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Indeterministic Physical Systems

15.1. Introduction
The indeterministic systems investigated in this chapter share the com-
mon characteristic that determining one aspect of the system leaves others 
open. The most familiar cases are ones in which the present state of the 
system fails to fix its future state. We shall see several such systems in 
Section 15.3. The most important are systems with infinitely many degrees 
of freedom, for this sort of determinism is generic among them. Rather 
than delve into the details of the physics of such systems, the mechanism 
that generates the indeterminism will be illustrated by the simplified sys-
tem of the infinite domino cascade.

A different sort of indeterministic system will be explored in Section 
15.4. At the risk of abusing the term, I will also describe as indeterministic 
systems those in which, at the same moment of time, one component fails 
to fix others, contrary to normal expectations. The examples will be drawn 
from Newtonian gravitation theory.

Each instance of indeterminism poses a problem in inductive in-
ference. From known aspects, what strengths of inductive support are 
provided to the remaining underdetermined aspects? Given this present, 
What support is provided to the various possible futures? Given this mass 
distribution, What support is given to the various possible Newtonian 
potential fields? As explained in Section 15.5, each of the problems has 
been chosen so that the complete background physics is transparent and 
transparently provides no probabilities over the various underetermined 
possibilities. The problem for inductive analysis is to find the strengths of 
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inductive support for the different possibilities without altering or adding 
to this physics. For to do otherwise is to change the problem posed.

We shall see in Section 15.6 that probabilities can only be assigned 
as strengths of inductive support if we add to the background facts. 
Normalization of a probability measure, for example, requires that the 
probabilities of different times of spontaneous excitation in a temporal-
ly indeterministic system diminish to zero as the times grow large. This 
diminution must happen at some rate—quickly or slowly—and fitting a 
probability measure to the process requires that some speed be chosen. To 
make that choice, however, is to add to the physics provided.

This is just the first of a series of problems that preclude the use of 
probabilities as strengths of support. The final example requires the adap-
tation of a uniform probability measure to an infinite dimensional space 
of Newtonian potentials. The infinity of the dimensions presents especial-
ly intractable problems.

Section 15.7 then describes how the material theory of induction 
solves the inductive problems. We are to look to the background physical 
facts to provide the strengths of inductive support. By design, these facts 
provide very little. They allow us to say of various processes or components 
that they are necessary, possible, and impossible. These three evaluations 
become the values of a spare, three-valued inductive logic. Its strengths 
of support coincide with those of “completely neutral support” described 
elsewhere, including Chapter 10. This completely neutral support can be 
fixed by certain invariances in space of possibilities; and we shall see that 
they are realized in this case as well.

We proceed first with a preliminary in Section 15.2 on the project now 
undertaken.

15.2. Why Take Simple, Unrealistic Physical Systems 
Seriously?
The illustrations to come involve simple, physically unrealistic systems that 
we mostly1 do not encounter in the ordinary practice of science. So why 
pay any special attention to them in investigations of inductive inference? 

1 The exception is the example of the quantum spin of electrons.
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There is a simple pragmatic reason for considering them. If the analysis of 
the warranting relations is to be transparent, we need simple systems. We 
need systems in which the full set of background facts is easy to compre-
hend so that their full import can be seen clearly and unequivocally.

This pragmatic reason, however, is not the principal one. The deep-
er reason for taking these simple systems seriously pertains to the range 
of applicability of inductive inference. We do not balk at reasoning de-
ductively about fictitious systems, no matter how bizarre we may find 
them. Correspondingly, I see no reason to prohibit inductive inference 
over such systems. There is no guarantee, of course, that every system will 
admit rich inductive inferences. Just what is possible inductively will be 
determined by the background facts that obtain, as the material theory 
of induction asserts. When we ask which inductive inferences are war-
ranted in the simple systems below, we will find that their strengths of 
inductive support cannot be probability measures. That is, we will find 
through counterexamples that the probability calculus does not provide a 
universally applicable logic of induction.

It may be tempting to block the counterexamples by insisting that the 
scope of inductive inference is limited to ordinary physical systems of the 
type we normally encounter in science. This would be an unnecessary re-
striction on the reach of inductive methods. Worse, it would be of no help 
in protecting the probability calculus as the universally applicable logic 
of inductive inference. For the restriction to ordinary systems gives up 
universal applicability at the outset. Moreover, the restriction itself would 
conform with the material theory of induction, for the range of applicabil-
ity of probabilistic inductive logic would be circumscribed by the factual 
restriction to ordinary systems.2

15.3. Temporally Indeterministic Systems
The general idea of determinism is that the fixing of one aspect of a system 
fixes some other. This section will address the case of temporal aspects. In a 
(temporally) deterministic physical system, the present state of the system 

2 I set aside here the further problem of delineating just what will count as “ordinary.” 
Many of the systems ordinarily considered in science are highly idealized and thus highly 
unrealistic.
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determines its future states. With the notable exception of quantum meas-
urement, physical systems are generally assumed to be deterministic. The 
present state of our planetary system fixes the future movements of the 
planets and whether there will be an eclipse at any nominated time.

Systems that violate temporal determinism have attracted consider-
able attention in recent decades in the philosophy of physics, with the 
modern era marked by the publication of John Earman’s Primer (1986). 
Once we start to look for indeterministic systems, we find them in many 
places. 

15.3.1. The Dome
One of the simplest indeterministic systems is the “dome.” Since it has 
been discussed extensively elsewhere (Norton 2003, §3; 2008), it needs 
only a brief recapitulation here. A unit point mass slides frictionlessly over 
the surface of a dome in a vertical gravitational field with acceleration due 
to gravity g, as shown in Figure 15.1.

r=0

h = 
(2/3g)r3/2

F = r1/2
r

Figure 15.1. The dome.

The dome has a vertical axis of rotational symmetry about its apex and the 
surface is depressed below the apex by a (negative) height h = (2/3g)r3/2, 
where r is the radial distance to the point from the apex along the surface. 
The force F on the point mass along the surface of the dome is
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and is directed outward from the apex. The motion of the point mass is 
governed by the equation of motion

where t is time. Initially, at time t = 0, the point mass is located at the apex 
r = 0 at rest. Since the force at the apex is F = 01/2 = 0, one solution to the 
equation of motion is that the mass remains at the apex for all time:

However, there is a second family of solutions, in which the particle moves 
spontaneously at time t = T for any time T ≥ 0:

In this second solution, the particle remains quiescent up to and including 
time t = T. Then it moves away from the apex in any direction.

This spontaneous excitation results entirely from the equation of mo-
tion. There is no hidden triggering event, such as a slight bump to the 
dome that may dislodge the point mass from the apex. If there is no spon-
taneous motion, it is so because the equations of motion allow it. If there 
is spontaneous motion at time T, it happens just because the equation of 
motion also allow it.

The dome is a Newtonian system with only finitely many degrees of 
freedom. That is, its state can be specified fully just by specifying a finite 
list of magnitudes: the position of the particle on the dome, its speed, and 
its direction of motion. The dome is unusual in its indeterminism in that, 
generally, Newtonian systems with finitely many degrees of freedom are 
deterministic. It was devised originally to display an unusual exception 
to this generality. Because of its exceptional character, the indeterminism 
of the dome is highly sensitive to changes in the physical system, and its 
indeterminism can be eliminated by small adjustments to it.

