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An effective computationai methodology based on a multibody approach has 

k e n  proposed for anaiyzing and shulating grandar systems. Each paaicle in the 

system is treated as an independent body. A 3 0  mode1 of a granular system consistïng 

of interco~ected spheres is treated as a rnuitihdy system with variable topology and 

one-sided constraints between the spheres. The motion of this system is governed by a 

set of noniinear algebraic and differential equations. Two formulations (Lagrangian and 

Newton-Euler) and two solvea (Runge-Kutta and Iterative) are dimissed. It is shown 

numericaily for a 2-D mode1 that a combination of the Newton-Euler fonnalism and an 

iterative method maintains the accuracy of the fourth order Runge-Kutta solver while 

substantidy reducing CPU time. 

The accuracy and efficiency are achieved by integrating the error control into the 

iterative process. Two levels of error contd are introduced: one based on satisfying the 

position and velocity consaaints and another on satis-g the energy conservation 

requirernent. An adaptive time step based on the rate of convergence at the previous 

time step is introduced which also reduces the simulation the .  The efficiency and 

accuracy is investigated for plane problems: a physicaliy unstable vertical stack of disks, 

multibody pendulums and a falling chah  

Some methodologicd aspects of the simulations have been investigated and new 

algorithrns dealing with the storage and updating of system topology data, handling of 



collision events, application of variable time step technique, et al. have been developed. 

A FORTRAN program implementing these methods and algorithms bas been wrïtten. 

An application to the problern of jamrning in a two-phase flow has been 

investigated. It is shown that there is a criticai particle density above which a jam 

always takes place and a minimai density below which jam occurrence is not likely. The 

range between these two densities is the transition zone which requires M e r  

investigation. The msults of this simulation agree qualitatively with the physical 

experiments . 



I would Wce io take this opportunity to express my sincere gratitude to my 

supervisor Dr. Oleg Vinogradov for his help, guidance, and encouragement during rny 

studies and work. 

1 would like to acknowledge my indebtedness to the University of Calgary and 

National Research Council for providing financial support to me during my postgraduate 

studies, 

Specid thanks to my wife Hu Baohong, and my parents Sun Jiaheng and Lu 

Xnrnon, for their support, encouragement and assistance during my graduate studies. 

Finally, I wish to express my gratefulness to my dear friends and colleagues, 

W m g  Chmgqing, Dui Liming , Wu Zèngqiang , Dmitri Ga  vrilo v a  and Murinn Glr vrilo vrr , 

for their assistance and suggestions. and to my Canadian fnends, Bill Soukorefland Eric 

Ckivelk. for their help in editing the thesis. 



Table of Contents 

Appmval Page 

Abstract 

Acknowledgements 

Table of Contents 

List of Tables 

List of Figwes 

Nomenclature 

Chapter 1 Introduction 

1.1 A Historïcal Review of Grandar Dynamics 

1.1.1 Origin of Grmular Dynmics and Continuum Model 

1.1.2 Discrete Model and Cornputer Sirnuiution 

1.2 Objectives of Research 

1.3 Organhtion of Text 

Chapter 2 1Mathernatical Modeüing of GrnulPr Systems 

2.1 Introduction 

2.2 Discrete Models 

2.2.1 Disîinct Element Method 

2.2.2 Multiibody Dyruunics Mudel 

2.3 Assumptions and Approaches 

2.3.1 Point-mass TWS System 

vi 



2.32 Formulation of Consiraints 

2.3.3 Generalized Consîraints and OvercomtraUzed Systents 

2.4 Topology and Associated Maîrices 

2.4.1 Gruph Analysis of Topobgy 

2.4.2 Mamices Associmed with a Graph 

Chapter 3 Equations of Motion 

3- 1 Introduction 

3.2 Coordinate System 

3.3 Lagrange Equations 

3 -3.1 Lagrangian Approach 

3.3.2 An Exmnple 

3 -3 3 H d l i n g  of Constraints 

3 -4 Newton-Euler Equations 

3 -4.1 Newton-Euler Approach d Equation Fomulaîion 

3 -4-2 Newton-Euler Equatiorts in Rectmgular Coordinates 

3.4.3 Newton-Eider Quatiom with Comtraints 

3.5 Severai Extended Forms of Newton-Euler Equations 

3.5.1 Dynmnics Equations of a Multi-Rigid-üody System 

35.2 Equations of Motion for a Multi-Riga-Body 
System with Link Connecton 

3.5.3 Equations of Motion for a Multi-Rigid-Body 
System with Revolute Joints 

3.5.4 @uations of Motion in Spatial Coordimtes 

vii 



Chapter 4 Somc Aspects of Metboddogy of Cornpufer Simulation 

4.1 Introduction 

4.2 Topoiogical Data Updating 

4.3 Variable Extemal Forces 

4.3.1 Gravitcrtr*onal a d  Drag Forces 

4.3 2 Friction Forces 

4.4 Impact 

4.5 Random Generation of initial Conditions 

4.6 S v  

Chapter 5 Numerid Methoàs 

5.1 Introduction 

5.2 Selectioa and Cornparison of Numerical Methods 

5.2.1 Single-step und Multisrep Methods 

5.2.2 Lagrange Equations and Newton-Euler Equations 

5.2.3 Zterarive Methods 

5.3 MUred Iteration 

5.3.1 Gauss-Seidel Iteration 

5.3.2 Müed Iteration Scheme 

5.3.3 Convergence C d i t i o m  

5.3.4 Variable Time Step Algo* 

5.4 Violation Corrections 

5 -4.1 Position Correction 

5 -4.2 Velociv Correction 

5.4.3 Velocity Correction by Energy Conservation Lmv 



Cbapter 6 Appiicatiom and GnalysEs of Efficiency 

6.1 Introduction 

6.2 Multibody Penduium Pmbiems 

6.3 Falling Chain Roblems 

6.4 Unstable Problem for Vertical Stack of Disks 

6.5 Jamming Pmblem of Solid Particles in a Straight Pipe 

6.5.1 Physical Madel of the System 

6.5.2 Numerical Results 

6.6 Summary 

Chapter 7 Conclusions and Recommendatiom 

7.1 Conclusions 

7.2 Recommendations 

Appendices 

Appendix A 

Appendix B 

Appendix C 

Appendix D 

Appendix E 



List of Tables 

Table 

1.1 Dimensions of various &ranular media 

5.1 Cornparison of CPU times and e m  for different dynamic formulations 

and numericd methods 90 



List of Figures 

A typical example of a granula. system using multibody dynamics model 

Examples of constraïnts 

Examples of graphs 

Relative and absolute coordinates 

A three-disk system 

A single link with point-masses i and j 

A multi-rigid-body model 

Two rigid bodies with a link comector 

Two rigid bodies with a revolute joint 

A simple multisphere system compnsing 3 bails 

IUustration of the maximum coordination number in a multidisk system 

Iliustration of the reduction concept of drag force for two disks in a flow 

Friction force between two disks 

Seved different fiction models 

Relationship between friction force and reaction force 

High density particle generation 

A mulabody pendulum with N bodies 



A flowchart of the mixed iterative scheme 

A vanable iime step algorithm 

Iliustratïon of position and velocity errors 

B U  tbm for different systern sizes and numerical meihods 

CPU time vs. emr tolerance for N = 50 

Phase diagram without emr comctioa and control for N = 50 

Phase diagram with error correction for N = 50 

Phase diagram with error correction and control for N = 50 

CPU time vs- error tolerance for N = 100 

CPU time vs. error toierance for N = 150 

A falling chah with 15 links 

Vertical position thne history of centre link (ngid body model) 

Relative vertical position time history of centre link 
(point-mass modtl) 

Relative vertical position time history of centre link 
(point-mass modd) using different error controls 

Instability Test for N disks 

Time to instabiüty vs. number of disks 

A schematic diagram of simulation area 

Relative densities of particles resulting in a flow jam 

Simulations of a two-phase granular flow (large particles) 
in a straight pipe (fiom the beginning) 

Simulations of a two-phase granular flow (large particles) 
in a straight pipe (before jamming) 



6.17a Simulations of a NO-phase granular flow ( s d  particles) 
in a straight pipe (nom the beginning) 

6.1% Simulations of a two-phase p u l a r  flow (small particles) 
in a straight pipe (before j d g )  

B. 1 A planar system with two Linked ngid bodies 

C. 1 A spatial system with two connecteci particles 

D.I IUustration of a multisphere system 



Nomenclature 

Ares 

Coefficient Mauix in Lagrangian Equabons 

Coefficient Ma& in Lagraagian Equations 

Coefficient of Attenuation 

Diagonal Matrix (Cosine Function of 9) 

Diagonal Ma& (Cosine Function of 0) 

Discrete Element Method 

Sphericd Excess of the Triangle 

Incidence Matrix 

Coefficient of Restitution 

Extemal Force per Unit Mass Acting in Nomial Direction 

Extemal Force per Unit Mass Acting in Tangential Direction 

Extemal Force Acting on the ith Particle in the vth Link 
Along the Link Direction 

Extemal Force Acting on the jth Particle in the vth Link 
Perpendicuiar to the Liak Dict ion 

Constraint Jacobian Matrix 

Gravitational Acceleration 

Coefficient Maaix of Newton-Euler Equations 

Time Step; Width of Shadow 

xiv 



Unit Matrix 

Coefficient M&ix of Newton-Euler Equatiom 

Factor of Shadow 

Diagonal Length Maîrk 

LRft Hand Side 

LeWh 

Diagonal Mass Matrix 

Diagonal Extemal Momentum Matrix 

Number of Bodies 

Number of Links 

Ordinary Dierential Equation 

Path Matrix 

Generalized Forces 

Quasi-Rigid-Body 

Right Hand Side 

Position Vector 

Diagonal Matrix (Sine Function of 0) 

Diagonal Matrix (Sine Function of 4) 

Tolerance of E m r  

Mass Matrix Associated with Path Matrix 

Index of Links 

Velocity Vector of Flow 



v - 

v - 

X Y Z  - 

x y z  - 

hverse Mass Matrix Associated with Incidence Matrix 

Velocity 

Relative Position between Two Particles in Rectanguiar Coordinates 

Absolute Position of Particle in Rectangular Coordinates 

Angle 

Reaction Force 

Error in Position 

Emr in Energy 

Error in Velocity 

Angle (Generalized Coordinate) 

Lagrangian Md tiplier 

Coefficient of Friction 

Density 

Angle (Generaiized Coordinate) 

Angle of Rotation 

Angular Velocity 



Chapter 1 

INTRODUCTION 

1.1 A Historicaî Review of G ~ n u l s r  Dymmics 

1.1- i Origin of Granular Dvnamics and Continuum Modd 

The area of granula. dynamics has a relatively short bistory. starting essentialiy 

after the Second World War in the area of molecular dynamics and expanding 

ptogressively over the past two decades. Gmular matter. often referred to as the "Mh 

state of matter", is used in applications ranging h m  phannaceutical to the construction 

of buildings and for this reason, has k e n  studied extensively in many disciplines. 

Modern industrial materiais may be classified as powders or granuiar solids. The 

category "granular solids" may also include materials that occur naturally in vast 

quantities. Granular materials arr also found in many industrially important operations 

and processes. Thus in addition to complex flows such as chute flow, hopper discharge, 

pneumatic conveying and surface avalanches, granular materials are regularly subjected 

to compaction, segregation, granulation, fines production. fluidization and so on. Some 

particdate materials, most typicaily sand, have been the target of both experimental and 

theoreticai investigations since the '50s (Bagnold, 1954, 1966; Brown and Richards, 

1970). 

Granular models are also used to describe many physical systems, such as soils, 
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sand, grain, rock, pilis, bmken ice, et al. It is instructive to define granular materials in 

terms of their physical featuns. Tabie (1.1) categorizes granuiar media baed on size. 

Tabk 1.1 Dimensions of various granular media 

ParâcIe sïze 1 Numbr of 1) 
molecules 

sw t  particie  IO-^ 

For matter with a small size (c IO4 m), the t h e r d  energy at rwm temperature 

is more important than gravitational energy. This type of matter is not within the scope 

of this research. Common granular materials are those with large sues (> 104 rn), such 

as grain. sand cod, pellets, and solid particles, et al. An important property of granular 

materials is that they cm flow through hoppers or pipes in a gravity field and each 

particle bas its o n  physical characterïstics, such as shape, size, weight, et al. 

Research and development in granuiar materials dynamics, sometimes c d e d  

partide dynamics. is based on powder rnechanics, but it is different fiom powder 

mechanics in both metbods and theones. Beginning as early as one hundred years ago, 

powder mechanics had been developed according to three hindamental principles. They 

are: the principle of dilatancy, mobilization of fiction and minimum ewrgy of flowing 
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granules. Most of the mathematicai models used in eady research were based on a 

conrinuun model only- Correspondingiy, partial dinerentiai equations were used to 

describe such systems- 

Bagnold (1954) investigated a one-dimensional flow of ULÙformly dispened 

granular materials in fluid under shear. Besides considering the effect of particle 

interaction, he assumed a constant kinetic energy density and no relative velocity 

between the fluid and the soiid particles. He concluded that in such instances the soiid- 

iiquid system could be treated as a iiquid medium, and continuum theory could be 

applied. 

Two basic approaches to the modehg of the mechanical behaviour of gra~ular 

materials appeared in the '70s. The mt approach was based on microscopie theory, 

referred to as particdate theory. This approach considers an ensemble of particles of 

fdte size, and attempts to deduce the laws governing the mechanicd behaviour of the 

entire system. Bagnold's model belongs to this approach. 

The second approach is referred to as the macroscopic approach of Ienkins and 

Cowin (1979) and is based on considering the granular material as a CO~MUOUS 

medium. This approach can more readily provide quantitative results, but it loses the 

concept of individual solid phcles and cannot incorporate inter-particle interactions. 

Both approaches can be applied only to systems that are at, or near to, the closely 

packed state. 

Most researchea have combined the two approaches into a so-calied mixed 

approach (Kanatani, 1979; Ogava, et al.; 1980 and Ackennann and Shen, 1982). Arnong 
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hem, Kanatani proposed a mimpolar continuum dieory for the flow of closely packed 

granular materials. He set up quantitative equations based on consenration of mass, 

hear momentum, angular momentum and energy. By analogy to turbulent flow, Ogave 

et ai., (1980) noted the importance of the fluctuation velocities of the particles which 

inevitabiy resuits h m  collisions among the particles. Ogave et ai., (1980) assumed that 

a fraction of the paxticles adhered to the spheres with the remainder reflecting off them 

wiih a loss of energy during the collisions. They then procwded to determine the total 

rate of change of fluctuation energy by averaging over ail possible collisions. 

Ackermann and Shen (1982) devised a similar mode1 including the effect of the 

interstitial fluid and the mechanical properties of the solid panicles on the rate of change 

of fluctuation energy. They considered that the rate of dissipation of fluctuation energy 

depends on the fkquency of inter-particle collisions. 

Later modets which appeared in the '80s. were based on the kinetic theory of 

gasses (Lm, et ai., 1984). The kinetic theory for rapid granular fîows developed by 

Ienkins and RichmaD (1985) provides a system of transport equations for the mean 

velocity u, the mean density p and the granular temperature T, wwhh is a measure of 

the kinetic energy per unit mass associated with velocity fluctuations. The macro 

physical feature for the whole system c m  be obtained based on the three balance 

equations for mas, liaear momentum and fluctuation energy. These c m  be represented 

as the following 



pli  = V - P + p g  

where an overdot indicates the t h e  derivative. In the equations above, P is the stress 

tensor, g is the body force per unit mass; q is the flux of fluctuation energy and y is the 

rate of energy dissipation in inelastic collisions per unit volume. 

These balance equations can never be aegiected when a continuum model is used 

though they may take a diffierent fom in some papers. It remains to be determined 

whether a continuum mode1 is justified when one or more spatial dimensions of the 

problem are measured in terms of a smaii number of grain diameters. Shear flows 

(Hanes and Inman, 1985; Savage, 1984) are often only a few to a few tens of grains 

thick. In a collision model. substantial shear across a reiatively s m d  number of grain 

diameters is a direct coasequence of grain inelasticity (Haff, 1983; Hui and Jaff., 1986). 

Thin shear zones are dso predicted by constitutive models incorpora~g the effect of 

fnctional contacts (Johnson and Jackson, 1987). Indeed, it is in granular fluids that one 

has perhaps the clearest microscopie view of the origin of one kind of shear band. Until 

the '90s, some researchers. such as Babic (1993), still used kinetic theory to solve the 

problem of granular flow. 

1.1.2 Discrete Mode1 and Cornouter Sirdation 

So  far, the models we have discussed are aU continuum models. In the research 

of granular dynamics, continuum models are not suitabie for analyzing ioosely packed 
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systems or systems with non-homogenous dispersion of solid bodies. Moreover, these 

models cannot be used to analyze pmcesses in which identification of critical areas of 

solid body accumulation or predictions of jamrning are essentid. considering the 

disadvantages of continuum models and the djfficulties in application, a new approach 

to the m o d e h g  of such systems based on discrete analysis was proposeci by Cundd 

and Strack (1979). Perhaps the f k t  attempts at discrete modeliing of granular systems 

were done by Cundd (1971). In this approach, each solid particle or rigid body in the 

system is looked at as an individual entity. The interactions among the particles depend 

on their physicai properties rather than on averaging procedures, as is the case in 

continuum models. Foiiowing the discrete modeis, the Discrete Element Method @EM) 

appeared and it has k e n  utilized in granula. dynamitai systems. Especially with the 

rapid growth of computer power, this methoci has widely developed in the area of 

ganuiar dynamics and the computer simulation of granulas systems. The DEMs wiU be 

discussed in detail in Chapter 2. 

