' B Object A is isomorphic to object B

f, g, h Maps in a category

F,G Functors between categories

⊗ Tensor product

⊕ Par product (in linear logic)

vi



Symbol Definition∏
Product∐
Coproduct

a⊗ Associator natural isomorphism for the tensor product

a⊕ Associator natural isomorphism for the par product

ul⊗ Left unitor natural isomorphism for the tensor product

> Unit of the tensor product

⊥ Unit of the par product

∂L Left linear distributor

∂R Right linear distributor

m, ∇ Multiplication for a monoid

u, Unit for a monoid

d, ∆ Comultiplication for a comonoid

e, Counit for a comonoid

†, ‡ Dagger functor

(−)∗ Dual functor

(−) Conjugation functor

:= The left-hand side is defined to the right-hand side of the equation

=⇒ Implication

⇔ If and only if

∃ there exists

∀ For all

N Natural numbers

Z Integers

vii



Table of Contents

Abstract ii

Acknowledgements iii

Dedication v

Table of Contents viii

List of Figures and Illustrations xii

Epigraph xiii

1 Introduction 1
1.1 From linear logic to quantum mechanics . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Linear logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Categorical semantics for linear logic . . . . . . . . . . . . . . . . . . 3
1.1.3 Categorical quantum mechanics (CQM) . . . . . . . . . . . . . . . . 4
1.1.4 Towards arbitrary dimensions in CQM . . . . . . . . . . . . . . . . . 6
1.1.5 Non-compact multiplicative †-linear logic . . . . . . . . . . . . . . . . 7
1.1.6 Linearly distributive categories . . . . . . . . . . . . . . . . . . . . . 8

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Part I: Dagger linear logic . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Part II: Application to dagger linear logic to CQM . . . . . . . . . . 13

1.3 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Dagger Linear Logic 16

2 Categorical semantics for linear logic 17
2.1 Linearly Distributive Categories (LDCs) . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Linearly distributive categories . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Graphical calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 Mix, isomix and compact LDCs . . . . . . . . . . . . . . . . . . . . . 25
2.1.4 ∗-autonomous categories . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Linear functors and transformations . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Linear functors and transformations . . . . . . . . . . . . . . . . . . . 30
2.2.2 Linear functors for isomix categories . . . . . . . . . . . . . . . . . . 35
2.2.3 Frobenius functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



2.3 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1 Finiteness relations FRel and finiteness matrices FMat(R) . . . . . . . 45
2.3.2 Products, coproducts and biproducts in FRel and FMat(R) . . . . . . 51
2.3.3 The tensor structure in FRel and FMat(R) . . . . . . . . . . . . . . . 52
2.3.4 The core of FRel and FMat(R) . . . . . . . . . . . . . . . . . . . . . . 56

3 Dagger linearly distributive categories 58
3.1 Dagger for LDCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Dagger linearly distributive categories . . . . . . . . . . . . . . . . . . 58
3.1.2 Sequent calculus for †-linear logic . . . . . . . . . . . . . . . . . . . . 63
3.1.3 Dagger functor box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.4 Functors for †-linearly distributive categories . . . . . . . . . . . . . . 65

3.2 Examples: †-LDCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 Every †-monoidal category is a †-LDC . . . . . . . . . . . . . . . . . 67
3.2.2 Finite dimensional framed vector spaces . . . . . . . . . . . . . . . . 67
3.2.3 Category of abstract state spaces . . . . . . . . . . . . . . . . . . . . 69

3.3 Dagger, duals, and conjugation . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Dagger and conjugation . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Examples: Dagger and conjugation . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 A group with conjugation considered as a category . . . . . . . . . . 80
3.4.2 Finiteness matrices and finiteness relations . . . . . . . . . . . . . . . 82
3.4.3 Chu spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.4 Category of Hopf modules in a ∗-autonomous category . . . . . . . . 85

4 Mixed unitary categories (MUCs) 90
4.1 Unitary categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.1 Unitary structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.2 Unitary categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.3 The unitary construction . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Examples: The unitary construction . . . . . . . . . . . . . . . . . . . . . . 104
4.2.1 Category of abstract state spaces . . . . . . . . . . . . . . . . . . . . 105
4.2.2 Category of a group with involution . . . . . . . . . . . . . . . . . . . 105
4.2.3 Category of Hopf modules in a ∗-automonous category . . . . . . . . 106

4.3 Mixed unitary categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.1 Mixed unitary category . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.2 Canonical mixed unitary categories . . . . . . . . . . . . . . . . . . . 109

4.4 Examples: Mixed unitary categories . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.1 Finite dimensional framed vector spaces . . . . . . . . . . . . . . . . 110
4.4.2 Finiteness matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.3 The embedding of finite dimensional Hilbert Spaces into Chu Spaces . 112

5 Summary 115

ix



II Application of dagger linear logic to categorical quantum
mechanics 116

6 Categorical Quantum Mechanics 117
6.1 Dagger monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.1 Graphical calculus for monoidal categories . . . . . . . . . . . . . . . 117
6.1.2 Dagger monoidal categories . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.1 Categories of sets and relations, Rel . . . . . . . . . . . . . . . . . . . 121
6.2.2 Categories of Hilbert spaces and bounded linear maps, Hilb . . . . . . 122
6.2.3 Categories of finite matrices over a commutative rig R, Mat(R) . . . . 123

6.3 Complete positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.1 The CPM construction . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.2 The CP∞ construction . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.3 Environment structures . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Measurement and complementarity . . . . . . . . . . . . . . . . . . . . . . . 129
6.4.1 Quantum observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4.2 Strong complementarity . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Completely positive maps 138
7.1 String calculus for MUCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1.1 Unitary structure map . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.1.2 Inverse of the mixor . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Quantum channels for MUCs . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.1 Kraus maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.2 CP∞-construction for MUCs . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Environment structure for MUCs . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.1 Environment structure . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.2 Characterizing the CP∞ construction . . . . . . . . . . . . . . . . . . 154

8 Linear monoids, comonoids, and bialgebras 157
8.1 Linear monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.1.1 Duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.1.2 Linear monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.1.3 The endomorphism linear monoid . . . . . . . . . . . . . . . . . . . . 169
8.1.4 Being Frobenius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.2 Linear comonoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.3 Linear bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9 Measurement and complementarity 186
9.1 Compaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.2 Binary idempotents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9.2.1 For linear monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.2.2 For linear comonoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.2.3 For linear bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.3 Complementary linear bialgebras . . . . . . . . . . . . . . . . . . . . . . . . 199
9.4 Exponential modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.4.1 Exponential modalities for monoidal categories . . . . . . . . . . . . . 203
9.4.2 Exponential modalities for †-LDCs . . . . . . . . . . . . . . . . . . . 204

x



9.4.3 Sequent calculus for exponential †-linear logic . . . . . . . . . . . . . 208
9.4.4 Complementarity from free exponential modalities . . . . . . . . . . . 210

10 Examples 215
10.1 Duals and linear monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

10.1.1 Duals in FRel and FMat(R) . . . . . . . . . . . . . . . . . . . . . . . 215
10.1.2 Linear monoids in FHilb . . . . . . . . . . . . . . . . . . . . . . . . . 218

10.2 Exponential Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10.2.1 The free exponential modalities for Rel . . . . . . . . . . . . . . . . . 221
10.2.2 The free exponential modalities for FRel and FMat(R) . . . . . . . . . 222
10.2.3 The free exponential modalities in Chu spaces . . . . . . . . . . . . . 226

10.3 The free infinite linear monoids in FRel and FMat(R) . . . . . . . . . . . . . 227

11 Summary 233

12 Conclusion and future work 235
12.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

12.2.1 Models of physical systems . . . . . . . . . . . . . . . . . . . . . . . . 237
12.2.2 Joyal’s Bicompletion construction . . . . . . . . . . . . . . . . . . . . 238
12.2.3 Clifford algebras in linear settings . . . . . . . . . . . . . . . . . . . . 239

Bibliography 241

xi



List of Figures and Illustrations

1.1 †-compact closed categories for quantum mechanics . . . . . . . . . . . . . . 4
1.2 Sequent rules for multiplicatives . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Sequent rules for negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 (a) Binary mix axiom (b) Nullary mix axiom . . . . . . . . . . . . . . . . . . 10

2.1 Schematic diagram of LDC properties . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Linear functor family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Finiteness matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Sequent rules for † . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Sequent proof:- ι is an isomorphism . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Derivation of the ⊕-laxor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 Derivation of ⊥-laxor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 ∂L is a unitary isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Schematic diagram for MUC . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Sequent rules for right †-duals . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1 Sequent rules for exponential modality . . . . . . . . . . . . . . . . . . . . . 208
9.2 Derivation of (!, ?) linear functor . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.3 Sequent rules for †-exponential modality . . . . . . . . . . . . . . . . . . . . 208
9.4 Derivation of the isomorphism s : (?A)† →!(A†) . . . . . . . . . . . . . . . . 209
9.5 Derivation of the isomorphism t : (!A)† →?(A†) . . . . . . . . . . . . . . . . 209
9.6 Sequent proof:- !A is a †-dual if A is a †-dual . . . . . . . . . . . . . . . . . . 209

xii



Epigraph

xiii



Chapter 1

Introduction

The programme of Categorical Quantum Mechanics (CQM) [47, 76] initiated by Abramsky

and Coecke’s seminal paper [4] employs a graphical calculus to study quantum processes

within the †-compact closed category (†-KCC) of finite dimensional Hilbert spaces (FHilb).

From the perspective of logic, the graphical calculus is the proof theory of a compact fragment

of multiplicative †-linear logic [59]. Thus, CQM provides a novel approach to quantum

mechanics with its use of a graphical calculus backed by the rigor of Categorical Proof

Theory.

A well-known limitation of compact closed categories is that they model finite dimen-

sional Hilbert spaces, but they do not model infinite dimensional spaces [74]. A categorical

generalization of compact closed categories, in which infinite dimensional spaces can be

modelled are ∗-autonomous categories. This can be taken a step further by generalizing to

linearly distributive categories (LDCs) in which the existence of dual objects is not assumed.

These linear settings come with a proof theory (for non-compact multiplicative linear logic)

which is a graphical calculus. Thus, one does not abandon this attractive feature of CQM

in these more general settings. In fact, the graphical calculus of linearly distributive and ∗-
autonomous categories subsume the graphical calculus of compact closed categories. Thus,

from a categorical perspective, an inviting direction to accommodate infinite dimensional

quantum processes is to utilize ∗-autonomous and linearly distributive categories as exten-

sions of the compact closed settings used in CQM. The advantage of such a foundational

approach is that it encompasses many of the earlier approaches and allows for a structural

positioning of the different approaches.

The aim of this thesis is to lay the foundations of generalization in this direction. Towards

this aim, the first part of this thesis develops the categorical proof theory of non-compact

†-linear logic using linearly distributive and ∗-autonomous categories, and shows that one

can always extract the usual settings for compact †-linear logic from this new framework of

1



†-isomix categories. The first part also describes models for the new framework. The second

part of this thesis explores the applicability of †-isomix categories to CQM and studying

quantum processes of arbitrary dimensions.

1.1 From linear logic to quantum mechanics

1.1.1 Linear logic

Linear logic was introduced by Girard in [68] as a logic of resources manipulation. Un-

like classical logic which treats logical statements as truth values, linear logic treats logical

statements as resources which cannot be duplicated or destroyed. For example, consider the

following statements, p and q:

p : to spend a dollar

q : to buy an apple

Then, in linear logic, the compound statement “p⇒ q” has the meaning that if a dollar

is spent then an apple can be bought. This means that a person can either have a dollar or

an apple at a given time but not both. The word “linear” refers to this resource sensitivity of

the logic: thus, a proof of a statement in linear logic may be regarded as a series of resource

transformations.

The types (formulae) of linear logic can be defined inductively as follows (“|” is to be

read as “or”):

A := p | A⊥

| A⊗ A | 1 | A` A | ⊥

| A& A | > | A⊕ A | 0

| !A | ?A

In the inductive definition of A, p is an atomic formula such as “to spend a dollar” and p⊥

is the negation of the formula which in this case will be “to receive a dollar”. The negation

is an involution, hence, (p⊥)⊥ = p.

The connectives ⊗, 1, `, and ⊥ are called the multiplicatives. A statement, A ⊗ B
(read as A tensor B) allows the resources A and B to be available at the same time. For

example, consider the statement r : an orange. Then, p ⇒ q ⊗ r refers to the fact that

spending a dollar buys an apple and an orange at the same time. The formula 1 is the

multiplicative truth, hence, A ⊗ 1 = 1 ⊗ A = A. The connective, `, read as par, is the

2



multiplicative disjunction and is dual to tensor. This means that, (A⊥ ⊗ B⊥)⊥ = A ` B.

Smililary, 1 and > are duals to one another (1⊥ = >).

The connectives &, >, ⊕, and 0 are called the additives. The statement, A & B (read

as A with B), means that either A or B is available at a time. For example, the statement,

p⇒ q&r, refers to the fact that spending a dollar buys either an apple or an orange with the

freedom to choose either. In computer science &, represents non-determinism. The formula

0 is the additive false: A ` 0 = 0 ` A = A. The additive disjunction ` (read as the plus)

and & are dual to one another. Similary, 0 and ⊥ are duals.

Finally, the exponential operators - ! read as of course or bang and ? read as why not

or whimper - allow for the duplication and destruction of resources. For any resource A,

!A models an unlimited store from which the resource A can be extracted 0 or more times.

Morever, the storage itself can be duplicated or even destroyed. The why not operator, ?

encodes the notion of infinite demand, and is dual to the !, that is, (?A)⊥ =!(A⊥).

Interested readers can refer to [69, 68] for more details on linear logic.

1.1.2 Categorical semantics for linear logic

Linear logic, being a logic of resources, emphasizes the structure of proofs rather than prov-

ability, that is, one is more interested to know how a statement can be proved, rather than,

merely if the statement is provable. Proofs in sequent calculus often contain extraneous

details due the sequential nature of the calculus. For example, in a sequent proof, in order

to apply a set of rules to a sequent, one must choose an order for the application of the rules,

even if the rules are independent (that is, the order in which the rules are applied does not

affect the final result).

In order to remove such unuseful information, Girard [68] introduced proof-nets to repre-

sent proofs of linear logic, specifically for the multiplicative fragment without units i.e., only

the ⊗ and `. Proof-nets are formalized as circuits. The study of algorithms to decide if a

given circuit corresponds to a valid proof-net paved the way to the study of the categorical

semantics for multiplicative linear logic (MLL). An overview of the categorical proof theories

for different fragments of MLL is provided in the table below:

Linear logic fragment Categorical proof theory

MLL Linearly distributive categories [38]
MLL with negation ∗-autonomous categories [14]
Compact MLL (⊗ = `, 1 = ⊥) Monoidal categories [84]
Compact MLL with negation Compact closed categories [85]

Table 1.1: Categorical semantics for multiplicative linear logic

3



The above listed semantics are sound and complete in the sense that there exists a

one-to-one correspondence between the proof-nets of a fragment and the morphisms of its

corresponding categorical setting. The proof-nets provide a graphical calculus to these cat-

egorical settings, thereby, enabling a string diagrammatic presentation of the morphisms in

these categories.

The proof theory of compact MLL based on the graphical calculus of monoidal categories

[109] is used to derive an elegant description of quantum mechanics [47, 76] .

1.1.3 Categorical quantum mechanics (CQM)

Traditionally, Hilbert spaces [102] or more generally von Neumann Algebras [56] are used as

the mathematical framework of quantum mechanics [101] . While these frameworks support

detailed computation, they do not support an intuition for the problem: this leads to an

approach described as “shut up and calculate” [99]. The programme of Categorical Quantum

Mechanics (CQM) [4, 47, 76] emerged out of the desire to develop a more intuitive framework

to represent and reason about quantum processes.

Linear logic captures [106, 5, 4, 59, 31] the essence of quantum mechanics owing to

its resource-sensitive character. In particular, linear logic does not allow duplication of an

arbitrary type: in quantum mechanics, this is referred to as the no-cloning theorem [102]

which states that it is impossible to duplicate an arbitrary quantum state. Motivated by

this connection, CQM uses the compact multiplicative linear logic as the base framework for

its purpose, and added the notion of ‘dagger’ to this fragment, thus giving rise to compact

†-linear logic. The ‘dagger’ abstracts the notion of ‘adjoint’ which is crucial to quantum

mechanics: measurable properties of a quantum system are given by self-adjoint operators

on a separable Hilbert space, that is, a Hilbert space with countable orthonormal basis.

While monoidal categories provide the semantics for compact MLL, †-monoidal cate-

gories provide the categorical semantics for compact †-linear logic. CQM uses †-monoidal

categories, specifically, †-compact closed categories (See Chapter 6) to develop a high-level,

intuitive, formal language for quantum mechanics by abstracting the standard, traditionally-

used, analytical framework of Hilbert spaces, as illustrated in Figure 1.1.

†-compact closed categories

Finite dimensional Hilbert spaces

Finite dimensional Quantum mechanics

Figure 1.1: †-compact closed categories for quantum mechanics

4



In 2004, Abramsky and Coecke [4] described the fundamental axioms of quantum me-

chanics within the framework of †-compact closed categories (†-KCCs). This was quite

significant as it meant that the proof theory based on string diagrams of monoidal categories

[109], could be deployed to reason about quantum processes. For example, in CQM, physical

systems are represented as wires and processes as circles. The label of a wire represents its

type. Diagram (a) represents a system A, and diagram (b) represents a transformation from

system A to system B. Processes can composed sequentially by connecting the wires with

matching types. Note that the string diagrams are to be read from top to bottom (following

the direction of gravity), and from left to right.

(a) A (b) f

A

B

(c)
f

A

B

g

C

Moreover, the wires and the boxes can be composed in parallel leading to processes as

shown in diagrams (e) and (f). Morever, the wires are allowed to cross one another another

as shown in diagram (g).

(e)

A1 ...

...

An

f

B1 Bm

(g)

A C

B D

f g (h)

A B

B A

It is far simpler to reason about processes using string diagrams since the human brain is

good at processing visual information. For example, it is quite easy to see that the diagrams

below represent the same process: one can prove the diagrams equal by fixing the ends of

the wires and moving the circles.

f g h = fg h = fgh

In compact closed categories, one can additionally bend wires into a cap and a cup as

follows, thus adding to the expressive power of the language:

Around the same time that Coecke and Absramsky applied the graphical calculus of

5



monoidal categories to study quantum mechanics, Selinger used structures in monoidal cat-

egories for designing a quantum programming language [112]. In 2007, Selinger [110] refined

and extended the framework of Abramsky and Coecke to account for mixed quantum states,

and coined the term ‘Dagger(†) compact closed categories’ for the categorical framework

of quantum mechanics. The †-compact closed categories faithfully abstract the structure

of finite-dimensional Hilbert spaces, thereby enabling a diagrammatic but rigorous reason-

ing technique for quantum processes and protocols within the category of finite-dimensional

Hilbert spaces and linear maps, FHilb. The category of all Hilbert spaces and linear maps,

Hilb, is †-monoidal but not compact closed.

1.1.4 Towards arbitrary dimensions in CQM

CQM has been applied to study problems in areas such as quantum foundations, quantum

information theory and quantum computing. CQM techniques have been used to study

causality [87, 43] and non-locality [51, 45] in quantum foundations. In quantum information

theory, it has been used to construct structures like quantum Latin squares [100] which are

crucial to many protocols in quantum information theory. Perhaps, the most significant

outcome of CQM is in the field of quantum computation namely the ZX-calculus [44] which

is a fine-grained diagrammatic calculus providing a set of generators and rewrite rules for

designing and optimizing quantum circuits.

Because the compact closed setting is restricted to finite dimensional Hilbert spaces,

practical applications of CQM, so far, have been limited to the areas such as quantum com-

puting and quantum information theory which are off-shoots of finite dimensional quantum

mechanics. This is because the base framework of CQM namely the compact closed cat-

egories impose finite dimensionality on the Hilbert Spaces [74]. Hence, the category of all

Hilbert spaces is †-monoidal and not †-compact closed. The success of CQM in the study

of finite-dimensional processes has inspired researchers to explore strategies for extending

CQM to infinite dimensional processes.

One approach was to identify the algebraic structures which can characterize the key

components of quantum mechanics without imposing any restriction on dimensionality. For

example, in CQM, dagger Frobenius algebras (See Section 6.4.1) provide a precise algebraic

characterization of quantum observables in the category of finite dimensional Hilbert Spaces

[49] (A quantum observable is a measurable physical property of a quantum system).

With the aim of extending this idea to quantum observables of arbitrary dimensions,

Abramsky and Heunen, in [6], showed how Ambrose’s H∗-algebras [8] could be used to

characterize orthonormal bases, hence quantum observables, in infinite dimensional Hilbert

spaces. However, the move from †-Frobenius to H∗-algebras comes at a cost - an H∗-algebra

6



is modelled as a semi-Frobenius algebra, that is, Frobenius algebras without the units.

Gogioso and Genovese [70] proposed an interesting approach to reinstating the units

using techniques from non-standard analysis [107]. They considered ?Hilb, the category of

non-standard separable Hilbert Spaces and linear maps. This they claimed is a †-compact

closed category, in which, among other things, the semi-Frobenius algebras of Abramsky and

Heunen can be modelled. Furthermore, the counit can be reinstated because formal infinite

sums are permitted.

In [46], Coecke and Heunen, in order to model infinite dimensional quantum processes,

took the simple step of dropping the requirement that the category is compact closed and

worked in dagger symmetric monoidal categories (†-SMCs). The category of all Hilbert

spaces, Hilb, is the prototypical example of a †-SMC. In CQM, quantum processes are mod-

elled as completely positive maps in the category of finite-dimensional Hilbert Spaces. Coecke

and Heunen showed how to build a category of completely positive maps for an arbitrary

†-SMC. A downside of this approach is that by moving to †-SMCs, one loses the structural

richness provided by duals.

In [77], Heunen and Reyes considered a different †-SMC, namely, the category of Hilbert

C∗-modules. Its objects can be equivalently viewed as bundles of Hilbert spaces over a locally

compact Hausdorff space. They characterized the special commutative †-Frobenius algebras

in this category as bundles of finite dimensional Hilbert spaces (with dimensions that are

uniformly bounded). These objects, while being far from finite, do retain a (uniform) locally

finite nature. This example, by using vector bundles and ideas from differential geometry,

enters the domain of traditional theoretical physics, and serves as a reminder that †-Frobenius

algebras are not only of interest for Hilbert spaces.

In [117], Vicary attempted to model a quantum harmonic oscillator, which is inher-

ently an infinite-dimensional quantum system in †-monoidal categories using free exponential

modalities. He proposed a notion of †-exponentials in †-symmetric monoidal categories with

†-biproducts and used it to derive an abstract Fock Space and the ladder operators of Fock

Spaces. He conjectured that the category of countable dimensional inner product spaces and

everywhere-defined linear maps is a model for this categorical setting.

1.1.5 Non-compact multiplicative †-linear logic

While various strategies have been tried for modelling systems of arbitrary dimensions, it

is a general consensus in the CQM community, that the dimensionality constraint of the

structures used in CQM is yet to be satisfactorily addressed. In this thesis, a different

approach is taken by shifting focus beyond Hilbert spaces and other models, and by moving

to non-compact †-linear logic.

7



Rather than insisting that the infinite dimensional structures are concretely related to

Hilbert spaces, it is considered that there may be a system of formal types which extend

the existing compact logic of CQM. An example of such a setting is the embedding of the

category of finite dimensional Hilbert spaces (which is †-compact) into the (†-)∗-autonomous

category of Chu Spaces over complex vector spaces, ChusVec(C)(I), where I, the tensor unit of

Vec(C), is the dualizing object (See Section 3.4.3). Yet another example is the embedding of

finite dimensional complex matrices into the (†-)∗-autonomous category of finiteness spaces

and finiteness matrices over complex numbers [64] (see Section 3.4.2).

We begin our explorations with linearly distributive categories (LDCs) and ∗-autonomous

categories rather than monoidal categories to first obtain a semantics for non-compact †-
linear logic. This idea is not new. Models for quantum mechanics in ∗-autonomous categories

are often described as “toy models” [2] and were, in particular discussed by Pavlovic [104]

where some very similar directions were advocated. Indeed, Egger [61], in initiating the

development of “involutive” categories, implicitly suggested that a dagger functor is not

stationary (A 6= A†) on objects in an LDC setting.

1.1.6 Linearly distributive categories

Linearly distributive categories (LDCs) [38] provide the categorical semantics (so they are the

proof theory) for the non-compact multiplicative fragment of linear logic (MLL) containing

the ⊗, 1, `, and ⊥. The sequent rules for the multiplicatives are shown in Figure 1.2. In the

linear logic community the multiplicative disjunction is often denoted by `, however this

thesis follows the convention in [38] and shall use ⊕. Under the same convention, we write

the unit of ⊗ as top > rather than 1 as in the linear logic community. The unit of ⊕ is a

bottom, ⊥.

Γ1,Γ2 ` ∆
(>L)

Γ1,>,Γ2 ` ∆
(>R) ` >

Γ1, A,B,Γ2 ` ∆
(⊗L)

Γ1, A⊗B,Γ2 ` ∆

Γ1 ` Γ2, A,Γ3 ∆1 ` ∆2, B,∆3(⊗R)
Γ1,∆1 ` Γ2,∆2, A⊗B,Γ2,∆3

(⊥L) ⊥ `
Γ ` ∆1,∆2(⊥R)

Γ ` ∆1,⊥,∆2

Γ1, A,Γ2 ` Γ3 ∆1, B,∆2 ` ∆3(⊕L)
Γ1,∆1, A⊕B,Γ2,∆2 ` Γ3,∆3

Γ ` ∆1, A,B,∆2(⊕R)
Γ ` ∆1, A⊕B,∆2

Figure 1.2: Sequent rules for multiplicatives

We assume that the sequent calculus is commutative (the order of premises and an-

8



tecedents does not matter). This is accommodated by the exchange rules which allows the

neighboring premises and antecedents to be swapped:

Γ1, A,B,Γ2 ` ∆
(exch.L)

Γ1, B,A,Γ2 ` ∆

Γ ` ∆1, C,D,∆2(exch.R)
Γ ` ∆1, D,C,∆2

Since LDCs are the proof theory of MLL, they come equipped with two distinct tensor

products called the “tensor”, ⊗, and the “par”, ⊕ corresponding to the multiplicative con-

junction and disjunction of linear logic respectively. The tensor and the par are related by

two natural transformations called linear distributors:

∂L : A⊗ (B ⊕ C) −→ (A⊗B)⊕ C ∂R : (A⊕B)⊗ C −→ A⊕ (B ⊗ C)

The distributors are not isomorphisms. The following is the sequent derivation of ∂L:

id, ⊕L, cut
B ⊕ C ` B,C id, ⊗R, cut

A,B ` A⊗B
cut

A,B ⊕ C ` A⊗B,C
(⊗L), (⊕R)

A⊗ (B ⊕ C) ` (A⊗B)⊕ C

The multiplicative fragment with negation (A⊥) has its categorical semantics in ∗-autonomous

categories. The sequent rules for negation allow premises to be flipped to the opposite side

of the entailment:

Γ, B⊥ ` ∆
(Neg.L)

Γ ` ∆, B

Γ ` ∆, B
(Neg.R)

Γ, B⊥ ` ∆

Figure 1.3: Sequent rules for negation

In an LDC, negation of an object is given by its categorical dual. An object A has a dual

A⊥ (negation of A) if there exists two maps, η : > −→ A⊕ A⊥, and A⊥ ⊗ A −→ ⊥ satisfying

the ‘snake’ equations, see Definition 2.8. An LDC in which every object has a chosen dual is

a ∗-autonomous category [16], see Section 2.1.4. The following proofs show the derivations

of the η and the ε maps respectively from the negation rules:

(id)
A ` A Neg.R
` A⊥, A

(⊕R)
` A⊕ A⊥

(>L)
> ` A⊕ A⊥

(id)
A ` A Neg.L
A⊥, A `

(⊗L)
A⊥ ⊗ A `

(⊥R)
A⊥ ⊗ A ` ⊥

Proof for η Proof for ε

An isomix category is an LDC with an isomorphism, called the mix map, m : ⊥
−→ >, satisfying the ‘mix law’ [25, Definition 6.2], see Section 2.1.3. The mix law provides

9



a natural transformation, mx : A⊗ B −→ A⊕ B, from the multiplicative conjunction to the

multiplicative disjunction, called the mixor, see Section 2.1.3. The mix law corresponds to

the sequent rules shown in Figure 1.4 (a)-(b).

(a) Γ ` ∆ Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
(b) > ` ⊥

Figure 1.4: (a) Binary mix axiom (b) Nullary mix axiom

In the presence of the cut rule, the rule (a) is equivalent to the axiom ⊥ ` > [37, Lemma

6.1], see below.

Γ ` ∆ (⊥L)
Γ ` ∆,⊥ id⊥ ` >

cut
Γ ` ∆,>

Γ′ ` ∆′ (>L)>,Γ′ ` ∆′
cut

Γ,Γ′ ` ∆,∆′

Derivation of the binary mix axiom in the presence of the cut rule

In an isomix category, an object U for which the natural transformations, mx(−,U) and

mx(U,−) are isomorphisms (that is for any object A, A⊗ U ' A⊕ U and U ⊗A ' U ⊕A) is

said to be in the core of the category. The core of an isomix category determined by such

objects forms a full subcategory.

An isomix category in which the mixor is a natural isomorphism (⊗ ' ⊕) is called a

compact LDC. The core of an isomix category is always a compact LDC. Compact LDCs

are linearly equivalent to a monoidal categories. Conversely, monoidal categories [95] can be

viewed as being degenerate compact LDCs in which the mixor is the identity map (⊗ = ⊕).

A monoidal category in which every object has a dual, is a compact closed category [85].

From this perspective, a compact closed category can be viewed as a compact ∗-autonomous

category.

1.2 Thesis outline

The aim of this thesis is to lay the categorical foundations for non-compact †-linear logic and

to apply it to categorical quantum mechanics. With this goal in mind, the thesis is divided

into two parts:

Part 1: composed of chapters 2 - 5 is focused on developing the categorical semantics of

non-compact †-linear logic.

Part 2: composed of chapters 6 - 11, is focused on developing structures for CQM in

the categorical setting developed in Part 1.

The rest of the section outlines the contents of this thesis and indicates the contributions.

10



1.2.1 Part I: Dagger linear logic

This first part begins with Chapter 2 which provides an introduction to LDCs and its vari-

ants, linear functors and transformations. This chapter also discusses the Ehrhard’s Finite-

ness spaces in detail, which is used as an example throughout this thesis. Chapters 3 and

4 chapters are derived from the article titled ‘Dagger linear logic for categorical quantum

mechanics’ [34]: it was presented at the Symposium on Compositional Structures (SYCO

I) in Birmingham (U.K.) and as a poster at the 15th international conference in Quan-

tum Physics and Logic (QPL), Halifax, Canada. The contributions of chapters 3 and 4 are

outlined below. Chapter 5 summarizes the first part of this thesis.

Dagger linearly distributive categories

It is standard in CQM to interpret the dagger as a contravariant functor which is sta-

tionary on objects (A = A†) and an involution for maps (f †† = f). However, in an LDC

with two tensor products - a tensor ⊗, and a par ⊕ - the dagger has to flip the tensor and

par so that (A⊕B)† = A†⊗B†. Without such a flip, daggering the linear distributor would

produce a non-permissible map.

This implies that the dagger can no longer be viewed as being stationary on objects

in an LDC. A non-stationary dagger implies that one has to address the coherence issues

determining how the dagger interacts with the structures of an LDC. Moreover, one can

replace the equality above by a natural isomorphism λ⊗ : A† ⊗ B† −→ (A ⊕ B)†, and the

involution by a natural isomorphism ιA : A −→ A††. We deal with these natural isomorphisms

and define †-LDC, †-mix and †-isomix categories in Section 3.1. The sequent calculus for

†-linear logic is discussed in Section 3.1.2.

Unitary isomorphisms for †-isomix categories

In CQM, the dagger functor determines the notion of a unitary isomorphism which is

an isomorphism f : A −→ B such that f † = f−1. These isomorphisms are particularly

important since they model the unitary evolution of a quantum system. Applying this idea

directly to †-LDCs is not feasible, because the maps, f−1 : B −→ A and f † : B† −→ A†

now have different types, hence cannot be directly equal. However, minimally, if there exist

isomorphisms, ϕA : A ' A† and ϕB : B ' B†, then one can define a unitary isomorphism to

be a map f satisfying the following commuting diagram:

A
f //

ϕA ��

B
ϕB��

A† oo
f†

B†

11



Note that, in a †-monoidal category, the isomorphisms ϕA and ϕB are simply the identity

maps.

In a †-isomix category, the isomorphism ϕA is referred to as a unitary structure map if A

resides in the core, and behaves coherently with the natural isomorphisms of the category.

In this case, A is referred to as unitary objects. The unitary objects of †-isomix category

forms a sub compact-†-isomix category. Such a compact †-isomix category in which every

object is unitary is called a unitary category. Unitary categories are †-linearly equivalent to

a †-monoidal categories. Moreover, when unitary categories have unitary duals, the category

is †-linearly equivalent to †-compact closed categories. These ideas are developed in Section

4.1.

Unitary construction

Having defined the †-LDCs and the unitary structure for †-isomix categories, our next

objective is to extract a unitary category, that is the traditional CQM setting, from any

†-isomix category. For this, one collects the “pre-unitary” objects of a †-isomix category. An

object A is pre-unitary if A is in the core and there exists an isomorphism ϕA : A −→ A†

and the isomorphism behaves coherently with the involutor ι as shown in the following

commuting diagram:

A
ϕA ��

ι

%%
A†

ϕ−1†
A

// A††

The unitary category thus extracted using the ‘unitary contruction’ is referred to as the

canonical unitary core of the †-isomix category. See Section 4.1.3 for details.

Mixed unitary categories

Collecting the structures we have developed so far, namely the †-isomix categories and the

unitary categories, we arrive at a general framework of ‘Mixed Unitary categories’ (MUCs).

MUCs embed a unitary category in a larger †-isomix category via a †-isomix-functor from

the unitary category to the core of the †-isomix category:

M : U −→ Core(C) ↪→ C

where U is the unitary category and C is the †-isomix category. Thus, a MUC is a general

framework which encompasses the traditional CQM framework within its core. The unitary

category of a MUC acting on the larger †-isomix category is analogous to a field K acting on

a K-algebra as scalars. Sections 4.3 and 4.4 are dedicated towards developing these ideas.

12



1.2.2 Part II: Application to dagger linear logic to CQM

The second part of this thesis is concerned with applying the MUC framework to quantum

mechanics. To this end, we generalize the key algebraic structures of CQM to the MUC

setting and study the implications of this generalization.

This part begins with Chapter 6 which provides an introduction to †-monoidal cate-

gories and the other key algebraic structures used by CQM. Chapter 7 is derived from my

coauthored article titled ‘Complete positivity for Mixed Unitary Categories’ [40], which was

presented as a talk at the QPL 2019 held in California, USA, and at SYCO II held in

Glasgow, UK. Chapters 8 and 9 are derived from my coauthored paper titled ‘Exponential

modalities and complementarity’ [39]. This work was presented at the 4th International

Conference on Applied Category Theory held in July 2021. Chapter 10 presents examples

for the structures introduced in Chapters 8 and 9. Chapter 11 summarizes the second part

of the thesis.

The contributions of chapters 7 - 9 are outlined below.

Completely positive maps in MUCs

In a †-monoidal settings, completely positive maps abstract the notion of quantum pro-

cesses. Coecke and Heunen [46] developed the CP∞ construction which produces the category

of completely positive maps when applied to any †-symmetric monoidal category. We define

the completely positive maps and the CP∞ construction for a MUC based on the Coecke

and Heunen’s construction [46]. We also characterize the CP∞ construction on MUCs using

the notion of environment structures and purification. The characterization of CP∞ con-

struction for MUCs led to an elegant observation that it suffices for the unitary core to have

environment maps to characterize the CP∞ construction for MUCs. Chapter 7 covers this

discussion.

Measurement in MUCs

Coecke and Pavlovic provided an algebraic description of quantum measurements in †-
monoidal categories [48]. In a MUC, measurement happens in two steps: first the system

to be measured must be compacted into the unitary core (i.e., the traditional CQM core),

and then the usual measurement process [48] as described by Coecke and Pavlocic must be

applied within the core. In order to characterize the compaction process, we introduce bi-

nary idempotents and †-binary idempotents. Compaction of an object in a †-isomix category

precisely corresponds to the splitting of certain †-binary idempotents on the object, See Sec-

tion 9.1. The †-binary idempotents generalize Selinger’s [111] †-idempotents in †-monoidal

categories which †-splits to produce classical types.

13



Complementary systems in isomix categories

The notion of complementary observables is central to quantum mechanics. An observ-

able is a measurable property of a quantum system. Two observables are complementary if

measuring (knowing) the value of one observable increases the uncertainty of the value of

the other. A classic example of complementary observables is the position and momentum

of an electron.

In CQM, quantum observables are algebraically presented as special commutative †-
Frobenius algebras [49] in †-monoidal categories. Moreover, complementary observables are

two such †-Frobenius algebras on the same object interacting bialgebraically to produce two

Hopf algebras1 [44].

In LDCs, linear monoids with a ⊗-monoid and a ⊕-monoid provide a general version

of Frobenius algebras. In fact, Frobenius algebras in monoidal categories can be viewed as

linear monoids satifying an extra property. Linear monoids lead to the new notion of a

“linear comonoid”, which can interact bialgebraically with a linear monoid to give a “linear

bialgebra”. Using these structures in a (†-)isomix category, one can define a complementary

system as a (†-)linear bialgebra satisfying a few extra equations. Chapter 8 is dedicated

to developing linear comonoids and linear bialgebras. Complementary systems in isomix

categories are described in Section 9.3.

Relating complementarity and exponential modalities

A final but a significant contribution of this thesis is to establish the connection between

exponential modalities of linear logic and complementarity of quantum mechanics using our

MUC framework. For this, we define (!, ?)-†-LDCs, i.e., a †-LDC with exponential modalities,

and also provide the sequent rules for the corresponding logic, see Sections 9.4.2, and 9.4.3.

We prove that every complementary system in a (†-)isomix category arises as a compaction

of a (†-)linear bialgebra induced on the free exponential modalities, see Section 9.4.

Chapter 12 concludes this thesis and dicusses future directions.

1.3 Prerequisites

We assume that the reader has a basic understanding of category theory including the defini-

tion of categories, functors, natural transformations, duality, isomorphisms, and adjunctions.

We refer the reader to a few excellent sources [9, 17, 32, 42, 12, 95], particularly, references

[42, 12] are well-suited for someone with a Physics background while [32] is geared towards

1Thus is often referred to as strong complementarity in CQM.

14



audience in computer science.

1.4 Notation

Composition is written in diagrammatic order: fg means apply f followed by g. The string

diagrams are to be read from top to bottom (following the direction of gravity) and left to

right.

15



Part I

Dagger Linear Logic

16



Chapter 2

Categorical semantics for linear logic

Linear logic [68] was introduced by Girard in 1987 as a resource sensitive logic in which log-

ical statements were treated as resources. Hence, proving statements in linear logic involves

manipulating these resources, most of which cannot be duplicated or destroyed. Linear logic

has been considered to be the logic of quantum information theory due to its resource sensi-

tivity [11, 59]. In this chapter, a categorical semantics of linear logic is reviewed using linearly

distributive categories. We also provide an interpretation of the linear logic structures in

finiteness spaces [64] which is used a running example in the rest of the thesis.

2.1 Linearly Distributive Categories (LDCs)

Linearly distributive categories, introduced by Cockett and Seely [38] in 1997, provide a

categorical semantics of Multiplicative Linear Logic (MLL). These categories were originally

referred to as Weakly distributive categories and were later renamed to linearly distributive

categories (LDCs).

2.1.1 Linearly distributive categories

Informally, a linearly distributive category is a category having two monoidal structures

linked by a linear distributor. We first recall the definition of monoidal categories before

moving on to LDCs:

Definition 2.1. A monoidal category (X,⊗, I, a⊗, ul⊗, ur⊗) is a category, X, consisting of:

• a bifunctor, ⊗ : X× X→ X, called tensor product;

• a designated object, I ∈ X, called the unit object;

• a natural isomorphism, (a⊗)A,B,C : A⊗ (B⊗C)
'−→ (A⊗B)⊗C, called the associator;

17



• a natural isomorphism, (ul⊗)A : I ⊗ A '−→ A, called the left unitor;

• a natural isomorphism, (ur⊗)A : A⊗ I '−→ A, called the right unitor;

such that the following coherence diagrams commute [84]:

• Maclane’s pentagon diagram:

A⊗ (B ⊗ (C ⊗D))
1⊗a⊗

tt

a⊗

**
A⊗ ((B ⊗ C)⊗D)

a⊗
��

(A⊗B)⊗ (C ⊗D)

a⊗
��

(A⊗ (B ⊗ C))⊗D
a⊗⊗1

// ((A⊗B)⊗ C)⊗D

• Kelly’s unit diagram:

(A⊗ I)⊗B
a⊗ ��

ur⊗⊗1B

**
A⊗ (I ⊗B)

1A⊗ul⊗
// (A⊗B)

A monoidal category in which the associator, the left unitor and the right unitor are

identity arrows is called a strict monoidal category.

A symmetric monoidal category (SMC) is a monoidal category with a natural iso-

morphism:

(c⊗)A,B : A⊗B '−→ B ⊗ A

such that the following equations hold:

• (Hexagon law) a⊗c⊗a⊗ = (1⊗ c⊗)a⊗(c⊗ ⊗ 1)

A⊗ (B ⊗ C) a⊗
//

1⊗c⊗��

(A⊗B)⊗ C c⊗
// C ⊗ (A⊗B)

a⊗��
⊗(C ⊗B) a⊗

// (A⊗ C)⊗B
a⊗(c⊗⊗1)

// (C ⊗ A)⊗B

• (Inverse law) (c⊗)A,B = (c⊗)−1
B,A

A⊗B
(c⊗)A,B ��

B ⊗ A
(c⊗)A,B

// A⊗B

18



• (Unit law) c⊗u
l
⊗ = ur⊗

A⊗ I c⊗ //

ur ''

I ⊗ A
ul��
A

In an LDC, there exists two tensor products which are related by natural transformations

called linear distributors:

Definition 2.2. [38] A linearly distributive category, (X,⊗,>,⊕,⊥) is a category X
consisting of:

• a monoidal structure, (⊗,>, a⊗, uL⊗, uR⊗)

(⊗ is referred to as ‘the tensor’ and its unit, >, ‘the top’)

• a monoidal structure, (⊕,⊥, a⊕, uL⊕, uR⊕)

(⊕ is referred to as ‘the par’ and its unit, ⊥, ‘the bottom’)

• The tensor and the par are related by the following natural transformations which are

called the left and the right linear distributors respectively:

∂l : (A⊗B)⊕ C −→ A⊗ (B ⊕ C)

∂r : A⊕ (B ⊗ C) −→ (A⊕B)⊗ C

satisfying the following coherence conditions:

• The assosicators and the unitors for the ⊗ and the ⊕ satisfy Maclane’s pentagon dia-

gram and Kelly’s unit diagram, See Definition 2.1.

• Coherence conditions for unit natural transformations and linear distributors:

LDC. 1 (a) ∂l(ul⊗ ⊕ 1B) = ul⊗

>⊗ (A⊕B)

∂l ��
ul⊗

**
(>⊗ A)⊕B

ul⊗⊕1B

// A⊕B

(b) ur⊗ = ∂r; 1⊕ ul⊗
(c) ∂rul⊕ = ul⊕ ⊗ 1B

19



(d) 1⊗ ur⊕ = ∂l;ul⊕

(⊥⊕ A)⊗B ∂r //

ul⊕⊗1B ++

⊥⊕ (A⊗B)
ul⊕��

A⊗B

• Coherences for associativity natural transformations and the distributors:

LDC. 2 (a) a⊗(1A ⊗ ∂l)δl = δl(a⊗ ⊕ 1D)

(A⊗B)⊗ (C ⊕D)
a⊗ //

∂l

��

A⊗ (B ⊗ (C ⊕D))

1A⊗∂l��
A⊗ ((B ⊗ C)⊕D)

∂l��
((A⊗B)⊗ C)⊕D

a⊗⊕1D
// (A⊗ (B ⊗ C))⊕D

(b) ∂l(a⊗ ⊕ 1) = a⊗(1⊗ ∂l)∂l

(c) ∂ra⊕ = (a⊕ ⊗ 1D)∂r(1A ⊗ ∂r)

(d) (1⊗ a⊕)∂l = ∂l(1⊕ ∂l)a⊕

• Coherences between the left and the right linear distributors:

LDC. 3 (a) ∂r(1A ⊕ ∂l) = ∂l(∂r ⊕ 1D)a⊗

(A⊕B)⊗ (C ⊕D)
∂l

ss
∂r

++
((A⊕B)⊗ C)⊕D)

∂r⊕1D ��

A⊕ (B ⊗ (C ⊕D))

1A⊕∂l��
(A⊕ (B ⊗ C))⊕D a⊗

// A⊕ ((B ⊗ C)⊕D)

(b) a⊗(1⊗ ∂r)∂l = (∂l ⊗ 1)∂r

A symmetric LDC is an LDC in which both the tensor products are symmetric, with

symmetry maps c⊗ and c⊕, such that ∂R = c⊗(1⊗ c⊕)∂L(c⊗ ⊕ 1)c⊕. For a symmetric LDC,

the left linear distributor determines the right linear distributor and vice versa.

Linearly distributive categories (LDCs) provide a categorical semantics for Multiplicative

Linear Logic (MLL). The two tensor products, ⊗ and ⊕, in an LDC corresponds to the

multiplicative conjunction and multiplicative disjunction in linear logic respectively.

The following are some examples of LDCs:

20



• Every monoidal category is also an LDC where the tensor and the par coincide, and the

distributor is the associator natural isomorphism. An LDC with the linear distributors

being isomorphisms is not necessarily monoidal. The next two examples elucidate the

point.

• A bounded distributive lattice is a lattice (L,≤,∧,>,∨,⊥) with a greatest element,

>, and a least element, ⊥, such that for all a ∈ L, ⊥ ≤ a ≤ >, and the join (∧) and

meet (∨) operations distribute over one another:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

A distributive lattice regarded as a category whose objects are lattice elements and the

maps given by the preorder, is an LDC. The tensor is given by ∧ with unit object >,

and the par is given by ∨ with unit object ⊥. Both the tensor products are symmetric.

The right linear distributor is given as follows:

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) ≤ a ∨ (b ∧ c)

Any Boolean algebra is an example of a distributive lattice.

• Let M be any set. A shift monoid is a commutative monoid, (M,+, 0) with a

designated element s such that there exists an inverse to s i.e, s − s = 0. A second

multiplication can be defined on the set M as follows: for all x, y ∈M , x◦y = (x+y)−s.
The unit of the second multiplication is s. A shift monoid considered as a discrete

category (the elements of the monoid are the objects and the maps are identity maps)

is an LDC with ⊗ := +, and ⊕ := ◦. The unit objects are given by the units of the

respective multiplications. The linear distributor is given by the following equality:

x ◦ (y + z) := (x+ (y + z))− s = ((x+ y)− s) + z = (x ◦ y) + z

Note that the distributors are identity maps but ⊗ and ⊕ are distinct.

• ∗-autonomous categories are LDCs with a dualizing object. See Section 2.1.4.

• The category of bialgebra modules and module homomorphisms of a ∗-autonomous

category is an LDC. The tensor products are inherited from the base category [38].

The category of Hopf modules and module homomorphisms from a ∗-autonomous

category is ∗-autonomous [103]. We discuss the category of Hopf Modules in section

3.4.4.

21



• Girard’s Coherence spaces [68], Ehrhard’s finiteness spaces [64], and Chu Spaces [18] are

linearly distributive categories that are also ∗-autonomous. Indeed, FRel, the category

of finiteness spaces and finiteness relations, and FMat(C), the category of finiteness

spaces and finiteness matrices are used as primary examples for structures introduced

in this thesis. See Section 2.3 for discussion of these categories.

• Bicompleting a monoidal category (adding arbitrary limits and colimits) gives an LDC.

A procedure for bicompletion of monoidal categories has been described by Joyal in

[82]. Joyal also proved in the same article that if the base category is compact closed,

then the resulting category is ∗-autonomous.

2.1.2 Graphical calculus

LDCs come equipped with a graphical calculus [30] that contains the calculus for monoidal

categories. Every sequent rule and derivation in MLL corresponds to a circuit in the graphical

calculus of LDCs, and vice versa. In this section, we review the fundamentals of the graphical

calculus for LDCs. For detailed exposition, see [30, 38]. The following are the generators of

LDC circuits: wires represent objects and circles represent maps. The input wires of a map

are tensored (with ⊗), and the output wires are “par”ed (with ⊕). The following diagram

represents a map f : A⊗B −→ C ⊕D.

f

A B

C D

f : A⊗B −→ C ⊕D

The ⊗-associator, the ⊕-associator, the left linear distributor, and the right linear dis-

tributors are, respectively, drawn as follows:

(a)

A⊗ (B ⊗ C)

(A⊗B)⊗ C

A⊗B
C

B ⊗ CA

(b)

A⊕ (B ⊕ C)

(A⊕B)⊕ C

A⊕B

B ⊕ C

B

C

A

(c)

A⊗ (B ⊕ C)

A
B ⊕ C

B
C

A⊗B

(A⊗B)⊕ C

(d)

(A⊕B)⊗ C

C
A⊕B

B
A

B ⊗ C

A⊕ (B ⊗ C)

is the ⊕-introduction (⊕I) rule, is ⊗-introduction (⊗I) rule, is the ⊗-

elimination (⊗E) rule, is the ⊕-elimination (⊕E) rule. As shown below, the rules,

(⊗I) and (⊗E), correspond to the sequent rules for tensor introduction, ⊗L and ⊗R in

22



Figure 1.2:

Γ, A,B,Γ′ ` ∆

Γ, A⊗B,Γ′ ` ∆
(⊗L)

Γ1 ` Γ2, A,Γ3 ∆1 ` ∆2, B,∆3

Γ1,∆1 ` Γ2,∆2, A⊗B,Γ3,∆3
(⊗R)

Similarly, ⊕I and ⊕E correspond to ⊕L and ⊕R respectively, see Figure 1.2.

The unitors are drawn as follows:

(a)

>

A

(uL⊗)−1 : A −→ >⊗ A

(b)
>

A

uL⊗ : >⊗ A −→ A

(c) ⊥

A

(uL⊕)−1 : A −→ ⊥⊕ A

(d)
⊥ A

uL⊕ : ⊥⊕ A −→ A

Diagram (a) is called the left >-introduction, (b) is called the left >-elimination, (c) is

the left ⊥-introduction, and (d) is the left ⊥-elimination which correspond to the sequent

rules (>R), (>L), (⊥R), (⊥L) in Figure 1.2 respectively. The unit > is introduced, and the

counit ⊥ is eliminated using the thinning links which are shown using dotted wires in the

diagrams. See [30, Section 2.3] for details on the thinning links.

The following are a set of circuit equalities (which when oriented become reduction rewrite

rules):

[Reduction] : >
A

>

= A ⊥ A

⊥

= A

A B

A B

=

A B

A B

A B

A B

=

A B

A B

The following are also circuit equalities (and when oriented become expansion rules:)

[Expansion] : = A⊗B = A⊕B

>

> = >

⊥

⊥ = ⊥

As in linear logic, not all circuit diagrams constructed from these basic components

represent a valid LDC circuit. In his seminal paper on linear logic, [68], Girard introduced

a criterion for the correctness of his representation of proofs using proof nets based on

switching links. A valid proof structure must be connected and acyclic for all the switching

link choices. Using this correctness criterion has the disadvantage of requiring exponential

time in the number of switching links. Danos and Regnier [54] improved this situation

significantly by providing an algorithm for correctness which takes linear time (see [72]) on

the size of the circuit. To verify the validity of the circuit diagrams of LDCs, Blute et.al.

[30], provided a boxing algorithm which was based on Danos and Regnier’s more efficient

algorithm which we now describe.

23



In order to verify that an LDC circuit is valid, circuit components are “boxed” using the

rules below. The primitive generating maps are automatically boxed.

(a1) ⇒ (a2) ⇒ (b1) ⇒ (b2) ⇒

(c) ⇒ (d1)
⊥

⇒ (d2)

⊥

⇒ (d3) ⇒

(e1)
>

⇒ (e2)
>

⇒ (e3)
>
⇒ (e4)

>

⇒

Double lines refer to multiple number of wires. The boxes contain circuit components

including maps. ⊗-introduction and ⊕-elimination are boxed in (a1) and (a2) respectively.

In (b1), it is shown how a box ‘eats’ the ⊗-elimination: in (b2) the dual rule shows a ⊕-

introduction being eaten. (c) shows how boxes can be amalgamated when they are connected

by a single wire. ⊥-elimination, >-introduction, and identity maps are boxed in (d1), (d2),

and (d3) respectively. In (e1)-(e4), it is shown how the thinning links can be boxed. By

progressively enclosing the components of the circuit in boxes using these rules, if we end up

with a single box (or a wire), precisely when the circuit is valid. As an example, we verify

the validity of the left linear distributor:

a1,a2⇒ c⇒ b1,b2⇒

In the first step the ⊗-introduction and ⊕-elimination are boxed. In the second step the

boxes are amalgamated along the single wire joining them. In the third step, the box absorbs

the ⊗-elimination and ⊕-introduction.

In contrast, we now show that the reverse of the linear distributor is invalid as the boxing

process gets stuck (there are no rules to box ⊗-elimination and ⊕-introduction):

a1,a2⇒

24



2.1.3 Mix, isomix and compact LDCs

In this thesis, we are predominately concerned with LDCs which have a mix map:

Definition 2.3. [37] A mix category is an LDC with a mix map m : ⊥ −→ > such that:

A⊗B
1⊗uL−1

⊕ //

(uR⊕)−1⊗1 �� mxA,B

++

A⊗ (⊥⊕B)
1⊗(m⊕1) // A⊗ (>⊕B)

∂L��
(A⊕⊥)⊗B

∂R ��

(A⊗>)⊕B
uR⊗⊕1
��

A⊕ (⊥⊗B)
1⊕(m⊗1)

// A⊕ (>⊗B)
1⊕uL⊗

// A⊕B

The map mxA,B is a natural transformation and is called the mixor. The coherence

condition for the mix map has the following form in string diagrams (where the mix map is

represented by an empty box):

mxA,B :=
⊥

>
=

⊥

>

In a mix category, the associator, the distributor and the mix maps interact as follows.

See Lemma 2, and proposition 3 in [25] for a proof.

[mix.] (A⊕B)⊗ C δR //

mx �� (a)

A⊕ (B ⊗ C)

1⊕mx��
(A⊕B)⊕ C a⊕

// A⊕ (B ⊕ C)

(A⊗B)⊗ C mx //

a⊗ �� (b)

A⊕ (B ⊗ C)
OO
δL

A⊗ (B ⊗ C)
1⊗mx

// A⊗ (B ⊕ C)

C ⊗ (A⊕B) δL //

mx �� (c)

(C ⊗ A)⊕B
mx⊕1��

C ⊕ (A⊕B)
a−1
⊕

// (C ⊕ A)⊕B

A⊗ (B ⊗ C) mx //

a−1
⊗ �� (d)

A⊕ (B ⊗ C)
OO
δR

(A⊗B)⊗ C
mx⊗1

// (A⊕B)⊗ C

There are many examples of mix categories including coherence spaces [68], and finiteness

spaces [64].

Definition 2.4. An LDC with a mix map, m : ⊥ −→ > which is an isomorphism is said to

be an isomix category.

When m is an isomorphism, the coherence requirement for the mixor is automatically

satisfied (see [37, Lemma 6.6]). Moreover, the mix map, m, being an isomorphism does not

imply that the mixor, mx, is an isomorphism. Finiteness spaces [64] and Chu spaces with

the tensor unit as the dualizing object [18] provide examples of isomix categories.

25



Definition 2.5. A compact LDC is an isomix category in which each mixor, mxA,B is an

isomorphism.

An important way in which compact LDCs arise is from the “core” of an isomix category

Definition 2.6. [25] An object U is in the core of a mix category if and only if the following

natural transformations are isomorphisms:

U ⊗ ( )
mxU,( )−−−−−→ U ⊕ ( ) and ( )⊗ U

mx( ),U−−−−−→ ( )⊕ U

Therefore, the core of a mix category, Core(X) ⊆ X, is the full subcategory of X with the

mixor being an isomorphism. It follows that Core(X) is a compact LDC.

Proposition 2.7. [25, Proposition 3] If X is a mix-LDC and A,B ∈ Core(X) then A ⊕ B
and A⊗B ∈ Core(X) (and A⊕B ' A⊗B). If X is an isomix-LDC, then >,⊥ ∈ Core(X).

A monoidal category is a compact LDC with the mix, and the mixor maps coinciding

with the identity. Hence, the tensor and the par coincide in a monoidal category. In fact,

any compact LDC is linearly equivalent to a monoidal category. A detailed description of

this linear equivalence is given in the section on linear functors and transformations.

The following schematic diagram summarizes different properties of LDCs:

LDC

Mix category

m : ⊥ −→ >

Isomix category

Compact LDC

A⊗B mx−−→
'

A⊕B

Monoidal category

⊥ m−−→
'
> m = 1, mx = 1(X,⊗,>)

(X,⊕,⊥)

Figure 2.1: Schematic diagram of LDC properties

2.1.4 ∗-autonomous categories

A key notion in the theory of LDCs is the notion of a linear adjoint [35]. Here we shall refer

to linear adjoints as “duals” in order to avoid any confusion with an adjunction of linear

functors.

Definition 2.8. Suppose X is a LDC and A,B ∈ X, then B is left dual (or left linear

adjoint) to A – or A is right dual (right linear adjoint) to B – written (η, ε) : B aa A, if

26



there exists a unit map, η : > → B ⊕ A and a counit map, ε : A ⊗ B → ⊥ such that the

following diagrams commute:

B
(uL⊗)−1

// >⊗B η⊗1// (B ⊕ A)⊗B
∂R��

B B ⊕⊥
uR⊕

oo B ⊕ (A⊗B)
1⊕ε

oo

A
(uR⊗)−1

// A⊗> 1⊗η// A⊗ (B ⊕ A)

∂L��
A ⊥⊕ A

uL⊕

oo (A⊗B)⊕ A
ε⊕1

oo

The unit map unit and the counit maps of a dual are drawn in string diagrams as a cap

and a cup:

η :=
A B

η

and ε :=

B A

ε

The commuting diagrams are called often referred to as “snake diagrams” because of

their shape in graphical calculus:

η

εA

A

=
η

ε B

B

=

The linear distributor is hidden in the above circuit diagrams due to the use to circuit

expansion, and circuit reduction rules, see Section 2.1.2.

Lemma 2.9. [25]

(i) In an LDC if (η, ε) : B aa A and (η′, ε′) : C aa A, then B and C are isomorphic;

(ii) In a symmetric LDC (η, ε) : B aa A if and only if (ηc⊕, c⊗ε) : A aa B;

(iii) In a mix category if B ∈ Core(X) and B aa A, then A ∈ Core(X).

In a monoidal category, duals coincide with the usual notion of duals. Next we define

the homomorphism of duals:

Definition 2.10. A homomorphism of duals, (f, f ′) : (η, ε) −→ (τ, γ), is given by a pair of

maps

A
f��

(η,ε) � � B

A′
(τ,γ)

� � B′
f ′
OO

such that the following equations hold:

(a)

τ

A′

B′

f ′

B

=

η

B

A

f

A′

(b)
γ

B′

A′

f
A

=
ε

A

B

f ′
B′

27



Notice that a morphism of duals is determined completely by either of the pair of maps

(f completely determines f ′, and vice versa), and are referred to as Australian mates [35]. :

f ′ := f

B′

B

The map f is an isomorphism if and only if f ′ is an isomorphism. Also, notice that

if f or f ′ is an isomorphism, equations (a) and (b) imply one another in the definition of

homomorphism of duals.

A dual, (η, ε) : A aa B such that A is both left and right dual of B, is called a cyclic dual.

In a symmetric LDC, every dual (η, ε) : A aa B gives another dual (ηc⊕, c⊗ε) : B aa A, which is

obtained by twisting the wires using the symmetry map. Thus, in a symmetric LDC, every

dual is a cyclic dual.

Definition 2.11. An LDC in which every object has a chosen left and right dual, respectively

(η∗, ε∗) : A∗ aa A and (∗η, ∗ε) : A aa ∗A, is a ∗-autonomous category.

In the symmetric case a left dual gives a right dual using the symmetry: thus, it is

standard to assume the existence of just the left dual with the right being the same object

with the unit and counit given by symmetry (as above).

In a ∗-autonomous category, taking the left (or right) linear dual of an object extends to

a linear functor, see Section 3.3.1.

Just as compact LDCs are linearly equivalent to monoidal categories so compact ∗-
autonomous categories are linearly equivalent to a compact closed categories. The equiva-

lence is given by Mx↑ which spreads the par onto two tensor structures (or, indeed, by Mx↓

which shows how to spread out a compact closed structure on the tensor), see Section 2.2.2.

In a symmetric ∗-autonomous category the left dual of an object is always canonically

isomorphic to the right dual. Moreover, even in non-symmetric ∗-autonomous categories, it

is often the case that the two duals are coherently isomorphic:

Definition 2.12. [63] A cyclor in a ∗-autonomous category (X,⊗,>,⊕,⊥, ∗( ), ( )∗) is a

natural isomorphism A∗
ψ−−→ ∗A satisfying the following coherence conditions:

⊥∗ ψ //

$$
[C.1]

∗⊥

yy>

A

ww ''[C.2]

( ∗A)∗
ψ∗
// (A∗)∗

ψA∗
// ∗(A∗)

>∗ ψ //

$$
[C.3]

∗>

yy⊥

28



(A⊗B)∗
ψ //

��
[C.4]

∗(A⊗B)

��
(B∗ ⊕ A∗)

ψ⊕ψ
// ∗B ⊕ ∗A

(A⊕B)∗
ψ //

��
[C.5]

∗(A⊕B)

��
(B∗ ⊗ A∗)

ψ⊗ψ
// ∗B ⊗ ∗A

A ∗-autonomous category with a cyclor is said to be cyclic.

The coherence conditions are not independent of each other: being cyclic is equivalent

to any one of the following four pairs of coherences: ([C.1], [C.5]), ([C.2], [C.5]), ([C.4],

[C.2]) and ([C.4], [C.3]) [63].