15.3.2. Masses and Springs
Matters change once we consider Newtonian systems with infinitely many 
degrees of freedom. An important example is a system of infinitely many 
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interacting particles. It has infinitely many degrees of freedom since its 
state can only be specified by specifying infinitely many magnitudes, such 
as the mass, position and velocity of each particle. Such systems are gener-
ically indeterministic. While circumstances need to be specially contrived 
to induce indeterminism among the systems with finitely many degrees 
of freedom, indeterminism is simply the standard, generic behavior of 
these systems with infinitely many degrees of freedom. There are many 
examples in the literature. Often they arise in the supertask literature, as 
reviewed in Manchak and Roberts (2016).

The masses and springs example consists of an infinite chain of mass-
spring-mass-spring-… shown in Figure 15.2.

......

Figure 15.2. Masses and springs.

Its temporal behavior is recovered from an application of Newton’s laws 
along with Hooke’s laws for the springs. If the system is set initially in 
equilibrium with all the masses at rest and the springs unextended or 
uncompressed, then the system can remain in this quiescent state in-
definitely. However, at any later moment, it can spontaneously self-excite 
with all the masses set in motion. The system is noteworthy for the ease 
with which a full mathematical description can be given and for what it 
represents physically. It is a standard model of a one-dimensional crystal, 
extended to infinite size. It indicates that more complex solids, such as 
infinite three-dimensional crystals, will exhibit similar indeterminism.3 

In all of these systems, the infinity of the number of degrees of free-
dom is essential. A finite system, no matter how large, will not manifest 
the indeterministic behavior as freely. A finite chain of mass-spring-mass-
spring-…, once quiescent, remains so for all time, no matter how large it is.

3 I have argued in Norton (2012) that this fact ensures that the infinite component, 
thermodynamic limit of thermal physics cannot involve examination of a system that consists 
of infinite components. Through their indeterminism, such infinite systems have qualitatively 
different properties from the real target of analysis, systems with many, but finitely many, 
components.
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15.3.3. The Infinite Domino Cascade
Rather than work through the technical details of the examples, I will dis-
play a toy example, shown in Figure 15.3, that illustrates the mechanism 
that brings about indeterminism in all of these infinite cases. In a domino 
cascade, dominoes or slender tiles are set on their edges in a row, such that 
when one falls, it strikes another, leading it to fall; that falling domino 
strikes yet another, leading it to fall; and so on down the row.

Consider a very large row of dominoes, finite in number. We assume 
no external perturbing effects. There are no slight vibrations from passing 
trucks, no thermal agitation from air molecules, and so on. If it is set up at 
rest initially, it will remain so indefinitely.

Consider an infinite row of dominoes with the same provisions. As 
with the finite case, it can remain at rest indefinitely. However, it is also 
possible for it to be set into motion spontaneously. The final stages of this 
spontaneous motion are the following:

• the first domino falls, because it was struck by the second 
domino that started falling earlier;

• the second domino fell, because it was struck by the third 
domino that started falling earlier;

• the third domino fell, because it was struck by the fourth domi-
no that started falling earlier; and so on.

As we proceed through the falling of the first, second, and third dom-
inoes, and so forth, we trace the process back through time and eventually 
consider the falling of all infinity of the dominoes.



The Material Theory of Induction580

Figure 15.3. Infinite domino cascade.

This cascade of falls could not happen spontaneously if there were finitely 
many dominoes. For, as we trace back through the finite cascade, we would 
eventually come to the last domino. It would not fall because there would 
be no further dominoes to fall on it. There would be nothing to start the 
cascade. In the infinite case, we never come to the end of the cascade. For 
any domino, there is always a next domino to fall on it. So every domino 
falls. There is no first fall to initiate the cascade and no need for one.

All that remains now is to close a loophole. If each domino takes the 
same amount of time to fall onto the next, then the infinity of domino falls 
needed to complete the cascade requires an infinite amount of time. This 
does not make the process impossible. But it does make it uninteresting 
for our purposes, for it is simply a process that has been underway for all 
of an infinite past time. If each fall takes one second, then the Nth domino 
fell N seconds ago; and so on for N indefinitely large.

We close the loophole by contriving the geometry of dominoes such 
that each time of fall is successively shorter as we proceed along the cas-
cade. If the successive dominoes require 1/2, 1/4, 1/8, 1/16, … seconds to 
fall, then all infinity of them will have fallen after 1/2 + 1/4 + 1/8 + 1/16 + 
… = 1 second. To an observer, the motion would appear as follows. The 
initially quiescent dominoes remain so for some time. Then, off in the 
distance at the infinite end of the row of dominoes, at the moment of spon-
taneous excitation, there is a disturbance that rapidly propagates towards 
the beginning of the row and leaves all the dominoes toppled.
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Some delicacy is needed to arrange all the dominoes so that they can 
behave this way. The time each takes to fall on the next will depend on how 
hard it is struck and how close it is to the next domino. Under plausible 
assumptions, computed in Appendix 15.A, the time each domino needs 
to fall onto the next scales in direct proportion to the distance between 
the dominoes. Thus, we secure the above schedule of acceleration of the 
falls by shrinking the distance between the dominoes in proportion to the 
times 1/2, 1/4, 1/8, 1/16, … If we assume that the widths of the dominoes 
are scaled similarly, then the cascade can be completed in finite time just 
if the length of the domino row is finite.

One outcome of this scaling is that the dominoes will become arbi-
trarily thin. One might imagine that this means that the dominoes become 
pseudostable rather like a pencil balanced on an infinitely sharpened tip. 
However, none of the dominoes will be pseudostable, since a pseudostable 
system is one which is toppled by an arbitrarily small perturbation. Each 
domino will have a finite width, even if small, which forms a stable base. 
Toppling it requires some non-zero work to lift its center of mass past its 
edge.

This is a toy model. However, it illustrates how indeterminism arises 
generically in systems with infinitely many degrees of freedom. In such 
systems, there are many cascades of excitation processes that cannot arise 
spontaneously in finite systems, since the finite system requires some in-
itiating event to get the process started. In a system with infinitely many 
degrees of freedom, these processes can happen spontaneously without 
need of some initiating event, for they are comprised of infinite cascades 
of events that have no first member.

These general remarks can be made more precise. For a synopsis of 
the analysis for a more general case and for the quantitative analysis of 
the masses and springs example specifically, see Norton (2012, Appendix).

15.4. Indeterminism among Components of a System
In the indeterminism of the last section, the present state of the system 
fails to fix its future state. It may also happen that, at the same time, the 
state of some components of a system may fail to fix the state of other com-
ponents, contrary to our expectations. The problem in inductive inference 
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is then to determine the strengths of support afforded to these incomplete-
ly determined components.

15.4.1. Gauge Systems
There is a simple recipe for generating many problems of this type by in-
jecting a small fiction into physics. Modern physical theories are replete 
with gauge freedoms. They arise when one has two descriptions that ap-
pear to be of distinct physical systems, but it turns out that the differences 
are merely artifacts of the descriptions used. It is “the Eiffel tower” and “la 
tour Eiffel.” The two systems are the same physically. They just differ in 
their names.