In snidies of granular dynamics. the discrete model, including the DEM 

algorithm has been utiiïzed and improved for granula systems by many people since 

it was first developed by Cundall. One of its main advantages is that it has a very 

simple mathematical model and is computationaily efficient. This method, however, does 

not describe a real system accurately enough. In other words, this model needs a very 

short Ume step for a system with a high density of partides. 

Other recent approaches for simulating discrete granular systems are based on 

CundaU's model and the DEM. Campbell and B r e ~ a n  (1985a,b) and Campbell (1989) 
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have also studied steady state rapid shear fiow of rough particles in both two and thme 

dimensions. In two-dimensïonal chute flow simulations, Campbell and Bnnnan (1985a) 

identify a high-temperature, low-density zone next to the base of the chute. They note 

that two-dimensional simulation resulu depnd strongly on system parameters such as 

fiiction coefficients. 

Baxter and Behringer (1990) have developed a cellular automaton to simulate the 

tlow of heggar particles fiom a wedge-shaped hopper. Cellular automata are discrete, 

Iattice-based models with simple evolution des. Cellular automata can be used to 

describe complex behaviour in extended systems and they have signincant computational 

advantages for simulating many interacting particles in systems with complex geometry. 

Gutt and Haff (1990) and Fitt and Wiiott (1992) have also used cellular 

automata to model granular flows including steady chute flow, flow down a vertical 

channel and particle size segregation. It is clear that lanice-based models rnake powerfùl 

representations of flowing granular systems over a range of dynamic regimes and that 

their development to include three dimensions, isotropy, disorder and particle properties 

(such as coordination and shape) are valuable areas for h i t u  research. 

Since the Cundall model was proposed, dïscrete models have developed into 

many branches according to various specinc applications. One of the applications is ice 

mechanics (Hopkins, et al., 1985 and Loset, 1994). 

Another use of dimete mechanics is to study in detail systern behaviour at the 

level of the individual grain or of a few individual grains, Le., at scales that are 

obliterated by the averaging necessary to generate the partial differential equatioos. 

Studies of rnîxing of sediments caused by fluid traction, see (Jiang and Haff, 1993) or 
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of the development of sedimentary stratigraphy (Forrest and Ha, 1992) reveal 

interesthg details of the process and structure devant to the very s d  scales, e-g., a 

few particle diameters are often important for geologicai interpretation or environmental 

remedy. The studies of granuiar microstructure (Carnpbeii and Brennan, 198%; Hopkins 

and Louge, 1990 and Waiton et ai., 1991) involvhg the existence of clumps and chains 

of srnail groups of particles rnay also begin to inforni us of ways in which assumptions 

Methods based on compter simulation provide alternative approaches to 

problems in discrete mechanics. One method is to model a collection of particles as a 

system of hard spheres (Campbell and B m a T  198%; Haff and Werner, 1987). In the 

hard sphere model, when a contact between two particles is detected, the relative 

velocity of the two colliding particles is transformed so as to conserve the total two- 

paràcle momentum. Another method is to model particles as sofi spheres. The h t  

discrete element mode1 with the soft-particle approach was developed by Cundall and 

S track (1 979). 

Although there are several dinerent approaches in the application of discrete 

rnodels and DEMs, the basic modelling principie is still based on Cundall's model. 

There were no essentiai distinctions ammg these approaches until a differeot approach 

to discrete analysis was posnilated by Vinogradov (1985), and fbrther developed by 

Springer (1989) and Wierzba (1991). 

In the new approach used in (Vinogradov, 1985), rigid bodies are approximated 

by disks and the whole system is treated as a multibody dynamics system while the 
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mathematical formulation is based on Lagrangian dynamics. In such a system, the 

equations of motion are derived in ternis of generaiized coordinates which are the 

direction angles between two disks. Such approach leads to a set of Di#ierential 

Algebmic Equations (DAEs) based on the system topology. It is important to note that 

the differential equations in the above system are coupled. 

The advantage of such a d e l  is that it desmis  accurately the mechanics of 

pnuiar materials including momennim transfer, fiction force, et ai. The disadvantage 

of this methocl, however, is the need to solve a nonhear system of coupled differential 

algebraic equations. Besides the numencal aifficulties associated with DAES, there are 

other cornputer-intensive calcuiations, such as handling collisions and constraints, 

updating the topology and relevant physical parameters. 

The mulabody dynamics mode1 of a granular system with variable topology is 

a remarkable innovation in the study of grandar dynamics. The challenge of applying 

a multibody dynamics approach to a granulai system comprised of a large number of 

particles is computational, Le., the simulations shodd be done in a reasonable time 

while maintainhg the deshed accuracy of results. Aithough there is extensive experience 

in this area in machine dynamics, it cannot be applied duectly to a granula system 

because, fïrst of all, machines are systems with fixed topology whiie graaular systems 

are systems with variable topology. Secondly, granula. systems may have internai 

degrees of freedom due to sliding between the particles and, third, granular system are 

relatively large. As in machine dynamics. both the formulation of equations and of the 

equation solver a e c t  the efficiency and accuracy of the simulation in a granular system. 
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A FORTRAN program developed by Springer (1989) and Wierzba (1991) was 

used to simulate the movement of ice bloch in an open river chanael. This program can 

also be used for the simulation of an arbitrary planar multibody system in which the 

bodies are modeiled by disks. The mode1 used in this program is simple and suitable for 

simulation of granula materiais. However, the method for the analysis and handling of 

various events (e-g., collisions and new disk gewration) is complicated. In the numencal 

solution, the traditional Runge-Kutta method and matrix operations, which are 

computatîonally expensive and need a large amount of storage space, were employed. 

Obviously the size of a grianuiar system was Wted by the capacity of the cornputer and 

CPU t h e  constraiats. 



1 3  Objectives of Research 

Granular materials dynamics is cutrently one of the most active fields in applied 

mechanics. As with any growing field, it is expanding into a number of subfields. The 

most active subfields are: modeihg, govemhg equations formulation, solution methods, 

computational metbods, graphical representations and applications. In a specific 

application, almost a l l  subfields above wiU be involved. In order to implement computer 

simulation of a granular materiai system, one can use different methods nom respective 

subfields. The combinations of these methods can Iead to different ways of achieving 

our objective, which is finding the most efficient computer simulation of a large-scale 

granuiar system. 

When a multibody dynamics mode1 is used for granular systems, the accuracy 

can be greatiy irnproved. However, it requires a more complicated mathematical mode1 

and additional requirements for computer rime and storage space. Efficiency is a major 

problem in computer simulations of granular materials as multibody systems and it is 

the main focus of this thesis. 

In considering a Larger size system with variable topology, a dynamical data 

structure was introduced by Sun, et al., (1994). This was the fmt step for impioving 

computational efficiency. The improvements included: goveming equations based on a 

Newton-Euler approach and formulated in the decoupied fom of hm and second order 

derivatives; a mixed iterative scheme to solve the goveming differentid equations and 

error conmol and correction techniques based on physical conditions such as geometrïc 



12 

constraints and energy conservation. These methods not only improve the accuracy of 

solutioirs but also elimhate violations of both velocities and positions. 

The objective of the prosent research is to fhd more efücient dgorithms and 

computatid metbods for simulations of granalai materials as multibody systems. 

In theory such subjezts as topological description and updating of the system, 

derivaaon of equations of motion, random generation of parricles, events handlïng and 

error control are investigated numeridy. More specifically, the following topics are 

investigated: 

(1) The efficiency of the iterative scheme in numerical solution of equations 

of motion for a granuiar system of large sue. 

The use of geometrical constraints and the energy conservation for error 

correction and control. 

Dynamic data storage and updating in an array form. 

The elimination of ma& expressions and operations in system data 

storage and generation of equations of motion. 

The improvement of methods of events handling. 



1 3  Oqpnbtion of Text 

A general review of the subject of granuiar dynamics and a brief introduction to 

this thesis is given in Chapter 1. 

In Chapter 2. the subject of modeWg of granular systems will be discussed in 

detail, including asswnptions and suggested approaches. In addition, the graph analysis 

and associated &ces are gven as preIiminaries for later applications. 

The governing equations of motion of the system wiil be given in Chapter 3 for 

two approaches: Lagrangian and Newton-Euler. However, only the Newton-Euler 

approach will be discussed in detail because the Lagrangian approach can be found in 

the literature. 

Some special topics, such as various action forces, collision events and random 

generation of initial conditions will be discussed in Chapter 4. 

An iterative method used for solving the equations of motion will be discussed 

in detail in Cbapter 5. This is a customized algorithm which incorporates error 

correction into the iterative cycles. The flowcharts for these algorithms are also given 

in this chapter. 

In Chapter 6, several simple and specifïc applications are given as examples to 

test our new algorithms. The obtained resuits are compared with those obtaîned by 

classical numericai methods with controlled accuracy. A FORTRAN program 

incorporating developed algorithms is briefly discussed. Kaown experimental results are 

used to validaie this program. 



Finaiiy, the conclusions and recommendatioas are given in Chapter 7. 

Some derivations of major formulations can be found in the appendix. In 

addition, the FORTRAN program for the simulation of granular materials in a straight 

pipe with a rough waii is also given in Appendix E. 



MATHEMATICAL MODELLING OF 
GRANULAR SYSTEMS 

2.1 Introduction 

A mathematicai mode1 represents a complicated physical system and its validity 

shouid be checked against physical system behaviours. Generally, two types of models 

are used in dynamical studies of granular-type materiais: one descrîbing the materid as 

a continuum; and another describing it as a discrete system. Ln this thesis, we WU 

discuss discrete models- 

Our purpose is to simpIify the discrete model so that it can be used efficiently 

to describe granular systems. If the currently available models and solvers for mdtibody 

systems, such as Nastran and ANSYS, are used for computer simulations of granular 

materials, the size of the system wiil be limited by the computer capacity and the 

computational speed will k lllnited by the cornputer's CPU speed Although large 

cornputers are avaiiable, it is not an econornical way for us to solve a simple granular 

system. 

Besides accuracy, computational efficiency is an important factor which should 

be considered in computer simulations of granulai systems. With reference to the old 

model and algorithm (Springer, 1989) and (Wierzba, 199 I), the related assumptions and 

15 
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approaches have to be tevkd for impmvement of computationd efficiency. This will 

&O be discussed in this chapter- 

The main features of granular systems are thek large scale and the variable 

topology of the configuration structure. In order to express the topology efficientiy, a 

graph and associated matrices are introduced in the derivation of the equations of 

motion. The graph and its associated matrices are not new concepts and have been used 

for multiaody systems with a certain topology (Roberson and Schwertassek, 1988). 

The advantages of ut i l iMg matrices in topology description are not only because 

simpiicity and clarity, but ais0 easier updating. O n  the other han& because matrices take 

more storage space and computational time, they duce cornputational efficiency in 

simulations of grandar systems. In this and the foilowing chapten, matrices are still 

used to express equations of motions. The algorithm in the aew simulation program are 

not based, however, on matrix operatious. 



2.2 Discrete ModeIs 

2.2.1 D i s ~ c t  Element Method 

Sorne mechanical systems are composed of physicaiiy distinct elements the 

number of which is relatively small so that their description as a continuum is not 

warranted. Aitematively, some systems though large in number cannot be liaked to 

macroscopic behaviour through presently known or constitutive laws. If interaction 

forces between individual elements are known or can be estimated and modelled, then 

the bebaviou. of these elements or particles can be studied by solving the Newton 

equations of motion for each particle in the group si.tnultaneously. This methoci is calied 

the distr'nct elemenf method (DEM). 

In descniing the above dynamic behaviour nurnencaily, time steps are taken over 

which velocities and accelerations are assumed to be constant. The DEM is based on the 

idea that the time step chosen may be so s d  that during a single t h e  step 

disturbances cannot propagate nom any disk m e r  than its immediate neighbours. Then 

the resultant forces on any disk are determined exclusively by its interaction with the 

disk with which it is in contact. The resulting overlap of the displaced particle with the 

neighbours is translated into some intemal forces. which are treated as extemal during 

the aext time step for the body which was motionless. The interactions are thus one-to- 

one (as in molecular dyaamics). The DEM approach takes into account the variability 

of the system density, the intemal degrees of freedom, the irregular shapes of the 

particles and various particle properties. This approach has been moditied and used in 
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many applications. The Iiterature is very extensive and the reader is referred to recent 

reviews in this area for more details (Savage, 1995; Barker, 1994 and HaB., 1994). 

The DEM is a simple algorithm for granula dynamics, which can be applied to 

a large-size system without the need for an excessive memory and cornplicated 

calcuiations. Many improvernents of the original DEM algorithm have been made by 

Wdton and Braun (1986)' Rothenburg and Bathurst (1992) and Borja and Wren (1995). 

However, the basic assumptions in a l l  models remain the sarne. 

Shce the DEM explicitly inteptes Newton's second law for every particle, an 

idealized sample in quasi-statk experiments must be loaded at a slow enough rate for 

inertial effects to be negligible. In fact, even with an extremeiy slow rate of loading, 

DEM still uses inertîal effects to predict the friture position of each particle since the 

particle displacements are calculated based on the bounces and coilisions that they rnake 

with other particies. 

Moreover, the DEM (Cundall model) looks Lüce a model of molecuiar dynamics 

in which the particles (molecules) are always separated and the interactions are one-to- 

one. The looser the system is, the better results the DEM should give. In a closely 

packed system almost dl particles may form into clusters and behave as quasi-rigid 

bodies during some t h e  intemal. In this case, the results by the DEM couid be 

erroneous. The reason is that the effect of simplifications of the DEM has never been 

investigated in the field of granulas dynamics. However, these simulations may be 

important in problems dealing with Local phenomena, local instabilities, the timing of 

the nonsteady processes. problems of particles jammiog. 



2.2.2 Multi'body DMamics Moded 

Mulhaody dynamics, as a branch of dynamics, has grown rapidly since the '60s. 

The task of multibody dynamics is the anaiysis and prediction of the dynamic behaviour 

and perfixmance of physical systems. very often compnsing a large number of 

components, also caiied bodies or segments, acting together as a single entity. To 

analyze and study such systems, the various components must be identined and their 

physical properties determind Once the characteristics of individual components are 

known, a mathematical mode1 is consmicted which represents an ideaiization of the 

acniai physical system. For the same physical system it is possible to constnict a number 

of mathematical models. The most desirable is the simplest mode1 that retains the 

essential feanires of the acnial physical system. 

Wben granular systems are descriid as multibody systems, seveml choices have 

to be made in defining the ieethodology, such as: 

(1) the dynamical formaüsm, 

(2) the set of dependent variables, 

(3) the method for descri'bing the system topology and mechanical properties 

of the system bodies and thei. intercomections, 

(4) the frame of reference with respect to which the system motion is 

described, and 

(5) a description of the system's initiai configuration. 
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Obviousiy, the mult'body dynamics method is a more accurate algorithm than 

DEM in the description of a &ranular system because it satisfies the consaaint 

requirements explicitly. It is, however, more complicated and computationally expensive. 

This is probably why it is not used in granular mechanics. 

Apparentiy, many dynamical systems of granular materials cannot be completely 

described as a continuum. In addition, it is impossible to investigate the physical 

behaviour of every particle in a granular system and simulate their dynamics process 

using rnacro parameters of the system. Therefore, the discrete model should be adopted 

as the basic mathematical model of granular systems. Although cornputers are becorning 

more and more powerful in both c o m p u ~ g  speed and memory space, the size of the 

system is stiU limited, especially in cornputer simulations. Hence, the existing discrete 

models for multibody systems need to be improved so as to be suitable for granular-type 
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Many granuiar-type materials can be represented by a two-dimensional m&l 

with ~gularly shaped particles, such as a disk or rectangie. A sphencai model can be 

used for a three-dimension system (Vinogradov, 11992). 

In a multibày system, each body has its geometrical parameters (length, width), 

physical parameters (density, mass, inertia, variable intemal and extemal forces) and 

state parameters (position, velocity, angular velocity). Some of them are constants and 

seved of them are variables. AU of these can be used in granular materiais systerns. 

Fi t  of aii, the shape of bodies can be a simple sphere in a 3-D case or a disk in a 2-D 

case. Then only one geometrical parameter, radius, for each body is introduced. In 

addition, the angular inertia of particles is neglected because the angular position of each 

particle is considered to be not important. 

A granular system, depending on how complicated it is, can comprise some 

bodies, boundaries and ciusters of intercomected budies, A h ,  the boundiuies can be 

considered as bodies whose velocities are zero and masses are infinitely large. 

Ln taking into account the assumptions above, a point-mas truss model that was 

used for a mdtibody system (Wierzba, 1991) can be employed for a p u i a r  system. 

2.3. L Point-mass Tmss Svstem 

The basic assumptions of a point-rnass truss system are: 

(1) each body or particle in the system consists of one point mas, 
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(2) comections between two point masses are weigbtless rigid links, 

(3) each centre of the point mass is an ideai joint without fkiction torque, and 

(4) extemal forces act dinctly on the point masses. 