Condition [C.2] which is used extensively in Section 3.3 is represented graphically as

follows:

ψA∗ ψA

η∗

∗ε

A∗∗

∗(A∗)

A∗

∗A

A

=

∗η

ε∗ ∗(A∗)

A∗

A

The maps in [C.2] are invertible:

[C.2]−1 ψ−1
A ψ−1

A∗

ε∗

∗η

A∗∗A∗

∗(A∗)

∗A

A

=

 ψA∗ ψA

η∗

∗ε

A∗∗

∗(A∗)

A∗

∗A

A


−1

=


∗η

ε∗ ∗(A∗)

A∗

A

−1

=

η∗

∗ε

∗(A∗)

A∗

A

Symmetric ∗-autonomous categories always have a canonical cyclor:

∗η

ε∗

A∗

∗A

We shall use the cyclor in Section 3.3 to show how conjugation and dagger are related in

the presence of dualization.

2.2 Linear functors and transformations

Functors between LDCs are referred to as linear functors [36]. Following the same pat-

tern that LDCs generalize monoidal categories, linear functors generalize monoidal functors.

Moreover, these general functors also account for the structures in linear logic such as expo-

nential modalities (!, ?) and additive connectives (+,&) which are linear functors satisfying

additional properties.

29



2.2.1 Linear functors and transformations

In order to introduce linear functors, we first recall the definition of monoidal functors. A

functor F : X −→ Y between monoidal categories is a monoidal functor if its equipped with

natural transformations m⊗ : F (A)⊗ F (B) −→ F (A⊗B) and mI : I −→ F (I) such that the

following diagrams commute:

(F (A)⊗ F (B))⊗ F (C)
a⊗ ��

m⊗⊗1 // F (A⊗B)⊗ F (C)
m⊗ // F ((A⊗B)⊗ C)

F (a⊗)��
F (A)⊗ (F (B)⊗ F (C))

1⊗m⊗
// F (A)⊗ F (B ⊗ C) m⊗

// F (A⊗ (B ⊗ C))

F (A)⊗ I
uR⊗

,,
1⊗mI ��
F (A)⊗ F (I) m⊗

// F (A⊗ I)
F (uL⊗)

// F (A)

I ⊗ F (A)
uL⊗

,,
mI⊗1 ��
F (I)⊗ F (A) m⊗

// F (I ⊗ A)
F (uL⊗)

// F (A)

The first diagram for the monoidal functor is the associative law, and the other two

diagrams are the right and the left unit laws respectively. Dually, a functor (F, n⊗, nI) : X
−→ Y between monoidal categories is comonoidal if (F, n⊗, nI) : Xop −→ Yop is monoidal.

Monoidal functors preserve monoids and the comonoidal functors perserve comonoids.

Definition 2.13. [36, Definition 1] Given linearly distributive categories X and Y, a linear

functor F : X −→ Y consists of

(i) a pair of functors F = (F⊗, F⊕); (F⊗,m⊗,m>) : X −→ Y which is monoidal with respect

to ⊗ and (F⊕, n⊕, n⊥) : X −→ Y which is comonoidal with respect to ⊕. We refer to

m⊗ and n⊕ as tensor laxors, and m> and n⊥ as unit laxors.

(ii) natural transformations:

νR⊗ : F⊗(A⊕B) −→ F⊕(A)⊕ F⊗(B)

νL⊗ : F⊗(A⊕B) −→ F⊗(A)⊕ F⊕(B)

νR⊕ : F⊗(A)⊗ F⊕(B) −→ F⊕(A⊗B)

νL⊕ : F⊕(A)⊗ F⊗(B) −→ F⊕(A⊗B)

such that the following coherence conditions hold:

30



[LF.1] (a) F⊗(uL⊕) = νR⊗(n⊥ ⊕ 1)uL⊕

F⊗(⊥⊕ A)
F⊗(uL⊕)

//

νR⊗ ��

F⊗(A)

F⊕(⊥)⊕ F⊗(A)
n⊥⊕1

// ⊥⊕ F⊗(A)

uL⊕

OO

(b) νL⊗(1⊕ n⊥)uR⊕ = F⊗(uR⊕)

(c) (uL⊗)−1(m> ⊗ 1)νR⊕ = F⊕((uL⊗)−1)

(d) (uR⊗)−1(m> ⊗ 1)νL⊕ = F⊕((uR⊗)−1)

[LF.2] (a) F⊗(a⊕)νR⊗(1⊕ νR⊗) = νR⊗(n⊕ ⊕ 1)a⊕

F⊗((A⊕B)⊕ C)
F⊗(a⊕) //F⊗(a⊕) //

νR⊗ ��

F⊗(A⊕ (B ⊕ C))
νR⊗��

F⊕(A⊕B)⊕ F⊗(C)
n⊕⊕1

��

F⊕(A)⊕ F⊗(B ⊕ C)
1⊕νR⊗��

(F⊕(A)⊕ F⊕(B))⊕ F⊗(C) a⊕
// F⊕(A)⊕ (F⊕(B)⊕ F⊕(C))

(b) F⊗(a⊕)νL⊗(1⊕ n⊕) = νL⊕(νL ⊕ 1)a⊕

(c) (m⊗ ⊗ 1)νR⊕F⊕(a⊗) = a⊗(1⊗ νR⊕)νR⊕

(d) (νR⊕ ⊗ 1)νL⊕F⊕(a⊗) = a⊗(1⊗m⊗)νL⊕

[LF.3] (a) F⊗(a⊕)νR⊗(1⊕ νL⊗) = νL⊗(νR⊗ ⊕ 1)a⊕

F⊗((A⊕B)⊕ C)
F⊗(a⊕) //

νL⊗ ��

F⊗(A⊕ (B ⊕ C))
νR⊗��

F⊗(A⊕B)⊕ F⊕(C)
νR⊗⊕1 ��

F⊕(A)⊕ F⊗(B ⊕ C)
1⊕νL⊗��

(F⊕(A)⊕ F⊗(B))⊕ F⊕(C) a⊕
// F⊕(A)⊕ (F⊗(B)⊕ F⊕(C))

(b) (νR⊕ ⊗ 1)νL⊕F⊕(a⊗) = a⊗(1⊗ νL⊕)νR⊕

31



[LF.4] (a) (1⊗ νR⊗)∂L(νR⊕ ⊕ 1) = m⊗F⊗(∂L)νR⊗

F⊗(A)⊗ F⊗(B ⊕ C)
1⊗νR⊗//

m⊗ ��

F⊗(A)⊗ (F⊕(B)⊕ F⊗(C))

∂L��
F⊗(A⊗ (B ⊕ C))

F⊗(∂L) ��

(F⊗(A)⊗ F⊕(B))⊕ F⊗(C)
νR⊕⊕1��

F⊗((A⊗B)⊕ C)
νR⊗

// F⊕(A⊕B)⊕ F⊗(C)

(b) (νL⊗ ⊗ 1)∂R(1⊕ νL⊕) = m⊗F⊗(∂R)νL⊗

(c) (1⊗ νL⊗)∂L(νL⊕ ⊕ 1) = νL⊕F⊕(∂L)n⊕

(d) (νR⊗ ⊗ 1)∂R(1⊕ νR⊕) = νR⊕F⊕(∂R)n⊕

[LF.5] (a) (1⊗ νL⊗)∂L(m⊗ ⊕ 1) = m⊗F⊗(∂L)νL⊗

F⊗(A)⊗ F⊗(B ⊕ C)
1⊗νL⊗//

m⊗ ��

F⊗(A)⊗ (F⊗(B)⊕ F⊕(C))

∂L��
F⊗(A⊗ (B ⊕ C))

F⊗(∂L) ��

(F⊗(A)⊗ F⊗(B))⊕ F⊕(C)
m⊗⊕1
��

F⊗((A⊗B)⊕ C)
νL⊗

// F⊗(A⊗B)⊕ F⊗(C)

(b) (νR⊗ ⊗ 1)∂R(1⊕m⊗) = m⊗F⊗(∂R)νR⊗

(c) (1⊗ n⊕)∂L(νR⊕ ⊕ 1) = νR⊕F⊕(∂L)n⊕

(d) (n⊕ ⊗ 1)∂R(1⊕ νL⊕) = νL⊕F⊕(∂R)n⊕

In the graphical calculus, functors are represented by linear functor boxes [36]. A linear

functor box can either be monoidal or comonoidal. When the functor box is monoidal (F⊗),

it has one principal output wire (of F⊗ type) represented by a port where the wire exits the

box and the other wires (of F⊕ type) are auxiliary. When the box is comonoidal (F⊕), it

has one principal input wire with a port (of F⊕ type) and the other wires (of F⊗ type) are

auxiliary. The functor boxes are subject to a very natural “box eats box” calculus described

in [36]. A box can eat another box only when a ported wire meets an auxiliary wire. The

linear strengths are drawn in the graphical calculus as follows:

νL⊕ =

F⊕(A) F⊗(B)

F⊕(A⊗B)

F⊕ νR⊕ =

F⊗(A) F⊕(B)

F⊕(A⊗B)

F⊕ νL⊗ =

F⊗(A) F⊕(B)

F⊗(A⊕B)

F⊗ νR⊗ =

F⊕(A) F⊗(B)

F⊗(A⊕B)

F⊗

32



m⊗ =

F⊗(A) F⊗(B)

F⊗(A⊗B)

F⊗ m> =
>

> =
>

> n⊕ =

F⊕(A) F⊕(B)

F⊕(A⊕B)

F⊕ n⊥ = ⊥
⊥

= ⊥
⊥

When working in the categorical doctrine of symmetric LDCs we will expect the linear

functors to preserve the symmetry. Thus, a symmetric linear functor is a linear functor

F = (F⊗, F⊕) which satisfies in addition:

F⊗(A)⊗ F⊗(B)
c⊗ ��

m⊗ // F⊗(A⊗B)

F⊗(c⊗)��
F⊗(B)⊗ F⊗(A) m⊗

// F⊗(B ⊗ A)

F⊕(A⊕B)

F⊕(c⊕) ��

n⊗ // F⊕(A)⊕ F⊕(B)
c⊕��

F⊕(B ⊗ A) n⊕
// F⊕(B)⊕ F⊕(A)

Linear functors preserve duals:

Lemma 2.14. [35] Linear functors preserve duals: when F : X −→ Y is a linear functor and

(η, ε) : A aa B ∈ X, then F⊗(A) aa F⊕(B) and F⊕(A) aa F⊗(B).

Proof. The unit and counit of the adjunction (η′, ε′) : F⊗(A) aa F⊕(B) is given as follows:

η′ := > m>−−→ F⊗(>)
F⊗(η)−−−→ F⊗(A⊕B)

νL⊗−→ F⊗(A)⊕ F⊕(B) =
Fη

ε′ := F⊕(B)⊗ F⊗(A)
νL⊕−→ F⊕(B ⊗ A)

F⊕(ε)−−−→ F⊕(⊥)
n⊥−→ ⊥ =

Fε

The unit and counit of the other adjunction is given similarly.

Natural transformations between linear functors also break into two components linking

respectively the tensor functors by a monoidal transformation and, in the opposite direction,

the par functors by a comonoidal transformation.

A monoidal transformation α : F ⇒ G between two monoidal functors is a natural

transformation α : F ⇒ G such that the following diagrams commute:

F (A)⊗ F (B)
αA⊗αB //

mF⊗ ��

G(A)⊗G(B)
mG⊗��

F (A⊗B) αA⊗B
// G(A⊗B)

I
mFI ��

mFI

((
F (I) αI

// G(I)

The coherences for a comonoidal transformation are precisely the mirror images of the above

coherences.

Definition 2.15. [36, Definition 3] A linear (natural) transformation1, α : F −→ G,

between parallel linear functors F,G : X −→ Y consists of a pair of natural transformations

1In this thesis, a linear transformation is a natural transformation between linear functors, and is different
from the linear transformations of linear algebra. We drop the word “natural” for brevity.

33



α = (α⊗, α⊕) such that α⊗ : F⊗ −→ G⊗ is a monoidal transformation and α⊕ : G⊕ −→ F⊕ is

a comonoidal transformation satisfying the following coherence conditions:

[LT.1] a⊗ν
R
⊗(a⊕ ⊕ 1) = νR⊗(1⊕ a⊗)

F⊗(A⊕B)
α⊗ //

νR⊗ ��

G⊗(A⊕B)
νR⊗��

F⊕(A)⊕ F⊗(B)

1⊕α⊗ **

G⊕(A)⊕G⊗(B)

α⊕⊕1tt
F⊕(A)⊕G⊗(B)

[LT.2] α⊗ν
L
⊗(1⊕ α⊕) = νL⊗(α⊗ ⊕ 1)

[LT.3] (1⊗ α⊗)νL⊕(α⊕) = (α⊕ ⊗ 1)νL⊕

[LT.4] (α⊗ ⊗ 1)νR⊕α⊕ = (1⊗ α⊕)νR⊕

Conditions [LT.1] - [LT.4] are represented graphically as follows:

[LT.1]
α⊗

F =

α⊕

α⊗

G [LT.2]
α⊗

F =

α⊕

α⊗

G [LT.3]

α⊕

F =

α⊗

α⊕

F

[LT.4]

α⊕

G =

α⊗

α⊕

F

An adjunction of linear functors, (η, ε) : F a G is an adjunction in the usual sense (i.e.

satisfying the triangle equalities) in the 2-category of LDCs with linear functors and linear

natural transformations. In particular, such an adjunction yields a pair of adjunctions:

(η⊗, ε⊗) : F⊗ a G⊗ which is a monoidal adjunction, and (ε⊕, η⊕) : G⊕ a F⊕ which is a

comonoidal adjunction. By Kelly’s results [86], a functor with a right adjoint is comonoidal

if and only if its right adjoint is monoidal. This leads to the observation that:

Lemma 2.16. If (η, ε) : F aa G is an adjunction of linear functors, then F⊗ is iso-monoidal

(or strong) with respect to ⊗ and F⊕ is iso-comonoidal making the linear functor F strong.

Proof. Since (η⊗, ε⊗) : F⊗ a G⊗ is a monoidal adjunction, the left adjoint (F⊗,m⊗,m>) is a

strong monoidal functor. Similarly, since (ε⊕, η⊕) : G⊕ a F⊕ is a comonoidal adjunction, the

right adjoint (F⊕, n⊕, n⊥) is a strong comonoidal functor.

A linear equivalence is a linear adjunction in which the unit and counit are linear

natural isomorphisms.

34



2.2.2 Linear functors for isomix categories

Any isomix category, (X,⊗,⊕) always has two linear functors Mx↓ : (X,⊗,⊗) −→ (X,⊗,⊕)

and Mx↑ : (X,⊕,⊕) −→ (X,⊗,⊕) given by the identity functor, that is (Mx↑)⊗ = (Mx↑)⊕ =

Id = (Mx↓)⊗ = (Mx↓)⊕. The linear strengths and monoidal maps are given by the inverse of

the mix map and the mixor. These mix functors take the degenerate linear structure on the

tensor (respectively the par) and spread it out over both the tensor structures.

Lemma 2.17. For any isomix category X the functors Mx↓ : (X,⊗,⊗) −→ (X,⊗,⊕) and

Mx↑ : (X,⊕,⊕) −→ (X,⊗,⊕) are linear functors.

Proof. We show that Mx↓ : (X,⊗,⊗) −→ (X,⊗,⊕) is a linear functor: the monoidal and

comonoidal components of the functor are given by (1, 1, 1) and (1,mx,m−1) respectively.

The linear strengths are νL⊗ = νR⊗ : A ⊗ B −→ A ⊕ B := mx and νL⊕ = νR⊕ : A ⊕ B

−→ A⊕B := 1.

First we show (1,mx,m−1) : (X,⊗,⊗) −→ (X,⊗,⊕) is a monoidal functor:

• The associative law for monoidal functors, (mx⊗1) mx a⊕ = a⊗ (1⊗mx) mx, is satisfied:

= =

• The unit laws for monoidal functors hold. Here is the pictorial proof of (1⊗m−1)mx =

uL⊗(uL⊕)−1, where the filled rectangles represent m−1:

=

>

⊥

⊥

=

>

⊥

⊥

=

>

⊥

The other unit law holds similarly.

Mx↓ : (X,⊗,⊗) −→ (X,⊗,⊕) satisfies all the coherence requirements of a linear functor:

[LF.1], [LF.2], and [LF.3] hold because (Mx↓)⊗ and (Mx↓)⊕ are monoidal and comonoidal

35



respectively, [LF.4](a) becomes mxa−1
⊕ = ∂L(mx⊕ 1) and holds because:

= =

[LF.4] (b) - (d) and [LF.5] (a) - (d) are satisfied similarly.

Thus, Mx↓ is a linear functor.

The proof that Mx↑ is a linear functor is (linearly) dual

Corollary 2.18. When X is a compact LDC, the mix functors, Mx↓ and Mx↑, are linear

isomorphisms. Consequently, compact LDCs are linearly equivalent to monoidal categories.

We shall denote the inverse of Mx↓ by Mx∗↓ : (X,⊗,⊕) −→ (X,⊕,⊕): this is the identity

functor as a mere functor, strict on the par structure, and on the tensor structure having as

the unit laxor m and as the tensor laxor mx−1. Similarly, we shall denote the inverse of Mx↑

by Mx∗↑.

The linear functors Mx↓ and Mx↑ are examples of isomix Frobenius functors , which we

shall introduce formally in the next section.

2.2.3 Frobenius functors

In this thesis, we will be interested in linear functors between LDCs called the Frobenius

functors which come in various flavours, including mix functors and isomix functors, as

illustrated in Figure 2.2. These functors are directly related to the Frobenius monoidal

functors of [55] and they are referred to as degenerate linear functors in [27]. Furthermore,

we have already seen two rather basic examples, namely, Mx↑ and Mx↓.

Frobenius functors preserve duals and with an additional coherence condition they pre-

serve the mix map. The coherence requirements for a dagger on an LDC are implied by

requiring that the dagger functor be a Frobenius involutive equivalence. Once the dagger is

understood we can consider †-mix categories and their functors which we shall take to be mix

Frobenius functors with a further requirement concerning the preservation of the dagger.

Definition 2.19. Let X and Y to LDCs. A Frobenius functor is a linear functor F : X
−→ Y such that:

[FLF.1] F⊗ = F⊕

[FLF.2] m⊗ = νR⊕ = νL⊕

36



Linear functors

Frobenius functors

Mix functors

Isomix functors
(Normal functors)
m>F (m−1)n⊥ = m−1

n⊥mm> = F (m)

F⊗ = F⊕;m⊗ = νL⊕ = νR⊕ ;n⊕ = νL⊗ = νR⊗

cyclic functors

symmetric functors

Figure 2.2: Linear functor family

[FLF.3] n⊕ = νL⊗ = νR⊗

The left and right linear strengths of ⊗ and ⊕ coinciding with the m⊗ and n⊕ respectively

means that in the diagrammatic calculus, ports can be moved around freely:

F⊕(A) F⊗(B)

F⊕(A⊗B)

F =

F⊗(A) F⊕(B)

F⊕(A⊗B)

F =

F⊗(A) F⊗(B)

F⊗(A⊗B)

F

F⊗(A) F⊕(B)

F⊗(A⊕B)

F =

F⊕(A) F⊗(B)

F⊗(A⊕B)

F =

F⊕(A) F⊕(B)

F⊕(A⊕B)

F

νL⊕ = νR⊕ = m⊗ νL⊗ = νR⊗ = n⊕

This implies that the ports can be omitted in the circuits.

A Frobenius functor is symmetric if as a linear functor it preserves the symmetries of

the tensor and par.

Lemma 2.20. Suppose X and Y are LDCs. The following are equivalent:

(a) F : X −→ Y is a Frobenius linear functor.

37



(b) F is ⊗-monoidal and ⊕-comonoidal such that

F (A)⊗ F (B ⊕ C)
1⊗n⊕//

m⊗ �� [F.1]

F (A)⊗ (F (B)⊕ F (C))

δL��
F (A⊗ (B ⊕ C))

F (δL) ��

(F (A)⊗ F (B))⊕ F (C)
m⊗⊕1
��

F ((A⊕B)⊕ C) n⊕
// F (A⊕B)⊕ F (C)

F (A⊕B)⊗ F (C)
n⊕⊗1//

m⊗ �� [F.2]

(F (A)⊕ F (B))⊗ F (C)

δR��
F ((A⊕B)⊗ C)

F (δR) ��

F (A)⊕ (F (B)⊗ F (C))
1⊕m⊗��

F (A⊕ (B ⊗ C)) n⊕
// F (A)⊕ F (B ⊗ C)

Proof. For (a)⇒(b), fix F := F⊗ = F⊕, then F is ⊗-monoidal and ⊕-comonoidal. Conditions

[F.1] and [F.2] are given by [LF.5]-(a) and [LF.5]-(b). For the other direction, define

F⊗ = F⊕ := F . Then it is straightforward to check that all the axioms of Frobenius linear

functors are satisfied by (F⊗, F⊕).

Conditions [F.1] and [F.2] in Lemma 2.20 are diagrammatically represented as follows:

[F.1]
F

=
F

F
[F.2]

F

= F

F

Frobenius functors compose: the composition is defined as the usual composition of linear

functors [38].

It is immediate from Lemma 2.14 that Frobenius functors preserve linear duals. In fact

if F : X −→ Y is a Frobenius functor and A aa B is a linear dual, as the duals F⊗(A) aa F⊕(B)

and F⊕(A) aa F⊗(B) now coincide, we just obtain the one dual F (A) aa F (B). In the case

when the Frobenius functor is between cyclic ∗-autonomous categories we expect the functor

to be cyclor-preserving in the following sense:

[CFF] F (X∗)
∼= ��

F (ψ) // F (∗X)
∼=��

F (X)∗
ψ

// ∗F (X)

38



where the left and right vertical arrows are respectively the maps:

(uR⊗)−1(η ∗ ⊗1)δR(1⊕ (mF
⊗F (ε∗)nF⊥)uR⊕ and (uR)−1(1⊗ ∗η)δL(mF

⊗ ⊕ 1)((F (∗ε)nF⊥)⊕ 1)uL⊕

The cyclor preserving condition maybe pictorially represented as follows:

ψ

F

F (X∗)

X∗

ε∗

X

η∗

F (X)∗

∗F (X)

=
F

F (X∗)

∗X

∗ε

X

∗η

∗F (X)

ψ

Lemma 2.21. Suppose F is a cyclor preserving Frobenius linear functor, then

F

F (X)

∗ε

ψ

ψ

η∗

X

∗X

X∗

F (X∗)
F (X∗)∗

∗F (X∗)

=

F (X)

X

F

∗F (X∗)

∗η

ε∗

Proof.

F

F (X)

∗ε

ψ

ψ

η∗

X

∗X

X∗

F (X∗)

F (X∗)∗

∗F (X∗)

=

F

F (X)

∗ε

ψ
ψ

η∗

X

∗X

X∗

F (X∗)

F (X∗)∗

∗F (X∗)

η∗

ε∗

=

F

F (X)

∗ε

ψ

ψ

η∗ X

∗X

X∗

F (X∗)

F (X∗)∗

∗F (X∗)

η∗

ε∗

F

[CFF]
=

F (X)

∗ε

ψ
X

∗X

X∗
η∗

F

ε∗ ∗F (X∗)

∗η

ψ

F

=

F (X)

∗ε

ψ
X

∗X

X∗
η∗

F

∗ε
∗F (X∗)

∗η

ψ

F

F ([C.2])
=

F (X)

X

F

∗ε ∗F (X∗)

∗η

F

ε∗

∗η

=

F (X)

X

F

∗F (X∗)

∗η

ε∗

Definition 2.22. Suppose X and Y are mix categories. F : X −→ Y is a mix functor if it

39



is a Frobenius functor such that

[mix-FF] F (⊥)

F (m)

88
n⊥ // ⊥ m // > m> // F (>)

The equation [mix-FF] is diagrammatically given as follows:

⊥ ⊥

>
>

=

⊥

>

F

Lemma 2.23. Mix functors preserve the mix map:

F (A)⊗ F (B) mx //

m⊗ ��

mx // F (A)⊕ F (B)

F (A⊗B)
F (mx)

//
F (mx)

// F (A⊕B)

n⊕
OO

Proof.

⊥

>

F

F (A) F (B)

=

⊥

>

F

F

F

[mix-FF]
=

⊥

>

⊥

>

⊥

>

=
⊥

>

⊥

>

⊥ >

F

F
=

⊥

>

F (A) F (B)

Linear natural isomorphisms between Frobenius functors (α⊗, α⊕) : F −→ G often take a

special form with α⊗ = α−1
⊕ : this allows the coherence requirements to be simplified. The

next results describe some basic circumstances in which this happens:

Lemma 2.24. Suppose F : X −→ Y are Frobenius linear functors and α := (α⊗, α⊕) : F ⇒ G

is a linear natural transformation. Then, the following are equivalent:

40



(i) One of [nat.1](a) or [nat.1](b) holds, and one of α⊗ or α⊕ is an isomorphism.

[nat.1] > m> //

m> ))

G(>)
α⊕��

(a)

F (>)

or F (⊥)
α⊗ //

n⊥ **

G(⊥)
n⊥��

(b)

⊥

(ii) One of [nat.1](a) or [nat.1](b) holds and one of the following commuting diagrams

holds.

[nat.2] G(A)⊗ F (B)
1⊗α⊗ //

α⊕⊗1
��

(a)

G(A)⊗G(B)

mG⊗

��

F (A)⊗ F (B)
mF⊗ ��

F (A⊗B) α⊗
// G(A⊗B)

or F (A)⊗G(B)
α⊗⊗1 //

1⊗α⊕ ��
(b)

G(A)⊗G(B)

mG⊗

��

F (A)⊗ F (B)
mF⊗ ��

F (A⊗B) α⊗
// G(A⊗B)

or G(A⊕B)
nG⊕ //

α⊕ ��
(c)

G(A)⊕G(B)

1⊕α⊕

��

F (A⊕B)
nF⊕ ��

F (A)⊕ F (B)
α⊗⊕1

// G(A)⊕ F (B)

or G(A⊕B)
nG⊕ //

α⊕ ��
(d)

G(A)⊕G(B)

α⊕⊕1

��

F (A⊕B)
n⊕ ��

F (A)⊕ F (B)
1⊗α⊗

// F (A)⊕G(B)

(iii) α−1
⊗ = α⊕

(iv) α′ := (α⊕, α⊗) : G⇒ F is a linear transformation.

Conditions [nat.2] are as follows in the graphical calculus:

(a)

α⊗

G =

α⊕

α⊗

F

(b)

α⊗

G =

α⊕

α⊗

F

(c)
α⊕

G =

α⊗

α⊕

F (d)
α⊕

G =

α⊗

α⊕

F

Proof. (i)⇒ (iii): Here is the proof assuming [nat.1](a) that α⊗α⊕ = 1:

F (X)

=

F

F (X)

=
>

>

F

F (X)

=

>

>

F

F (X)

F

=
α⊕

>

>

F

G

F (X)

=
α⊕

>

>

F

G

F (X)

=

>

>

G

α⊗

α⊕

F

F (X)

F (X)

=

>

>

G

α⊗

α⊕

G

F (X)

F (X)

=

F (X)

α⊗

α⊕

if either α⊗ or α⊕ are isomorphisms this implies α⊕α⊗ = 1.

41



(ii)⇒ (iii): The assumption of [nat.1](a) or (b) yields, as above, that α⊗α⊕ = 1. Using

[nat.2](c) for example gives α⊕α⊗ = 1:

G(X)

=

G

G(X)

=

⊥

⊥
G

G

G(X)

G(X)

=

⊥

⊥
G

F

G(X)

G(X)

α⊕

=

⊥

⊥
F

α⊕

α⊗

F

G(X)

G(X)

=

G(X)

α⊕

α⊗

G(X)

Since, α⊗α⊕ = 1 and α⊗α⊕ = 1 we have α⊗ = α−1
⊕ . The other combinations of rules

are used in similar fashion.

(iii)⇒ (iv): If α⊗ = α−1
⊕ , then

(α⊕ ⊗ α⊕)mF
⊗ = mG

⊗α⊗ : G(A)⊗G(B) −→ F (A⊗B)

α⊕ α⊕

F
=

α⊕ α⊕

α⊗

α⊕

F =

α⊕ α⊕

α⊕

α⊗ α⊗

G

=

α⊕

mF
> = mG

>α⊕ : > −→ F (>)

>

>

F

=

>

>

α⊗

α⊕

F

=
>

>

α⊕

G

Thus, α⊗ is comonoidal. Similarly, it can be proven that α⊕ is monoidal. The axioms

[LT.4] (a)-(d) for a linear transformation are satisfied for (α⊕, α⊗) because α⊕ = α−1
⊗ .

(iv) ⇒ (i) and (ii): The axioms [nat.1] and [nat.2] are given by the fact that (α⊕, α⊗) is

a linear transformation.

Frobenius functors between isomix categories are especially important in the development

of dagger linearly distributive categories and they often satisfy an additional property:

Definition 2.25. A Frobenius functor between isomix categories is an isomix functor in

42



case it is a mix functor which satisfies, in addition, the following diagram:

[isomix-FF] >
m−1

--

m> %%

⊥

F (>)
F (m−1)

// F (⊥)
n>

99

Recall that a linear functor is normal in case both m> and n⊥ are isomorphisms. We

observe:

Lemma 2.26. For a mix Frobenius functor, F : X −→ Y, between isomix categories the

following are equivalent:

(i) n⊥ : F (⊥) −→ ⊥ or m> : > −→ F (>) is an isomorphism;

(ii) F is a normal functor;

(iii) F is an isomix functor.

Proof.

(i) ⇒ (ii): Note that, as F is a mix functor F (m) = n⊥m m>. As the mix map m is an

isomorphism so is F (m) which implies that if n⊥ is an isomorphism then m> must be

an isomorphism and vice versa. Thus, F will be a normal functor.

(ii)⇒ (iii): If F is normal then n⊥ and m> are isomorphisms and so

F (m) = n⊥m m>

F (m−1) = m−1
> m−1n−1

⊥

m>F (m−1)n⊥ = m−1

(iii) ⇒ (i): The mix-preservation for F makes n⊥ a section (and m> a retraction) while

the isomix-preservation makes m⊥ a retraction (and m> a section. This means n⊥ is

an isomorphism (m> is an isomorphism).

Corollary 2.27. α := (α⊗, α⊕) is a linear natural isomorphism between isomix Frobenius

linear functors if and only if α⊗ = α−1
⊕ .

Proof. Note that if we can establish [nat.1](a) or (b) then we can prove that α⊗α⊕ = 1 and,

as α⊗ is an isomorphism it follows that α⊕α⊗ = 1. Thus, it suffices to show that [nat.1](a)

holds:

m>α⊕G(m−1)n⊥ = m>F (m−1)α⊕n⊥ = m>F (m−1)n⊥ = m−1 = m>G(m−1)n⊥

43



However, as G(m−1)n⊥ is an isomorphism, it follows that m>α⊕ = m>.

Lemma 2.24 and Corollary 2.27 are generalizations of [55, Proposition 7]. [55, Proposition

7] states the following:

Let X and Y be monoidal categories and (η, ε) : A a B ∈ X. If F,G : X −→ Y are Frobe-

nius monoidal functors with a natural transformation α : F ⇒ G which is both monoidal

and comonoidal, then αA is invertible.

In Lemma 2.24, when A aa B ∈ X, then α⊕ is defined as follows:

α⊕ : G(A) −→ F (A) = α⊗

ε

η

G(A)

F (A)

F (B)

G(B)

F

G

For these special linear isomorphisms with α⊗ = α−1
⊕ we can simplify the coherence

requirements:

Lemma 2.28. Suppose F and G are Frobenius functors and α : F −→ G is a natural

isomorphism then:

(i) If α : F −→ G is ⊗-monoidal and ⊕-comonoidal then (α, α−1) is a linear transforma-

tion;

(ii) If F and G are strong Frobenius functors and α is ⊗-monoidal and ⊕-monoidal then

(α, α−1) is a linear transformation.

Proof.

(i) If α is ⊗-monoidal and ⊕-comonoidal then so is α−1 supporting the possibility that it

is a component of a linear transformation. Considering [LT.1] we show that (α, α−1)

satisfies this requirement as:

F (A⊕B)
α⊗ //

n⊕=νR⊗ ��

G(A⊕B)
n⊕=νR⊗��

F (A)⊕ F (B)

1⊕α **

α⊕α // G(A)⊕G(B)

α−1⊕1tt
F (A)⊕G(B)

The remaining requirements follow similarly.

(ii) When the laxors for the functors are isomorphisms then being monoidal implies being

comonoidal.

44



2.3 Motivating examples

In Section 2.1, we listed a few examples of linearly distributive categories. In this section, we

present the categories of finiteness relations, FRel and finiteness matrices over a commutative

rig R, FMat(R), and discuss their properties. These isomix categories are closely related to

categorical quantum mechanics because the core of these categories are used as the standard

categorical models to study quantum processes in finite dimensions: the core of FMat(R) is

equivalent to the category finite dimensional matrices over a commutative rig R, and the

core of FRel is the category of finite sets and relations.

The categories FRel and FMat(R) are used as running examples throughout this thesis.

Consequently, the purpose of this section is to revisit the results of [64] in which these

categories were introduced.

2.3.1 Finiteness relations FRel and finiteness matrices FMat(R)

Finiteness spaces were introduced by Ehrhard [64] as a categorical model of Girard’s linear

logic [68]. A finiteness space (X,A,B) may be regarded as a set, X, called the web of X,

equipped with two sets of subsets, A ⊆ P(X) the finitary sets of X, and B ⊆ P(X) the

cofinitary sets of X. The finitary and cofinitary sets must be finiteness complements of each

other (as described below) and so determine each other. This means that a finiteness space

is often presented with just the finitary sets. Morphisms of a finiteness spaces are relations

between the webs that preserve the finitary sets and reflect the cofinitary sets The category

of finiteness spaces with finiteness relations is an isomix ∗-autonomous category. In this

section, we aim to give a reasonably self-contained account of FRel, the category of finitary

relations, and of FMat(R) the category of finiteness matrices with entries in a commutative

rig R, and to establish that these categories are symmetric †-∗-isomix categories.

Let X be any set and A,B ⊆ X then A is finiteness orthogonal [64] [64, Section 1] to

B, written A ⊥f B, in case A ∩B is finite. Given a set of subsets of X, A ⊆ P(X) set,

A⊥ = {B ⊆ X | ∀A ∈ A, B ⊥f A}

Thus A⊥ is the set of all subsets of X which intersects with all the sets in A finitely. Observe

that:

Lemma 2.29. For A,B ⊂ P(X):

(i) A ⊆ B ⇒ B⊥ ⊆ A⊥;

(ii) A ⊆ A⊥⊥;

45



(iii) A⊥⊥⊥ = A⊥;

(iv) A⊥ is downset closed and closed under finite unions;

(v) if A = A⊥⊥ then Pf (X) ⊆ A (that is A contains all finite subsets);

(vi) If Ai = A⊥⊥i for i ∈ I then
⋂
i∈I Ai = (

⋃
i∈I A⊥i )⊥

(so
⋂
i∈I Ai = (

⋂
i∈I Ai)⊥⊥).

The first two observations establish a Galois connection on the subsets of P(X) from

which the next observation is standard. The last two are easy consequences of the form of

the finiteness orthogonality.

Definition 2.30. A finiteness space is a triple (X,A,B) where X is a set, called the web

of the space, and A,B ⊆ P(X), such that the two subsets are finiteness complements, that

is A⊥ = B and B⊥ = A. Elements of A are the finitary sets of the finiteness space, while

elements of B are called the cofinitary sets.

Because the cofinitary sets are completely determined by the finitary sets it is often

convenient to write a finiteness space as (X,F (X), F (X)⊥), making clear that the structure

is completely determined by the web and the finitary sets. The finitary and cofinitary sets

are downward closed, that is F (X) = ↓F (X), and are closed under arbitrary intersections

and finite unions. As finite sets always intersect finitely both with the finitary and cofinitary

sets, the finitary and cofinitary sets of every finiteness space must always include all the finite

subsets. In particular this means that a finiteness set with a finite web must have every subset

both finitary and cofinitary. Furthermore, every set, X, always carries two “trivial” finiteness

structures (which coincide for a finite set): (X,Pf (X),P(X)) and (X,P(X),Pf (X)), where

Pf (X) is the set of finite subsets of X. On the other hand, as we now observe, an infinite

set always has infinitely many non-trivial finiteness structures:

Lemma 2.31.

(i) A finiteness space, (X,F (X), F (X)⊥), with a finite web, has its finitary and cofinitary

sets completely determined to be F (X) = F (X)⊥ = P(X) = Pf (X);

(ii) Every infinite set carries infinitely many non-trivial finiteness structures;

(iii) The set of finiteness structures carried by X form a complete (non-distributive) lattice

with (X,A,B) ≤ (X,A′,B′) if and only if A ⊆ A′ (equivalently B′ ⊆ B). The lattice

46



structure is given by:

> := (X,P(X),Pf (X)) ⊥ := (X,Pf (X),P(X))

∧
i

Ai :=

X,⋂
i

Ai,

(⋃
i

Ai

)⊥⊥ ∨
i∈I

Ai :=

X,(⋃
i

Ai

)⊥⊥
,
⋂
i

Bi


Proof.

(i) This is immediate.

(ii) There are, of course, many different possible finiteness structures for an infinite set: to

see this consider the finiteness space (X, {A}⊥⊥, {A}⊥), generated by insisting that an

infinite subset, A ⊆ X, whose complement, ¬A, is also infinite, is finitary. Notice that,

in this case:

{A}⊥ = {Y | Y ∩ A is finite} = {Y | Y ⊆ ¬A ∪ F where F is finite}

{A}⊥⊥ = {X | X ⊂ A ∪ F where F is finite}

It is then sufficient to show that there are infinitely many of these sets which are distinct

by more that a finite set: for this note that having chosen an infinite set one can split

it again recursively in the same manner.

(iii) It suffices to show that the two sets
∧
i∈I Ai and

∨
i∈I Bi are complementary. Note that

each set Bi ∈ Bi is in
∨
i∈I Bi so any set in the complement must be in the complement

of each Bi and so must be in
∧
i∈I Ai. Conversely, a set in

∧
i∈I Ai is necessarily

orthogonal to each finite union
⋃
i∈F Bi as it intersects with each Bi finitely. Thus,

(
∨
i∈I Bi)⊥ =

∧
i∈I Ai.

To complete the description of the category FRel, we describe the morphisms between

these spaces:

Definition 2.32. A finiteness relation R : (X,F (X), F (X)⊥) −→ (Y, F (Y ), F (Y )⊥) be-

tween two finiteness spaces, is a relation X
R−−→ Y such that:

(i) for all A ∈ F (X), A . R := {y | ∃x ∈ A such that xRy} ∈ F (Y )

(ii) for all B ∈ F (Y )⊥, R / B := {x | ∃y ∈ B such that xRy} ∈ F (X)⊥

47



Here we are using a notation which can be translated into allegorical notation, see [67],

where it is possible to do most of these proofs more generally and so can be made formal

for general categories of relations: we, of course, will have in mind sets and relations. In

this notation a finitary set in F (X) is a subrelation of the identity relation A ⊆ 1X while a

cofinitary set, B ∈ F (X)⊥, is a subrelation B ⊆ 1Y . The orthogonality relation A ⊥f A′ is

then the requirement that A∩A′ = AA′ is finite. A finiteness relation is a map R : X −→ Y

with A . R := cod(AR) ∈ F (Y ), for every A ∈ F (X), and R / B := dom(RB) ∈ F (X)⊥ for

every B ∈ F (Y )⊥ (recall that dom(R) = 1X ∩RR◦ and cod(R) = 1Y ∩R◦R, where R◦ is the

converse of R).

Finite relations are determined by having finite domains and codomains: so that R : X

−→ Y is finite if and only if cod(R) ⊆f 1Y and dom(R) ⊆f 1X . Thus R is a finiteness relation

if and only if ARB is a finite relation for every A ∈ F (X) and B ∈ F (Y )⊥.

Notice that once we require that A.R ∈ F (Y ) for every A ∈ F (X) then each B ∈ F (Y )⊥

has a finite intersection with A.R so that there are finitely many b ∈ (A.R)∩B and whence

ARB = AR((A . R) ∩B) = AR
⋃

b∈A.R∩B

{b}

=
⋃

b∈A.R∩B

AR{b} =
⋃

b∈A.R∩B

(A ∩R / {b})R{b}

This means that so long as R/ {b} ∈ F (X)⊥ each A∩R/ {b} will be finite, so, as the union

over b ∈ A.R∩B is a finite union, this ensures that ARB is a finite relation and, thus, that

R is a finiteness relation.

This discussion gives the following important simplifications (see Ehrhard [64]) of the

conditions of being a finiteness relation:

Lemma 2.33. The following are equivalent:

(i) R : X −→ Y is a finiteness relation;

(ii) ARB is a finite relation for all A ∈ F (X) and B ∈ F (Y )⊥;

(iii) R : X −→ Y has A.R ∈ F (Y ) for all A ∈ F (X) and for every y ∈ Y , R/{y} ∈ F (X)⊥;

(iv) R : X −→ Y has R / B ∈ F (X)⊥ for all B ∈ F (Y )⊥ and for every x ∈ X, {x} . R ∈
F (Y ).

Proof. The above discussion proves that (i) is equivalent to (ii). That (ii) implies (iii) is

now immediate (by converse symmetry this also gives (ii) implies (iv)). Finally we have

shown above that (iii) implies (ii) (and by converse symmetry that (iv) implies (ii)).

48



The category of finiteness relations, FRel, has objects finiteness spaces and maps finiteness

relations with composition as in the category of relations:

Lemma 2.34. Finiteness spaces with finiteness relations, FRel, forms a category with com-

position the usual composition of relations and identities the diagonal relations.

Proof. Suppose X
R−−→ Y , and Y

S−−→ Z are finiteness relations. Then, for A ∈ F (X) we

know A . R ∈ F (Y ) and whence A . (RS) = (A . R) . S ∈ F (Z). Similarly for B ∈ F (Z)⊥

we have S / B ∈ F (Y )⊥ and, therefore, (RS) / B = (R / (S / B)) ∈ F (X)⊥.

Clearly the identity relation is always a finiteness relation.

We record an obvious yet important fact: there is a faithful functor | | : FRel −→ Rel which

takes a finiteness space to its web and a finiteness relation to its underlying relation. This

functor, we shall see, preserves the structure of FRel as an isomix *-autonomous category on

the nose so that we can use the known coherence properties of Rel to obtain the corresponding

coherence properties of FRel.

With finiteness relations in hand one can build the category of finiteness matrices,

FMat(R), for an arbitrary commutative rig, R. While R can be any commutative rig, we

are most interested in the case when R is the complex numbers, and, thus, in the category

FMat(C).

The category FMat(R), where R is any commutative rig is defined as follows:

Objects: Finiteness spaces;

Maps: Finiteness matrices M : X −→ Y where M = [Mi,j]i∈X,j∈Y where each Mi,j ∈ R and

the support, |M |, is a finiteness relation, that is |M | = {(i, j) |Mi,j 6= 0} is a finiteness

relation;

Composition: Matrix multiplication – where we note all the non-zero sums are finite (see

Lemma 2.35 below),
∑

j ri,jsj,k =
∑

j∈{i}|r|∩|s|{k} ri,jsj,k.

Identities: Identity matrices.

Observe that, although finiteness matrices may be infinite dimensional, to form the com-

position of two finiteness matrices only requires the ability to multiply a finite number of

entries and, thus, to sum only a finite number of elements. This is because the support of

each matrix is always a finiteness relation, thus, for composition one only need compute the

products of non-zero elements and these lie in the intersection of a finite and cofinite set, so

is finite. This explicitly is the observation:

Lemma 2.35. If X
R−−→ Y

S−−→ Z is a finiteness relation, then

49



∈ F (Y )

∈ F (X)⊥

· · ·· · ·

· · ·· · ·
|X|

|Y |

Figure 2.3: Finiteness matrix

(i) for all x ∈ X, {x} . R ∈ F (Y ), and

(ii) for all y ∈ Y , S / {z} ∈ F (Y )⊥

(iii) for all x ∈ X and z ∈ Z, {x} . R ⊥f S / {z}, that is {x} . R ∩ S / {z} is finite.

In a finiteness matrix X
M−−→ Y , each row of the matrix has support a finitary set of Y ,

and each column has a cofinitary set of X as shown in Figure 2.3.

Lemma 2.36. Finiteness spaces with finiteness matrices over any commutative rig, R, form

a category, FMat(R).

Proof. We must show that finiteness matrices compose. We already know that, even though

finiteness matrices can be infinite-dimensional, two such matrices can be multiplied using

only finite sums of elements because their supports are finiteness relations. However, we still

have to show that the product of two finiteness matrices is a finiteness matrix.

Suppose X
P−−→ Y and Y

Q−−→ Z, [PQ]x,z =
∑

y∈Y [P ]x,y[Q]x,y can only be non-zero if

∃ y ∈ Y , such that [P ]x,y, and [Q]y,z are non-zero, although, even if there exists y ∈ Y , such

that [P ]x,y and [Q]y,z are non-zero, [PQ]x,z may still be zero. This means the support |PQ| ⊆
|P ||Q|. Since, any subset of a finitary relation is finitary, PQ is a finiteness matrix.

The proof shows that taking the support of matrices gives, in general, a colax 2-functor

| | : FMat(R) −→ FRel as |MN | ≤ |M ||N |. In general if f : R −→ S is a morphism of rigs

then we obtain a functor FMat(f) : FMat(R) −→ FMat(S): if S is an ordered rig and f is

suitably colax then FMat(f) is a colax functor. Recall that the two element lattice 2 with

join as addition and meet as multiplication has FMat(2) = FRel.

50



2.3.2 Products, coproducts and biproducts in FRel and FMat(R)

We now begin to explore the properties of FRel, and FMat(R). First we observe that there

is an obvious involution on FRel given by swapping the finitary and cofinitary sets:

( )∗ : FRelop −→ FRel;

(X,A,B) � //

R

��

X∗ = (X,B,A)

� //

(X ′,A′,B′) � // X ′∗ = (X ′,B′,A′)

R◦

OO

For FMat(R) this involution is given by transposing the matrix:

( )∗ : FMat(R)op −→ Mat(R);

(X,A,B) � //

(ri,j)i∈X,j∈X′

��

X∗ = (X,B,A)

� //

(X ′,A′,B′) � // X ′∗ = (X ′,B′,A′)

(rj,i)j∈X′,i∈X

OO

This involution clearly has the property that (X∗)∗ = X. This symmetry means that we can

take a “one-sided” approach to establishing structures using the involution to automatically

produce the dual structure. Shortly we will see that this involution is actually the duality

of the ∗-autonomous structure of both categories.

The first observation is:

Lemma 2.37. FRel and FMat(R), for any commutative rig R, have arbitrary products and

coproducts.

Proof. Let (Xi, F (Xi), F (Xi)
⊥) be a set of finiteness spaces. We shall work for the coproduct

as the argument for the product is dual. The coproduct
∐

i∈I Xi of finiteness spaces has its

web given by the disjoint union of the webs with injections σi : Xi −→ ti∈IXi. Its finitary

sets are given by A = {
⋃
i∈I′ Aiσi | Ai ∈ F (Xi) & I ′ ⊆f I} while the cofinitary sets are

given by B = {
⋃
i∈I Biσi | Bi ∈ F (Xi)

⊥}. First note that the injections σi : Xi −→ ti∈IXi

are certainly finiteness relations. As a relation the comparison map for a family of relations,

Ri : Xi −→ Y , is unique and given by
⋃
i∈I σ

◦
iRi : ti∈IXi −→ Y : we must check this is a

finiteness relation assuming each Ri is. Note that if B ∈ F (Y )⊥ then

B

(⋃
i∈I

σ◦iRi

)◦
=
⋃
i∈I

BR◦iσi

where BR◦i ∈ F (Xi)
⊥ so this is in B. Conversely, given

⋃
i∈I′ Aiσi ∈ A mapping this forward

51



gives: (⋃
i∈I′

Aiσi

)(⋃
i∈I

σ◦iRi

)
=
⋃
i∈I′

AiRi

which is a finite union of finitary sets of Y and so a finitary set.

Finally, we must check that, as we have defined it,
∐

i∈I Xi is a finiteness set, that is

A⊥ = B and B⊥ = A. Toward this end suppose H ⊆
⊔
i∈I Xi is orthogonal to B then,

restricting to each Xi, Hσ
◦
i ∩Ai is finite for each Ai ∈ F (Xi)

⊥ and there can only be finitely

i for which this is non-empty. But this means H ∈ A. Conversely, suppose K ⊆
⊔
i∈I Xi

is orthogonal to A then restricting to Xi means that each Kσ◦i ∈ F (Xi)
⊥ which means

K =
⋃
i∈I Biσ and so is in B.

For FMat(R) the coproduct has the same underlying finiteness space: it is then straight-

forward to check that all the required maps have the appropriate support.

Note that in both FRel and FMat(R) finite products are the same as finite coproducts.

Thus, both categories have biproducts and so are additively enriched (that is, they are

enriched in commutative monoids).

Corollary 2.38. Both FRel and FMat(R) have (finite) biproducts.

In FRel the additive enrichment is given by the union of the underlying relations. In

FMat(R) the additive enrichment is given by the pointwise addition of matrices.

2.3.3 The tensor structure in FRel and FMat(R)

FRel has a symmetric tensor product and this can be used to obtain a corresponding tensor

product on FMat(R). We shall start by focusing on FRel and define X⊗Y := (X×Y, F (X⊗
Y ), F (X ⊗ Y )⊥), where

F (X ⊗ Y ) := ↓{A×B | A ∈ F (X), B ∈ F (Y )}

where ↓A := {A′ | A′ ⊆ A,A ∈ A} is the downward closure of the set of subsets A. To show

this is well-defined we must prove that F (X ⊗ Y ) = F (X ⊗ Y )⊥⊥ (this is essentially [64,

Lemma 2]):

Lemma 2.39. For any finiteness spaces X and Y , X ⊗ Y = (X,F (X ⊗ Y ), F (X ⊗ Y )⊥),

as defined above, is a well-defined finiteness space.

Proof. We must show that any Q ⊆ X × Y which intersects finitely with any P ⊆ X × Y
which, in turn, intersects finitely with all R ∈ F (X ⊗ Y ) must already be in F (X ⊗ Y ).

Suppose for contradiction that Q is not in F (X ⊗ Y ), as defined; this means there is no

52



A ∈ F (X) and B ∈ F (Y ) such that Q ⊆ A×B. This, in turn, means that dom(Q) 6∈ F (X)

or cod(Q) 6∈ F (Y ). Without the loss of generality, we may assume the former: this means

that there is a C ∈ F (X)⊥ with C ∩ dom(Q) infinite. We may “thicken” C ∩ dom(Q) to

C ′ : X −→ Y by choosing for each c ∈ C ∩ dom(Q) a yc ∈ Y so that (c, yc) ∈ Q. Then C ′ ∩Q
is certainly infinite, however, C ′ ∈ F (X⊗Y ) as intersecting with any A×B with A ∈ F (X)

and B ∈ F (Y ) is finite as C ∩A is finite. But this means Q cannot be in F (X ⊗ Y )⊥⊥.

By the discussion above Lemma 2.33, as Q ∈ F (X ∩ Y )⊥ precisely when Q ∩ A × B

is finite for all A ∈ F (X) and B ∈ F (Y ), Q may be characterized as a finiteness relation

Q : X∗ −→ Y or Q◦ : Y ∗ −→ X. This immediately gives:

Lemma 2.40. Let X and Y be a finiteness spaces then P ⊆ X × Y then the following are

equivalent:

(i) P ∈ F (X ⊗ Y )⊥;

(ii) P ∩ A×B is finite for all A ∈ F (X) and B ∈ F (Y );

(iii) For all A ∈ F (X), A . P ∈ F (Y )⊥ and, for all B ∈ F (Y ), P / B ∈ F (X)⊥;

(iv) For all A ∈ F (X), A . P ∈ F (Y )⊥ and, for every y ∈ Y , P / {y} ∈ F (X)⊥;

(v) For every x ∈ X, {x} . P ∈ F (Y )⊥ and, for all B ∈ F (Y ), P / B ∈ F (X)⊥.

The unit of tensor is given by the one element set with only finiteness structure possible:

> := ({?},P({?}),P({?})).
Given finiteness relations, X

R−−→ X ′, and Y
S−−→ Y ′, then:

R⊗ S := {((x, y), (x′, y′)) | xRx′, ySy′}

as in Rel, is clearly a finiteness relation. The associator and unitors for this tensor product

are the same as in Rel. Thus, the associator is the following relation:

a⊗ := (((x, y), z), (x, (y, z))) | x ∈ X, y ∈ Y, z ∈ Z

and this clearly gives a bijection between F ((X⊗Y )⊗Z) = ↓{((a, b), c) | a ∈ A ∈ F (X), b ∈
B ∈ F (Y ), c ∈ C ∈ F (Z)}, and F (X ⊗ (Y ⊗ Z)) =↓ {((a, (b, c)) | a ∈ A ∈ F (X), b ∈ B ∈
F (Y ), c ∈ C ∈ F (Z)}.

The tensor product is also symmetric, with the symmetry relation as in Rel.

If M and N are finiteness matrices, M ⊗ N is given by the outer product, while the

finiteness matrices for the associators, and the unitors are given by the characteristic matrices

53



(where the entries are either 0 or 1) of the corresponding coherence relations in FRel. The

commutativity of the rig makes the tensor products symmetric.

Lemma 2.41. FRel and FMat(R) have a symmetric tensor product ⊗ and by de Morgan

duality a further symmetric tensor product, called the par, ⊕ where X⊕Y := (X∗⊗Y ∗)∗.

The tensor and par do not coincide in general, however, note that, as

F (X ⊕ Y ) := F ((X∗ ⊗ Y ∗)∗) = F (X∗ ⊗ Y ∗)⊥ = {A′ ×B′ | A′ ∈ F (X)⊥, B′ ∈ F (Y )⊥}⊥

= {G | ∀A′ ∈ F (X)⊥, B′ ∈ F (Y )⊥.G ∩ A′ ×B′ is finite}

for A ∈ F (X) and B ∈ F (Y ) we therefore have A × B ∈ F (X ⊕ Y ) as A × B ∩ A′ × B′ is

finite. This means the map mx : A⊗ Y −→ A⊕ Y , called the mix map, which is the identity

map on the webs is a finiteness relation. It is, as we shall see, not generally an isomorphism.

The unit for the par is ⊥ := >∗ = ({?},P({?}),P({?})) = >. Thus, the units for the two

tensors coincide. This suggests the structure of an isomix category. Next, we show that

there is a linear distributor in both FRel and FMat(R). Preliminary to this we observe:

Lemma 2.42. For any finiteness spaces X, Y , and Z, the following hold:

(i) F (X ⊗ Y ) ⊆ F (X ⊕ Y );

(ii) F (X∗ ⊗ Y ∗) ⊆ F (X ⊗ Y )⊥;

(iii) F ((X∗ ⊗ Y ∗)⊗ Z) ⊆ F ((X ⊗ Y )∗ ⊗ Z).

Proof.

(i) As discussed above.

(ii) F (X ⊗ Y )⊥ = F ((X ⊗ Y )∗) = F ((X∗∗ ⊗ Y ∗∗)∗) = F (X∗ ⊕ Y ∗) ⊇ F (X∗ ⊗ Y ∗).

(iii) F ((X∗ ⊗ Y ∗)⊗ Z) = F ((X∗ ⊗ Y ∗)∗∗ ⊗ Z) = F ((X ⊕ Y )∗ ⊗ Z) ⊆ F ((X ⊗ Y )∗ ⊗ Z).

Proposition 2.43. FRel, and FMat(R) are symmetric LDCs.

Proof. The linear distributor for FRel, ∂L : X ⊗ (Y ⊕Z) −→ (X ⊗ Y )⊕Z on the webs is the

associator in Rel. To show this is a finiteness relation (although it is not an isomorphism) it

is sufficient to prove that if A ∈ F (X ⊗ (Y ⊕ Z)) then cod(Aa×) ∈ F ((X ⊗ Y ) ⊕ Z) as a×

certainly has the preimage of singleton sets in F (X ⊗ (Y ⊕ Z))⊥ as they are singleton sets.

54



Observe that

F (X ⊗ (Y ⊕ Z)) = F (X ⊗ (Y ∗ ⊗ Z∗)∗)

= F ((X)∗∗ ⊗ (Y ∗ ⊗ Z∗)∗) (as X∗∗ = X)

⊆ F (X∗ ⊗ (Y ∗ ⊗ Z∗))⊥ (Lemma 2.42(ii))

' F ((X∗ ⊗ Y ∗)⊗ Z∗)⊥ (Associativity of tensor)

⊆ F ((X ⊗ Y )∗ ⊗ Z∗)⊥ (Lemma 2.42(iii))

= F ((X ⊗ Y )⊕ Z)

(as (X,F (X), F (X)⊥)∗ = (X∗, F (X∗), F (X∗)⊥) := (X,F (X)⊥, F (X)))

For FMat(R), the left distributor is the characteristic matrix of ∂L.

Proposition 2.44. FRel, and FMat(R) are symmetric isomix ∗-autonomous categories with

respect to the involution ( )∗.

Proof. By Lemma 2.43, FRel is an LDC. It is an isomix category because m : > −→ ⊥ = 1{?}

is an isomorphism.

To show this we must demonstrate that we have a “cap” > −→ A⊕A∗ and a “cup” A∗⊗A
−→ ⊥: on the webs these are the corresponding maps in Rel given by the diagonal subset seen

as a relation in two ways. It suffices to show that these maps (which are dual) are finiteness

relations. As the required duality identities are satisfied by the underlying relations, they

are also satisfied in FRel.

Consider η : > −→ A ⊗ A∗ where η := {(?, (a, a)) | a ∈ A} as the finitary sets of > are

just {} and {?} and η◦ certainly has preimages of cofinitary sets cofinitary it remain only to

show that ∆A := {(a, a) | a ∈ A} is finitary in A⊗A∗. However, this is so if and only if ∆A

is a finiteness relation from A −→ A (by Lemma 2.40 suitably dualized) ... which it certainly

is as it is the identity relation!

This argument translates into FMat(R) using the characteristic matrices of these rela-

tions and the fact that all the coherence maps are given by the corresponding characteristic

matrices.

As FRel is *-autonomous, it is self-enriched. The internal hom is given as usual by

X−◦Y = X∗ ⊗ Y = (X ⊗ Y ∗)∗. Thus, X−◦Y = (X × Y, F (X ⊗ Y ⊥)⊥, F (X ⊗ Y ⊥)). The

same argument applies to FMat(R).

Lemma 2.45. Let X, and Y be finiteness spaces, then A ∈ F (X−◦Y ) if and only if A : X

−→ Y is a finiteness relation.

55



2.3.4 The core of FRel and FMat(R)

Recall that, for any isomix category X, the core of X, Core(X) ⊆ X, is the full subcategory

consisting of objects U such that for any object X ∈ X, mx : U⊗X −→ U⊕X (and mx : X⊗U
−→ X ⊕ U) is an isomorphism. The core is always closed to tensor and par and the units.

Thus, the core of an isomix category is an isomix category with mx : U ⊗ V −→ U ⊗ V is a

natural isomorphism.

In FRel, the mix map is given by the identity map on the webs and in FMat(R) it is given

by the characteristic function of this identity map. Our objective in this subsection is to

give a complete description of the core of FRel and FMat(R):

Proposition 2.46. U ∈ Core(FRel) if and only if U is finite. Similarly, U ∈ Core(FMat(R))

if and only if U is finite.

Proof. Suppose U is a finite set then U = U∗ as F (U) = F (U)⊥ = P(U). We shall prove

that F (U ⊗ Y ) = F (U ⊗ Y ) for all Y . We first prove this for FRel:

U finite ⇒ U ∈ Core(FRel): It suffices to show that R ∈ F (U ⊕ Y ) then R ∈ F (U ⊗ Y ).

However, R ∈ F (U ⊕ Y ) = F (U∗ ⊕ Y ) if and only if R : U −→ Y is a finiteness

relation. As R is a finiteness relation, because U ∈ F (U), cod(R) ∈ F (Y ) but then

R ⊆ U × cod(R) showing R ∈ F (U ⊗ Y ).

U ∈ Core(FRel) ⇒ U is finite: We prove the converse statement: if U is infinite set, that

there is a finiteness space, Y , such that F (X ⊗ Y ) ⊆ F (X ⊕ Y ). Choose Y =

(Y,P(Y ),Pf (Y )) such that there is an injective function α : U −→ Y : this forces Y to

be infinite. Because |U | is infinite, there is an infinite Q ⊆ U such that Q ∈ F (U)⊥ or

Q ∈ F (U). Without loss of generality, we may assume that Q ∈ F (U)⊥.

Define R := {(x, α(x)) | x ∈ Q}, then R ∈ F (U ⊗ Y ) because the following two

conditions hold:

(i) For all A ∈ F (U)⊥, A . R ∈ F (Y ) as F (Y ) ∈ P(Y ).

(ii) For all y ∈ Y , R / {y} ∈ F (X)⊥, as α is a monic, either R / {y} = ∅, or

R . {y} = {x} where α(x) = y. Since, R . {y} is a finite, R . {y} ∈ F (X)⊥.

Next we show, to complete the proof, that R /∈ F (X ⊗ Y ). R ∈ F (X ⊗ Y ) if and only

R ⊆ A×B, where A ∈ F (U) and B ∈ F (Y ). However, dom(R) = Q ∈ F (U)⊥. Since,

Q is infinite, Q cannot also be a member of F (U). Thus, Q /∈ F (X ⊗ Y ).

The same proof applies to FMat(R) by transposing to the characteristic functions of the

finiteness relationships.

56



Corollary 2.47.

(i) Core(FRel) is the category of finite sets and relations.

(ii) Core(FMat(R)) is (equivalent to) the category of finite-dimensional matrices over the

rig R.

57



Chapter 3

Dagger linearly distributive categories

In this chapter we define dagger linearly distributive categories, dagger linear functors and

transformations, and provide examples. We also explore the relationship among dual, dagger

and conjugation functors for LDCs.

3.1 Dagger for LDCs

Conventionally, in categorical quantum mechanics a dagger is defined as a contravariant

endofunctor which is stationary on objects (A† = A) and an involution (f †† = f). However,

in an LDC, the dagger must minimally flip the tensor products to maintain the directionality

of the distributor maps. Recall that, ∂† : (A⊗B)⊕C −→ A⊗(B⊕C) is not a valid map in an

LDC. Hence, for LDCs we cannot expect the dagger to be stationary on objects, however, it

is still possible for it to be an involution. This section deals with the coherences of †-functor

for LDC and its variants, that is, mix and isomix categories.