Imagine, however, that through some novel physics we do find a way 
to distinguish the two. Then we would have a difference that makes a dif-
ference; and learning which the correct is one would become a problem 
in inductive inference. Since there are many gauge freedoms in modern 
physics, this stratagem can create many new inductive inference problems 
of just the type sought here.

Fact can sometimes mimic fiction. The gauge field associated with 
magnetism is the vector potential A. In classical physics, it is merely a 
useful adjunct in computing magnetic field strengths, but not a physic-
ally significant quantity in its own right. The coming of quantum theory 
initially showed promise of changing this circumstance. Bohm and 
Aharonov (1959) found a quantum effect that arose when there was an 
A field present, but no magnetic field. They initially offered it as evidence 
that the A field is physically significant. Later analysis showed the situa-
tion to be more complicated.

For concreteness, I will elaborate one of the simplest gauge freedoms. 
In ordinary Newtonian gravitation theory, the physically significant 
quantity is the gravitational force on a unit test mass and the associat-
ed quantities of work. The distribution of all such possible forces over all 
space is the Newtonian gravitational force field f. For the case of the sun, 
the force field is given by the familiar inverse square law

where a force of magnitude f(r) on a unit test mass is directed towards 
the center of the sun. M is the mass of the sun, r the radial distance from 
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the center of the sun to the test mass, and G the universal constant of 
gravitation. 

The Newtonian gravitational potential field j(r) is defined through the 
work W(r0, r1) needed to be performed against this force field when we 
move a unit test mass from one position r0 to another r1. That is, the po-
tential fields j(r0) and j(r1) are related by

We usually infer from (3) that . However, we are really only 
authorized to infer to something weaker: 

where K can be any number, positive or negative, large or small.
The choice of K leaves the physically significant quantities unaltered. 

That is, for all K, we end up with the same work term W(r0, r1) in (3) since 

and the same force field f(r) in (2) since

The freedom in selection of different K’s is a gauge freedom and trans-
forming between different, physically equivalent expressions for j(r) by 
changing the value of K is a gauge transformation.

The inductive inference problem posed is this. We introduce the fic-
tion that some new physics will enable us to detect and distinguish among 
the gravitational potentials of (4). Given the gravitational force field f(r) of 
the sun (2), what is the inductive strength of support given to the gravita-
tional potential fields j(r) of (4) with different values of K?

15.4.2. Newtonian Cosmology
Indeterminism among components in a physical theory can arise without 
the need for any fictitious physics. A simple example, inspired by Wallace 
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(2016), arises in Newtonian gravitation theory. We expect that the specifi-
cation of the position and masses of all bodies in the universe will fix the 
gravitational force on a test body and the gravitation potential field at any 
point in space.

That things are not simple precipitated an acute problem in Newtonian 
cosmology in the late nineteenth and early twentieth century. Newtonian 
cosmology assumes that infinite Euclidean space is filled with a uniform 
matter distribution of constant density r. The expectation is that there is 
a unique gravitational force acting on any test body in such a universe. 
This force is calculated by summing all the gravitational forces acting on 
the test body from the uniformly distributed cosmic matter. The trouble is 
that there are many ways to sum these forces. Pick any resultant force you 
like and there is a way to carry out the sum so that the net force on the test 
body is just that force. For a survey of this period and for an example of 
the simple calculations that lead to the multiplicity of forces, see Norton 
(1999a).

In retrospect, the difficulty is all too easy to see. Contrary to expect-
ations, the cosmic matter distribution does not fix the net gravitational 
force on the test body. Many fields are compatible with the one matter 
distribution and thus we can compute many forces on the test body simply 
by drawing quantities from different possible fields.

When the problem was first examined in the literature, however, this 
possibility was overlooked, since the loss of uniqueness of the force was 
unthinkable. Instead, many physicists found it obvious and even compel-
ling that the symmetries of the problem must force a unique solution: there 
can be no preferred directions in a homogeneous, isotropic cosmology. So 
the net force can point in no direction. Hence, there is no net force on the 
test body and, as a result, the gravitational potential field must everywhere 
be a constant.

We shall return below to this risky idea that physical intuition can 
override what well-established equations say. Before we do, it is interesting 
to note that a favored resolution was to modify Newton’s inverse square 
law of gravity until it returned the expected constant gravitational poten-
tial. This computation was used by Einstein in 1917 as a foil to motivate his 
introduction of the cosmological constant into general relativity. 
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We can develop the difficulty as follows. A curious result of Newtonian 
gravitation theory concerns an infinite flat plate of matter of density r and 
thickness Dx. The gravitational force exerted by this plate on a test body 
turns out to be independent of the distance from the plate. It is just

directed along the line of shortest distance to the plate.4 We can use this 
result to determine the gravitational force on a test body in a Newtonian 
cosmos. We divide the uniform matter distribution into infinitely many 
flat plates of thickness Dx and infinite area, arranged parallel to the y and 
z axes of a Cartesian coordinate system (x, y, z). 

Consider a unit test mass at some fixed x-coordinate position, say x’ = 
x. We can divide the matter distribution that acts gravitationally on it into 
two parts. As shown in Figure 15.4, the first consists of all those infinite 
plates between x’ = −x and x’ = x. The second consists of all the remaining 
infinite plates.

Figure 15.4. Unbalanced forces in Newtonian cosmology.

4 See Appendix 15.B for a justification and demonstration of this result and further 
analysis of this example.
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We have from (5) that each plate of thickness Dx contributes force 2pGr 
Dx. Hence, the force on the test body from the plates between x’ = −x and 
x’ = x is just their sum

and is directed along the x-axis towards x = 0. The remaining plates each 
exert the force 2pGr Dx on the test body. The force will be in the +x direc-
tion if the plate is located at x’ > x and it will be in the −x direction if the 
plate is located at x’< −x. Hence, we can pair up the plates at coordinate 
positions +x’ and −x’, matching one that exerts a force in the +x direction 
with one that exerts a force in the −x direction, so the net force from the 
pair is zero. This pairing exhausts all the matter of the second part, as 
shown in Figure 15.5. The net result is that the force on the test body is 
given by (43).

Figure 15.5. Balanced forces in Newtonian cosmology.

We can repeat this construction for every point in space, so that the ex-
pression (6) represents the gravitational force field due to the cosmic mat-
ter. This force field induces a gravitational potential through a relation 
analogous to (3) as
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The problem should now be obvious. The division of the cosmic matter 
into plates perpendicular to the x axis was arbitrary. We could also have 
divided it into plates perpendicular to the y or the z axes. We could then 
replicate the above analysis and recover two distinct potential fields5

We can generate still further potential fields. Another arbitrary choice was 
to locate the center of the plates of the first part at x-coordinate 0. We 
could equally have chosen any x-coordinate, such as x0. We would then 
have arrived at the gravitational potential fields

Taken together, we have many potentials compatible with the cosmic mat-
ter distribution. One might well suspect at this point, quite correctly, that 
we have only begun to explore the gravitational potential fields compatible 
with the cosmic matter distribution.

These potential fields form a large space, and we can navigate through 
them by the following artifice. We start with any admissible potential, 
such as (7a). We arrive at another simply by adding a “harmonic function” 
to it.6 It turns out that

is a harmonic function. Adding it to (7a) moves us to (7b):

5 For experts: the potentials (7a, b, c) derive from physically distinct gravitational systems 
and not gauge equivalent along the lines of Malament (1995). For more, see Appendix 15.B.