From assumption (3). it can be deduced that the Luiks are loaded by only axial 

forces- 

2.3.2 Formulation of Coastraints 

There are various kinds of constraints in muitibody systems, as for example, in 

robots or mechanisrns. However the constraints in granular systems are different since 

they are one-sided consaaints between W-es  and bodies and boundaries. In a broad 

sense, the boundary cm also be thought of as a group of bodies or particles with a finite 

or i n f i t e  radius and an infinite masse As mentioned above, the radii of boundaries cm 

be infinite (for a straight iine) or negative (for a concavity). So there is ody one type 

of consnaint which cm be cxpressed mathematicaliy as 

where ri is the position vector of ith body; cü is a constant and the v; denotes a velocity 

compownt of ith body in the n o d  direction (paralle1 to the link). Equations (2.1) and 

(2.2) are. respectively, position and velocity c0nstra.int conditions. 

When a point-mass miss system is use4 the Links can take both compressive and 

tensile forces which are socailed constraint forces, denoted here by , where i and j 
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are the indexes of particles. Two forces are qua i  and apposite in theV actions on 

particles i audj. They act dong the cenûe line of particles i aad j. If the consaaint force 

is tensile then l)i > O , and if it is compressive then y, < O . In granular materials the 

constraint disappears if the reaction force xj is positive. Thus the condition that the link 

exists between the particles i and j is 

Figure (2.1) illustrates a typical example of a granular system and its 

corresponding mathematical model. 



(a) physical domain 

(b) correspondiiig point-mass truss mode1 

Figure 2.1 A typical example of a granular system using multibody dynamics mode1 



2.3 -3 GeneraIized Constraints and Overconstraïned Svstems 

If a body is in contact wiih other bodies or boundaries, its motion is restrîcted 

in the normal direction. This restriction is calied h e ~  the geneml conmaintt 

in a coupled multibody system, if the topology of the system is a tree-like one, 

then the system can be solved in generalized coordinates (Vinogradov, 1993a). in this 

case the constraïnts are imposed without their explicit formuiation, and then the number 

of generaiized cwrdinates is equal to the number of degrees of freedom of the system. 

When the topology of the systern has a circuit or a closed-hop, then a constra.int 

equation is wrïtten in an explicit form (Vmogradov, 1993a). Those extra coordinates, 

which need to be determiwd by additional consaaint equations, are cded here the 

generalized conmaints so as to distinguish them h m  the general consîruints. 

For a system in which aU bodies are coupled and the number of bodies is Nb 

(excluding the nurnber of boundaries Nf), the conditions for a system without generalized 

constraints are: 1) N, 1 1 and 2)  Ne = Nb - N/ + 1. Where Ne is number of Links.If Ne 

> Nb - Nf + 1 or Nf > 1, then generalized constraints exist, and their number Nc c m  be 

determineci by 

Nc = Ne - Nb (2.1) 

The overconstrained system is one in which aU aigebraic equations to describe 

the generaiized consûaints are iinearly dependent. In the consuained system, the 

overconstraints occur only if 
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N e >  U r , - 3  (2.2) 

Note, that Nb includes Nf if these bodies are co~ected with the bwodaries. 

These different consûaints can be illustrated clearly by Figure (22) as foiIows 

(a) A system with a generalized constraint (b) An overconstraîned system 

F i i  2.2 Exampies of constraints 

In Figure (2.23, the number of bodies Nb = 6 and the number of links N, = 7, 

so the number of generalued constraints is N, = 7 - 1 = 1. In Figure (2.2b), the Nb = 7 

and Ne = 12, which satisfy the Equation (2.2)- therefore it is an overconstrained system. 

The overconstrained system does not have internai degrees of &dom Thus the 

motion of bodies belonging to it are fiinctionaily dependent, which means that such a 

system behaves as a rigid body. For such systems, a concept of a Quasi-Rigid-Body 

(QRB) was introduced by Vinogradov and Springer (1990). 



2.4 Topobgy and Gssociated Matrices 

A granular system is a system with variable toplogy. In computer simulations, 

signifiant computer tune is spent on updating the equations of motion because the 

equations are topology dependent, 

To mate a computer-oriented generai dynamicd formalism for granuiar systems, 

one must devise a means for t e h g  the computer how the system is comected. 

Therefore, a data structure that can be used to keep track of htercomected bodies must 

be chosen and it must be doue in a way that can be implemented easily on a computer. 

A simple geometrical expression of topology is a graph which shows the 

interconnection between the bodies and boundaries. Associated with the graph, a matrix 

or pointer array c m  be employed as a mathematical form of topology. 

2-4.1 Gmh Analvsis of Tomlo,ûv 

A graph that can summarize a lot of idonnation is a very useful tool in many 

fields of science and tecbnology. Let us consider a simple graph in which there are only 

two kiads of elements: points and lines. A point, also caiied vertex, can be an isolated 

point in space or one on the end of Iines. A line is said to connect or join the two 

vertices. In otber words, a line must be associated with two vertices. 

When such a graph is used to r e p e n t  a topology for a granular system, each 

panicle can be descriid by a point in the graph and the comection between the 

particles is expressed by lines. In considering regular shapes and no overlap for all 
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panicles, the hnther limitation for the correspondhg graph is that ai l  lines on the graph 

are sîraight lines with dirrction. 

Figure (2.1) shows an examgIe of a simple graph. The circled numbers h m  

0,1,2, ... Nb are used to denote the vettices and the numbers without a circle (12, .... N,) 

are used to denote lines- 

Such a graph can be used to descrii the topology of the granular system no 

matter what the planar multidisk system or spacial muitisphere system is. 

According to the consaaints requiremenu, a graph cm be classified as foiiows: 

Tree Graph 

Definition: In a groph, àft#er erny one of the h s  is removed and the gmph fdls into 

two separate pieces, fhen this graph rF called a m e  graph, or open Zoop. 
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For N lines there are N+1 vertices in a tree graph. It is convenient to designate 

one vertex as a reference point in analysis of a tree graph. Any point or vertex cm be 

designate as a reference point, whicb is ais0 caiIed the mot of the tree, and its number 

can be deaoted as O. 

The simplest tree graph has one point (root). A planar system with N bodies and 

a m e  me topology has N degrees of &dom. 

Circuit Gra~h 

Definition: If in a tree graph one or more lines are added white the number of venices 

is unchanged then the tree graph is mmsfonned into a circuit graph, also catled a 

closed luop. 

The simplest circuit graph consists of 3 points and at least three lines. The 

number of degrees of freedom of a planar system with N bodies and a closed looplike 

topology is less than N. Figure 2.2. shows a circuit graph and a tre! graph. 

An arbitrary graph comprises tree branches and loops. Such a graph can represent 

a topoiogicai stnictue of a granula. system. 

2.4.2 Matrices Associated with a Gra~h 

A graph is described by a matrix which is defined in terms of vertices and thek 

comections. There are two matrices associated with a graph which are interdependent. 

(1) Path rnatrix 

For a tree iike graph, assume the 0th vertex is the rwt (reference point), a pah  

matrix c m  be represented by 



in which each component Pg has the foiIowing meanïng: 

(a) P, = 1 if the direction h m  i to j is the same as corn the mot to the 

vertex j; 

(b) P, = -1 if the direction h m  i to j is opposite to that from the root to the 

vertex i; 

(c) Pij = O if i and j are not on the same path fiom the mot. 

When a path matrix is used to present a me-like graph, a reference point, Le., 

the "rwt" needs to be identined. Since any point can be used as a reference point, the 

path ma& has many different fomis for a tree Like graph. Moreover, a path mtrix can 

not completely represent a circuit grapti. 

(2) Incidence matrix 

For an arbitrary graph whether it is a tree or a circuit, or whether it is composed 

of multi trees or multi circuits, a matrix associated with this graph can k represented 

bu 

E = [EJ 

where each component Ev bas the foilowing meaning: 

(a) Ei = -1 if the direction of vth line points towards the ith vertex; 

(b) E,, = 1 if the direction of vth iine is in the direction opposite to the ith 

vertex; 

(c) Eij = O if i and j are not connectecl. 
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The ma& E with Nb rows and Ne cotumns is cailed the nicidence matrk 

(Rotterson and Schwertassek, 1988). 

The columns of the incidence ma& correspond to a line in a graph and the two 

non-zero elements ident* the vertices on this he .  An arbitrary graph has a unique 

incidence matrix. 

For the Figure (2.2)a the incidence rnatrix is 

and the path matrix for Figure (2.2)b is 



(3) Relationship between the two matrices 

The relationship between the path matrix and the incidence matrix can be, 

according to (Robenon and Schwertassek, 1988), expresed as 

where E is Nb by N, matrix representing a tree-like topology and 2 is a unit manix. 

Note, that E can represent a closed-loap topology, while P cannot Also, the sign in 

Equation (2-7) may be dinerent in some books and papes, such as (Ju, 1989), 

depending on the convention adopted. 



2.5 S w  

A discrete mathematical model has been discussed in this chapter. In cons ide~g  

the features of a granular system and through corresponding simplifications, the point- 

mass system can be used as a basic model of a granuiar system. 

The consaaint requirernents are very important in the mathematical m o d e h g  

of granular systems. Here the simplest coastraints requkments are formulated. Some 

concepts deahg with constraints will be discussed in later chapters. 

Due to topoiogical variability of granular systems, graph theory is used to 

describe it. Two associated maaices, incidence and path, have been discussed here. They 

will be used in the next chapter to demibe different formulations of the dynamics 

equations. 



Chapter 3 

EQUATIONS OF MOTION 

3.1 Introduction 

In this chapter two formulations of the equations of motion are used: Lagransan 

and Newtoa-Euler formulations. There are essential distinctions in the fonn of these 

equations. The former have been used widely in multibody dynamics system, the latter 

were seldom used because there are additionai unknowns U1 the equations. Since the 

Newton-Euler equations can give us more advantages in numerical calculation, they will 

be used in the followuig chapters and their derivation wiII be given in this chapter in 

detail, 

Because the derivation of the equafions of motion is based on the topology of 

system while the topdogy is described by the associate matrix E or P, the expression 

of the equations of motion will be in matiix form in this chapter. In addition, some 

diverse and complicated processes for the derivation of equations are omined in some 

sections and put in the appendix instead 



3 3  Coordinate System 

A mathematical madel is usuaUy dependant on a set of specinc coordinates. 

Proper selection of the coordioates allows one to obtain simpler expressions for 

positions, velocities and accelerations and faster aigoritfims in the derivation of the 

goveming equations. Apparently, the use of a set of rectangular Cartesian coordinates 

is a simple and direct way to simulate granulas systems. 

In order to get a simple form of the equations of motion, most people often use 

generaüzed coordinates in analysis of dynamics. 

In a planar granulas system, direction angles of centre mes of conwcted disks 

are considered as generalized coordinates. The position of each body in space can ais0 

be determined by angles in a sphencd coordinate system. In order to d e m i  a physicd 

system conveniently, relative coordinates are ofien used. However, a promishg area for 

improving computational efficiency is to use absolute coordinates. This has been 

discussed by Huston, et al., (1994). 

Absolute coordinates measure the position and orientation of the bodies of the 

system in space as opposed to measuring the position and orientation relative to 

adjoining bodies. Two kinds of coordinates are shown in Figure (3.1) 



(a) Relative angles (b) Absolute angles 

Figure 3.1 Relative and absolute coordinates 

According to the results of Huston, et al, (1994), the principal advantage of using 

absolute coordinates is simplicity of the resultîng equations leading to more efficient and 

more accurate numerical solution and the advantage of relative coordinates is only their 

intuitive description of the physicai systexn. Hence, absolute coordinates are chosen here 

in the derivation and solutions of the goveming equatiom. In addition, rectangular 

coordinates are also used to derive another fom of  the equation of motion, which c m  

give simple and explicit integral expressions. 



The equations of motion cm be derived by the standard Lagrange function which 

is defhed as 

where T is the total kinetic energy of the system and V is its corresponding 

potential energy. The equations of motion are then obtained by 

If the system is not consecvative, (for example, there are friction forces and some 

iime-varying forces in the system), the right side will be the corresponding forces rather 

than zero. ln addition, There is another form of Lagrange equations which is presented 

as 

where Qi is generaüzed force acting on the ith body. The equations of motion derived 

by the equation above are called Lagrange equations here. The detailed procedure of 

denvation for pIanar and spacial systems c m  be found in (Springer, 1989) and 

(Vinogradov, 1992) respectively. 

Assumïng there is a muitibody system with N bodies and the topology of this 
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system is represented by a path rnatrix PT ( P = Ip,l ). then the equations of motion 

couid be. with refennce to (Springer, 1989) and (VïnogradovTl993a). Wntten as 

if the components of extemai forces acting on the kth body are f, andf.& , then Qi cari 

be presented as 

where i = :,2..JVe and m, is the mass of the kth body and 4 is the length of the jth Link 

and 0, is the pneralized coordinate. 0. and 0. are nspectively the nrSt and second 
J 1 

denvative of €lj. If the topology of the system is tree-Like or caiied an open hop, and 

the number of independent variables is N, then the Equation (3.4) is a set of pure 

ordinary differential equations. Otherwise, the equations become a set of algebraic 

differential equations, which will be discussed in the aext section. 

Equations of motion, i.e.. Equations (3.4) and (3.5) can also be written in a 

matrix form as foiiowing 

where 



and 

Q = -='MI&} +CPM{f4 XI (3 -9) 

In the equations above. the notations in braces are a set of arrays. The bold 

leaers idenw matrices. M, L, S and C are ail diagonal matrices of order N'xN, (note 

that the Ne is equal to N, for a system with a me-like topology) and are def5ned as, 

respec tively 

and 



Equations (3.10)-(3.13) can also be written in the foiiowing simple forms 

3.3.2 An Exam~le 

A specific application of these equatioas of motion in matrix form can be 

iilustrated via the foilowing example which Assumes a simple planar system with a 

fixed boundary and three disks [show in Figure (3.2)aJ. and its corresponding point- 

mass truss system [shown in Figure (3.2)bJ. 



(a) A three-disk system 

(b) Comsponding point-mass miss system 

Figure 3.2 A three-disk system 

In this example the path matrix P is 



and 

sine, O O 

= [ O < i d 2  O 

O O sine, 

The extemai forces are 

Subs tittlting Equations (3.15)-(3.17) into Equatiom (3.6)-(3 -9) gives 



The equations of motion for a system with an open-loop topology is a set of 

second order diffemntial equations. If the topology has a closed bop, the path matrix 

wiil not be able to descri i  it. For each loop a cut is necessary and a constra.int equation 

is formulate& It introduces a new unknown. an intemal force, and results in a modified 

Lagrangian equations 

where h is Lagrangian multipiiers, G is usudy calied the conmaint Jacobim mn-ix 

and its components are 

and is the ath consaaint equation with variables Bi ( i = 1. 2, ... N, ), i.e. 

The governing equations of motion are given by Equations (3.19) and (3.2 1), 

which are caiied D@erential Algebruic Eqwtiom (DAES). 



3.4 Newton-Euler Equan'ons 

3.4.1 Newton-Euler Aporoach and Euuation Formuiation 

The equatiom of motion can aiso be obtained in tenns of the so-cded Newton- 

Euler appmach, which bas bcen developed by J. Wittenburg. There is a detailed 

discussion in (Wittenburg, 1977). 

In our model, a i i  point-masses act upon each other by massfess rods with only 

axial forces. These axial forces are represented as a set of components of the vector Y 

as the foiiowing 

{y i }  ' (yI, y29 y3 yN,Ir (3 22) 

Let us consider a rod with an index v and with two point-masses mi and m,, 

show as Figure (3.3). 

o1 x b  

Figure 3.3 A single Liok with point-masses i and j 
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The magnitude of the force acting on the rod v is represented by yv. If thîs force 

is tensile then y > O; otherwise y < O. Applying Newtonian laws of motion in local 

generaiïzed coordinates. we have the foliowing 

and 

acceleration of point-mass mi in the n direction of the rod v; 

acceleration of point-mass mi in the T direction of the rod v; 

cornponent of extemal force on point-mass mi in the n direction of the rod 

v; 

cornponent of extemal force on point-mass mi in the r direction of the 

rod v; 

where n indicates the direction dong the rod from i to j. and s is perpendicular to if 

as shown in the Figure (3.3). 

In the inertial reference kinematic system, the accelerations of two point-masses 

should satisw the foilowing equations 



For each link in the system, we cm obtain a pair of equations as above. If the 

number of Links is N, then the total number of equations wiU be Ne. The fkst derivative 

and the second derivative of the generaüzed coordinate Bi will be decoupied for every 

equation through the intemal force parameter yi . 

AU of these equations in a component forrn, using the inductive method and the 

concept of the incidence matrix E can be written as foiiows 

{F:J  = - S E ~ M - ~ ( A ,  j} + C E  T ~ - ~ ( j y  (3 -34) 

where it is assumed that the number of bodies is N, (indexa and the number of links 
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is N, (index i). 

Note: in Equations (3.33) and (334). f, and f, are respectiveiy x and y components of 

the extemal forces. E is the incidence matrk of the order N& M is a diagonal mavix 

of the order N& and L, C and S are aü diagonal matrices of the order N,xN,. 