3.1.1 Dagger linearly distributive categories

Before proceeding to define the dagger functor for LDCs, the notion of the opposite LDC

and the notion of a contravariant linear functors have to be developed.

If (X,⊗,>,⊕,⊥) is a linearly distributive category, the opposite linear distributive

category is (X,⊗,>,⊕,⊥)op := (Xop,⊕,⊥,⊗,>) where Xop is the usual opposite category

with the monoidal structures flipped as follows:

⊗op := ⊕ >op := ⊥ ⊕op := ⊗ ⊥op := >

( )op is an endo functor for the category of LDCs and linear functors. It is also an involution:

(X,⊗,>,⊕,⊥)op op = (X,⊗,>,⊕,⊥).

58



Let (F⊗, F⊕) : (X,⊗,>,⊕,⊥)op −→ (X,⊗,>,⊕,⊥) be a linear functor. The opposite

linear functor (F⊗, F⊕)op : (X,⊗,>,⊕,⊥) −→ (X,⊗,>,⊕,⊥)op given by the pair of opposite

functors (F op
⊕ , F

op
⊗ ). Observe that F op is a mix Frobenius linear functor if and only if F is.

Definition 3.1. A dagger linearly distributive category (†-LDC), is an LDC, X, with a

contravariant Frobenius linear functor ( )† : Xop −→ X which is a linear involutive equivalence

( )† aa ( )†
op

: Xop −→ X.

We unfold this definition in Proposition 3.2. However, first note that saying the dagger

is an involutive equivalence asserts that the unit and counit of the equivalence are the

same (although one is in the opposite category). Thus, the adjunction expands to take the

form (ı, ı) : ( )† aa ( )†
op

: Xop −→ X. However, the unit and counit are linear natural

transformations so ı expands to ı = (ı⊗, ı⊕). As the dagger functor is a left adjoint, it is

strong and, thus, is normal. Furthermore, as the unit of an equivalence, ı is a linear natural

isomorphism, this means ı = (ı⊗, ı⊕) satisfies the requirements of Lemma 2.24, implying

that ı−1
⊗ = ı⊕. Simplifying notation we shall set ι := ı⊕ so the unit linear transformation is

ı := (ι−1, ι). We then can simplify the requirements of ı to the map ι : A −→ (A†)† which we

refer to as the involutor.

A symmetric †-LDC is a †-LDC which is a symmetric LDC for which the dagger is

a symmetric linear functor. A cyclic †-∗-autonomous category is a †-LDC with chosen

left and right duals, and a cyclor which is preserved by the dagger. A †-mix category is

a †-LDC for which ( )† : Xop −→ X is a mix functor. As the dagger functor is strong (and

so normal) if the category is an isomix category then being †-mix already implies that the

dagger is an isomix functor. Thus, a †-isomix category is a †-mix category which happens

to be an isomix category.

In the remainder of the section, we unfold the definition of a †-isomix category and give

the coherence requirements explicitly.

Proposition 3.2. A dagger linearly distributive category is an LDC with a functor ( )† : Xop

−→ X and natural isomorphisms

laxors: A† ⊗B† λ⊗−→ (A⊕B)† A† ⊕B† λ⊕−→ (A⊗B)†

> λ>−→ ⊥† ⊥ λ⊥−→ >†

involutor: A
ι−→ (A†)†

such that the following coherences hold:

59



[†-ldc.1] Interaction of λ⊗, λ⊕ with associators:

A† ⊗ (B† ⊗ C†) a⊗−1

//

1⊗λ⊗ ��

(A† ⊗B†)⊗ C†
λ⊗⊗1��

A† ⊗ (B ⊕ C)†

λ⊗ ��

(A⊕B)† ⊗ C†
λ⊗��

(A⊕ (B ⊕ C))†
a†⊕

// ((A⊕B)⊕ C)†

A† ⊕ (B† ⊕ C†)
a−1
⊕ //

1⊕λ⊕ ��

(A† ⊕B†)⊕ C†
λ⊕⊕1��

A† ⊕ (B ⊗ C)†

λ⊕ ��

(A⊗B)† ⊕ C†
λ⊕��

(A⊗ (B ⊗ C))†
a†⊗

// ((A⊗B)⊗ C)†

[†-ldc.2] Interaction of λ>, λ⊥ with unitors:

>⊗ A† λ>⊗1 //

uR⊗ ��

⊥† ⊗ A†
λ⊗��

A† (⊥⊕ A)†//
(uR⊕)†

⊥⊕ A† λ⊥⊕1 //

uR⊕ ��

>† ⊕ A†
λ⊕��

A† (>⊗ A)†//
(uR⊗)†

and two symmetric diagrams for uL⊗ and uL⊕ must also be satisfied.

[†-ldc.3] Interaction of λ⊗, λ⊕ with linear distributors:

A† ⊗ (B† ⊕ C†) ∂L //

1⊗λ⊕ ��

(A† ⊗B†)⊕ C†
λ⊗⊕1 ��

A† ⊗ (B ⊗ C)†

λ⊗ ��

(A⊕B)† ⊕ C†
λ⊕��

(A⊕ (B ⊗ C))†
(∂R)†

// ((A⊕B)⊗ C)†

(A† ⊕B†)⊗ C† ∂R //

λ⊕⊗1 ��

A† ⊕ (B† ⊗ C†)
1⊕λ⊗ ��

(A⊗B)† ⊗ C†
λ⊗ ��

A† ⊕ (B ⊕ C)†

λ⊕��
((A⊗B)⊕ C)†

(∂L)†
// (A⊗ (B ⊕ C))†

[†-ldc.4] Interaction of ι : A→ A†† with λ⊗, λ⊕:

A⊕B ι //

ι⊕ι ��

((A⊕B)†)†

λ†⊗��
(A†)† ⊕ (B†)†

λ⊕
// (A† ⊗B†)†

A⊗B ι //

ι⊗ι ��

((A⊗B)†)†

λ†⊕��
(A†)† ⊗ (B†)†

λ⊗
// (A† ⊕B†)†

[†-ldc.5] Interaction of ι : A→ A†† with λ>, λ⊥:

⊥ ι //

λ⊥ %%

(⊥†)†
λ†>��
>†

> ι //

λ> %%

(>†)†
λ†⊥��
⊥†

[†-ldc.6] ιA† = (ι−1
A )† : A† −→ A†††

60



The dagger structure is obtained from the previous proposition using strong monoidal

laxors: to form a linear functor the laxor λ⊕ needs to be reversed by taking its inverse.

Then, we have νl⊗ = νr⊗ := λ−1
⊕ and νl⊕ = νr⊕ := λ⊗. Once this adjustment is made all the

required coherences for † to be a linear functor are present. Note that [†-ldc.6] equivalently

expresses the triangle identities of the adjunction (ι, ι) :: †op a † : Xop −→ X. The coherences

for the involutor asserts that it is a monoidal transformation for both the tensor and par:

by Lemma 2.28 (ii) this suffices to show that it is a linear transformation.

A symmetric †-LDC is a †-LDC which is a symmetric LDC and for which the following

additional diagrams commute:

[†-ldc.7] Interaction of λ⊗, λ⊕ with symmetry maps:

A† ⊗B† λ⊗ //

c⊗ ��

(A⊕B)†

c†⊕��
B† ⊗ A†

λ⊗
// (B ⊕ A)†

A† ⊕B† λ⊕ //

c⊕ ��

(A⊗B)†

c†⊗��
B† ⊕ A†

λ⊕
// (B ⊗ A)†

A †-mix category is a †-LDC which has a mix map and satisfies the following additional

coherence:

[†-mix]

⊥ m //

λ⊥ ��

>
λ>��

>†
m†
// ⊥†

If m is an isomorphism, then X is a †-isomix category and, since ( )† is normal, ( )† is an

isomix Frobenius functor.

Lemma 3.3. Suppose X is a †-mix category then the following diagram commutes:

A† ⊗B† mx //

λ⊗ ��

A† ⊕B†
λ⊕��

(A⊕B)†
mx†
// (A⊗B)†

Proof. The proof follows directly from Lemma 2.23.

With respect to its applications to quantum theory, this thesis primarily focuses on †-
isomix categories. As we will see in Section 4.1, the notion of unitary objects and unitary

isomorphisms is supported only within a †-isomix category.

It is useful to observe that the core of a mix category is closed under taking the dagger

and duals.

Lemma 3.4. Suppose X is a †-mix category and A ∈ Core(X) then A† ∈ Core(X).

61



Proof. The natural transformation A† ⊗X mx−→ A† ⊕X is an isomorphism as follows:

A† ⊗X 1⊗ι //

mx �� (nat. mx)

A† ⊗X†† λ⊗ //

mx �� lem. 3.3

(A⊕X†)†

mx†��
A† ⊕X

1⊕ι
// A† ⊕X††

λ⊕
// (A⊗X†)†

Lemma 3.5. Let X be †-LDC. If A aa B then B† aa A†.

Proof. The statement follows from Lemma 2.14: Frobenius functors preserve linear adjoints.

Explicitly, if (η, ε) : A aa B then (λ>ε
†λ−1
⊕ , λ⊗η

†λ−1
⊥ ) : B† aa A†.

Suppose X is a †-∗-autonomous category and (η∗, ε∗) : A∗ aa A, then ((ε∗)†, (η∗)†) : A† a
a (A∗)†, where ((ε∗)†, (η∗)†) := (λ>ε ∗† λ−1

⊕ , λ⊗η ∗† λ−1
⊥ ). We draw (ε∗)† and (∗ε)† as dagger

cups, and (η∗)† and (∗η)† as dagger caps which are pictorially represented as follows:

X† (∗X)†

(∗η)†

X∗† X†

(η∗)† X† (∗X)†

(∗ε)†

X∗
†

X†

(ε∗)†

A †-∗-autonomous category is a cyclic †-∗-autonomous category when the dagger pre-

serves the cyclor in the following sense.

ψ†

ψ−1†

(A†)∗

ε∗

(∗ε)†

(∗A)†

A† =

ψ

ψ−1†

(A†)∗ (ε∗)†

∗ε

(∗A)†

A†

Lemma 3.6. In a cyclic, †-∗-autonomous category,

ψ

(∗ε)†

∗ε

ψ†

A∗†∗

A†

∗(A†∗) A†∗

∗(A†)

=

(ε∗)†

ε∗

A∗†∗

A†
A∗†

Proof. Proved by direct application of Lemma 2.21.

62



3.1.2 Sequent calculus for †-linear logic

†-LDCs provide a categorical semantics for the proof theory for multiplicative linear logic

with the dagger (†-MLL). Along with the sequent rules of MLL, †-MLL includes the addi-

tional rules (†), and (ι), as shown in Figure 3.1.

Γ ` ∆(†)
∆† ` Γ†

Γ1, A,Γ2 ` ∆
(ιL)

Γ1, A
††,Γ2 ` ∆

Γ ` ∆1, A,∆2(ιR)
Γ ` ∆1, A

††,∆2

where, if Γ = A1, A2, A3, · · · , An, then Γ† = A†1, A
†
2, A

†
3, · · · , A†n

Figure 3.1: Sequent rules for †

The rule (†) corresponds to the contravariance of the †-functor, and the rules (ιL) and

(ιR) correspond to the involutor natural isomorphism, ι : A −→ A††. The derivation of

(ιL)(−1) and (ιR)(−1) are shown in Figure 3.2.

A ` A
ιR

A ` A††
A ` A

ιL
A†† ` A

Figure 3.2: Sequent proof:- ι is an isomorphism

One can derive the unit and the tensor laxors using the sequent rules, (†), (ιL), and

(ιR). For example, Figure 3.3 shows the derivation of the ⊕-laxor, and Figure 3.4 shows the

derivation of the ⊥-laxor. The steps labelled (∗) in Figure 3.3 involve a cut. This leads to

the question of whether to system satisfies cut elimination: with the current presentation,

the system not appear to satisfy cut elimination.

id
A ` A id

B ` B ⊗R
A,B ` A⊗B

(A⊗B)† ` A†, B†
⊕R

(A⊗B)† ` A† ⊕B†

id
A† ` A† id

B† ` B† ⊕L
A† ⊕B† ` A†, B† †

A††, B†† ` (A† ⊕B†)†
(∗) 2× ιL(−1)

A,B ` (A† ⊕B†)†
⊗L

A⊗B ` (A† ⊕B†)†
ιL

(A† ⊕B†)†† ` (A⊗B)†
(∗) ιL(−1)

(A† ⊕B†) ` (A⊗B)†

Figure 3.3: Derivation of the ⊕-laxor

63



id` > †
>† ` ⊥R>† ` ⊥

id⊥ ` ⊥
ιR⊥ ` ⊥††

⊥L⊥ ` †
` ⊥† >L> ` ⊥† †
⊥†† ` >†

Cut⊥ ` >†

Figure 3.4: Derivation of ⊥-laxor

3.1.3 Dagger functor box

Suppose X is a †-LDC and f : A → B ∈ X. Then, the map f † : B† → A† is graphically

depicted as follows:

f
A

B

A†

B†

The rectangle is a functor box for the †-functor. Notice how we use vertical mirroring to

express the contravariance of the †-functor. By the functoriality of ( )†, we have: = .

These contravariant functor boxes compose contravariantly. Given maps f : A −→ B and

g : B −→ C:

f

g

C†

B†

A†

=
g

f

C†

A†

The following are the representations of the basic natural isomorphisms of a †-LDC:

λ> : > → ⊥† = ⊥> λ−1
> : ⊥† → > = ⊥ >

λ⊥ : ⊥ → >† = > ⊥ λ−1
⊥ : >† → ⊥ = > ⊥

λ⊗ : A† ⊗B† → (A⊕B)† = λ⊕ : A† ⊗B† → (A⊕B)† =

λ−1
⊗ : (A⊕B)† −→ A† ⊗B† = λ−1

⊕ : (A⊗B)† −→ A† ⊕B† =

64



Dagger boxes interact with involutor A
ι−→ A†† as follows:

f

ι ι

· · ·

· · ·

· · ·

=
f

i

· · ·

It is worth noting that one need not have a legal proof net inside a †-box. This complicates

the correctness criterion. However, the required correctness criterion is discussed in [96].

3.1.4 Functors for †-linearly distributive categories

Clearly the functors and transformations between †-LDCs must “preserve” the dagger in

some sense. Precisely we have:

Definition 3.7. F : X −→ Y is a †-linear functor between †-LDCs when F is a linear

functor equipped with a linear natural isomorphism ρF = (ρF⊗ : F⊗(A†) −→ F⊕(A)†, ρF⊕ :

F⊗(A)† −→ F⊕(A†)) called the preservator, such that the following diagrams commute:

F⊗(X) ι //

F⊗(ι) �� [†-LF.1]

F⊗(X)††
OO
(ρF⊕)†

F⊗(X††)
ρF⊗

// F⊕(X†)†

F⊕(X) ι //

F⊕(ι) �� [†-LF.2]

F⊕(X)††

(ρF⊗)†��
F⊕(X††) oo

ρF⊕
F⊗(X†)†

In case that F is a normal mix functor between †-isomix categories, then by Lemma 2.26,

F is an isomix functor and, therefore by Corollary 2.27, the preservators become inverses,

ρF⊗ = (ρF⊕)−1. This means the squares [†-LF.1] and [†-LF.2] coincide to give a single

condition for the tensor preservator:

F (X) ι //

F (ι) �� [†-isomix]

F (X)††

(ρF⊗)†��
F (X††)

ρF⊗

// F (X†)†

In case when F is an isomix functor, by Lemma 2.24, ρ := ρ⊗ is monoidal on ⊗ and

comonoidal on ⊕:

65



[P.1] F (A†)⊗ F (B†)
ρ⊗ρ //

m⊗ ��
(a)

F (A)† ⊗ F (B)†

λ⊗��
F (A† ⊗B†)
F (λ⊗) ��

(F (A)⊗ F (B))†

n†⊕��
F ((A⊕B)†) ρ

// (F (A⊕B))†

>
m> ��

λ>

&&
(b)F (>)

F (λ>) ��

⊥†
n†⊥
&&

F (⊥†) ρ
// (F (⊥))†

[P.2] F ((A⊗B)†)
ρ //

F (λ−1
⊕ ) ��

(a)

F (A⊗B)†

m†⊗��
F (A† ⊕B†)

nF⊕ ��

(F (A)⊗ F (B))†

λ−1
⊕��

F (A†)⊕ F (B†)
ρ⊕ρ

// F (A)† ⊕ F (B)†

F (>†)

ρ

��

F (λ−1
⊥ )

&&
(b) F (⊥)

n⊥

$$
F (>)†

m†>

// >†
λ−1
⊥

// ⊥

Pictorial representation of [P.2]-(a) is as follows:

ρ

M

ρ

F ((A⊗B)†)

F (A† ⊗B†)

F (A†) F (B†)

F (A)† F (B)†

=

ρ

M

F ((A⊗B)†)

F ((A)⊗ F (B))†

F (A)† F (B)†

For linear natural transformations (β⊗, β⊕) : F −→ G between †-linear functors, we

demand that β⊗ and β⊕ are related by:

F⊗(A†)

ρF⊗ ��

β⊗ // G⊗(A†)

ρG⊗��
(F⊕(X))†

β†⊕

// (G⊕(X))†

(G⊗(X))†

ρG⊕ ��

β†⊗ // (F⊗(X))†

ρF⊕��
G⊕(A†)

β⊕
// F⊕(A†)

Notice that this means that β⊗ is completely determined by β⊕ in the following sense:

F⊗(A)

F⊗(ι) ��

β⊗ // G⊗(A)

G⊗(ι)��
F⊗(A††)

ρF⊗ ��

β⊗ // G⊗(A††)

ρG⊗��
F⊕(A†)†

β†⊕

// G⊕(A†)†

66



Because the vertical maps are isomorphisms, this diagram can be used to express β⊗ in

terms of β⊕. Similarly β⊕ can be expressed in terms of β⊗. Thus, it is possible to express

the coherences in terms of just one of these transformations.

3.2 Examples: †-LDCs

In this section, we discuss a few basic examples of †-isomix categories. The first two are

compact LDCs. All these examples have a non-stationary dagger functor. More examples

of †-isomix categories can be found in the next chapter when we discuss the dagger and the

conjugation functor.

3.2.1 Every †-monoidal category is a †-LDC

A †-monoidal category [110] is defined as a symmetric monoidal category, X, with a con-

travariant functor † : Xop −→ X which is stationary on objects (A = A†) such that:

(i) for all f , f †† = f

(ii) for all f and g, (f ⊗ g)† = f † ⊗ g†

(iii) a†⊗ = a−1
⊗

(iv) (ul⊗)† = (ul⊗)−1

(v) (ur⊗)† = (ur⊗)−1

Note that every †-monoidal category is a compact †-LDC in which the the laxors and the

involutor are identity transformations.

3.2.2 Finite dimensional framed vector spaces

In this section we describe the category of “framed” finite dimensional vector spaces, where

a frame in this context is just a choice of basis. Thus, the objects in this category are vector

spaces with a chosen basis while the maps, ignoring the basis, are simply homomorphisms

of the vector spaces.

The category of finite dimensional framed vectors spaces, FFVecK , is a monoidal category

defined as follows:

Objects: The objects are pairs (V,V) where V is a finite dimensional K-vector space and

V = {v1, ..., vn} is a basis.

67



Maps: A map (V,V)
f−→ (W,W) is a linear map V

f−→ W in FdVecK .

Tensor: (V,V) ⊗ (W,W) = (V ⊗W, {v ⊗ w|v ∈ V , w ∈ W}) where V ⊗W is the usual

tensor product. The unit is (K, {e}) where e is the unit of the field K.

To define the “dagger” we must first choose a conjugation ( ) : K −→ K (see more

details in Section 3.3.2), that is a field homomorphism with k = (k). The canonical example

of conjugation is conjugation of the complex numbers, however, the conjugation can be

arbitrarily chosen – so could also, for example, be the identity. This conjugation then can

be extended to a (covariant) functor:

( ) : FFVecK −→ FFVecK ;

(V,V)

f��
(W,W)

7→
(V,V)

f��

(W,W)

where (V,V) is the vector space with the same basis but with the conjugate action c · v = c·v.

The conjugate homomorphism, f , is then the same underlying map which is homomorphism

between the conjugate spaces.

FFVecK is also a compact closed category with (V,B)∗ = (V ∗, {b̃i|bi ∈ B}) where

V ∗ = V ( K and b̃i : V −→ K;

(∑
j

βj · bj

)
7→ βi

This makes ( )∗ : FFVecop
K −→ FFVecK a contravariant functor whose action is determined by

precomposition. Finally, we define the “dagger” to be the composite (V,B)† = (V,B)∗.

This is a monoidal category with tensor and par being identified (so the linear distribution

is the associator) and is isomix. We must show that it is a †-LDC. Towards this aim we

define the required natural transformations on the basis:

λ⊗ = λ⊕ : (V,V)† ⊗ (W,W)† −→ ((V,V)⊗ (W,W))†; ṽi ⊗ w̃j 7→ ṽi ⊗ wj

λ> = λ⊥ : (K, {e}) −→ (K, {e})†; k 7→ k

ι : (V,V) −→ ((V,V)†)†; v 7→ λf.f(v)

Note that the last transformation is given in a basis independent manner. Importantly, it

may also be given in a basis dependent manner as ι(vi) = ˜̃vi as the behaviour of these two

68



maps is the same when applied to the basis of (V,V)† namely the elements ṽj:

ι(vi)(ṽj) = (λf.f(vi))ṽj = ṽjvi = ∂i,j = ˜̃vi(ṽj)
Also note that ṽi ⊗ wj = (ṽi ⊗ w̃j)u⊗, where u⊗ : K ⊗K −→ K is the multiplication of the

field. With these definitions in hand it is straightforward to check that this gives a †-LDC by

checking the required coherences on basis elements. To demonstrate the technique consider

the coherence [†-ldc.4]:

A⊕B
ι⊕ι ��

ι // ((A⊕B)†)†

λ†⊗��
(A†)† ⊕ (B†)†

λ⊕
// (A† ⊗B†)†

We must show (identifying tensor and par) that λ†⊗(ι(ai⊗ bj)) = λ⊗(ι⊗ ι(ai⊗ bj)). Now the

result is a higher-order term so it suffices to show the evaluations on basis elements are the

same. This means we need to show: λ†⊗(ι(ai ⊗ bj))(ãp ⊗ b̃q) = λ⊗(ι⊗ ι(ai ⊗ bj))(ãp ⊗ b̃q)

(λ⊗(ι⊗ ι(ai ⊗ bj)))(ãp ⊗ b̃q) = (λ⊗( ˜̃ai ⊗ ˜̃bj))(ãp ⊗ b̃q)
= (

˜̃
ai ⊗ b̃j)(ãp ⊗ b̃q)

= (ãp ⊗ b̃q)( ˜̃ai ⊗ ˜̃bj)u⊗ (diagrammatic order)

= ∂p,i∂q,j

(λ†⊗(ι(ai ⊗ bj)))(ãp ⊗ b̃q) = (λ†⊗(
˜̃
ai ⊗ bj))(ãp ⊗ b̃q)

= (ãp ⊗ b̃q)λ⊗
˜̃
ai ⊗ bj (diagrammatic order)

= ãp ⊗ bq
˜̃
ai ⊗ bj

= ∂p,i∂q,j

Thus, FFVecK is a compact †-isomix category where the † functor shifts objects i.e.,

A 6= A†.

3.2.3 Category of abstract state spaces

This source of examples for †-isomix categories is inspired by the category of convex opera-

tional models [13]. The following is a way to construct a new †-isomix category, the category

of abstract state spaces, from an existing one.

Definition 3.8. Let X be a †-isomix category. Define Asp(X) as follows:

69



Objects: (A, eA : A −→ ⊥, uA : > −→ A)

Arrows: f : A −→ B ∈ X such that the following diagram commutes:

>
uA

{{
uB

##
A

f //

eA ##

B

eB{{
⊥

Identity arrow and composition are inherited directly from X. Asp(X) is a LDC:

⊗ on objects: (A, eA, uA) ⊗ (B, eB, uB) := (A ⊗ B, e′, u′) where, e′ := mx(eA ⊕ eB)u⊕ and

u′ := u−1
⊗ (uA ⊗ uB). The unit of ⊗ is given by (>,m−1 : > −→ ⊥, 1>).

⊕ on objects: (A, eA, uA) ⊕ (B, eB, uB) := (A ⊕ B, e′, u′) where, e′ := (eA ⊕ eB)u⊕ and

u′ := u−1
⊗ (uA ⊗ uB)mx. The unit of ⊕ is (⊥, 1⊥,m−1 : > −→ ⊥)

Asp(X) is also †-isomix category with

(A, e, u)† := (A†, u†λ−1
⊥ , λ>e

†)

All the basic natural isomorphisms are inherited from X. Hence, Asp(X) is a †-isomix cate-

gory.

70



3.3 Dagger, duals, and conjugation

The goal of this section is to review the interaction of the dualizing, conjugation and dagger

functors. In dagger compact closed categories, the dagger functor ( )†, and the dualizing

functor ( )∗ commute with each other and their composite gives the conjugate functor ( )∗.

Similary, ( )∗ and ( )∗ when composed gives the dagger functor. Our aim is to generalize these

interactions to †-LDCs and to achieve this at a reasonable level of abstraction. To achieve

this we shall need the notion which we here refer to as “conjugation” but was investigated

by Egger in [61] under the moniker of “involution” (which clashes with our usage).

3.3.1 Duals

The reverse of an LDC, X, written Xrev := (X,⊗,>,⊕,⊥)rev = (X,⊗rev,>,⊕rev,⊥) where,

A⊗rev B := B ⊗ A A⊕rev B := B ⊕ A

and the associators and distributors are adjusted accordingly. Similar to the opposite of an

LDC, we have (Xrev)rev = X.

In a ∗-autonomous category, taking the left (or right) linear dual of an object extends to

a Frobenius linear functor as follows:

( )∗ : (Xop)rev −→ X; A 7→ A∗; f

A

B

7→ f

B∗

A∗

The ( )∗ functor is both contravariant and, op-monoidal and op-comonoidal:

m⊗ : A∗ ⊗B∗ −→ (B ⊕ A)∗ :=

B∗ ⊗ A∗

B∗ A∗

(A⊕B)∗

m> : > −→ ⊥∗ :=
>

⊥

>

⊥∗

n⊕ : (A⊗B)∗ −→ B∗ ⊕ A∗ :=

(A⊗B)∗

B∗ ⊕ A∗

n⊥ : >∗ −→ ⊥ :=
>

⊥

>∗

These maps are op-monoidal and op-comonoidal laxors, hence are isomorphisms, which

satisfy the obvious coherences. Thus, ( )∗ is a strong Frobenius linear functor.

In the rest of the section, we will write (Xop)rev as Xoprev.

71



Lemma 3.9. If X is an isomix category, then ( )∗ : Xoprev −→ X is an isomix functor.

Proof. Because ( )∗ is a strong Frobenius functor, by Lemma 2.26, it suffices to prove that

( )∗ preserves mix, i.e., ( )∗ is a mix functor i.e., we need to show that n⊥ m m> : >∗

−→ ⊥∗ = m∗. The proof is as follows:

n⊥mm> =

>

⊥

>

⊥

=

>

⊥

>

⊥

=

>

⊥

>

⊥

mx
=

>

⊥

>

⊥

= = m∗

Lemma 3.10. (η, ε) :: ( )∗ aa ∗( )oprev : Xoprev −→ X

η⊗ : X −→ ∗(X∗) :=

∗η

ε∗

X

X∗

∗(X∗)

∈ X η⊕ := η−1
⊗

ε⊕ : X −→ (∗X)∗ :=

η∗

∗ε

X

∗X

(∗X)∗

∈ X ε⊗ := ε−1
⊕

is a linear equivalence of Frobenius linear functors.

Proof. The proof is straightforward in the graphical calculus.

For a cyclic ∗-autonomous category, we can straighten out this equivalence to be a dual-

izing involutive equivalence (i.e. so that the unit and counit are equal):

Lemma 3.11. (η′, ε′) :: ( )∗ aa (( )∗)oprev : Xoprev −→ X where η′⊗ = η′⊕
−1 := η⊗ψ

−1, ε′⊗ =

ε′⊕ := εψ∗ and η′ = ε′.

Proof. The unit and counit are drawn as follows:

η′⊗ =
ψ−1ε∗

∗ηX

∗(X∗)

X∗∗

X∗ ∈ X ε′⊗ =
∗ε

η∗
X∗

ε∗

η∗

ψ

X∗∗

∗(X∗)

=

∗ε

η∗ X

X∗∗

ψ

∗X

X∗ [C.2]
=

ψ−1ε∗

∗ηX

∗(X∗)

X∗∗

X∗ ∈ X

72



The cyclor is a linear transformation which is an isomorphism as it is monoidal with

respect to both tensor and par and adjoints are determined only upto isomorphism. It

remains to check that the triangle identities hold:

η⊗′
X∗

(ε′⊗)∗ =
ψ−1

X∗∗∗

ε∗

∗η
X∗

ψ−1

∗η

ε∗

=

X∗∗∗

∗ε

η∗
X∗

ψ−1

∗η

ε∗

ψ

X∗

=

∗ε

X∗

ψ−1

∗η

ψ

X∗

= = 1

The other triangle identity holds similarly.

The equality of η′ and ε′ is immediate from [C.2] for cyclors with the map η′ = ε′ being

the dualizor. In the symmetric case, the dualizor of this equivalence may be drawn as:

ψ−1ε∗

∗ηA

∗(A∗)

A∗∗

A∗

=
ε∗

η∗A

A∗∗

=

∗ε

η∗ A

A∗∗

ψ

∗A

A∗

3.3.2 Conjugation

Recall the following structure from Egger [61]:

Definition 3.12. A conjugation for a monoidal category (X,⊗, I) consists of a functor

( ) : Xrev −→ X with natural isomorphisms:

A⊗B χ−−→ B ⊗ A A
ε−→ A

called respectively the (tensor reversing) conjugating laxor and the conjugator such that

A
εA = εA−−−−−−→ A

and

(A⊗B)⊗ C a⊗ //

χ⊗1 ��

[CF.1]⊗

A⊗ (B ⊗ C)

1⊗χ��

(B ⊗ A)⊗ C
χ ��

A⊗ (C ⊗B)

χ��

C ⊗ (B ⊗ A)
a−1
⊗

// (C ⊗B)⊗ A

A⊗B χ //

ε⊗ε

��

[CF.2]⊗

B ⊗ A

χ

��

A⊗B A⊗Bε
oo

73



A monoidal category is conjugative when it has a conjugation functor.

A symmetric monoidal category, which is conjugative, is symmetric conjugative in

case it satisfies the additional coherence:

A⊗B
c⊗ ��

χ //

[CF.3]⊗

B ⊗ A
c⊗��

B ⊗ A χ
// A⊗B

No coherences have been specified for the unit I because the expected coherences are

automatic:

Lemma 3.13. [61, Lemma 2.3] For every conjugative monoidal category, there exists a

unique isomorphism I
χ◦−→ I such that

I ⊗ A χ◦⊗1 //

u⊗ �� [CF.4]>

I ⊗ A
χ��

A
u−1
⊗

// A⊗ I

A⊗ I 1⊗χ◦ //

u⊗ �� [CF.5]>

A⊗ I
χ��

A
u−1
⊗

// I ⊗ A

I
χ◦ //

[CF.6]>

I

χ◦��

I
ε−1

// I

Definition 3.14. [61] A conjugative LDC is a linearly distributive category (X,⊗,>,⊕,⊥)

together with a conjugating functor ( ) : X −→ X and natural isomorphisms:

A⊗B χ⊗−→ B ⊗ A A⊕B χ⊕−→ B ⊕ A A
ε−→ A

such that (X,⊗,>, χ⊗, ε) and (X,⊕,⊥, χ−1
⊕ , ε) are conjugative (symmetric) monoidal

categories with respect to the conjugating functor and the following diagrams commute:

B ⊕ C ⊗ A χ⊕⊗1 //

χ⊗ ��

[CF.7]

(C ⊕B)⊗ A
∂��

(A⊗ (B ⊕ C))

∂ ��

C ⊕ (B ⊗ A)

1⊕χ⊗��

((A⊗B)⊕ C) χ⊕
// C ⊕ A⊗B

A⊗ C ⊕B χ⊗ //

1⊗χ⊕ ��
[CF.8]

(C ⊕B)⊗ A
∂��

A⊗ (B ⊕ C)

∂ ��

C ⊕ (B ⊗ A)

χ⊕��

(A⊗B)⊕ C
χ⊗⊕1

// (B ⊗ A)⊕ C

Note, by Lemma 3.13, there exists canonical isomorphisms >
χ◦>−→ > and ⊥

χ◦⊥−→ ⊥, hence

conjugation is a normal functor. However, the conjugation is not necessarily a mix functor

when X is a mix category. For conjugation to be a mix functor, the following extra condition

74



must be satisfied:

[CF.9] ⊥

(χ◦⊥)−1 ##

m
,, >

⊥ m
// >

χ◦>

;;

Proposition 3.15. A conjugative LDC is precisely a LDC, X, with a Frobenius adjoint

(ε−1, ε) : ( ) a ( )
rev

: Xrev −→ X where ε := (ε, ε−1). Furthermore, if X is an isomix category

and conjugation is a mix functor then conjugation is an isomix equivalence.

Proof. It is clear that ( ) is a strong Frobenius functor so being mix implies isomix. Also, ε

is clearly monoidal for tensor and par. The triangle equalities give ε−1ε = 1 : A −→ A thus

ε = ε.

Clearly conjugation should flip left duals into right duals:

Lemma 3.16. If B aa A is a linear dual then A aa B is a linear dual.

Proof. Suppose (η, ε) : B aa A. Then, (χ◦>ηχ⊕, χ⊗εχ
◦
⊥) : A aa B.

When a ∗-autonomous category is cyclic one expects that conjugation should interact

with the cyclor in a coherent fashion:

Definition 3.17. [63] A conjugative cyclic ∗-autonomous category is a conjugative

∗-autonomous category together with a cyclor A∗
ψ−−→ ∗A such that

(A)∗
ψ //

' ��

∗(A)

'��

(∗A)
ψ−1

// (A∗)

which gives a map σ : (A)∗ −→ (A∗).

The above condition is drawn as follows:

σ =
ψ−1

(A)∗

ε∗

∗η

A∗

A
∗A =

ψ

(A)∗

η∗

∗ε

A∗

∗(A)
A

When the ∗-autonomous category is symmetric, conjugation automatically preserves the

canonical cyclor.

75



Lemma 3.18. In a conjugative ∗-autonomous category,

ε

η∗

X∗

X

X

=
ε−1

η∗

X∗
X

X∗

χ◦> χ
◦
> η∗ χ⊕

−1χ−1
⊕ (1⊕ ε) = η ∗ (ε−1 ⊕ 1) : > −→ X∗ ⊕X

Proof.

χ◦> χ
◦
> η∗ χ

−1χ−1(1⊕ ε) = χ◦> χ
◦
> η∗ χ

−1χ−1(εε−1 ⊕ ε)

= χ◦> χ
◦
> η∗ χ

−1χ−1(ε⊕ ε)(ε−1 ⊕ 1)

[CF.2]⊕
= χ◦ χ◦> η∗ε(ε

−1 ⊕ 1)

nat.
= χ◦> χ

◦
> εη∗ (ε−1 ⊕ 1)

[CF.6]>
= η∗ (ε−1 ⊕ 1)

3.3.3 Dagger and conjugation

The interaction of the dagger and conjugation for cyclic ∗-autonomous categories in the

presence of the dualizing functor is illustrated by the following diagram:

Xop

( )†

++

(( )∗)rev

��

⊥

∼=

X
(( )†)op

kk

( )
rev

��

a

Xrev

( )∗
op

WW

( )

GG

a

Specifically we have:

Proposition 3.19. Every cyclic †-∗-autonomous category is a conjugative ∗-autonomous

category.

Proof. Let X be a cyclic, †-∗-autonomous category. Then composing adjoints gives the

equivalence ( )†
∗ a ( )∗

†
. To build a conjugation, however, we need an equivalence between

the same functors: to obtain such an equivalence we use the natural equivalence ω : ( )†∗

−→ ( )∗† from the cyclor preserving condition for Frobenius linear functors. A conjugative

76



equivalence, in addition, requires that the unit and counit of the equivalence be inverses of

each of other. The unit and counit of the equivalence are given by (a) and (b) respectively;

(a) Xrev

( )∗
op &&

⇓ η′⊗

Xrev
88

( )∗
op

Xop

† $$
⇓ ι−1

Xop
::

†op
ω

=⇒ Xoprev
77

( )∗
oprev

†revoo

X

(b) Xrev..†rev
88( )∗

rev
( )∗

op

&&
⇓ ε′⊗

Xoprev
ff

( )∗
oprev

ω−1

=⇒ Xop
::

†op
⇓ ι−1

Xop

†

$$X X

where the isomorphism ω : ( )†∗ −→ ( )∗† is from the cyclor preserving condition, [CFF], for

Frobenius linear functors:

ω :=
ψ†

X†∗

X∗†

ε∗

(∗ε)†

ω−1 :=
ψ−1†

X†∗

X∗†

η∗

(∗η−1)†

It remains to show that the unit and the counit maps are inverses of each other in X:

(a)

ψ−1

ε∗

∗η

η∗

ε∗
ψ†

ι−1

X∗†∗†

(∗ε)†

ε∗

(X∗)††

X∗

X∗∗

X

=

ψ−1

ε∗

∗η

ε∗
ψ†

ι−1

X∗†∗†

(∗ε)†

(X∗)††

X∗

X∗∗

X

=
∗ε

η∗

ε∗
ψ†

ι−1

X∗†∗†

(∗ε)†

(X∗)††

X∗

X∗∗

X

ψ

=

∗ε

ψ†

ι−1

X∗†∗†

(∗ε)†

X∗
††

X∗

X

ψ

∗X

=

∗ε

ψ†

ψ††

X∗†∗†

(∗ε)†

(X∗)††

( ∗X)††

X

ι−1

∗X

=

=
ψ†

ψ††

X∗†∗†

(∗ε)†

(X∗)††

( ∗X)††

X

ι

∗ε††

∗
=

ψ ψ†

X∗†∗†

∗ε

(X∗)†

( ∗X)†

X

ι

(∗ε)†

†

∗(X∗†)

X∗†∗

X†

3.6
=

X∗†∗†

X

ι

(∗ε)†

†

X†

X†

X∗†∗

(X∗)†

ε∗

77



(b)

η∗

η∗

(∗η)†

ε∗

X†∗∗

X∗†

(∗X)†
X†

X†∗

X∗†∗

X∗†∗†

ψ−1†

ψ−1

∗η

ε∗
∗(X†∗)

X†∗∗

X†∗

X†

X†∗∗†

ι−1
X††

X

†

†

=

η∗

η∗

(∗η)†

ε∗

X∗†

(∗X)†
X†

X†∗

X∗†∗

X∗†∗†

ψ−1†

X†

ι−1

X††

X

†

ψ−1

X†∗

∗η

∗(X†∗)
ε∗

X†∗∗

=

η∗

η∗

(∗η)†

ε∗

X†

X†∗

X∗†∗

X∗†∗†

ψ−1†

ι−1

X††

X

†

ψ

∗ε

X†

(X†∗

∗(X†)

(∗X)†

X∗†

X†∗∗

η∗

=

η∗

η∗

(∗η)†

X†

X†∗

X∗†∗

X∗†∗†

ψ−1†

ι−1

X††

X

†

ψ

∗ε

X†

∗
=

η∗

X∗†∗

X∗†∗†

ι−1

X††

X

†

ψ

∗ε

X†

ψ−1

(η∗)†

∗η

=

η∗

X∗†∗

X∗†∗†

ι−1

X††

X

†

X†

(η∗)†

X∗†

(∗) holds because † preserves the cyclor. Thus, (a) and (b) are inverses of each other.

Next, we show that a conjugation functor together with a dualizing functors gives a †:

Proposition 3.20. Every cyclic, conjugative ∗-autonomous category is also a †-∗-autonomous

category.

Proof. Let X be a cyclic, conjugative ∗-autonomous category then ( )∗ a ( )
∗

is an equiva-

lence. To build a dagger we need an equivalence on the same functor: we obtain this by using

78



the natural equivalence σ : ( )∗ −→ ( )
∗

from Definition 3.17. An involutive equivalence, in

addition, requires the unit and counit of the (contravariant) equivalence to be the same map

(which we called the involutor, ι). We show that this is the case:

The unit and counit of the equivalence is given by (a) and (b) respectively;

(a) Xop

( )∗
rev && ⇓ η′⊗

Xop
88

( )∗
op

Xrev

( ) %%
⇓ ε−1

Xrev
99

( )
rev

σ
=⇒ Xoprev

77

( )∗
oprev

( )
op

oo

X

(b) Xop..( )
op

88( )∗
op

( )∗
rev

&&⇓ ε′⊗

Xoprev
ff

( )∗
oprev

σ−1

=⇒ Xrev
99

( )
rev

⇓ ε

Xrev

( )

%%X X

where σ : A
∗ −→ A∗ is given in Definition 3.17. Below we show that the unit and counit

coincide in X.

(a)

ψ−1

ε−1

ψ

(
X∗
)∗

ε∗

X∗

∗η
∗
(
X∗
)

(
X∗
)∗

ε∗
η∗

η∗

X∗∗

X∗

X∗

∗ε

∗(X∗) X∗

X

[C.2]
=

ψ−1

ε−1

(
X∗
)∗

ε∗

X∗

∗η
∗
(
X∗
)

(
X∗
)∗

ε∗

η∗

X∗∗

X∗

X∗

ε∗

X∗

X

ψ−1

∗η
∗X

=

ψ−1

ε−1

(
X∗
)∗

ε∗

X∗

∗η
∗(X∗)

(X∗)∗

ε∗

X∗

X∗

X∗

X

ϕ−1

∗η
∗X =

ψ−1

ε−1∗

(
X∗
)∗

ε∗

X∗

∗η
∗(X∗)

(X∗)∗

ε∗

X∗

X

ϕ−1

∗η
∗X

X∗∗

=

(
X∗
)∗

ε∗

X∗

∗η
∗(X∗)

ε∗

X∗

X

ψ−1

∗η
∗X

ψ−1

∗ε−1

∗(X∗)

X∗∗

=

(
X∗
)∗

ε∗

X∗

∗η

∗(X∗)

ε∗

X∗

X

ψ−1

∗η
∗X

ψ−1

∗(X∗)

X∗∗

ε−1

∗η

∗ε

=

(
X∗
)∗

ε∗

X∗

X

ψ−1

∗η
∗X

ψ−1

∗(X∗)

X∗∗

ε−1

∗η

ε∗

[C.2](inv)
=

(
X∗
)∗

X

ε−1

∗η

ε∗

∗(X∗)

∗ε

X∗

η∗

=

(
X∗
)∗

X

ε−1

ε∗

X∗

η∗

=: ι−1

79



(b)

ψ

ε∗

η∗

∗ε

η∗

ψ

ε

η∗

∗ε

(
X∗
)∗

(
X
)∗∗

X

X

X
∗

∗(X
∗
)

X
∗∗

X
∗∗

X∗
∗

X∗

∗(X∗)

(X∗)
∗

=

ψ

ε∗

η∗

∗ε

η∗

ψ

ε

η∗

∗ε

(
X∗
)∗

(
X
)∗∗

X

X

(
X
)∗

∗(
(
X
)∗

)

X
∗∗

X
∗∗

X∗
∗

X∗

∗ (X∗)
(
X∗
)∗

( )

[C.2]
=

ε

η∗

(
X∗
)∗

X

X

(
X
)∗

X∗
∗

( )

ε∗

η∗

ε∗

∗η

∗ε

X∗
X

X
∗

∗(X
∗
)

=

ε

(
X∗
)∗

X

X∗
∗

( )

ε∗

η∗

ε∗

η∗

X∗
X

X
∗ =

ε

(
X∗
)∗

X

X∗
∗

( )
ε∗

η∗

X∗

X

=

ε

(
X∗
)∗

X
ε∗

η∗

X∗ X

3.18
=

X∗
∗

X

ε−1

ε∗

X∗

η∗

=: ι−1

Observe that for composition of the dualizing functor and the conjugation functor to

yield a dagger, and vice versa, a ∗-autonomous category is required to be cyclic with the

cyclor being preserved by the conjugation (see Definition 3.17) and the dagger (see just

before Lemma 3.6).

Combining Propositions 3.19 and 3.20, we get:

Theorem 3.21. Every cyclic ∗-autonomous category is conjugative ∗-autonomous if and

only if it is †-∗-autonomous.

3.4 Examples: Dagger and conjugation

Let us now look at some examples of †-isomix categories in which the dagger is given by

dualizing and conjugation functors.

3.4.1 A group with conjugation considered as a category

Definition 3.22. A group with conjugation is a group (G, ., e) together with a function

( ) : G −→ G such that, for all g ∈ G, g = g, and for all g, h ∈ G, g.h = hg, and e = e.

80



Let (G, ., e) be a group with conjugation. The discrete category D(G, ., e) whose objects

are the elements of the group is a monoidal category with the tensor product given by

g ⊗ h := g.h, and the monoidal unit e. Moreover, D(G, ., e) is a compact closed category

where g∗ := g−1, and it has a trivial conjugative cyclor (see Definition 3.17). Thus, D(G, ., e)

which is a compact †-isomix-∗-autonomous category with g† := g∗ is an example of how the

conjugation gives rise to a dagger.

Here are some examples of groups with conjugation and the discrete categories given by

them:

• Suppose we fix the group to be (C,+, 0) where the objects are complex numbers and

the tensor product is addition. The dual and conjugation of complex numbers are

given as follows: (a+ ib)∗ = −a− ib and a+ ib := a− ib. Hence,

(a+ ib)† := (a+ ib)∗ = (−a− ib) = −a+ ib

• Consider the multiplicative group (C∗, ., 1) where the objects are non-zero complex

numbers and the tensor product is given by multiplication. The dualizing and the

conjugation functors are given as follows:

(a+ ib)∗ = c+ id, where ac− bd = 1 and ad+ bc = 0

a+ ib := a− ib

(a+ ib)† is given by (a+ ib)∗.

• Suppose the group is fixed to be D(P (x),+, 0) where P (x) is a polynomial ring.

D(P (x),+, 0) is a conjugative compact closed category: P (x)∗ = −P (x) and P (x) =

P (−x). Then, P (x)† = −P (−x).

• Consider the general linear group of degree 2, (M2, ., I2) over complex numbers. Then,

the discrete category D(M2, ., I2) has a dualizing functor given by matrix inverse and

conjugation is given by conjugate transpose:

(
a+ ib m+ in

c+ id p+ iq

)
:=

(
a− ib c− id
m− in p− iq

)
.

Then, D(M2, ., I2) is a †-isomix ∗-autonomous category with:(
a+ ib m+ in

c+ id p+ iq

)†
:=

(
a+ ib m+ in

c+ id p+ iq

)∗
=

(
a− ib c− id
m− in p− iq

)−1

81



3.4.2 Finiteness matrices and finiteness relations

We now describe the conjugation, ( ) and, thus, the dagger functor, ( )†, for FRel, and

FMat(R). Recall that the dagger functor is obtained by composing the conjugacy dualizing

functors: X† = X
∗
.

Lemma 3.23. FRel, FMat(R), where R is a conjugative rig, are conjugative isomix ∗-
autonomous categories.

A conjugative rig is a rig with a conjugation ( ) : R −→ R such that r = r and the

conjugation preserves addition, 0 = 0 and r + s = r + s, and preserves the multiplication

1 = 1 and r1 · r2 = r1 · r2.

Proof. For FRel the conjugation functor is identity on objects and arrows and thus the

dagger is the duality, X† = X∗. FRel is a conjugative ∗-autonomous category with the

required natural isomorphisms defined as follows:

• X ⊗ Y χ⊗−−−→ Y ⊗X and χ⊕ are the symmetry maps.

• A
ε−→ A is the identity map.

For FMat(R) the conjugation functor for is determined by the conjugation on the rig.

The functor is still identity on the objects and the symmetry map is used to provide χ⊗ and

χ⊕. For a finiteness matrix, M , M is given by conjugating all the elements of M . χ⊗, χ⊕, ε

are the characteristic function of their corresponding finiteness relations.

Both are a conjugative isomix category because > = ⊥.

3.4.3 Chu spaces

Applications of Chu Spaces to represent quantum systems have been studied in [2], [3]. In

this section we show that the Chu construction over a closed conjugative monoidal category,

which has pullbacks, produces a †-isomix LDC, ChuX(I). To get the ∗-autonomous category

and †-structure on ChuX(I) we shall start by explaining how one can produce conjugative

structure on the Chu category. To achieve this we develop the structure of this category,

starting with a conjugative closed monoidal category, X, which is not necessarily symmetric.

Note that the fact that it is conjugative means that it is both left and right closed which allows

us to consider the non-commutative Chu construction: in this regard we shall follow Jürgen

Koslowski’s construction [88] using simplified “Chu-cells” on the same dualizing object to

obtain not a ∗-linear bicategory but a cyclic ∗-autonomous category. Furthermore, we shall

choose a dualizing object which is conjugative in order to obtain a conjugative cyclic ∗-
autonomous category.

82



A conjugative object is an object D of X with an isomorphism d : D −→ D such that

dd = ε : D −→ D. We can then define ChuX(D) as follows:

Objects: (A,B, ψ0, ψ1) where ψ0 : A ⊗ B −→ D and ψ1 : B ⊗ A −→ D in X (these are the

simplified Chu cells).

Arrows: (f, g) : (A,B, ψ0, ψ1) −→ (A′, B′, ψ′0, ψ
′
1) where f : A −→ A′ and g : B′ −→ B and

the following diagrams commutes:

A⊗B′
1⊗g
vv

f⊗1

((
A⊗B

ψ0 ((

A′ ⊗B′

ψ′0vv
D

B′ ⊗ A
g⊗1

vv
1⊗f
((

B ⊗ A
ψ1 ((

B′ ⊗ A′

ψ′1vv
D

Compositon: (f, g)(f ′, g′) := (ff ′, g′g). Composition is well-defined as:

A⊗B′′
1⊗g′
vv

f⊗1

((
A⊗B′

f⊗1 ((
1⊗g
vv

A′ ⊗B′′

1⊗g′vv
f ′⊗1

((
A⊗B

ψ0

++

A′ ⊗B′
ψ′0��

A′′ ⊗B′′
ψ′′0

rrD

and similarly for the reverse Chu-maps: ψ1, ψ′1 and ψ′′1 . The identity maps are

(1A, 1B) : (A,B, ψ0, ψ1) −→ (A,B, ψ0, ψ1) as expected.

Tensor product ⊗: (A,B, ψ0, ψ1) ⊗ (A′, B′, ψ′0, ψ
′
1) := (A ⊗ A′, E, γ0, γ1), where E is the

pullback in the following diagram:

E
π1

,,

π0

rr
A′( B

1(ψ̃1
++

B′ (A

ψ̃′1 (Ass

A′( (D (A)
'−−→ (A′( D) (A

with

B
ψ̃1−−→ D (A

B ⊗ A ψ1−−→ B
B′

ψ̃′1−−→ A′( D
A′ ⊗B′ −→ D

83



and,

γ0 := (A⊗A′)⊗E 1⊗ π0−−−−→ (A⊗A′)⊗(A′( B)
a⊗−−→ A⊗(A′⊗A′( B)

1⊗ eval(−−−−−−−→ A⊗B
ψ′0−−→ D

γ1 := E⊗(A⊗A′) π1 ⊗ 1−−−−→ (B′ (A)⊗(A⊗A′)
a−1
⊗−−−→ (B′ (A⊗A)⊗A′ eval (⊗ 1−−−−−−−→ B′⊗A′

ψ′1−−→ D

The tensor unit is (I,D, ul⊗, u
r
⊗).

It is standard that ChuX(D) is a (non-commutative) ∗-autonomous category. Further-

more, it is cyclic because

∗(A,B, ψ0, ψ1) = (A,B, ψ0, ψ1)∗ = (B,A, ψ1, ψ0).

In addition, ChuX(D) is conjugative with

(A,B, ψ0, ψ1) := (A,B, χψ1d, χψ0d)

and (f, g) = (f, g). Finally being conjugative cyclic ∗-autonomous implies that one has a

dagger!

In the case that X is a symmetric monoidal closed category we may recapture the usual

Chu construction [18], which we denote ChusX(D). Consider the full subcategory of Chu-

objects with special Chu-cells of the form (A,B, ψ, c⊗ψ) in which the symmetry map is used

to obtain the second cell, this gives an inclusion ChusX(D) −→ ChuX(D).

We observe that X is symmetric conjugative when this subcategory is closed under the

conjugation:

Lemma 3.24. If X is an conjugative symmetric monoidal closed category and d : D −→ D

is an involutive object, then ChusX(D) is a conjugative symmetric ∗-autonomous category.

Proof. It suffices to observe that the Chu-cells of (A,B, ψ, c⊗ψ) have the right form. Using

the coherence of the involution with symmetry, the first Chu-cell of this object has χc⊗ψd =

c⊗χψd which is exactly the symmetry map applied to the second Chu-cell of the object as

desired.

To obtain an isomix category one can choose D = I. ChusX(I) is an isomix category

because the unit for tensor and par are the same (namely > = ⊥ = (I, I, ul⊗ = ur⊗)).

The tensor unit is always a conjugative object since (χ◦)−1 : I −→ I; therefore, this is

immediately a conjugative symmetric ∗-autonomous category. Composing the conjugation

with the dualizing functor gives us a dagger.

84



3.4.4 Category of Hopf modules in a ∗-autonomous category

In this example1, we start with any symmetric ∗-autonomous category, X, and build the

category of modules over a Hopf Algebra which is in turn a †-∗-autonomous category.

First of all, it has been already proven in [103], that the category of Hopf modules over a

⊗-Hopf algebra in any symmetric ∗-autonomous category is also a ∗-autonomous category.

Then we note that, whenever the Hopf Algebra is cocommutative, the resulting ∗-autonomous

category has a conjugation functor. One can construct the dagger functor by composing the

conjugation functor and dualizing functor as in Theorem 3.20. We establish some basic

definitions before describing the category of modules over a Hopf Algerba, H-ModX.

Definition 3.25. A bialgebra in a symmetric monoidal category is a 4-tuple

(∇ : B ⊗B −→ B, e : I −→ B,∆ : B −→ B ⊗B, u : B −→ I)

such that (A,∇, e) is a monoid and (A,∆, u) is a comonoid and ∇ and e are coalgebra

homomorphisms with respect to the comultiplication and the counit.

Note that instead of requiring that ∇ and e are coalgebra homomorphisms, one could

equivalently require ∆ and u are algebra homomorphims with respect to the multiplication

and the unit.

The components of a bialgebra are graphically depicted as follows:

: A⊗ A −→ A : A −→ A⊗ A : A −→ I : I −→ A

This gives a succinct graphical depiction of the coalgebra homomorphism laws; namely:

= = = = I

Definition 3.26. An antipode for a bialgebra (B,∇, ,∆, ) is an endomorphism s : B

−→ B such that

s = s =

A Hopf algebra is a bialgebra with an antipode. An involutive Hopf algebra is a

hopf algebra where the antipode is self-inverse.

1We thank J-S. P. Lemay for bringing our attention to this example.

85



A standard example of a Hopf algebra is a group algebra over a field: for all group

elements g, ∇ : g 7→ g ⊗ g, : g 7→ 1, ∆ : g ⊗ h 7→ gh and s : g 7→ g−1.

Lemma 3.27. Suppose X is a symmetric monoidal category, then:

(i) [21, Theroem 3.5] If H is a commutative or a cocommutative Hopf Algebra in X, then

s2 = 1 where s is the antipode: so it is an involutive Hopf algebra.

(ii) [90, Lemma 2.11] If H is a commutative Hopf Algebra, then s is a monoid homomor-

phism. If H is a cocommutative Hopf Algebra, then s is a comonoid homomorphism.

Definition 3.28. A left module for a bialgebra (B,∇, u,∆, e) is a tuple (M,alM : B ⊗M
−→M) such that alM is a B-action i.e., the following diagram commutes:

M
ul⊗ // >⊗M

��
M

We graphically depict alm as follows:

: B ⊗M −→M

giving the graphical presentation of the module laws:

= and =

Definition 3.29. Let X be a ∗-autonomous category and H be a Hopf ⊗-algebra in X. The

category of left H-modules in X, H-ModX has:

Objects: Left H-modules (A, alA : H ⊗ A −→ A):

Arrows: A module homomorphism (A, aLA : H ⊗ A −→ A)
f−−→ (B, aLB : H ⊗ B −→ B) is a

map A
f−−→ B such that the following diagram commutes:

H ⊗ A
aLA //

1⊗f ��

A
f��

H ⊗B
aLB

// B

This is graphically depicted as follows:

f
=

f

86



Observe that any left action is indeed a module homomorphism.

Theorem 3.30. [103] Let X be symmetric ∗-autonomous category and H be a ⊗-Hopf Alge-

bra in X with bijective antipode (s2 = 1). Then, H-ModX is a ∗-autonomous category. If the

Hopf Algebra, H, is cocommutative, then H-ModX is a symmetric ∗-autonomous category.

Proof. (Sketch) The monoidal product ⊗ for H-ModX is defined as follows:

(A, )⊗ (B, ) := (A⊗B, ) where, :=

The unit of ⊗ is given by (>, H ⊗>
uR⊗−−→ H

e−→ >), the left action is drawn as
>

>

H >

The par product is defined as: (A, )⊕ (B, ) := (A⊕B, ) where,

:= H ⊗ (A⊕B)
∆⊗ 1−−−−→ (H ⊗H)⊗ (A⊕B)

a⊗−−→ H ⊗ (H ⊗ (A⊕B))

c⊗−−→ (H ⊗ (A⊕B))⊗H ∂L ⊗ 1−−−−−→ ((H ⊗ A)⊕B)⊗H ∂R−−→ (H ⊗ A)⊕ (B ⊗H)

1⊕ c⊗−−−−−→ (H ⊗ A)⊕ (H ⊗B)
⊕

−−−−−→ A⊕B

and the unit of ⊕ is

⊥ := (⊥, H ⊗⊥ u⊗⊥−−−−→ >⊗⊥ u⊗−−→ ⊥)

All the basic natural isomorphisms are inherited directly from X, and they are module

homomorphisms. Thus, HModX is a LDC.

The dualizing functor ( )∗ is given as follows:(A, : H ⊗ A −→ A)∗ := (A∗, ∗ : H ⊗ A∗

−→ A∗) where,

∗ :=

H A∗

A∗

s

Equationally,

87



∗ := H ⊗ A∗ s⊗ 1−−−−→ H ⊗ A∗
u−1
⊗ ⊗ 1
−−−−−→ (H ⊗>)⊗ A∗ 1⊗ η ⊗ 1−−−−−−→ (H ⊗ (A∗ ⊕ A))⊗ A∗

c⊗ ⊗ 1−−−−−→ ((A∗ ⊕ A)⊗H)⊗ A∗ ∂ ⊗ 1−−−−→ (A∗ ⊕ (A⊗H))⊗ A∗ 1⊗ c⊗ ⊗ 1−−−−−−−→ (A∗ ⊕ (H ⊗ A))⊗ A∗

(1⊕ )⊗ 1

−−−−−−−→ (A∗ ⊕ A)⊗ A∗ ∂−−→ A∗ ⊕ (A⊗ A∗) 1⊕ ε−−−−→ A⊕⊥
uR⊕−−→ A∗

The cups and caps are inherited directly from X, hence the snake diagrams hold. The

antipode in the definition of ∗ : H ⊗A∗ −→ A∗ makes the cup and cap module morphisms.

Suppose (A, )
f−−→ (B, ) is as a module morphism, then f ∗ := B∗

f∗−−→ A∗ ∈ X which is

also a module morphism. Thus, H-ModX is a monoidal category with a dualizing functor,

hence a ∗-autonomous category.

If H is cocommutative, then (A, )⊗ (B, )
c⊗−−→ (B, )⊗ (A, ) is a module homomor-

phism.

In that case, H-ModX is a symmetric ∗-autonomous category.

Futhermore, we can show that the category of Hopf modules is conjugative.

Lemma 3.31. Let X be a symmetric ∗-autonomous category. H-ModX, the category of

modules over a cocommutative Hopf Algebra H is a conjugative symmetric ∗-autonomous

category .

Proof. We already know that H-ModX is a symmetric ∗-autonomous category. We define

the conjugation functor ( ) : H-ModX −→ H-ModX as follows:

• (A, ) := (A, ) where, := s

• Suppose f : (A, ) −→ (B, ), then f := f

The basic natural isomorphisms are given by:

(B, )⊗ (A, )
χ−−→ (A, )⊗ (B, ) := B ⊗ A

(c⊗)B,A−−−−−→ A⊗B

(A, )
ε−→ (A, ) := 1

The natural isormorphisms satisfy all the coherences of conjugative symmetric ∗-autonomous

category.

Lemma 3.32. Suppose X is a symmetric (iso)mix ∗-autonomous category, then H-ModX,

the category of Hopf modules over a cocommutative Hopf Algebra H is a (iso)mix conjugative

symmetric ∗-autonomous category.

88



Proof. The mix map m : ⊥ −→ > is inherited directly from X.

Corollary 3.33. Suppose X is a symmetric (iso)mix ∗-autonomous, then H-ModX, the

category of modules over a cocommutative Hopf Algebra H is a symmetric † (iso)mix ∗-
autonomous category.

Proof. From Lemma 3.32, H-ModX is an (iso)mix conjugative symmetric ∗-autonomous

category. Then, by Theorem 3.20 one can construct a dagger functor by composing the

conjugation and the dualizing functor as follows: ( )† := ( )∗ : H-Modop
X −→ H-ModX.

Therefore,

(A, )† := (A∗,
∗
) where,

(A,
∗
) :=

H A∗

A∗

s

s

=

H A∗

A∗

Thus, one can generate a †-isomix category from a symmetric isomix ∗-autonomous

category by choosing the Hopf modules over any cocommutative ⊗- Hopf Algebra.

89



Chapter 4

Mixed unitary categories (MUCs)

The notion of unitary isomorphism is important in categorical quantum mechanics since

these isomorphisms model the unitary evolution of a quantum system. An isomorphism in

a †-monoidal category is said to be unitary when the inverse of the map coincides with its

dagger. This idea cannot be directly applied to define unitary isomorphisms in †-LDCs due

to the non-stationary dagger functor (A 6= A†). This arises the following question: what are

unitary isomorphisms in †-LDCs? The objective of this chapter is resolve this question and

to introduce mixed unitary categories (MUCs).