6 A harmonic function is one that satisfies Laplace’s equation ∇2F = 0. For more, see 
Appendix 15.B.
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Another harmonic function is

Adding it to (7a) moves us to (8c).
The remarkable fact is that there are infinitely many harmonic func-

tions and they are linearly independent. This means that we cannot reduce 
the set by expressing some as linear combinations of others. If we repre-
sent an infinite set of linearly independent harmonic functions as F1, F2, 
F3, …, then adding any linear combination of them to an admissible po-
tential produces another. Thus, we arrive at an infinite dimensioned space 
of gravitational potentials 

where the space is parameterized by infinitely many parameters a1, a2, a3, 
… which can each independently take on all values, positive and negative, 
large and small. The potentials of (7a, b, c) and (8a, b, c) are just some of 
the simplest potentials in the space.

The inductive problem to be addressed shortly is to determine the sup-
port for each of the solutions in the space of potentials defined by (9), given 
the spatial geometry and matter distribution of Newtonian cosmology.

Since both the spatial geometry and the matter distribution are iso-
tropic and homogeneous, it is natural to assume that the gravitational 
potential will share some or all of these symmetries. One may even have 
a strong intuition, as physicists did in the past, that the potential must 
share these symmetries. Imposing them would have the effect of greatly 
reducing the size of the space of potentials (9). While the reduced problem 
that results is interesting its own right, it is not the one to be addressed 
here. We do not assume homogeneity and isotropy of the potential field, 
for there is no compulsion to assume either. It is not an assumption that 
can be derived from the corresponding symmetries of the geometry and 
the matter distribution and, as the viablility of the potentials (9) show, it is 
not enforced on individual potentials of Newtonian gravitational theory.
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15.5. Inductive Analysis of Temporally Indeterministic 
Systems
The indeterministic systems of Sections 15.3 and 15.4 above each pose a 
problem in inductive inference. Take certain fixed aspects of a system: its 
present state or certain of its components. Find the strength of inductive 
support that the aspect provides to some other aspect: the system’s future 
state or certain others of its components. The systems have been chosen so 
that all share the following two properties:

• The physics described is an exhaustive account of the totality of 
background facts. There are no further hidden background 
facts.

• The physics leaves one aspect of the system underdetermined, 
but provides no probabilities for the different possibilities.

An essential condition to be placed on the inductive analysis is that it 
merely extracts and displays the relations of inductive support already 
present in the fully specified systems. That is, setting off the controlling 
idea for emphasis:

The analysis may not impose new physics.

For to impose new physics is to introduce new facts that alter the problem 
posed. What would result might well be a cogent analysis of some prob-
lem, but it would not be an analysis of the problem originally posed.

15.6. A Probabilistic Analysis
Let us attempt to represent the strengths of inductive support as probabil-
ities. We shall see that this analysis inevitably imposes new physical facts 
on the systems.

15.6.1. Temporally Indeterministic Systems7

The temporally indeterministic systems of Section 15.3 all involve systems 
that remain quiescent until some time t = T of spontaneous excitation. 

7 The analysis of this section draws on Norton (2010a).
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The inductive problem is to determine the strengths of support for various 
times T. Initially, this looks like a problem tailor-made for probabilistic 
analysis, for it is similar to the problem of radioactive decay: a radioactive 
atom remains quiescent until the moment of decay. This moment is gov-
erned by the familiar law of radioactive decay. The probability P(T) of de-
cay in the time interval from 0 to T is

where the time constant t of the decay is related to the empirically deter-
mined half-life of the element by T1/2 = t ln 2.

This law of radioactive decay is the natural probabilistic law adapted 
to these cases, for it is the unique law with “no memory” of what hap-
pened in the past. That is, whether the atom will decay in the moments 
immediately to come is independent of how long the atom has survived so 
far without decaying. It has no memory of whether that past survival was 
long or short.

If we write Q(T) = 1 − P(T) for the probability that the atom does not 
decay in the initial time T, then this no-memory property is expressible as

That is, the probability that the atom survives undecayed for a total time 
T + u is given by the probability that it survives first for time T and then, 
given no decay, that it then survives for a further time u. The no-mem-
ory property says that these last two probabilities are independent, so the 
probability of the conjunction of their outcomes is just the product of (11). 
This relation entails the exponential decay law (10).8

The probability distribution (10) expresses a physical chance. It is im-
mediately and naturally converted into a logic of induction through the 

8 Differentiate (11) with respect to u and find 

.

Evaluate this expression at u = 0 and recover dQ(T)/dT = k Q(T), where k = dQ(u)/du|u = 0 
is a constant independent of T. The solution is Q(T) = constant ⋅ exp(kT). Since the atom must 
eventually decay, P(T) = 1 − Q(T) must go to unity as T goes to infinity. Hence, we must have 
“constant” = 1 and k = −1/t, for any t > 0.
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conditional probabilities it induces on pairs of hypotheses concerning the 
time of decay. For example, 

H(T1, T2): the hypothesis that the time T of spontaneous 
excitation occurs in the interval T1 ≤ T < T2. 

If we take as our background B the physical description of the radioactive 
atom, then the support accrued to the hypothesis from B that the atom 
will decay sometime up to time T is just given by

The support for the hypothesis of decay between T1 and T2, from the evi-
dence that decay happens by time T > T2 > T1 is

All this is unremarkable and it seems to be the natural analysis to apply 
to the spontaneous excitations of Section 15.3. Here, however, our famili-
arity with radioactive decay is leading us astray. For the probabilistic law 
(10) includes a time constant t. The magnitude of the time constant has a 
profound effect on the dynamics, as shown in Figure 15.6.

Figure 15.6. Effect of different time constants t on the probability of 
spontaneous motion.

A small time constant entails that spontaneous excitation is all but sure to 
happen soon. If t is one millisecond, then there is a probability of 0.999 of 
spontaneous excitation in time t ln 1,000 = 6.91t = 6.91 milliseconds.9 A 

9 To arrive at these estimates, invert (10) to recover T = t ln [1/(1 − P)].
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large time constant entails that spontaneous excitation is very unlikely to 
happen soon. If t is one thousand years, then there is a probability of only 
0.001 of spontaneous excitation in t ln 1.001 = 0.001t = one year.

Since use of the probabilistic law (10) requires selection of a time 
constant t, it can only be employed if we, in effect, make some judgment 
about how soon the spontaneous excitation will occur. We already have 
the complete physics of the systems of Section 15.3. There is no time scale 
provided and no judgments of sooner or later. All the physics tells us is 
that spontaneous excitation is possible. 

Thus, to apply the probabilistic law (10) is to introduce new physics. 
In other words, it is to change the problem posed to a new one to which 
probabilistic methods happen to be well-adapted. 

The analysis above is just a beginning. There are many ways to apply 
probabilistic analyses to this problem of spontaneous excitation. While 
some are quite ingenious, none succeed. Here are a few of the possibilities.

The physics is indifferent to which is the time T of spontaneous ex-
citation. So a natural choice is a uniform distribution of probability over 
all values of T from zero to infinity. The immediate difficulty is that the 
probabilities of such a uniform distribution cannot sum to unity. We set 
equal the probability of equal intervals

Since there are infinitely many of these intervals, the total probability is

This is a failure of the probability distribution to normalize: these prob-
abilities should sum to the unit probability required by the axioms of 
probability theory for the entire outcome space.