If we define 

v = E ~ M - I E  

then the components of matrix E and K will be 

= yjsin(ei-ej) (3 -37) 

Since V is symmetric, it can be s h o w  that H is also symmetric and K is an& 

symmetric. In addition, using the trigonometric identities 

the matrices H and K can also be represented in another matrix form 

K = S E * M - ~ E C  - CE*M-'ES (3.40) 

The Equations (3.31) and (3.32) describe the system motion and they are in a 

decoupled form. If the system has a tree-like topology, then using the relationship the 

between incidence and path matrices EP = -I, [see Equation (2.7)], Equations (3.3 1) and 
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(3.32) can be converted into a coupled Lagrange form, which is exactly the form 

obtained by using a Lagrangian approach (Vinogradov, 1993a). The proof can be found 

in Appeadix A. 

Now, let us consider the example show in Figure! (3.2). The corresponding 

incidence maaUr for the system topology is 

E = 

and the equations of motion are 

and 

These equations are the Newton-Euler form of equations of motion. also simply 
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cdied Newton-Euler equations or Newton-Euler formulations. Those equations Born the 

Lagrange appmach are cded Lagranpian equations or Lagrangian formulations in this 

thesis. 

3-42 Newton-Euler Eauations in Rectanmùar Coordinates 

For each component in matrices C and S, we have 

Yv - -Yi-Yj sine, = - - - 
I 4 

so the C and S matrices can be expressed as 

S = Lm' dia@ ' { y,}) 

The left hand side of Equation (3.3 1) can aiso be expressed in the rectangular 

coordinates systern 

~ ( 6 ~ )  = L - ~ E ~ ( ( $ ]  + ($1) (3 -47) 

where X, Y are relative coordinates and x, y are absolute coordinates. Theu relationship 



cm be represented by 

and so are the veiocities 

($1 = - E r ( 5 )  

{ T }  = -ET{%) 

In order to obtain the reaction forces y, the equations of motion of the system 

cm be written directiy in rectanguiar coordinates as foliows 

M(ÿ i1  =''{yi} + {4yI (3.5 1) 

Correspondingly, the equation (3.3 1) in rectanguiar coordinates can be wrïtten as 

It is necessary to point out that Equation (3.52) can be obtained &ctly, rather 

than fiom Equation (3.3 1). Let us consider the coastraint relations 

(x)} + ( y i 2 }  = {L:) 

after differentiating twice we have 



Utiiizing the avaiIable relations, Le., Equatioas (3.46). (3.48)-(3 -5 l), we can easily obtain 

Equation (3.52), which is a proof of validity of the constraint equations. 

So far we have two dinerent fonns of Newton-Euler Equations. One in 

generaiized coordinate angles and another in rectangular coordinates. They are, 

respec tivdy, Equations (3.3 1)-(3.34) and Equations (3 -50)-(3 -52). 

Introducing the internai reaction forces as parameters can cause the first and 

second order derivatives to be decoupled. Aithough the number of variables and 

equations increases for the Equations (3.50)-(3.52), the equations become simpier. 

Therefore, the amount of compu~g work is unchanged. One problem that needs to be 

pointed out is that if the number of variables in the equations of motion is in excess of 

the number of degree of fkedom, violations of resdts can occur. How to handle this 

problem will be discussed in the later chapter. 

3.4.3 Newton-Euler Eauations with Constraints 

The Newton-Euler equations are based on the incidence ma& E. The incidence 

ma& can be used to describe either an open-loop topology or a closed-loop topology, 

so topology does not affect the form of the equations, (Le., the differential equations are 

of ihe second order for an arbitrary topology). 

It must be pointed out that if the system is over-comtrained, then the ma& E 

wiii become sing&, which means that the solutions of equations of motion will not 
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exist, 

The over-constrained system represents a cluster behaviour as a QRB (Quasi- 

Rigid-Body)). If this is the case. then the system shouid be treated dong the lines 

discussed in (Vinogradov and Springer, 1990) and (Wienba and Vinogradov, 199 1). 

In the present thesis the concept of a QRB is not considered in numerical 

applications due to the limited objectives of the investigation. The complete govenllag 

equations, however, m given in the foliowing for the sake of completeness. 



3.5 Several Exîended Forms of Newton-Euler Equations 

3.5.1 DMarnics Eriuations of a Multi-Riaid-Bodv Svstem 

The point-mass system is not suitable for a rigid body system if the effect of 

body sue cannot be neglected. It occurs when some particles fonn a cluster behaving 

as a QRB. Clusters such as this are over-constrained systems. 

Now let us consider a system with three QRBs of the type described in 

(Vinogradov 1993b). shown in Figure (3.4). 

Figure 3.4 A multi-rigid-body mode1 

Several matrices, L, , C, and Sv, are introduced to describe the system geometry 



and positions. They are 

Lr = KG] = C I q  IV] (3.58) 

where superscript k (12 ...) is nom 1 to the maximum number of contact bodies. Those 

point to which the rG pointed are the centres of disks (in QRB) rhat are comecting with 

the extemal disks. The r and 1 in the equations above are scalars and they c m  be 

detemiined from the geometric coufiguration of the system. See (Vinogradov and 

Springer, 1990) and (Wierzba and Vinogradov, 1991). 

In order to demonstrate cleady the rneaning of the components of the manices 

above, an example will be given based 

example, the new awiliary matrices are 

on the system shown in Figure (3.4). in this 



And the matrix L is correspondingiy 

Whee the number of variables is the same as the number of bodies (QRBs). 

Because there is ody a constant Merence between yi and yp the iy, should be 

correspondingly upgraded as soon as the wi is determiaed. 

The Newton-Euler equations for a system of bodies with arbitrary shapes are as 

follows 

$ 1  = -SV {Y;} + ( L r + c v ) I ~ : }  + {MW} (3.63) 

The derivations of these equations cm  be found in Appendix B. 

Note that Equations (3.31) and (3.32) are a particular case of the system 

represented by Equations (3.61)-(3.63), if in the latter y disappcars. 

In the case of absence of any slip ktween the bodies, the kinematic relations can 

be expressed in the fonn 

mil = L r (q  1 (3.64) 

In the Equations (3.61)-(3.64). the is the self rotation angle of the body, 1, is the 

inertia matrix, M, is the extemal moment vector acting on each body, and C, and Sv 



are as follows 

The reaction force y is split into two parts. One is the normal reaction force 

dong the I direction; another is the tangential force perpendicular to the 1 direction, 

where 4 is the Iink vector. 

The final fomi of the equations of motion for a general system can be obtained 

from Equations (3.6 1)-(3.64), in which the second order derivatives of 8 and wiii be 

decoupled Note: 

(1) if slips occur, the kinematics relations, Le. Equation (3.64), are invalid. 

However, the reaction forces in this case are known and therefore the system of 

equations is closed; 

(2) the Equations (3.61)-(3.63) are not the decoupled fom of equations of 

motion, but they c m  be obtained by substituting Equation (3.63) into Equations (3.61) 

and (3-62). 

Moreover, the Lagrangian form of equations of motion for an open loop system 

can be found in (Vinogradov, 1993b). 



3.5.2 Epuations of Motion for a Multi-Rinid-Body Svstem with Link Connectors 

Assume an ideal interface betwcen the bodies, and the reaction forces act only 

in the normal direction. In this case, the iaterface can be rnodeiied by a iink connector. 

See Figure (3.5). 

F i  3.5 Two rigid bodies with a iink connector 

where C is the centre of mass and r, is the vector with dirrctions n o m  Ci to local Link 

point The normal contact force acts h g  the link In actual situations, the link 

conneciors cm take only compressive forces. 

In dynamic equatiom, Le., Equations (3.61)-(3.64), let (y;] = {x) and {f}  = 

{O}, then these equatiom become 



Equations (3.70), (3,71), and (3.69) are the equations of motion with the 

decoupled form on the second derivative. 

3.5.3 huations of Motion for a Multi-Riaîd-Bodv Svstern with Revolute Joints 

Most multi-rigid-body systems have revolute joints. For example, in a 

manipuiator the connections between the bodies are by revolute joints. See Figure (3.6). 



Figure 3.6 Two ngid bodies with a revolute joint 

This kind of system can be considered as a special case of the system mentioned 

above. If the length of the link becomes zero in the above system, the link comector 

is transformed into a revolute joint Therefore, the equations of motion can be directly 

derived b m  Equations (3.61), (3.62) and (3.63). 

Clearly, when the length of each rod 1 becomes zero, the corresponding mgle û 

disappears. However, the reaction forces bctween the bodies stU exist. Assuming the 

fength of rod 1 is very close to zero. then the 8 still bas meaning. Let the reaction force 

y be divided into two parts, y, and y',,, which can be determined by 

(ypi)  = ' { y r }  (3.75) 

Let I be zero in the Equations (3.70) and (3.7 1), which gives 



where 

D2 = c : I ~ ~ s ~  

Equations (3.76) and (3.77) c m  also be wrîtten in a matrix form 

where 

Using Equations (3.74) and (3.75). the Equation (3.69) can be written as 

IV W,J = -Sv {YJ +c, {Y,,} + Wvj} (3 -82) 

Equations (3.80), (3.8 1) and (3.82) are the Newton-Euler Equations for a multi- 

rigid-body system with hinge joints. Note that these equations can also be directly 

derived h m  the dynamics equations, Le., Equations (3.61)-(3.64). in terms of the 

following relations 



3-54 Eauations of Motion in Spatial Coordinates 

A granuiar system in 3-D is often treated as multisphere system. An example of 

a multisphere system is shown in Figure (3.7). 

Figure 3.7 A simple multisphere system comprishg 3 bails 

In the paper by Vinogradov (1992), the equations of motion were denved based 

on Lagranpian equations and the path matrix is used to represent the topology of the 

system. Here, we WU give the Newton-Euler Equations for a 3-D multisphere system. 
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The details of derivation are in Appendix C. 

If 0 and 0 are the generaiized coordinates. the equations of motion can be given 

in the form 

where 

Ii" = qvc ,  +s,as, 

4 = s,vc, -c,a s, 

and 

{F:} = -SETMiM1{ f , }  +CETM-' { f  YJ - 1  

Equations (3.86)-(3.88) can ais0 be represented in matrix form as 



Similar1y, for 3-D rectanpuiar coordinates, the Newton-Euler equations are 

In addition, Equation (3.93) can aiso be directly obtahed through the consaaint 

equations if a derived differentiated form are used. The specific procedure is similar as 

that mentioned in Section 3.4.2. 

The equations in 2-D can be obtained in a particuiar case if we let z = Const. and 

4 = ld2, (i.e., S, = I and C$ = O). In addition, when the system has a W-like 

topology, the Lagrangian equation for a muitisphere system can be obtained directly 

from Equations (3.85)-(3.88) by eIimuiating reaction forces y. The component form of 

the equations is the same as in the Lagrangian approach (Vinogradov, 1992). 





Chapter 4 

SOME ASPECTS OF METHODOLOGY 

OF COMPUTER SIMULATION 

4.1 Introduction 

In a computer simulation program for granular systems, we must meet two 

objectives. One is to use a mathematical model as close to the actual system as possible. 

The other objective is to make it computationally efficient. In this chapter, we will 

address both of these objectives. 

Since a graaular dynamics system is a system with variable topology and since 

equations of motion depend on the topo1ogicaI structure of the system, the storage and 

updating of the topological data wïil affect the computational efficiency directly. 

Therefore, a new handlïng of topology will be introduced in Section 4.2. 

The handling of driving forces and their effective description is very important 

in computer simulations and this wiU be dixwsed in Section 4.3. These forces are 

gravitational forces, drag forces, friction forces, and impact forces. 

In a dense granular system, collisions occur very frequently. The handling of 

these collision events takes significant CPU the .  Hence, in Section 4.4, we wiii 

introduce a new method to hande collision events so as to improve the efficiency of 

computer simulation. 
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The generation of disks with random size, position and the interval must yield 

some specïfic distnbuton deasity. The method, presented in (Wienba, 1991), is caiied 

sampiing and it bas two disadvantages. One is its compiexity. Another is its restriction 

of particies density. In Section 4.5, a simple generaîion technique will be introduced 

which can give a high particies density distribution of granular particles in a kmwn 

generation area. 



4.2 Topiogîcai Data Updating 

Granular dynamical systems have a topoiogical structure which is variable in 

tirne. Usuaiiy matrices are used to describe the system topology. Consequentiy, the 

equations of motion are also expressed in a rnatrix fom Certainly, a ma ta  expression 

is simple and clear. However, rnatrix dcuiations requke additional cornputer t h e  due 

formation of matrices and operation on them. 

Matrices describing system topology are usudy sparse. Obviously, it is not 

economical to store the zero components and to use them in computations. The way to 

improve the computatioaal efficiency is to apply a one- dimensional array to replace a 

diagonal mat& and to use a muiti-dimensionai anay to replace a block-diagonal ma& 

in the generation of equations of motion and topological data updating. 

In the incidence matrix E, each column has no more than two elements. They 

are used to represent the beginning and the end of a W. When a body is interfaced 

with an obstruction or a boundary, the corresponding column has ody one eiement. So 

an array with two rows can be used to represent an incidence matrix completely. For 

instance, if the incidence matrix E is of order N&, the correspondhg array A, is of 

order 2% Let us consider the example in Section 3.3.2. The incidence matrix in this 

case is 



and the correspondhg anay is 

In the array, each column denotes a W. The f h t  row represents the numbers 

of bodies located at the beginniog of the Link and the second row represents the numbers 

of bodies located at the end of the iink. The negative number denotes the obsmictions 

or boundaries. 

An amy representation, instead of a ma& one, can reduce not only computer 

storage space but dso computational tirne. However, this expression can be inefficient 

if a path ma& P is use& because the latter is not a banded ma& in general. That is 

one of the reasons why we use the incidence matrix and the Newton-Euler equations in 

computer simulations. 

The equations of motion can dso be stored in an array so as to avoid 

unnecessary multiplication of zero components. In the array, the number of columns is 

equal to that of A ,  while the number of rows depends on the maximum number of 

neighbouring bodies. In other words, the aumber of rows can be determined by the 

number of bodies interfahg a given body. 

In a planar multidisk system, if a l  of the disks are of the same size or close to 

the same size, this number should be 6. In a spatial multisphere system, if ali of the 
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spheres are of the same size or close to the same size, the number should be 12. If the 

sues of bodies in a system Vary, the maximum number of rows can be obtained in te- 

of the maximm and minimum sizes of bodies in the system. Let N, be the maximum 

possible number of contacts in the planar multidisk system, then it cm be found fkom 

where INT [ ] is the conversion integer hinction and a is defined by 

'min + 'max 

In Equation (4.4) r,, and r,, are the minimum and maximum radii of disks in the 

system, respectively. If r, = r-, then a = it/6 and we have that N, = 6. The proof 

of Equation (4.3) can easily be obtained from Figure (4.1). 

Figure 4.1 Illustration of the maximum coordination number in a multidisk system 
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In a spatial muitisphere system N,,, can k determined appmximately by 

L 

where E is the spherical excess of the triangle Le. E = A + B + C - x, where A, B. and 

C are the agies of the triangle on a sphericd surface. The definition of the spherical 

excess of the triangle can aiso be found in the spherical geometry section of any 

mathematics handbook, such as (Zwillinger, 1996). In our problem, E can be determined 

fiom 

where a can still be obtained h m  Equation (4.4). Only r,, and r,, are respectively the 

minimum and maximum radü of spheres in the system. 

To prove Equation (4.5) nquires reference to spherical geomeay and can be 

done in a similar manner to the proof of Equation (4.3). Please refer to Appendix D. 

Note that E is measured in radians in Equation (4.5). and also because the 

interstices between the disks are k g d a ,  the obtained N, may be greater than the 

acnial value. 

Let us assume that r,, = r-, then a = n/6 and in this case N, = 13. In fact, 

the maximum number for this situation is 12. Although there is still space left when 12 

similar s k  spheres are used, it is not possible to have any more sphens. In any case, 

using the maximum row number which is determined by Equation (4.5) provides a 

degree of safety. 
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Hence, the size of the anay describing the toplogy is variable. It depends on 

the dimensions of the system and on the maximum and minimum sues of the in 

the system. Obviousiy, the use of an array can greatly Save the storage space and avoid 

unnecessq operations. thenby greatly impmving the efficiency of cornputer simulation. 



4.3 Variable Eixternal Forces 

In a granuiar system there arr acting extemal forces and induced internai forces. 

The extemal forces, in general, are gravitationai forces when a system îs in a gravity 

field and drag forces when a system is in a fhid field Gravitationai forces are potentiai 

forces and are time independent The fiction and impact forces are intemal forces. 

These forces aze non-consemative and time dependent 

4.3.1 Gravitational and Draa Forces 

Every body in a granular system will be acted upon by the gravitational force 

as long as the system is located in a gravitationai field. The gravitational force acting 

on the ith body is given by 

Fi = mig 

where mi is the mass of the ith body and g is the gravitational acceleration. 