4.1 Unitary categories

4.1.1 Unitary structure

Categorically, within a †-monoidal category, a unitary map is an isomorphism f : A −→ B

such that f−1 = f †. This definition of unitary isomorphism cannot be used directly within

the framework of †-LDCs since the types of f−1 : B −→ A and f † : B† −→ A† are different.

However, one can define such a unitary isomorphism if, minimally, A ' A† and B ' B†, and

the isomorphisms behave coherently with the †-linear structure. We call such isomorphisms

unitary structure maps and the objects equipped with such isomorphisms as unitary objects:

Definition 4.1. A †-isomix category, X has unitary structure in case there is an essen-

tially small class of objects U , called the unitary objects of X such that

[U.1] for all A ∈ U , A ∈ Core(X), and A is equipped with an isomorphism, ϕA : A −→ A†,

called the unitary structure map of A

[U.2] U is closed under ( )† so that for all A ∈ U , ϕA† = ((ϕA)−1)†

90



[U.3] for all A ∈ U , the following diagram commutes:

A
ϕA ��

ι

++
A† ϕ

A†
// (A†)†

[U.4] ⊥,> ∈ U satisfy:

⊥ ϕ⊥ //

λ⊥ ��
m

$$

⊥†
λ−1
>��

>†
ϕ−1
>

// >

[U.5] If A,B ∈ U , then A⊗B and A⊕B ∈ U satisfy:

(a) A⊗B ϕA⊗ϕB
'
//

mx

44A† ⊗B† λ⊕

'
// (A⊕B)†

ϕ−1
A⊕B

'
// A⊕B

(b) A⊗B ϕA⊗B

'
//

mx

44(A⊗B)†
λ−1
⊗

'
// A† ⊕B†

ϕ−1
A ⊕ϕ

−1
B

'
// A⊕B

Lemma 4.2. When A and B are unitary objects in a †-isomix category then, ϕA†† = (ϕA)†† :

A†† −→ A†††.

Proof.

ϕ(A†)† = ((ϕA†)
−1)† = ((((ϕA)−1)†)−1)† = ((((ϕA)−1)−1)†)† = ((ϕA)†)†

Often we shall want the unitary objects to have linear adjoints (or duals) but we shall

need the analogue of †-duals (η† = c⊗ε and ε† = ηc⊗) from categorical quantum mechanics:

Definition 4.3. A unitary linear duality (η, ε) : A aa u B between unitary objects A and

B is a linear duality satisfying in addition:

[Udual.]

>

(a)

η //

λ> ��

A⊕B
ϕA⊕ϕB��

⊥†

ε† ��

A† ⊕B†
c⊕��

(B ⊗ A)†
λ−1
⊕

// B† ⊕ A†

(or) A⊗B

(b)

ϕA⊗ϕB //

c⊗
��

A† ⊗B†
λ⊗��

B ⊗ A
ε
��

(A⊕B)†

η†��
⊥

λ⊥
// >†

91



Observe that [Udual.](a) ⇔ (b). In a compact †-LDC, > aa u ⊥. [Udual] (a) is shown

diagrammatically as follows:

ε =

η

Lemma 4.4. Suppose (η1, ε1) : V1 aa u U1 and (η2, ε2) : V2 aa u U2. Then, (V1 ⊗ V2) aa u

(U1 ⊕ U2).

Proof. Define (η′, ε′) : (V1 ⊗ V2) aa u (U1 ⊕ U2) so that η′ =
η1 η2

ε′ =
ε1 ε2

. This

is easily checked to be a unitary linear adjoint.

We can now define what it means for an isomorphism to be unitary:

Definition 4.5. Suppose A and B are unitary objects. An isomorphism A
f−→ B is said to

be a unitary isomorphism if the following diagram commutes:

A
ϕA //

f ��

ϕA // A†

B ϕB
// B†

f†
OO

Observe that ϕ is “twisted” natural for all unitary isomorphisms, thus, unitary isomor-

phisms compose and contain the identity maps. In a category in which the unitary structure

maps are identity morphisms, one recovers the usual notion of unitary isomorphisms.

Our next objective is to show that all the coherence isomorphisms between unitary objects

are unitary maps. First a warmup:

Lemma 4.6. In a †-isomix category with unitary structure:

(i) If f is a unitary isomorphism, then so is f †;

(ii) If f and g are unitary, then so are f ⊗ g and f ⊕ g;

(iii) Unitary isomorphisms are closed under composition.

Proof.

(i) Recall that ϕA† = (ϕ−1
A )†, then f † is unitary because

B†

(ϕ−1
B )†=ϕ

B† ��

f† // A†

(ϕ−1
A )†=ϕ

A†��
B†† A††

f††
oo

is just the dagger functor applied to the unitary diagram of f .

92



(ii) Suppose f and g are unitary morphisms, then:

A⊗B ϕA⊗B //

f⊗g

��

mx ((

(nat. mx)

[U.5(b)]

(A⊗B)†

(nat. λ⊕)

A⊕B ϕA⊕ϕB//

f⊕g ��

A† ⊕B†
λ⊕

66

A′ ⊕B′
ϕA′⊗ϕB′

//

[U.5(b)]

A′† ⊕B′†
λ⊕
))

f†⊕g†
OO

A′ ⊗B′ ϕA′⊗B′
//

mx

77

(A′ ⊗B′)†

(f⊗g)†

OO

The inner square commutes because f and g are unitary maps. Similarly, using

[U.5(b)], one can show that if f and g are unitary, then f ⊕ g is unitary.

(iii) The proof is trivial.

The following lemma will be used to prove that the natural isomorphisms in a †-isomix

category are unitary for unitary objects.

Lemma 4.7. The following diagram commutes:

(A⊗B)⊗ C mx //

a⊗ ��

(A⊗B)⊕ C mx⊕1 // (A⊕B)⊕ C
a⊕��

A⊗ (B ⊗ C) mx
// A⊕ (B ⊗ C)

1⊕mx
// A⊕ (B ⊕ C)

Proof. The given diagram commutes due to the naturality of the mixor, and due to the rules

governing the interaction of mixor, associator and distributor, see Section 2.1.3.

(A⊗B)⊗ C mx //

a⊗ �� mix (b)

(A⊗B)⊕ C
OO
∂L

mx⊕1 //

mix (a)

(A⊕B)⊕ C
a⊕��

A⊗ (B ⊗ C)
1⊗mx

//

mx ,,

A⊗ (B ⊕ C) mx
//

nat.mx

A⊕ (B ⊕ C)

A⊕ (B ⊗ C) 1⊕mx

<<

Lemma 4.8. Suppose X is a †-isomix category with unitary structure and A, B, and C are

unitary objects. Then the following are unitary isomorphisms:

93



(i) λ⊗ : A† ⊗B† → (A⊕B)†

(ii) λ⊕ : A† ⊕B† → (A⊗B)†

(iii) λ> : > → ⊥†

(iv) λ⊥ : ⊥ −→ >†

(v) ϕA : A→ A†

(vi) m : > → ⊥

(vii) mxA,B : A⊗B → A⊕B

(viii) ι : A→ (A†)†

(ix) a⊗ : (A⊗B)⊗ C → A⊗ (B ⊗ C)

(x) a⊕ : (A⊕B)⊕ C → A⊕ (B ⊕ C)

(xi) c⊗ : A⊗B → B ⊗ A

(xii) c⊕ : A⊕B → B ⊕ A

(xiii) ∂L : A⊗ (B ⊕ C)→ (A⊗B)⊕ C

(xiv) ∂R : (A⊕B)⊗ C → A⊕ (B ⊗ C)

Proof.

(i) λ⊗ : A† ⊗B† → (A⊕B)† is a unitary map because:

A† ⊗B†
φ−1
A ⊗φ

−1
B //

λ⊗�� [U.5(a)]

A⊗B φA⊗φB //

mx
��

nat.

A† ⊗B†
φ
A†⊗B† //

mx�� [U.5(a)]

(A† ⊗B†)†
λ−1
⊕ ��

(A⊕B)†
φ−1
A⊕B //

φ
(A⊕B)†

%%

[U.3]

A⊕B φA⊕φB // A† ⊕B†
φ
A†⊕φB†//

[U.3] ⊕ [U.3]

(A†)† ⊕ (B†)†

A⊕B ι⊕ι //

ι�� [†-ldc.5(a)]

(A†)† ⊕ (B†)†

λ⊕ ��
((A⊕B)†)†

λ†⊗

// (A† ⊗B†)†

(ii) λ⊕ is unitary because:

A† ⊕B†
φ
A†⊕B† //

mx−1

((

λ⊕

��

Lem. 3.3

(A† ⊕B†)†

(Lem. 3.3)†

A† ⊗B†
φ
A†⊗B†//

λ⊗ ��

Lem. 4.8 (vi)

Lem. 4.8 (i)

(A† ⊗B†)†
(mx−1)† 55

(A⊕B)†
φ
(A⊕B)†//

Lems. 4.8 (vi), 4.6 (i)

((A⊕B)†)†
λ†⊗

OO

((mx−1)†)†

))
(A⊗B)†

φ
(A⊕B)† //

(mx−1)† 66

((A⊗B)†)†

λ†⊕

OO

94



(iii) λ⊥ : ⊥ → >† is unitary because:

⊥
λ⊥ ��

ϕ⊥ // ⊥†
(λ−1
⊥ )†��

>† m†

55

ϕ>†=(ϕ−1
> )†
// >††

The left triangle commutes by [U.4] and [†-mix]. The right triangle commutes by

[U.4] and the functoriality of †.

(iv) λ> : > → ⊥† is unitary because:

>
λ> ��

ϕ> // >†
(λ−1
> )†��

⊥† (m−1)†

55

ϕ⊥†=(ϕ−1
⊥ )†
// ⊥††

The left triangle commutes by [U.4] and [†-mix]. The right triangle commutes by

[U.4] and the functoriality of †.

(v) ϕA is unitary because the following square commutes by [U.3] and [U.4].

A
ϕA //

ϕA ��

A†

(ϕ−1)†��
A†

ϕ
A† // A††

(vi) m : ⊥ → > is unitary because:

⊥ ϕ⊥ //

m ��

⊥†
(m−1)†��

> ϕ>
//

λ>
;;

>†

The left and right triangles commute by [U.4] and [†-mix] respectively. Hence, the

outer squares commutes.

95



(vii) mxA,B : A⊗B → A⊕B is unitary as:

A⊗B

mx

��

ϕA⊗B

''
mx //

ϕA⊗ϕB
11

nat.

[U.5(a)]

A⊕B ϕA⊕ϕB// A† ⊕B† λ⊕ // (A⊗B)†

A† ⊗B†
mx

OO

λ⊗
((

Lem. 3.3

A⊕B ϕA⊕B
//

[U.3]

(A⊕B)†

mx†

OO

(viii) ι : A→ A†† is unitary as in

A
ι ��

ϕA // A†

(ι−1)†��
ϕ
A†

yy
A†† ϕ

A††
// A†††

the left triangle commutes by [U.3] and the right triangle commutes by:

(ι−1)† = ((ϕA†)
−1ϕ−1

A )† = (((ϕ−1
A )†)−1ϕ−1

A )†

= ((ϕ†A)(ϕ−1
A ))† = (ϕ−1

A )†(ϕA)††

= ϕA†(ϕA)†† = ϕA†(ϕA††)

(ix) a⊗ is unitary as:

(A⊗B)⊗ C
ϕ(A⊗B)⊗C //

a⊗

��

mx ))
[U.5(b)]

Lem. 4.7

((A⊗B)⊗ C)†

(A⊗B)⊕ CϕA⊗B⊕ϕC//
mx⊕1 ��

[U.5(b)]⊕(id)

(A⊗B)† ⊕ C†
λ−1
⊕ ⊕1��

λ⊕

44

[†-ldc.1]

(A⊕B)⊕ C
(ϕA⊕ϕB)⊕ϕC

//

a⊕
��

nat.

(A† ⊕B†)⊕ C†
a⊕��

A⊕ (B ⊕ C)
φA⊕(φB⊕φC)

//

(id)⊕[U.5(b)]

A† ⊕ (B† ⊕ C†)
1⊕λ⊕��

A⊕ (B ⊗ C)
ϕA⊕ϕB⊗C

//

1⊕mx
OO

A† ⊕ (B ⊗ C)†
λ⊕

**
A⊗ (B ⊗ C)

ϕA⊗(B⊗C) //

mx
55

[U.5(b)]

(A⊗ (B ⊗ C))†

a†⊗

OO

(x) a⊕ is unitary because:

96



(A⊕B)⊕ C
ϕ(A⊕B)⊕C //

a⊕

��

mx−1 ))
[U.5(a)]

Lem. 4.7

((A⊕B)⊕ C)†

(A⊕B)⊗ CϕA⊕B⊗ϕC//
mx−1⊗1 ��

[U.5(a)]⊗(id)

(A⊕B)† ⊗ C†
λ−1
⊗ ⊗1��

λ⊕

44

[†-ldc.1]

(A⊗B)⊗ C
(ϕA⊕ϕB)⊕ϕC

//

a⊗
��

nat.

(A† ⊗B†)⊗ C†
a⊗��

A⊗ (B ⊗ C)
φA⊗(φB⊗φC)

//

(id)⊗[U.5(a)]

A† ⊗ (B† ⊗ C†)
1⊗λ⊗��

A⊗ (B ⊕ C)
ϕA⊗ϕB⊕C

//

1⊗mx−1

OO

A† ⊗ (B ⊕ C)†
λ⊗

**
A⊕ (B ⊕ C)

ϕA⊕(B⊕C) //

mx−1 55
[U.5(a)]

(A⊕ (B ⊕ C))†

a†⊕

OO

(xi) c⊗ is unitary because:

A⊗B φA⊗B //
mx

''

c⊗

��

[U.5(b)]

(A⊗B)†

A⊕B φA⊕φB//

c⊕
��

nat.

A† ⊕B†
c⊕��

λ⊕ 66

[†-ldc.2(b)]

B ⊕ A φB⊕φA// B† ⊕ A†
λ⊕
((

B ⊗ A

mx
77

φB⊗A //

[U.5(b)]

(B ⊗ A)†

(c−1
⊗ )†=c†⊗

OO

where the left square commutes because

>

⊥
=

>

⊥

=
>

⊥

(xii) c⊕ is unitary because:

A⊕B φA⊕B //
mx−1

''

c⊕

��

Lem. 4.8 (vii)

(A⊕B)†

A⊗B φA⊗B//

c⊗
��

Lem. 4.8 (xi)

(A⊗B)†

(mx−1)† 66

B ⊗ A φB⊗A// (B ⊗ A)†
(mx−1)†

((

c†⊗

OO

B ⊕ A φB⊕A //

mx−1
77

Lem. 4.8 (vii)

(B ⊕ A)†

c†⊕

OO

97



where the left square commutes for the same reason and the right square is the dagger

of the left square.

(xiii) ∂L is unitary see Figure 4.1.

(xiv) ∂R is unitary because:

(A⊕B)⊗C mx //

∂R

��

φ(A⊕B)⊗C

))
(A⊕B)⊕Cmx−1⊕1// (A⊗B)⊕C

φ(A⊗B)⊕C//

Lem. 4.8 (xiii)

Lem. 4.8 (vii), 4.6

((A⊗B)⊕C)†
(mx−1⊕1)†//

∂†L

��

((A⊕B)⊕C)† mx† // ((A⊕B)⊗C)†

A⊕(B⊗C) mx−1
//

φA⊕(B⊗C)

55
A⊕(B⊕C)

1⊕mx // A⊗(B⊕C)
φA⊗(B⊕C)//

∂L

OO

Lem. 4.8 (vii), 4.6

(A⊗(B⊕C))†
(mx⊕1)†// (A⊕(B⊕C))†

(mx−1)†// (A⊕(B⊗C))†

∂†R

OO

4.1.2 Unitary categories

With the notion of unitary objects in place, one can consider †-isomix categories in which

all the objects are unitary: these are called unitary categories . This section develops the

theory of unitary categories.

Definition 4.9. A (symmetric) unitary category is a (symmetric) †-isomix category

with a unitary structure for which every object is unitary.

Clearly, a unitary category must be a compact †-LDC, since the mixor is a unitary

isomorphism, see Lemma 4.8-(iii).

A †-monoidal category is a strict unitary category in which the unitary structure map

and the mix map are identity morphisms. Similarily, a †-compact closed category is a strict

unitary category in which all objects have unitary duals.

In the rest of this subsection, we show that any unitary category is †-linearly equivalent

to a conventional dagger monoidal category. A unitary category being a compact LDC is

linearly equivalent, using Mx∗↑ : (X,⊗,⊕) −→ (X,⊕,⊕) (see Corollary 2.18) to the underlying

98



A
⊗

(B
⊕
C

)
φ
A
⊗
φ
B
⊕
C

//

m
x
��

φ
A
⊗
(B
⊕
C
)

++

∂
L

##

[U
.6

(
b
)
]

A
†
⊗

(B
⊕
C

)†
+3

��
id

A
†
⊗

(B
⊕
C

)†
m
x
//

1
⊗
λ
−
1
⊗

��
n
a
t
.

[U
6
.(
b
)
]

A
†
⊕

(B
⊕
C

)†
λ
⊕

//

1
⊕
λ
−
1
⊗

��
[†
-l
d
c
.4

(
b
)
]

(A
⊗

(B
⊕
C

))
†

A
⊕

(B
⊕
C

)φ
A
⊕
(B
⊕
C
)
//

a
−
1
⊕
��

L
e
m

.
4
.8

(
ix

)

(A
⊕

(B
⊕
C

))
†

λ
−
1
⊗
//

(a
⊕

)†
��

A
†
⊗

(B
⊕
C

)†
1
⊗
λ
−
1
⊗
//

[†
-l
d
c
.1

(
b
)
]

A
†
⊗

(B
†
⊗
C
† )

m
x
//

a
−
1
⊗
��

m
x
.
c
a
t
.A
†
⊕

(B
†
⊗
C
† )

(A
⊕
B

)
⊕
C
φ
(A
⊕
B
)⊕
C //

��

((
A
⊕
B

)
⊕
C

)†
λ
−
1
⊗
//

[U
.6

(
a
)
]

(A
⊕
B

)†
⊗
C
†
λ
−
1
⊗
⊗

1 //

m
x
��

n
a
t
.

(A
†
⊗
B
† )
⊗
C
†

m
x⊗

1
//

m
x
��

n
a
t
.

(A
†
⊕
B
† )
⊗
C
†

m
x
��

+3

∂
R

OO

n
a
t
.

(A
†
⊕
B
† )
⊗
C
†

λ
⊕
⊗

1

��

(A
⊕
B

)
⊕
C

φ
A
⊕
B
⊕
φ
C

//

m
x−

1
⊕

1
��

m
x

c
a
t
.

(
id

)
⊗
(
L
e
m

.
4
.8

(
v
ii
)
)

(A
⊕
B

)†
⊕
C
†
λ
−
1
⊗
⊕

1 //

m
x†
⊕

1
��

1
⊗
(
L
e
m

.
3
.3

)(A
†
⊗
B
† )
⊕
C
†

m
x⊕

1
��

m
x⊕

1
//

id

(A
†
⊕
B
† )
⊕
C
†

��

(A
⊗
B

)
⊕
C

φ
A
⊕
B
⊕
φ
C

//

��
[U

.6
(
a
)
]

(A
⊗
B

)†
⊕
C
†
λ
−
1
⊗
⊕

1 //

λ
⊗
��

id

(A
†
⊕
B
† )
⊕
C
†

λ
⊕
⊕

1
��

(A
⊗
B

)
⊕
C

m
x−

1
//

��

(A
⊕
B

)
⊗
C
φ
(A
⊕
B
)⊕
C //

[U
.6

(
a
)
]

((
A
⊗
B

)
⊗
C

)†
λ
−
1
⊗
// (
A
⊗
B

)†
⊕
C
†
λ
−
1
⊕
⊗

1 //

��
id

(A
†
⊕
B
† )
⊕
C
†

λ
⊕
⊗

1
��

(A
⊗
B

)
⊕
C

φ
A
⊗
B
⊕
φ
C

//

φ
(A
⊗
B
)⊕
C

33
(A
⊗
B

)†
⊕
C
†

+3

[U
.6

(
a
)
]

(A
⊗
B

)†
⊕
C
†

m
x−

1
// (
A
⊗
B

)†
⊗
C
†

λ
⊗
// (

(A
⊗
B

)
⊕
C

)†

∂
† L

OO

Figure 4.1: ∂L is a unitary isomorphism
99



monoidal category based on the par (and the tensor). We now show that for a unitary

category one can induce a stationary on objects dagger on (X,⊕,⊕). We denote this dagger

by ( )‡ and define it by f ‡ := ϕBf
†ϕ−1

A as illustrated by the left diagram below:

B
ϕB ��

f‡ //

:=

A
ϕA��

B†
f†

// A†

A

ι

��

ϕA��

f‡‡ // B
ϕB ��

ι

��

A†

(ϕ−1
A )†��

(f‡)†
// B†

(ϕ−1
B )† ��

A††
f††

// B††

This new dagger clearly preserves composition and is also a stationary on objects invo-

lution as proven by the second diagram: the lower square of this diagram is the dagger of

the inverted definition and the resulting outer square is the naturality of ι forcing f ‡‡ = f .

Next, we observe that u : X −→ Y is a unitary isomorphism in X if and only if u−1 = u‡.

This makes unitary isomorphisms in the traditional sense of categorical quantum mechanics

coincide with the notion introduced here. Thus, u is unitary in the sense here if and only if

the diagram below commutes

B
ϕB ��

u−1
// A
ϕA��

B†
u†

// A

but this diagram commutes if and only if u−1 = u‡.

Definition 4.10. A †-Frobenius mix functor, F : X −→ Y, between compact †-isomix cate-

gories with unitary structure preserves unitary structure if

(i) for all unitary objects A ∈ X, F (A) is a unitary object such that ϕF (A) = F (ϕA)ρF

(ii) Either nF⊥ or mF
> are unitary isomorphisms i.e.,

F (⊥)
F (ϕ⊥)//

n⊥ ��

F (⊥†) ρ // F (⊥)†

⊥ ϕ⊥
// ⊥†

n†⊥

OO
(or) > ϕ> //

m> ��

>†

F (>)
F (ϕ>)

// F (>†) ρ
// F (>)†

m†>

OO

Notice that if F preserves unitary structure, it must be an isomix functor by Lemma

2.26. Also, when A ∈ X is a unitary object, then F (A) must be a unitary object, and so

F (A) is in the core.

We now show that Mx↑ : (X,⊕,⊕) −→ (X,⊗,⊕) provides a unitary structure preserving

equivalence of a dagger monoidal category into a unitary category:

100



Proposition 4.11. Unitary categories are †-linearly equivalent via the mix functor Mx↑ :

(X,⊕,⊕) −→ (X,⊗,⊕) to the underlying dagger monoidal category on the par. Furthermore,

closed unitary categories under this equivalence become dagger compact closed categories.

Proof. We must exhibit a preservator, that is a natural transformation showing that the

involution is preserved:

Mx↑(A
‡)

ϕA−−−→ Mx↑(A)†

A −−−→
ϕA

A†

Note that ϕ is a natural transformation by the definition of ( )‡ and its coherence require-

ments make it a linear natural equivalence. Making this the preservator immediately means

that unitary structure is preserved.

Finally, we must show that unitary linear duals under Mx∗↑ become ‡-duals. Given (η, ε) :

A aau B we must show that under Mx∗↑ this produces a dagger dual. Mx∗↑(η) = m η : ⊥
−→ A ⊕ B and Mx∗↑(ε) = mx−1ε : B ⊕ A −→ ⊥ We then require that c⊕Mx∗↑(ε) = Mx∗↑(η)‡.

This is provided by:

A⊕B
mx−1
��

ϕA⊕B

��

c⊕ // B ⊕ A

Mx∗↑(ε)

))
mx−1

// B ⊗ A ε
// ⊥

m

�� ϕ⊥

��

λ⊥

		

A⊗B
ϕA⊗ϕB��

c⊗
55

A† ⊗B†
λ⊗��

>
λ> ��

(A⊕B)†

Defn. 4.3 (b)

Mx∗↑(η)†

66
η†

// >†
m†

// ⊥†

4.1.3 The unitary construction

A †-isomix category can have many different unitary structures, as we shall describe in

this section, thus it is structure, and not a property. The requirements, however, do mean

that for a †-isomix category, X, there is always a smallest unitary structure, referred to

as the “trivial” unitary structure, that produces a full unitary subcategory in X. In this

subsection, we provide a construction called the unitary construction which produces this

unitary category from any †-isomix category. The construction is based on identifying objects

with pre-unitary structure: the tensor units always have a canonical “pre-unitary” structure

so the construction always produces a non-empty category. However, to ensure that an

101



application of the construction yields a unitary category in which there are objects which

are not isomorphic to the units, one must exhibit concretely such objects. Fortunately this

is often not difficult to do, making the construction quite applicable.

Definition 4.12.

(i) In a †-isomix category, a pre-unitary object is an object U ∈ Core(X), together with

an isomorphism α : U −→ U † such that α(α−1)† = ι.

(ii) Suppose X is a †-isomix category, then define Unitary(X), the canonical unitary core

of X, as follows:

Objects: Pre-unitary objects (U, α),

Maps: (U, α)
f−−→ (V, β) where U

f−−→ V is any map of X.

We note that any object which is isomorphic to a preunitary object is also pre-unitary:

Lemma 4.13. In a †-isomix category, if U is a pre-unitary object and there exists an iso-

morphism f : U −→ U ′, then U ′ is pre-unitary.

Our objective is to show that Unitary(X) is endowed with all the structure of a unitary

category.

Lemma 4.14. For any †-isomix category, its canonical unitary core is a compact †-LDC

with tensor and par defined by

(>,m−1λ⊥ : > −→ >†) (A,α)⊗ (B, β) := (A⊗B,mx(α⊕ β)λ⊕ : A⊗B −→ (A⊗B)†)

(⊥,m λ> : ⊥ −→ ⊥†) (A,α)⊕ (B, β) := (A⊕B,mx−1(α⊗ β)λ⊗ : A⊕B −→ (A⊕B)†)

and (U, α)† := (U †, (α−1)†).

Proof. The proof uses the techniques of Lemma 4.2.

Note that, as the map and tensor structure is inherited from X, it suffices to show that

these objects are all pre-unitary objects. Starting with (Uα)† we have:

(α−1)†(((α−1)†)−1)† = (α−1)†(α†)† = (α†α−1)† = (ι−1)† = ι

102



For the tensor and par we have:

m−1λ⊥((m−1λ⊥)−1)† = m−1λ⊥m
†λ†⊥

[†-mix]
= m−1mλ>λ

†
⊥ = ι

mx−1(α⊕ β)λ⊕((mx−1(α⊕ β)λ⊕)−1)† = mx−1(α⊕ β)λ⊕(mx†)(α−1 ⊕ β−1)†(λ−1
⊕ )†

= mx−1(α⊕ β)mxλ⊗(α−1 ⊕ β−1)†(λ−1
⊕ )†

= (α⊗ β)λ⊗(α−1 ⊕ β−1)†(λ−1
⊕ )†

= (α⊗ β)((α−1)† ⊗ (β−1)†)λ⊗(λ−1
⊕ )†

Defn 4.12-(i)
= (ι⊗ ι)λ⊗(λ−1

⊕ )†

[†-ldc.4]
= ι

mλ>((mλ>)−1)† = mλ>(m−1)†(λ−1
> )†

= m m−1λ⊥(λ−1
> )† = ι

mx(α⊗ β)λ⊗((mx(α⊗ β)λ⊗)−1)† = mx(α⊗ β)λ⊗(mx−1)†(α−1 ⊗ β−1)†(λ−1
⊗ )†

= (α⊕ β)mx mx−1λ⊕(α−1 ⊗ β−1)†(λ−1
⊗ )†

= (α⊕ β)((α−1)† ⊕ (β−1)†)λ⊕(λ−1
⊗ )†

= (ι⊕ ι)λ⊕(λ−1
⊗ )† = ι.

This makes Unitary(X) into a compact †-LDC with all the structure inherited directly

from X. However, more is true: each object now has an obvious unitary structure. This

gives:

Proposition 4.15. For any †-isomix category, X, Unitary(X) is a unitary category with a

full and faithful underlying †-isomix functor U : Unitary(X) −→ X.

Proof. The laxors are all identity maps so that the underlying functors is immediately a

†-mix functor.

It remains to show that every object is unitary: we set the unitary structure of an object

to be α : (X,α) −→ (X,α)†. However, [U.1] – [U.5] are immediately satisfied by construction

implying this provides unitary structure for every object.

Next, we prove the couniversal property of the unitary construction. Define UCat to

be the category of unitary categories and †-isomix functors that preserve unitary structure

in the sense of Definition 4.10, thus, whenever ϕA is the unitary structure then F ′(ϕA)ρF
′

103



is unitary structure. Define Kompact to be the category of compact †-LDCs and †-isomix

functors.

We now show that the unitary construction produces a right adjoint to the underlying

functor U : UCat −→ Kompact which is the identity functor. Preliminary to this result we

prove that Frobenius functors preserve preunitary objects:

Lemma 4.16. If F : X −→ Y is a †-isomix functor between compact †-LDCs and (A,ϕ) is a

preunitary object of X, then (F (A), F (ϕ)ρ) is a preunitary object of Y.

Proof. To prove that (F (A), F (ϕ)ρ) is a preunitary object, one has the following computa-

tion:

F (ϕ)ρ((F (ϕ)ρ)−1)† = F (ϕ)ρF (ϕ−1)†(ρ−1)†

= F (ϕ(ϕ−1)†)ρ(ρ−1)†

= F (ι)ρ(ρ−1)†
[†−isomix]

= ι.

Proposition 4.17. U : UCat −→ Kompact has a right adjoint Unitary : Kompact −→
UCat;C 7→ Unitary(C).

Proof. The couniversal diagram is as follows:

U(U) F //

U(F [) ��

C

U(Unitary(C))
ε

44

Since F is a †-isomix functor it preserves preunitary structure (see Lemma 4.16). This

means that each (U,ϕU) in U is carried by F onto a preunitary object in C, (F (U), F (ϕ)ρF ).

But a preunitary object in C is an object of Unitary(C) and this determines F [. The functor

F [ is uniquely determined as it must preserve the unitary structure.

4.2 Examples: The unitary construction

In Section 3.3, we discussed examples of †-isomix categories in which the † is given by

composing the conjugation functor and the dualizing functor. In the rest of the section, we

apply the unitary construction to each of those examples to construct a unitary category:

104



4.2.1 Category of abstract state spaces

In Section 3.2.3, we discussed a construction on a †-isomix category, X, that produces a

category of abstract state spaces, Asp(X), which is a †-isomix category. In this section,

we examine the preunitary objects of Asp(X). Since all the basic natural isomorphisms

are inherited from X, Core(X) determines Core(Asp(X)). If (A,α) is a preunitary object

for X, and (A, eA, uA) ∈ Asp(X) then, ((A, eA, uA), α) is a preunitary object for Asp(X) if

uAα = λ>e
†
A.

4.2.2 Category of a group with involution

We discussed a source of examples of compact †-LDCs which are given by groups with

conjugation. Applying unitary construction to each of the example categories results in the

following unitary categories. It could be noticed that the preunitary objects in each of these

categories includes those group elements such that g−1 = g. More explicitly, the preunitary

objects are (g, 1) such that g−1 = g.

• In the discrete category of complex numbers, D(C,+, 0),

(a+ ib)† := (a+ ib)∗ = (−a− ib) = −a+ ib

The preunitary objects in this category are given by all complex numbers, i.e., (ib, 1).

• In the discrete category of non-zero complex numbers, D(C, ., 1), the preunitary objects

are given by complex numbers on a unit circle.

• In the discrete category, D(P (x),+, 0), where P (x) is a polynomial ring, P (x)† =

−P (−x) and the preunitary objects are polynomials P (x) =
∑

n anx
n such that n is

odd.

• In D(M2, ·, I2) where M2 is the group of 2×2 invertible matrices over C. The † structure

is as follows:(
a+ ib m+ in

c+ id p+ iq

)†
:=

(
a+ ib m+ in

c+ id p+ iq

)∗
=

(
a− ib c− id
m− in p− iq

)−1

The preunitary objects in this category are the unitary matrices.

105



4.2.3 Category of Hopf modules in a ∗-automonous category

In Section 3.4.4, we described a construction of †-isomix categories from any symmetric

isomix ∗-autonomous category, X, by choosing the Hopf Modules over a cocommutative ⊗-

Hopf Algebra. We referred to the resulting category as H-ModX. Now we shall look at the

preunitary objects in H-ModX in order to apply the unitary construction to this category.

We begin by identifying the objects in the core of H-ModX:

Lemma 4.18. Suppose X is a mix ∗-autonomous category and H is a cocommutative Hopf

Algebra in X. If (A, ) is a H-Module and A ∈ Core(X), then (A, ) ∈ Core(H-ModX).

Proof. The mixor mx : A⊗B −→ A⊕B is inherited directly from X. Henc,e (A, ) ∈ Core(H-

ModX).

Now that we identified the objects in the core, we prove a lemma that will be used later

to identify the preunitary objects from the core:

Lemma 4.19. The following equality holds for a Frobenius algebra:

=

Proof.

= = = =

In the following Proposition we identify the preunitary objects in the core:

Proposition 4.20. Suppose X is a symmetric mix ∗-autonomous category and H is a cocom-

mutative Hopf Algebra in X. If A ∈ Core(X) and (A, , , , ) is a cocommutative Frobenius

Algebra with an algebra homomorphism H
h−−→ A then,

(a) (A, ) is a H-Module where, : H ⊗ A −→ A :=
h

(b) (A, )∗ = (A, ) where A∗ is the self-dual Frobenius Algebra with cups and caps defined

as and respectively. Hence, A∗ = A and (A, )† = (A, ).

106



Proof.

(a) h : H ⊗ A −→ A is a left action because h : H −→ A is an algebra homomorphism.

(b)

H A∗

A∗

h =
h

Lemma 4.19
=

h

cocomm.
=

h

= h

Corollary 4.21. (((A, , , , ), ), 1) is a preunitary object.

Thus, we have a source of non-trivial preunitary objects so that we can form a non-trivial

unitary category.

4.3 Mixed unitary categories

A mixed unitary category has a unitary core which is a model of classical categorical quantum

mechanics extended by a larger setting in which possibly infinite dimensional objects can be

modelled. We are now ready for the definition of mixed unitary categories, which is the key

structure developed in the first part of this thesis.

4.3.1 Mixed unitary category

Definition 4.22. A mixed unitary category (MUC) is a †-isomix category, C, equipped

with a strong †-isomix functor M : U −→ C from a unitary category U to C such that there

exists the following natural transformations:

mx′ : M(U)⊕X −→M(U)⊗X with mx mx′ = 1 and mx′ mx = 1

mx′′ : X ⊕M(U) −→ X ⊗M(U) with mx mx′′ = 1 and mx′′ mx = 1

A mixed unitary category, M : U −→ C is symmetric if the functor M , the unitary category

U, and the †-isomix category C are symmetric.

In the definition of a MUC, the requirement of a transformation mx′ which is inverse to

mx ensures that the functor M : U −→ C factors through Core(C). Figure 4.2 is a schematic

diagram of a MUC.

107



A
ϕA−−−→
'

A†

Unitary
category

†-isomix

functor

†-isomix
category

B B†

Core

Figure 4.2: Schematic diagram for MUC

The †-isomix category of a MUC is to be thought of as a larger space inside which a

(small) unitary category embeds. Within the unitary category, A ' A† by the means of

the unitary structure map, however, outside the unitary core, an object is not in general

isomorphic to its dagger.

In the rest of the thesis, MUCs are exclusively assumed to be symmetric unless stated

otherwise.

Mix unitary categories organize themselves into a 2-category MUC (although we shall not

discuss the 2-cell structure):

0-cells: Are mix unitary categories M : U −→ X;

1-cells: Are MUC morphisms: these are squares of †-isomix functors (F ′, F, γ) : M −→ N

commuting up to a †-linear natural isomorphism γ : MF ⇒ F ′N :

U
F ′ �� ⇓ γ

M // X
F��

V
N

// Y

The functor F ′ : U −→ V is between unitary categories, and we demand of it that it

preserves unitary structure in the sense of Definition 4.10, thus, whenever ϕA is the

unitary structure then F ′(ϕA)ρF is unitary structure.

2-cells: These are “pillows” of natural transformations. (β, β′) : (F, F ′, γF ) ⇒ (G,G′, γG)

is a 2-cell if and only if it satisfies the following equality:

U

G′

��

F ′

��

⇓ γF

M // X

F

��

β′⇐=

V
N

// Y

=

U

G′

��

⇓ γG

M // X

G

��

F

��

β⇐=

V
N

// Y

108



We remark that we have observed that any MUC can be “simplified” to a dagger monoidal

category with a strong †-mix Frobenius functor into a †–isomix category: this is achieved

by precomposing with Mx↓. This may seem a worthwhile simplification, but it should be

recognized that it simply transfers complexity from the unitary category itself onto the

preservator which must now “create” unitary structure:

U
Mx∗↓ ��

M // C

U↓ Mx↓;M
// C

Here U↓ = (U,⊕,⊕) is viewed as a dagger monoidal category and Mx∗↓ is the inverse of Mx↓.

The point is that the preservator of the lower arrow Mx↓;M is non-trivial as it must encode

the unitary structure of U.

4.3.2 Canonical mixed unitary categories

Our objective is now to show that the unitary construction of the previous section gives rise

to a right adjoint to the underlying 2-functor U : MUC −→ MCC where the 2-category MCC

is defined as:

0-cells: Its objects are mixed †-compact categories (MCC), that is strong †-Frobenius

functors V : C −→ Y where C is a compact †-LDC, Y is a †-isomix category, and V

factors through the core of Y i.e, for all ∀ objects C ∈ C, Y ∈ Y, ∃ mx′ : V (C) ⊕ Y
−→ V (C)⊗ Y such that mx mx′ = 1 and mx′ mx = 1.

1-cells: The 1-cells are squares of mix Frobenius functors which commute up to a linear

natural isomorphism;

2-cells: Are pillows of natural transformations (which we shall ignore).

An example of a mix †-compact category is, of course, the inclusion of the core into a

†-isomix category C : Core(X) ↪→ X;

Proposition 4.23. U : MUC −→ MCC has a right adjoint Unitary : MCC −→ MUC; (C
V−−→ X) 7→ (Unitary(C)

U ;V−−−→ X).

Proof. The couniversal diagram is as follows:

U M−−→ X (F,G,γ) //

(F [,G,γ[)
��

C V−−→ Y

Unitary(C) −−−→
U ;V

Y
ε

33

109



where ε is the square on the left and (F [, G, γ[) is the square on the right:

Unitary(C)
U ��

U // C V // Y

C
V

// Y

U

F ''
F [�� ↑ γ

M // X
G��

Unitary(C)
U
// C

V
// Y

It follows from Proposition 4.17 that the couniversal diagram commute.

This proposition means that in building a non-trivial MUC from a mixed †-compact

categories it suffices to show that the compact †-LDC contains non-trivial pre-unitary objects.

4.4 Examples: Mixed unitary categories

We have already noted that dagger monoidal categories are automatically unitary categories

in which the unitary structure is given by identity maps. The identity functors then give a

rather trivial MUC. One can construct a MUC from any †-isomix category using the unitary

construction: for any †-isomix category, X, Unitary(Core(X))
U−−→ Core(X) ↪→ X is a MUC.

More excitingly one can take the bicompletion [82] of the †-monoidal category: this is a

non-trivial †-isomix ∗-autonomous category extension of the original †-monoidal category

and provides, thus, an interesting example of how MUCs arise.

Our purpose in this section is to exhibit some non-trivial manifestations of the various

structural components of a MUC. To this end we discuss in some detail three basic examples.

4.4.1 Finite dimensional framed vector spaces

In this section we show that the example FFVecK , the category of finite dimensional framed

vector spaces defined in Section 3.2.2 is a unitary category (hence is immediately a mixed

unitary category). The unitary structure map on each object (V,V) is defined as follows:

ϕ(V,V) : (V,V) −→ (V,V)†; vi 7→ ṽi

and it remains to check the coherences [U.3]–[U.6]. First note that [U.4] holds immediately

by the observation above that ι(vi) = ˜̃vi. For [U.3] we require that ϕA†(ãi) = (ϕ−1
A )†(ãi) the

result is a higher-order term so, we may check that the evaluations are the same on basis

elements:

(ϕA†(ãi))(ãj) = ˜̃ai(ãj) = ∂i,j

((ϕ−1
A )†(ãi))(ãj) = ãi((ϕ

−1
A )†(ãj)) = ãi(aj) = ∂i,j

110



Note that [U.5](a) and [U.5](b), in this example, require λ> = ϕ> which can easily be

verified as each reduces to conjugation. [U.6](a) and [U.6](b), in this example, are the

same requirement which is verified by:

λ⊗(ϕA ⊗ ϕB(ai ⊗ bj)) = λ⊗(ãi ⊗ b̃j) = ãi ⊗ bj = ϕA⊗B(ai ⊗ bj)

This gives:

Proposition 4.24. FFVecK with the unitary structure above is a MUC.

This raises the question of what precisely the unitary maps of this example are. To

elucidate this we note that a functor can easily be constructed U : FFVecK −→ Mat(K)

where, for each object in FFVecK we choose a total order on the elements of the basis and

note that any map is then given by a matrix acting on the bases: thus a matrix in Mat(K)

with the appropriate dimensions. We now observe:

Lemma 4.25. An isomorphism u : (A,A) −→ (B,B) in FFVecK is unitary if and only if

U(f) is unitary in Mat(K).

Proof. While U does not preserve ( )† on the nose it does so up to the natural equivalence

determined by U(ϕA) which being a basis permutation is a unitary equivalence. Thus, it is

not hard to see that the following diagram commutes:

U(B,B)

U(f)† ��

U(ϕB) // U((B,B)†)

U(f†)��
U(A,A)

U(ϕA)
// U((A,A)†)

Recall that in the category of matrices, the dagger is stationary on objects so U(B,B) =

U(B,B)†.

Now suppose u is unitary in FFVecK then u−1 = ϕBu
†ϕ−1

A so that

U(u)−1 = U(u−1) = U(ϕBu
†ϕ−1

A ) = U(ϕB)U(u†)U(ϕ−1
A ) = U(u)†

so that its underlying map is unitary. Conversely, if U(u) is unitary then

U(u−1) = U(u)−1 = U(u)† = U(ϕBu
†ϕ−1

A )

which immediately implies, as U is faithful, that u is unitary in FFVecK .

One might reasonably regard this as a rather roundabout way to describe the standard

notion of a unitary map. However, two things of importance have been achieved. First an

111



example of a unitary category with a non-stationary dagger and, thus, a non-identity unitary

structure, has been exhibited. Second we have shown how the standard unitary structure

may be re-expressed in this formalism using non-stationary constructs.

4.4.2 Finiteness matrices

In Section 3.4.2, we described the category of finiteness matrices, FMat(C). The core of

FMat(C) is the subcategory determined by objects whose webs are finite sets, that is the

objects are (X,P (X)) where X is a finite set. Clearly, Core(FMat(C)) is then equivalent to

the category of finite dimensional matrices, Mat(C). This is a well-known †-compact closed

category, which is a unitary category with unitary structure given by identity maps (as ( )†

is stationary on objects). The inclusion I : Mat(C) −→ FMat(C) provides an important

example of a MUC.

4.4.3 The embedding of finite dimensional Hilbert Spaces into

Chu Spaces

In Section 3.4.3, we showed that the Chu construction applied to a symmetric conjugative

closed monoidal category, X, with pullbacks gives a †-isomix category. Recall that the

dagger in the resulting category of Chu spaces is given by composing the conjugation with

the dualizing functor. In this section, we start by discussing, in general, the construction of

a mixed unitary category from a Chu category ChusX(I). A crucial step in this is to identify

objects which are in the core of this category.

Recall that a symmetric monoidal closed category, X, is (degenerately) a compact linearly

distributive category and, thus, there may be objects which have linear adjoints: these are

called nuclear objects [79]. Explicitly a nuclear object A in a symmetric monoidal closed

category is an object with A( B ∼= A∗⊗B, where A∗ := A( I. The nuclear objects form

a compact closed subcategory of X which is conjugative when X is conjugative. In VecC the

nucleus consist precisely of the finite dimensional vector spaces. If (η, ε) : A aa B is witness

that A (and B) are nuclear in X then the object (A,B, ε, c⊗ε) is in the core of ChusX(I)

because in the second component of the tensor product with any other object (X, Y, ν, c⊗ν)

one has the degenerate pullback:

Y ⊗B
'

++ss
X ( B

'
++

Y ⊗ A∗

ss

X ( A∗
'−−→ (X ( I)⊗ A

112



where we use the isomorphism B
'−−→ A∗.

In this manner the nuclear objects of Nuclear(X), which form a compact closed category

with a dagger, may be embedded into the core of ChusX(I). To obtain a unitary category

it suffices then to use the unitary construction for which, to obtain a non-trivial result, we

need to show that there are non-trivial examples of pre-unitary objects. To achieve this we

consider an object H for which (e, n) : H aa H and such that e satisfies:

H ⊗H
ε⊗1 ��

χ // H ⊗H

e

��

H ⊗H
e
��
I

χ◦
// I

For such an object we note:

(H,H, e, c⊗e)
∗

= (H,H, χc⊗e(χ
◦)−1, χe(χ◦)−1)∗

= (H,H, χe(χ◦)−1, χc⊗e(χ
◦)−1)

This makes

(ε−1, 1) : (H,H, e, c⊗e) −→ (H,H, χe(χ◦)−1, χc⊗e(χ
◦)−1)

a preunitay map. Note that it is a Chu map by the commuting diagram above and as ε = ε

we have

(ε−1, 1)(1, ε) = (ε−1, 1)(1, ε) = (ε−1, ε)

where (ε−1, ε) is the involutor.

In VecC a map e : H⊗H −→ C is a “sesquilinear form” and the diagram above asserts that

it is in addition a symmetric form. Any Hilbert space with its inner product, thus, satisfies the

above conditions. Thus, it is clear that the embedding of the category of finite dimensional

Hilbert Spaces into Chu spaces, FHilb ↪→ ChusVecC(C) is a mixed unitary category. The

embedding is in fact a full and faithful embedding which extends to all Hilbert spaces

(although only the finite dimensional ones land in the core).

Explicitly the embedding is defined as follows: suppose H is a (finite dimensional) Hilbert

Space, then the corresponding Chu Space is given by (H,H, 〈−|−〉H), where 〈−|−〉H : H⊗H
−→ C is the inner product. For any linear map H

f−−→ K between Hilbert Spaces, the

corresponding Chu map is given by (f, f †) : (H,H, 〈−|−〉H) −→ (K,K, 〈−|−〉K), where f † is

the Hermitian adjoint of f so, 〈f(a)|b〉 = 〈a|f †(b)〉.

113



Furthermore, observe that (H,H, 〈−|−〉H)† := (H,H, 〈−|−〉H)∗ = (H,H, 〈−|−〉H). Hence,

this embedding preserves the (stationary) dagger for all Hilbert spaces. However, the par of

two infinite dimensional Hillbert spaces in this Chu category is not a Hilbert space so that

the duality cannot be seen within the category of Hilbert spaces.

114



Chapter 5

Summary

Chapters 3, and 4 extend the theory of †-monoidal categories and †-compact closed cate-

gories to linearly distributive and ∗-autonomous settings to obtain the categorical semantics

of (multiplicative) †-linear logic. In these linear settings, the two different tensor products

(tensor and par) must be flipped by the dagger. Thus, one cannot have a stationary (iden-

tity on objects) dagger, and hence one is forced to replace the conventional dagger by a

contravariant structure-preserving involution. This has coherence consequences: section 3.1

is dedicated to understanding the details of these coherences.

If multiplicative †-linear logic is to provide a semantics for a generalized categorical

quantum mechanics (CQM), then notions such as isometry and unitary isomorphism, which

are central to CQM, should have an expression in this logic. In section 4.1 we showed that

with additional “unitary structure” one can recapture classical CQM as a “unitary core”

of multiplicative †-linear logic. Furthermore, we showed how, from any †-isomix category,

it is always possible to extract a “unitary core” which is, up to equivalence, a †-monoidal

category (i.e a classical semantic setting for CQM).

This led to the notion of a mixed unitary category (MUC) given by a †-isomix category

with a chosen unitary core as our proposal for an extension of CQM. A MUC can be viewed as

an extension much as a K-algebra extends a field K and permits the expression of properties

which are difficult to express within K itself. In the extended setting of a MUC – finiteness

matrices with its core for example – provides an extension of the classical CQM setting

in which infinite dimensional types, such as those given by the exponential modalities, are

present. Furthermore, in the extended setting one can bend, and yank wires without the

category being compact.

This concludes the first part of this thesis. The second part discusses the application of

MUCs to CQM.

115



Part II

Application of dagger linear logic to

categorical quantum mechanics

116



Chapter 6

Categorical Quantum Mechanics

The program of Categorical Quantum Mechanics (CQM) was started by Coecke and Abram-

sky [4] in 2004 with the aim of developing a high-level formal language for quantum mechanics

while moving away from the standard formalism based on Hilbert spaces. CQM derived ideas

from logic and computer science, and used the diagrammatic language of compact closed cat-

egories for an intuitive but mathematically rigorous presentation of the fundamental axioms

of quantum theory.

The purpose this chapter is to review the fundamentals of Categorical Quantum Mechan-

ics and to describe its essential features used to study quantum mechanics.

6.1 Dagger monoidal categories

Categorical quantum mechanics (CQM) models physical systems as objects within a monoidal

category and the physical processes as the maps in the category. The identity maps equate

to the do-nothing processes. Sequential composition of processes is given by the composition

of maps while parallel composition is modelled using the tensor product. Categorifying the

notion of inner product in traditional quantum theory produces a †-functor for monoidal

categories giving rise to the theory of †-monoidal categories.

6.1.1 Graphical calculus for monoidal categories

Monoidal categories come equipped with a graphical calculus [109], which allows for dia-

grammatic representation and manipulation of systems and processes. The availability of

this graphical calculus is perhaps the most attractive aspect of using monoidal categories to

study quantum mechanics.

In the graphical calculus of monoidal categories, the objects are represented by wires,

117



and arrows by circles 1. An identity arrow is given by a wire without by circle.

A

An object A

A

f : A −→ B

B

f A

Identity arrow 1A

Note that the diagram for the object A is same as the identity arrow of A which is to be

interpreted as follows: a physical system which does nothing is same as the system itself.

Composition of maps is given by connecting the wires sequentially. Tensor product of

object is given by parallel juxtaposition of wires. The unit object is given by an empty circle

representing the empty system. Recall that in LDCs, when the tensor and the par units are

different, we used labelled wires to represent units.

A

Composing maps

B

f

g

C

A

f : A⊗ C −→ B ⊗D
B

C

D

f

A

f ⊗ g : A⊗ C −→ B ⊗D
B

f

C

D

g
I :=

In CQM, maps from the tensor unit to any other object are referred to as states, maps

into the tensor unit from any other object are referred to as effects, and maps that start

and end in the tensor unit are referred to as scalars. States and effects are represented using

triangles:
φ

State

φ

Effect

The assosciativity, left unitor, right unitor and the symmetry natural isomorphisms are

given as follows:

A

a⊗ : (A⊗B)⊗ C −→ A⊗ (B ⊗ C)

B C A

ur⊗ : A⊗ I −→ A

A

ul⊗ : I ⊗ A −→ A

Note that the associativity isomorphisms, the left and the right unitors are identity maps.

In fact, this is the graphical caluclus for a strict monoidal category. Since every monoidal

category is equivalent to a strict monoidal category [95] allows one to use this calculus on

any monoidal category.

The symmetry map is represented using crossed wires as shown in the left. The inverse

1In the CQM community, maps are often drawn as boxes. A circle and a box are topologically same.

118



law for a symmetric monoidal category is given by the diagrammatic equation in the right:

A

c⊗ : A⊗B −→ B ⊗ A

B

B A

=

(c⊗)B,A = (c⊗)−1
A,B

An equation holds in a SMC if and only if it holds in the graphical calculus. Prov-

ing equations using graphical calculus is simpler than proving equations by reasoning with

mathematical symbols because human brain excels at processing visual information.

Two diagrams are the same in the graphical calculus if one can be transformed to another

up to planar isotopy or by using an axiom. For details on graphical calculus for monoidal

categories see [109].

6.1.2 Dagger monoidal categories

Complex Hilbert spaces are used as the de facto framework for describing quantum processes.

The inner product structure on these spaces allows the notion of adjoint which is in turn

needed to define quantum observables: self-adjoint operators on the space. In quantum

computing, every quantum logic gate is represented by a unitary (in other words a self-

adjoint) matrix. CQM abstracts the notion of inner products as dagger [110, 47] functors

for †-monoidal categories.

Definition 6.1. A dagger category is a category, X, equipped with a involutive (f †† = f)

contravariant functor † : Xop −→ X which is the identity on objects (A = A†).

Note that, a given category can have more than one †-functor, for example for the category

of complex matrices (see Section 6.2.3) conjugate transpose and transpose operations on

matrices gives two different dagger functors. Hence, † is a structure rather than a property

for a category. Because † is a contravariant functor, (fg)† = g†f †.

Given any map f : A −→ B, the map f † : B −→ A is referred to as its adjoint. A unitary

isomorphism in a †-category is an isomorphism f such that f † = f−1. A map f : A −→ B is

an isometry if ff † = 1A.

Definition 6.2. A †-symmetric monoidal category is a symmetric monoidal category

which is also a †-category such that the † behaves coherently with the monoidal structure:

1. for all maps f , g, (f ⊗ g)† = f † ⊗ g†

2. the assosciator, the unitors and the symmetry map are unitary natural isomorphisms

119



Next, we discuss a key correspondence often used in quantum information theory called

the operator-state duality, also referred to as the Choi-Jamiolkowski isomorphism: every

linear map between (finite dimensional) Hilbert spaces H and K corresponds precisely to a

state in the tensor product space H⊗K. This correspondence is abstracted as follows using

the compact structure [86] for monoidal categories.

Definition 6.3. In a monoidal category, an object B is right dual to an object A if there

exists maps:

η : I −→ A⊗B ε : B ⊗ A −→ I

such that:

(1⊗ η)(ε⊗ 1) = 1B (η ⊗ 1)(1⊗ ε) = 1A

The maps η and ε are represented in graphical calculus by a cap and a cup respectively:

η : I −→ A⊗B = ε : B ⊗ A −→ I =

The equations satisfied by a right dual are also referred to as the snake equations owing to

their shape in the graphical calculus:

B

A

B

= B

A

B

A

= A

Similarly, an object B is left dual to an object A if there exists maps η : I −→ B ⊗ A,

and ε : A⊗B −→ I such that the corresponding snake equations hold.

Definition 6.4. A compact closed category (KCC) is a monoidal category in which each

object A is equipped with chosen right and left duals.

For a KCC which is also a SMC, a right dual of an object is also its left dual, and vice

versa. Such a dual of an object A is written as A∗.

Definition 6.5. [4] A †-compact closed category (†-KCC) is a †-symmetric monoidal cat-

egory which is also a compact closed category such that for each object η† = c⊗ε (equivalently

ε† = ηc⊗).

Dagger compact closed categories were introduced by Coecke and Abramsky [4] as an ax-

iomatic framework for quantum information theory under the title strongly compact closed

categories. The operator-state correspondence is straightforward in a †-compact closed cat-

egory. Every map f : A −→ B precisely corresponds to a state dfe : I −→ B ⊗ A∗ and an

120



effect bfc : B∗ ⊗ A −→ I defined as follows:

dfe := f
A

B A∗

bfc := f

B

AB∗

In CQM, †-KCCs are the fundamental framework for quantum information theory and

quantum computing. We will discuss the presentation of quantum channels, quantum ob-

servables, and strong complementarity within these categories in the later sections.

6.2 Examples

In this section, we recall a few standard examples of †-KCCs which are used in CQM.

6.2.1 Categories of sets and relations, Rel

In CQM, the category of sets and relations is used as a non-standard model of quantum

information theory. This category is often studied in comparison with the category of Hilbert

spaces and bounded linear maps to distinguish quantum versus non-quantum features [76,

78]. The category Rel is defined as follows:

Objects: Sets

Arrows: R : X → Y where R ⊆ X × Y

Identity maps: IX := {(x, x)| x ∈ X}

Composition: Suppose A
R−→ B

S−→ C, then

RS : A→ C := {(x, z)| ∃y ∈ Y, (x, y) ∈ R and (y, z) ∈ S}

Tensor product: A⊗B := A×B is the cartesian product on both sets (and arrows), the

associativity map is a⊗ ⊆ ((A×B)×C)× (A× (B×C)) := {(((a, b), c), (a, (b, c)))|a ∈
A, b ∈ B, c ∈ C}, and the unit is the one element set I = {?}.

Symmetry map: c⊗ ⊆ (A×B)× (B ⊗ A) := {((a, b), (b, a))|(a, b) ∈ A×B}

Dagger: Given R : A −→ B, B
R†−→ A := {(b, a)|(a, b) ∈ R} is the converse relation of f .

Thus, Rel is a symmetric †-monoidal category. In Rel, every object is self-dual: (η, ε) : A aa A
with η : I −→ A × A := {(?, (x, x))| x ∈ A}, and ε is given by the converse relation. So,

ε : A× A −→ I := {((x, x), ?)| x ∈ A}. This makes Rel a †-compact closed category.

121



6.2.2 Categories of Hilbert spaces and bounded linear maps, Hilb

The category of Hilbert Spaces and bounded linear maps, Hilb, is a †-SMC. The subcategory

FHilb of Hilb consisting of only finite-dimensional Hilbert spaces is a †-KCC. FHilb is used

in CQM as a standard setting for studying processes in quantum information theory and

quantum computing.

The category Hilb is defined as follows:

Objects: Hilbert spaces

Maps: Bounded linear maps

Composition: Usual composition of linear maps

Tensor product: Standard tensor product of of the underlying vector spaces. The tensor

product on the maps is given by the Kronecker product. The tensor unit is C.

Dagger: Given any map f : A −→ B, its adjoint f † : B −→ A is defined as the map satisfying

the following equation for all a : I −→ A, and b : I −→ B.

〈
bf †, a

〉
= 〈b, af〉

Hilb is a †-symmetric monoidal category. In finite-dimensions, Hilbert Spaces are equipped

with a compact structure. Given any finite-dimensional Hilbert Space, H∗ refers to the

dual space of all functionals H → H. Recall that every finite-dimensional Hilbert space has

an orthonormal basis. Suppose {ei}dimHi=1 is an orthonormal basis for H, then:

η : 1→ H∗ ⊗H; 1 7→
∑
i

e∗i ⊗ ei and ε : H ⊗H∗ → I; ei ⊗ e∗j 7→ δij

Note that one cannot define a counit ε as above for a Hilbert space since it could possibly

result in an infinite sum for an infinite vector.

The η and ε satisfy snake equations as follows. Suppose a ∈ H and a =
∑

i aiei.

(1⊗ η)(ε⊗ 1)(
∑
i

aiei) = (ε⊗ 1)(
∑
i

aiei ⊗
∑
j

e∗j ⊗ ej)

=
∑
i

∑
j

ai((ε⊗ 1)ei ⊗ e∗j ⊗ ej)) (By linearlity)

=
∑
ij

ai(δij ⊗ ej) =
∑
j

ajej = a

The subcategory finite-dimensional Hilbert Spaces, FHilb, is †-compact closed.

122



6.2.3 Categories of finite matrices over a commutative rig R, Mat(R)

Consider the category Mat(R) defined as follows:

Objects : n ∈ N;

Arrows: n
M−−→ m, where M is a n×m matrix over a commutative rig2 R;

Composition: matrix multiplication;

Tensor product: n⊗m := n ·m; M ⊗N is the outer product of matrices.

Mat(R) is a strict symmetric monoidal category. Every object in Mat(R) is self-dual: (ηn, εn) :

n aa n, where the ηn and εn are defined as follows:

ηn : 1 −→ n⊗ n :=
n∑
i=1

(ei ⊗ ei) εn : n⊗ n −→ 1 :=
n∑
i=1

(eTi ⊗ eTi )

Here ei is a standard basis vector for Mat(R), and eTi is the transpose of ei. For example,

for n = 2, e1 := [1 0], e2 := [0 1] and, thus, η2 := [1 0 0 1]. If M : n −→ m then M∗ : m −→ n,

the dual of M , M∗, is just the transpose, MT .

When the commutative rig, R, has a conjugation, ( ) : R −→ R such that r + s = r + s,

0 = 0, r s = rs and 1 = 1, then Mat(R) has a dagger given by conjugate transpose.

In particular, this means Mat(C), finite-dimensional matrices over the complex numbers,

in addition, has a dagger given by conjugate transpose. In fact, the category Mat(C) is

equivalent to FHilb [76, Example 1.34].

Note that the two element ordered set, 2, with join as addition and meet as multiplication

is a rig and Mat(2) is then equivalent to the category of finite sets and relations. This

equivalence can be turned into an isomorphism if one inflates Mat(R) so that it has objects

finite sets, I, J ∈ Setf , and maps matrices given by maps M : I × J −→ R.

6.3 Complete positivity

In this section we discuss quantum channels in †-SMCs and †-KCCs. In quantum mechanics,

the representation of a physical state can be either pure or mixed. A representation is mixed

when it is a statistical ensemble of possible states of the system. If the representation is

pure, then one knows the exact quantum state of the system.

While a pure state is represented as a vector in a Hilbert Space, a mixed state is repre-

sented as a positive self-adjoint operator on the Hilbert Space. The mixed state formalism of

2Ring without negatives, hence a semiring

123



quantum mechanics is very useful in practice since in an experimental setting our knowledge

about the state of a quantum system is often limited. In the mixed state formalism, a quan-

tum process is a completely positive map (sending positive self-adjoint operators to positive

self-adjoint operators) which preserves trace. In this section, we discuss how completely

positive maps and traces are abstracted in a categorical setting.

6.3.1 The CPM construction

We begin our discussion with linear operators on finite-dimensional Hilbert Spaces. A linear

operator is a linear map from a Hilbert space to itself. The space of all linear operators,

L(H), on a finite-dimensional Hilbert Space H is a C?-algebra with the ? on L(H) defined

to be the adjoint operation. Considering the linear map in matrix form, the adjoint of the

matrix is its conjugate transpose. An element a of a C? algebra is positive if there exists

an element b in the algebra such that a = b?b. Note that a positive element is self-adjoint,

that is a? = a. The mixed state of quantum system is given a by positive element of L(H)

of norm 1.

A linear map between two C? algebras is positive if it preserves the positive elements,

that is, f(x?x) = y?y. A linear map is said to be completely positive if it is positive and

for all n > 0, the map 1n ⊗ f : Cn×n ⊗ A −→ Cn×n ⊗ B is positive. If the representation

of a quantum state is mixed, then completely positive maps that preserve trace are used to

represent quantum processes.

