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Take a moment to imagine…
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Gambling is changing
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(72% from 2020 to 2021)



Gambling harm prevention needs detection systems

♦ How can you detect people at-risk for experiencing harm?

♦ Ask all users to fill out a questionnaire every week?

♦ Have someone look through user accounts on a case-by-case basis?

♦ Intervene after a particular threshold (e.g. $500 in losses) is crossed?
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Machine learning

♦ Machine learning provides a suite of statistical tools specifically 
designed to make good predictions about future events

(Figure from Yin et al., 2020) 6



Machine learning for gambling harms

♦ Machine learning approaches have shown good performance in 
classifying relevant indicators of harm:

♦ Triggering RG alerts (Gray et al., 2012)

♦ Self-exclusion from gambling (Finkenwirth et al., 2020; Haefeli et al., 2015; Percy et 
al., 2016)

♦ Account closure due to self-reported problems (Braverman & Shaffer, 2012; 
Philander, 2014; Xuan & Shaffer, 2009)

♦ Brief Biosocial Gambling Screen (partial DSM criteria) (LaPlante et al., 2014)

♦ Problem Gambling Severity Index (PGSI) (Luquiens et al., 2016)
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Research aims

1. Determine if (and which) machine learning 
algorithms can accurately predict PGSI risk 
levels using data that is readily available to 
online gambling websites

2. Explore potential behavioural markers of 
gambling harm
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Study 1 - France

♦ N = 9,306 users of licensed, privatized gambling websites

♦ PGSI email invitations sent to users from:

December 2015 – March 2016

♦ Gambling data provided by French Online Gambling Regulatory 
Authority (ARJEL) for 12 months prior to each user’s PGSI
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Study 1 - Methods

♦ Input Variables (64)
1. Account-level information 

(e.g., age, sex)

1. Usage of RG tools

2. Deposits and withdrawals

3. Betting Information

4. Loss chasing

♦ Dependent Variables (2)
1. PGSI 5+: Moderate-to-high risk 

of experiencing past-year 
gambling harms

2. PGSI 8+: High risk of 
experiencing past year 
gambling harms

♦ ML Algorithms (4)
1. Logistic regression

2. K-nearest neighbours

3. Decision Trees

4. Support Vector Machines
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Study 1 – ROC plots

AUC = 83.20% AUC = 87.70% 11



Study 1 – Performance

Metric PGSI 5+ PGSI 8+

Sensitivity 71.00% 74.30%

Specificity 82.10% 87.20%

Positive Predictive Value (PPV) 49.62% 38.67%

Negative Predictive Value (NPV) 91.89% 96.87%
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Study 2 - Quebec

♦ N = 9,145 users of lotoquebec.com (formerly espacejeux.com)

♦ Email invitations sent to users from:

September 2019 – November 2019

♦ Gambling data provided by Loto Quebec for 12 months prior to 
each user’s PGSI
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Study 2 - Methods

♦ Input Variables (144)
1. Account-level information 

(e.g., age, sex)
1. Usage of RG tools
2. Deposits and withdrawals
3. Betting Information
4. Loss chasing

♦ Dependent Variables (2)
1. PGSI 5+: Moderate-to-high risk 

of experiencing past-year 
gambling harms

2. PGSI 8+: High risk of 
experiencing past year 
gambling harms

♦ ML Algorithms (6)
1. Logistic regression

2. K-nearest neighbours

3. Decision Trees

4. Support Vector Machines

5. Random Forest

6. Artificial Neural Networks
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Study 2 – ROC plots

= 84.33% = 82.52%
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Study 2 – Performance

Metric PGSI 5+ PGSI 8+

Sensitivity 81.75% 81.94%

Specificity 74.36% 72.20%

Positive Predictive Value (PPV) 46.29% 29.48%

Negative Predictive Value (NPV) 93.78% 96.57%
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Study 2 – relative importance
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General conclusions

♦ Machine learning algorithms can provide excellent classification 
performance for PGSI risk categories using online gambling data

♦ Specific aspects of betting behaviour distinguish users at different risk 
levels

♦ Aggregate risk-detection for identifying more-harmful situations

Next steps:
1. Re-validate models (N = 13,300)

2. Achieve equitable outcomes

3. Deployment online

4. Evaluate interventions in the place they would be used
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Study 1 - results
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A. Specificity given a fixed sensitivity 

Higher-risk 

participants correctly 

classified 

Percentage of correctly-classified 

lower-risk participants 

PGSI 5+ PGSI 8+ 

99% 13.62% 24.36% 

95% 45.93% 39.16% 

90% 61.78% 55.03% 

85% 70.26% 68.64% 

 

Study 2 - results
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Study 2 - results
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Study 2 - results
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Study 2 - results
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Study 2 - results
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Study 2 – results (slot machines)
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Study 2 – results (lottery)
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