The gravitationai force must be considemi if it is the dominant force for the 

motion of a rnultibody system. When a rnultibody system is carried by a fluid, the drag 

force must be determined since it is a dnving force. In general, the latter is proportional 

to the square of the relative velocity of the body with respect to the fluid. If u, denotes 

the vefocity vector of the body mass cenm and u, the velocity vector of the fluid at that 

point, then the drag force is 



where p is the fluid density, A, is the pmjected area of the body and CD is the non- 

dimensional h g  coefficient. It is necessary to point out that CD is not a constant but 

a function of the Reynolds number Re. Re Ïs defined by 

where uo is the velocity of flow, v is the bernatic viscosity of auid and d is the size 

of the body. ActuaIly, CD depends on the shape of the body, roughness of the solid 

surface and the viscosity of the fluid, and is found experimentally. CA in Figure (4.8) 

is another parameter which is cded here the attenuation coefficient. In w~enba, 199 1 ), 

the drag forces acting on each disk are not aected by the neighbouring disks. However, 

their influence causes errors, especidy in the system with a dense distribution of 

particles. Here we will make comctions to eliminate mis kind of error. 

Before introducing the attenuation coefficient, CA, of drag force, let us introduce 

the shadow factor k which is deked as the ratio 

where h, is the shadowed part of disk j caused by disk i. For a single disk or the disk 

not in a shadow, k = 1. For a disk located in the flow shadow of neighbouring disk(s), 

which cm be iiiusuated in Figure (4.2). k < 1. From Figure (4.2) we can fmd 



Figure 4.2 Illustration of the concept of reduction of 

drag force for two disks in a flow 

If more than one disk is in contact with disk i then 

and the coefficient CA for the disk j is defined by 

Note that CA is always pater than zero for the existence of shadow. If k j  h 1, 

which means that the disk j is M y  shadowed, CA is equal to zero, as in Equation (4.13). 
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In addition, k shouid be detemhed in each direction. Here CA is gîven only in the x 

direction. The component of CA for y direction can easy be obtained in a sirnilar way. 

4-3.2 Friction Forces 

A fiction force behween two rigid bodies can be produced only if they have a 

relative motion in the tangential direction. Because of the assumption that the rotation 

of each body is not considerwi, the relative velocity between the two bodies can be 

substituted by the relative velocity of the mass centre of the two bodies. See Figure 

(4.3). 

Fi- 4.3 Friction force between two disks 

Generally, the fiction force is proportional to the normal force y, between the 

two bodies and its direction is always perpendicular to the latter. Its specific direction 

can be determined by the relative velocity between the two disks. The fnction force 

between disks i and j can be given in the form 



f,Ij = SGN(V; -v;)py, for y& c O 

On disk i the W o n  forces in X and Y dinction are respectively 

where p is the coefficient of fiction and SGN ( ) used here is a specid sign function 

that is defined as 

1 1 X > E  

X 
SGN(x) = - 1x1s~ (4-16) 

e 

-1 x <-E 

where E is the minimum diowance value, or the 1 1 ~  is the dope. See the soüd h e  in 

Figure (4-4)- 

P x j  

b 
t f v i - v j  

- Standard 

Figure 4.4 Seved  different friction models 
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Ia the Figure (4.4), the dotted h e  represents the ideal dry fricrion model. 

In order to avoid the discontinuity at zero, some authors, such as TbreIfd (1978) 

and Rooney and Deravi (1982), used a modified model. S a  the broken Iine in Figure 

(4.4). 

nie nichon force is a passive force which is proportional to the reaction force 

y, according to Equation (4.14). If the reaction force yj on a disk is very large, then the 

friction force is also large and can be larger than the resultant of extemal forces acting 

on the disk. The direction of velocity of this disk may be changed during a tïme step, 

which results in a friction force with an opposite direction in the next time step. And 

so forth. it is just iike a vibration. In order to avoid this case, a restriction to the friction 

force acting on each disk should given in the form 

where Zf~ and y, are the s u m  of total forces, except the M o n  force, acting on the 

disk i in x and y direction respectively, and h is the time step. 
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If the fiction force is less than this limitation value, it wïIl obey Equation (4.15). 

ûtherwise, its quantity will be detecmïned by Equation (4.18). The relationship between 

the magnitudes of a friction force and reaction force can be seen in Figure (4.5). Note 

that f, is not a constant. It has a different values for different disks and at different 

times. 

Figure 4.5 Relationship between fiction force and reaction force 

The b i t  on friction forces can result in a stable process when a granuiar system 

is close to a packed state. If this is not the case, this limitation can be omitted in 

simulations of a granulai system. 

Since the fiction force is a function of the reaction force, its computation is a 

part of the iterative cycle in the simulation prograrn, which means that the friction forces 

are updated in every iteratioa cycle. The detded iterative procedure will be discussed 

in the next chapter. 



4.4 Impact 

In a moving multibody granular system collisions between the bodies and 

between the bodies and boundaries occur fkquently. Ihiring a collision, there is always 

a pair of equivalent impact forces wbich act respectively on the two bodies that 

participate in a collision. A collision is an instantaneous event compared to the the -  

scale of motion. However, impact forces in a granular system can make changes in the 

state of motion and the topological stmcture of the system. It is these changes that we 

are concerned with- Our focus is to handle the collision events correctiy rather than how 

to find those impact forces. 

k t  US consider a simple collision between two single disks and assume that the 

velocities before and after the collision are identined by indexes 1 and 2. The velocities 

of disks i and j which participate in a collision should satisQ Newton's collision d e ,  

which is 

a -  vi2 -vJ2 - -e(vi;-vj;) (4.19) 

where O < e < 1 is cailed the kinetic coefficient of restitution. The superscript n denotes 

the normal direction of velocities and subscrïpts i, j and 1, 2 denote, respectively, the 

disk's numbers and the tirne index before and after the collision. 

If the collision occurs between two sub-systems, according to (Brach, 1991), a 

set of collision equations needs to be set up in the form 

w here 

T the kinetic energy of the system; 



qi the velocities associated with the generaiized coordinates; 

Pi the generalized forces; 

N the numbet of independent coordinates. 

Obviously, at least N equations must be formulated and solved which consumes 

CPU time and data storage space. Actually, the bandhg of collision events during the 

computer simulation takes even more time than solving the equations of motion of the 

system. In order to irnprove the efficiency of the computer simulation, a completely new 

method of haodling collision events is used in this saidy. 

The handling of collision events includes three parts: (1) identifying the events; 

(2) updating the system topology and (3) correcting the velocities. The system topology 

is checked once at the end of the t h e  step. AU new overlaps (not including the position 

errors for each Iuik) wili be idenufieci. If the velocities of disks with overlap are larger 

thau the allowance for velocity violation, then the overlaps are handled as collisions. 

Otherwise, they are corrected as a violation of the position constraht. 

In the computer simulation program, the handling of collision events is done 

together with the velocity error correction once for each simulation time step. The 

velocity for each body is found independently. However, they have to obey the velocity 

constraint conditions for two bodies in contact, namely 



vin - vj" = 0 (4.2 1) 

If this condition is not satistied, Le., the right side of Equation (4.21) is not equal 

to zero, corrections have to be done. The method of emr correction is to introduce a 

vimiai reaction force between disks i and j that b ~ g s  the velocity error to zero. 

When velocity emrs e x .  the Equation (4.21) is 

vin - vja = q ii 

we cm set a l i m i ~ g  parameter q, such that 

IqijI ' qm (4.23) 

where q, is the maximum allowable velocity violation error which is used as a threshold 

determinhg the occurrence of collision. Usually the absolute value of velocity errors is 

much iess than q,. 

I f  a collision occun between disks i and j, qV must be positive as an indication 

that wo particles approach each other befon the collision. If q, < Q, then it is haadled 

as a velocity violation emr, Le., it is regarded as a new link just formed. If qii > qm, 

then it is handled as a general collision event and for a given coefficient of restitution 

e we have 

I qij = ( l + e ) q i j  (4.24) 

Afier correcting velocity according to q the disks i and j wiU have a relative velocity 

-qii that is it will obey Newton's collision law. From Equation (4.24) it can dso 

deduced that if e = O, Le.. a perfectly plastic impact, then a new link is forrned and its 
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velocity violation error will be coczecteâ. 

When most of the bodies in the system are interconnecteci, the correction of 

velocity VioIation emrs and velocity corrections due to collisions in the system can be 

implemented by solving a set of linear equations. In a plana multidisk system the linear 

equations are as foliows 

and the conesponding comctions of the velocities in the x and y directions are 

The detailed derivation of Equations (4.25) and (4.26) WU be given in the next 



4.5 Random Generation of Initial Conditions 

It is difncuit and unnecessary to give artificiaiiy the specific sues and positions 

of aU partÎcles as initial conditions for a p u l a r  system. The generation of initiai 

conditions, also c d e d  the sampiing technique, h a  ken  mentioned in (Wienba, 1991) 

However, due to the compiexity of the sampliag technique and the difncuities of high 

density generation one can not use directly this sarnpiing method in a graoular system. 

In the mode1 by Wierzba (1991), the distribution errors of the generation of disks 

in either size or position, have to satisfy the error function with a Gaussian distribution. 

Thus the generation problem becomes more complicated. 

The generation have been simplified here. AU random distributions are arbitrary 

according to the random generator which can give unlimited random numbers between 

O and 1. The generated physical quantities x are in ternis of 

~ ( i )  = xmia + (x- - xmin) Ran(i) (4.27) 

provided the minimum and maximum of x are known. Here x could be radii, positions 

or velocities of the particles and Ran(i) is a random number generation fimction. 

High density generation with random arrangement is one of the new samphg 

techniques that has been used in the cornputer simulation. The random sizes and 

positions generation is simple and easy if the densities are low. When the density 

becomes high, the generation method used in (Wierzba., 1991) will take much more 

computationai tirne. 

The new method here adopts a planar generation area, instead of line generation 
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for a planar system. If the requked generation density is not very high, the distribution 

of positions for each particle is random. If overlaps happen, they wiil be handled as 

position enors and corrected in the next time step. Obviously the higher the generation 

density is, the more regular is their arrangement When the required generation density 

tends to its limit, each particle has a fbced reference base point. If ai l  of the partides are 

the same size, these base points will be arranged regularly and their intend is according 

to the size of particles. See the cross signs in the foilowing figure- 

Base points 
+ + 

Particle centre area 

O +  

Figure 4.6 High density particle generation 

In Figure (4.6) the cross signs indicate the base points, while the particle centres 

are located in the shadow area based on those base points and a function of a random 

number. If x and y are random, the particle centre wili be in a rectanpuiar area; if r and 

0 are random then it will be in a circle. The size of the particle can also be determined 

by a random generation function. The results of the generation are shown in the right 

hand side of Figure (4.6). 



4.6 S~ammnrg 

The contents in m i s  chapter briefîy deal with some technicd pmblems in 

simulations, (except those with respect to the equations of motion and numerical 

methods) and provide cofzesponding solutions. AU of these have k e n  implemented in 

the cornputer simulation program and have been verified using specifîc examples. 

The method of s t o ~ g  and updating topologicai data is bnefly ddressed in 

Section 4.2. In order to decrease storage space, two formulas for estimating the 

minimum requùement for row number for an array is given for both the 2-D and 3-D 

cases- 

In this chapter we also discussed how to idente effectively the drag forces and 

the fiction forces on àîsks. The introduction of the coefficient CA allows us to make the 

computational mode1 more nalistic, which is very important for a granular system 

Iocated in a flow field. 

The method of handling impacts among the disks is presented in Section 4.4. 

This method aiiows us to handle aü impacts only once in a time step, thus the requked 

computational time is dccreased. 

The random generation of disks according to size, position, and time can be done 

in a different way. The method proposed here is simple and suitable for the generation 

of a high density disk distriauton. 

Among the methods and techniques discussed in this chapter, two are important 

for the efficiency of simulations: (1) the use of arrays; and (2) handling of collision 
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events. The former can Save cornputer storage space and while the latter makes collision 

problems simple and can Save compuiational tirne. It is due to the use of these new 

methods and techniques in granuiar system simulations that the presented approach is 

not only original but aiso effective. 



Chapter 5 

NUMERICAL METHODS 

5.1 Introduction 

The equations of motion for a multi'body system, whether based on Newton-Euler 

or Lagrangian Equations, are a set of second order nonlinear Ordinary Dflerentiul 

Equatiom (ODEs). The problem is an initial value problem for the ODEs, for which 

there is no aitemative to a numerical solution. The accuracy of the solution and 

convergence of equations will directly influence the entire simulation result Besides, the 

computational time of the simulation of a granuiar system should be taken into account 

because the cornputer's CPU time wiU be greatly increased if the number of equations 

is large. 

In order to simulate a granular system enicentiy, an iterative method based on 

the Newton-Euler equations is deveioped. The main iteration scheme adopts classical 

GaussSeidel iteration. In addition, numencd integral and emr correction are performed 

in each iterative cycle. 

Since this type of numencal method is for out specific equations and has not 

been used before, it wiil be discussed in some detail. The specïfic iterative scheme is 

given in the flowchart. The correction equations for position, veiocity and energy are 

also given. Numerical tests can be found in the next chapter. 



5.2. Selection and Comporison of Namerid Methods 

5.2. I Single-ste~ and Multister, Method 

First of ail, we tested various numerical methods to solve a set of ODEs. The 

mode1 used in the test is a multibody pendulum which is shown in Figure (5.1). The 

numerical meùiads such as Runge-Kutta, Adams'. Gear's, and Bulirsch-Stoer 

extrapolation method were tested. AU of these methods have Iibrary subroutines W S L )  

available. The results show that the Adams' method is the fastest and the Runge-Kutta 

method is the most accurate. And these two methods are compared in Table (5.1), in 

which emrs are based on the violation of the energy conservation principle. It cm be 

seen by Table (5.1) that the ciifferences in efficiency are not significant between these 

rnethods. 

Since the iibrary routines include a variable time step option, the programs for 

the single step (Runge-Kutta) method and multistep (Adams') rnethod with a fmed time 

step were aiso used for test purpose and results showed very little dinerence. it can thus 

be concluded that both the single step and the multistep method have atmost the same 

efficiency in the solution of ODEs. 

M e n  considering a system with a variable topology, a single step integation 

rnethod should be chosen so as to keep the sarne accuracy and computational efficiency 

for each time step. If the system has a fiied topology, use of the multistep method can 

Save computational time. Cornparison of the two rnethods cm be seen in Table (5.1). 



Figure 5.1 A muitibody pendulum with N bodies 

5.2.2 Laerange Ecwations and Newtan-Euler Quations 

nie second portion of our test is to see if there are difEerent efficiencies for the 

dinerent equations of motion. The results of Lagrange equations and Newton-Euler 

equations can be found in Table (5.1). 



Table 5.1 Cornparison of CPU t h e s  and euors for different 
dynamic formuiations and numerical methcxk 

11 1 Lagrange Equitions 1 Newton-Euler Equatioas 

Newton-Euler equations can give us shorter CPU times than Lagrangian 

equations. However, the amount saved will be decreased nom 25% at N=lOO to 15% 

at N=W. This result is still not ideal. 

Regardiess of which type of equations of motion are employed, the procedure 

of solution can always be dividecl into two steps: the first is to solve a set of linear 

algebraic equations so as to get the equations with the explicit second order derivatives; 

the second is to solve the ODES. It should be noted that when the classicai fourth-order 

Runge-Kutta method is useci, the solution of linear equations has to be computed at least 

4 times in a single time step. O n  the other han4 the multistep rnethod (Adams' method) 

only requires to calculate once in a single time step. It can also utilue the results which 

have been obtained in the preceding caiculations to improve the results. Hence this 

method can obviously reduce calcuiation the. However, the muitistep method requires 

t 
Number 

of 
Bodia 

N=100 

N=2ûO 

N=400 

1 

R-K Method Methcd R-K Method Adams' Method 

Times 
(SCCI 

613 

4.703 

65,878 

Relative 
Enon 

1-7x1W 

1.4xW' 

25xlQ' 

Times 
(-1 

1.010 

10,388 

138,892 

Times 
(sec) 

475 

3.832 

54.759 

Relative 
Emrs 

4-4xlo6 

5.8~10~ 

43x1OS 

ReIative 
Enos 

22xlW 

13x10~ 

8.0~103 

Times 
(sec) 

761 

8322 

117.604 

Reiative 
EKOS 

1,7x1@' 

1 . 6 ~ 1 ~ ~  
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more storage space and is not suitable for a system with variable topology. It is 

necessary for us to search for a more efEcient numerical rnetbd. 

5.2.3 Iterative Methods 

Under s o w  specific conditions an iterative method can give solutions to k a .  

equations effectively. The advmtage in computational speed will be very significant 

especiaiiy for a large number of equations and a coefficient ma& with a large number 

of zero elemnts. It has been found through many numericd tests that only the Newton- 

Eufer equations can be efficiently solved by an iterative method The reason is very 

simple: the matrices A in Equation (3.6) and H in Equation (3.31) have different 

features. A is almost a full ma& and H is a sparse mat& 



5.3 Mixed Iteration 

5-3.1 Gauss-Seidel Iteration 

Cornputafionai efficiency is gnatly improved by using the iterative method for 

solving a large set of hear equations. Here the GaussSeidel method is adopted as the 

basic iterative process for accelerating convergence. If we have a set of Iinear equations 

then its Gauss-Seidel iterative fonn is 

where superscript k is the iteration index and n is the number of equations, H is a 

matrÏx and (b) is a vector. The elements in both of them are constantt 

The merence in our problem is that the elements in both H and ( b }  are 

functions of the, rather than constants. They need to be identified in tirne. Hence an 

integral operation is put into the iteration. 