While this failure is usually treated as fatal, the normalization condi-
tion is sometimes dropped, under the expectation that conditionalization 
may lead to a normalized probability distribution. However, even if this 
expectation is sometimes met, the real problem with the distribution (12) 
is that it still adds to the physical facts. It assures us that, for example, 
H(0, 2) is twice as probable as H(0, 1). If we make the usual connections 
to frequencies, that means that we should expect H(0, 2) to arise roughly 
twice as often as H(0, 1) in many repeated trials. The physical facts for 
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these systems include no such provision. They simply allow that any of the 
times in these hypotheses may be the time of spontaneous excitation; and 
nothing more.

Another possibility was explored more fully in Chapter 13. It is that 
we drop the requirement of countable additivity that allows us to sum the 
infinitely many e’s above. Instead, we are allowed to sum finitely many 
only; that is, we are restricted to finite additivity. The result is that we can 
set e = 0 in (12) without breaching normalization. All the individual hy-
potheses of (12) are assigned zero probability

but their infinite disjunction is assigned unit probability.10 Finite disjunc-
tions of them are also assigned zero probability

This is promising initially, since all finite intervals of times are treated 
equally, even if as zero probability outcomes.

The difficulty is that the finitely additive measure is still adding sig-
nificantly to the physics. For even finitely additive measures must assign 
unit probability to some set of outcomes; and these become privileged as 
the events we expect to happen. There is no way to assign this privileged 
set without adding to the physics. For example, the above measure assures 
us that the time of spontaneous excitation is, with probability 1, greater 
than or equal to T = 1: P(H(1, ∞) | B) = 1. The physics is equally indiffer-
ent to the times of spontaneous excitation as it is to the inverse times of 
spontaneous excitation, 1/T. If the finitely additive measure is a reasonable 
way to represent complete indifference, then it should work equally well 
when it is applied to the inverse times 1/T. In this application, by parallel 
reasoning, we arrive at the result that, with probability one, P(H(1/1, ∞) | 
B) = 1. But H(1/1, ∞) = H(1, ∞) = H(0, 1),11 so that we have a contradiction 
with the earlier probability assignment P(H(0, 1) | B) = 0.

10 Or, more carefully, one less whatever probability is assigned to the hypothesis that there 
is never a spontaneous excitation.

11 Aside from the inclusion of T = 1 in H(1/T, ∞), but not in H(0, 1).



The Material Theory of Induction594

The escape from the contradiction is to decide that only one of the 
two finitely additive measures may be used. This, however, amounts to se-
lecting a privileged subset of probability one times of excitation: the times 
between 0 and 1, or between 1 and infinity. The physics makes no such 
distinction. It is an addition forced on us by the probabilistic measure.

Two further probabilistic embellishments have been treated elsewhere 
in Norton (2010a) and in earlier chapters. First, one might try to escape the 
need to select a single time constant t in (10) by adopting the complete set 
of measures (10), for all values of t, as the representation of the strength of 
support. The motivation is correct in that it seeks a representation weaker 
than a single probability measure. However, it is too indirect in that it 
seeks to preserve probability measures by using them to simulate a differ-
ent, non-additive logic. The better approach is simply to write down that 
logic directly, as in Section 15.7 below.

Second, one might adopt the measure of (10) as a subjective degree of 
belief. The earnest but possibly unrealizable hope is that repeated condi-
tionalization will wash away the subjective opinion and leave behind the 
objective bearing of evidence, or at least some approach to it. Once again, 
the motivation is good but the execution poor. Again, the better approach 
is simply to write down the warranted logic directly.

15.6.2. Probabilities, Empirically?
While we may not be able to recover probabilities from the physics gov-
erning these indeterministic systems, might we introduce them through 
an empirical artifice? To take a concrete case, imagine that somehow we 
are able to physically realize a dome. We might then set up many of them 
and just observe what happens. Might we find that that the frequencies 
for different times of spontaneous excitation stabilize towards limiting 
values? We could then introduce probabilities, set in value to those empir-
ically determined, limiting, relative frequencies.

Dawid (2015) considers an even simpler case in the same spirit. What 
if we have one hundred domes and find that they all excite spontaneously 
at exactly 16.8 seconds? Might we then infer to a deterministic rule: spon-
taneous excitation occurs at 16.8 seconds for all domes?
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How we treat these proposals will depend on how certain we are of the 
background, governing physics. Are we certain of the background physics 
or are we not?

In the first case, we remain certain that the Newtonian physics speci-
fied is the totality of the physics governing the processes. That all excita-
tions occur at 16.8 seconds is compatible with the indeterministic physics, 
but it is not something we could predict from that physics, at the exclusion 
of many other possibilities. Correspondingly, the background physics au-
thorizes no further predictions, even after we have seen all one hundred 
domes excite at 16.8 seconds. We should remain as uncertain of the next 
excitation time as we were prior to seeing the first dome in the imagined 
experiment.

This situation is quite similar to that of a gambler in a casino at a 
roulette wheel. Neglecting 0 and 00, the chance of a black on a properly 
functioning wheel is 1/2. Imagine, however, that the gambler steps up to 
the table with the wheel and finds twenty successive spins to yield black. 
Assume the gambler is confident of the background theory: the wheel is 
functioning properly. All the gambler can properly conclude is that an 
extremely unlikely event has occurred. Twenty successive black outcomes 
is possible, just improbable.

What the gambler should not now think is that the wheel is on some 
sort of “streak” so that contrary to the physical construction of the wheel 
and the laws of probability, the next outcome is more likely to be black. To 
think that is to commit a notorious gambler’s streak fallacy.

It is the same with the dome. As long as we remain convinced that the 
Newtonian physics described is the totality of the physics that governs the 
dome, repeated excitations at 16.8 seconds is merely a coincidence. In a 
similar vein, the indeterministic physics does not support the existence of 
stable limiting frequencies for different excitation times. Any appearance 
of such stability is mere coincidence that cannot be expected to persist.

That was the first case. In the second case, we become uncertain that 
the Newtonian physics described is all that governs the actual domes of 
our experiment. We suspect that some further or some other physics is at 
play. What physics it might be is hard to say, since the entire scenario is 
built from multiple layers of fiction. I leave it to the reader’s imagination. 
Whatever alternative physics we may suspect here is what will guide the 
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inferences. Once again, the situation is similar to that of the gambler. The 
probability of twenty black outcomes is exceedingly small: 1/220, which 
is roughly 1/1,000,000. Having seen such an improbable occurrence, the 
gambler would reasonably suspect that something odd is afoot. Perhaps 
the wheel has some ingenious cheating device that is malfunctioning and 
delivering all black outcomes. If the gambler believes that to be the case 
and that the cheating device will continue to operate well, the gambler 
would be well warranted to conclude that the next outcome will be black.

In short, as long as we retain the presumptions made at the outset 
of the totality of the physics governing the indeterministic systems, any 
empirically observed regularities of the type suggested will be of no help 
to us inductively. To expect otherwise is to commit a fallacy analogous to 
the gambler’s streak fallacy.