The following theorem by Choi characterizes the form of completely positive maps:

Theorem 6.6. [33, Theorem 1] Let H and K be finite-dimensional Hilbert spaces. A linear

map φ : L(H) −→ L(K) is completely positive if and only if there exists a collection of linear

maps, {Mi|Mi ∈ L(H,K) such that for all A ∈ L(H),

φ(A) =
∑
i

M †
iAMi

where M †
i is a adjoint of Mi.

The equation in the above theorem is referred to as the Kraus decomposition of φ,

and the collection of maps, {Mi|Mi ∈ L(H,K), are referred to as the Kraus operators.

Selinger [110] abstracted the notion of completely positive maps to †-compact closed

categories using the characterization discussed above. In a †-compact closed category, a map

f : A −→ A is positive if there exists a g : A −→ B such that f = gg†. A map f : A∗ ⊗ A

124



−→ B∗ ⊗B is completely positive if f is of the following form:

f =
gg

A∗ A

B∗

E

B

(6.1)

where g := g†∗ = g∗†. The object E in the above diagram is interpreted as the environment

which is discarded after the process f is complete. More on environment and discarding will

be discussed later in Section 6.3.3. The map g : A −→ E ⊗ B can be interpreted as a Kraus

operator and the diagram itself as a description of the Kraus decomposition.

Selinger also introduced the completely positive maps (CPM) construction which recon-

ciles the pure states and mixed states formalisms of quantum theory within the theory of

†-compact closed categories. Given a †-compact closed category X, the category CPM(X)

consists of objects of the form A∗ ⊗ A for all A ∈ C and the maps are chosen to be the

completely positive maps. CPM(X) is again a †-compact closed category [110, Theorem

4.20] with the same † functor as C. The CPM construction applied to the category of fi-

nite dimensional Hilbert spaces produces a category containing mixed states and quantum

processes.

6.3.2 The CP∞ construction

Note that the CPM construction uses the compact structure of †-KCCs, thus is applicable

only to the category of finite dimensional Hilbert spaces. Coecke and Heunen [46] general-

ized the CPM construction to †-monoidal categories thereby eliminating the restriction on

dimensions. Accordingly, their generalized construction is referred to as the CP∞ construc-

tion.

In †-SMCs, one cannot bend wires, hence the representation of a completely positive

map as shown in equation 6.1 cannot be used. In order to define a completely positive map

within a †-SMC, Coecke and Heunen straightened the wire for the environment in diagram

6.1, obtaining the following form for completely positive maps in this setting:

g

g†

A

A

E

B

B

(6.2)

Within the dashed circle, ‘test maps’ are plugged in as shown in the equation 6.3. The map

g : A −→ E ⊗ B is called a Kraus map and E is referred to as the environment or the

125



ancillary system.

Any two Kraus maps, f : A −→ E ⊗ B, and g : A −→ F ⊗ B are said to be equivalent,

that is f ∼ g, if for all h : B ⊗ C −→ D, they satisfy the following equation:

f

f †

A

A

E

B

B

D

h

h†

=

g

g†

A

A

F

B

B

D

h

h†

(6.3)

For any Kraus map, f : A −→ E ⊗B, we will write its equivalence class as [f ].

Definition 6.7. [46, Definition 3] The CP∞ construction is defined as follows. Let C be

any †-monoidal category.

Objects: Same as objects as C

Maps: Equivalence classes of Kraus maps in C

Identity maps: Equivalence class of Kraus maps given by the left unitor, [(ul⊗)−1 : A −→
I ⊗ A].

Composition: The composition of two maps f : A −→ B, and g : B −→ C ∈ CP∞(C) is

given by composing their respective Kraus maps upto equivalence:

fg :=

 f

E ′

A

E

B

g

C


The composition is well-defined because if f ∼ f ′ and g ∼ g′, then fg ∼ f ′g′.

If C is a †-SMC, then CP∞(C) is a SMC [46, Proposition 5]. Note that, in this case,

CP∞(C) does not have a †-functor. Moreover, if C is a †-KCC, then CP∞(C) isomorphic to

CPM(C) [46, Proposition 6].

The set of all bounded linear maps from a Hilbert space to itself is a Von Neumann

algebra. The category of Von Neumann algebras and normal completely positive maps is

isomorphic to CP∞(Hilb) [46, Theorem 13].

6.3.3 Environment structures

In the previous sections, we discussed the constructions for transforming a category of pure

states and processes into a category of mixed states and completely positive maps. In this

126



section we discuss characterizations of these constructions using the notion of environment

[46, 50, 41]. While pure states contain information purely about the system, mixed states

contain information about the system and its environment together. One can thus charac-

terize the categories of mixed states by the presence of environment structure and discarding

maps.

Definition 6.8. An environment structure for a †-SMC, Cpure, consists of a strict

monoidal functor F : Cpure −→ C where C is a SMC with designated map, γA : A −→ I,

called the discarding map for all objects A ∈ C such that the following equations hold:

Env 1: For all objects A,B ∈ Cpure, γF (A⊗B) = γF (A) ⊗ γF (B)(u⊗)I

Env 2: γI = idI (F(I) = I)

Env 3: For all Kraus maps f : A −→ X ⊗B, g : A −→ Y ⊗B ∈ Cpure,

f ∼ g if and only if F (f)(γF (X) ⊗ 1B) = F (g)(γF (Y ) ⊗ 1B).

The axioms for an environment structure are drawn as follows:

[Env 1] :
F (A⊗B)

=
F (A) F (B)

[Env 2] :
I

= idI

[Env 3] : f ∼ g ⇔ F (f)

F (A)

F (X)

F (B)

=
F (g)

F (A)

F (Y )

F (B)

A process f : A −→ B in a †-SMC, Cpure, with an environment structure (F : Cpure

−→ C, ) is said to be normalised if F (f)γF (B) = γF (A). The normalised processes of Cpure

form a sub-†-SMC of C with the same environment structure. In that case, for the sub-

†-SMC, the discarding map γ is a monoidal transformation for from the functor F to the

constant endofunctor that sends all objects to I and all maps to idI .

Definition 6.9. A †-SMC, Cpure, with an environment structure (F : Cpure −→ C, ) is said

to allow purification if every map in C is of the following form for some Kraus map f : A

−→ X ⊗B ∈ Cpure

[Env 4]
F (f)

F (A)

F (X)

F (B)

The idea of [Env 3] is that every process in C is equal to a pure process followed by

discarding information.

127



Every †-SMC, Cpure, comes with a canonical environment structure which allows purifi-

cation [46, Theorem 16]:

F : Cpure −→ CP∞(Cpure);A
f−−→ B 7→ A

[f(ul⊗)−1]
−−−−−−→ B

γA : A −→ I ∈ CP∞(Cpure) := [(ur⊗)−1]

The environment structure also allows for purification: for each [f ] : A −→ B in CP∞(Cpure),

F (f)(γI ⊗ 1B) = [f ].

Theorem 6.10. [46, Theorem 15] For any †-SMC, Cpure, CP∞(Cpure) ' C is an isomor-

phism of monoidal categories if Cpure is equipped with an environment structure and purifi-

cation.

The above result can be extended to †-compact closed categories when the environment

structure behaves coherently with the compact structure in the following sense:

Definition 6.11. An environment structure for a †-KCC, Cpure, consists of a strict †-
monoidal functor F : Cpure −→ C, where C is also a †-KCC and the following conditions

hold:

(i) For all A ∈ Cpure, F (A∗) = F (A)∗

(ii) For all A ∈ Cpure, F (A)∗ ' F (A)

(iii) For each object X ∈ C, there exists a designated map γX : X −→ I such that [Env

1]-[Env 3] holds and:

F (A)∗

F =

(
F (A)
)†

The environment structure allows purification if [Env 5] holds.

Every †-compact closed category comes with a canonical environment structure given as

follows:

F : Cpure −→ CPM(Cpure);A
f−−→ B 7→ (A∗ ⊗ A)

f∗ ⊗ f−−−−−→ B∗ ⊗B

γA :=
A∗ A

The discarding map in the category CPM(FHilb) is referred to as the trace. A map g : A

−→ B in CPM(FHilb) as shown below is precisely a quantum channel (completely positive

128



and trace preserving) when g ∈ FHilb is normalized i.e, F (g)γF (E⊗B) = γF (A).

gg
A∗ A

B∗

E

B

The environment structure in the above example also allows for purification because every

map in CPM(Cpure) is of the following form for some g : A −→ E ⊗B ∈ Cpure:

gg
A∗ A

B∗

E

B

=
F (g)

F (A)

F (E)

F (B)

6.4 Measurement and complementarity

We covered quantum channels in the previous section. In this section we review the notions

of quantum observables, measurement and complementarity categorically.

6.4.1 Quantum observables

A quantum observable is a physical property which can be measured. Frobenius algebras

are one of the pillars of CQM because they are used to abstract the notion of quantum ob-

servables. In traditional quantum mechanics, an observable is represented by a self-adjoint

operator a.k.a Hermitian operator on a Hilbert space. The set of all eigenvectors for an

observable gives an orthogonal basis for the state space of the quantum system. After a

measurement, the state of the quantum system will be one of these basis states. The eigen-

value corresponding to an eigenvector represents its probability amplitude i.e., the probablity

that the quantum system will end up in the particular basis state after measurement. Frobe-

nius algebras provide a neat abstraction of these ideas in †-monoidal categories. In this

section, we review Frobenius algebras and their correspondence to quantum observables.

In a SMC, a monoid (A, , ) consists of an object A with a multiplication map, :

A ⊗ A −→ A, and a unit map, : I −→ A, such that the multiplication is assosciative (see

diagram (a)) and the unit law holds (see diagram (b)).

(a) = (b) = =

Similarly, a comonoid (A, , ) consists of an object A with a comultiplication : A

−→ A ⊗ A, and a counit map e : A −→ I such that the coumutiplication is coassociative

129



(vertical reflection of equation for associativity), and that the counit law holds (vertical

reflection of equation for unit law).

Definition 6.12. In a SMC, a Frobenius algebra, (A, , , , ), consists of a monoid

(A, , ) and a comonoid (A, , ) such that the multiplication and the comultiplication

interacts as follows:

AA

AA

=

A A

A A

The above equation is referred to as the Frobenius law. It can be proven that the

Frobenius law holds for a monoid and a comonoid on A if and only if the following equation

holds:

AA

AA

= A

The diagram on the right of the equation is fondly referred to as a ‘spider’ in the CQM

community.

In an SMC, if an object A is Frobenius algbera, then A is a self-dual object with the

following cup and cap:

η : I −→ A⊗ A := ε : A⊗ A −→ I :=

For a Frobenius algebra, (A, , , , ), the monoid (A, , ), and the comonoid (A, , )

are dual to one another by the means of the self-dual cup and cap:

= = = =

Conversely, if A is a self-dual object A aa A and a monoid (A, , ), and there exists a map

: A −→ I such that the self-dual cup is given by , then A has a Frobenius structure, see

[76, Proposition 5.16]. The map : A −→ I is referred to the non-degenerate form of the

Frobenius structure.

Definition 6.13. In a †-SMC, a †-Frobenius algebra is a Frobenius algebra (A, , , , )

such that (
A

)†
=

A

130



In †-KCCs, pants algebra provide an important class of examples for †-FAs. To define

pants algebra, note that in a KCC, for each object A, there exists a monoid on A⊗A∗ with

the following multiplication and unit respectively:

A∗A AA∗

A A∗

The above algebra is referred to as a pants algebra due to the shape of its multiplication

map.

Every monoid in a KCC embeds into the pants monoid:

Lemma 6.14. In a KCC, every monoid, (A, , ), embeds into its pants monoid on A∗⊗A
by means of the following monoid morphism:

A∗A

Lemma 6.15. In a †-KCC, pants algebra are †-Frobenius.

Applying the operator-state duality to pants †-algebra we note the following. Let f, g : A

−→ A be any two processes in a †-KCC. Multliplying the states corresponding to these pro-

cesses using the pants monoid gives the state corresponding to composition fg, see equation

(a). Moreover, applying the counit to the state of f gives the trace of f , see diagram (b).

(a)
f g

A

A

A∗

A∗

=
f

g

A

A A∗

(b)
f

A

A∗

Let us review a concrete example of pants algebra. Consider the space of n× n complex

matrices written as Mn which gives the pants algebra over the space Cn in FHilb [76, Example

4.12]. We will show that Mn is the pants algebra for Cn. The space of n×n complex matrices

is a Hilbert space with the inner product given by 〈A|B〉 := Tr(A†B) (A† is conjugate

transpose of A) and comes with a canonical basis {eij|i, j = 1, · · · , n}. The basis eij is a

n× n matrix with zero for all entries except the entry (i, j).

The algebra of n× n complex matrices has a † Frobenius structure in FHilb:

Monoid structure: The multiplication, m, is given by matrix multiplication and the

unit, u, is the n× n identity matrix.

Comonoid structure: Define the counit map e := u†. Then, by definition of † for in

Hilbert spaces, 〈e(eij)|1〉 = 〈(eij)|e†(1)〉 = 〈eij|u(1)〉 = 〈eij|IA〉 = δij = Tr(eij). By extension

of linearity, for all A ∈Mn, e(A) = Tr(A).

131



Similarly, define the comultiplication to be, d := m†. By the definition of † for FHilb,

〈m(eij ⊗ ekl)|epq〉 = 〈eij ⊗ ekl|m†(epq)〉. As before, in order to derive the definition of m† we

expand the equation on both sides.

〈m†(eij)|ekl ⊗ epq〉 = 〈eij|m(ekl ⊗ epq)〉

= 〈eij|δlpekq〉

= δlpTr(e
∗
ijekq)

= δlpTr(e
∗
ijekq)

= δlpδikδjq.

By defining m†(eij) :=
∑

l eil ⊗ elj, 〈m†(eij)|ekl ⊗ epq〉 evaluates to δlpδikδjq.

A †-Frobenius algebra in a symmetric †-SMC is said to be special if (a) holds, commu-

tative if (b) holds, and symmetric if (c) holds:

(a) = (b) = (c) =

Commutativity is a stronger condition than the symmetry. For example, the pants alge-

bra is non-commutative but symmetric.

The connection between Frobenius algebras and quantum observables given by the fact

that in the FHilb category, every special commutative †-FA (†-SCFA) precisely corresponds

to an orthonormal basis. This correspondence arises from the notion of classical states for

a †-FA: the states, a : I −→ A, which can be copied, and deleted as shown below.

copy:
a

=
a a

delete:
a

= idI

Theorem 6.16. [49, Theorem 5.1] In FHilb, the set of classical states for a †-SCFA on an

Hilbert space H precisely corresponds to an orthonormal basis for H.

Hence, there exists a bijective correspondence between †-SCFAs and orthonormal bases.

The basis states are the only states of the quantum system that can be copied and deleted, in

other words, a classical state. Hence, †-SCFA are also referred to as classical structures. In

the previous theorem if we drop the keyword special, then corresponding basis is orthogonal.

A quantum measurement is the process of extracting classical data (can be copied and

deleted) from a quantum state. Categorically, Coecke and Pavlovic [48] described a “demo-

lition” measurement in a †-monoidal category as a process, m : A −→ X, with m†m = 1X ,

132



to a special commutative †-Frobenius algebra, X. The object A refers to the state space

of a quantum system. Demolition means that we ignore the resulting state of the quantum

system after measurement and preserve only the classical data.

In Theorem 6.16, we saw that †-SCFA model classical data. However, Frobenius algebras

which are non-commutative but symmetric model quantum information:

Theorem 6.17. [118] In FHilb, every special symmetric †-FA precisely corresponds to a

C∗-algebra.

The proof of the above theorem relies on Lemma 6.14. Due to their correspondence to

C∗-algebras, special symmetric †-FAs are also referred to as quantum algebras. Note that

quantum algebras are non-commutative.

6.4.2 Strong complementarity

Bohr’s complementarity [71] is a key feature that distinguishes quantum mechanics from

classical mechanics. Two quantum observables are said to be complementary if measuring

one observable leads to maximum uncertainty regarding the value of the other. An example of

complementary observables is position and momentum of an electron. All physical properties

occur in complementary pairs due to the wave and the particle nature of matter.

In CQM, complementary interaction of two observables are axiomatized using Hopf al-

gebras [1], which are bialgebras with an antipode:

Definition 6.18. [105] In a SMC, a bialgebra (A, , , , ) consists of a monoid (A, , )

and a comonoid (A, , ) satisfying the following equations:

(a) = (b) = (c) = idI (d) =

The final equation is often referred to as the bialgebra rule. Observing equations (a)-(d),

we note that the multiplication map acts as a comonoid morphism for the tensor comonoid

A⊗A. Equivalently, the comultiplication acts as a monoid morphism for the tensor monoid

A⊗ A. The following lemma gives alternate descriptions for a bialgebra:

Lemma 6.19. In an SMC, the following are equivalent:

(i) (A, , , , ) is a bialgebra.

(ii) (A, , ) is a monoid and (A, , ) is a comonoid such that is a monoid morphism

for the tensor monoid (A⊗ A, , ).

133



(iii) (A, , ) is a monoid and (A, , ) is a comonoid such that is a comonoid morphism

for the tensor comonoid (A⊗ A, , ).

The following are a few examples of bialgebras:

• In a category with biproducts, every object has a bialgebra structure given by the

product and the coproduct maps:

A+ A

[
idA

idA

]
−−−−→ A 0

00,A−−−→ A A
〈idA, idA〉−−−−−−→ A+ A A

0A, 0−−−−→ 0

The category of vector spaces and linear maps has biproducts: ‘+’ is given by direct

sum and 0 is the trivial vector space.

• Consider the category of sets and functions, Set. The category Set does not have

biproducts, however, it is an SMC with the tensor product given by the cartesian

product and the unit object being a chosen singleton set. In Set, every monoid (A, ◦, u)

(that is, A is a set with a binary operation ◦ and a unit u), is a bialgebra with the

comonoid structure given as follows:

for all a ∈ A, : A −→ A× A; a 7→ (a, a) : A −→ {∗}; a 7→ ∗

We are now ready to define Hopf algebras:

Definition 6.20. [21, 28] In a SMC, a Hopf algebra is a bialgbera (A, , , , ) with a

map s : A −→ A referred to as an antipode such that:

s = = s

The above equation is referred to as the Hopf law. The following are a few examples of

Hopf algberas:

• In the examples of bialgebras, we saw that every monoid (A, ◦, e) in the category Set

is a bialgbera. If this monoid is also a group, that is, each element of A is equipped

with an inverse, then the bialgebra is Hopf with anitpode s : A −→ A defined to be, for

all a ∈ A, s(a) := a−1.

• Another example of a Hopf algbera is a group K-algebra [97]. Given a finite group

(G, ◦, u), (that is, G is a set with a binary operation ◦, a unit u and an inverse for each

134



element) and a field K, it is the free K-vector space, K[G], over G with basis {eg}g∈G
. K[G] is a Hopf algebra with the following K-linear maps: for all g, h ∈ G,

m : K[G]⊗K[G] −→ K[G]; eg ⊗ eh 7→ eg◦h u : K −→ K[G]; 1 7→ eu

d : K[G] −→ K[G]⊗K[G]; eg 7→ eg ⊗ eg e : K[G] −→ K; eg 7→ 1

Finally, the antipode is:

s : K[G] −→ K[G]; eg 7→ eg−1

The bialgebras and the Frobenius algberas capture interactions between a monoid and

comonoid on a single underlying object. However, the axioms for a bialgbera are character-

ized by disconnected diagrams while the axioms for a Frobenius algebra are characterized

by connected diagrams. The Hopf law depicts the maximum disconnect and can be in-

terpreted as as a process in which there is no information flow from the multiplication to

the comultiplication. This makes Hopf algberas an appealing algebraic structure to model

complementarity of two quantum observables [44].

It is worthwhile to note that an object, A, which is both a Frobenius algbera and a

bialgebra is trivial i.e., A ' I :

Lemma 6.21. [76, Theorem 6.23] In a †-SMC, suppose a monoid (A, , ) and a comonoid

(A, , ) is both a bialgbera and Frobenius algebra, then:

=

Proof.

(1)
=

(2)
=

(3)
= =

Step (1) of the proof uses the unit law for monoids, step (2) uses equation (b) of bialgebras,

and step (3) uses the Frobenius law. Thus, for a Frobenius algebra which is also a bialgebra,

the unit map is inverse of the counit map.

In the previous section, we saw that quantum observables are precisely †-SCFAs in FHilb.

We now present the conditions for any two †-SCFA to be complementary:

Definition 6.22. [76] In a †-SMC, any two †-SCFAs, say (A, , , , ) and (A, , , , )

are complementary if (A, , , , ) ( equivalently (A, , , , )) is a Hopf algebra with

135



antipode:

=

Note that in the CQM literature, the above definition is referred to as strong complemen-

tarity.

Let us look at an example of complementary observables in FHilb. A simple yet significant

example is given by the spin of an electron along the X, Y and Z axes. The spin of an electron

is either up or down or a superposition these two states. This system is referred to as a qubit

in quantum computation, and its state space is C2.

Each of the X, Y , and Z observables are complementary to one another. These observ-

ables are given by Pauli matrices X, Y and Z defined as follows:

X =

(
0 1

1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)

The eigenbasis of X, Y , and Z are {(|0〉+ |1〉), (|0〉 − |1〉)}, Y is {(|0〉+ i|1〉), (|0〉 − i|1〉)},
and Z is {|0〉, |1〉} respectively, where:

|0〉 =

(
1

0

)
|1〉 =

(
0

1

)

These eigenvectors provide an orthonormal basis for C2, hence they are †-SCFAs in FHilb,

see [44, Example 2.11]. Note that, when used in calculations, the X and Y -eigenvectors are

normalized so that for any of these vectors v, 〈v|v〉 = vv† = 1. In CQM, normalization is

handled by introducing scalars (a : I −→ I) in the bialgebra equations [44, 10].

For a pair of complementary observables, the antipode is the identity map if and only if

the self-dual cups and caps of the Frobenius algebras coincide. This is true in the case of

Z and X observables. (and not for Z-Y and X-Y pairs). Coecke and Duncan developed a

diagrammatic calculus for Z and X observables, called the ZX-calculus [44]. The bialgebraic

interaction between the Z and the X observables is used in the calculus to construct logic

gates in quantum computation. The ZX calculus is considered one of the most significant

outcomes of the CQM program and is used extensively for quantum circuits optimization.

We end this section by providing an alternate and a useful characterization of comple-

mentary systems:

Theorem 6.23. [60, Theorem 6.4] In a †-SMC, two †-SCFA (A, , , , ), and (A, , , , )

136



are complementary if and only if the following equations hold:

= =

In the previous section, for every Frobenius algebra, the multiplication is dual the co-

multiplication, and the unit is to dual to the counit via the self-dual cup and cap of the

Frobenius algebra. The above theorem implies two †-SCFAs are complementary if and only

if the unit and the counit of each of these algebras are dual to one another using the self-dual

cup and the cap of its complementary algebra.

137



Chapter 7

Completely positive maps

Categorical quantum mechanics (CQM) has mostly focused on quantum information theory

and quantum computation which are finite dimensional branches of quantum mechanics. In

order to widen the scope of CQM, there have been various proposals [46, 70, 6] to extend the

structures in CQM to infinite dimensional systems. In Part I of this thesis, we generalized

the framework of dagger compact closed categories to what we have called mixed unitary

categories (MUCs). In this chapter we define completely positive maps for a MUC.

7.1 String calculus for MUCs

To facilitate reasoning within MUCs, it is useful to employ a circuit calculus built on the

circuit calculus for LDCs introduced in [30]. The extended circuit calculus for mixed unitary

categories includes dagger boxes, components for unitary structure maps, and inverse mixor

morphisms.

7.1.1 Unitary structure map

A unitary object is an object equipped with an isomorphism A
ϕA−→ A†, called the unitary

structure map, which is drawn as a downward pointing triangle:

A

A†

Diagrammatic representation of axioms [U.5]-(a), [U.4]-(a) in Definition 4.1 for unitary

structure, and [Udual]-(a) in Definition 4.3 for unitary duals are as follows.

138



= ⊥ > =

⊥

>

m
ε =

η

(ϕA ⊗ ϕB)λ⊗ = mx ϕA⊕B ϕ⊥(λ−1
> ) = m λ>ε

†
Aλ
−1
⊕ = ηAϕ⊕ϕc⊕

7.1.2 Inverse of the mixor

The mixor (obtained from the mix map ⊥ m−−→ > as below) U1 ⊗ U2
mx−−→ U1 ⊕ U2 is an

isomorphism whenever U1 and U2 are unitary objects and its inverse are represented as

follows:

mxU1,U2 := m = m mx−1 :=

Observe that mx−1 maps asscocitated to different unitary objects slide past each other,

and indeed by naturality, mx−1 slides over components in circuits:

= = = =

7.2 Quantum channels for MUCs

7.2.1 Kraus maps

A Kraus map (f, U) : A −→ B in a mixed unitary category, M : U −→ C, is a map f : A

−→M(U)⊕B ∈ C for some U ∈ U. U is called the ancillary system of f . We glue the Kraus

map to its dagger along its ancillary system giving rise to a combinator which acts on “test

maps”. Two Kraus maps are equivalent when their effects on test maps are indistinguishable.

Definition 7.1. Given a MUC, U M−−→ C, two Kraus maps (f, U), (g, V ) : A −→ B are

equivalent, (f, U) ∼ (g, V ), if for all unitary objects X and all maps h : B⊗C → V (called

139



test maps), the following equation holds:

h

h

f

f

M M

ρ
ρ =

h

h

g

g

M M

ρ
ρ

Note that the mx−1 map can be slid up and down along the wires of the unitary objects

M(U) and M(V ) by naturality of the mx map. The diagram includes covariant functor

boxes for M and contravariant functor boxes for the dagger. The diagram on the left is

given equationally as follows:

A⊗C f ⊗ 1−−−−→ (M(U)⊕B)⊗C ∂−−→M(U)⊕(B⊗C)
1⊕ h−−−−→M(U)⊕M(V )

mx−1

−−−−→M(U)⊗M(V )

M(ϕU )⊗M(ϕV )−−−−−−−−−−−→M(U †)⊗M(V †)
ρ⊗ ρ−−−−→M(U)† ⊗M(V )†

1⊗ (h†λ−1
⊕ )

−−−−−−−−→M(U)† ⊗ (B† ⊕ C†)

δ−→ (M(U)† ⊗B†)⊕ C† λ⊗ ⊕ 1−−−−−→ (M(U)⊕B)† ⊕ C† f† ⊕ 1−−−−→ A† ⊕ C† λ⊕−−−→ (A⊗ C)†

The natural isomorphism ρ : M(U †) −→M(U)† is the preservator of the †-isomix functor,

M , which ensures coherence with the † from U to C. In the rest of this chapter, the covariant

functor boxes represent the †-isomix functor M of the MUC unless specified otherwise.

By forgetting the test maps and gluing Kraus map with its dagger, one gets a notationally

convenient combinator which can be diagrammatically represented by:

f

:=

f

f

ρ

An equivalence class of Kraus morphisms is a quantum channel. If (f, U) : A −→ B

and (g, V ) : A −→ B are Kraus maps for which U and V are unitarily isomorphic, they are

necessarily equivalent with respect to this relation:

Lemma 7.2. Let (f, U), (g, V ) : A −→ B be Kraus morphisms. If U
α−−→ V is a unitary

isomorphism and f(α⊕ 1) = g, then (f, U) ∼ (g, V ).

140



Proof. Let h : B ⊗ C −→M(X) be any test map. Then,

f

h

M M

ρ

ρ

h

f

=

f

h

M

M

ρ ρ

h

f

α

α−1

=

f

h

M

M

ρ ρ

h

f

α

α

=

f

h
M

M

ρ

ρ

h

f

α

α

M

M =

f

h
M

M

ρ
ρ

h

f

α

α

M

M

=

g

h

M M

ρ

ρ

h

g

In a ∗-MUC, the equivalence relation on Kraus maps is given equationally as follows:

Lemma 7.3. Suppose M : U −→ C, is a ∗-MUC, that is every object in C has linear adjoint,

then two Kraus maps (f, U) and (g, V ) are equivalent if and only if

(f, U)

=

(g, V )

Proof. It is obvious that the given equation holds when the Kraus maps (f, U) and (g, V )

are equivalent. For the converse, assume that the given equation holds. Then, the Kraus

maps (f, U) and (g, V ) are equivalent because, for any test map h, we have that:

h

M

ρ

h

f

=

h

M

ρ

h

f

=

h

M

ρ

h

f

=

h

M

ρ

h

g

=

h

M

ρ

h

f

141



Let us now examine Kraus maps in our running examples:

• In the MUC, R ⊂ C, let c, c′ be any two complex numbers. Kraus maps in R ⊂ C
are (=, r) : c −→ c′ such that c = rc′. If c′ 6= 0, then there is at most one Kraus map

(=, r) : c −→ c′. If c′ = 0, then c = 0 and for all r′ ∈ R, (=, r) ∼ (=, r′) : c −→ c′. Thus,

in the complex plane, there are only Kraus maps between those complex numbers that

can be connected by a line that extends through the origin making it the projective

line P 1(C), where C refers to the complex field.

R

ι

• In MatC ⊂ FMatC, every Kraus map (M,Cn) : (X,A,A⊥) −→ (Y,B,B⊥) is given by the

sum of pure completely positive maps i.e., Kraus maps with C as ancillary object:

M

(X,A)

M †

(X,A⊥)

N

N †

(Y,B)

Cm

(Y,B⊥)

Choi’s theorem states that every completely positive map can be written as a sum of

pure completely positive maps. Analogously, every Kraus map in the category FMatC

can be written as a sum of pure maps as above. Given a Kraus map (M,Cm), here is

the argument:

(M ⊗ 1)(1⊗NN †)(M † ⊕ 1) = (M ⊗ 1)

((∑
i

q

iqi

)
⊗NN †

)
(M † ⊕ 1)

=
∑
i

(
(M(

q

i ⊗ 1)⊗ 1)(1⊗ hh†)(((qi ⊕ 1)M †)⊕ 1)
)

=
∑
i

(Mi ⊗ 1)(1⊗NN †)(M †
i ⊕ 1)

142



7.2.2 CP∞-construction for MUCs

The CPM-construction [110] on †-compact closed categories applied to the concrete category

of finite-dimensional Hilbert Spaces and linear maps produces a category of mixed states and

completely positive maps. Coecke and Heunen [46] generalized the CPM-construction to †-
symmetric monoidal categories, and thus, to infinite dimensions. They call the generalized

construction the CP∞-construction. In this section, we generalize the CP∞ construction to

MUCs: our construction coincides with the original CP∞-construction when the MUC is a

†-monoidal category.

The CP∞-construction on MUCs is defined as follows:

Definition 7.4. Given a MUC, M : U −→ C, define CP∞(M : U −→ C) to have:

Objects: Same as C

Maps: [(f, U)] : A −→ B := {f : A −→M(U)⊕B ∈ C)} / ∼

Composition: Composition of [(f, U)] : A −→ B and [(g, V )] : B −→ C is defined as follows:

[(f, U)][(g, V )] := (A
f−→M(U)⊕B 1⊕g−−→M(U)⊕(M(V )⊕C)

a⊕−→ (M(U⊕V ))⊕C ∈ C) / ∼

Identity: 1A is defined as [A
(uL⊕)−1

−−−−→ ⊥⊕ A
(nM⊥ )−1 ⊕ 1
−−−−−−−−→M(⊥)⊕ A] ∈ X

In CP∞(M : U −→ C), composition of f : A −→ M(U) ⊕ B, and g : B −→ M(V ) ⊕ C is

drawn as follows:
f

g

M

Observe that our CP∞-construction on M : U −→ C coincides with the original CP∞-

construction [46] when M : U −→ C is dagger monoidal category U = C and M = id.

Before we prove that CP∞(M : U −→ C) is a category, we observe the following result

about unitary objects:

143



Lemma 7.5. Suppose C and D are unitary objects. Then, the following diagrams commute:

M(C)⊗M(D)

mM⊗ ��

M(ϕ)⊗M(ϕ) //

(a)

M(C†)⊗M(D†)

ρ⊗ρ��
M(C ⊗D)

M(ϕ) ��

M(C)† ⊗M(D)†

λ⊗��
M((C ⊗D)†)

ρ
��

(M(C)⊕M(D))†

mx†��
(M(C)⊗M(D))†

(mM⊗ )†
// (M(C)⊗M(D))†

M(C)⊕M(D)
M(ϕC)⊕M(ϕD) //

n−1
⊕ ��

(b)

M(C†)⊕M(D†)

ρ⊕ρ��
M(C ⊕D)

M(ϕ) ��

M(C)† ⊕M(D)†

λ⊕��
M((C ⊕D)†)

ρ
��

(M(C)⊗M(D))†

(mx−1)†��
(M(C ⊕D))† (M(C)⊕M(D))†

n†⊕

oo

Proof.

M

ρ

M

[U.5](a)
=

ρ

M

M
[P.2]
=

M

M

ρ ρ

=

M

ρ ρ

=

M

ρ ρ

=

M

ρ ρ

=

M

ρ ρ

The commuting diagram (b) is proved similarly.

Diagrammatic representation of Lemma 7.5 (b):

ρ

= ρ ρ

144



Proposition 7.6. CP∞(M : U −→ C) is a category.

Proof.

• Composition is well-defined: That is to say, if (f, U) ∼ (f ′, U ′) then (f, U)(g, V ) ∼
(f ′, U ′)(g, V ). First we observe that: It suffices to show that:

g

f

g

f

h

h

ρ ρ

=

g

f

h

h

g

f

ρ
ρ

=

g

f

h

f

ρ
ρ

g

h

=

g

f

h

f

ρ

g

h

ρ ρ

=

g

f

h

f

ρ

g

h

ρ ρ

=

g

f

h

f

ρ

g

h

ρ ρ

Lemma 7.5
=

g

f

h

f

g

h

ρ

ρ

=

g

f

h

f

g

h

ρ

ρ

=

g

f

h

f

g

h

ρρ

(g, V ) ∼ (g′, V ′)⇒ (f, U)(g, V ) ∼ (f, U)(g′, V ′) is proved similarly.

• Identity laws hold: [(uL⊕)−1(nM⊥ )−1][f ] = [f ] = [f ][(uL⊕)−1(nM⊥ )−1] It suffices to prove

the following:

f

f

1A

ρ
=

f

f

ρ

145



The proof uses the facts that ρ is a monoidal transformation (diagram on the left),

and that for any unitary object U , the diagram on the right holds:

>
mM> ��

λ> // ⊥†
(nM⊥ )† ��

M(>)
M(λ>)

//M(⊥†) ρ
//M(⊥)†

((nM⊥ )−1)†
// ⊥†

>⊗ U
uL⊗ //

m−1⊗1 ��

U
(uL⊕)−1
��

⊥⊗ U mx
// ⊥⊕ U

• Composition is associative: Suppose (f, U1) : A −→ B, (g, U2) : B −→ C, (h, U3) : C

−→ D ∈ CP∞(M : U −→ C). Then,

((f, U1)(g, U2))(h, U3) :=

f

g

h

M

∼ f

h

g

M

=: (f, U1)((g, U2)(h, U3))

Since (U1 ⊕ U2) ⊕ U3
a⊕−−→ U1 ⊕ (U2 ⊕ U3) is a unitary isomorphism, by Lemma 7.2,

(fg)h ∼ f(gh) ∈ C ⇒ ((f, U1)(g, U2))(h, U3) = (f, U1)((g, U2)(h, U3)) ∈ CP∞(M : U
−→ C).

There is a canonical functor Q : C −→ CP∞(M : U −→ C) of the original category into

the category of channels:

Lemma 7.7. Let M : U −→ C be a mixed unitary category, then there is a canonical functor:

Q : C −→ CP∞(M : U −→ C);
A
f ��
B

7→
A
f(uL⊕)−1((nM⊥ )−1⊕1)��

M(⊥)⊕B

Proof. Q preserves identity maps and composition because f(uL⊕)−1 ∼ f ∼ (uL⊕)−1f .

There is no reason why this functor should be faithful and, indeed, in many cases it will

not be faithful [46].

Theorem 7.8. CP∞(M : U −→ C) is an isomix category.

Proof. We know that CP∞(M : U −→ C) is well-defined category. Indeed, it has two tensors:

146



⊗̂ and ⊕̂ given by the following Kraus maps:

f⊗̂g := f g f⊕̂g := f g

The units for ⊗̂ and ⊕̂ are > and ⊥ respectively.

The linear distribution maps and all the basic natural isomorphisms are inherited from

X by composing each one of them with (uL⊕)−1 i.e.,

A⊗ (B ⊗ C)
a⊗−→ (A⊗B)⊗ C

(uL⊕)−1

−−−−→ C / ∼

A⊗̂(B⊗̂C)
a⊗̂:=a⊗(uL⊕)−1

−−−−−−−−→ (A⊗̂B)⊗̂C ∈ CP∞(M : U −→ C)

We prove that the associators and the other maps as defined above are natural isomor-

phisms in CP∞(M : U −→ C): From Lemma 7.7, Q : C ↪→ CP∞(M : U −→ C) is functorial

which means that all commuting diagrams and isomorphisms are preserved. It remains to

show that Q preserves the linear structure and the mix map:

• Q preserves ⊗: Suppose f : A −→ A′ and g : B −→ B′ ∈ C. Then, Q(f)⊗̂Q(g) =

Q(f ⊗ g):

Q(f)⊗̂Q(g) := A⊗̂B
f(uL⊕)−1⊗̂g(uL⊕)−1

−−−−−−−−−−→ (⊥⊕̂⊥)⊕̂(A′⊗̂B′)

Q(f ⊗ g) := A⊗̂B
(f⊗g)u−1

⊕−−−−−→ ⊥⊕̂(A′⊗̂B′)

Since, ⊥ ⊕⊥
uL⊕−→ ⊥ is a unitary isomorphism and, f(uL⊕)−1⊗̂g(uL⊕)−1(uL⊕ ⊕ 1) = (f ⊗

g)(uL⊕)−1 ∈ C, by Lemma 7.2,

f(uL⊕)−1)⊗̂(g(uL⊕)−1 ∼ (f ⊗ g)(uL⊕)−1

Therefore, Q(f)⊗̂Q(g) = Q(f ⊗ g). Similarly, Q(f)⊕̂Q(g) = Q(f ⊕ g).

• Q preserves all basic natural isomorphisms (associators, unitors, symmetry maps, mix

map) and linear distributions:

To prove that a⊗̂ is natural in CP∞(M : U −→ C), we need to prove that the following

diagram commutes in CP∞(M : U −→ C):

147



A⊗̂(B⊗̂C)
a⊗̂ //

(f⊗̂g)⊗̂h ��

(A⊗̂B)⊗̂C
f⊗̂(g⊗̂h)��

A′⊗̂(B′⊗̂C ′)
a⊗̂ // (A′⊗̂B′)⊗̂C ′

In other words, we need to show that the two compositions in C are equivalent as Kraus

maps. This is follows from Lemma 7.2 as there is a unitary isomorphism between the

ancillary objects ⊥⊕ (U1⊕ (U2⊕U3)) and ⊥⊕ (U1⊕U2)⊕U3. Similarly, we can show

that the other basic linearly distrbutive transformations as defined are natural trans-

formations. Since Q is functorial, it preserves isomorphisms and commuting diagrams

so that the coherence diagrams automatically commute.

CP∞(M : U −→ C), in general, does not have a dagger even when C is a †-isomix category.

However, if M : U −→ C is a ∗-MUdC, that is, a mixed unitary category in which every object

in U has a unitary dual and if C is a †-isomix ∗-autonomous category, then CP∞(M : U −→ C)

has an obvious dagger as shown below:

Lemma 7.9. If M: U −→ C is a ∗-MUdC then CP∞(M: U −→ C) is a †-isomix category and

N : U −→ CP∞(M : U −→ C);
U1

f ��
U2

7→
M(U1)

[(M(f)(uL⊕)−1((nM⊥ )−1⊕1),⊥)]��
M(U2)

is a ∗-MUdC.

Proof. (Sketch) We first oberve that CP∞(M : U −→ C) is a †-isomix category. We have

already proven that CP∞(M : U −→ C) is an isomix category. Suppose X is a ∗-MUdC, then

the † functor for CP∞(M : U −→ C) is defined as follows: Suppose (f, U) : A −→ B and

(η, ε) : V aa u U with A′ aa A and B′ aa B ∈ C then,

† : CP∞(M : U −→ C)op −→ CP∞(M : U −→ C);
f

A

U B

7→
f

ε

V †

B†

A†

148



We need to prove that † is well-defined: f ∼ g ⇒ f † ∼ g†.

f

ε

f

ε

V † U †
B†

A†

A′†

V ††
U ††

B†† A′††

A††

'

f

ε

f

ε

i i
A′† A†

B†

B′†

V †

V ††
A††

A′††

B†† B′††

A† B′†

A B′

A†† B′††

=

f

f

A B′

A† B′†

The equality is proved by using the snake diagrams and [U.2], [U.5](b), and [Udual.].

Suppose f : A→ U1 ⊕B and g : B −→ U2 ⊕ C with (η1, ε1) : U1 aa u V1 and (η2, ε2) : U2 a
a u V2, then † preserves composition, that is (fg)† = g†f †:

(fg) : A −→ (U1 ⊕ U2)⊕ C
(fg)† : C† → (V1 ⊗ V2)† ⊕ A†

g† : C† −→ U †2 ⊕B† f † : B† −→ U †1 ⊕ A†

(g†f †) : C† → (V †2 ⊗ V
†

1 )⊕ A†

To prove that (fg)† = (g†f †) in CP∞(M : U −→ C), represent the maps in circuit calculus

and fuse the †-boxes. Once the †-boxes are fused, use Lemma 7.2 to show that both Kraus

operations belong to the same equivalence. † preserves identity map since ((uR⊕)−1, uL⊕) : > a
a u ⊥. Hence, † is a functor.

All the basic natural isomorphisms associated with † functor - λ⊕, λ⊗, λ⊥, λ>, ι - are

lifted from C using Q : C ↪→ CP∞(M : U −→ C) which is defined in Lemma 7.7. The lifted

morphisms are natural in CP∞(M : U −→ C) since their ancillaries are unitarily isomorphic.

Since † is functorial, all commuting diagrams are preserved. By the same argument, unitary

structure is preserved under Q.

Thus, CP∞(M : U −→ C) is a mixed unitary category: as Q preserves all unitary linear

adjoints this makes CP∞(M : U −→ C) a ∗-MUdC.

Lemma 7.10. The CP∞-construction is functorial on ∗-MUdCs.

149



Proof. Let M : U −→ C and M ′ : U′ −→ C′ be ∗-MUdCs and the following square be a MUC

morphism:

U M //

Fu �� ⇓ α

C
F��

U′
M ′

// C′

Fu and F are †-isomix functors and Fu preserves unitary structure i.e., Fu(ϕA)ρFu = ϕFu(A)

and (nFu⊥ or mFu
> ) is a unitary isomorphism. α is a †-linear natural isomorphism.

Then, the CP∞-construction is functorial if there is a MUC morphism:

U MQ //

Fu �� ⇓ α

CP∞(M : U −→ C)

G��
U′

M ′Q
// CP∞(M ′ : U′ −→ C′)

Recall the functor Q : C ↪→ CP∞(M : U −→ C) from Lemma 7.7. Define G : CP∞(M : U
−→ C) −→ CP∞(M ′ : U′ −→ C′) as follows:

G : CP∞(M : U −→ C) −→ CP∞(M ′ : U′ −→ C′);
A

[(f,U)] ��
B

7→
F (A)

[(F (f)nF⊕(α⊕1),Fu(U))]��
F (B)

The action of functor G : CP∞(M : U −→ C) −→ CP∞(M ′ : U′ −→ C′) on maps is drawn as

follows:

f 7→
F

F(A)

F (B)M ′(Fu(U))

f

α

The natural isomorphism α lifts to CP∞(M ′ : U′ −→ C′) as follows:

α′ := [(αu(u
L
⊕)−1((nM

′

⊥ )−1 ⊕ 1),⊥)] : F (M(U)) −→M ′(Fu(U))

It is immediate that α′U : (G(Q(M(U1) := F (M(U1))) −→ (Q(M ′(Fu(U2))) := M ′(Fu(U1))

is an isomorphism. Let U1
f−−→ U2 ∈ U. To prove that α′ is natural, we show that the

following diagram commutes in CP∞(M ′ : U′ −→ C′).

F (M(U1))
α′U1 ��

[((F (M(f)(uL⊕)−1((nM⊥ )−1⊕1))nF⊕(α⊕1)),Fu(⊥))]
// F (M(U2))

α′U2��
M ′(Fu(U1))

[(M ′(Fu(f))(uL⊕)−1((nM
′

⊥ )−1⊕1),⊥)]

//M ′(Fu(U2))

150



The underlying Kraus maps for both the compositions are equivalent since Fu(⊥)
(nFu
⊥ )−1

−−−−−−→
⊥ is unitarily isomorphic:

α

FuM
′

M ′

M ′

M

M(⊥⊕⊥)
M ′(Fu(U2)

F (M(U1)

⊥ f

⊥
∼ α α

M

MF

M ′(Fu(⊥)⊕⊥) M ′(Fu(U2))

F (M(U1))

f

⊥

⊥

Hence, the diagram commutes and α′ is natural in CP∞(M ′ : U′ −→ C′).

The following table summarizes the structures inherited by CP∞(M : U −→ C) from

M : U −→ C:

M : U −→ C CP∞(M : U −→ C)

mixed unitary category isomix category

∗-mixed unitary category with unitary duals ∗-mixed unitary category with unitary duals

†-symmetric monoidal category symmetric monoidal category

†-compact closed category †-compact closed category (CP∞(X) ' CPM(X))

7.3 Environment structure for MUCs

In this section, we describe when a given isomix category is of the form CP∞(M : U −→ C)

by generalizing the notion of environment structures from †-symmetric monoidal categories

(see [46]) to mixed unitary categories. We then show that an environment structure over M

which has purification is isomorphic to CP∞(M : U −→ C).

7.3.1 Environment structure

We first define environment structure for MUCs and give examples:

Definition 7.11. An environment structure for a mixed unitary category M : U −→ C
is a strict isomix functor F : C −→ D where D is an isomix category and a family of maps

U : F (M(U)) −→ ⊥ indexed by objects U ∈ U such that the following conditions hold:

151



[Env.1] For U, V ∈ U, the following diagrams commute:

(a) F (M(U))⊗ F (M(V )) mx //

m⊗ ��

F (M(U))⊕ F (M(V ))
⊕ // ⊥⊕⊥

u⊕
��

F (M(U ⊗ V )) // ⊥

(b) F (M(U ⊕ V ))

**
n⊕ ��

F (M(U))⊕ F (M(V ))
⊕

// ⊥⊕⊥ u⊕
// ⊥

[Env.2] Kraus maps (f, U) ∼ (g, V ) ∈ C if and only if the following diagram commutes:

F (M(A))
F (M(f))

tt
F (M(g))

**
F (M(U ⊕B))

ν⊗ ��

F (M(U ⊕B))
ν⊗ ��

F (M(U))⊕MF (B)

⊕1 ��

F (M(U))⊕ F (M(B))

⊕1 ��
⊥⊕ F (M(B)) ⊥⊕ F (M(B))

The conditions are represented diagrammatically as follows:

[Env.1a] MF =

⊥

[Env.1b] MF

⊥

=

F (M(U ⊕ V ))

[Env.2]
f

⊥

F =
g

⊥

F ⇔ f ∼ g

Definition 7.12. An environment structure F : C −→ D with for a mixed unitary category

M : U −→ C has purification if

• F is bijective on objects, and

• for all f : F (A) −→ F (B) ∈ D, there exists a Kraus map (f ′, U) : A −→ B ∈ C such

152



that

[Env.3] f =

f ′

⊥

F

Equationally,

F (A)
f−−→ F (B) = F (A)

F (f ′)−−−−→ F (M(U)⊕B)
n⊕−−−→M(F (U))⊕F (B)

⊕ 1
−−−−→ ⊥⊕F (B)

u⊕−−−→ F (B)

Lemma 7.13. Every mixed unitary category M : U −→ C has an environment structure

given by

F : C −→ CP∞(M : U −→ C);
A
f ��
B

7→
A

[(f(uL⊕)−1(nM⊥ )−1,⊥)]��
M(⊥)⊕B

and

: M(U) −→ ⊥ ∈ CP∞(M : U −→ C) := [((uR⊕)−1, U)]

for each object U ∈ U. Moreover, this environment structure has purification.

Proof. F is functorial since f(uL⊕)−1((nM⊥ )−1 ⊕ 1) ∼ f ∼ (uL⊕)−1(nM⊥ )−1(1 ⊕ f). Define

F⊗ = F⊕ := F . Note that, F is a strict monoidal functor and an isomix functor. In order to

prove that F : C −→ D with satisfy axioms for environment structures, the properties of

isomix functor and Lemma 7.2 are used.

To prove that this environment structure has purification, consider any map [(f, U)] : A

−→ B ∈ CP∞(M : U −→ C). Then, there exists a Kraus map (f, U) : A −→ B ∈ C. Then, the

map in equation [Env. 3] is drawn as follows:

F(f) =

 ⊥ ⊥

U B

⊥⊕B

f

⊥



Because, ⊥ ⊥

U B

⊥⊕B

f

⊥

∼
f

, the environment structure (Q : C −→ CP∞(M : U −→ C), ) has

purification.

153



The following are the environment structures for our running examples:

• Consider the MUC, R∗ ⊂ C. Then,

(R∗ Q−−→ CP∞(R ⊂ C), r : r −→ 1)

is an environment structure where, r := (=, 1/r) : r −→ 1

• Consider the MUC, MatC −→ FMatC. Then,

MatC
Q−−→ CP∞(MatC ⊂ FMatC)

is an environment structure where, Cn : Cn −→ C; ρ 7→ Tr(ρ).

7.3.2 Characterizing the CP∞ construction

In the rest of the section, we show that any environment structure with purification is

initial in the category of environment structures. Given Lemma 7.13, this shows that any

environment structure over a M : U −→ C with purification is isomorphic to CP∞(M : U
−→ C). Thus, environment structures with purification captures the abstract structure of

CP∞(M : U −→ C).

Definition 7.14. Let M : U −→ C be a mixed unitary category. Define a category Env(M : U
−→ C) as follows:

Objects: Environment structures for M : U −→ C

Arrows: Suppose D : C −→ D with , and D′ : C −→ D′ with are two environment

structures. Then, a morphism of environment structures is a strict isomix functor

F : D −→ D′ such that

• DF = D′

• F ( ) =

Identity arrows: Identity functor

Composition: Linear functor composition

Lemma 7.15. Let M : U −→ C be a mixed unitary category. Suppose D : C −→ D with is

an environment structure with purification, then it is initial in Env(M : U −→ C).

154



Proof. Suppose (D′ : X → Y′, ) ∈ Env(C). We show that there is a unique strict isomix

functor F : Y→ Y′ such that DF = D′ and F ( ) = .

Define F : D→ D′ as follows:

• Since (D, ) has purification, D : C −→ D is bijective on objects. Then for all A ∈ D,

A = D(X) for a unique X ∈ C. Then,

F (A) := D′(X)

• Let f : A→ B ∈ D. Since (D : C −→ D, ) has purification,

f

A

B

= D(f ′)

D(Y )

D(X)

F7−→ D′(f ′)

D′(Y )

D′(X)

where F ( ) = .

This fixes the definition of F . To prove that F is well-defined on arrows we need to show

that f = g ⇒ F (f) = F (g). Since, (D, ) has purification, let

f = D(f) g = D(g)

Then,

D(f) = D(g) ⇔ f = g ⇔ D′(f) = D′(g)

F : D −→ D′ preserves identity:

F (1A) = F (1D(X)) = F (D(1X)) = D′(1X) = 1D′(X) = 1F (D(X)) = 1F (A)

F : D −→ D′ preserves composition:

F

 f

g

 = F


D(g)

D(f)

 Env.1a
= F

 D′(f)

D′(g)

 :=
D′(f)

D′(g)

Env.1a
=

D′(g)

D′(f)

=
F (f)

F (g)

F : D −→ D′ is strict monoidal in ⊗:

F

(
f ⊗ g

)
= F

(
D(f) ⊗ D(g)

)
= F

 D(f) D(g)

 =
D′(f) D′(g)

= D′(f) ⊗ D′(g)

155



and, F ((uL⊗)A) = F ((uL⊗)D(X)) = F (D((uL⊗)X)) = D′((uL⊗)X) = (uL⊗)D′(X) = (uL⊗)F (D(X)) = (uL⊗)F (A)

Similarly, it can be proved that F is strict comonoidal in ⊕.

Define F⊗ = F⊕ := F and linear strengths to be identity maps. Thus, F is a unique

strict Frobenius functor. F is an isomix functor because D and D’ preserve the mix map m

on the nose.

Corollary 7.16. Suppose D : C −→ D with is an environment structure with purification

for M : U −→ C. Then, D ' CP∞(M : U −→ C).

Proof. By Lemma 7.15, D : C −→ D with is initial in Env(M : U −→ C). By Lemma 7.13,

F : C −→ CP∞(M : U −→ C) with [(uR⊕)−1, U)] is an environment structure for M : U −→ C
which has purification, hence it is also an initial object in Env(M : U −→ C). Since, initial

objects of a category are isomorphic, there exists a strict isomix functor D F−→ CP∞(M : U
−→ C) that is full and faithful.

156



Chapter 8

Linear monoids, comonoids, and

bialgebras

In a †-monoidal category, (strong) complementary observables are axiomatized by two special

commutative †-Frobenius algebras interacting bialgebraically to produce two Hopf algebras,

see Section 6.4.2. In an LDC, Frobenius algebras are generalized to linear monoids. However,

bialgebraic interaction between two linear monoids is prohibited due to the directionality of

the linear distributor. This raises the following question: how one can model complementary

observables in a †-isomix setting?

In this chapter, we develop new structures called linear comonoids and linear bialgebras

which provide the basis to describe complementary systems in †-isomix categories.

8.1 Linear monoids

For a Frobenius algebra, the monoid and the comonoid occur on the same object, and the

object is self-dual. In an LDC, the presence of distinct tensor products - the tensor and the

par - allows a ‘Frobenius interaction’ between a monoid and its dual comonoid, however the

monoid and the comonoid now occur on distinct objects. A linear monoid, loosely defined,

is a ⊗-monoid on an object A and A has a dual object.

8.1.1 Duals

Adding the sequent rules for negation (see Figure 1.3) to LDCs results in the notion of duals.

We briefly discussed duals [35] in LDCs in Section 2.1.4. We delve deeper into the notion of

duals, subsequently introduce †-duals in this section.

In a compact closed category or a ∗-autonomous category there is a canonical dual asso-

ciated with each object. In an LDC if an object has a dual, it must be specified. Of course,

157



any two duals of an object are isomorphic. A self-duality is a dual, (η, ε) : A aa B in which

A is isomorphic to B (or A = B). A dual, (η, ε) : A aa B such that A is both left and right

dual of B, is called a cyclic dual. In a symmetric LDC, every dual (η, ε) : A aa B gives

another dual (ηc⊕, c⊗ε) : B aa A, which is obtained by twisting the wires using the symmetry

map. Thus, in a symmetric LDC, every dual is a cyclic dual.

Lemma 8.1. In an LDC, if (a, b) : A aa B, and (c, d) : C aa D are duals then (x, y) : A⊗ C aa
D ⊕B, and (x′, y′) : A⊕ C aa D ⊗B are duals, where

x :=
c

A⊗ C D ⊕B

a

y :=
b

A⊗ CD ⊕B

d

x′ :=
c

A⊕ C D ⊗B

a

y′ :=
b

A⊕ CD ⊗B

d

Definition 8.2. A morphism of duals, (f, g) : ((η, ε) : A aa B) −→ ((τ, γ) : A′ aa B′), is

given by a pair of maps f : A −→ A′, and g : B′ −→ B such that:

(a)

τ

A′

B′

g

B

=

η

B

A

f

A′

(b)
γ

B′

A′

f
A

=
ε

A

B

g
B′

A morphism of duals is determined by either of the maps, as f is dual to g. They are,

thus, Australian mates, see [35].

In a †-LDC, if A is dual to B, then B† is dual to A†:

Lemma 8.3. In a †-LDC, if (η, ε) : A aa B is a dual the (ε†, η†) : B† aa A† is a dual where:

ε† := > λ>−−−→ ⊥† ε†−−→ (B ⊗ A)†
λ−1
⊕−−−→ B† ⊕ A†

η† := A† ⊗B† λ⊗−−−→ (A⊕B)†
η†−−→ >†

λ−1
⊥−−−→ ⊥

This leads to the notion of †-duals:

Definition 8.4. In a †-LDC, a right †-dual, A
† � � A† is a dual (η, ε) : A aa A† such that

(ιA, 1A†) : (η, ε) : A aa A† −→ (η†, ε†) : A†† aa A†

is an isomorphism of duals. A left †-dual, A†
† � � A is a dual (η, ε) : A† aa A such that

(1A† , ιA) : η†, ε†) : A†† aa A† −→ (η, ε) : A† aa A

is an isomorphism of duals. A self †-dual is a right (or left) †-dual with an isomorphism

α : A −→ A† such that αα−1† = ι.

(ιA, 1A†) being an isomorphism of the duals means that the following equations hold:

(a)

η

A†† A†

ι
= ε

A†

A†† A†

A

(equivalently) (b)

ε

A† A

= η

A†

AA†

A

ι

(8.1)

158



In the sequent calclulus of †-linear logic, a premise is a right †-dual if it satisfies the rules

in Figure 8.1. As shown in Section 1.1.6, one can derive η : > −→ A⊕A†, and A† ⊗A −→ ⊥
for right †-duals using these rules. Note that the left †-duals can be derived using the same

rules, the (†) rule and the (ι) rules in Section 3.1.2.

Γ, A ` ∆
(†-dual:R)

Γ,` A†,∆
Γ, A† ` ∆

(†-dual:L)
Γ ` A,∆

Figure 8.1: Sequent rules for right †-duals

Lemma 8.5. In a †-LDC, the following are equivalent for a dual (η, ε) : A aa B:

(i) There exists an isomorphism from the dual to its right †-dual (illustrated in diagram

(a) below).

(ii) There exists an isomorphism from the dual to its left †-dual (illustrated in diagram (b)

below).

(iii) There exists a morphism (p, q) between the dual and its dagger such that (p, q) satisfies

any two of the following three conditions: (1) pq† = ιA, (2) p†q = ι−1
B , and (3) p or q

are isomorphisms.

(a)
A

(η,ε) � � BOO
q

A
†(τ,γ)

� � A†
(b)

A
(η,ε) � �

p ��

B

B†
†(τ ′,γ′)

� � B
(c)

A
(η,ε) � �

p ��

BOO
q

B†
(ε†,η†)

� � A†

Proof. (i)⇒ (ii) Given that (η, ε) : A aa B (1, q)−−−−→ (τ, γ) : A aa A† is an isomorphism of duals.

Then, define p : A −→ B† as follows:

p :=
q

ε

B

A

B†

We note that ιBp
†q = 1B:

q

q

ι

B

A†
ε

η

A

B†

B

B††

=

q

q

ι

B

B

ε

εB A

A†

A

=

q

q

B

B

ε

ε
B

A†

A

ι−1

(1)
=

q

B

B

γ

ε
B

A

ι−1

A†

(2)
=

q
ι−1

B

B

ι

τ

A

A†

A†

A

ε

(3)
=

q

ι−1

B

B

τ

A†††

A†

A†

A

ε

ι−1

=
q

B

B

τ

A

ε

A†

(4)
=

B

B

η

ε

= B

159



(1) and (4) are because (1, q) is a morphism of duals, (2) is because of the right †-duality

of A, and (3) is because ι−1†
B = ιB† .

Define the left †-dual (τ ′, γ′) : B† aa B as follows:

τ ′ =

τ ′

B† B

:=

τ

B† B

p q
A A† =

η

B† B

p
A γ′ =

γ′

B†
B

:=
γ

B†B
p−1q−1

AA† =
ε

B
q−1

A

A†

It is clear that τ ′ and γ′ satisfy snake diagrams. (τ ′, γ′) : B† aa B can be proven to be a

left †-dual using the equation ιBp
†q = 1B. It is straightforward from the definition of

τ ′ and γ′ that (p, 1) is a morphism of duals.

(ii)⇒ (iii) Given that (p, 1) is a morphism of duals as illustrated by diagram (b). Define,

q : A† −→ B :=
p

η

B

AA†

(p, q) : ((η, ε) : A aa B) −→ ((η†, ε†) : B† aa A†) is a morphism of duals because:

q

B†

ε

B

A† =
p

η

B

A

B†

ε

=
p

B†

η

B

A

Since p and q are isomorphisms, it remains to prove that either pq† = iA or p†q = ι−1
B .

Using the defintion of q, we note that,

p : A −→ B† =
q

ε

B

A

B†

From the proof of (i)⇒ (ii) we know that p†q = ι−1
B . Thus, statement (iii) holds.

(iii)⇒ (i) Assume that statement (iii) holds. Define a dual (τ, γ) : A aa B as follows:

τ

A A†

:=
q−1

A

B

A†

η

γ

AA†

:=
A†

B

A

q

ε

(τ, γ) : A aa A† is a right †-dual because pq† = ιA. It is straightforward that (1A, q) is a

morphism of duals.

A †-dual is a dual that satisfies any of the three equivalent statements of the previous

Lemma. Notice, however, in statement (i) of the previous lemma, that the morphism to a

given right †-dual is uniquely determined by demanding the map is (1A, q) as 1A completely

160



determines q. If there exists a right †-dual for A, then any mere linear dual of A is a †-dual.

Thus, †-duality really is a property of the object A rather than of the duality. Hence, in the

rest of the thesis, we will use right and left †-duals synonymously with †-duals.

In a dagger monoidal setting, conventionally, we have a dagger dual [110] when the

symmetry map acts an isomorphism between the dual and its dagger:

A B

B† = B A† = A

(η, ε)

(ε†, η†)

ε† = ηc⊗; η† = c⊗ε

Using the symmetry map in this manner requires the dagger functor to be stationary

on objects (A = A†) which does not hold in a †-LDC in general (A 6= A†). The following

diagram represents a dagger-dual in a †-LDC:

A B

B† A†

(η, ε)

(ε†, η†)

ε† = η(q−1 ⊗ p)λ⊕

p q

In the category of complex finiteness matrices, FMat(C), which is a †-∗-isomix category,

every dual is a †-dual. The category of finite-dimensional complex matrices, Mat(C) which

is a †-compact closed category is isomorphic to the core of FMat(C), see Section 2.3.4. Thus,

every dual in Mat(C) is also †-dual. In fact every dual in FMat(C) is both a †-dual and a

unitary dual (η† = εc⊗). These examples are discussed in detail in Section 10.1.1.