5.3.2 Mixed Iteration Scheme 

In the equations of motion, the coefficients are hinctions of variables that are a 

functions of thne. In considering this factor, the integral caiculation should be put into 

the iteratious so that the variables can be obtained and be used for updating the 

coefficients. 
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After m iterations the convergence of y is checked. The value of n from 

numericd tests could be chosen between 10 and 20- The less it is, the worse the 

computationd accuracy WU be and the larger it is, the longer the computational time 

requirement wiU be. 

Since both iinear equations and differential equations are solved in an iterative 

cycle, it is called here a &ed iterative scheme. A fiowchart describing this iterative 

scheme is show below [see Figure (5.2) on the next page]. 

When this iterative scheme is used to solve equations of motion, the advantage 

in terms of computationd time is very remarkabie but the accuracy is decreased 

correspondingly. In order to improve accuracy, extra computations, such as using 

multistep formula or the high order Runge-Kutta formulas need to be made. These 

formulas can easily be introduced and implemented in the mixed iteration, but these 

numerical tests have not given us signincant results yet. As usual, the increase of 

accuracy must be paid the price for increased computaaonal tirne. 



Figure 5 2  A flowchart of the mixed iterative scheme 
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5.3 -3 Convergence Conditions 

The convergence of the soiution is dependent upon many factors. In our mixed 

iteration the conditions of convergence c m  be considered h m  two aspects. One is the 

convergent condition for the linear equations Equation (5.1). Another is the convergence 

condition for the integrai formula. 

According to relevant theory of numencd solution, if there is a hear system 

and the correspondhg iteraîive formula is 

{x)" '  = B (x)' + { c }  

the sufficient condition for convergence wiU be II B II < 1, Le., 

For Equation (5.1) the convergence condition c m  be written as 

This is only a sufncient condition. not a necessary condition. Moreover, in mixed 

iterations the integrai cdcuiations are also made, and the coefficients of matrix E are 

updated by new iterative results during each iterative cycle, even though these changes 

are very SW. 
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There are two main reason why n&cd solutions are aEected when this 

iterative scheme is used. One is local truncation and round off enors in integrai 

calcdation; the other is global em>rs fiom the accumulation of local emrs. In order to 

decrease global e m ,  we have to conml local emrs- Otherwise, they can accumulate 

rapidly bringing about a divergent numencal process. 

Theoretically, the s d e r  the thne step used in the r n h d  iterations is, the more 

accurate the numerical results are. This is may not be hue because of cornputer round 

off errors. Furthemore, a smaller time step wiU lead to a Ionger calculation time which 

is inefficient. How to choose a proper time step is a complicated question because of 

the complexity of our dynamics system. This problem involves the size of the system, 

the accuracy requirement, the number of particles in contact and their configuration. 

Therefore, the time step should remain k e d  duriog the whole calculation. This problem 

will be discussed in the foliowing section. 

5.3.4 Variable Time S t e ~  Algorithni 

nie technique of using a variable t h e  step in numencal integralion is very 

important. It has been used in many standard subroutines. Usually, the control of the 

time step is baseâ on relative errors. Extra caicuiations are wcessary for detennining 

these errors. In the mixed iteration, the time step cm be controlled by the number of 

iterations. In this way, without extra computations, the computational efficiency could 

probably be irnproved. The corresponding flowchart is shown on the next page. 



Figure 5 3  A variable time step algorithm 



5.4 Violation Correcfio~~~ 

The mixed iterative scheme can attain third order accuracy, i.e., O(@) in velocity 

and 0(h4) in position, which is only less one order than the classical Runge-Kuna 

method. Violations exist ody in a system with constraints. So-called violations are a 

kind of error which can be measad. h our problem, the computational emrs are 

relative and the constraint vio1ations are absolute. 

The violations of resuits can be seen in the graphics. For instance, two connected 

disks could overlap or be separated in numencal results. Aithough velocity violations 

cannot be discovered in graphics, their existence WU directiy increase the position 

violations. The existence and correction of two kinds of errors is illustrated in Fibouze 

(5 -4). 

no 
corrections 

with position corections 
position 

cocrections no veIocity with velocity 
corrections corrections 

Figure 5.4 Illustration of position and velocity mors 
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If these violations are graduaily accwnuiated without any corrections, they wiii 

make the itetative pmcedure longer and possibly even make the iterative results 

divergent until there is a complete crash. On the contrary, the correction of violation 

erron can improve the calcdation accuracy and accelerate the numericd convergence. 

For this reason we put this capability into the iterative cycle. Some numerical results can 

be seen in the next chapter. 

Violations are usually used to evaiuate the accuracy of the numerical method, as 

in (Bom, et al., 1992). If the numericd method is accurate and the simulation time is 

not long, the violations needn't be comected at A. Otherwise, the violations in both 

position and velocity WU become large -wïth tirne untii they exceed the dowance. In 

this cases, they must be comcted 

In the simulation of a granular system, overlap between particles is not allowed. 

To overcome this difnculties one method is to inaoduce a " s p ~ g  with damping" 

between two overlapping particles, such as in (Loset, 1994) and (Langston et al. 1994). 

The introduced spring force was acted between the two particles and its amount was 

proportional to the overlap. This method is applicable if the granuiar system is sparse, 

resulting a molecular dynamics model. By this method, the results of simulation depend 

on the cornputational accuracy. In addition, the equilibrium state of the system would 

be impossible or ody maintainable over a short time if thïs method were used. 

In a coostmined system, errors in numerical results lead to violations of 

constraints. There are various ways of correcting these e m .  For example, one based 

on the least-squares methoci, can be employed for the emr corrections. The rnethod 
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which is used here is based on fïnding comctive forces which restore positions and 

velocities satisfying the cornsponding constraint equations. The specific procedure is 

as follows: 

Firstiy, calculate the position and velocity of each particle whether it is 

comected with other particles or isolated Secondly, check the violations of constraints 

for each pair of disks. Finally, find a corrective force for each pair of disks which 

eliminates (with a prescribed tolerance) the constraint violations. 

54.1 Position Correction 

The relative coordinates of the particles should, provided the link exits, satisfy 

the following relation 

{x;) + {Ci = {L;} (5-7) 

where X, and Y, are ideal values. However, if Equation (5.7) is violated then the error 

A is equal to 

{Ai} = ((x:+ - {Li} (5.8) 

Let the X and Y components of the position error vector be 6X and 6Y, and they satisfy 

By substituting Equation (5.9) into Equation (5.8) and Ieavùig out the higher order 



-L-' (X,, {6&} + Yci (6 q}) = { Ai } (5.10) 

The error 6X and GY are due to e m  in individual disks positions, and the relatiomhip 

between the two follows from Equation (3.48). T a b g  into account that X, and Yi are 

very closed to X' and Y, in Equation (3.45) for any pair of disks, Equation (5.10) can 

be written in the following fom 

CEf{6x,} + SET{Gyj}  = (A i }  (5.1 1) 

where (4.1 is position emr vector. The first four ternis of the Taylor's expansion in 

time for a disk position can be expressed as 

where r = (x, y)r and the third order derivative of position in the fourth term is an 

average value. In conside~g of the position and its denvatives are constant during the 

iterations, we can obtain 

1 6r = - h 2 8 ï  (5.13) 
6 

The x and y components of increments in the RHS of Equation (5.13) are found from 

Equation (3.50) and (3 51) taking into account that extemal forces are assumed to be 

constant during the time step. Then Equation (5.13) are msformed into the following 



B y substituthg Equation (5.14) into Equation (5.1 1). which gives 

(CETM-'EC + SETM-lES) { - ! - h 2 ~ y i }  = (4) 
6 

If we denote 

then we cm obtain the correction equations for the positions as foLiows 

H{65.) = ( 4 )  (5- 17) 

Equation (5.17) is solved for (611, and then position corrections are found from 

Equations (5.14) taking into account Equation (5-16), Le. 

5.4.2 Velocitv Correction 

Similarly. the directions of relative velacities should be perpendicuiar to the 

centre line. The requirement which follows h m  the consûaint equations, i.e., Equation 

(3.53). The latter equation after dinerentiation c m  be written in the form 

c($~) + S { Y ~ , }  = O (5- 19) 

where X, and Y, are ideal values. If Equation (5.19) is not satisfied, then 



wbere {qi} is a velocity error vector. We can represent the X and Y components of the 

velocity error vector as the foiiowing fom 

and then substitute Equation (5.21) into Equation (5.20) aad apply Equation (5.19) The 

- 6  - 6  = (qi} (5.22) 

From Equation (3.49) the relationship between the relative and absolute velocity 

increments can be found and used in Equation (5.22) to obtain the foilowing resuit 

CET@%) +SET{Gyj}  = {qi }  (5.23) 

C o n s i d e ~ g  again the first three terms of the Taylor's expansion for velocities 

The velocity increments are 

1 6F = h 6 F  (5.25) 
2 

The x and y components of increments in the RHS of Equation (5.25) can be found as 

before, from Equations (350) and (3.51), and after their substitution into Equation 

(5,251, the latter become 



By substituting Equation (5.26) into Equation (5.23) we obtain 

then we can obtain the correction equations of  velocities in the fom 

m j v , }  = ( i l i }  (5.29) 

From the latter {6v,} is found and then the velocity corrections are found from 

Equation (5.26) taking into account notations in Equation (5.28) 

54.3 Velocitv Correction bv Energv Conservation Law 

The above correction of velocities makes changes only in the normal directions 

of relative velocities. When co~ected bodies meet velocity constraint conditions, aii of 

the bodies in the system should satisfy an energy conservation condition. In other words, 

the changes of system kinetic energy should be equal to the work done by total externat 
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forces according to the energy consey~ation and conversion law. Because positions 

usuaiiy have a higher order accura~y than velocities, the work done in a srnail time step 

can be used for correction of velocities. If energy is conserve& we have 

The first and second t e m  in Equation (5.3 1) are respectively the kinetic energy 

of the system at tirne t+h and t, and the third term is the sum of work done by the 

extemal forces. If the right hand side in the equation above is not equal to zero 

(assurned to be E), because of computational erroa, Le., 

For t th ,  Iet 

Substituthg Equation (5.33) into Equation (5.32) and eliminating high order 

terms, we have 

-C rn,(f,i6x + ~ ~ , 6 ) i ) ~ + , ,  = E (5.34) 

We assume that the velocity e m  is proportional to the velocity magnitude and the 

proportionality is the same for ail disks, i.e. 
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where k is a constant of proportion. Substihxting Equation (5.35) into Equation (5.34), 

and C O ~ S ~ ~ M O  that ( ~ ~ y ~ ) ~ + ,  and (x, y), are negligibly different we can obtain 

Consequently the correction equations of velocity based on the energy conservation are 

Note: 

(1) The velocity c o d o n  changes the direction of the velocity vector, while 

the correction on based on energy conservation changes the magnitude 

of veiocity. Therefore, the two corrections are independent of each other. 

(2) The corrections of positions after collisioûs is done at the end of the 

iterations for the Ume interval h. 

(3) Corrections based on energy conservation in noacoaservative systems can 

be implemented if a dissipative work can be accurately detemiined during 

each time step. 



5.5 Sllnmlmy 

In this chapter we have dlscussed the numerical methods which were used for 

solving the equations of motion and we have given a cornparison of results by those 

methods. In order to improve computationd efficiency, a mixed iterative scheme which 

is aimed at our specific equations of motion was introduced and developed With respect 

to accuracy, correction of the position and the velocity violation as weii as correction 

of energy conservation violation were used for reducing the system giobai enor during 

each time step. 

The solution in traditional numericai rnethods is a pure mathematical problem, 

but here physical conditions were Ïnvolved and used as grounds for improving accuracy. 

The new results after correction were used to feed back into the iterative cycle to 

acceierate convergence, or were used directly as new initiai values for the next time 

step. Although this correction or control technique requjres more calculations during the 

solution of the equations of motion, its effect is not oniy to improve computationd 

accuracy but also to Save computational time, which will be seen in the next chapter. 



Cbapter 6 

APPLICATIONS AND ANALYSIS OF EFFICIENCY 

6.1 Insoduction 

Because there are no andytical solutions to most dynamics problems, a direct 

and simple way to verw the efficiency of a numerical method is to apply it to various 

dynamics problems and compare the numerical resuits and the required CPU times. A 

combination of the Lagranpian formulism and classical Runge-Kutta methods wili still 

be used here as a benchmark for comparisons. 

The efficiency of computer sirdation is affected by many factors such as system 

size, Mùe step of integration. error tolerance and error conml. The main factors we will 

take into account here are the system size. error tolerance and error control. The 

computationd efficiency and a parametric study are performed for three simple and 

typical examples. 

To implement the developed numerical methods and techniques presented in 

eariy chapters, a computer simulation program has been written. The program allows a 

user, through a choice of system parameters, to mode1 virtually any two-dimensional 

granular system. Here this computer simulation program is used for three granuiar 

system examples and the results of simulation are compareci with those of relevant 

physical experiments. 



6.2 Multibody Penddam Roblems 

As the f h t  example a mulû i iy  penduium problem describecl in Chapter 5 is 

considered. It is found that the computational efficiency is highest when the Newton- 

Euler equations are solved by the mked iterative method. The efficiency increases with 

the system size [see the figure (6.1)]. The total length of the penduium was 3m, the 

initial angles from the vertical was 30°. 

Number of Bodies in the Systems 

Figure 6.1 CPU the for different system sues and numencal methods 



In the figure above, some notations have the foiiowing meaning: 

"lark.datIr: Lagrangiau f o d s m  and Runge-Kutta solver, 

"nerk.datW: Newton-Euler formalism and Runge-Kutta solver, 

"neitdat": Newton-Euler fonaalism and iterative solver with error correction, 

"neitc.datW: Newton-Euler formalism and iterative solver with integrated error 

control. 

Violations of both position and velocity need to be corrected at each time step. 

Usuaiiy, an increase in accuracy nquires more computational time. But, as it will be 

shown, by using an iterative metbod, we can not only increase the accuracy but also 

decrease the number of iterations and thus Save computational Mie. The following 

fiDpre provides results which present the relationship between CPU cime and error 

tolerance for the iterative solver with or without corrections- 
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0.001 0.002 0.003 0.004 0.005 

Toleranœ of Iteration 

F i  6.2 CPU time vs. error tolerance for N = 50 

Where the meaning of data files is as foilows: 

"wc.hlOm: with error corrections at the end of iteratïons and h = 0.001 sec, 

"wcc.hl0": with integrated error control and h = 0.00 1 sec, 

"wcc.hO5": with intepteci emr control and h = 0.0005 sec. 

The accuracies of computatiom can be seen in Figures (6.3) and (6.4). 



-0.6 -0-4 -0.2 O 0.2 0.4 0.6 

Relative Horizontal Position 

Figure 6.3 Phase diagram without error comction and control for N = 50 

where the "lark.datn. in this and the foliowing figures, identifies the resuits obtained by 

Lagrangian formalism and Runge-Kutta solver ( t h  benchmark), the "nc.ûû2" identifies 

the resuits obtained by Newton-Euler f o d s m  and mixed iterative method without any 

correction for TOL=O.O2 and h=0.0005 sec. 



Relative Horizontal Position 

Figiue 6.4 Phase diagram with e m  correction for N = 50 

where "WC 1.003" identifies the results obtained by Newton-Euler formalism and mixed 

iterative method with correction for TOL=0.003 and M.001 sec. 



Relative Horizontal Position 

Fignre 6.5 Phase diagram with emr  correction and control for N = 50 

where "wc1.003" identifies the results obtained by Newton-Euler formalimi and mixed 

iterative method with correction for TOL=û.005 and h=û.OOl sec. 

When emor correction is integrated into the iteratiom, the accuracy is m e r  

improved. At the same time, the CPU time becornes less, which means that the 

integrated e m r  conml accelerates the convergence of the iterative process. 

From Figures (6.3). (6-4), and (6.5) we c m  see that the integrated error control 
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in the iterative scherne allows us to increase accuracy for larger tolemce TOL and time 

step h. This is important since choosing the TOL and h becomes less critical to the 

problem of convergence. 

The effect of the TOL on the CPU time and convergence is investigated in detail 

in the foilowing two figures for different numbers of bodies. 

1000, ,  t 1 

Tolerance of lteration 

Figure 6.6 CPU time vs. error tolerance for N = 100 
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"nc lûû.hO5": no error correction and contrd (N=100, M .0005  sec), 

"WC lûû.hO5": with coneaions only (N=100, M.0005 sec), 

"wcc100.hO5": with corrections and controI (N=100, hd.0005 sec), 

"wcc 100.h1Ot': with corrections and control (N=100, h=O.ûû 1 sec). 

- 
O 0.0001 0.0002 0.0003 0.0004 0.0005 

Toleranœ of lteration 

Figure 6.7 CPU time vs. error tolerance for N = 150 

where: 

"WC 150.h05": with corrections only (N=150. h=O.ûûûS sec), 
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"wcc15OJ105": wÏth coffections and controi (N=150, h=0.0005 sec), 

"wcc150.h10: with corrections and control (N=150, M . 0 1  sec). 

Note that if there are no error corrections, a correct solution can be obtained for 

a large size system (N=150) only for vesy srnail error tolerances. 