15.6.3. Systems with Indetermimism among Their Components
The inductive problems posed in Section 15.4 are to find the inductive 
strengths of support afforded to underdetermined components of a physic-
al system by those that are fixed by the problem specification. Much of the 
analysis of Section 15.6.1 can be carried over to the probabilistic analysis 
of these problems. Probabilistic analysis fails in the same way. In addition, 
the infinite dimensionality of the space of underdetermined potentials (9) 
in Newtonian cosmology raises more problems.

The simplest problem was posed in Section 15.4.1. We are to choose 
among the infinitely many gauge equivalent fields of (4). This choice 
amounted to selection of a value of the constant K, which can take any 
real value, positive or negative, large or small.

The straightforward approach is to represent strength of inductive 
support by a probability distribution over K. However, since K has an in-
finite range, the distribution must be attenuated towards zero for large 
positive and large negative values of K. Otherwise, it will not normalize 
to unity. Here, the difficulty is like that faced by the probabilistic law (10). 
The rate of attenuation will be represented by some parameter or some 
characteristic of the distribution that is akin to the selection of the time 
constant t in (10). Any choice of a rate of attenuation, however, is an addi-
tion to the physics of the gauge system.
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One might also try to avoid the problem by employing an unnormal-
izable probability distribution akin to (12). Once again, this will add to the 
physics, for it requires us to assign higher probability to larger intervals of 
K, even through the physics does not authorize it. Finally, the difficulties 
of the finitely additive measure can be replicated here as well.

The still harder case for probabilistic analysis is that of Newtonian 
cosmology in Section 15.4.2. For now we are to distribute probabilities 
uniformly over the space of potentials (9). Its individual solutions are 
picked out by specifying values for the infinitely many parameters a1, a2, 
a3, … That is, it is an infinite dimensional space. The familiar problem is 
that we cannot easily assign an additive measure over such spaces since 
the parameter values range from minus infinity to plus infinity. In the 
examples so far, it is the requirement of normalization of the measure of 
the full space to unity that forces the problem. The new problem with an 
infinite dimensional space is there is still no well behaved, uniform meas-
ure over this space, even if we drop the requirement of normalization.

To see this, recall that probabilities behave like volumes in space. So, 
for continuity with familiar notions, let us continue to call them volumes. 
First consider a space of parameters a1, a2, …, an of finite dimension n. The 
set of all points for which 0 < ai < 2, all i, forms a cube of side 2. This cube 
consists of 2n cubes of unit side. In a three dimensional space, the side 2 
cube consists of 23 = 8 unit sided cubes. If we assign unit volume to each 
unit cube, the side 2 cube just has volume 2n.

For any finite n this relation is unproblematic. That ceases to be so 
when we take the case of the infinite dimensional space. For then, the 
sided 2 cube consists of an uncountable infinity 2∞ of unit cubes. Since 
the measure is uniform, all the unit cubes have the same volume. There 
are two cases: the unit cubes have non-zero volume; and the unit cubes 
have zero volume.

If the unit cubes have some finite, non-zero volume, then it follows 
that the side 2 cube must have infinite volume. This follows using only 
finite additivity of the volumes. For if we suppose any finite volume for 
the side 2 cube, then we need only sum finitely many of the unit cubes to 
recover a summed volume greater than it. Of course, if the unit cubes have 
infinite volume, then so must also the side 2 cube.
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The other possibility is that the unit cubes have zero volume. Then 
the side 2 cube can also have zero volume. However, it may also have a fi-
nite, non-zero volume or an infinite volume. This may seem odd, since we 
are supposing the side 2 cube to consist of nothing but zero volume unit 
cubes. Why not add up all these zeros and get zero volume? The problem is 
that there are an uncountable infinity 2∞ of zeros and adding an uncount-
able infinity of them is an undefined operation.12 The volume of the side 2 
cube must merely be greater than the sum of the volumes of finitely many 
unit cubes; or (if countable additivity is assumed) of a countable infinity 
of them. So its volume can be non-zero.13

These results can be applied to a cube anywhere in the space. Every 
cube can be decomposed into 2∞ half-sided cubes; and every cube is it-
self a component cube of a doubled-sided cube. What results are three 
possibilities for the uniform measure. The two simple ones are just that all 
cubes have either zero volume or infinite volume. The complicated case is 
that there is some value L such that an L-sided cube has finite, non-zero 
volume. Since the measure is uniform, all cubes of side L will have this 
volume. It follows by replicating the above reasoning that all smaller cubes 
that can be compounded to form cube of side L must have zero volume; 
and all larger cubes that can be built from cubes of side L must have in-
finite volume.

This third option violates the requirement that we add nothing to the 
physics, for it singles about quite particular, preferred sets of parameters 
as just those that reside in the cubes of side L. Since parameter values cor-
respond to gravitational potentials, this is a privileging of certain sets of 
potentials.

Combining the three possibilities, cubes in this space will almost 
everywhere have either zero volume or infinite volume. One can see this 
result informally by noting what happens when we scale up or scale down 
any region by a factor M. That is, we multiply all the parameter values in 

12 This is a familiar result. Each point in the unit intervals of reals is of zero length. Since 
there are an uncountable infinity of them, we cannot add them to find the length of the unit 
interval of reals, which is not zero, but one.

13 This is an uncommon possibility. In discussions of measures on infinite dimensioned 
spaces, it is usually assumed that the spaces are separable, which allows that each region can be 
composed of a countable infinity of equal volume subregions. Separability fails in this case.
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the set specifying the region by M. The volume of the region will scale by 
a factor Mdimension of space = M∞. This factor is zero if M < 1 and infinity if 
M > 1. This suggests that almost all volumes will be zero or infinity. For a 
finite, non-zero volume cannot stay finite and non-zero under any scaling, 
either up or down. It becomes an infinite or a zero volume, respectively. 
However, employing this factor M∞ directly in a more thorough argument 
is not straightforward, since it leads to indeterminate arithmetic forms. 
For example, scale up a zero volume by an infinite factor M∞, when M 
> 1. The new volume is “0 × ∞,” which is an expression that cannot be 
evaluated.

Note that these troubles arise without assuming that the volume of 
the total space normalizes to unity. If we retain countable additivity, the 
possibilities above admit only two values for the volume of the entire 
space: zero or infinity.

It might be tempting to drop countable additivity, assign zero volume 
to any bounded region and unit volume to the whole space. One does not 
escape the difficulty already developed above for finitely additive meas-
ures in the case of spontaneous excitations. Briefly, the measure ought to 
be indifferent to whether we parameterize the space with the original par-
ameters ai or their inverses, 1/ai. Then we would assign zero volume to the 
side 2 cube in the inverse parameterization 1/ai for which 0 < |1/ai| < 1, all 
i. But this region corresponds to the entirety of the space in the original 
parameterization, 1 < |ai| < ∞, excepting a zero volume cube 0 < |ai| < 1. In 
the original parameterization, this region is assigned unit volume.