Observe †-linear functors preserve †-duals:

Lemma 8.6. †-linear functors preserve †-duals.

Proof. Let X, and Y be †-LDCs. Let (F⊗, F⊕) : X −→ Y be a †-linear functor. Then, for

each object A, we have maps:

sA : F⊗(A†)
'−−→ (F⊕(A))† tA : (F⊗(A))†

'−−→ F⊕(A†)

such that (s, t) : (F⊗((−)†), (F⊕(−)†)) ⇒ ((F⊕(−))†, F⊗((−)†)) is a linear natural isomor-

phism. We must prove that if A
†◦� � A† is a right †-linear dual, then F⊗(A) has a right

†-dual.

Suppose A
† � � A† is a right †-dual. Since, linear functors preserve linear duals, F⊗(A) aa

161



F⊕(A†) is also a linear dual with the cap and the cup given by:

> η′−−→ F⊗(A)⊕ F⊗(A)† :=
t−1

F⊕

F⊗(A)

F⊕(A†)

(F⊗(A))†

A A†

F⊗(A)† ⊗ F⊗(A)
ε′−−→ ⊥ :=

t

F⊗

(F⊗(A))†

F⊕(A†)

F⊗(A)

A† A

To show that it is a right †-dual:

t−1

F⊕

F⊗(A)

F⊕(A†)

(F⊗(A))†

A A†

ι =
t−1

F⊕

F⊗(A)††

F⊕(A†)

(F⊗(A))†

A

s

t

ι

F⊗(A††)

F⊕(A†)†

=
t−1

F⊕

F⊗(A)††

F⊕(A†)

(F⊗(A))†

s

t

F⊗(A††)

F⊕(A†)†

=
t−1

F⊗

F⊗(A)††

F⊕(A†)

(F⊗(A))†

s

t

F⊕(A†)†

s−1

t
(F⊗(A))†F⊕(A†)†

= F⊗

F⊗(A)††
(F⊗(A))†

t

A†

In a symmetric †-LDC, if (a, b) : A
† � � A† and (c, d) : B

† � � B† are †-duals, then (A⊗B) aa
(A† ⊕B†), and (A⊕B) aa (A† ⊗B†) are †-duals.

A morphism of †-duals is a morphism of duals in one of the following forms:

• For a right †-dual it consists of a map and its dagger:

(f, f †) : ((η, ε) : A
† � � A†) −→ ((η′, ε′) : B

† � � B†)

• For a left †-dual it is of the form:

(f †, f) : ((η, ε) : A†
† � � A) −→ ((η′, ε′) : B†

† � � B)

• A pair (f, g) : ((η, ε) : A
† � � B) −→ ((η′, ε′) : C

† � � D) for general dagger duals such

that one of the following (equivalent) diagrams commute:

(a) C†
f† //

q′ ��

A†

q
��

D g
// B

(or) (b) A
f //

p ��

C
p′��

B†
g†
// D†

(8.2)

where (p, q) is the isomorphism between the dual (η, ε) : A aa B and its dagger (ε†, η†) :

B† aa A†, and (p′, q′) is the isomorphism between the dual (η′, ε′) : C aa D and its dagger

(ε′†, η′†) : D† aa C†, see Statement (iii) of Lemma 8.5.

The commuting diagrams (a) and (b) imply that the morphism (f, g) behaves coherently

162



with the isomorphisms which determine †-dual, see the below diagram:

A
(η,ε) � �

p ��

f

��

BOO
q

B†
(ε†,η†)

� �

g†

��

A†

C
(η′,ε′) � �

p′ ��

DOO
q′

g

``

D†
(ε′†,η′†)

� � C†

f†

``

8.1.2 Linear monoids

In a linear setting with two distinct tensor products, Frobenius Algebras are generalized by

linear monoids [62, 35]. The simplest way to describe a linear monoid is as a ⊗-monoid on

an object together with a dual for that object. The similarity to Frobenius algebras becomes

more apparent when one regards a linear monoid as a ⊗-monoid and a ⊕-comonoid with

actions and coactions.

Definition 8.7. A linear monoid, A ◦ � � B, in an LDC consists of a monoid (A, e : >
−→ A,m : A ⊗ A −→ A), a left dual (ηL, εL) : A aa B, and a right dual (ηR, εR) : B aa A such

that:

BB

B

:=
B

B B

ηL

ηL

εL

=
B

BB

ηR

ηR

εR

B

:=

B

εL

=

B

εR

(8.3)

Note that, in a symmetric LDC, given a dual (ηL, εL) : A aa B, any linear monoid A ◦ � � B,

can be normalized to use the symmetric dual (ηLc⊕, c⊗, εL) : B aa A. Suppose, in a symmetric

LDC, (ηL, εL) : A aa B, and (ηR, εR) : A aa B are cyclic duals, then:

ηR

B A
B

εL
B

=

 ηL

BA
B

εR
B

−1

which is an isomorphism of duals:

ηL

BA
B

εR
B

ηR

=

ηL

BA

B A
εL

B A
B

ηR
B

εR

A

=

εL
B A

BA

Hence, in a symmetric LDC, for any linear monoid, one can assume that the duals are given

using the symmetry map. A linear monoid is said to be symmetric when its duals are

163



symmetric. Section 10.1.2 discusses different examples of linear monoids.

An alternate form for linear monoids, which displays their similarity to Frobenius alge-

bras, is:

Proposition 8.8. A linear monoid, A ◦ � � B, in an LDC is equivalent to the following

data:

• a monoid (A, : A⊗ A −→ A, : > −→ A)

• a comonoid (B, : B −→ B ⊕B, : B −→ ⊥)

• actions, : A ⊗ B −→ B, : B ⊗ A −→ B, and coactions : A −→ B ⊕ A, : A

−→ A⊕B,

such that the following axioms (and their ‘op’ and ‘co’ symmetric forms) hold:

(a)

B

=

B

(b)

A BA

B

=

A BA

(c)

A B A

=

ABA

(d)

A

B

A

A

B

=

A

B A

A

=

A

B A

A

If the linear monoid is symmetric, then:

A B

=

A B

Proof. Suppose A ◦ � � B is a linear monoid. Then, the comonoid on B is given by the left

dual (or equivalently the right dual) of the monoid. The action and the coaction maps are

defined as follows:

B

BA

:=

A

B

B

εR

ηR

B

B A

:=

A

B

B

εL

ηL A

AB

:=

A

B A

ηR
A

A B

:=

A

BA

ηL

Equations (a)-(d) can be verified easily.

For the converse, the left and the right duals are defined as follows:

ηL :=
A

A B

εL :=
A

AB

ηR :=
A

AB

εR :=
A

A B

A linear monoid, A ◦ � � B, in a monoidal category gives a Frobenius Algebra when it is a

self-linear monoid, that is A = B, and the dualities coincide with the self-dual cup, and the

cap. Note that while a Frobenius Algebra is always on a self-dual object, a linear monoid

allows Frobenius interaction between distinct dual objects.

164



Definition 8.9. A morphism of linear monoids is a pair of maps, (f, g) : (A ◦ � � B)

−→ (A′ ◦ � � B′), such that f : A −→ A′ is a monoid morphism (or equivalently g : B′ −→ B is

a comonoid morphism), and (f, g) and (g, f) preserves the left and the right duals respectively.

Note that a morphism of Frobenius algebras is usually given by a single monoid and

comonoid morphism which has the effect of giving an isomorphism. However, the morphisms

of linear monoids as in Definition 8.9, are not restricted to isomorphisms. Here, the comonoid

morphism g : B′ −→ B, is the cyclic mate of the monoid morphism, f : A −→ A′.

Definition 8.10. A †-linear monoid, (A, , )
†◦� � (A†, , ), in a †-LDC, is a linear

monoid such that (ηL, εL) : A aa A†, and (ηR, εR) : A† aa A are †-duals and:

A†

:=
A†

εL

=
A† A†A†

A†

:=
A†

A† A†

ηL

εL

=

A†

A†A†

(8.4)

In a †-monoidal category, all †-Frobenius algebras are also †-linear monoids. However, the

converse is not true. For example, in the category of complex Hilbert spaces and linear maps,

the basic Weil Algebra C[x]/x2 = 0 is a commutative †-linear monoid but not a †-Frobenius

Algebra. More examples are discussed in Section 10.1.2.

Definition 8.11. A †-linear monoid is twisted if the dual of the multiplication coincides

with the dagger of the multiplication but with a twist:

A†A†

A†

:=
A†

A† A†

ηL

εL

=

A†

A†A†

(8.5)

In symmetric †-LDCs, endomorphism monoids (pants monoids) is a twisted †-linear

monoid, see Section 8.1.3. Note that, every commutative †-linear monoid is a twisted †-
linear monoid.

Following the same pattern as †-duals, the †-linear monoids can be classified as follows:

• a (twisted) right †-linear monoid which is a linear monoid A
◦ � � A† with left and

right †-duals such that the dual of the monoid is same as its (twisted) dagger,

• a (twisted) left †-linear monoid, that is, a linear monoid A†
◦ � � A with left and

right †-duals such that the dual of the comonoid is same as its (twisted) dagger, and

• a general †-linear monoid which is a linear monoid (A, , ) ◦ � � (B, , ) satisfying

one of the following three conditions:

165



(i) A
◦ � � B is isomorphic to its right †-linear monoid via an isomorphism (1A, q) :

A
◦ � � B −→ A

†◦� � A†,

(ii) A
◦ � � B is isomorphic to its left †- dual via an isomorphism (p, 1B) : B†

†◦� � B

−→ A
◦ � � B, or

(iii) A
◦ � � B is isomorphic to B† • � � A† via an isomorphism (p, q) and pq† = ιA;

a general †-linear monoid is twisted if one of the following conditions hold:

– in condition (i), q : (A†, †, †) −→ (B, , ) is a twisted comonoid morphism:

BB

A†

q

=
q q

BB

A†

– in condition (ii), p : (A, , ) −→ (B†, †, †) is a twisted monoid morphism:

AA

B†
p

=

p p
AA

B†

– in condition (iii), either p is twisted monoid morphism, or q is a twisted comonoid

morphism.

In condition (i) for a general †-linear monoid, the identity map completely determines q.

Hence, we observe that the existence of a right †-linear monoid is all that is needed for any

linear monoid to be a †-linear monoid. By Lemma 8.12, the observation extends to twisted

†-linear monoids too: the existence of a twisted right †-linear monoid is all that is needed

any linear monoid to be a twisted †-linear monoid.

A linear monoid has a twisted isomorphism to its right (or left) †-linear monoid if and

only if the right (or the left) †-linear monoid is twisted:

Lemma 8.12. In a †-LDC, let (η, ε) : (A, , ) ◦ � � (B, , ) be a linear monoid with an

isomorphism its right †-linear monoid:

(A, , )
(η,ε) ◦ � � (B, , )

OO
q

(A, , )
†(τ,γ) ◦

� � (A†, †, †)

The isomorphism (1, q) is twisted, that is, q is a twisted comonoid morphism if and only if

A
†◦� � A† is a twisted †-linear monoid.

166



Proof. Assume that q is a twisted monoid morphism. Then, A
†◦� � A† is a twisted †-linear

monoid because:

A†A†

A† τL

τL

γL

(1)
=

A†A†

A†

q−1 q−1

q
ηL

ηL

εL

B

B B

=

A†A†

A†

q−1 q−1

q
(2)
=

A†A†

A†

q q

q−1 q−1

=

A†A†

A†

Step (1) is true because (1, q) is a morphism of the underlying duals. Step (2) holds

because q is a twisted comonoid morphism.

For the converse, assume that (τ, γ) : A
†◦� � A† is a twisted right †-linear monoid. Then,

q is a twisted comonoid morphism because:

A†

B B

q

=

ηL
A†

B B

ηL

εL

q

B
=

τL

A†A†

A†

B B

q q

τL

γL

(∗)
=

A†A†

A†

B B

q q

Step (∗) is true because A is a twisted right †-linear monoid.

Next we note that †-linear monoids are preserved by †-linear functor:

Lemma 8.13. †-linear functors preserve (twisted) †-linear monoids.

Proof. Suppose (F⊗, F⊕) : X −→ Y is a †-linear functor, and A
†◦� � A† is a dagger-linear

monoid in X. Since, linear functors preserve linear monoids, F⊗(A) ◦ � � F⊕(A†) is a linear

monoid.

To prove that F⊗(A) is a right †-linear monoid, define the multiplication, unit, comulti-

plication, counit, action and coaction maps are given as follows:

> −→ F⊗(A) :=

F⊗

F⊗(A)

F⊗(A)⊗ F⊗(A) −−−→ F⊗(A) :=
F⊗

F⊗(A)

F⊗(A)F⊗(A)

Define:
F⊗(A)†

=

F⊗(A)†

:=

F⊕

F⊕(A†)

F⊗ =

F⊕

F⊕(A†)

167



F⊕(A†)

F⊕(A†) F⊕(A†)

=

F⊕(A†)

F⊕(A†)

:=

F⊕(A†)

F⊕(A†)

F⊕

It remains to prove that:

• The counit is the dagger of the unit map:

F⊕(A†)

:=

F⊕

F⊕(A†)

=

F⊕

F⊕(A†)

=

F⊗

F⊕(A†)

t−1

F⊗(A†)

=

F⊗(A)†

t−1

• The comultiplication is the dagger of the multiplication map:

F⊕(A†)

F⊕(A†) F⊕(A†)

:=

F⊕(A†)

F⊕(A†)

F⊕

(∗)
=

F⊕

F⊕(A†)

F⊕(A†)F⊕(A†)
F⊕

=

F⊕(A†)

F⊕(A†)F⊕(A†)

F⊗

t−1

tt

=

F⊕(A†)

F⊕(A†)F⊕(A†)

t−1

tt

Observe that in step (∗), a twist is introduced if the †-linear monoid is twisted.

A morphism of (twisted) †-linear monoids, follow the same pattern as a morphism of

†-duals:

Definition 8.14. A morphism of (twisted) †-linear monoids is defined to be one of the

following:

• For (twisted) right †-linear monoids, it is a pair of maps (f, f †) which is a morphism

of underlying linear monoids.

• For (twisted) left †-linear monoids, it is a pair of maps (f †, f) which is a morphism

of underlying linear monoids.

• For (twisted) general †-linear monoids, it is a pair (f, g) : A
†◦� � B −→ C

†•� � D such

that (f, g) is a morphism of underlying linear monoids such that one of the following

equivalent diagrams commute:

(a) C†
f† //

q′ ��

A†

q
��

D g
// B

(or) (b) A
f //

p ��

C
p′��

B†
g†
// D†

(8.6)

168



where (p, q) is the isomorphism between the linear monoid A
◦ � � B and its dagger

B†
◦ � � A†, and (p′, q′) is an isomorphism between the linear monoid C

• � � D and its

dagger D† • � � C† (as per the condition satisfied by a general †-linear monoid).

In the commuting diagram (a), f † : C† −→ A† is a morphism between the dagger

comonoids, and g : D −→ B is a morphism between the dual comonoids. If the given †-
linear monoids are twisted, then q and q′ are twisted comonoid morphisms. Dually, in the

commuting diagram (b), f : A −→ C is a monoid morphism, and g† : B† −→ D† is a mor-

phism between the conjugate monoids. If the given †-linear monoids are twisted, then the

morphisms p and p′ are twisted monoid morphisms.

8.1.3 The endomorphism linear monoid

In Section 6.4.1, we discussed the pants †-Frobenius algebras in †-KCCs. For an object A in

a KCC, the dual structure of A induces a pants algebra a.k.a. an endomorphism monoid on

the object A⊗ A∗. If the KCC is symmetric, then pants algebras are Frobenius. Moreover,

in a †-KCC, these algebras are †-Frobenius. In this section, we present analogue of a pants

algebra in †-LDCs.

Lemma 8.15. In an LDC, every dual (ηL, εL) : A aa B : (ηR, εR) induces a linear monoid:

(τ, γ) : (A⊕B) • � � (A⊗B):

:=

A⊕B

ηL

:=

A⊕B

A⊕B A⊕B

εL

τL :=

ηR

A⊗BA⊕B

ηL

γL :=
εL

A⊗B A⊕B

εR

τR :=

ηR

A⊗B A⊕B

ηL

γR :=
εR

A⊗BA⊕B

εL

In a symmetric LDC, every dual automatically induces a pants linear monoid as shown

in the previous lemma. Every linear monoid embeds into its pants linear monoids:

Lemma 8.16. In an LDC, every linear monoid embeds into the pants linear monoids induced

by its left and right duals.

Proof. SupposeA ◦ � � B is a linear monoid containing a monoid (A, , ), a left dual (ηL, εL) :

A aa B, and a right dual (ηR, εR) : A aa B. The left and the right duals gives two pants linear

monoids, (τ, γ) : (A⊕B) ◦ � � (A⊗B), and (τ ′, γ′) : (B⊕A) • � � (B⊗A) as shown in Lemma

8.15.

169



In order to prove that A ◦ � � B embeds into its pants linear monoids, we must show that

there exist morphisms of linear monoids, (R, S) and (R′, S ′), and that these morphisms are

left-invertible:
A

◦ � �

R ��

BOO
S

A⊕B • � � A⊗B

A
◦ � �

R′ ��

BOO
S′

B ⊕ A • � � B ⊗ A

We first prove that (η, ε) : A ◦ � � B embeds into (τ, γ) : (A⊕B) ◦ � � (A⊗B).

Define R : A −→ A⊕B and S : A⊗B −→ A as follows:

R

A B

A

:=

ηL

A

BA

S

A B

B

:=

ηR
B

A B

where,

BB

B

:=
B

B B

ηL

ηL

εL

=
B

BB

ηR

ηR

εR

We prove that R : (A, , ) −→ (A⊕B, , ) is a monoid morphism.

R preserves the unit:

R

A B

:=

ηL

BA

=

ηL

BA

=
B

R preserves the multiplication:

R R

εL

:=
εL

ηL ηL

=

ηL

=
ηL

=
R

Finally, (R, S) : ((ηL, εL) : A aa B) −→ ((τL, γL) : (A ⊕ B) aa (A ⊗ B)) is a morphism of

duals:

ηR

A⊕B

ηL

S
A⊗B

B

:=

ηR

A⊕B

ηL

εR
B

A B =

ηL

B

B

=

ηL

B

ηL

ηL

εL
BBA

=

ηL

ηL

BBA

=:

ηL

B

R

170



A

εL

A⊗B

εR

R
A⊕B :=

A

A A

εL

εR

ηL
A B

=

A

A A

εL

εR

ηL
A B

ηL

=

εR

A B

εL

A

=:

A B

εL

A

S

Similarly, we can prove that (S,R) : ((τR, γR) : (A⊗B) aa (A⊕B)) −→ ((ηR, εR) : B aa A) is a

morphism of duals.

To prove that R is an embedding, it remains to prove that R is left invertible, that is,

there exists (M,N) such that (R, S)(M,N) := (RM,NS) = (1A, 1B):

A ◦ � �

R ��

BOO
S

A⊕B • � �

M ��

A⊗BOO
N

A
◦ � � B

Define:

M :=
εL

A⊕B

N :=

ηR

A⊗B

It is easy to verify that RM = 1A and NS = 1B. Thus, (η, ε) : A ◦ � � B embeds

into (τ, γ) : (A ⊕ B) • � � (A ⊗ B). The proof that (η, ε) : A ◦ � � B embeds into (τ, γ) :

(A⊕B) • � � (A⊗B) is the mirror reflection of the above proof.

In a symmetric †-LDC, It turns out that the pants “monoid” is a twisted †-linear monoid,

see 8.11: thus, the comultiplication is the dagger of the multiplication but with a twist (using

the symmetry map).

In a symmetric †-LDC, a twisted †-linear monoid embeds into the pants †-linear monoid.

Lemma 8.17. In a symmetric †-LDC, if (η, ε) : A aa A† is a †-dual then the pants monoid

(τ, γ) : (A⊕ A†) ◦ � � (A⊗ A†) is a twisted †-linear monoid.

Proof. In order to prove that (τ, γ) : (A ⊕ A†) ◦ � � (A ⊗ A†) is a †-linear monoid, we show

that there exists a linear monoid morphism (p, q) as shown below such that p and q are

isomorphisms, and pq† = ι:

A⊕ A† (τ,γ) � �

p ��

A⊗ A†OO
q

(A⊗ A†)†
(γ†,τ†)

� � (A⊕ A†)†

Moreover, to show that the †-linear monoid is twisted, we must prove that p is a twisted

monoid morphism (or equivalently q is a twisted comonoid morphism). A monoid morphism

171



f : (A,m, u) −→ (B,m′, u′) in an LDC is said to be twisted if (f ⊗ f)m = c⊗m
′f .

The maps p and q as follows:

p := A⊕ A† ι⊕ 1−−−→ A†† ⊕ A† c⊗−−→ A† ⊕ A†† λ⊕−−−→ (A⊗ A†)†

q := (A⊕ A†)†
λ−1
⊗−−−→ A† ⊗ A†† 1⊗ i−1

−−−−−→ A† ⊗ A c⊗−−→ A⊗ A†

Diagrammatically,

p :=

(A⊗ A†)†

A† A††

A† A

A⊕ A†

i

q := i−1

(A⊕ A†)†

A† A††

A⊗ A†

Note that p and q are isomorphisms. We must prove that pq† = ι:

pq† = (ιA ⊕ 1)(c⊕)A††,A(λ⊕)A†,A††((λ⊕)−1
A†,A††

(1⊗ ι−1
A )(c⊗)A,A†)

†

= (ιA ⊕ 1)(c⊕)A††,A(λ⊕)A†,A††(c⊗)†
A,A†

(1⊗ ι−1
A )†(λ−1

⊕ )†
A†,A††

= (ιA ⊕ 1)(c⊕)A††,A(c⊕)A†,A††(λ⊕)A††,A†(1⊗ ι−1
A )†(λ−1

⊕ )†
A†,A††

[†-LDC]-7
= (ιA ⊕ 1)(λ⊕)A††,A†(1⊗ ι−1

A )†(λ−1
⊕ )†

A†,A††

Nat. λ⊕
= (ιA ⊕ 1)(1⊕ i−1†

A )(λ⊕)(λ−1
⊗ )†

ι−1†
A =ι

A†= (ιA ⊕ ιA†)(λ⊕)(λ−1
⊗ )†

[†-LDC]-4
= ι

It remains to show that (p, q) is a twisted linear monoid morphism for which we prove

that q is a twisted comonoid morphism and (p, q) is a morphism of the underlying duals.

Recall that the linear monoid (τ, γ) : (A⊕A†) ◦ � � (A⊗A†) is given as follows: Showing that

the q preserves the counit:

:=

A⊕ A† A⊕ A†

A⊕ A†

ε
:=

A B

η

τ :=

A⊗ A†A⊕ A†

η

η

γ :=

A⊗ A† A⊕ A†

ε

ε

172



The comonoid (A⊗ A†, , ) is the dual of the monoid A⊕ A† using the τ and the γ:

=

A⊗ A†

A⊗ A† A⊗ A†

η

=

A A†

ε

The linear monoid (γ†, τ†) : (A ⊗ A†)† • � � (A ⊕ A†)† is the dagger of (τ, γ) : (A ⊕
A†) ◦ � � (A⊗ A†). The following is the proof that q : ((A⊕ A†)†, , ) −→ ((A⊗ A†), , ))

is twisted comonoid morphism.

Showing that q preserves the counit:

q

(A⊕ A†)†

(A⊗ A†)

= i−1

(A⊕ A†)†

A† A††

A A†

ε

=
i−1

(A⊕ A†)†

A† A††

A A†

ε

[†−dual]
=

(A⊕ A†)†

A† A††

η

=

(A⊕ A†)†

η

=

(A⊕ A†)†

Showing that q preserves the comultiplication but with a twist:

(A⊗ A†)†

A⊗ A†

A⊗ A†

q

A⊗ A†

=
A†

i−1

A⊗ A†

A†

A⊗ A†

(A⊕ A†)†

=
A†

i−1

A⊗ A†

A†

A⊗ A†

(A⊕ A†)†

i−1

i
A

=
A†

i−1

A⊗ A†

A†

A⊗ A†

(A⊕ A†)†

i−1

ε

=
A†

i−1

A⊗ A†

A†

A⊗ A†

(A⊕ A†)†

i−1

ε

=
A†

i−1

A⊗ A†

A†

A⊗ A†

(A⊕ A†)†

i−1

ε

=
A†

A⊗ A†

A†††

A⊗ A†

(A⊕ A†)†

i−1

ε

i−1

=
A†

A⊗ A†A⊗ A†

(A⊕ A†)†

i−1 i−1

A†A A

=
A†

A⊗ A†A⊗ A†

(A⊕ A†)†

i−1 i−1

A†A A

=

(A⊕ A†)†

A⊗ A†

A⊗ A†A⊗ A†

(A⊕ A†)†

(A⊕ A†)†

A⊗ A†
q q

=
(A⊕ A†)†

A⊗ A†

A⊗ A†A⊗ A†

(A⊕ A†)†

(A⊕ A†)†

A⊗ A†

q q

173



It remains to prove that (p, q) is a morphism of duals:

A⊕ A† (τ,γ) � �

p ��

A⊗ A†OO
q

(A⊗ A†)†
(γ†,τ†)

� � (A⊕ A†)†

The proof is as follows:

τ(p⊕ 1) =

(A⊗ A†)†

A†

A† A
i

(A⊗ A†)

η

η

=

(A⊗ A†)†

A†

A†

i

(A⊗ A†)

η

η

=

(A⊗ A†)†

A†

A†

(A⊗ A†)

η

ε
=

(A⊗ A†)†

A†

(A⊗ A†)

ε

ε

i−1

=

(A⊗ A†)†

A†

(A⊗ A†)

ε

ε

i−1

=

(A⊗ A†)†

A†

(A⊗ A†)

ε i−1
=

(A⊗ A†)†

A†

(A⊗ A†)

i−1
=

(A⊗ A†)† (A⊗ A†)

i−1

= (γ†)(1⊕ q)

It is simultaneously surprising and unsurprising that the pants †-linear monoid is twisted

in †-LDCs. A twist is expected because bending the wires of a multiplication into a comul-

tiplication changes the original order of the wires while daggering does not have this effect

(equivalently conjugation reverses the tensor product: A⊗B ' B ⊗ A). However, in

†-KCCs, the pants †-FAs are not twisted, because the †-duals are already equipped with a

twist (η† = c⊗ε) which untwists the pants †-FA.

Lemma 8.18. In a symmetric †-LDC, every twisted †-linear monoid embeds into its pants

†-linear monoid.

Proof. In Lemma 8.16, we showed that there exists a left invertible map, (R, S), for every

linear monoid into its pants monoids. Let A
†◦� � A† be a twisted †-linear monoid.

A ◦ � �

R ��

A†OO
S

A⊕ A† • � � A⊗ A†

174



where, R : A −→ A⊕ A† and S : A⊗ A† −→ A are defined as follows:

R

A B

A

:=

η

A

BA

S

A B

B

:=

ε
B

A B

To prove that every twisted †-linear monoid embeds into its pants †-linear monoid, it

suffices to prove that (R, S) is a morphism of twisted †-linear monoids.

From Lemma 8.17, we have that (p, q) is an isomorphism of linear monoids:

A⊕ A† (τ,γ) � �

p ��

A⊗ A†OO
q

(A⊗ A†)†
(γ†,τ†)

� � (A⊕ A†)†

where the maps p and q are given diagrammatically as follows:

p :=

(A⊗ A†)†

A† A††

A† A

A⊕ A†

i

q := i−1

(A⊕ A†)†

A† A††

A⊗ A†

In order to prove that (R, S) is a morphism of twisted †-linear monoids, we must prove

that qS = R† or Rp = S† (See Definition 8.14):

qS =
i−1

(A⊕ A†)†

A† A††

ε A†

(1)
=

i−1

(A⊕ A†)†

A† A††

ε A†

=

(A⊕ A†)†

A† A††

A†
i−1

(2)
=

(A⊕ A†)†

A† A††

A†

=

(A⊕ A†)†

A† A††

A†

=

(A⊕ A†)†

A†

=

(A⊕ A†)†

A†

= R†

Step (1) holds because A is a twisted †-linear monoid. Step (2) holds because A is a

†-dual.

8.1.4 Being Frobenius

Linear monoids generalize Frobenius algebras from monoidal categories to LDCs. In 2.18, it

has been proved that there exists a linear equivalence between compact LDCs and monoidal

categories. Thus, it is useful to know the precise conditions under which a linear monoid in a

compact LDC is a Frobenius algebra in the equivalent monoidal category. In this section we

175



develop these conditions and extend them to show the correspondence between †-Frobenius

algebras and †-linear monoids.

Lemma 8.19. In an LDC, the following conditions (and their ‘op’ symmetries) are equiva-

lent for a self-linear monoid A ◦ � � A′ with α : A −→ A′ being an isomorphism.

(a) The isomorphism α coincides with the following maps:

A′′

α

A

=
α

A′

A

A′

ηL

=
α

A′

A

A′

ηR

(8.7)

(b) The coaction maps given by the comultiplication and the linear duality coincides with the

comultiplication:

A A

=
A

α−1

α

ηL

εL

=
A

α−1

α

ηR

εR

(8.8)

(c) The self-dual cup and cap coincide with the cups and the caps of the duals given in the

linear monoid:
A A

α

A†

=
A A

α

A′ εL

=
AA

α

A′

εR

(8.9)

Proof. For (a)⇒ (b), substitute α in (b) using 8.7.

A

α−1

α

ηL

εL

=
A

α−1

ηL

εL

α

A′

A
ηL

=
A

α−1

ηL

α
A′

A

= A

α−1

ηL

α
A′

= α

α−1

=

(b)⇒ (c), and (c)⇒ (a) are straightforward.

In a compact LDC, a linear monoid satisfying one of the conditions in the previous

Lemma, precisely corresponds to a Frobenius Algebra:

Lemma 8.20. In a compact LDC, a self-linear monoid, A ◦ � � A′ with an isomorphism α : A

−→ A′ precisely corresponds to a Frobenius algebra under the linear equivalence, Mx↓ if and

only if the following equation holds.

A′

α

A

=
α

A′

A

A′

ηL

=
α

A′

A

A′

ηR

(8.10)

176



Proof. Let (X,⊗,⊕) be a compact-LDC. We know that there exists a linear equivalence,

Mx↓ : (X,⊗,⊕) −→ (X,⊗,⊗). Let A ◦ � � A′ be a self-linear monoid in X with isomorphism

α : A −→ A′. The Frobenius Algebra (A, , , , ) in (X,⊗,⊗) is defined as follows: the

monoid is same as that of the linear monoid, the comonoid is given the by the following

data.
A

AA

:=

A

AA

α

α−1

B

α−1

A

:=

A

α

B

It has been given that 8.10 holds. Then, equation 8.8 holds by Lemma 8.19.
A

A

8.8
=

A

A

α

α−1

B

α−1 =

A

A

α

α−1

B

α−1

α−1
α

=

A

A

α
B

α−1

α−1

A

=

A

A

α

B

α−1

α−1

A

=

A

A

α

B

α−1

α−1

A

=

A

A

α

B

α−1

α−1

A

=

A

A

α

B

α−1

α−1

A

α−1

α
=

A
α−1α−1

α

A A

=

A A

AA

Now assume that there exists a Frobenius Algebra (A, , , , ) in (X,⊗,⊗). The

Frobenius Algebra induces a linear monoid, A ◦ � � A′ in (X,⊗,⊕). The linear monoid con-

tains the monoid (A, , ) and the duals are given as follows:

A′A

ηL

:=
α−1

A′A

A′ A

εL

:=
α−1

A′ A

A′ A

ηR

:=
α

A′ A

A′ A

εR

:=
α
A′A

It is easy to verify using the Frobenius Law that the left and the right duals are cyclic for

the monoid.

For the converse assume that a self-linear monoid A
◦ � � A′ corresponds to a Frobenius

Algebra (A, , , , ) under the linear equivalence Mx↓. We prove that statement (iii) of

Lemma 8.8 which is an equivalent form of the equation given in the current Lemma.

A A

α

A′ εL

= α−1

A′ A

α
A

=
A

A

=

A

α

A

This proves the converse.

Corollary 8.21. In a unitary category, any †-linear monoid A corresponds to a †-Frobenius

algebra under the equivalence, Mx↓, if and only if the unitary structure map ϕA : A −→ A†

177



satisfies the equations:

A′

ϕ

A

=
ϕ

A†

A

A†

ηL

=
ϕ

A†

A

A†

ηR

(8.11)

Proof. Suppose A
†◦� � A† is a self-†-linear monoid in a unitary category (X,⊗,⊕) and the

given equation holds. There exists a †-linear equivalence Mx↓ : (X,⊗,⊕) −→ (X,⊗,⊗) with

the dagger on (X,⊗,⊗) given as follows:

f ‡ = B
ϕB−−−→ B†

f†−−→ A†
ϕ−1
A−−−→ A

From Lemma 8.20, we know that the self-linear monoid A ◦ � � A† in (X,⊗,⊕) corresponds to

a Frobenius Algebra (A, , , , ) in (X,⊗,⊗). IfA is a †-linear monoid, then (A, , , , )

is a †-Frobenius Algebra because:

A

AA

:=

A

AA

ϕ

ϕ−1 ϕ−1

A† =

A
ϕ−1

A
ϕ−1

A
ϕ

=

A

AA ‡ A

=

A

ϕ

A†
=

A

‡

For the other way, the linear monoidA ◦ � � A† given by the †-Frobenius Algebra (A, , , , )

is a †-linear monoid because the duals of the linear monoid are †-duals:

ι

ηL

A†† A†

A

:=

A†† A†

ι ϕ

=

A†† A†

ϕ
ϕ

ϕ−1

=

A†† A†

ϕ−1

ϕ

=

ι−1

A†† A†

ϕ−1

ϕ

A††

A

A† =

A†† A†

ϕ−1

A††

A†

ϕ−1

=

A†† A†

ϕ−1

ϕ−1

=

A†† A†

ϕ−1

ϕ−1

=

A†† A†

ϕ−1

ϕ−1

=:
εL

A†† A†

The dual of the monoid is same as its dagger for A ◦ � � A† because (A, , , , ) is

†-Frobenius.

For the converse assume thatA
†◦� � A† corresponds to the †-Frobenius Algebra (A, , , , )

under the equivalence discussed above. Then it follows from the converse of the previous

Lemma that the unitary structure map ϕA : A −→ A† satisfies the given equation.

The equation given in this Corollary should be reminiscent of involutive monoids [76,

178



Theorem 5.28] in †-monoidal categories.

8.2 Linear comonoids

Our motive behind defining †-linear monoids is to describe complementary systems in a

†-LDC setting. The bialgebra law is a central ingredient of complementary systems. The

directionality of the linear distributors in an LDC makes a bialgebraic interaction between

two linear monoids impossible. A linear monoid, however, can interact bialgebraically with

a linear comonoid.

Definition 8.22. A linear comonoid, A B, in an LDC consists of a ⊗-comonoid,

(A, , ), and a left and a right dual, (ηL, εL) : A aa B, and (ηR, εR) : B aa A, such that:

(a)

B

B ⊕B

:=
A

B

B ⊕B
ηL

=
A

B

B ⊕B
ηR

(b)
B

⊥

:=
A

B
⊥

ηL

=
A

B
⊥

ηR

(8.12)

Note that while a linear monoid has a ⊗-monoid and a ⊕-comonoid, a linear comonoid

has a ⊗-comonoid and a ⊕-monoid. The commuting diagram for Equation 8.12(b) is as

follows. Note that the diagram includes the unitors and linear distributors.

⊥
u−1
⊗ //

u−1
⊗ ��

LHS=RHS

>⊗⊥ η′⊗1 // (A⊕B)⊗⊥ ∂r // B ⊕ (A⊗⊥)

1⊕(e⊗1)��
⊥⊗>
1⊗η ��

B ⊕ (>⊗⊥)
1⊕u⊗��

⊥⊗ (A⊕B)

∂l ��

B ⊕⊥
u⊕
��

(⊥⊗ A)⊕B
(1⊗e)⊕1

// (⊥⊗>)⊕B
u⊗⊕1

// ⊥⊕B u⊕
// B

Similar to a linear monoid, however only in an isomix setting, a linear comonoid allows

for Frobenius interaction between its ⊗-monoid and ⊕-comonoid:

Lemma 8.23. A linear comonoid, A B, in an isomix category is equivalent to the

following data:

• a monoid (B, : B ⊕B −→ B, : ⊥ −→ B)

• a comonoid (A, : A −→ A⊗ A, : A −→ >)

• actions, : B ⊗ A −→ A, : A⊗B −→ A, and

179



coactions : B −→ A⊕B, : B −→ B ⊕ A,

such that the following axioms (and their ‘op’ and ‘co’ symmetric forms) hold:

(a)

A

A

=

A

(b)

B AB

A

=

B AB

(c)

B A B

=

BAB

(d)

B

A

B

B

A

=

B

A B

B

=

B

A B

B

Proof. Given that A ◦
� � B is a linear comonoid. Then, (A, , ) is a ⊗-comonoid and there

exists duals (ηL, εL) : A aa B, and (ηR, εR) : B aa A.

The ⊕-monoid on B is given as follows:

B

B B

=
A

B

B ⊕B
ηR

εR

B

:= A

B

ηR

The left and the right actions are defined as follows:

A

AB

:=
A

B

A

A

ηL
A

A B

:=
A

B

A

A

ηR

The left and the right coactions are defined as follows:

B

BA

:=
B

A

B

B

ηL
B

B A

:=
B

A

B

B

ηR

The proof that the required axioms hold is as follows. We prove a representative set of

axioms. The other axioms are horizontal and vertical reflections of the following axioms:

(a) =

A

ηL

B

=

A

AηL

=

A

A

=

(b)

B AB

=

εL

εL

B B A

=

ηL

ηL

B B A

A

=

ηL

B B

A

=

ηL
ηL

B B

A

A

=

B B A

B

=

B AB

A

180



(c)

BAB

= B

B

A A

=

B

B

A

=
B

B

A A

=

B A B

(d)

B

A

B

B

A

=

BB

A

A

B

ηL

=

B

B
A

A

B

ηL

=

B

B
A

A

B

ηL

=

B

B

A

ηL

=

B

A B

B

(and)

B

A B

B

=

BB

A

ηL

=
B

B

A

ηL

=

B

A B

B

For the converse, assume the data given in the Lemma. Define the linear dual (ηL, εL) :

B aa A as follows:

ηL =

BA

:=
A B

εL =
B A

:=
B A

Similarly, the cup and the cap of the linear dual (η, ε) : A aa B is defined as follows:

ηR =

AB

:=
AB

εR =
A B

:=
BA

It is straightforward to check that the snake equations hold, and that A ◦
� � B is a linear

comonoid.

The exponential modalities for LDCs provide an example of linear comonoids. We will

prove later in Section 9.4 while discussing exponential modalities in LDCs, that every dual

in an LDC with exponential modalities is also a linear comonoid.

Next, we explore the correspondence between linear monoids and linear comonoids in

compact LDCs. A linear comonoid is same as a linear monoid except that a linear monoid

has a ⊗-monoid (and a ⊕-comonoid) while a linear comonoid has a ⊗-comonoid (and a ⊕-

monoid). This implies a correspondence between linear monoids and linear comonoids in a

compact setting where the tensor and the par products are isomorphic. In fact, we show that

there exists a symmetry called compact reflection which is an involution on the category

of compact LDCs and linear functors: under this symmetry, a linear monoid translate into

a linear comonoid and vice versa. The compact reflection symmetry is defined as follows:

181



Let X be a compact LDC. Consider the category Xop which is a compact LDC with the

same tensor and par products as X. The maps in Xop are as follows:

A
f−−→ B ∈ X

B
f−−→ A ∈ Xop

Here, the overline does not imply conjugation, and we use the notion to refer to the trans-

lation in the opposite category. The coherence isomorphisms for the tensor and the par

products are given as follows:

A⊗ (B ⊕ C)
∂̂−−→ (A⊗B)⊕ C := ∂

−1

⊥ m̂−−→ > := m−1

A⊗B m̂x−−→ A⊕B := mx−1

Associators and unitors are defined similarly.

Lemma 8.24. Every linear monoid in a compact LDC, X, corresponds to a linear comonoid

in Xop under the compact reflection of X, and vice versa.

Proof. Let A ◦ � � B be a linear monoid in the compact LDC, X. We know that any linear

monoid, A ◦ � � B, is precisely a monoid, (A,m, u) with duals, (ηL, εL) : A aa B, and (ηR, εR) :

B aa A, and the duals are cyclic on the monoid. The monoid (A,m, u) gives a ⊗-comonoid

(A,∆ := m, e := u) in Xop under compact reflection. The dual (ηL, εL) : A aa B in the linear

monoid gives the following maps in Xop:

> ηL−−→ A⊕B ∈ X
A⊕B ηL−−→ > ∈ Xop

B ⊗ A εL−−→ ⊥ ∈ X
⊥ εL−−→ B ⊗ A ∈ Xop

Similarly, the dual (ηR, εR) : B aa A gives maps ηR : B ⊕A −→ >, and εR : ⊥ −→ A⊗B in

Xop. Under this translation of A ◦ � � B, we get a linear comonoid, A ◦
� � B, in Xop with the

⊗-comonoid (A,∆, e), and duals (τR, γR) : B aa A, (τL, γL) : A aa B where,

> τL−−→ A⊕B := > m−−→ ⊥ εR−−→ A⊗B mx−1

−−−−→ A⊕B

B ⊗ A γL−−→ ⊥ := B ⊗ A mx−1

−−−−→ B ⊕ A ηR−−→ > m−−→ ⊥

τR : > −→ B ⊕ A, and γR : A ⊗ B −→ ⊥ are defined similarly. Compact reflection of the

resulting linear comonoid gives back the original linear monoid in (Xop)op = X.

It follows from the previous Lemma that the results pertaining to linear monoids in a

182



compact LDC also applies for linear comonoids under compact reflection.

We move on to the discussion of morphisms of linear comonoids:

Definition 8.25. A morphism of linear comonoids, (f, g) : (A ◦
� � B) −→ (A′ ◦

� � B′),

consists of a pair of maps, f : A −→ A′ and g : B′ −→ B, such that f is a comonoid

morphism, and (f, g) and (g, f) are morphisms of the left and the right duals respectively.

Definition 8.26. A †-linear comonoid in a †-LDC is A † A† is a linear comonoid,

A ◦
� � A† such that (ηL, εL) : A aa A†, and (ηR, εR) : A† aa A are †-duals, and:

A†

⊥

:=
A

A†

⊥

=

A† ⊥
A†

A† ⊕ A†

:=
A

A†

A† ⊕ A†

=

A†

A† ⊕ A†

(8.13)

A †-self-linear comonoid consists of an isomorphism α : A −→ A† such that αα−1† = ι.

Next, we discuss the compact reflection of †-linear comonoids in compact †-LDCs. If X
is a compact †-LDC, then Xop given by compact reflection of X has the same dagger functor.

In this case, the laxors and involution natural isomorphisms are defined similar to the other

coherence isomorphisms:

A† ⊗B† λ̂⊗−−−→ (A⊕B)† := λ⊗
−1

> λ̂>−−−→ ⊥† := λ>
−1

A
ι̂−→ A†† := ι−1

If X is a unitary category, then Xop is also a unitary category under compact reflection with

the unitary structure map for an object A, given as ϕ̂A := ϕA
−1.

In Lemma 8.24, we proved that the compact reflection of a linear monoid in a compact

LDC gives a linear comonoid and vice versa. In the following lemma we extend the result to

†-linear monoids on compact †-LDCs:

Lemma 8.27. If X is a compact †-LDC, then every dagger linear monoid corresponds to a

dagger linear comonoid under the compact reflection.

Proof. Suppose X is a compact †-LDC, and A
†◦� � A† is a †-linear monoid. Then, we have

a ⊗-monoid (A,m, u) with a right †-dual, A aa A†, and a left †-dual A† aa A satisfying the

equations for a †-linear monoid. To show that under compact reflection, a †-linear monoid

translates to a †-linear comonoid, it suffices to prove that the †-duals in X translates to

†-duals in Xop. The dual, (τL, γL) : A aa A† defined as in Lemma 8.24 is a †-dual because:

183



ι̂

A†

A

A††

τL

=

εR

A†

A
ι̂

A††

=

εR

A†

A

ι−1

A††

(∗)
=

A†

A

A††

ηR
=

A†

A

A††

γL

The step (∗) is true because (ηR, εR) : A†
† � � A is a †-dual.

Definition 8.28. A morphism of †-linear comonoids is a pair (f, f †) such that (f, f †)

is a morphism of the underlying linear comonoids.

8.3 Linear bialgebras

Linear bialgebras provide the basis for defining complementary systems in isomix categories.

A linear bialgebra has a ⊗-bialgebra and a ⊕-bialgebra which are given by the bialgebraic

interaction of a linear monoid and a linear comonoid. Thus, in a linear bialgebra two distinct

dualities, that of the linear monoid and that of the linear comonoid, are at play.

All the results concerning bialgebras are necessarily set in symmetric LDCs, and we shall

assume that the linear monoids and comonoids are symmetric.

Definition 8.29. A linear bialgebra, (a,b)
(a′,b′)

:A B, in an LDC consists of:

(a) a linear monoid, (a, b):A ◦ � � B, and

(b) a linear comonoid, (a′, b′):A B,

such that:

(i) (A, , , , ) is a ⊗-bialgebra, and

(ii) (B, , , , ) is a ⊕-bialgebra.

A linear bialgebra is commutative if the ⊕-monoid and ⊗-monoid are commutative. A

self-linear bialgebra is a linear bialgebra, in which there is an isomorphism A
α−−→ B (so

essentially the algebra is on one object).

Definition 8.30. A morphism of linear bialgebras (f, g) : (a,b)
(a′,b′)

:A B −→ (c,d)
(c′,d′)

:C D

is a morphism the linear monoids ((f, g) : (A ◦ � � B) −→ (C ◦ � � B)), and a morphism of the

linear comonoids ((f, g) : (A B) −→ (C D)).

Isomorphisms transport linear bialgebras:

Lemma 8.31. In an LDC, if (a,b)
(a′,b′)

: A B is a linear bialgebra and f : A′ −→ A and

g : B −→ B′ are isomorphisms, then A′ B′ is a linear bialgebra with the linear monoid

(a(f−1 ⊕ g), (g−1 ⊗ f)b) : A′ ◦ � � B′, and the linear comonoid (a′(f−1 ⊕ g), (g−1 ⊗ f)b′) :

A′ B′.

184



A †-linear bialgebra is defined as follows:

Definition 8.32. (i) A †-linear bialgebra, (a,b)
(a′,b′)

:A † A†, is a linear bialgebra with a

†-linear monoid, and a †-linear comonoid.

(ii) A †-self-linear bialgebra is †-linear bialgebra which is also a self-linear bialgebra such

that the isomorphism, α : A −→ A†, satisfies αα−1† = ι.

Note that A is a weak pre-unitary object, which if in the core, is a pre-unitary object.

The next chapter develops complementary systems and measurements in MUCs using

the structures developed in the current chapter.

185



Chapter 9

Measurement and complementarity

In this chapter, we describe measurement in MUCs and characterize measurements using

‘compaction’. We also develop the notion of (†)-complementary systems in (†)-isomix cate-

gories and show that in an isomix category with free exponential modalities, every comple-

mentary system arises as a canonical compaction of a linear bialgebra on the free exponential

modalities.

Coecke and Pavlovic [48] described a “demolition” measurement in a †-monoidal category

as a map, m : A −→ X, with m†m = 1X , to a special commutative †-Frobenius algebra, X.

In this chapter, we generalize this idea to MUCs. In the †-isomix category of a MUC,

generally, A 6= A†, hence the equation m†m = 1 does not make sense. However, the notion

of a demolition measurement is available in the unitary core of the MUC. Thus, in a MUC,

a measurement can be viewed as a two-step process in which one first “compacts”, by a

retraction, into the unitary core and then one does a conventional demolition measurement.

The compaction process is discussed in Section 9.1 and gives rise to the notion of †-binary

idempotent. On the other hand, a †-binary idempotent which splits and satisfies the technical

condition of being ‘coring’, gives rise to a compaction to the “canonical” unitary core.

9.1 Compaction

In order to perform a measurement on an object A of the †-isomix category of a MUC, we

must first compact A into an object in the unitary core:

Definition 9.1. Let M : U −→ C be a MUC. A compaction to U of an object A ∈ C is

a retraction, r : A −→ M(U). This means that there is a section s : M(U) −→ A such that

sr = 1M(U). A compaction is said to be canonical when U is the canonical unitary core, in

other words, U is a pre-unitary object.

186



An object, M(U) for U ∈ U, has a unitary structure map which is an isomorphism

between M(U) and M(U)† given by composing the unitary structure map of U with the

preservator:

ψ := M(U)
M(ϕ)−−−−→M(U †)

ρ−→M(U)†

Once one has reached M(U), one can follow with a conventional demolition measurement

U
w−−→ X in U to obtain an overall compaction A

rM(w)−−−−−→ M(X). This composite may be

viewed as being the analogue of a demolition measurement in a MUC.

We start by showing how a compaction gives rise to a binary idempotent:

Definition 9.2. A binary idempotent in any category is a pair of maps (u, v) with u : A

−→ B, and v : B −→ A such that uvu = u, and vuv = v.

A binary idempotent, (u, v) : A −→ B gives a pair of idempotents eA := uv : A −→ A, and

eB := vu : B −→ B. We say a binary idempotent splits in case the idempotents eA and eB

split.

Lemma 9.3. In any category the following are equivalent:

(i) (u, v) : A −→ B is a binary idempotent which splits.

(ii) There exists a pair of idempotents e : A −→ A, and d : B −→ B which split through

isomorphic objects.

Proof.

(i)⇒ (ii): Suppose that uv splits as A
r−→ A′

s−→ A (so e := rs = uv and sr = 1A′)and

d := vu splits as B
p−→ B′

q−→ B (so pq = vu and qp = 1B′) then we obtain two maps

α := sup : A′ −→ B′ and β := qvr : B′ −→ A′ which are inverse to each other:

αβ := (sup)(qvr) = su(pq)vr = suvuvr = suvr = srsr = 1A′

βα := (qvr)(sup) = qv(rs)up = qvuvup = qvup = qpqp = 1B′ .

(ii)⇒ (i): Suppose eA : A −→ A and eB : B −→ B are idempotents which split, respectively,

as A
r−→ A′

s−→ A (so rs = eA and sr = 1A′) and B
p−→ B′

q−→ B (so pq = eB

and qp = 1B′), so that γ : A′ −→ B′ is an isomorphism then we obtain two maps

u := rγq : A −→ B and v := pγ−1s : B −→ A. We observe:

uvu := rγqpγ−1srγq = rγγ−1srγq = rsrγq = rγq = u

vuv := pγ−1srγqpγ−1s = pγ−1γqpγ−1s = pqpγ−1s = pγ−1s = v.

187



Observe that a compaction of an object, A, in any MUC, gives the following system of

maps:

A
r //

M(U)
s

oo
ψ:=M(ϕ)ρ//

M(U)†
r† //

ψ−1
oo A†

s†
oo

Thus the compaction gives rise to a binary idempotent (u, v) : A −→ A† where u := rψr†

and v := s†ψ−1s

Because U is a unitary object, we have that ϕ(ϕ−1†) = ι. The preservator, on the

other hand, satisfies ιρ† = M(ι)ρ (see after Definition 3.17 in [34]). Thus ιρ† = M(ι)ρ =

M(ϕϕ−1†)ρ = M(ϕ)ρM(ϕ−1)† and whence ψ = M(ϕ)ρ = ιρ†M(ϕ)† = ι(M(ϕ)ρ)† = ιψ†.

This allows us to observe:

ιu† = ι(rψr†)† = ιr††ψ†r† = rιψ†r† = rψr† = u

v† = (s†ψ−1s)† = s†(ψ†)−1s†† = s†(ι−1ψ)−1s†† = s†ψ−1ιs†† = s†ψ−1sι = vι

This leads to the following definition:

Definition 9.4. A binary idempotent, (u, v) : A −→ A† in a †-LDC, is a †-binary idem-

potent, written †(u, v), if u = ιu†, and v† = vι.

In a †-monoidal category, where A = A† and ι = 1A this makes u = u† and v = v†, thus

uv = (vu)†. This means that if we require uv = vu we obtain a dagger idempotent in the

sense of [111].

Splitting a dagger binary idempotent almost produces a pre-unitary object. In a †-LDC,

we shall call an object A with an isomorphism ϕ : A −→ A† such that ϕϕ†−1 = ι a weak pre-

unitary object. In a †-isomix category, a weak pre-unitary object (A,ϕ) is a pre-unitary

object when, in addition, A is in the core. We next observe that dagger binary idempotent

always split through weak pre-unitary objects:

Lemma 9.5. In a †-LDC with a †-binary idempotent †(u, v) : A −→ A†:

(i) eA† := vu = (uv)† =: (eA)†;

(ii) if †(u, v) splits with eA = A
r−→ E

s−→ A then (E, sus†) with is a weak pre-unitary

object.

Proof.

(i) eA† = vu = vιu† = v†u† = (uv)† = e†A.

188



(ii) Suppose (u, v) is a †-binary idempotent, and uv splits as uv = A
r−→ U

s−→ A. This

means vu splits as vu = A†
s†−−→ U †

r†−−→ A†. This yields an isomorphism α = sus† : E

−→ E† satisfying:

α(α−1)† = sus†(r†vr)† = sus†r†v†r†† = suvuv†r†† = suv†r†† = suvιr†† = suvrι = srsrι = ι.

Thus, in a †-isomix category, an object which splits a †-binary idempotent is always

weakly pre-unitary. In order to ensure that the splitting of a dagger binary idempotent is a

pre-unitary object – and so a canonical compaction – it remains to ensure that the splitting

is in the core. This leads to the following definition:

Definition 9.6. An idempotent A
e−→ A in an isomix category, X, is a coring idempotent

if it is equipped with natural κLX : X ⊕A −→ X ⊗A and κRX : A⊕X −→ A⊗X such that the

following diagrams commute:

X ⊗ A 1⊗e //

1⊗e �� [KL.1]

X ⊗ A
mx��

X ⊗ A X ⊕ A
κLX

oo

X ⊕ A 1⊕e //

1⊕e �� [KL.2]

X ⊕ A
κLX��

X ⊕ A X ⊗ Amx
oo

A⊗X e⊗1 //

e⊗1 �� [KR.1]

A⊗X
mx��

A⊗X A⊕X
κRX

oo

A⊕X e⊕1 //

e⊕1 �� [KR.2]

A⊕X
κRX��

A⊕X A⊗Xmx
oo

For a coring idempotent A
e−→ A, the transformations κX act on a splitting as the inverse

of the mixor, mx. Thus, a coring idempotent always splits through the core:

Lemma 9.7. In a mix category:

(i) An idempotent splits through the core if and only if it is coring;

(ii) If (u, v) is a binary idempotent then uv is coring if and only if vu is coring.

Proof.

(i) Let A
e−→ A be a coring idempotent which splits as A

r−→ U
s−→ A. Define mx′U,X :=

U ⊕ X
s⊕ 1−−−−→ A ⊕ X

κXR−−−→ A ⊗ X
r ⊗ 1−−−−→ U ⊗ 1, then U is in the core because

mx′U,X = mx−1
U,X . Conversely, the inverse of the mixor for U and an object X defines

the κX .

(ii) The splitting of uv is isomorphic to the splitting of vu and the core includes isomor-

phisms.

189



This allows:

Definition 9.8. A coring binary idempotent in a mix category is a binary idempotent,

(u, v), for which either uv or vu is a coring idempotent.

These observations can be summarized by the following:

Theorem 9.9. In the MUC M : Unitary(X) −→ X, with †-isomix category X, an object U is

a compaction of A if and only if U is the splitting of a coring †-binary idempotent †(u, v) : A

−→ A†.

Using this characterization of canonical compaction, we will show that, in the presence

of free †-exponential modalities, complementarity always arises as a canonical compaction of

a †-linear bialgebra on the exponential modalities.

9.2 Binary idempotents

In this section, we investigate binary idempotents for linear monoids, comonoids and bial-

gebras in order to answer the following question: When does a binary idempotent on these

structures split through an object with the same structure? For this, we introduce the notion

of sectional and retractional binary idempotents for duals, linear monoids, comonoids, and

bialgebras. These idempotents will be used in Section 9.4.2 to obtain a connection between

exponential modalities and complementary systems.

Splitting a sectional or a retractional binary idempotent on a linear monoid induces a

self-linear monoid on the splitting. The result applies to linear comonoids and bialgebras as

well.

9.2.1 For linear monoids

A binary idempotent can implicitly express a morphism of duals, which becomes explicit

when the idempotent splits.

Definition 9.10. In an LDC, a pair of idempotents, (eA : A −→ A, eB : B −→ B) is

retractional on a dual (η, ε) : A aa B if equations (a) and (b), below, hold. On the other

hand, (eA, eB) is sectional, if equations (c) and (d) hold:

(a)
eA
A B

=
eA
A B

eB
(b) eB

AB

= eA
AB

eB (c)
eB
BA

=
eA
A B

eB
(d) eA

B A

= eA
AB

eB

A binary idempotent (u, v) is sectional (respectively retractional) if (uv, vu) is sectional

(respectively retractional).

190



The idempotent pair (eA, eB) is a morphism of duals if and only if it is both sectional

and retractional. Splitting binary idempotents which are either sectional or retractional on

a dual produces a self-duality.

Lemma 9.11. In an LDC, a pair of idempotents (eA, eB), on a dual (η, ε) : A aa B, with

splitting A
r−→ E

s−→ A, and B
r′−−→ E ′

s′−−→ B is sectional (respectively retractional) if

and only if the section (s, r′) (respectively the retraction (r, s′)) is a morphism of duals for

(η′, ε′) : E aa E ′ where:

η′ :=

η

r r′

E E ′

ε′ :=
ε

ss′

EE ′

Proof. Suppose (u, v) is sectional binary idempotent of a dual (η, ε) : A aa B with the splitting

A
r−→ E

s−→ A, and B
r′−−→ E ′

s′−−→ B. Let eA = uv, and eB = vu. We must show that

(η(r ⊕ r′), (s′ ⊗ s)ε) : E aa E ′ is dual and (s, r′) is a dual homomorphism.

We first prove that (η′, ε′) : E aa E ′ satisfies the snake equations, where η′ = η(r ⊕ r′),
ε′ = (s′ ⊗ s)ε.

E

E
η′

ε′

= r

r′
A

B

E

s

s′
A

B

E

E ′

η

ε

= r
eB

A B

E

s

AB

E

η

ε

= r
eB

A B

E

s
AB

E
η

ε

s

r
= r

eB

A B

E
AB

E
η

ε

s

eA
sectional

= r

A B

E
AB

E
η

ε

s

eA = E

Similary, the other snake equation can be proven.

Next, we show that (s, r′) : ((η′, ε′) : E aa E ′) −→ ((η, ε) : A aa B) is a dual homomorphism:

E

A E ′

s

η′

=
r r′

E

B

A E ′

s

η

=
r r′

E

B

A E ′

s s′

r′

η

=
r

E

B

A E ′

s
eB

r′

η

=
B

A E ′

eA
eB

r′

η

=
B

A E ′

eB

r′

η

= B

A E ′

r′

η

For the converse assume that (η′ := η(r⊕ r′), ε′ := (s′⊗ s)ε) : E aa E ′ is a dual and (s, r′)

is a dual homomorphism. We prove that (u, v) is sectional on (η, ε) : A aa B:

B

BA

eB

η

=
B

BA

r′

η

s′

=
A B

η′

s′s

E E ′

=

A B

η

s′s
E E ′

r′r
A B

=

A B

η

eBeA

A B

Similary, one can prove the statement for retractional binary idempotents.

Corollary 9.12. In an LDC, a binary idempotent (u, v) on a dual (η, ε) : A aa B, with

splitting A
r−→ E

s−→ A, and B
r′−−→ E ′

s′−−→ B is sectional (respectively retractional) if and

only if the section (s, r′) (respectively the retraction (r, s′)) is a morphism of duals for the

self-linear dual (η′, ε′) : E aa E ′ where η′ := η(r ⊕ r′) and ε′ := (s′ ⊗ s)ε.

191



A consequence of Lemma 9.11 is that in a †-LDC, splitting a †-binary idempotent on a

†-dual gives a †-self-duality if the binary idempotent is either sectional or retractional:

Lemma 9.13. In a †-LDC, a pair of idempotents (e, e†), on a †-dual (η, ε) : A aa B, with

splitting A
r−→ E

s−→ A is sectional (respectively retractional) if and only if the section

(s, s†) (respectively the retraction (r, r†)) is a morphism for (η(r ⊕ s†), (r† ⊗ s)ε) : E aa E†.

Proof. Let (e, e†) be sectional on a †-dual (η, ε) : A
† � � A†. Let the idempotent split:

e = A
r−→ E

s−→ A Hence, e† = A†
s†−−→ E†

r†−−→ A†

It follows from Lemma 9.11 that the splitting is self-dual. The self-duality is given by

(η′, ε′) : E aa E†, where η′ := η(r ⊕ s†), and ε′ := (r† ⊗ s)ε. We must prove that the self-dual

is also a †-dual i.e, equation 8.1-(a) holds for (η′, ε′) : E aa E†:

η′(ι⊕ 1) = η(r ⊕ s†)(ι⊕ 1) = η(rι⊕ s†)
nat. ι
= η(ιr†† ⊕ s†) = η(ι⊕ 1)(r†† ⊕ s†)
†−dual

= (ε)†λ−1
⊕ ((r†† ⊕ s†)) nat. λ⊕

= (ε)†((r† ⊗ s)†)λ−1
⊕

= ((r† ⊗ s)ε)†λ−1
⊕ = (ε′)†λ−1

⊕

The statement is proven similarly when the idempotents are retractional. The converse is

straightforward.

Corollary 9.14. In a †-LDC, a †-binary idempotent †(u, v), on a †-dual (η, ε) : A aa B, with

splitting A
r−→ E

s−→ A is sectional (respectively retractional) if and only if the section (s, s†)

(respectively the retraction (r, r†)) is a morphism for the self †-dual (η(r ⊕ s†), (r† ⊗ s)ε) :

E aa E†.

We move on to the idempotents for linear monoids.

Given an idempotent, eA : A −→ A, and a monoid, (A,m, u) in a monoidal category, eA

is retractional on the monoid if eAm = eAm(eA ⊗ eA). eA is sectional on the monoid if

m(eA ⊗ eA) = eAm(eA ⊗ eA) and ueA = u.