Therefore, error corrections are very irnporiant in numericd simulations in 

general. In particular, when they are integrated into the iterative cycle, they aiiow us to 

acceierate the convergence of iterations and at the same time improve the accuracy of 

resulîs. 



6.3 FPlllng Chiin RaMcm 

This is another problem test which has been solved by different numerical 

methods (Kamman and Huston, 1984; Mello, 1989 aad Bom, et al., 1992). Two kinds 

of models are used here for the solution of this problem: One is a multi-rigid-body 

model in which the initial momentum of each body ne& to be taken into account. The 

other is the point-mass model in which the masses are concentrated at the joints and the 

inertia of links is ignored. 

For the first model, the chain is composed of nfteen identical rigid bars 

connected by spherical joints and acted upon by gravity. The two ends of the chah are 

grounded by means of two spherical joints. The configuration of this system and its 

initial position are show in Figure (6.8). 

Figure 6.8 A failhg chain with 15 links 

Besides Lagrangian formulism. the Newton-Euler formulism for a multi-rïgid- 

body system is used for the goveming equations. The fonn of equations has been given 
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in Section 3.52 of -ter 3. 

In a constrained system, the equations of motion using Lagrangian formulism are 

a modification to the Lagrangian equations [refer to Equations (3.19)J. This system has 

13 degrees of &dom and two Lagranpian multipiïers are needed. So two algebraic 

equations based on constraint relations need to be set up. 

When using the Newton-Euler formula for a multi-Bgid-body system, we do not 

need to consider the dgebraic constraïnt equations because the constraint relatiomhips 

(derivative fom) are integrated into the equations. The constraint problem does not 

change the fom of equations of motion. Here we still use generalized coordinates, so 

the number of intemal force parameters is 2x1628, and the number of integration 

variables is 15. Both equations of motion use the Runge-Kutîa solver without the 

violation constraints. 

The two different formulations of the governing equations give us aimost the 

same results [see Figure(6.9)J. The first reflection point occurs at t h e  t = 0.47 sec and 

the second point at t = 0.68 sec. These results are in cornplete agreement with those 

presented by Kamman & Huston (1984); Mello (1989) and Bom et al., (1992). Note that 

each r d  has the same mass and a length of one f o o ~  
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Time (sec.) 

Figure 6.9 Vertical position time history of centre Link (ngid body model) 

In Figure (6.9), the "ne.datN is the rwult based on the Newton-Euler formula and 

the "ladat" is the resuit based on the Lagrangian formula. 

A point-mas model is adopted here, i.e.. a chah which is composed of f a e n  

massless rigid bars comected by fourteen sphencal joints. Ali of the joints are mass 

points with the same mass and the whole system is acted upon by gravity. The 

configuration of the systcm and its initial position are the same as in a mulu'body model 

shown in the Figure (6.8). The number of degrees of fkeedom for this system is still 13 
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although the system mode1 has changed. Tbue is no difference between the results when 

the Lagrangian or the Newton-Euler formulation is used However, we used rectangular 

coordinates for the Newton-Euler fornulism. so the number of interna1 force parameters 

is 15. and the number of integration variables is 2x14=28. Meanwhile, for an iterative 

method, an error control was used to obtain numerical results. AU these results for two 

Merent formulas and solvers are shown in Figure (6.10) 

In thk system, the distance between two fked suspended points is 3 metres, i.e 

31 = 1 m rather than 1 = 1 ft taken jn (Kamman and Huston, 1984) and (Mello, 1989). 

Moreover, relative displacement is used to represent vertical displacement, which is 

equal to the vertical displacement divided by the distance between two suspended points. 



Time (sec) 

Figure 6.10 Relative vertical position time history of centre link (point-mass model) 

In (6.10) the "neitwc" indicates the results based on the Newton-Euler 

formulation and mixed iterative method with fidl error control (in position, velocity and 

energy); the "neit" indicates the results based on Newton-Euler equations and mixed 

iterative method The s e  "nc" means without any corrections and controls and the 

suffix "WC" meam with al l  error controls; the "larkdat" indicates the results based on 

the Lapngian formulation and Runge-Kutta solver, which is used as a benchmark for 



comparisons. 

From Figure (6.10) it can be seen that the iterative method with al l  error 

corrections has a higher accuracy. The question people might ask is which kùid of 

correction is more important. The answer can be found in Figure (6.1 L). 

O 0.5 1 1.5 2 

Time (sec) 

Figure 6.11 Relative vertical position time history of centre Link 
(point-mass model) using different error controls 

In Figure (6.11) the ssufnx "pv" means the resuits obtained by position and 

velocity error control. The suffi "en" means the results obtained by energy error control 

and the sufnx "WC" means the results obtained by all of those error controls. 
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Obviously, position and velocity corrections play an important role in all emr 

corrections. 1s this m e  for all dynamics pmblems? To answer, let us consider the next 

example. 



6.4 Unstable Problem for Vertical Stack of Disks 

This is a simple and -cal unstable dynamics problem which can be used for 

vefication of accumulation of computational errors and evaluation of numencal 

methods, such as in (Wienba, 199 1). 

The test mode1 is still the point-mass truss system [see Figure (6.12) 1. 

(a) Initial Position (b) Loshg Stability 

Figure LU Instabiiity test for N disks 

Here is an assumption that the instability occurs when A 5 0.1%, where A is 



L-L' A = -  
L 

In this exampie the number of disk N was vaned fiom 10 to 60, while L = 3m. 

The results indicating the tirnes to keep the system stable vs. different number of disks 

are shown in Figure (6.13). Also , the effect of different error conml mechanisms is 

shown in the Figure. 

O 10 20 30 40 50 

Number of Disks 

Figure 6.13 T h e  to instability vs. number of disks 



In Figun (6.13) the meaning of suffixes is the same as that mentioned above. 

In this physicaily unstable pmbIem, energy emr comtion and conaol is very 

important especially when the system is not large. For this example the position and 

velocity violation corrections appear to be useless and they may even have a negative 

effect This result requires additional investigations. 

After cornparisons of many computational resuits. it can be found that if a system 

is a rnoving one, then correction in velocity is most important in three types of error 

corrections (position, velocity and energy); if a system is close to a static one, then 

energy correction becomes most efficient Although position correction is not signifcant, 

it c m o t  be eliminated because of the geometric and topological structure of the system. 

Hence, the choice of corrections is based on the state of the system. For a complicated 

granuiar system whose state is not hown in advance, ai i  of the error corrections should 



6.5 Jammhg proMem O€ dkl particies in a strpibht pipe 

This is a real granuiar materials dynamics system which is completely different 

Erom the examples above. Not oniy does it have a large size but also a variable 

topology. In compter simulations of this system, almost al1 aspects discussed above are 

important It is an overail verifLication of the generai simulation program. 

6.5.1 Phvsical Modei of the Svstem 

Particles canied by a fluid in a cha~el  interact with each other and with the 

boundaries. This interaction results in a loss of kinetic energy and thus reductions in 

paaicfe velocities. If the rate of panicle supply remains the same, then the fiaction of 

particles in a given volume, where speed reduction takes place, will increase. If the 

i d o w  exceeds outflow then the net balance wiU grow until the particle density reaches 

its maximum, which will correspond to a complete stagnation or a flow jam. 

It is a discrete system which comprises isolated particles and clusters. AU of the 

partides were modelled by rigid di& with differeot radü. At the bcginning, the disks 

were uniformly distributecl in the area which is caiied the Generation Area [see Figure 

(6.14)]. Disks with velocities the same as the fiow gradually move into a B@er Area 

where they acquiie the velocity of the corresponding potential fiuid. The buffer area is 

needed to ailow sufficient number of disks to maintain a poteatid flow distribution of 

velocities before mixing due to interactions with the boundaries starts. From the buffer 

area the disks enter the nal pipe with comgated boundaries, Le., Control Area. New 
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disks are generatcd in the process of simulation, while the disks leaving the control area 

are discardeci. 

Generation Buffer Control Area 
Area 

D ; 

Figure 6.14 A schematic diagram of simulation area 

6.5.2 Numericd Results 

Some numencal results have been published in (Sun and Vinogradov 1996% 

1998, and 19%~) and (Vinogradov and Sun, 1996). which will not be given in detail. 

However, the foilowing resuits obtained here are based on the dinerat size of particles. 

Numerical simulations were catfied out for the foilowing channel and disk 

geometries: D = 0.4 m, d = (0.040 and 0.068) m, L, = 1.25D, L, = OSD, 4 = 3.75D. 

a = 0.125D1 b = 0.05D, r = 0.1D. The coefficient of fiction was p = 0.3, and the 

coefficient of restitution e = 0.7. The maximum velocity at the centre of the channel was 

v, = 1 3 ,  where v is the mean velocity comsponding to a given discharge and it varied 

in numerical experiments fFom v = 0.025 d s e c  to v = 0.10 dsec .  
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The simulations werr curieci out on the IBM-RS6ûûû cornputer- There was no 

lirnit on the number of disks- Those out of the control area were discardeci and new ones 

were generated as long as the simulation was running. The simulation nui was stopped 

when the buffer area was full, ic, when the discharge was zero or close to zero, which 

was the sign of a jam in the pipe. For a typical run with a number of disks over 400 

(average radius is 0.02 m, u= 0.025 dsec),  the CPU time was about 20 minutes while 

the real t h e  was about 45 minutes. If average radius of disks is 0.034 m and d.05 

mlsec, then total number of the disks during the simulation is not over 200 and the CPU 

tirne was about 1 minute, while the real time was about 4 minutes. The numerical 

expriment resdts for the two cases are plotted in Figures (6.15) in relative surface 

density - Froude number. The Froude number is defined by 



(T=240 SC) 

i (T=300 sec) 

(T=380 sec) 

0.5 0.55 0.6 0.65 0.7 

Figure 6.15 Relative densities of particles resulting in a flow jam 
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In the top of Figure, the dotted Iine represents no jam; the rigid h e  represents 

jam and the numbers in brackets indicate the time to jam initiation. The results for the 

average radius r,= 0.020 m are shown in the upper paa; the results for the average 

radius rA= 0.034 m are shown in the lower part of the Figure (6.15). Between the two 

Lines, the initiation of a jam is uncertain and the faster the flow velocity is the wider the 

area of uncertahty. 

It is seen that where the relative size of the disks is d/D = 0.1 and 0.17 and the 

relative size of the wail roughness b/D = 0.05. the boundary between the no-jam and 

certain-jam areas is almost a venifal h e  (or transition zone). Aithough these results 

could not be checked quantitatively against the experimental data, since in (Ettema, 

1989) the initiation of a jam is associated with the volume discharge of the spheres, the 

experîmental data indicates that for a relatively large particle size (in experiments it was 

d/D = 0.02) the no-jam-certain-jam boundary is almost a vertical line. Similar results are 

obtained for relatively large blocks in a cwed chamel (Urroz and Enema, 1994). It is 

also of interest to note that the time to the kbeginniog of the onset of jamming depends 

on the initial flow velocity, namely, it is almost in inverse proportion to the latter. 

The resdts of simulations for the systems with difterent sue are shown in 

Figures (6.16a). (6.16b) and Figures (6.17a). (6.17b). 



Figure 6.16a Simulations of a two-phase granular flow (large particles) 
in a straight pipe (from the beginning) 



Figure 6.16b Simulations of a two-phase granular flow (large particies 
in a straight pipe (before jamming) 



Figure 6.17a Simulations of a two-phase granular flow (smaii particles) 
in a straight pipe (from the beginning) 



Figure 6.17b Simulations of a two-phase granular flow (small particles) 
in a straight pipe (before jamming) 



6.6 Su- 

Tbree typical examples and a specinc granular system are discussed in this 

chapter. The examples are used to test different numerical methods and some parameters 

in the correspondhg methods. The advantages of the iterative method are very 

s imcant in terms of the computational speed. The improvement of accuracy is 

achieved through error corrections and controls in each iterative cycle. This control 

technique aiiowed us to m e r  Ïmprove computational efficiency. 

In this chapter, we also Ïnvestigated the infiuences and effects of error 

corrections in different dynamics system. 

The application of the cornputer simulation program is an actual verincation of 

rneihods proposeci in the earlier chapters. In this program, none of the matrices was 

used. Both computational the and storage space were greatly saved. 



Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions 

A general methodology for simulating the dynamics of systems has been 

developed A simplified multibody dynamics model has been introduced based on the 

Newton-Euler approach. A novel Uitegrative scheme for solving the governing equations 

has been developed, which dowed significant improvement in the computational 

efficiency of simulations. An error correction aigorithm integrated into the iterative cycle 

has been developed. This algorithm not only improved the accuracy of results but also 

accelerated the convergence of iteratiom. In short, the methodology rnakes it possible 

to anaiyze the dynamics of granular systems using a multibody model without need for 

a supercornputer. 

The main accomplishrnents of the present investigation can be summarized as 

follows: 

(1) A physicaüy comct discrete model in 2D and 3D granular dynamics 

simulations bas been introduced. 

(2) The topology of the system is described by the incidence matrix which 

allows updating of the topological data and equations of motion in a 

scalar rather than a ma& form. The latter resulted in savings of both 



comptational time and storage space. 

(3) A customized algorithm based on splitting the iterative process in two 

coupled branches: one for unlmown intemal forces, and armther for 

unknown positions, has been developed. This algorithm has proved to be 

very efficient for large size systems. 

(4) An algorithm for erra corrections in position, velocity and energy bas 

been developed and made a part of the iterative scheme, which 

accelerated the convergence and improved the accuracy of results. 

(5) A methodology of handling events (such as collisions, break up or 

joining of particles, generation of new particles) has been presented. This 

new methodology dows improved efficiency, in terms of CPU tune, of 

simulations of large systems. 

(6) A FORTRAN program implementing the methodology and algorîthms 

has been developed, tested and successfdiy implemented on a digital 

cornputer. 



7.2. Recomrr-ndations 

The following tasks and investigations may be c&d out as an extension of the 

prrsent work: 

A more rigoms treatment of quasi-rigid-bodies, which may lead to both 

better accutacy and more efficient simulations, should be investigated. 

Siip between particles in contact should be taken into account and the 
b 

rotaiional energy of an individual disk or sphere should be considered. 

The effect of the fluid velocity field can be included in the calculation 

of the h g  forces on particles. 

The problems of stability and convergence for the iterative scheme 

requires a more rigorous mathematical investigation. 

A dynamic storage space in the current computer simulation program can 

be implemented by using a FORTRAN 90 compiler or the entire program 

c m  be converted into another language, such as Pascal or Ci+, to utilize 

mon efficiently dynamic data management capabilities of these 

languages. In addition, a graphical interface can be used to output the 

data directly onto the screen. Then it wül be possible to reaüze a real 

time simulation for a srnail size granular system. 
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Appendices 

On  the Identity of L a m  anà Newton-Euler Equatioms 

for the System with a Tree-üke Topology 

From the Equations (3.7) and (3.8), we have 

U = PMPT (A31 

these equations are similar to the Equations (3.35)-(3.37). Now let Equation (3.3 1) be 

multiplied by matrix B and Equation (3.32) be multiplied by maaix A which gives 
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Add Equation (A-4) and Equation (AS). then LHS of the rrsuit is equal to the 

LHS of Equations (3.6). In the RHS, the y disappears because of BH + AK = O. This 

can be proved by the component form as follows: 

Fit of ail, Iet us use the simple notations 

so we have 

Substitute Equations (A-7) into Equations (A* 1). (A2) and (3.36),(3.37), gives 

Equations (A-8) plus Equations(A*9) and note that c: + s t  = 1, which gives 

(A* 10) 



and note that W = I fiom the Equation (2.7), Le., 

and 

From the Equations (A.12) and (A.13), we cm obtain 
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(A. 1 1) 

(A. 12) 

(A. 13) 

(A. 14) 

that is 

B H + A K  = O  (A- 15) 

Moreover, according to the Equations (3.33), (3.34) and (3.7), (3.8), through the 

simple operations of matrices and note that + S2 = 1, which gives 

BIF,"} - A { F ; I  = - S P { J ~  + C P { J , }  = mi} (A. 16) 

So far, we have proved that the Newton-Euler Equations can be converted into 

the Lagrange Equations when EP = -1. Similarly, the Lagrange Equations can also be 

converted into the Newton-Euler Equatioos if parameters y are introduced. Therefore, 

the two equations are identical for a system with a tree-like topology. 



Derivation of the Newton-Eder Equations 

for the lrrebplu Body System 

Let us consider a sub-system of two bodies connected with a iïnk, which is 

show in Figure (B.1). 

Figure B.1. A planar system with two iinked rigid bodies 

Note that the direction angle of vector r is W. which is not shown in the Figure. 

Its signs is positive if it goes mti-clockwise from the x to r direction; negative if it goes 

clockwise fkom x to r. There is constant ciifference for all in the sâme body. 