15.7. The Inductive Logic Warranted

15.7.1. The Logic
The material theory of induction directs us to look to the background facts 
to determine which logic is warranted. In the cases of this chapter, the 
background facts are, by careful contrivance, such as to support essential-
ly no non-trivial inductive inferences at all. They allow us merely to say 
that certain outcomes are possible but to provide no discriminations of 
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the nature of “more possible” or “less possible.” This lack of discrimination 
can be codified into a formal calculus with three values:14

These values are assigned to strengths of inductive support, written as 
“[A | B],” where this symbol represents the strength of inductive support 
afforded to proposition A by proposition B. The little structure these 
strengths have is induced by deductive relations among the propositions; 
or, in other terms, by set theoretic containment amongst the sets of possi-
bilities. That is, we have: 

The logic is empty until we specify the propositions to which it applies. 
Many choices are possible here. One convenient choice arises in the con-
text of the spontaneously exciting systems of Section 15.4.1. The propos-
itions over which this logic is defined are: H(T1, T2), as defined in Section 
15.6.1; B, the proposition that describes the background physical facts of 
the system; and, for completeness, H(∞), the time of spontaneous excita-
tion T = ∞. Proposition H(∞) corresponds to the case in which there is no 
spontaneous excitation.

The logic now authorizes us to assign strengths of support such as

14 This logic has been developed in various forms in Norton (2008a, 2010a and 2010b) and 
in Chapter 10.
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There is a natural and obvious generalization to the systems of Section 
15.4 with indeterminism among the system components.

An important property of this logic is that it is not additive, in contrast 
with the probability calculus. That is, if A1 and A2 are mutually exclusive 
propositions, such that [A1 | C] = [A2 | C] = poss, then it is possible that [A1 
∨ A2 | C] = poss. Overall, we violate additivity since

The additivity of a probability measure would require in this case that 

so the probabilities assigned to A1, A2, and A1∨A2 cannot be equal unless 
we have the exceptional case of all probability zero outcomes.

15.7.2. Invariances
Norton (2008a, 2010b) and Chapter 10 argued that this logic (13) repre-
sents the case of completely neutral support; that is, the case in which we 
have no reason at all to favor any of the contingent propositions in any 
degree. It was shown that the logic can be derived in two ways from two 
invariance properties. We shall see below that these invariances are re-
spected to a great extent in these systems. However, do recall that the logic 
(13) of Section 15.7.1 was not derived from these invariances, but directly 
from the possibilities allowed by the background physical facts. 

Redescription. The first invariance is invariance under redescription. 
This invariance is commonly employed in the context of the principle of 
indifference. It arises when we redescribe a system in a way that preserves 
our indifferences.

Take, for example, the value of the parameter K in the Newtonian 
gauge system of Section 15.4.1. Represent a useful set of hypotheses by:

On the basis of the background facts B, we are indifferent to K lying in 
equal ranges of values, so we have
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Now replace the parameter K by L = K3. Since L is an equally good param-
eter to use in (4), we can also write

However, HL(1, 2) = HK (1, 23) = HK (1, 8)

Combining with HL(0, 1) = HK(0, 1) we recover

This is an example of the failure of additivity of the type of (14).
Negation. The second invariance is invariance under negation. If the 

support for some proposition A is completely neutral, then we have no 
grounds to assign it more or less support than its negation not-A. We must 
assign the two equal support. That is, the strength of support remains un-
changed under the negation map that sends hypotheses to their negations.

This negation map can be implemented in the case of systems that can 
spontaneously excite as follows. Write

Hypothesis HT(0, 1) says that this time lies in 0 ≤ T < 1. Its negation, not-
HT(0, 1), asserts that that the time of spontaneous excitation lies in 1 < T 
≤ ∞. Negation invariance of the strengths of support requires the equality

We can see that this equality obtains according to the rules of (13). For

and from the rules

as well as



60315 | Indeterministic Physical Systems

All these hypotheses accrue equal support poss from the background B 
since none are deductively entailed by B. 

We can also derive negation invariance from redescription invari-
ance. Consider the support, not for various times T, but for the inverse 
times 1/T. If we are indifferent to the two parameterizations of the time, T 
and 1/T, then we would have, under description invariance:

The interval 1 < T ≤ ∞ is the same 0 ≤ 1/T < 1. That is,

Combining we infer

This is just negation invariance (15).

15.8. Conclusion
According to the material theory of induction, there is no logic or calculus 
of inductive inference that applies universally to all problems in inductive 
inference. It follows that there are problems in inductive inference in which 
strengths of support cannot properly be represented by probability meas-
ures. This chapter illustrates this claim with examples of indeterministic 
physical systems contrived to be resistant to a representation of strengths 
of inductive support as probabilities. The contrivance depends on finding 
simple physical systems in which a full specification of the background 
physical facts can be given and their burden easily discerned. An inductive 
analysis must determine strengths of inductive support without requiring 
alteration of or addition to these background facts. In the examples pre-
sented, using probabilities to represent strengths of supports requires just 
such additions. For this reason, their use fails.

The material theory of induction asserts that the applicable logic of in-
duction is determined by these background facts. Their paucity supports a 
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very weak, three-valued inductive logic that happens to coincide with the 
completely neutral strengths of inductive support elaborated elsewhere.

The inductive problems of this chapter all involve problems of in-
determinism in which certain aspects of a system fail to fix certain other 
aspects. Problems of this sort do arise in recent science. The most obvious 
involves singularities in general relativity. Singular space-times can de-
velop in many ways into the future. The possibilities are not determined 
and there are no probabilities provided by general relativity to weight the 
different possibilities.

A white hole is the temporal inverse of a black hole. When systems 
fall into a black hole, their structures are obliterated by the black hole, 
whose properties are merely mass, charge, and angular momentum. If we 
now take the time reverse of the falling in, anything that can fall into a 
black hole can also be ejected by a white hole. The possibilities are not 
determined.

In relativistic cosmology, the Big Bang is a space-time singularity in 
our common past, out of which the entire universe issued. The longstand-
ing puzzle has been to explain why this singularity issued in a universe 
that is so nearly spatially homogeneous and isotropic and with spatial 
curvature very close to zero. Here is a problem in inductive inference. 
Given the background facts of general relativity and that there is an initial 
singularity, what support do we have for the various possible cosmolo-
gies that may arise? There are very many possible configurations other 
than the particular one manifested in our universe; and there are no good 
reasons provided in pre-inflationary cosmology15 that we should have just 
these initial conditions and not others.

It is tempting to convert these last facts into the claim that it is very 
improbable that we have the initial conditions we do. But such a claim, 
if read literally, solves the inductive problem by means of a probability 
measure. Since the background facts listed provide for no probabilities, 
their introduction is as illicit as in the contrived examples of this chapter.

The moral of the chapter is that we should be prepared for problems in 
inductive inference in which strengths of support are not well-represented 

15 The once common claim that inflationary cosmology does provide these reasons is now 
challenged. See, for example, Holland and Wald (2008).
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by probability measures. To do otherwise—to persist in representing 
strengths of inductive support universally as probability measures—risks 
unwittingly importing new facts that change the problem posed to a new 
one amenable to probabilistic representation. The outcome is that we will 
not have solved the problem actually before us but a different one that we 
wished we had. 

Appendix 15.A: Toppling Dominoes
A domino has width W, height H, and mass m and is separated from 
the next domino by an inter-domino distance L. To be toppled, a small 
impulse is needed to push the domino from its vertical position until it 
strikes the next domino, as shown in Figure 15.7.

Figure 15.7. Geometry of a toppling domino.