Lemma 9.15. In a monoidal category, a split idempotent e : A −→ A on a monoid (A,m, u),

with splitting A
r−→ E

s−→ A, is sectional (respectively retractional) if and only if the section

s (respectively the retraction r) is a monoid morphism for (E, (s⊗ s)mr, ur).

Proof. Suppose e : A −→ A is an idempotent with the splitting A
r−→ E

s−→ and (A,m, u) is

a monoid. Suppose e is sectional on A i.e, (e⊗ e)m = (e⊗ e)me, and ue = u.

192



We must prove that (E,m′, u′) is a monoid where m′ := (s ⊗ s)mr and u′ := ur. The

unit law and associativity law are proven as follows.

(u′ ⊗ 1)m′ = (ur ⊗ 1)(s⊗ s)mr = (urs⊗ s)mr = (ue⊗ s)mr sectional
= (u⊗ s)mr = sr = 1

In the following string diagrams, we use black circle for (E,m′, u′), and white circle (A,m, u).

EEE

E

:=
s

s s

r

s

r

E E E

A

E

= s

s s

e

r

E E E

A

E

= s

s s

e

r

E E E

A

E

r r

ss (∗)
= s

s s

r

E E

A

E

ee

=
e

s

r

EEE

A

E

s e

s

=
s

s

r

EEE

A

E

ee

s

(∗)
=

s

s

r

EEE

A

ee

s

e

E

=

E E E

E

The steps labeled (∗) are valid because e is sectional on (A,m, u).

Finally, s : E −→ A is a monoid homomorphism because:

m′s = (s⊗ s)mrs = (srs⊗ srs)me = (s⊗ s)(e⊗ e)me = (s⊗ s)(e⊗ e)m = (s⊗ s)m

For the converse assume that (E,m′, u′) is a monoid where m′ = (s ⊗ s)mr, and u′ = ur,

and s is a monoid homomorphism. Then, e : A −→ A is sectional on (A,m, u) because:

ue = urs = u′s = u

(e⊗ e)m = (r ⊗ r)(s⊗ s)m = (r ⊗ r)m′s = (r ⊗ r)(s⊗ s)mrs = (e⊗ e)me

The statement is proven similarly when the idempotent is retractional on the monoid.

A pair of idempotents, (eA, eB) is sectional (respectively retractional) on a linear

monoid A ◦ � � B if the idempotent pair satisfies the conditions in the following table.

(eA, eB) sectional on A
◦ � � B (eA, eB) retractional on A

◦ � � B

eA preserves (A,m, u) sectionally eA preserves (A,m, u) retractionally

(eA, eB) preserves (ηL, εL):A aa B sectionally (eA, eB) preserves (ηL, εL):A aa B retractionally

(eB, eA) preserves (ηR, εR):B aa A retractionally (eB, eA) preserves (ηR, εR):B aa A sectionally

A binary idempotent (u, v) on a linear monoid is sectional (respectively retractional) if

(uv, vu) is sectional (respectively retractional).

Splitting a sectional or retractional idempotent on a linear monoid produces a linear

monoid on the splitting:

Lemma 9.16. In an LDC, let (eA, eB) be a pair of idempotents on a linear monoid A ◦ � � B

193



and the idempotents split as follows: A
r−→ E

s−→ A, and B
r′−−→ E ′

s′−−→ B. The idem-

potent pair (eA, eB) is sectional (respectively retractional) if and only if the section (s, r′) :

(E • � � E ′) −→ (A ◦ � � B) (respectively the retraction (r, s′) : (A ◦ � � B) −→ (E • � � E ′)) is a

morphism of linear monoids.

Proof. Suppose (eA, eB) is sectional on A
◦ � � B. Let,

eA = A
r−→ E

s−→ A eB = B
r′−−→ E ′

s′−−→ B

be a splitting of (u, v). From Lemma 9.15 we know that (A,m′, u′) is a monoid where m′ =

(s⊗ s)mr and u′ = ur, and from Lemma 9.11 we know that (ηL(r⊗ r′), (s′ ⊗ s)εL) : E aa E ′,
and (ηR(r′ ⊗ r), (s⊗ s′)εR) : E ′ aa E are the left and the right duals respectively.

To prove that the above data is a linear monoid we must show that equation 8.3 holds:
η′R

η′R

ε′R

E ′

E ′ E ′

= s′r r

eA

eA

eA

ηR

ηR

εR

E ′

E ′ E ′

B

B

= s′r r

eA eA

ηR

ηR

εR

E ′

E ′ E ′

B

B

(1)
= s′

r′ r′

eA eA

ηR

ηR

εR

E ′

E ′ E ′

B

B

s′ s′

r′ r′

= s′

r′ r′

eA eA

ηR

ηR

εR

E ′

E ′ E ′

B

B

eB eB

(2)
= s′

r′

ηR

ηR

εR

E ′

E ′ E ′

B

B

eB eB

r′

(3)
=

s′

r′r′

ηL

ηL

εL

E ′

E ′E ′

B

B

eBeB

(4)
= s′

r′r′

ηL

ηL

εL

E ′

E ′E ′

B

B

eBeB

eAeA
= s′ rr

eA

eA

eA

ηL

ηL

εL

E ′

E ′E ′

B

B

=

η′L

η′L

ε′L

E ′

E ′E ′

where (1) is true because eA is section on (A,m, u), (2) because (eB, eA) is retractional

on (ηR, εR) : B aa A, (3) holds because A is a linear monoid, and (4) holds because (eA, eB) is

sectional on (ηL, εL) : A aa B.

The converse of the statement is straightforward from Lemma 9.11, and Lemma 9.15.

As a consequence of the previous Lemma, a split binary idempotent is sectional (re-

spectively retractional) if and only its section (respectively retraction) is a morphism from

(respectively to) the self-linear monoid given on the splitting.

The following Lemma extends Lemma 9.16 to sectional/retractional †-binary idempotents

on †-linear monoids:

Lemma 9.17. In a †-LDC, let (e, e†) be a pair of idempotents on a †-linear monoid A ◦ � � A†

with splitting A
r−→ E

s−→ A. The idempotent pair (e, e†) is sectional (respectively retrac-

tional) if and only if the section (s, s†) (respectively the retraction (r, r†)) is a morphism of

†-linear monoids.

Proof. Suppose an idempotent pair (e, e†) is a sectional on a †-linear monoid A
†◦� � A†.

Moreover, the idempotent e splits as follows:

e = A
r−→ E

s−→ A

194



We must show that E is a †-linear monoid. From Lemma 9.16, we know that E ◦ � � E† is a

linear monoid. It is also a †-linear monoid because:

η′R

η′R

ε′R

E ′

E ′ E ′

= r†

s†

ηR

ηR

εR

E†

E† E ′

A†

A†

eA† eA†

s†

= r†

s†

ηR

ηR

εR

E†

E† E ′

A†

A†
s†

=

r†

s†

E†

E†

A†

A†

s†

=

E†

E†

r

ss

=

E†

E†

The statements are proven similarly for retractional binary idempotent. The converse follows

directly from Lemma 9.16.

As a consequence of the above Lemma, a split †-binary idempotent is sectional (respec-

tively retractional) on a †-linear monoid if and only if its section (respectively retraction) is

a morphism from (respectiely to) the †-self-linear monoid given on the splitting.

From Lemma 9.16, it follows that splitting a sectional or retractional binary idempotent

produces a self-linear monoid. If the binary idempotent is also coring and satisfies equation

9.1, then it produces a Frobenius Algebra on the splitting:

Lemma 9.18. In an isomix category X, let E • � � E ′ be a self-linear monoid in Core(X)

given by splitting a coring sectional/retractional binary idempotent (u, v) on linear monoid

A ◦ � � B. Let α : E −→ E ′ be the isomorphism. Then, E is a Frobenius Algebra under the

linear equivalence Mx↓ if and only if the binary idempotent satisfies the following equation

where eA = uv and eB = vu:

u

A

B

=
u

B

E

B

ηL

eA
eB

eA

=
u

B

E

B

ηR

eA
eB

eA

(9.1)

Proof. Let E • � � E ′ be a self-linear monoid given by splitting a sectional or retractional

binary idempotent on A
◦ � � B. Let the splitting of the binary idempotent be eA = uv = A

r−→ E
s−→ A, and eB = vu = B

r′−−→ E ′
s′−−→ B. Suppose u satisfies the given equation. If

we show that the following equation holds, then by Lemma 8.20 E is a Frobenius algebra:

α

E

E ′
=

α

E ′

E

E ′

η′L

=
α

E ′

E

E ′

η′R

195



The proof is as follows:

α

E ′

E

E ′

η′L

=
s s

s′

r

r

r′

E

E ′

α

A

E

E ′

B

B

η

=
u

r′

s′

r′

s s

r
E

E ′

A

B

B

η

=
u

eA eB

r′

s

E

E ′

A

B

B

η

=
u

eA eB

r′

E

E ′

A

B

B

η

eA

s

=
r′

s

u

E

E ′

A

B
= α

E

E ′

For the converse assume that E • � � E ′ is a self-linear monoid given by splitting a coring

sectional/retractional binary idempotent (u, v) on linear monoid A ◦ � � B. The linear monoid

E • � � E ′ correspond precisely to a Frobenius Algebra (E, , , , ) under the linear equiv-

alence Mx↓. We must prove that the binary idempotent satisfies the given equation. Let the

binary idempotent be either sectional or retractional and split as follows:

A
r // E

α
'
//

s
oo E ′

s′ // B
r′
oo

Then,

u

A

B

= α

A

B

r

s′

= s′

α

E ′

E

B

η′L

r

= s′

α

B

E

B

ηL

r
r′

r

= s′

α

B

A

B

ηL

r

r′

r

s s

r

s′

=

u

B

A

B

ηL

eA
eB

eA

In a †-isomix category splitting a sectional or retractional †-binary idempotent on a †-
linear monoid gives a †-self-linear monoid on a pre-unitary object. If the binary idempotent

satisfies equation 9.1(a) in addition, then, by using Lemma 8.20 and 9.18, one gets a †-
Frobenius Algebra on the splitting.

9.2.2 For linear comonoids

In a monoidal category, an idempotent e : A −→ A is sectional (respectively retractional)

on a comonoid (A, d, k) if ed = ed(e⊗ e) (respectively if d(e⊗ e) = ed(e⊗ e), and ek = k).

Lemma 9.19. In a monoidal category, a split idempotent e : A −→ A on a comonoid

(A, d, k), with splitting A
r−→ E

s−→ A, is sectional (respectively retractional) if and only if

the section s (respectively the retraction r) is a comonoid morphism for (E, sd(r ⊗ r), sk).

Proof. Suppose e : A −→ A is an idempotent with the splitting A
r−→ E

s−→ and (A, d, k) is

a monoid. Suppose e is sectional on A i.e, d(e⊗ e) = ed(e⊗ e).

196



We must prove that (E, d′, k′) is a monoid where d′ := sd(r ⊗ r) and k′ := sk. Unit law

and associativity law are proven as follows.

d′(k′ ⊗ 1) = sd(r ⊗ r)(sk ⊗ 1) = sd(rsk ⊗ r) = sd(ek ⊗ r)

= srsd(ek ⊗ rsr) = sed(ek ⊗ er) sectional
= sed(k ⊗ r) = ser = srsr = 1

In the following string diagrams, we use black circle for (E, d′, k′), and white circle for

(A, d, k):

EEE

E

:=
r

r r

s

r

s

E E E

A

E

= r

r r

e

s

E E E

A

E

=

r

e

s

E E E

A

E

rr

e

e

(∗)
=

s

E E E

A

E

rr

r

e

=

s

EEE

A

E

r r

r

e

(∗)
=

e

r

e

s

EEE

A

E

r r

e
=

E E E

E

The steps labelled by (∗) are because e is sectional on (A, d, k).

Finally, s : E −→ A is a comonoid homomorphism because:

d′(s⊗ s) = sd(r⊗ r)(s⊗ s) = sd(rs⊗ rs) = sd(e⊗ e) = srsd(e⊗ e) = sed(e⊗ e) = sed = sd

For the converse, assume that (E, d′, k′) is a comonoid where d′ = sd(r ⊗ r), and k′ = sk,

and s is a monoid homomorphism, then, e : A −→ A is sectional on (A, d, k) because:

ed = rsd = rd′(s⊗ s) = rsd(r ⊗ r)(s⊗ s) = ed(e⊗ e)

The statement is proven similarly when the idempotent is retractional on the comonoid.

In an LDC, a pair of idempotents (eA, eB) is sectional (respectively retractional) on a

linear comonoid when eA and eB satisfies the conditions in table given below.

(eA, eB) sectional on A ◦
� � B (eA, eB) retractional on A ◦

� � B

eA preserves (A, d, k) sectionally eA preserves (A, d, k) retractionally

(eA, eB) preserves (ηL, εL):A aa B sectionally (eA, eB) preserves (ηL, εL):A aa B retractionally

(eB, eA) preserves (ηR, εR):B aa A retractionally (eB, eA) preserves (ηR, εR):B aa A sectionally

A binary idempotent (u, v) is sectional (respectively retractional) on a linear monoid when

(uv, vu) is sectional (respectively retractional).

Lemma 9.20. In an LDC, let (eA, eB) be a pair of idempotents on a linear comonoid A ◦
� � B

with ⊗-comonoid (A, d, e) and splitting A
r−→ E

s−→ A, and B
r′−−→ E ′

s′−−→ B. The

197



idempotent pair (eA, eB) is sectional (respectively retractional) if and only if the section (s, r′):

(E •
� � E ′) −→ (A ◦

� � B) (respectively the retraction (r, s′): (A ◦
� � B) −→ (E •

� � E ′)) is a

morphism of linear comonoid.

The proof is similar to that of Lemma 9.16 for sectional/retractional idempotents on

linear monoids.

As a consequence of the above Lemma, a split binary idempotent is sectional (respectively

retractional) on a linear comonoid if and only if its section (respectively retraction) is a

morphism from (respectiely to) the self-linear comonoid given on the splitting.

When a sectional or retractional †-binary idempotent on †-linear comonoid splits, it gives

a †-self-linear comonoid on the splitting:

Lemma 9.21. In a †-LDC, let (e, e†) be a pair of idempotents on a †-linear monoid A ◦
� � A†

with splitting A
r−→ E

s−→ A. The idempotent pair (e, e†) is sectional (respectively retrac-

tional) if and only if the section (s, s†) (respectively the retraction (r, r†)) is a morphism of

†-linear monoids.

The proof is similar to Lemma 9.17 for sectional/retractional idempotents on †-linear

monoids.

As a consequence of the above Lemma, a split †-binary idempotent is sectional (respec-

tively retractional) on a †-linear monoid if and only if its section (respectively retraction) is

a morphism from (respectively to) the †-self-linear monoid given on the splitting.

9.2.3 For linear bialgebras

We turn our attention to binary idempotents for linear bialgebras:

Definition 9.22. A binary idempotent on a linear bialgebra is sectional (respectively

retractional) if its sectional (respectively retractional) on the linear monoid, and the linear

comonoid.

Lemma 9.16 states that a pair of split idempotents is sectional (respectively retractional)

on a linear monoid if and only if the section (repectively retraction) a morphism of linear

monoid. Lemma 9.20 states that a pair of split idempotents is sectional (respectively retrac-

tional) on a linear comonoid if and only if the section (repectively retraction) a morphism of

linear comonoid. Applying these results to a sectional / retractional binary idempotent on

a linear bialgebra we get:

Lemma 9.23. In an LDC, let (u, v) be a split binary idempotent on a linear bialgebra A B

with splitting A
r−→ E

s−→ A, and B
r′−−→ E ′

s′−−→ B is sectional (respectively retractional)

if and only if the section (s, r′) (respectively the retraction (r, s′)) is a morphism of linear

198



bialgebra for E E ′ with its linear monoid and linear comonoid given as in Statement (i)

of Lemma 9.16 and Lemma 9.20 respectively.

Proof. Let (u, v) be a sectional binary idempotent on a linear bialgebra A B. Let (u, v)

split as follows: eA = uv = A
r−→ E

s−→ A, and eB = vu = B
r′−−→ E ′

s′−−→ B. Using

Statement (i) of Lemma 9.16, and Statement (i) of Lemma 9.20, we know that E is both a

linear monoid and a linear comonoid.

It remains to show that E • � � E ′, and E •
� � E ′ give a ⊗-bialgebra on E, and a ⊕-

bialgebra on E ′. The proof that E is a ⊗-bialagebra is as follows:

E E

:=

r

s

r r

A

A

E E

=

r r

A

E E

A

eA
(∗)
=

r r

A

E E

=
r r

E E

=

E E

E E

:=
s

r

s s

A

A

E E

=
eA

s s

A

A

E E

(∗)
=

s s

A

E E

eA eA
=

s s

A

E E

=
s s

A

E E

A

=:

E E

Where the steps labelled (∗) are because eA is sectional on the linear monoid.

:=
s

s

r

s
s

r
r

s

r
r

s

r

=
eA eA

r

eA
eA

s s

r

=
eA eA

r

eA eA

s s

r

eA eA

(1)
=

r

s s

r

eA eA

=

eA eA

rr

ss

(2)
=

eA eA

rr

ss

eA
=

Where step (1) is because eA is sectional on the linear comonoid, and step (2) is true

because eA is sectional on the linear monoid respectively. Similarly, E ′ is a ⊕-bialagebra.

The converse is follows from Statement (i) of Lemma 9.16 and 9.20.

The above Lemma extends directly to †-binary idempotents on †-linear bialgebras.

9.3 Complementary linear bialgebras

In categorical quantum mechanics, Bohr’s complementary principle is described using inter-

acting commutative †-Frobenius algebras in †-monoidal categories. The aim of this section

is to describe complementarity in isomix categories, for which, minimally, we require a self-

linear bialgebra satisfying the equations described below.

199



Definition 9.24. A complementary system in an isomix category, X, is a commutative

and cocommutative self-linear bialgebra, (a,b)
(a′,b′)

:A A such that the following equations (with

their ‘op’ symmetries) hold:

[comp.1] = [comp.2] = [comp.3] =

A †-complementary system in a †-isomix category is a †-self-linear bialgebra which is

also a complementary system.

By ‘op’ symmetry, we refer to the vertical reflection of the diagrams. The ‘co’ sym-

metry (horizontal reflection) of the equations are immediate from the commutativity and

cocommutativity of the linear bialgebra.

Notice that we are using the alternate presentation of linear monoids by actions and coac-

tions (see Proposition 8.8). Thus, [comp.1] requires that the counit of the linear comonoid is

dual to the counit via the linear monoid dual, while [comp.2] requires that the unit of the lin-

ear monoid is dual to the counit via dual of the linear comonoid. Finally, [comp.3] requires

that the coaction map of the linear monoid duplicates the unit of †-linear comonoid. The

‘op’ symmetry of equations [comp.1]-[comp.3] hold automatically for a †-complementary

system.

In a monoidal category, a complementary system is given by a pair of commutative

and cocommutative Frobenius algebras, (A, , , , ) and (A, , , , ), interacting to

produce pair of Hopf Algebras with the following antipodes [76, Definition 6.3].

In [60, Theorem 6.4 ], Duncan and Dunne proved that a pair of commutative †-Frobenius

Algebras is a complementary system if and only if the following conditions hold:

= =

Note that the ‘op’ symmetry of [comp.1] is similar to the equation on the left and [comp.2]

is similar to the equation on the right. In the following lemma, we prove that in an isomix

category, the ⊗ and the ⊕-bialgebras of a complementary system are Hopf:

Lemma 9.25. If A A is a complementary system in an isomix category, then A is ⊗-

200



bialgebra with antipode given by (a) and ⊕-bialgebra with antipode given by (b):

(a) (b)

Proof. Given a complementary system we show the ⊗-bialgebra has an antipode so is a

⊗-Hopf algebra:

s := = = =
[comp.3]

=
[comp.2]

=
[comp.1]

=

Similarly, the ⊕-bialgebra has an antipode using the ‘op’ versions of [comp.1]-[comp.3].

A †-complementary system in a unitary category corresponds to the usual notion of

interacting commutative †-FAs [44] when its unitary structure map satisfies 8.11 for the

linear monoid and the linear comonoid. Splitting binary idempotents on a linear bialgebra

produces a complementary system under the following conditions:

Lemma 9.26. In an isomix category, a self-linear bialgebra given by splitting a coring bi-

nary idempotent (u, v) on a commutative and a cocommutative linear bialgebra A B is a

complementary system if and only if the binary idempotent satisfies the following conditions

(and their ‘op’ symmetries):

(a)

A

B

eB
B

eB

eA

=

A

eA (b)

v B

u

A

eA
A

=

A

eA (c)
v

BB

B

u

A

eB

=
v

u

v

B

B

A

u
(9.2)

where eA = uv, and eB = vu

Proof. Suppose E E is a self-linear bialgebra given by splitting a binary idempotent (u, v)

on a commutative and a cocommutative linear bialgebra A B. Let the splitting of the

bialgebra be given as follows: uv = A
r−→ E

s−→ A, and vu = B
r′−−→ E ′

s′−−→ B. If (u, v)

satisfy the given equations, then E E is a complementary system because [comp.1]-

[comp.3 holds:

[comp.1 ]:

E

E

E

=

r′

s′

r′

s′

s

E

B

A

E

B

B

=

r′

s′

r′

s′

s

E

B

A

E

B

B

eA

=
eA

s

E

= s

E

=

E

201



[comp.2 ]: =

s′

r

s

r′

r

B

E

A A

E

E

B

=

v

u

r
E

B

A

B

=
v

u

r

E

B

A

B

eA

=
r

eA

A

E

= r

A

E

=

E

[comp.3 ]:

BA

=
s

r′

r r′

E

BA

E

E

B

=
v

r r′

E

BA

E

B

=

v

r

E

A

B

E

B

s′
E

r′

r′

=

r′

r r′

E

BA

E

B

s′ s′

s

=

v

u eB

E

B
A

E

B

r′ r′

=

E E

r′ r′ =

E E

For the converse assume that, E E is a complementary system given by splitting a sec-

tional or retractional binary idempotent (u, v) on a linear bialgebra A B. We show that

A B satisfies the equations, (a)-(c) given in the statement of the Lemma.

(a):

A

B

eB
B

eB

eA

=

r′

s′

r′

s′

r

E

B
A

E

B

B

s

=

E

E

E

r
A

=

E

r

A

=

E

r

A

s

=

E

A

eA

(b):

v
B

u

A

eA
A

=

s′

r

s

r′

A

E

A A

E

E

B

s

r

=

s

= s

B

= eA

B

(c):

v

B

B

B

u

A

eB

=

r′

r r′

B

BA

B

B

s′ s′

s

=

BB

s′ s′

=

BB

s′ s′
=

BB

s′ s′

r′ r′

=

BB

eB eB

In the next section, we provide an example of Lemma 9.26 using exponential modalities.

9.4 Exponential modalities

Linear logic [68] treats formulae/types as depletable resources, hence the name ‘linear’ logic.

However, it also allows for non-linear types, that is, resources that can be renewed indefi-

nitely and erased, by means of the exponential operator, ! (read as the ‘bang’). The aim

of this section is to show that there is a relationship between the ! operator of linear logic

and complementarity, furthermore, a relationship which suggests a different perspective on

measurement and complementarity in quantum systems.

202



9.4.1 Exponential modalities for monoidal categories

We first explore the semantics of the ! operator in symmetric monoidal categories (SMCs).

In a SMC, the ! operator is a functor which is a comonad. The objects to which the !

functor has been applied can be duplicated and erased, thus, for all objects A, !A is a

cocommutative comonoid. Moreover, the comonad structure behaves coherently with the

comonoid structure. Such a functor is called a coalgebra comodality. Finally, the !-coalgebra

modality behaves coherently with the tensor product, hence is monoidal.

Definition 9.27. [24] A colagebra modality for a symmetric monoidal category consists

of a comonad (!, δ, ε) and natural transformations ∆A :!A −→!A⊗!A and A :!A −→ I such that

(!A,∆A, eA) is a cocommutative comonoid and δA :!A −→!!A preserves the comultiplication,

that is,

!A δ //

∆A ��

!!A
∆!A��

!A⊗!A
δ⊗δ

// !!A⊗!!A

For a coalgebra modality, (!, δ, ε), and for any object A, δA :!A −→!!A is a comonoid

morphism since it can be shown that δ preserves the counit.

Definition 9.28. [23] A coalgebra modality, (!, δ, ε,∆, ), is monoidal if (!, δ, ε) is a monoidal

comonad, (that is, (!,m⊗,mI) is a monoidal functor, and δ and ε are monoidal transforma-

tions ), such that ∆ and e are monoidal transformations:

!A⊗!B
m⊗ //

∆⊗∆ ��

!(A⊗B)

∆

��

!A⊗!A⊗!B⊗!B
1⊗c⊗⊗1

��
!A⊗!B⊗!A⊗!B

m⊗⊗m⊗
// !(A⊗B)⊗!(A⊗B)

!A⊗!B
m⊗ //

mI⊗mI ��

!(A⊗B)
mI��

I ⊗ I I

I
mI // !I

∆��
I ⊗ I

mI⊗mI
// !I⊗!I

I
mI // !I

I��
I

and ∆ and e are !-colagebra morphisms:

!A δ //

∆ ��

!!A
!∆��

!A⊗!A
δ⊗δ

// !!A⊗!!A m⊗
// !(!A⊗!A)

!A
e ��

δ // !!A
!��

I mI
// !I

Monoidal coalgebra modalities, also referred to as exponential modalities [108], pro-

203



vide a semantics for the exponential operator of linear logic in SMCs. Symmetric monoidal

closed categories with exponential modalities are referred to as linear categories [20].

Definition 9.29. [89, 90] A coalgebra modality is said to be a free if, for any object A,

(!A,∆A, A) is a cofree cocommutative comonoid, that is, if (B, d, e) is a cocommutative

comonoid, then for all maps f : B −→ A, there exists a unique comonoid morphism from

f [ : (B, d, e) −→ (!A,∆A, ) such that the following diagram commutes.

(B, d, e)
f

))
∃! f[ ��

(!A,∆A, ) εA
// A

A free colagebra modality is also a monoidal colagebra modality. Such a monoidal coal-

gebra modality is called a free exponential modality. Lafont, in his PhD thesis [89],

provided an important source of examples for free exponential modalities by proving that:

Proposition 9.30. In a symmetric monoidal category, X, if every object A generates a

cofree cocommutative comonoid !A, then X has a free exponential modality.

The proof can be sketched as follows. If X is a symmetric monoidal category in which

every object A freely generates a cocommutative comonoid, then the underlying functor

U : Comon[X] −→ X, where Comon[X] is the SMC of comonoids in X and comonoid mor-

phisms between them, has a right adjoint, say F : X −→ Comon[X], which maps each ob-

ject A to its cofree commutative comonoid, !A, and each f : A −→ B in X to the unique

comonoid morphism (εAf)[ : (!A,∆A, A) −→ (!B,∆B, B) given by the couniversal prop-

erty of (!B,∆B, B). The comonad given by composing the forgetful functor, U , with the

cofree functor, F , is a exponential modality. We discuss examples of categories with free

exponential modalities later in section 10.2.

The free exponential modality has been used as a de facto structure for modelling infinite

dimensional systems: [117] used the exponential modality to model the quantum harmonic

oscillator, [26] used it to model the bosonic Fock space.

9.4.2 Exponential modalities for †-LDCs

An LDC is said to have exponential modalities if it is equipped with a linear comonad

((!, ?), (ε, η), (δ, µ)). This means that:

Definition 9.31. [22, Definition 2.1] A !-?-LDC (an exponential LDC) is an LDC, X,

with a comonad (!, δ, ε), and a monad (?, µ, η) such that

(i) (!, ?) : X −→ X is a linear functor;

204



(ii) The pairs (δ, µ), (ε, η), (∆,∇), and ( , ) are linear transformations.

(iii) For each object A ∈ X, (!A,∆A, A) is a commutative ⊗-comonoid, and (?A,∇A, A) is

a commutative ⊕-monoid.

The linearity of the functors in a (!, ?)-LDC means that (!, δ, ε) is monoidal comonad while

(?, µ, η) is a comonoidal monad, and (!(A),∆A, A) is a natural cocommutative comonoid

while (?(A),∇A, A) is a natural commutative monoid.

A †-(!, ?)-LDC is a (!, ?)-LDC in which all the functors and natural transformations are

†-linear:

Definition 9.32. A †-(!, ?)-linearly distributive category is a (!, ?)-LDC and a †-LDC

such that the following holds:

(i) (!, ?) is a †-linear functor i.e., we have that:

!(A†)
s−−→
'

(?A)† (!A)†
t−−→
'

?(A†)

is a linear natural isomorphism such that

!X ι //

!ι �� (a)

(!X)††

(t−1)†��
!(X††) s

// (?(X†))†

?X ι //

?ι �� (b)

(?X)††

s†��
?(X††)

t−1
// (!(X†))†

(9.3)

(ii) The pair ∆A :!A −→!A⊗!A, and ∇A :?A⊕?A −→?A is a †-linear natural transformation.

i.e., the following diagrams commute:

!(A†) ∆ //

s

��

(a)

!(A†)⊗!(A†)

s⊗s��
(?A)† ⊗ (?A)†

λ⊗��
(?A)†

∇†
// (?A⊕?A)†

(!A⊗!A)† ∆† //

λ−1
⊕ ��

(b)

(!A)†

t

��

(!A)† ⊕ (!A)†

t⊕t ��
?(A†)⊕?(A†)

∇
// ?(A†)

(9.4)

∆ is completely determined by ∇ and vice versa.

(iii) The pair, :!A −→ > and : ⊥ −→?A is a †-linear natural transformation i.e., the

205



following diagrams commute:

!(A†) //

s �� (a)

>
λ>��

(?A)†
†
// ⊥†

>†
†
//

λ−1
⊥ ��

(b)

(!A)†

t��
⊥ // (?A)†

(9.5)

(iv) The pair δ :!A −→!!A, and µ :??A −→?A is a †-linear natural transformation:

!(A†) δ //

s

��

(a)

!!(A†)

!s��
!((?A)†)

s��
(?A)†

µ†
// (??A)†

(!!A)† δ† //

t ��
(b)

(!A)(†)

t

��

?((!A)†)

?t ��
??(A†) µ

// ?(A†)

(9.6)

The pair εA :!A −→ A, and ηA : A −→?A is a †-linear natural transformation i.e., the following

diagrams commute:

!(A†) ε //

s �� (a)

A†

(?A)†
η†
// A†

A†
ε† //

(b)

(!A)†

t��
A† η

// ?(A†)

(9.7)

In a (!, ?)-LDC, any dual, (a, b) : A aa B, induces a dual, (a!, b?) :!A aa ?B (see the diagrams

below), on the exponential modalities using the linearity of (!, ?). This means that, any dual

induces a linear comonoid, (a!, b?) :!A ?B, where the comonoid structure is given by the

modality.

a! :=
α

!

!A ?B

= m>(!α)ν⊗ b? :=
β ?

!A?B

= ν⊕(?ε)n⊥ mF := F⊗

F⊗(A) F⊗(A)

F⊗(A)

= m⊗F⊗(m)

Any linear functor (F⊗, F⊕) applied to a linear monoid (α, β) : A ◦ � � B always produces

a linear monoid (αF , βF ) : F⊗(A) F⊕(B) with multplication mF as shown in the above

diagram. This simple observation when applied to the exponential modalities has a striking

effect:

Lemma 9.33. In any (!, ?)-LDC any linear monoid (a, b) :A ◦ � � B and an arbitrary dual

(a′, b′) : A aa B gives a linear bialgebra (a!,b?)
(a′!,b

′
?)

:!A ?B using the natural cocommutative

comonoid (!A,∆A, A).

Proof. Given that A ◦ � � B is a linear monoid, and (a, b) : A aa B is a linear dual in a !-?-LDC.

206



Because, (!, ?) are linear functors, and linear functors preserve linear monoids, we know

that !A ?B is a linear monoid.

Similarly, by linearity of (!, ?), we have the dual (a′!, b
′
?) :!A aa ?B. The cocommutative

⊗-comonoid (!A,∆A, eA) given by the modality ! together with the dual (a′!, b
′
?) :!A aa ?B gives

a linear comonoid !A ?B Note that, (!A,∆A, eA) is dual to the commutative comonoid

(?B,∇B, uB) given by the ? modality, using (a′, b′) :!A aa ?B:

?

?

!

!A

A

?B?B

A

BA

?Bb′

b′

a′

B

=
?

?

?

A

?B?B

A

BA

?B

?
BA

?B

a′ a′

b′

=

?B

?B?B

=

?B

?B?B

The linear monoid !A ?B and the linear comonoid !A ?B gives a ⊗-bialgebra on !A

and a ⊕-bialgbera on ?B. The bialgebra rules are immediate by naturality of ∆, ∇, , and

:

!

!A

!A

!A !A

!A

=

! !

AA

A A

!

!A

!A !A

=
!A !A

!

!A !A

=
!

!A

!

!A

!

!A
= 1>

Lemma 9.34. In any (!, ?)-†-LDC any †-linear monoid (a, b) : A ◦ � � A† and an arbitrary

†-dual (a′, b′) : A aa A† gives a †-linear bialgebra (a!,b?)
(a′!,b

′
?)

:!A ?A†.

Proof. Recall that there exists a natural isomorphism t : (!A)† −→?A† because (!, ?) is a

†-linear functor. (a!, b?) :!A † ?A† is a †-linear monoid because †-linear functors preserve †-
linear monoids. Hence, (a!, b?) :!A † ?A† is a †-linear monoid. (a′!, b

′
?) :!A † ?A† is a †-linear

comonoid because †-linear functors preserve †-duals, and (∆,∇) are †-linear tranformations

i.e.,

?

?

!

!A

A

?A†

?A†

A

A†A

?A†b′

b′

a′

A†

tt
(!A)†

=

(!A)†(!A)†

t t

?A†

=
(!A)†

(!A)†(!A)†

t

?A†

From Lemma 9.33, !A ?A† is a linear bialgebra. Thereby, !A ?A† is a †-linear bialgebra.

The bialgebra structure results from the naturality of ∆ and over the functorially

induced monoid structure.

Next we explore the bialgebra structure induced by the free exponential modalities and

their connection to complementary systems.

207



9.4.3 Sequent calculus for exponential †-linear logic

In the sequent calculus for linear logic, the rules for the exponentials ! and ? are given as in

Figure 9.1.

Γ ` ∆(thin.L)
Γ, !A ` ∆

Γ ` ∆(thin.R)
Γ ` ∆, ?B

Γ, A ` ∆
(der.L)

Γ, !A ` ∆

Γ ` ∆, B
(der.R)

Γ ` ∆, ?B

Γ, !A, !A ` ∆
(contr.L)

Γ, !A ` ∆

Γ ` ∆, ?B, ?B
(contr.R)

Γ ` ∆, ?B

!Γ, A `?∆
(stor.L)

!Γ, ?A `?∆

!Γ `?∆, B
(stor.R)

!Γ `?∆, !B

Figure 9.1: Sequent rules for exponential modality

Categorically, the sequent rules, (thin.L) and (contr.L), means that !A is a cocommuta-

tive comonoid. Similary, the rules, (thin.L) and (contr.L), means that ?B is a commutative

monoid. The storage rules (stor.L and stor.R), and dereliction rules (der.L and der.R)

makes (!, ?) a linear functor, as shown in the figure 9.2. Moreover, the linear functor is also

a linear comonad, see [22] for details.

Γ, A ` ∆
der.L, der.R

!Γ, A `?∆
stor.L

!Γ, ?A `?∆

Γ ` B,∆
der.L, der.R

!Γ ` B, ?∆
stor.R

!Γ `!B, ?∆

Figure 9.2: Derivation of (!, ?) linear functor

In the presence of †, the (!, ?) exponential modality must satisfy the additional rules

given in Figure 9.3 which (!, ?) a †-linear functor. Derivations of the isomorphisms s : (?A)†

−−→
'

(!A)†, and t : (!A)† −→?(A†) for (!, ?) to be a †-linear functor are shown Figures 9.4, and

9.5.

Γ, ?(A†) ` ∆
(†-exp.L)

Γ, (!A)† ` ∆

Γ ` ∆, !(B†)
(†-exp.R)

Γ ` ∆, (?B)†

Figure 9.3: Sequent rules for †-exponential modality

In a (!, ?)-†-LDC, for any †-dual, A, !A is a †-dual, because the pair (!, ?) is a †-linear

functor, and †-linear functor preserve †-duals. Figure 9.6 shows the proof in sequent calculus,

that, if A is a †-dual, then !A is also a †-dual.

208



id
A ` A

ιL
A†† ` A (!, ?) linear functor

?(A††) `?A
†-exp.L

(!A†)† `?A
†

(?A)† ` (!(A†))††
ιR(−1)

(?A)† `!(A†)

id
A ` A †
A† ` A† (!, ?) linear functor

!(A†) `!(A†)
†-exp.R

!(A†) ` (?A)†

Figure 9.4: Derivation of the isomorphism s : (?A)† →!(A†)

id
A ` A

ιR
A ` A†† (!, ?) linear functor

!A `!(A††)
†-exp.R

!A ` (?(A†))†
†

(?(A†))†† ` (!A)†
ιL(−1)

?(A†) ` (!A)†

id
A ` A †
A† ` A† (!, ?) linear functor

?(A†) `?(A†)
†-exp.L

(!A)† `?(A†)

Figure 9.5: Derivation of the isomorphism t : (!A)† →?(A†)

id, (>L)
A ` A †-dual.R
` A,A†

(!, ?) linear functor
`!A, ?(A†) ?(A†) ` (!A)†

cut
`!A, (!A)†

(>L), (⊕R)
> `!A⊕ (!A)†

id
A ` A †-dual.L
A†, A `

(!, ?) linear functor
?(A†), !A `

†-exp.L
(!A)†, !A `

(⊗L), (⊥R)
(!A)†⊗!A ` ⊥

Figure 9.6: Sequent proof:- !A is a †-dual if A is a †-dual

209



9.4.4 Complementarity from free exponential modalities

In this section, we prove that, in a †-isomix category with free exponentials, every †-
complementary system arises as a compaction of a †-linear bialgbebra induced by the free

exponentials. For this, we consider any complementary system in an isomix category and the

linear bialgebra induced on the complementary system by the free exponential modalities

(as in Lemma 9.33). We show that the induced linear bialgebra is equipped with a sectional

coring binary idempotent which splits to give the original complementary system.

Definition 9.35. A (!, ?)-LDC has free exponential modalities [89] if, for any object A,

(!A,∆A, A) is a cofree cocommutative ⊗-comonoid and and (?A,∇A, A) is a free commuta-

tive ⊕-monoid. This means that, if (B, d, e) is a cocommutative comonoid, then for all map

f : B −→ A, there exists a unique comonoid morphism from f [ : (B, d, e) −→ (!A,∆A, ) such

that the diagram (a) commutes. Similarly, if (C,m, u) is a commutative monoid, then for

all g : A −→ C, there exists a unique monoid morphism g] : (?A,∇A, A) −→ (C,m, u) such

that diagram (b) commutes:

(a) (B, d, e)
f

))
∃! f[ ��

(!A,∆A, ) εA
// A

(b) A
ηA //

g ))

(?A,∇A, A)

∃! g]��
(C,m, u)

The universal property of free exponential modalities in a (!, ?)-LDC implies that given

any dual, the linear comonoid induced on the dual by the free exponentials is couniversal in

the following sense:

Lemma 9.36. In a (!, ?)-LDC with free exponentials, if (x, y):X Y is a linear comonoid

and

(f, g): ((x, y):X aa Y ) −→ ((a, b):A aa B)

is a morphism of duals then, the unique map (f [, g]) induced by the universal property of the

free exponential is a morphism of linear comonoids:

(x, y) : X Y

(f[,g]) ��
(f,g)

++
(a!, b?) :!A ?B

(ε,η)
// (a, b) : A aa B

Proof. Given that (f, g) is a morphism of duals. We must show that (f [, g]) given by the

universal property of (!, ?) is a morphism of duals by showing the equation on the left, below,

210



holds. However, the equation on the left holds if and only if the equation on the right holds:

f

x

X

!A Y

=
g]

a

!A Y

! ⇔ f [

X

!A

=
g]

a

!A Y

!

X

Now, by the couniversal property of the ! functor, f [ is a unique comonoid homomorpshim

such that f [ε = f . To prove that the latter equation holds, it suffices to prove that:

g]

a

!A

Y

!

X

ε

A
y

(1)
=

g]

a

Y

X

A

η
?B

B

y

=

a

Y

X

A

g
B

y

(2)
= f

X

!A

Where (1) is holds because (ε, η) is a linear transformation, while (2) holds as f and g are

mates.

g]

a

!A Y

!

X

y

(1)
=

g]

a

!A
Y

!
X

y

a

!

!A
!A

(2)
= g]

a

!A
Y

!

X

y

a

!

!A

g] = g]

a

!A

!

X

y

a

!

!A

g]

y

Step (1) is uses the fact (∆,∇) is a linear transformation, while (2) holds as g] is a

morphism of monoids. Hence, (f [, g]) is a morphism of duals.

Next we prove that in a (!, ?)-LDC with free exponential modalities, given any monoid

the linear bialgebra induced on the monoid by the free exponentials as in Lemma 9.33 is

couniversal in the following sense:

Lemma 9.37. In (!, ?)-LDC with free exponential modalities if (X, , , , ) is a ⊗-

bialgebra, and f : X −→ A is a monoid morphism, then f [ : X −→!A given by the couniversal

property of the ! is a bialgebra homomorphism

(X, , , , )
f

**f[ ��
(!A, !, !,∆A, A) εA

// (A, , )

where the multiplication and the unit for !A is induced by linearity of (!, ?):

! :=!A⊗!A
m⊗−−−→!(A⊗ A)

!
( )
−−−−−→!A ! := > m>−−−→!>

!
( )
−−−−→!A

Proof. Given that in a (!, ?)-LDC with free exponential modalities, (X, , , , ) is a bial-

211



gebra, (A, , ) is a monoid, and f : X −→ A is a monoid morphism. The monoid on A

induces a bialgebra on (!A, !, !,∆A, A). We must show that f [ given by the couniversal

property of (!A,∆A, A) is a bialgebra morphism, that is, f [ is a monoid and a comonoid

morphism.

From the given couniversal diagram, f [ : (X, , ) −→ (!A,∆A, eA), is a comonoid mor-

phism. We must prove that f [ : (X, , ) −→ (!A, !, !) is a monoid morphism, that is the

following diagrams commute:

(a) X ⊗X f[⊗f[ //

��

!A⊗!A

!��
X

f[
// !A

(b) >
!

$$��
X

f[
// !A

In order to prove that (a) commutes, consider the following couniversal diagram.

(>, (uL⊗)−1 = (uR⊗)−1, 1>)

( f)
[

��

** X
f

((
(!A,∆A, A) εA

// A

Proving that ( f)[ = f [:

It is straightforward that ( f)[εA = f [εA = f . Moreover, f [ is a comonoid homomor-

phism because:

f [ (1)
=

f [ f [

(2)
=

f [ f [ f [
=

(3)
= 1>

Where (1) is because f [ : X −→!A is a comonoid morphism, and (2) and (3) are because X

is a bialgebra.

Proving that ( f)[ = !:

We have that !εA = m>! ( ) εA = = f because εA is a monoidal transformation and f

is a monoid homomorphism. Moreover, ! is a comonoid morphism due to the naturality of

∆ and .

By the uniqueness of [, we have that ( f)[ ! = f [. Thereby, f [ preserves the unit of X.

Thus, f [ : (X, , ) −→ (!A, !, !) is a monoid homomorphism. Since f [ is a monoid and

comonoid morphism, it is a bialgebra morphism.

The results discussed so far can be combined to give the more complicated observation

on a linear bialgebra:

212



Proposition 9.38. In a (!,?)-LDC with free exponential modalities, let (x,y)
(x′,y′)

: X Y be a

linear bialgebra, (a, b) : A B a linear monoid, and (a′, b′) : A aa B a dual, then

(f [, g]) :

(
(x, y)

(x′, y′)
: X Y

)
−→
(

(a!, b?)

(a′!, b
′
?)

:!A ?B

)
is a morphism of bialgebras, whenever f : (X, , ) −→ (A, , ) is a morphism of monoids,

and (f, g) is a morphism of both duals

(f, g): ((x, y):X ◦ � � Y ) −→ ((a, b):A ◦ � � B) and (f, g):((x′, y′):X aa Y ) −→ ((a′, b′):A aa B)

Proof. We are given a linear monoid (a, b):A ◦ � � B, and (a′, b′):A aa B is an arbitrary dual.

Using Lemma 9.33, we know that !A ?B is a linear bialgebra.

We are given that (f, g) is a morphism of linear monoids, and a morphism of duals as in

the diagram below. We must prove that (f [, g]) is a morphism of bialgebras:

(x,y)
(x′,y′)

: X Y

(f[,g])
��

(f,g)

**
(a!,b?)
(a′!,b

′
?)

:!A ?B
(ε,η)

// (a, b):A B ; (a′, b′):A aa B

Since (f, g): ((x′, y′) : X aa Y ) −→ ((a′, b′):A aa B) is a morphism of duals it follows from

Lemma 9.36 that (f [, g]) : ((x′, y′) : X aa Y ) −→ ((a′!, b
′
!) :!A aa ?B) is a morphism of linear

comonoids.

Given that (f, g) is a morphism of linear monoids. This means that (f, g) : ((x, y) : X aa Y )

−→ ((a, b) : A aa B) is a morphism of duals, and f : (X, , ) −→ (A, , ) is a morphism of

monoids. We have to prove that (f [, g]) is a morphism of linear monoids.

We know that (in a symmetric LDC) any dual with a⊗-comonoid gives a linear comonoid.

Hence, the dual (x, y) : X aa Y and the ⊗-comonoid (X, , ) produces a linear comonoid

(x, y) : X Y . Now, the dual (a, b) : A aa B induces a linear comonoid (a!, b?) :!A ?B

on the exponential modalities. This leads to the situation as illustrated in the following

diagram:

(x, y) : X Y

(f[,g]) ��
(f,g)

++
(a!, b?) :!A ?B

(ε,η)
// (a, b) : A aa B

Applying Lemma 9.36 to the above diagram, we have that (f [, g]) is a morphism of duals.

Note that, the linear comonoids on X and !A in the above diagram are different from the

linear comonoids in the X Y and !A ?B bialgebras.

213



It remains to prove that f [ : (X, , ) −→ (!A, !, !) is a morphism of monoids. This is

provided by the Lemma 9.37.

Corollary 9.39. In a (!,?)-LDC with free exponential modalities, if A B is a linear

bialgebra then (1[, 1]) : (A B) −→ (!A ?B) is a morphism of bialgebras, making A B

a retract of !A ?B as illustrated in the diagram below:

(a,b)
(a′,b′)

: A B

(1[,1])
��

(a!,b?)
(a′!,b

′
?)

:!A ?B
(ε,η)

// (a,b)
(a′,b′)

: A B

The corollary shows that every self-linear bialgebra in an (!,?)-LDC, with free exponential

modalities, induces a sectional binary idempotent for the linear bialgebra induced on the

exponential modalities:

!A
ε // A ' B

η //

1[
oo ?B

1]
oo

Moreover, the idempotent splits and it is coring whenever the self-linear bialgebra resides in

the core.

Combining Corollary 9.39, and Lemma 9.26, we get:

Theorem 9.40. In an (!, ?)-isomix category with free exponential modalities, every comple-

mentary system arises as a splitting of a sectional binary idempotent on the free exponential

modalities.

The above results extend directly to †-linear bilagebras in †-LDCs with free exponential

modalities due to the †-linearity of (!, ?), (η, ε), (∆,∇), and ( , ).

Theorem 9.40 is a new observation in quantum theory: gives a non-functorial method to

retreive the ‘first quantization’ from the ‘second quantization’.

214



Chapter 10

Examples

In this chapter, we present examples of linear monoids and comonoids, and exponential

modalities for LDCs.

10.1 Duals and linear monoids

This section is dedicated to discussing examples of (†-)duals, and (†-)linear monoids.

10.1.1 Duals in FRel and FMat(R)

In this section, we will examine the duals in FRel, FMat(R), Rel and Mat(R), where R is

a commutative rig. We show that in FRel, FMat(R) every dual is also a †-dual. We will

also prove that in Rel and Mat(R), †-duals coincide with unitary duals. Before proceeding

with the proofs, we quickly recap the dual, dagger, tensor and the par products in FRel and

FMat(R).

In FRel and FMat(R), the dual of a finiteness space, (X,F (X), F (X)⊥)∗ is given by

(X,F (X)⊥, F (X)). For any finiteness relation, R, the dual relation R∗ is the converse of R.

For any finiteness matrix, M , the dual matrix, M∗, is given by transposing M .

Both FRel and FMat(R) are conjugative ∗-isomix categories, see 3.23. The conjugation

functor, (−) along with the ∗ gives the † functor: (−)† = (−)∗ = (−)
∗
. In FRel, the

conjugation functor is the identity functor, hence, the † coincides with the ∗ functor. In

FMat(R), the conjugation functor is given by the conjugation for the rig R. Hence, the † of

a finiteness matrix is given by its conjugate transpose.

The category FRel has a symmetric tensor product which is used to obtain a corresponding

tensor product on FMat(R). The tensor product for FRel is defined as follows: X ⊗ Y =

215



(X,F (X))⊗ (Y, F (Y )) := (X × Y, F (X ⊗ Y ), F (X ⊗ Y )⊥), where

F (X ⊗ Y ) :=↓ {A×B | A ∈ F (X), B ∈ F (Y )}

where ↓ A := {A′ | A′ ⊆ A,A ∈ A} is the downward closure of the set of subsets A. The

par is defined in the standard way:

X ⊕ Y = (X∗ ⊗ Y ∗)∗

The units of tensor and par are the same: > = ⊥ = ({∗}, {∅, {∗}}). Both FRel and

FMat(R) are symmetric †-∗-isomix categories.

Lemma 10.1. In FRel and FMat(R), every dual is also a †-dual.

Proof. We first prove the statement in FRel. Let (X,F (X), F (X)⊥) be any finiteness space

in FRel. Consider its dual, (η, ε) : X aa X∗. The relations η : > −→ X ⊕ X, and the counit

ε : X ⊗X −→ ⊥ are same as for the duals in Rel:

η := {(∗, (x, x))|x ∈ X} ε := {((x, x), ∗)|x ∈ X}

We prove that η, and ε are indeed finiteness relations. To prove that η is a finiteness

relation, using Lemma 2.33-(iii), it suffices to prove the following:

(i) for all A ∈ F (>) = {∅, {∗}}, A . η ∈ F (X ⊕X⊥),

(ii) for all b ∈ X ⊕X⊥ = X ×X, η / b ∈ F (>)⊥ = {∅, {∗}}.

(ii) is immediate. We prove that (i) holds: if A = ∅, then A . η = ∅ ∈ F (X ⊕ X⊥); if

A = {∗} then:

A . η = {(x, x) | x ∈ X}

We have to show that A . η ∈ F (X ⊕ X⊥) However, F (X ⊕ X⊥) = F (X⊥ ⊗ X⊥⊥)⊥ =

F (X⊥ ⊗ X)⊥. By Lemma 2.40, Aη ∈ F (X⊥ ⊗ X)⊥ if and only if the following conditions

hold:

(a) for all P ∈ F (X)⊥, P . S ∈ F (X)⊥

(b) for all Q ∈ F (X), S / Q ∈ F (X)⊥⊥ = F (X)

where S = Aη. However, it is clear that P . S = P , and S / Q = Q, for all P ∈ F (X)⊥,

Q ∈ F (X). Thus, S = A . η ∈ F (X ⊕X⊥). Thereby, η satisfies condition (i), and hence is

a finiteness relation. Since ε is simply the converse of η, it is also a finiteness relation.

216



Finally, to prove that, in FRel, every dual is a †-dual, we must show that the following

equation holds:
η

X†† X†
ι = ε

X†† X†

However, the above equation is automatic because, in FRel, for any finiteness space X, we

have that X† = X∗ and X = X††, Moreover, for any finiteness relation, R, the finiteness

relation R† is given by the converse of R, hence η = ε† as required.

The same proof extends to proving that in FMat(R) every dual is a †-dual, since the

support of every finiteness matrix is a finiteness relation.

Observe that when X is a finite set, the finiteness space is (X,P(X)), which is a self-dual

object. Such spaces lie in the core of FMat(R), and gives the subcategory Mat(R) which is

a †-compact closed category. Thus, every dual in Mat(R) is also † dual. This leads one to

wonder if, in Mat(R), the †-duals coincide with the conventional dagger duals (η† = c⊗ε).

To answer this question, we first determine the conditions under which a †-dual is a

unitary dual (see 4.3) in a unitary category. Recall that unitary categories are lax † monoidal

categories (A ' A†), and †-monoidal categories are strict unitary categories (A = A†). When

the unitary category is a †-monoidal category, the unitary duals are precisely the conventional

dagger duals.

Lemma 10.2. Let (η, ε) : A
† � � A† be a right †-dual in a unitary category, then (η, ε) : A aa A†

is a unitary dual if one of the following conditions hold:

(a)
i

A

A†A††

η

=
A†† A†

η

ϕ ϕ (or) (b) i−1

A

A† A††

ε

=
A††A†

ε

ϕ−1ϕ−1 (10.1)

Let us now examine in Mat(R) if †-duals coincide with unitary duals. Mat(R) is a

†-monoidal category in which every dual is also a unitary dual. Hence the category is †-
compact closed.

Lemma 10.3. In Mat(R) and Rel, every object is its own right and left †-dual. Hence, every

dual is a †-dual.

Proof. Let us first consider Mat(R). Recall from Section 6.2.3 that in Mat(R), every object

n is a self-dual. Moreover, the involution, ι : n −→ n†† is In, the identity map. Given

(η, ε) : n aa n we have that η† = ε:

η† :=

(
n∑
i=1

(ei ⊗ ei)

)T

=
n∑
i=1

(
(ei ⊗ ei)

)T
=

n∑
i=1

(ei
T ⊗ eiT ) =

n∑
i=1

(eTi ⊗ eTi ) =: ε

217



Thereby, every dual in FMat(R) is also a †-dual. It is also useful to notice that Mat(R) '
Core(FMat(R)). Since the statement is true in FMat(R) it must be true for Mat(R).

In Rel too, every object is a self-dual, and the involution ι = 1. Observe that in Rel also,

for any (η, ε) : A aa A,

η := {(∗, (x, x)) | x ∈ A} = {(, (x, x))| x ∈ A}†† = {((x, x), {∗}) | x ∈ A}† =: ε†

Next we show that in Mat(R) and Rel, the dagger duals conicide with the unitary duals:

Lemma 10.4. In Mat(R) and Rel, every †-dual is also a unitary dual.

Proof. By Lemma 10.3, every dual in Mat(C) and Rel are †-duals. Now, observe that, in

Mat(C), for all n ∈ N ,
ηn

n n

=
n∑
i=1

(ei ⊗ ei) =

ηn

n n

and, c⊗εn = εn. Hence, by Lemma 10.2 in Mat(R), every †-dual is also a unitary dual.

In Rel too, for all (η, ε) : {∗} −→ A× A, η = {(∗, (x, x))| x ∈ A} = ηc⊗, thereby ε = c⊗ε.

Hence, every †-dual is a unitary dual in Rel.

10.1.2 Linear monoids in FHilb

In this section we provide distinguishing examples of linear monoids and Frobenius algebras

in FHilb as illustrated by the following Venn diagram.

10.5 10.6

10.7

10.8

10.9

non-commutative

commutative

LM†-LM†-FAFA
LM : linear monoid

FA : Frobenius algbera

10.10

10.11

The numbers within each section of the diagram refer to the examples listed below.

Example 10.5. [49] Every special commutative Frobenius Algebra (SCFA) in FHilb corre-

sponds precisely to an arbitrary copyable basis.

218



By copyable basis, we mean that the comultiplication of the corresponding SCFA copies

(duplicates) the basis elements. Similary, given a SCFA, the corresponding basis is given by

those vectors which the comultiplication of SCFA duplicates.

Example 10.6. [49] Every commutative †-Frobenius Algebra in FHilb corresponds precisely

to an orthogonal copyable basis.

Example 10.7. The pants algebra are non-commutative †-Frobenius algebra. Recall that in

FHilb, pants algebra are given by the algebra of n× n complex matrices, See Section 6.4.1.

The algebra of polynomials over a field K give a wealth of examples for linear monoids.

Example 10.8. In FHilb, the basic Weil algebra, C[x]/x2 = 0, is a commutative †-linear

monoid.

Proof. Consider the two-dimensional basic Weil algebra: C[x]/x2 = 0 The multiplication,

m, for the algebra can be represented as a matrix, M , with 4 rows and 2 columns. The rows

are indexed from top to bottom as, 1.1, 1.x, x.1 and x.x,. The columns are indexed from

left to right as 1 and x. The multiplication matrix is given as follows:

M :=


1 0

0 1

0 1

0 0


It is evident that M∗ = M †, that is the transpose of M is the same as its conjugate transpose.

Moreover, the multiplication is commutative. Hence, C[x]/x2 = 0 is a commutative †-linear

monoid.

Its not a †-Frobenius algebra since the algebra is not generated by a copyable basis. The

proof is as follows. For contradiction, let us assume that C[x]/x2 = 0 is generated by a

copyable basis, and bi = a+ bx be a basis element. Since the basis is copyable, we have that

(bi ⊗ bi)m = bi. Using matrix representation of bi we get the following equation:[(
a b

)
⊗
(
a b

)]
M =

(
a2 2ab

)
=
(
a b

)
The possible solutions to the above equation are: bi =

(
1 0

)
, bi =

(
−1 0

)
, and

bi =
(

0 0
)

. The matrices clearly do not produce a basis for the algebra. Hence, the given

Weil algebra is not Frobenius.

Example 10.9. In FHilb, The polynomial algebra C[x, y, z]/x2 = 0, y2 = 0, z2 = 0, xy =

iz, yx = −iz, xz = 0, zx = 0, yz = 0, zy = 0 is a non-commutative †-linear monoid.

219



Proof. Consider the four-dimensional polynomial algebra,

C[x, y, z]/x2 = 0, y2 = 0, z2 = 0, xy = iz, yx = −iz, xz = 0, zx = 0, yz = 0, zy = 0

Consider the multiplication map m for the algebra. Note that for all i, j ∈ {1, x, y, z}, the

conjugate of the multiplication coincides with the multiplication map:

m(i, j)
(1)
= m(j, i)

(2)
= m(i, j)

The step (1) is true because conjugation reverses the order of the types. For all i, j, the step

(2) is true for the given algebra. Since the given monoid coincides with the conjugate monoid

(equivalently † of the monoid coincides with dual of the monoid), and the multiplication is

non-commutative, we have a non-commutative †-linear monoid.

As in the previous section, we prove that the algebra is not generated by a copyable

basis. Assuming there exists a copyable basis for the algebra, consider any basis element

ei = (a+ bx+ cy + dz). Solving the equation ei.ei = ei leads to the following situation:

a2 = 0 ab+ ba = b ac+ ca = c ad+ da = d

The solutions for the above equations are: a = 1,−1, 0; b = c = d = 0, which is not a basis.

This leads to a contradiction. Hence, the given algebra is not †-Frobenius.

Example 10.10. In FHilb, the following algebra is a commutative linear monoid:

C[x, y, z]/x2 = 0, y2 = 0, z2 = 0, xy = iz, yx = iz, xz = 0, zx = 0, yz = 0, zy = 0

Proof. Recall that FHilb is a symmetric KCC. Every object in the category comes with a

chosen dual and the duals are symmetric. Hence, every monoid in this category is automat-

ically a linear monoid. Note that the monoid is commutative. Hence, the given algebra is a

commutative linear monoid.

It is not a commutative Frobenius algebra since there does not exist a copyable basis for

the algebra: For contradiction, assume that ei = a + bx + cy + dz + e(yz) be an element of

the copyable basis. Since the basis is copyable, the following must hold: (ei ⊗ ei)m = ei.

Then we have that,

a2 = a; 2ab = b 2ac = c 2(ad+ ibc) = d

The solutions for the above equations are: a = 1,−1, 0; b = c = d = 0, which is not a basis

set. Hence, the given algebra cannot be Frobenius.

220



Example 10.11. In FHilb, the following algebra is a non-commutative linear monoid:

C[x, y, z]/x2 = 0, y2 = 0, z2 = 0, xy = iz, yx = z, xz = 0, zx = 0, yz = 0, zy = 0

Proven similarly as the above examples.

10.2 Exponential Modalities

In this section we give a few examples of LDCs with free exponential modalities. [81, 90] dis-

cusses more examples of categories with free exponential modalities. Explicit constructions

for free exponential modalities are discussed in [98, 113].

10.2.1 The free exponential modalities for Rel

We know that Rel, the category of sets and relations is a †-compact closed category, See

Section 6.2.1. Thus, Rel is a compact LDC with ⊗ = ⊕. The category Rel comes with the

free exponential modalities which are defined as follows:

(i) For a set X, !X is the set of all finite multisets of X:

!X := {Jx1, · · · , xnK |xi ∈ X}

For a relation R : X −→ Y , !R relates multisets with same number of distinct elements

such that the ith distinct element of each multi-set is related by R:

!R := {(Jx1, · · · , xnK, Jy1, · · · , ynK)|(xi, yi) ∈ R}

In Rel, since each object is self-dual, ?X = (!X)†∗ =!X. Similary, for any relation R,

?R = (!R)†∗ = (?R◦)† =!(R◦◦)

where R◦ is the converse relation.

(ii) δX :!X −→!!X relates a finite multiset of X to the set of all possible splittings of the

multiset.

δX := {K, JK1, K2, · · · , KnK)|K1 ∪K2 ∪ · · · ∪Kn = B} ⊆!X×!!X

Note that an element of !!X is a finite multiset whose elements are finite multisets of

X. µX :?X −→??X is the converse of δX .

221



(iii) εX :!X −→ X relates multisets of a single element in X to the element itself. ηX is the

converse of εX .

εX := {(JxK, x)|x ∈ X} ⊆!X ×X

(iv) (m⊗)X,Y :!X×!Y −→!(X × Y ) is the relation which relates the finite multisets of X

and Y with equal number of distinct elements to the multiset given by their cartesian

product:

(m⊗)X,Y := {((Jx1, · · · , xnK, Jy1, · · · , ynK), J(xi, yj))|0 < i, j ≤ nK|xi ∈ X, yj ∈ Y }
⊆ (!X×!Y )×!(X × Y )

(n⊗)X,Y :?(X × Y ) −→?X×?Y is the converse of (m⊗)X,Y .