In this case, the intemal force y is divided into two parts, the length of iink is 
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also divided into two parts, as shown in the Figure. Moreoves, f is the extemal force and 

M, is the extemai moment 

Apply the ngid body dynamics equatious to body i and j, we have 

In addition, according to Newton's law we have the dynamics equations in the 

normal direction 

m-a-" I /Y = -y: + y~cos(8,-03 + y:sin(0,-8J+&' 

in the taagentid direction 

t mj ab = -y:sin(B, - 0,) - y:cos(0, - 0,) - y: + f; 

From the Equations (B.3)-(B.6). we have 



5 f a,+ -ai. = lVëv+ ~ ~ r U ~ o ~ ( ~ v - y ~ )  + &r,sin(ûV-y3) - 
@-10) 

-yï-,yos(e,-w,) -&,sin(ev-w,) 

So the RHS of Equation (B.7) is equal to the RHS of Equation (B.9), Equation 

(B.8) is equal to the RHS of Equation (B.10) and by applying the inductive method we 

cm obtain the matrix form of these equations 



Making the M e r  simplification to the Equations (B. 1 1)-(B. 13). Equations 

(3.6 1)-(3.63) can be obtained. 



Appendix C 

Derivation of the Newton-Euier Eqmtions in a 3-D System 

Let us consider a sub-system of two bodies (mass-points) comected with a Iink, 

which is shown in the Figure (C.1). 

Figure C.1 A spatial system with two connected particles 

Where a nxed reference b e  (X Y,  Z) and a moving fmme (e,, e2, e,) are 

employed. If the acceleration of point-mass i is known, the acceleration of the point- 

mass j can be detennined by 



where 

Therefore, we have 

From Equation (CA), we can obtain the relative acceleration between point-mass 

i and j on the 3 directions (e, , e, , e3) as following 

8 8 aj -a, = +21$6co@ (C-9) 

In addition, we can obtain the following equations by Newton's Second Law in 

the 3 directions: 



(1) In the direction of et, the movemnt of the point-mass i and j obey 

mi a: = -yy [co~@~cos@, + sin@,cos(@, -ûu)~h@Y] +Y,, + fb (C. 10) 

mj a; = -y,, + ~ , [ c o ~ , c o ~ ,  + ~in@~cos(û~ -0,) sin$,] + fg (c-11) 

(2) In the direction of e,, the movemnt of the point-mass i and j obey 

mi ab = yu ~ c o ~ , s i n ~ ,  - cos~,cos~û, -6,) + 2 (c. 12) 

mja; = yw[-co~,sin@v+co~vcos(Ov-Ow)sin@w]+~ (C. 13) 

(3) In the direction of e,, the movement of the point-mas i and j obey 

mja; = -yWsin(8,-û,,,)sin@,+ f; (C- 15) 

where fkn is the component of extemal force acting on the point-mas i in the direction 

of e,, fk@ is the component of extemal force in the direction of e, and fbe is the 

component of extemal force in the direction e, . 

From the Equation (C.lO) and (C.11). we can get the expression of a," - a,", 

then substitute it into the Equation (C.7), which gives 



Y u  1 1  1 4 ~ +  i62si112@ = --CO*,CO@~ - (-+- Y", )Y, --c~*,,co*~ - 
"i mi Ï mi 

(C. 16) 

Applying the inductive meihod we can easily get its matrix form 

Here Equation (C.17) is Equation (3.85). Similady, from Equations (C. 12), 

(C. 13) and (C.8), we can get Equation (3.86); From Equations (C.I4), (C. 15) and (C.9)- 

we can get Equation (3.87). 



Estimation of the Maximum Cooràïnation 

Number in a Mdüspbere System 

k t  US consider a s ~ b - ~ s t e m  of two bodies (mas-points) comeced with a 1- 

which is shown in the Figure D.1). 

Figure D.1 111ustration of a multisphere system 

When a sphere with a radius r-is surrounded by spheres with radü r,, (see the 

left hand side of the figure), a spherical surface with radius R wiii form (see the right 

hand side of the figure). where 

R = 00' = (r-+ r,,)cosa 

and a cm be determined by 



On this sphericai surface, accordhg to the relevant sphericai geometry principle, 

each circle area A, is 

A, = 2nRZ(1 -cosa) 

and the area of the spherical triangle A, is 

A, = ER2 

where E is the spherical excess of the triangle Le. 

E = L A + L B + L C - x  (D-5) 

Assuming there are Nt triangles in the whole spherical surface (4&), Le. 

N'A, = 4 n ~ ~  (D-6) 

The relationship of A, and A, is 

where the sum of 3 angles is n + E, and since these angles are same, each of them is 

(X + E)  1 3. Now let us calculate the percentage of the ai l  sphencal area Af in the area 

of triangle A, 



where N, is the number of spheres with radii r,. From the Equations (D.8) and (D.9) 

we can obtain 

In the S t d r d  Muthematical Tables arui Fomufae (Zwillinger, 1996). E has 

been given in the form 

I s 1  1 1 ta na^ = \) tan- tan-(r - a) tan-(s - b )  ~ ( s  - c )  
2 2 2 2 

where a, b, c represent the sides of the îriangle (in radian masure), and 

in our problem, a = b = c = 2a, hence s = 3% hence the Equation (D.11) is 

simplified as 

So the Equations (4.5) and (4.6) have been proved. 

Note that the estimation of N, can be obtained by different ways. This is only a 

simple form. 



Appendix E 

A FORTRAN Rogram for Simulations of a Gmrilar System 

C straight pipe) 
c---------------------------'---"-------------------------------------------- 

PARAMSTER (N=SOOO,M=~OOO,K=~O,KC=~O.DEN=I-1) 
CEfARACTER FiLE*B,INPF*8,OUTF*8,m*4 
DIMENSION XRB (M) , XB (M) ,YB (Ml , XDB (Ml , YDB (M) 
D m S I O N  Dl? (N) ,DL(N) ,DX(M) rDY(M) ,DV(N) r D n ( N )  

DIXENSION XDD(M) ,YDD(M) ,FX(M) .-(KI ,F(N) ,FT(N) , W N )  .Rx(M) ,RY(M) 
DIMENSIONXi(M) ,Yl(M) ,XD1(M) ,YD1(K) ,XDDI (Ml ,YDDI(M), FICL (M) , (M) 

COMMON /TOPO/ IB (NI , IE (NI , IBB ( N t  K) , fEE (N, K) , KB(N) , KE(N) 
COMMON /PARAI/ XCR(KC) ,XC(KC) ,YC(KC) ,XR(M) ,X(M) ,Y(M) ,-(MI 
COKMON /PARAS/ C(N)  ,S (NI ,m(M) ,XL(g 

c---------------------""--------------------------------------------------- 

C open a data f i le (.inpl and read data f r o m  the file 
c------------------------"-"-"'--'----------------------------------------------- 

GOTO 6 

5 PRINT*, " F i l e  not found* 
6 p=*,"~nter nme of data file (no extension) :" 

READ ( * , ' (A8 ) " FILE 
Dû 8 I=1,8 

IF (FItE(1:I) .EQ." " 1  THEN 
NCH=I-1 
GOTO 9 

ENDIF 
8 CONTINüE 
9 =F=FfLE(l:NCH) / / "  -inpu 

O U T F = F I L E ( ~ : N ~ ) / / ~ - P I ~ ~  
OPEN (~,FILE=~F,STATUS="OLD*,ERR=~) 



READCI, " (A41 ' 1  WD 
IF (WDIEQImREkf") GOTO 10 
IF (WD,EQ,"PARA") TEIEN 

READ(1, " (A4) '1 W D  

IF (WD EQ- "END" ) GOTO 10 
BACKSPACE 1 
READ (1,') XO,XEND,XIN,DH,VX,VY,~,FMAX,E,U,TOL 
GOTO II 

ELSE IF (WD.EQ,"RAND") THEN 

READ(1, " (A41 " 1 WD 
IF (WDIEQ."ENDa) GOTO 10 
BACKSPACE 1 

READ (Ir*) IG,ISEED,RI,XI,YI 
GOTO 12 

ELSE IF (WDoEQI"DISKR THEN 
NBB=O 
READ ( 1 , " ( A 4 ) " )  WD 
IF (WD-EQ-"END*) 10 
BACKSPACE 1 

READ (1,*) I,XRB(I) ,XB(I) ,-(Il .XDB(I) ,YDB(I) 

NC=O 
READ (l,*(A4) " 1  WD 
IF (WD.EQ."ENDR) GOTO 15 
BACKSPACE 1 
READ (1, *) I,XcR(I) ,XC(I) ,YC(I) 
NC=NC+I 
GOTO 14 

ENDIF 
CONTINUE 

C Initialize parameters 

PI=4.0*ATAN(1.0) 
NB=O 
KG=l 
L=O 



C Conditional Randomization of Disks 



c PRïNTf, * Please check initial position !' 

c P ,  'ûverlap happened between disk '.IC,'and '.J 

C IrUtialize topology data 

CALt TOPOLOGY (NL 

C Checkhg initial velocity violation if links exist 
c----------------------"'-------------------------------------------------- 

IF (IG-EQ-1) GOTO 22 

ENDIF 

IF (ABS(DV(I) ) -GT-O -1) THEN 
PRINT*, ' Initial velocity violation !" 

PRINT*, * Please check initial velocity !" 

P m * .  Velocity violation betweea disks ' , IB(1) , "and ' , IE (1) 

C Considering external force on each body and composing vector B 



23 CONTINUE 

C Sol- in i t ia l  reaction force in each lidc by iterative rnethod 

c-----------------"'------------------------------------------------------- 

W=l-5 
DO 26 I=l,NL 

F( I )=w*F( I )+ (~ .O-W)  *FT(I) 
IF  (ABS(F(1)) .LT.TOL) GOTO 26 
ERR=ABS( (~ (1 )  -FT(I) ) / F ( I )  ) 

IF (ERR-GT-TOL) NT=l 
F T ( 1 )  = F ( I )  

26 CONTINUE 

I F  (NT.EQ.1) GOTO 25 

ENDIF 
3 2  CONTINUE 

c------------------------------------------------------------------------ 

C Solving reaction force in each link, new position and velocity 

C of each body by iterative method with a variable time step 

c-----------------"'------------------------------------------------------- 



Do 3 4  I=l,NL 
AF=ABS(F(I) 1 
IF ( (AF-GT-1-OES2) -ORc (L-GT-500) ) TBEN 
F ( I ) = O - O  
D û  33 J=I,NB 
X(J )  ==(JI 
Y(J) =Yl(J) 
2CD (JI =XD1 (JI 
YD (JI =YDl (JI 

33  CONTINDE 

H=H-DH 

IF (H-GT-DE) GOTO 30 
P m * ,  "Please reduce the minimum t h e  step DH" 
PRINT*, L, H, F(I),I 

ELÇE 
DV(I)=(M,(IE(I) ) -xD(IB(I) ) ) *c(I)+(YD(IE(I) 1 -YD(IB(I) ) ) '~(1) 

ENDIF 
35 CONTINUE 

C 
DO 37 I=l,NL 

IF ( ( F ( 1 )  -GT.FMAX) .OR- (ABS(DV(1)) .GT-0.1) 1 THEN 
DO 36 J=I,NL-1 

F ( J )  =F(J+l) 
FT(J)=FT(J+I) 
XL(J)=XL(J+I) 
IB (3) =IB (3+1) 
IE (J) =IE (J+l) 

CONTINUE 
LB (NL) =O 



C Dete-g friction forces 
c-------------------------"'----------------------------------------------- 



DO 61 J=1,5 
CALL ITERAT (NL , DL, DF 
CONTINUE: 



C Velocity correction 
c--------------------""""'---"-""---------------------------------- 

CALL ITERAT(NL,DV,DW) 

CALL MULT(NB,NL,DW,DX,DY) 

C Energy correction 
c------------------c-"'--"'-"----'-"--------------------&------------ 



68 CONTINUE 
Dû 69 I=l,NB 

XD(I)=XD(I) -XD(I) *DE/SJM 

YD(I)=YD(I) -YD(I) *DE/SUM 

69 CONTINUE 
c------------------------""'------------------------------------------------ 

IF (NT.EQ.l.AND.L,LT-200) TEXEN 

DO 70 I=l,NI; 
FT(1) =F(I) 

70 CONTINUE 

GOTO 31 

C Checking and handling of collisions 
c------------------"-'-"-'----------------------------------------------------- 

CAfrL PEVENT(NC,NB,NL,IFLAG,IB,IE,XL,DL) 
CALL TOPOLOGY (NL ) 
Dû 71 I=l,NL 

IF (IB(1) .LT.O) THEN 
C(I)=(X(IE(I) )-XC(-IB(1))) /XL(I) 
S(I)=(Y(IE(I) )-YC(-IB(1) 1 )  /XL(Il 

ELSE 

C(I)=(X(IE(I) 1 -X(IB(I))) /XL(I) 
S(I)=(Y(IE(I) 1-Y(IB(1) ))/XL(I) 

ENDIF 

71 CONTINUE 
c------------------------------------------------------------------------ 

C 
DO 72 J=1,5 

C U L  ITERAT (NL , DL, DF 

7 2  C O N T m  



C U L  MJLT(NB,NL,DF,DXtDY) 
DO 73 I=l,NB 

X ( 1 )  =X(I)+DX(I) 
Y ( 1 )  =Y(X)+DY(I) 

7 3  C O N T m  
c---------------------"-"'-'----'-""--------------------------------- 
C Velocity correction and collision handling 
c------------------------------------------------------------------------ 

IFV=O 
DO 74 I=l,NL 

IF (IB(1) -LT*O) TEIEN 

DV(I)=XD(IE(I) )*C(I)+YD(IE(I) 1 *Ç(I) 

ENDIF 
74 CONTINUE 

C 

XT=XT+H 
c--------------------"""'-'---"""---------------------------------- 
C Determining the next the  step 
c--------------------------------"'---------------------------------- 



IF (XT-LT. (KT*XIN)) GOTO 91 

C 

91 IF (XT.GT.XFIM>) GOTO 99 

IF (XT.LT.(SO./VX)*KG) GOTO 96 
KG=KG+I 
DO 94 I=l,NB 

IF (X(1) .GT-150.) THEN 

DO 93 J=I,NB-1 
XM(J)=xM(J+l) 
XR(J)=XR(J+l) 
X (J) =X (J+1) 

Y ( J )  =Y(J+l) 
XD(J)=XD(J+l) 
YD(J)=YD(J+l) 

C O N T m  

NB=NB-1 
IF ( X ( 1 )  .GT.lSO-) WTO 92 

ENDIF 

94 CONTINUE 
c--------------------------""'--------------------------------- 

C Checking J-g 



IF (X(1)  -LT. -21- ) TEIEN 
PRrNT* , PO, " ---- J m G  i ! ----- 
STOP 

END1 F 
CONTINlfE 

GOTO 16 



140 RETURN 
END 

c-----------------""""-'------------------------------------------------------ 

C Subroutine f o r  setting up topology data structure 
c------------------'------------------------------------------------------- 

SUBROUTïNE TOPOLOGY (NL 
PARAMETER [N=5O0O8K=I0) 

COMMON /TOPO/ IB (N) . IE (N) 8 IBB (N, K) , 1EE (N. K) , KB ( N I  . KE (N) 







C O ~ O N  /TOPO/ IB (N) . IE (NI . IBB (N. K) , IEE (Nr K) r=(*) r K E ( N )  

CO- /p-/ XCR(KC) ,XC(KC) ,YC(KC) .XR(M) .X(H) rY(M) . m ( M )  rYD(*) 

DO 510 I = l r N B  

DKX(I)=I-O 
D K Y ( I ) = I - O  

CONTINUE 



530 CONTINUE 
RETüRN 
END 

c--------------------------"----------------------------------------------- 

FUNCTION R A ,  ( IDUM) 

PARAMETER (~=714026,IA=1366,IC=î50899.~=l~O/M) 
DIMENSION IR(97) 
DATA IFF /O/ 
IF ( (IDUM-LT.0) -OR. (IF-Q-0) 

IFF=l 
IDUIGMOD ( IC-IDUK, M) 

DO 600 5=1,97 
IDUM=MOD ( IA* IDUM+IC , M) 
IR (J) =IDIM 

600 CONTINUE 
IDUM=MOD(IA*IDUM+IC,E) 
1Y =IDuM 
ENDIF 
J=1+ (97*IY) /M 

IF ((J.GT,97).OR.(J.tT-1)) PAUSE 





& -le of  Input F i l e s  

R.R!!l 
REM Start, End, Kin-step, Vx ,  Vy,  Thick, m, E r  U r  TOL 
PARA 
0.0 500.0 1.0 0-00005 5.0 0.0 2-5 0-0 0.7 0-3 0,00001 
END PARA 
REM IG, ISEED, 
RAND 

1 2 
END RAND 
DISK 
1 3 -37 
2 3 -32 
3 3 -35 
4 3-40 
5 3-31 
6 3 -42 
7 3 - 3 4  
8 3 -38 
9 3.32 
10 3 -41. 
Il 3.35 
12 3 -40 
13 3.31 
14 3 - 3 7  
15 3-40 
16 3 -38  
17 3 -36 
18 3.35 
19 3 -37 
20 3-39 
21 3.34 
22 3.36 
23 3 -33 
24 3 -40 
25 3 -28 
26 3 -40  
27 3 - 3 5  
28 3 -32 
29 3.38 
30 3 -35  
31 3 -40 
END DISK 
REM 
ROOT 
1 180 -0 
2 180.0 
3 3.5 
4 3 - 5  
5 14.5 
6 1 4 - 5  
7 3 . 8  
8 3 -8 
9 14-2 
10 14.2 
11 4.0 
12 4.0 



END ROOT 