As the center of mass of the domino pivots on one edge, if forms an invert-
ed pendulum. Call the angular position of the center of mass q as it pivots 
around the edge and set q = 0 when the center of mass is directly over the 
edge. If the distance along the circular arc traced by the center of mass of 
the domino is x and the center of mass is located in the geometric center 
of the domino, then the gravitational force on the center of motion in the 
direction of the arc is mg sin q, for g the acceleration due to gravity. The 
equation of motion in time t is , where sin q is approximated as q for 
the small angles we encounter here. Since q = x/(H/2), we have
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where k2 = g/(H/2). This inverted pendulum equation of motion admits 
the general solution q(t) = A sinh (kt) + B cosh (kt), for undetermined 
constants A and B. We set q(t) = 0 when t = 0, so that B = 0, and arrive at:

In toppling, the center of mass of the domino is first lifted by the rotational 
pivot about the edge and then falls under gravity once past the edge.

It would be convenient if there were some longest time this motion 
could take. One might imagine that, if the domino were given just the 
right, minimal push, it would pivot slowly and its center of mass would 
momentarily have zero speed as it passes over the edge at the apex of its 
motion. This cannot happen. A longer computation shows that this mo-
tion would require infinite time.16

The best we can secure is that the center of mass, at the moment of 
passing over the edge, has some small linear speed V. Since the angular 
speed is dq(t)/dt = Ak cosh (kt), we require V/(H/2) = dq(0)/dt = Ak cosh 
(k0) = Ak. Thus the solution is

since, for small times, sinh (kt) ≈ kt.
The domino center of motion must move from its initial angular pos-

ition q = −W/H to its collision with the next domino at angular position q 
= (L−W)/H. Substituting into the last equation for q(t), we have L/H = Vt/
(H/2) for the time t required by the domino to fall. That is

Thus the time tn for the nth domino to fall is given by Ln/2V, where Ln is 
the distance between dominoes n and (n − 1). Thus,

Total time for cascade

16 For more, see Norton (2003, pp. 11–12).
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If we assume that the domino width scales in the same way as the dis-
tance between the dominoes, the condition that the cascade completes in 
finite time reduces to the condition that the domino row be of finite spatial 
length. (Informally, this condition follows if we imagine that that the fall-
ing propagates through the chain at roughly a constant speed V.)

An assumption of this analysis is that each domino has the same speed 
V as its center of mass passes its apex. One might wonder whether the 
system can provide each domino sufficient energy. Some qualitative con-
siderations show that this will not be a problem. Each domino by suppos-
ition has speed V at its apex and thus kinetic energy (1/2)mV2. Assuming 
elastic collisions, it will pass this much energy to the next domino as well 
as the extra energy released when the domino center of mass falls to a 
lower height overall.

Indeed the problem will not be a lack energy to sustain the cascade, 
but the danger of a surfeit. For there are infinitely many dominoes of the 
same mass, each falling through a height in a finite time. If each domino 
falls to the same prone position, that will result in release of an infinite 
amount of energy.

Appendix 15.B: Newtonian Cosmology
The force (5) exerted by an infinite, flat plate of density r and thickness 
Dx is independent of the distance to the plate is easy to see qualitatively. 
Consider the portion of the plate subtended by a very small angle W at the 
location of unit test mass. The volume and thus the mass of this portion 
is proportional to Wr2. However the force exerted by this mass on the test 
mass diminishes with 1/r2. Hence, the force is proportional just to W and 
independent of distance.

The full expression for the force is computed as follows. The distance r 
from the unit test mass to each part of the plate satisfies r2 = x2 + s2 where 
x the shortest distance to the plate and s the distance from the closest point 
on the plate to the part at issue. A circular ring of width ds at radius s in 
the plate exerts a force on the unit test mass of
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where x/r is the cosine of the half angle at the base of the cone subtended 
by the ring. Integrating over all s, we recover (5) as

We can also compute the Newtonian gravitational potential field j direct-
ly from Poisson’s equation

For constant r, the solutions (7a, b, c) and (8a, b, c) follow immediately. For 
example, we recover (7a) as

That F = 2pGr (y2 − x2) is harmonic follows since

That adding a harmonic function to a solution of Poisson’s equation (16) 
takes us to another solution follows from the linearity of the operator ∇2. 
If F is a harmonic function, which satisfies Laplace’s equation ∇2F = 0, 
and we add it to an existing solution j of Poisson’s equation (16), their sum 
(j + F) also satisfies Poisson’s equation, for

The full set of harmonic functions is a linearly independent set. There is no 
simple way to write this set. In spherical coordinates (r, j, q), the harmonic 
functions are

for Aj, Bj, am, bm arbitrary constants; m = −j, − (j − 1), …, (j − 1), j; and j 
= 0, 1, 2, 3, …; and Pj

m(cos q) are the associated Legendre functions of cos 
q. (From Bronshtein and Semendyayev, 1985, p. 463, after correction of 
apparent typographical errors.)
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Digression for Experts
Since this problem of Newtonian cosmology has attracted considerable 
attention in the philosophy of physics literature, I include a short digres-
sion for experts.

Among the solutions to (16) is one that is formed as the equally weight-
ed sum of the three solutions (1/3) jx + (1/3) jy +(1/3) jz and is called by 
Malament (1995) a canonical solution centered at the origin

where the radial coordinate r satisfies r2 = x2 + y2 + z2. This solution has 
a special status as a solution with maximum isotropy: it is isotropic about 
the origin r = (x, y, z) = 0. This falls well short of the full homogeneity and 
isotropy that the early physicists expected. It has a preferred center at the 
origin of coordinates. Infinitely many more, distinct canonical solutions 
are possible, each centered at different points in space, r0 = (x0, y0, z0) ≠ 0.

Malament showed, however, that the differences among these canonic-
al solutions were only apparent. He adopted the natural assumption that 
the physically real properties of a Newtonian cosmology manifest in the 
relative accelerations of point masses in free fall. It turned out that all the 
canonical solutions give the same relative accelerations. That is, the choice 
among them was merely the exercising of a gauge freedom. For further 
motivation for this choice of what is physically significant, see Norton 
(1995).

Malament’s analysis gave a satisfactory answer to this question: which 
isotropic, homogeneous Newtonian cosmologies are there? The answer is 
given uniquely by the canonical solutions.

Our present question is a different one. It is: Which potential fields are 
fixed by a uniform matter distribution through Poisson’s equation (16). 
The answer to this question, as has been emphasized by Wallace (2016), 
is that there are infinitely many such fields and they form the infinite set 
(46). Only very few of them prove to be physically equivalent after the 
manner of (17a) and (17b). Solutions (7a), (7b), and (7c) are not physically 
equivalent. It follows from (6) that masses in free fall in (7a) jx experience 
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relative accelerations in the x-direction but not in the y- or z-directions. 
Similarly masses in free fall in jy and jz experience relative accelerations 
respectively in the y- and z-directions only. 

A natural way to block this failure of the mass distribution to deter-
mine the gravitational potential, as Wallace (2016) has emphasized, is to 
impose boundary conditions. All but the canonical solutions are elim-
inated if we require isotropy in the physically significant properties, as 
do Malament (1995, pp. 492, 501) and Norton (1995, p. 513, footnote 2). 
However, the imposition of this condition must be understood as a dis-
tinct choice we make in order to prune the space of solutions to a subset 
that happens to interest us. We cannot derive it from the isotropy of space 
and the matter distribution, for the Poisson equation does not respect this 
symmetry in its individual solutions. 
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