(v) mI = {∗} −→!{∗} is simply the cartesian product, {∗}×!{∗}, that is, mI relates ∗ to

every element of !{∗}. The relation nI :?{∗} −→ {∗} is the converse of mI

(vi) ∆X :!X −→!X×!X relates a finite multiset of X to pairs of finte multisets such that the

pair is a splitting of the original multiset:

∆X := {K, (K1, K2)|K,K1, K2 ∈!X,K1 ∪K2 = K} ⊆!X × (!X×!X)

∇X :?X⊗?X −→?X is the converse of ∆X .

(vii) X :!X −→ {∗} relates the empty set from !X to ∗. X : {∗} −→?X is the converse of X .

X := {(∅, ∗)} ⊆!X × {∗}

10.2.2 The free exponential modalities for FRel and FMat(R)

In [64] the exponential modalities for FRel and, more generally, FMat(R) are described.

Furthermore, Christine Tasson in her PhD. thesis, [115], showed that this modality in FRel

is free in the sense of Yves LaFont. The purpose of this section is to provide a review of

these results and to establish also that the modality in Mat(R) is also free. This means that,

by Theorem 9.40, in the MUC Mat(C) ↪→ FMat(C), every complementary system within the

unitary core arise as a compaction of a †-linear bialgebra on the free exponentials.

In a symmetric monoidal category, we saw that, X, an coalgebra comodality is given

by a comonad

(! : X −→ X, !(A)
ε−→ A, !(A)

δ−→!(!(A)))

222



in which each object !(X) carries the structure of a cocommutative comonoid naturally

> e←−!(X)
∆−−→!(A)⊗!(A)

such that δ :!(A) −→!(!(A)) is a morphism of these comonoids.

In a SMC with finite products and terminal object >, a coalgebra comodality has Seely

isomorphisms [20, 23] if the following natural transformations are isomorphisms:

s> :!> −−→ I s⊗ :!(A×B)
∆−−→!(A×B)⊗!(A×B)

!(π0)⊗!(π1)−−−−−−−→!A⊗!B

Hence, !> ' I and !(A×B) '!A⊗!B.

In a SMC with finite products and terminal object, a coalgebra modality is monoidal

if [20] and only if [23] it has the Seely isomorphisms: Often it is easier to exhibit Seely

isomorphisms than to exhibit the monoidal structure directly.

In the category of sets and relations, Rel, it is well-known that the free exponential

modality on a set X is !(X) := Bag(X), that is, the set of all multisets of X (a multiset or a

bag is a set which allows multiple instances of elements). Thus, in FRel we expect the web

of the free exponential modality to be Bag(X) the delicacy is define the finiteness structure.

This was described in [64] as:

F (!(X)) := {S ⊆ Bag(X)|S∪ ∈ F (X)}

where S∪ is the union of all the bags in S. Thus, a finitary set of !(X) is a set of bags,

S ⊆ Bag(X), the union of which is a finitary set of X. It is not obvious that this is an

orthogonal closed subset:

Lemma 10.12. As defined above F (!(X)) = F (!(X))⊥⊥.

Proof. Suppose that S ∈ F (!(X))⊥⊥ we aim to show that it follows that S ∈ F (!(X)).

Suppose, for contradiction, that S /∈ F (!(X)) then there is a w ∈ F (X)⊥ with w′ := S∪ ∩w
infinite. This means there is a function f : w′ −→ S which associates to each a ∈ w′ an

f(a) ∈ S with a ∈ f(a). Notice that cod(f) is infinite as f is finitely fibred because each

bag contains only finitely many elements.

However, cod(f) ∈ F (!(X))⊥ as for each T ∈ F (!(X)) we have cod(f) ∩ T finite as

f−1(cod(f) ∩ T ) ⊆ f−1(cod(f)) ∩ T∪ ⊆ S∪ ∩ w ∩ T∪ ⊆ w ∩ T∪

where w ∩ T∪ is finite as T ∈ F (!(X)). But cod(f) ∩ S = cod(f) is infinite so S is not in

F (!(X))⊥⊥ and we are done.

223



We shall prove following [115], that !(X), so defined, is a free exponential modality. An

exponential modality is free in case given any cocommutative comonoid

> u←−− X
d−→ X ⊗X

and map f : X −→ A there is a unique homomorphism of comonoids f [ : X −→!(A) such that

f [ε = f : X −→ A, that is, the following diagrams commute:

X

f[ ��
f

zz

d // X ⊗X
f[⊗f[��

X

f[ ��
u

$$
A !(A)ε
oo

∆
// !(A)⊗!(A) !(A) e

// >

Recall that this property also provides the coherences required of an exponential modality

by:

!(A)
εAf

$$
!(f) ��
!(B) εB

// B

!(A)

δ ��
!(!(A)) ε!(A)

// !(A)

!(A)⊗!(B)
εA⊗εB

((
m⊗ ��

!(A⊗B) εA⊗B
// A⊗B

>
m> ��
!(>) ε>

// >

The map is the monoidal map and is defined using the cocommutative monoid with comul-

tiplication

!(A)⊗!(B)
∆⊗∆−−−−→!(A)⊗!(A)⊗!(B)⊗!(B)

1⊗ c⊗ ⊗ 1−−−−−−−→!(A)⊗!(B)⊗!(A)⊗!(B)

and unit with comultiplication >
u1
⊗−−→ >⊗>.

Thus, once one establishes that a modality has this universal property all the required

coherence properties are automatic. The fact that the exponential modalities are free in FRel

is proven in [115]:

Lemma 10.13. The exponential modality in FRel is free.

Proof. From Rel we know that:

f [ := {(x, µ)|∃n such that xdn(x1, ..., xn), µ = (a1, .., an),∀i ≤ n xifai}

where dn : X −→ X⊗
n
, is the unique relation making the diagram commute. We must show

that f [ is a finiteness relation.

Towards this end consider f [ /{(a1, ..., an)} this the same as dn(f ⊗ ...⊗f)/{(a1, ..., an)}
which is a cofinitary set of X as dn and f are finiteness relations.

224



It remain to show that finitary relations are preserved by f [. Let W ∈ F (X) then we

must show W . f [ ∈ F (!(A)). But W . f [ ∈ F (!(A)) if and only if (W . f [)∪ ∈ F (A).

But a ∈ (W . f [)∪ if and only if there is a w ∈ W with (w, (a1, ..., an)) ∈ f [ and a = ai.

Further decomposing this gives (w, (a1, ..., an)) ∈ f [ if and only if (w, (x1, ..., xn)) ∈ dn and

(xi, a) ∈ f . As d is commutative we may assume (x1, a) ∈ f and also, using associativity,

that (w, (x1, x2)) ∈ d and (x1, a) ∈ f . But that makes (W .f [)∪ = (W .f)∪π0(W .d(f⊗f))

which is a finitary set as required.

Having free exponentials is a strong property but is certainly not unique to FRel (for

example see [52]). Our next task is to show that FMat(R) also has free exponentials. It is

useful to first observe that, in FRel there is a always transformation from the exponential

modality to the modality of linear monoid (see Sec 10.3) because !A is a comonoid:

!(X) ∆ //
εX

uu
γ! ��

!(X)⊗!(X) mix // !(X)⊕!(X)
γ!⊕γ!��

X !w(X)π1
oo

∆′
// !w(X)⊕!w(X)

Note that γ! is a bijic map as it underlies to the identity in Rel.

Theorem 10.14. FMat(R) has free exponential modalities.

Proof. First we note the object ?(A) is a ⊕-monoid as where the monoid maps∇ :?(A)⊕?(A)

−→?(A) and ⊥ u−−→?(A) are given by the characteristic maps of those in FRel. This means

there is a linear transformation given by the universal map ?(A)
γ?−−→?(A) induced by pre-

ceding ∇ :?A⊕?A −→?A by the mixor. Now suppose we are given f : A −→ X and a par

commutative monoid m : X ⊕X −→ X ←− ⊥ : e then we have:

?w(A)⊗?w(A)
γ?⊗γ? ��

∇′ // ?w(A)
γ?��

A
σ1oo

ηuu

f

||

?(A)⊗?(A)
β⊗β ��

mix
// ?(A)⊕?(A)

β⊕β ��

∇
// ?(A)

β��
X ⊗X

mix
// X ⊕X m

// X

which shows, as γ? and the mixor are bijective, that if there is a map β making the bottom

right square commute, it must certainly be unique.

Now γ?β exists by the universal property of ?w and γ? is the identity matrix (although

significantly the finiteness topology is weakened). So it suffices to show that γ?β induces a

map ?(A) −→ X: this amounts to showing that the support of γ?β is a finitary set of ?(A).

However, by translating the diagram into FRel, where such a β exists, shows that the support

is certainly finitary for ?(A). Thus, β is well defined in Mat(R).

225



In [64] the exponential modality of FMat(R) is approached by providing an explicit de-

scription of !(R) for a finiteness matrix R : X −→ Y in Mat(R). The description is not so

simple and, thus, it requires some work to show that the exponential gives a functor. The

explicit construction can be reconstructed from our approach using the behaviour of the

maps on the projections !(A) −→ A⊗
n\n!:

!(A)
πn��

!(R) // !(B)
πn��

A⊗
n\n!

R⊗
n\n!

//
��

νn ��

B⊗
n\n!
��
ν��

A⊗
n

R⊗
n

// B⊗
n

The formula using the notation in [64]:

!(R)u,v =
∑

σ∈L(u,v)

[
u

σ

]
Rσ

where σ ∈ L(u, v) ⊆ Bag(A×B) is such that v(a) =
∑

b∈B σa,b and u(b) =
∑

a∈A σa,b (here we

are viewing bags as finitely supported maps to the natural numbers), Rσ :=
∏

(a,b)∈A×B R
σa,b
a,b

and

[
v

σ

]
:=
∏

b∈B v(b)!/
∏

a∈A,b∈B σa,b!.

For bags of length n this is recaptured (when the rig has division by natural numbers)

as νR⊗
n
ν�. It is interesting to note that in [64] the functor was described as !(R)u,v =∑

σ∈L(u,v)

[
v

σ

]
Rσ (note the partition counting term is now the codomain). This form of the

functor is a result of using the other splitting (see Remark 10.19) which is available when

one assumes (as was the case in that paper) that the rig R is a field. In particular, this

means, when R has inverses of natural numbers, that there is a non-trivial automorphism

� :!(A) −→!(A) which shifts the combinatorial weighting.

10.2.3 The free exponential modalities in Chu spaces

Barr proved that:

Theorem 10.15. [16, Theorem 4.8] If X is a symmetric monoidal closed category that is

locally presentable and D is any object in the category, then ChuX(D) is a model of linear

logic with free exponential modalities.

The category of vector spaces over complex numbers and linear maps, Vec(C), is a sym-

226



metric monoidal closed category which is locally presentable. Notably, ChusVecC(C) is a

†-isomix category, see Section 4.4.3. We conjecture that the free exponential modalities of

ChusVecC(C) are †-exponentials, in other words, ChusVecC(C) is a (!, ?)-†-isomix category .

10.3 The free infinite linear monoids in FRel and FMat(R)

In this section, we describe a construction for free infinite linear monoids in isomix categories

with certain limits and colimits using a standard construction for exponential modalities (see

Section 9.4) in LDCs.

A standard way to attempt to build universal exponential modalities in an LDC is to use

the following formulae (due to Michael Barr [15]):

!w(A) :=
∏
n∈N

A⊗
n\n! and ?w(A) :=

∐
n∈N

A⊕
n

/n!.

Here, A⊗
n\n! indicates the equalizer of all the n! permutations of A⊗

n
. Dually A⊕

n
/n!

indicates the coequalizer of all the n! permutations of A⊗
n
. In the category of vector spaces

over a field K, !w(V ) is the free symmetric algebra,
⊕

n∈N V
⊗n over a vector space V .

For !w and ?w to be exponential modalities, along with the other conditions, we require

for all objects A in the LDC, !w(A) to be a cofree ⊗-coalgebra, and ?w(A) to be a free ⊕-

algebra. In order to define ∆A :!w(A) −→!w(A)⊗!w(A) and ∇A :?w(A)⊕?w(A) −→?w(A) it is

required that ⊗ distributes over the product, that is X ⊗
∏

n∈NA
⊗n =

∏
n∈NX ⊗ A⊗

n
, and

⊕ over the coproduct respectively – while the usual natural distributions (i.e. those which

are guaranteed) are of the tensor over the coproduct and the par over the product. This

construction – and when it fails to produce an exponential modality – is discussed in detail

in [98].

Nonetheless, it does sometimes happen that the unexpected distributions do hold: that

is, the tensor distributes over (countable) products and the par over (countable) coproducts.

For example, in Rel, where tensor is the same as par, and is inherited from the product in

sets, the distribution over the product and coproduct is inherited from the distribution of

products over coproducts in sets, this also works in suplattice (see [15]). However, even given

the close relation of FRel to Rel, this construction does not work in FRel. However, it does

provide a modallity (i.e. linear functor) which produces natural ⊗-monoids (and natural

⊕-comonoids) which furthermore have a universal property. This, in particular, provides us

with a ready source of infinite linear monoids. in FRel and Mat(R). Furthermore, as this is

a construction which works in all isomix categories with the appropriate limits and colimits

it provides us with a very general source of infinite linear monoids which can be exploited.

227



One aspect of this construction which is immediate clear is that, in the presence of a

duality, !w(X) ' (?w(X∗))∗ as:

(?w(A∗))∗ :=

(∐
n∈N

(A∗)⊕
n

/n!

)∗
=
∏
n∈N

(
(A∗)⊕

n

/n!
)∗

=
∏
n∈N

(
(A∗)⊕

n)∗ \n! =
∏
n∈N

(A∗∗)⊗
n\n!

=
∏
n∈N

A⊗
n\n! =!w(A)

This means, importantly, that (!w, ?w) form a linear functor pair provided !w(A) is a monoidal

functor with respect to the tensor (or, equivalently, ?w(A) is a comonoidal functor with

respect to par). However, notice that, as !w is built using limits, it is automatically monoidal

and so (!w, ?w), if it exists, is always a linear functor.

The reason for wanting the distributive law of ⊕ over the coproduct is that this en-

ables one to define a natural multiplication ∇2 :?w(A)⊕?w(A) −→?w(A) in the absence of

a distributive law, however, one cannot define such a multiplication. However, there is a

multiplication ∇′2 :?w(A)⊗?w(A) −→?w(A) as we do have the appropriate distributive law for

tensor, thus, define the multiplication:{
(A⊕

i
/i!)⊗ (A⊕

j
/j!)

mix−−−→ (A⊕
i
/i!)⊕ (A⊕

j
/j!) −→ A⊕

i+j
/(i+ j)!

σi+j−−−→
∐

n∈NA
⊕n/n!

}
n∈N∐

n∈N
∐

i+j=n(A⊕
i
/i!)⊗ (A⊕

j
/j!) −→

∐
n∈NA

⊕n/n!(∐
n∈NA

⊕n/n!
)
⊗
(∐

n∈NA
⊕n/n!

)
−−−→
∇′2

∐
n∈NA

⊕n/n!

The unit for the multiplication is u := σ0 : > = ⊥ u−−→
∐

n∈NA
⊕n/n!.

This is clearly not a free ⊗-commutative monoid in general but it is a linear functo-

rial construction which exists for very general reasons and is present in isomix categories

which are complete and cocomplete (and for which colimits distribute over tensor and limits

distribute over par – which, of course, is immediate in *-autonomous categories).

Note that the forumalae for !w uses equalizers and countable products, dually, the formu-

lae for ?w uses coequalizers and countable coproducts. In FRel and FMat(R) not all limits

and colimits exist so we have to be a little careful in constructing !w. We know arbitrary

products and coproducts are present, we need only to discuss the formation of the coequalizer

228



A⊕
n
/n! this is the coequalizer

A⊕
n ...

ρn!

66

ρ1
))
A⊕

n νn // // A⊕
n
/n! (10.2)

where ρi the ith permutation of the par power. When the category is additively enriched

(which FRel and FMat(R) are) – and when the rig, R, admits division by positive natural

numbers – we may replace this coequalizer by the simpler coequalizer

A⊕
n

(
∑n!
i=1 ρi)/n!

66A
⊕n νn // // A⊕

n
/n! (10.3)

The ability to divide by n! is necessary for this simplification. Note that in FRel, m =

1∪ ...∪1 = 1 so it admits division by positive numbers. Generally in FMat(R) one needs the

rig, R, to admits division by natural numbers in order to reach this simplification: clearly

this is the case for all fields and Q-algebras.

We show that the simpler parallel pair of maps - 1 , (
∑n!

i=1 ρi)/n! - in formula 10.3 has the

same coequalizer as for the maps ρ1, · · · , ρn! in formula 10.2. Suppose νn is the coequalizer

of 1 and (
∑n!

i=1 ρi)/n! in 10.3, that is, 1A⊕nνn = (σn!
i ρi)/n!, then νn coequalizes all pairs of

ρi and ρj in formula 10.2, in particular, we have that for all i ∈ n!, ρiνn = 1A⊕nνn = ρ1νn.

ρiνn = ρi1A⊕nν
n = ρi

(
n!∑
j=1

ρj/n!

)
νn =

(
n!∑
i=1

ρiρj/n!

)
νn

(∗)
=

(
n!∑
i=1

ρi/n!

)
νn = 1A⊕nνn = ρ1νn

The step (∗) is true because the set of all permutations form a group. Similarly, if λ : A⊕
n

−→ Y coequalizes all the permutations ρ1, · · · , ρn!, then λ coequalizes 1 and (
∑n!

i=1 ρi)/n!:(
n!∑
i=1

ρi/n!

)
λ =

(
n!∑
i=1

ρiλ

)
/n! =

(
n!∑
i=1

λ

)
/n! =

(
n!∑
i=1

1A⊕n

)
/n!λ = 1A⊕nλ

so the coequalizer of the formula in 10.3 is precisely the coequalizer of the permutations.

It is also clear that (
∑n!

i=1 ρi)/n! is an idempotent as:(
n!∑
i=1

ρi/n!

)(
n!∑

i,j=1

ρj/n!

)
=

n!∑
i=1

n!∑
j=1

ρiρj/(n!)2 =
n!∑
j=1

n!ρj/(n!)2 =
n!∑
j=1

ρj/n!

This means that the coequalizer (and indeed the equalizer) we seek, in this case, is obtained

by splitting this idempotent (and such splittings are preserved by all functors). Thus, when

229



we have division by positive natural numbers, we have the coequalizer we seek provided

(these) idempotents split. Even though this is a very mild requirement, recall that in FRel

not all idempotents split so we must examine this particular idempotent in more detail.

In Rel the coequalization of permutations of product powers is given by the surjection

νn : An −→ Bag(A)n, where Bag(A)n is the set of bags of A with exactly n-elements. The

section is just the converse of this map ν◦n : Bag(A)n −→ An (it is monic exactly because it is

the converse of an epic!). In SRel on the web the splitting must take the form it has in Rel,

however, we must show that the finiteness structures are compatible with this. We will deal

with the par and so we shall argue using the cofinitary sets.

F (A⊕
n
)⊥ =↓ {A1 × ... × An | Ai ∈ F (A)⊥} =↓ {An0 | A0 ∈ F (A)⊥}, where the last set

dominates the previous one because A1 × ...× An ⊆ An0 where A0 :=
⋃n
i=1 Ai.

We set F (A⊕
n
/n!)⊥ = {X | νn / X ∈ F (A⊕

n
)⊥} = {X | νn / X ⊂ An0 , A0 ∈ F (A)⊥} =

{X | X∪ ∈ F (A)⊥} where by X∪ we indicate the union of all the elements in the bags

in X ⊆ Bag(A)n. We must show that this does provide a well-defined finiteness space on

Bag(A)n. Toward this end note that νn is a map so {a1 ⊕ ... ⊕ an} . νn is a singleton so

a finitary set in Bag(A)n. Furthermore, νn reflects cofinitary sets by definition. On the

otherhand, ν◦ still has {b} . ν◦n finite and, again, by definition preserves cofinitary sets.

This all means that the coequalizer exist in FRel and is given by splitting an idempotent.

To transpose this into a coequalizer in FMat(R) we take the characteristic function of νn,

however, for ν◦n we use the matrix (which we denote ν�) with its entries determined by:

ν� : Bag(A)n×An −→ R; (y, x) 7→

{
r1!·..·rp!

n!
when y = νn(x) and y = r1 · a1 + ...+ rp · ap

0 otherwise

where this formula takes into account the repetitions in the bag: a repetition reduces the

number of sequences corresponding to the bag. We now have:

Lemma 10.16. In both FRel and FMat(R), where R is a rig with division by positive natural

numbers, the idempotents (
∑n!

i=1 ρi)/n! on both A⊕
n

and A⊗
n

split.

In fact, the coequalizer νn : A⊕
n −→ A⊕

n
/n! exists in FMat(R), for an arbitrary rig R. It,

however, will not be given by a splitting of an idempotent in general. The point is that the

map νn : A⊕
n −→ A⊕

n
/n! = Bagn(A) is always present as the characteristic function of νn.

Its universal property is given by its finiteness relational universality. This means that we

have all the components of the proposed construction of the modality (!w, ?w) in all these

categories:

Proposition 10.17. In both FRel and FMat(R), where R is any rig, the modality (!w, ?w)

described above exists. Furthermore, it produces infinite linear monoids: thus, for any object

230



A, ?w(A) ◦ � � !w(A∗) is a linear monoid.

The linear functor (!w, ?w) has a universal property but for commutative “mixed” ⊕-

monoids and ⊗-comonoids: suppose m : X ⊕ X −→ X ←− ⊥ : u is a commutative monoid

and there is a map f : A −→ X then there is a unique map f⊕
r
mr : A⊕

r
/r! −→ X determined

by the n-fold multiplication mr : X⊕
r
/r! −→ X this then gives a map from the coproduct

f ] :?w(A) −→ X such that:

?w(A)⊗?w(A)

f[⊗f] ��

∇′2 // ?w(A)

f] ��

A
σ1oo

fuu
X ⊗X

mix
// X ⊕X m

// X

where f [ := {A⊕n/n!
f⊕

n
/n!−−−−−→ X⊕

n
/n!

mn−−−→ X}n∈N is the comparison map from the co-

product. The map f [ is unique whenever the mixor mix : A⊗ B −→ A⊕ B is epic – which,

notably, is so in FRel and Fmat(R) as it underlies to the identity in Rel – because:

A⊕
p
/p!⊗ A⊕q/q! mix //

µp⊗µq ��

A⊕
p
/p!⊕ A⊕q/q!

∇′n,m //

µp⊕µq ��

A⊕
p+q
/(p+ q)!

µp+q
��

X ⊗X
mix

// X ⊕X m
// X

whenever the outer square commutes, because the left square commutes, it follows that

the righthand square must commute (assuming the mixor is epic). However, the righthand

square is determined by the colimit to have µr = f⊕
r
mr so {µr}r∈N = f [. This gives:

Proposition 10.18. In any isomix category which has products (which distribute over par)

and coproducts (which distribute over tensor) and for which the mixor is bijic (that is both

epic and monic) the weak exponential has the universal property that given any commutative

monoid X ⊕ X
m−−→ X

u←−− ⊥ and f : A −→ X there is a unique morphism to the mixed

monoid f ] :?w(A) −→ X such that:

?w(A)⊗?w(A)

f]⊗f] ��

∇′2 // ?w(A)

f] ��

A
σ1oo

fuu
X ⊗X

mix
// X ⊕X m

// X

⊥
∇′0 //

u
))

?w(A)
f]��

X

Dually, given a cocommutative comonoid Y ⊗Y d←−− Y
e−→ > and map g : Y −→ B there is a

unique morphism form the mixed comonoid f [ : Y −→!w(B) such that f [d mix = ∆′(f [⊕ f [).

Remark 10.19. In a FMat(R), in which R has division by natural numbers, there is a second

canonical way to split the idempotent as ω�n : A⊕
n −→ A⊕

n
/n! with the section ω : A⊕

n
/n!

231



−→ A⊕
n

being the characteristic function. Thus,

ω�n ([a1, .., an], r1 · ar1 + ...+ rp · ar = *a1, .., an+ = r1!...fp!/n!.

This alternate splitting shifts the weights from the section onto the retraction. The splitting

given by νn and ν�n has the advantage that the map νn exists for every rig R – this is why

we can form the weak exponential for all rigs.

232



Chapter 11

Summary

The second part of this thesis focused on formulating the structures fundamental to CQM,

namely completely positive maps, †-Frobenius algebras, and complementary bialgebras, in

MUCs. Recall that a MUC, M : U −→ C, is given by a †-isomix functor M from a unitary

category U into a †-isomix category C. Moreover, M factors through the core of C.

Chapter 7 generalized Coecke and Heunen’s CP∞ construction [46] on †-SMCs to MUCs.

In a MUC setting, the auxiliary wire for Kraus maps must be unitary. Similar to the CP∞

construction on †-SMCs, we characterize the CP∞ construction on MUCs using environment

structures. Unlike in †-SMCs, an environment structure for MUC requires discarding maps

only within the unitary core. A MUC which has an environment structure with purification

is isomorphic to the CP∞ category of some other MUC. Our CP∞ construction on a MUC

produces an isomix category. The construction preserves dagger when the base category has

unitary duals.

Chapter 9 discussed modelling measurement and complementarity in MUCs using struc-

tures developed in Chapter 8. In †-SMCs, Coecke and Pavlovic [48] described a demolition

measurement as a map f : A −→ X where X is a special commutative †-Frobenius algebra and

f †f = 1X . Coecke and Pavlovic’s measurement formula cannot be directly applied in a MUC

setting because in a †-isomix category an object A is not always isomorphic to A† except in

the unitary core. Hence, in a MUC setting, measuement is done in two steps: an object is

first compacted into the unitary core followed by a demolition measurement. Interestingly,

compaction produces a coring †-binary idempotent, and a coring †-binary idempotent, when

split, produces an object in the canonical unitary core. The details are discussed in the

Section 9.1.

A component of Coecke and Pavlovic’s measurement forumla is a special commutative

†-Frobenius algebra (†-FA). In LDCs, FAs are generalized by linear monoids containing a

⊗-monoid, say on A, and a dual ⊕-comonoid on B. Note that, the monoid and the comonoid

233



are not usually defined on the same object which differentiates linear monoids from Frobenius

algebras. In a compact setting, linear monoids on isomorphic objects collapse to FAs when

the isomorphism satisfy a certain condition. We show that these results extend to a † settings

too, see Section 8.1.

Even though expected, it is suprising that the linear monoids lead to the notion of linear

comonoids consists of a ⊗-comonoid and a ⊕-monoid, introduced in Section 8.2. Exponential

modalities for LDCs is a significant source of examples for linear comonoids. In an LDC,

linear monoids and linear comonoids interact bialgebraically to produce a pair of bialgebras

- one on the tensor and the other one on the par product. Linear bialgebras are fundamental

to complementary sytems which are discussed in Section 8.3. When a self-linear bialgebra

satisfies certain conditions, its ⊗ and ⊕ bialgebra are Hopf algebras with a certain antipode;

such self-linear bialgebras are referred to as complementary systems, see Section 9.3.

In the presence of the free exponential modalities (!, ?), every complementary system in

an isomix category induces a linear bialgebra on the free exponential modalities - the linear

comonoid of the induced (!, ?)-linear bialgebra is given by the free canonical cocommutative

⊗-comonoid of the !. The universal property of the free (!, ?) induces a binary idempotent

on the (!, ?)-linear bialgebra which splits to produce the original complementary system.

Thus, every complementary system arises as a splitting of a binary idempotent on the linear

bialgebra induced on the free exponential modalities, see Section 9.4. The results extend

directly to †-complementary systems in †-isomix categories with a free (!, ?). Rel, FRel,

FMat(R) where R is commutative rig and certain Chu catgories are examples of †-isomix

categories with free exponential modalities, see Section 10.2.

234



Chapter 12

Conclusion and future work

12.1 Conclusion

This thesis is a product of our journey towards developing a suitable categorical semantics

for quantum processes without the constraint of dimensionality. Since its inception, CQM

has piqued the interest of researchers by its versatile and elegant approach towards studying

quantum foundations and quantum processes. While CQM was built on compact closed

categories - categorical semantics of linear logic with the pair of multiplicatives combined

into one and the pair of additives combined into one - which forces the Hilbert space model

to be finite dimensional, there have been efforts to address the dimensionality constraint of

CQM.

While one approach was to construct a category which is still compact closed but can

suitably describe quantum processes of arbitrary dimensions [70, 77], the other approach was

to construct suitable algebraic structures in †-SMCs [46, 6]. Attempts have also been made

by adding properties to the underlying monoidal category so that it accommodates objects

of arbitrary dimensional [75, 118]. In our journey, we stepped out of the well-trodden path

of †-monoidal categories in CQM, went back to the fundamentals, and as category theorists

asked, “Can we consider the semantics of †-linear logic that indeed is not degenerate?” This

turned our attention towards linearly distributive categories and ∗-autonomous categories

(LDCs without negation).

Proceeding to define a † functor for LDCs, and a unitary structure for †-isomix categories,

we arrived at the notion of mixed unitary categories (MUCs) which are †-isomix categories

with a chosen unitary core. As revealed by the schematic diagram of MUC in Figure 4.2, the

†-isomix category is a larger space in which the (smaller) unitary category resides. For any

MUC, its unitary core is equivalent to a †-monoidal category, and in the presence of unitary

duals, it is equivalent to a †-compact closed category. Thus, one gets a neat description of

235



the traditional CQM framework in terms of a larger and a more general framework. We have

discussed quite a few examples of MUCs as we developed the structure. Significant among

these examples are, the category of finiteness relations FRel which has a faithful functor into

Rel, and the category of finiteness matrices over of commutative rig R, FMat(R). In fact,

the category of finite complex matrices Mat(C) is isomorphic to the core of FMat(C).

Further in our journey, we tested our framework in its applicability to quantum mechanics

by generalizing the algebraic structures fundamental to CQM - completely positive maps

modeling quantum processes, special commutative †-Frobenius algebras modeling quantum

observables, and bialgebras and Hopf algebras modeling complementary observables - from †-
SMCs to †-isomix categories. By generalizing the CP∞ construction from †-SMCs to MUCs,

we noticed that, in MUCs, interestingly, a completely positive map always factors through

the unitary core in its Kraus decomposition form. Moreover, in order to characterize the

CP∞ construction, it suffices that one can discard information for unitary objects. Hence,

the notion of environment structure, in other words, discarding information, is a requirement

only within the unitary core.

Moving on, we turned our focus on linear monoids [30] in LDCs which are a general version

of Frobenius algebras: in linear monoids, the monoid and the comonoid pair generally occur

on different objects, the monoid is on the ⊗-product, the comonoid is on the ⊕-product,

and the monoid and the comonoid objects are dual to one another. We introduced †-
linear monoids, which in a unitary category are equivalent to †-Frobenius algebras when

the unitary structure map satisfies a certain condition. Linear comonoids which are same

as linear monoids except with the monoid on the ⊕-product and the comonoid on the ⊗-

product, are a surprising consequence of our attempt to understand bialgebraic interaction of

linear monoids. A bialgebraic interaction between two linear monoids implies a bialgebraic

interaction between a ⊗-monoid and a ⊕-comonoid, which is not supported in an LDC.

This led to the idea of linear comonoids. Indeed, linear comonoids are not mere algebraic

constructs defined for convenience, but they are significant, since exponential modalities of

linear logic provide a source of examples for linear comonoids.

A linear monoid and linear comonoid may interact beautifully to produce a ⊗-bialgebra

and a ⊕-bialgebra, we refer to this interaction as a linear bialgebra. At this stage, one

can perceive the significance of keeping the tensor products (the multiplicatives of linear

logic) distinct in the framework. Complementary observables are intimately connected to

the notion of measurement. In a MUC, we showed that a measurement takes place in two

steps: first an arbitrary (non-unitary) type is compacted into the unitary core, while inside

the unitary core, one can use the traditional machinery of CQM to perform a measure-

ment. Interestingly, compaction produces a binary idempotent with certain properties. We

236



called this a coring †-binary idempotent. Conversely, a coring †-binary idempotent induces

a compaction.

Finally, turning our attention to complementary systems, we considered such a system

in †-isomix categories as a self-linear bialgebra satisfying certain equations. These equations

implied that the pair of bialgebras are indeed Hopf with a particular anitpode. We noted

that when the †-isomix category has free exponential modalities (the exponential operator

of linear logic which provides for non-linear types with infinite duplication and discarding),

every complementary system induces a linear bialgebra on the free exponential modalities (in

the larger space). Indeed, in such a setting, every complementary system arises by splitting

a coring †-binary idempotent on the induced †-linear bialgebra. This is perhaps, the most

interesting result in this thesis in relation to quantum mechanics.

Bohr’s principle of complementarity [71] states that, due to the wave and particle nature

of matter, physical properties occur in complementary pairs. Our result connecting comple-

mentarity with exponential modalities displays a complementary system as a compaction of

a †-linear bialgebra in which the two dual structures (one pertaining to linear monoid and

the other one of the linear comonoid) occur separately providing an interesting perspective

on Bohr’s principle.

12.2 Future work

The current journey has many interesting further directions, a few of which are discussed

below:

12.2.1 Models of physical systems

In this thesis, we have discussed multiple examples of MUCs such as FRel, FMat(R) and Chu

spaces from a mathematical viewpoint. The role of these categories in the study of quantum

foundations and the other areas of quantum theory is yet to be explored. In particular,

FMat(R) seems to be an interesting candidate to study quantum mechanics since its canonical

unitary core is isomorphic to FHilb which is a well-studied model in CQM. Moreover, FMat(R)

is a model of full linear logic and comes with the free exponential modalities.

In [117], Vicary uses the ! exponential modality and a differential map [24] to categorify

the creation and annihilation operators for a Fock space in †-monoidal categories with †-
biproducts. He assumes that the † commutes with the ! modality. Recall that, in a linear

setting, we saw that applying † to ! modality gives the ? modality. Vicary applies the

machinery to a category Inner with complex inner product spaces of countable dimensions

and well-defined linear maps to study the state space of Quantum Harmonic Oscillators

237



(QHO). However, the claim that the adjunction between the cofree and the forgetful functor

producing the !-modality is well-defined is left as a conjecture. It has been mentioned that the

difficulty lies in proving that η map of the adjunction is well-defined. It would be interesting

to revisit Vicary’s ideas on categorifying QHO [117] in a linearly distributive setting, in

particular, in FMat(R) with distinct ! and ? modalities.

In [117], Vicary points out that with exponential modality one can model the state space

of a QHO, however, in order to achieve a categorical description of the dynamics of the

system, one needs the ability to express differential equations categorically. Differential cate-

gories [24, 29] which are additive symmetric monoidal categories with a coalgebra comodality

and a differential combinator seems to be a natural candidate satisfying the requirement.

[91] emphasizes the relevance of differential categories to quantum foundations. In fact, FRel

and FMat(R) are indeed differential categories due to the presence of the free exponential

modalities. This arises a question if can one obtain a complete categorical description of

quantum harmonic oscillator in differential categories?

Our thesis proved that in a †-isomix category, in the presence of free exponential modal-

ities, every complementary system inside the canonical unitary core arises from the linear

bialgebra induced on the free exponential modalities. Free exponential modalities imply the

presence of a differential combinator [65, 29] and provide a categorical description for the

state space of a QHO [26, 117]. This leads one to wonder if there is any interesting connection

between quantum harmonic oscillators and complementary observables in physics.

12.2.2 Joyal’s Bicompletion construction

An interesting source of examples for MUC is Joyal’s [82, 83] bicompletion procedure on

monoidal categories. Starting with a †-monoidal category, or unitary category, C, one can

form a MUC i : C −→ Λ(C) by simply bicompleting (by adding arbitrary limits and colimits)

to the †-monoidal category. Furthermore, the bicompletion, Λ(C), is a (non-compact) †-
isomix category which, when the starting point, C, is †-compact closed, is a †-isomix ∗-
autonomous category. Bicompleting a monoidal category, C, causes its tensor to split into

two linearly related tensors products ⊗ and ⊕ and induces a cofree functor i : C −→ Λ(C)

on the category of bicomplete categories and bicontinuous functors. The free bicomplete

category generated by a single object is a ∗-autonomous category [83, Corollary - Theorem

3].

238



12.2.3 Clifford algebras in linear settings

Clifford algebras1 [73, 94, 57] are regarded as a universal language for physics due to their

intimate connection to geometry. They neatly geometrify algebra and algebraize geometry.

Clifford algebras have been applied in many fields of physics including quantum gravity [66,

58], quantum field theory [116] and quantum electrodynamics [19].

The Clifford algebra of space time captures the geometry of special relativity [73]. In

his discussion on categorification of a quantum harmonic oscillator [117, Sec. Discussion],

Vicary notes that within the current CQM formalism,

“. . . an elegant categorical description of the other ingredients of the Schrödinger equation,

such as Planck’s constant h and the imaginary unit i, is far from apparent.”

Clifford algebra addresses the above concern by providing a geometric interpretation for

the imaginary constant i as rotations in space time. The gamma matrices which are 4 × 4

anti-commuting unitary matrices solving the Dirac equation in quantum field theory gives

a matrix representation for a Clifford algebra, Cl1,3(R) [116]. The Pauli I,X, Y, Z matrices

which are quite significant for quantum mechanics and quantum computing provides a rep-

resentation for the Clifford algebra Cl0,3(R) [57]. Schrödinger’s equation can be represented

as an element in the Clifford algebra Cl0,1(R) [80].

Clifford algebras enable an interesting possibility of understanding and formalizing quan-

tum computation via geometry rather than the other standard non-intuitive methods such

as unitary matrices formalism or the circuit language method borrowed from classical com-

puting. This approach is quite different from the existing approaches and can provide a fresh

perspective on quantum computation. Efforts [114, 120, 119, 7, 53, 93, 92] to apply Clif-

ford algebras to quantum computing in a non-categorical setting emphasize the conceptual

clarity and computational advantages provided by Clifford algebras. In [114] the authors

show that the Clifford algebra description of quantum computation operations has a direct

correlation to NMR spectroscopy, hence can be implemented in NMR quantum computing

without further translation. The more recent works [93, 92] interesting uses string diagrams

of monoidal categories to describe Clifford operations.

In the future, we would like to formulate abstract Clifford algebras in linear settings. It

would also be interesting to adapt the string diagrams of CQM to the Clifford algebras. The

elements of a Clifford algebra always anti commute. This suggests a connection between

these algebras to complementary measurements. Can Clifford algebras be used to provide

a fresh perspective on quantum computation by taking an approach quite different from

classical computation? Drawing inspiration from the ZX calculus [44], can one build a

1Note that the term Clifford algebras and geometric algebra are used interchangeably in the physics
literature. However, Clifford algebras are free geometric algebras which satisfy a universal property.

239



universal Clifford calculus that would bridge multiple areas of quantum research? Can such

a Clifford calculus provide a neat generalization to the ZX calculus to arbitrary dimensional

systems? It would be quite interesting and highly useful to devise a diagrammatic calculus

for the complicated equations areas in quantum chemistry and other branches of quantum

mechanics. In ZX calculus, the bialgebraic interaction between the complementary Z and

the X observables is exploited to construct gates for quantum computation. The Pauli X, Y

and Z matrices along with the identity matrix is a representation for a Clifford algebra.

This arises a question if there is any interesting connection between bialgebras and Clifford

algebras? These questions are yet to be explored.

240



Bibliography

[1] Eiichi Abe. Hopf Algebras. Cambridge University Press, 2004.

[2] Samson Abramsky. “Big toy models”. In: Synthese 186.3 (2012), pp. 697–718.

[3] Samson Abramsky. “Coalgebras, Chu spaces, and representations of physical sys-

tems”. In: Journal of philosophical logic 42.3 (2013), pp. 551–574.

[4] Samson Abramsky and Bob Coecke. “A Categorical Semantics of Quantum Proto-

cols”. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer

Science. LICS ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 415–

425. isbn: 0-7695-2192-4. doi: 10.1109/LICS.2004.1. url: http://dx.doi.org/

10.1109/LICS.2004.1.

[5] Samson Abramsky and Ross Duncan. “A categorical quantum logic”. In: In the Pro-

ceedings of the 2nd International Workshop on Quantum Programming Languages

(QPL ’04). 2004.

[6] Samson Abramsky and Chris Heunen. “H*-algebras and nonunital Frobenius alge-

bras: first steps in infinite-dimensional categorical quantum mechanics”. In: Clifford

Lectures 71 (2012), pp. 1–24.

[7] Diederik Aerts and Marek Czachor. “Cartoon computation: quantum-like computing

without quantum mechanics”. In: Journal of Physics A: Mathematical and Theoretical

40.13 (Mar. 2007), F259–F266.

[8] Warren Ambrose. “Structure theorems for a special class of Banach algebras”. In:

Transactions of the American Mathematical Society 57.3 (1945), pp. 364–386.

[9] Steve Awodey. Category Theory. 2nd. USA: Oxford University Press, Inc., 2010. isbn:

0199237182.

[10] Miriam Backens. “Making the stabilizer ZX-calculus complete for scalars”. In: Elec-

tronic Proceedings in Theoretical Computer Science 195 (Nov. 2015), pp. 17–32.

241

https://doi.org/10.1109/LICS.2004.1
http://dx.doi.org/10.1109/LICS.2004.1
http://dx.doi.org/10.1109/LICS.2004.1


[11] John Baez and Michael Stay. “Physics, Topology, Logic and Computation: A Rosetta

Stone”. In: Lecture Notes in Physics 813 (2011), pp. 95–172. url: http://arxiv.

org/abs/0903.0340.

[12] John Baez and Mike Stay. “Physics, Topology, Logic and Computation: A Rosetta

Stone”. In: Lecture Notes in Physics (2010), pp. 95–172.

[13] Howard Barnum and Alexander Wilce. “Information processing in convex operational

theories”. In: Electronic Notes in Theoretical Computer Science 270.1 (2011), pp. 3–

15.

[14] Michael Barr. “*-Autonomous categories and linear logic”. In: Mathematical Struc-

tures in Computer Science 1.2 (1991), pp. 159–178. doi: 10.1017/S0960129500001274.

[15] Michael Barr. “*-Autonomous categories and linear logic”. In: Mathematical Struc-

tures in Computer Science 1.2 (1991), pp. 159–178.

[16] Michael Barr. “Accessible categories and models of linear logic”. In: Journal of Pure

and Applied Algebra 69.3 (1991), pp. 219–232.

[17] Michael Barr and Charles Wells. Category Theory for Computing Science. USA:

Prentice-Hall, Inc., 1990. isbn: 0131204866.

[18] Michel Barr. “The Chu construction: history of an idea”. In: Theory and Applications

of Categories 17.1 (2006), pp. 10–16.

[19] William Baylis. Electrodynamics: A Modern Geometric Approach. Birkhäuser, 2004.

[20] Gavin M. Bierman. “What is a categorical model of intuitionistic linear logic?” In:

Proceedings of the Second International Conference on Typed Lambda Calculi and

Applications. TLCA ’95. Berlin, Heidelberg: Springer-Verlag, 1995, pp. 78–93.

[21] Richard Blute. “Hopf algebras and linear logic”. In: Mathematical Structures in Com-

puter Science 6.2 (1996), pp. 189–212.

[22] Richard Blute, Robin Cockett, and Robert Seely. “! and?-Storage as tensorial strength”.

In: Mathematical Structures in Computer Science 6.4 (1996), pp. 313–351.

[23] Richard Blute, Robin Cockett, and Robert Seely. “Cartesian differential categories

with storage”. In: Theory and Applications of Categories 30.18 (2015), pp. 622–672.

[24] Richard Blute, Robin Cockett, and Robert Seely. “Differential categories”. In: Math-

ematical Structures in Computer Science 16.6 (2006), pp. 1049–1083.

[25] Richard Blute, Robin Cockett, and Robert Seely. “Feedback for linearly distributive

categories: traces and fixpoints”. In: Journal of Pure and Applied Algebra 154.1-3

(2000), pp. 27–69.

242

http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/0903.0340
https://doi.org/10.1017/S0960129500001274


[26] Richard Blute, Prakash Panangaden, and Robert AG Seely. “Fock space: a model

of linear exponential types”. In: Proceedings of Ninth Conf. on Mathematical Foun-

dations of Programming Semantics, Lecture Notes in Computer Science (Berlin).

Vol. 802. Springer, 1994, pp. 1–25.

[27] Richard Blute, Prakash Panangaden, and Sergey Slavnov. “Deep inference and prob-

abilistic coherence spaces”. In: Applied Categorical Structures 20.3 (2012), pp. 209–

228.

[28] Richard Blute and Philip Scott. “Category theory for linear logicians”. In: Linear

logic in Computer Science 316 (2004), pp. 3–65.

[29] Richard Blute et al. “Differential categories revisited”. In: Applied Categorical Struc-

tures (2019), pp. 1–65.

[30] Richard Blute et al. “Natural deduction and coherence for weakly distributive cat-

egories”. In: Journal of Pure and Applied Algebra 113.3 (1996), pp. 229–296. issn:

0022-4049. doi: https://doi.org/10.1016/0022-4049(95)00159-X. url: http:

//www.sciencedirect.com/science/article/pii/002240499500159X.

[31] Arkady Bolotin. No-cloning implies unalterability of the past. 2019. arXiv: 1905.06766

[quant-ph].

[32] Francis Borceux. Handbook of Categorical Algebra 1 – Basic Category Theory. Cam-

bridge Univ. Press, 1994.

[33] Man-Duen Choi. “Completely positive linear maps on complex matrices”. In: Linear

Algebra and its Applications 10 (1975), pp. 285–290.

[34] Robin Cockett, Cole Comfort, and Priyaa Srinivasan. Dagger linear logic for categor-

ical quantum mechanics. 2018. arXiv: 1809.00275 [math.CT].

[35] Robin Cockett, Jürgen Koslowski, and Robert Seely. “Introduction to linear bicate-

gories”. In: Mathematical Structures in Computer Science 10.2 (2000), pp. 165–203.

[36] Robin Cockett and Robert Seely. “Linearly distributive functors”. In: Journal of Pure

and Applied Algebra 143.1-3 (1999), pp. 155–203.

[37] Robin Cockett and Robert Seely. “Proof theory for full intuitionistic linear logic,

bilinear logic, and mix categories”. In: Theory and Applications of categories 3.5

(1997), pp. 85–131.

[38] Robin Cockett and Robert Seely. “Weakly distributive categories”. In: Journal of

Pure and Applied Algebra 114.2 (1997), pp. 133–173.

243

https://doi.org/https://doi.org/10.1016/0022-4049(95)00159-X
http://www.sciencedirect.com/science/article/pii/002240499500159X
http://www.sciencedirect.com/science/article/pii/002240499500159X
https://arxiv.org/abs/1905.06766
https://arxiv.org/abs/1905.06766
https://arxiv.org/abs/1809.00275


[39] Robin Cockett and Priyaa Srinivasan. Exponential modalities and complementarity.

“To appear in the proceedings of 4th International Conference on Applied Category

Theory, 2021”. 2021. arXiv: 2103.05191 [math.CT].

[40] Robin Cockett and Priyaa V. Srinivasan. “Complete Positivity for Mixed Unitary

Categories”. In: arXiv preprint arXiv:1905.08877 (2019).

[41] Bob Coecke. “Axiomatic Description of Mixed States From Selinger’s CPM-construction”.

In: Electronic Notes in Theoretical Computer Science 210 (2008). Proceedings of

the 4th International Workshop on Quantum Programming Languages (QPL 2006),

pp. 3–13. issn: 1571-0661.

[42] Bob Coecke. “Introducing categories to the practicing physicist”. In: (2008). arXiv:

0808.1032 [math-ph].

[43] Bob Coecke. “Terminality implies non-signalling”. In: Electronic Proceedings in The-

oretical Computer Science 172 (Dec. 2014), pp. 27–35. doi: 10.4204/eptcs.172.3.

[44] Bob Coecke and Ross Duncan. “Interacting quantum observables: categorical algebra

and diagrammatics”. In: New Journal of Physics 13.4 (2011), p. 043016.

[45] Bob Coecke, Bill Edwards, and Robert W. Spekkens. “Phase Groups and the Origin

of Non-locality for Qubits”. In: Electronic Notes in Theoretical Computer Science

270.2 (Feb. 2011), pp. 15–36. doi: 10.1016/j.entcs.2011.01.021.

[46] Bob Coecke and Chris Heunen. “Pictures of complete positivity in arbitrary dimen-

sion”. In: Information and Computation 250 (2016), pp. 50–58.

[47] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in

Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

doi: 10.1017/9781316219317.

[48] Bob Coecke and Dusko Pavlovic. “Quantum measurements without sums”. In: Mathe-

matics of Quantum Computation and Quantum Technology. Taylor and Francis, 2007,

pp. 577–620.

[49] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. “A new description of orthogonal

bases”. In: Mathematical structures in computer science 23.3 (2012), pp. 555–567.

[50] Bob Coecke and Simon Perdrix. “Environment and classical channels in categori-

cal quantum mechanics”. In: International Workshop on Computer Science Logic.

Springer. 2010, pp. 230–244.

244

https://arxiv.org/abs/2103.05191
https://arxiv.org/abs/0808.1032
https://doi.org/10.4204/eptcs.172.3
https://doi.org/10.1016/j.entcs.2011.01.021
https://doi.org/10.1017/9781316219317


[51] Bob Coecke et al. “Strong Complementarity and Non-locality in Categorical Quantum

Mechanics”. In: 2012 27th Annual IEEE Symposium on Logic in Computer Science

(June 2012). doi: 10.1109/lics.2012.35.

[52] R. Crubillé et al. “The Free Exponential Modality of Probabilistic Coherence Spaces.”

In: In Esparza J., Murawski A. (eds) Foundations of Software Science and Com-

putation Structures. FoSSaCS 2017. Lecture Notes in Computer Science (Berlin).

Vol. 10203. Springer, 2017, pp. 20–35.

[53] Marek Czachor. “Elementary gates for cartoon computation”. In: Journal of Physics

A: Mathematical and Theoretical 40.31 (July 2007), F753–F759.

[54] Vincent Danos and Laurent Regnier. “The structure of multiplicatives”. In: Archive

for Mathematical logic 28.3 (1989), pp. 181–203.

[55] Brian Day and Craig Pastro. “Note on Frobenius monoidal functors”. In: New York

J. Math 14.733-742 (2008), p. 20.

[56] Jacques Dixmier. Von Neumann Algebras. North Holland, Oct. 2011.

[57] Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge

University Press, 2003. doi: 10.1017/CBO9780511807497.

[58] Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge

University Press, 2007.

[59] Ross Duncan. “Types for Quantum Computing”. PhD thesis. Oxford University, 2006.

[60] Ross Duncan and Kevin Dunne. “Interacting Frobenius Algebras Are Hopf”. In: Pro-

ceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science.

LICS ’16. New York, NY, USA: Association for Computing Machinery, 2016, pp. 535–

544.

[61] Jeff Egger. “On involutive monoidal categories”. In: Theory and Applications of Cat-

egories 25.14 (2011), pp. 368–393.

[62] Jeff Egger. “The Frobenius relations meet linear distributivity.” In: Theory and Ap-

plications of Categories 24 (2010), pp. 25–38.

[63] Jeff Egger and Micah Blake McCurdy. “On cyclic star-autonomous categories”. In:

Journal of Pure and Applied Algebra 216.8-9 (2012), pp. 1706–1725.

[64] Thomas Ehrhard. “Finiteness spaces”. In: Mathematical Structures in Computer Sci-

ence 15.4 (2005), pp. 615–646.

245

https://doi.org/10.1109/lics.2012.35
https://doi.org/10.1017/CBO9780511807497


[65] Marcelo P. Fiore. “Differential structure in models of multiplicative biadditive in-

tuitionistic linear logic”. In: International Conference on Typed Lambda Calculi and

Applications. Springer. 2007, pp. 163–177.

[66] Matthew R. Francis and Arthur Kosowsky. “Geometric algebra techniques for general

relativity”. In: Annals of Physics 311.2 (June 2004), pp. 459–502.

[67] Peter Freyd and Andre Scedrov. Categories, Allegories. Vol. 39. North Holland, 1989.

[68] Jean-Yves Girard. “Linear logic”. In: Theoretical computer science 50.1 (1987), pp. 1–

101.

[69] Jean-Yves Girard. Linear Logic: Its Syntax And Semantics. 1995.

[70] Stefano Gogioso and Fabrizio Genovese. “Infinite-dimensional Categorical Quantum

Mechanics”. In: Proceedings 13th International Conference on Quantum Physics and

Logic, Glasgow, Scotland, 6-10 June 2016. Ed. by Ross Duncan and Chris Heunen.

Vol. 236. Electronic Proceedings in Theoretical Computer Science. Open Publishing

Association, 2017, pp. 51–69. doi: 10.4204/EPTCS.236.4.

[71] David J. Griffiths and Darrell F. Schroeter. Introduction to quantum mechanics. Cam-

bridge University Press, 2018.

[72] Stefano Guerrini. “Correctness of multiplicative proof nets is linear”. In: Proceedings.

14th Symposium on Logic in Computer Science (Cat. No. PR00158). IEEE. 1999,

pp. 454–463.

[73] David Hestenes and Garret Sobczyk. Clifford algebra to geometric calculus: a unified

language for mathematics and physics. Vol. 5. Springer Science & Business Media,

2012.

[74] Chris Heunen. “Compactly accessible categories and quantum key distribution”. In:

Logical Methods in Computer Science 4 (2008).

[75] Chris Heunen. “Compactly accessible categories and quantum key distribution”. In:

Logical Methods in Computer Science 4.4 (2008), pp. 1–26.

[76] Chris Heunen and Vicary Jamie. Categories for Quantum Theory: An Introduction.

Oxford University Press, Nov. 2019.

[77] Chris Heunen and Manuel L Reyes. “Frobenius structures over Hilbert C*-modules”.

In: Communications in Mathematical Physics 361.2 (2018), pp. 787–824.

[78] Chris Heunen and Sean Tull. “Categories of relations as models of quantum theory”.

In: Electronic Proceedings in Theoretical Computer Science 195 (Nov. 2015), pp. 247–

261.

246

https://doi.org/10.4204/EPTCS.236.4


[79] D. A. Higgs and K. Rowe. “Nuclearity in the category of complete semilattices”. In:

Journal of Pure and Applied Algebra 57 (1989), pp. 67–78.

[80] Basil J. Hiley and Robert E. Callaghan. The Clifford Algebra approach to Quan-

tum Mechanics A: The Schrödinger and Pauli Particles. 2010. arXiv: 1011.4031

[math-ph].

[81] Martin Hyland and Andrea Schalk. “Glueing and orthogonality for models of linear

logic”. In: Theoretical Computer Science 294.1–2 (Feb. 2003), pp. 183–231.

[82] André Joyal. “Free bicomplete categories”. In: Mathematical Reports XVII (1995),

pp. 219–225.

[83] André Joyal. “Free bicomplete categories”. In: Mathematical Reports XVII (1995),

pp. 213–218.

[84] G. Max Kelly. “On MacLane’s conditions for coherence of natural associativities,

commutativities, etc.” In: Journal of Algebra 1.4 (1964), pp. 397–402. issn: 0021-

8693.

[85] G.M. Kelly and M.L. Laplaza. “Coherence for compact closed categories”. In: Journal

of Pure and Applied Algebra 19 (1980), pp. 193–213. issn: 0022-4049. doi: https:

//doi.org/10.1016/0022-4049(80)90101-2. url: https://www.sciencedirect.

com/science/article/pii/0022404980901012.

[86] Max Kelly. “Doctrinal adjunction”. In: Category Seminar. Springer. 1974, pp. 257–

280.

[87] Alex Kissinger and Saunders Uijlen. “A categorical semantics for causal structure”.

In: Logical Methods Computer Science 15 (2019).

[88] Jürgen Koslowski. “An extended view of the Chu-construction”. In: Theory and Ap-

plications of Categories 17.6 (2006), pp. 103–126.

[89] Yves Lafont. “Logiques, catégories & machines: Implantation de langages de program-

mation guidé par la logique catégorique”. PhD thesis. [S.l.] : [s.n.], 1988: Université

Paris Diderot - Paris, 1988.

[90] Jean-Simon Pacaud Lemay. “Lifting coalgebra modalities and MELL Model Structure

to Eilenberg-Moore categories”. In: Logical Methods in Computer Science 15.4 (Nov.

2019), pp. 215–242.

247

https://arxiv.org/abs/1011.4031
https://arxiv.org/abs/1011.4031
https://doi.org/https://doi.org/10.1016/0022-4049(80)90101-2
https://doi.org/https://doi.org/10.1016/0022-4049(80)90101-2
https://www.sciencedirect.com/science/article/pii/0022404980901012
https://www.sciencedirect.com/science/article/pii/0022404980901012


[91] Jean-Simon Pacaud Lemay. “Why FHilb is not an interesting (co)differential cate-

gory”. In: Electronic Proceedings in Theoretical Computer Science 318 (May 2020),

pp. 13–26. issn: 2075-2180. doi: 10.4204/eptcs.318.2. url: http://dx.doi.org/

10.4204/EPTCS.318.2.

[92] Robert Lin. A Graphical Calculus for Multi-Qudit Computations with Generalized

Clifford Algebras. Mar. 2021. arXiv: 2103.16081 [quant-ph].

[93] Robert Lin. An Algebraic Framework for Multi-Qudit Computations with Generalized

Clifford Algebras. Mar. 2021. arXiv: 2103.15324 [quant-ph].

[94] Douglas Lundholm and Lars Svensson. “Clifford algebra, geometric algebra, and ap-

plications”. In: (2009). arXiv: 0907.5356 [math-ph].

[95] Saunders Mac Lane. Categories for the Working Mathematician. Vol. 5. Berlin/Heidelberg,

Germany: Springer Science & Business Media, 2013.

[96] Roberto Maieli and Quintijn Puite. “Modularity of proof-nets”. In: Archive for Math-

ematical Logic 44.2 (2005), pp. 167–193.

[97] Shahn Majid. Foundations of Quantum Group Theory. Cambridge University Press,

Apr. 2000.

[98] Paul-André Melliér, Nicholas Tabareau, and Christine Tasson. “An explicit formula

for the free exponential modality of linear logic”. In: Mathematical Structures in

Computer Science 28.7 (2018), pp. 1253–1286. doi: 10.1017/S0960129516000426.

[99] David Mermin. “What’s wrong with this pillow?” In: Mathematical Structures in

Computer Science 42.4 (1989), pp. 615–646. url: https://doi.org/10.1063/1.

2810963.

[100] B. Musto and Jamie Vicary. “Quantum Latin squares and unitary error bases”. In:

Quantum Inf. Comput. 16 (2016), pp. 1318–1332.

[101] John von Neumann and Robert T. Beyer. Mathematical Foundations of Quantum

Mechanics: New Edition. NED - New edition. Princeton University Press, 2018.

[102] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-

formation: 10th Anniversary Edition. Cambridge University Press, 2010.

[103] Craig Pastro and Ross Street. “Weak Hopf monoids in braided monoidal categories”.

In: Algebra & Number Theory 3.2 (2009), pp. 149–207.

[104] Dusko Pavlovic. “Relating toy models of quantum computation: comprehension, com-

plementarity and dagger mix autonomous categories”. In: Electronic Notes in Theo-

retical Computer Science 270.2 (2011), pp. 121–139.

248

https://doi.org/10.4204/eptcs.318.2
http://dx.doi.org/10.4204/EPTCS.318.2
http://dx.doi.org/10.4204/EPTCS.318.2
https://arxiv.org/abs/2103.16081
https://arxiv.org/abs/2103.15324
https://arxiv.org/abs/0907.5356
https://doi.org/10.1017/S0960129516000426
https://doi.org/10.1063/1.2810963
https://doi.org/10.1063/1.2810963


[105] Hans-E. Porst. “On categories of monoids, comonoids, and bimonoids”. In: Quaes-

tiones Mathematicae 31.2 (2008), pp. 127–139.

[106] Vaughan Pratt. “Linear Logic for Generalized Quantum Mechanics”. In: In Proc.

Workshop on Physics and Computation (PhysComp’92. IEEE, 1993, pp. 166–180.

[107] Abraham Robinson. Non-standard analysis. Princeton University Press, June 1996.

[108] Andrea Schalk. “What is a categorical model for Linear Logic?” Manuscript down-

loadable from www.cs.man.ac.uk/~schalk/notes/llmodel.pdf. 2004. (Visited on

04/17/2021).

[109] Peter Selinger. “A survey of graphical languages for monoidal categories”. In: New

Structures for Physics. Springer, 2010, pp. 289–355.

[110] Peter Selinger. “Dagger compact closed categories and completely positive maps”. In:

Electronic Notes in Theoretical Computer Science 170 (2007), pp. 139–163.

[111] Peter Selinger. “Idempotents in Dagger Categories: (Extended Abstract)”. In: Elec-

tron. Notes Theor. Comput. Sci. 210 (2008), pp. 107–122.

[112] Peter Selinger. “Towards a quantum programming language”. In: Mathematical Struc-

tures in Computer Science 14 (2004), pp. 527–586.

[113] Sergey Slavnov. “On Banach spaces of sequences and free linear logic exponential

modality”. In: Mathematical Structures in Computer Science 29.2 (2017), pp. 215–

242.

[114] Shyamal S. Somaroo, David G. Cory, and Timothy F. Havel. “Expressing the opera-

tions of quantum computing in multiparticle geometric algebra”. In: Physics Letters

A 240.1 (1998), pp. 1–7.

[115] Christine Tasson. “Sémantiques et Syntaxes Vectorielles de la Logique Linéaire”. The-

ses. Université Paris-Diderot - Paris VII, Dec. 2009. url: https://tel.archives-

ouvertes.fr/tel-00440752.

[116] Jayme Jr. Vaz and Roldão Jr. da Rocha. An Introduction to Clifford Algebras and

Spinors. Oxford University Press, 2019.

[117] Jamie Vicary. “A categorical framework for the quantum harmonic oscillator”. In:

International Journal of Theoretical Physics 47.12 (2008), pp. 3408–3447.

[118] Jamie Vicary. “Categorical formulation of finite-dimensional quantum algebras”. In:

Communications in Mathematical Physics 304.3 (Nov. 2010), pp. 765–796.

[119] Alexander Yu Vlasov. “Clifford algebras and universal sets of quantum gates”. In:

Physical Review A 63.5 (Apr. 2001).

249

www.cs.man.ac.uk/~schalk/notes/llmodel.pdf
https://tel.archives-ouvertes.fr/tel-00440752
https://tel.archives-ouvertes.fr/tel-00440752


[120] Alexander Yu Vlasov. Quantum gates and Clifford algebras. 1999. arXiv: 9907079

[quant-ph].

250

https://arxiv.org/abs/9907079
https://arxiv.org/abs/9907079

